
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

SDR based module for Low Power
WAN nodes development

Muhammad Rizwan
M.Sc. Thesis

November 2020

Supervisors:
DR.IR. A.B.J. KOKKELER (ANDRE)

DR. A. ALAYON GLAZUNOV (ANDRÉS)
DR.IR. R.A.R. VAN DER ZEE (RONAN)

Daily Supervisor:
ZAHER MAHFOUZ MSc

Radio Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Summary

In the present digital and high-speed wireless era, there is an increased need to
meet the data services demand while maintaining the power consumption to a mini-
mum. It is always a compromise between critical requirements with the lesser critical
ones.
Wireless Sensor Networks (WSN) have revolutionized the common man’s life with
their enhanced usage in a multitude of applications ranging from personal space
to industrial monitoring. The Internet of Things (IoT) is a sub-domain of the WSN
which has been used in several applications such as health monitoring, temperature
monitoring, humidity monitoring, pressure monitoring, and calculating electricity con-
sumption in smart meters. In an application, a sensor node is present where data
rates and energy requirements are low except for smart power meters. Smart power
meter sensors have the main power supply as a primary energy source, so power
consumption is not an issue there. Due to the appealing features of sensor nodes,
they are being deployed almost in every field.
Although sensor nodes are an attractive choice due to their appealing features, they
can pose some additional challenges. One of the key challenges is their accessibility
in case of an update of the technology, a protocol, or a new physical layer installa-
tion. Since a network consists of hundreds of sensor nodes that are spread over a
geographical area, the only plausible option in before mentioned circumstances is
the redeployment of nodes. In addition, most of the nodes are placed in a hardly
accessible area; replacement is not desirable due to logistics and installing issues.
In our work, we focus on the development of a reconfigurable Low Power Wide Area
Network (LPWAN) nodes, to circumvent the challenges and make the upgrading pro-
cess cost-effective and simple. We investigate several software-defined radio (SDR)
choices, and present a hybrid solution for final implementation. The hybrid solution
consists of a Field Programmable Gate Array (FPGA), a microcontroller, and a radio
frequency (RF) transceiver chip.
A point to point transceiver is designed and tested at a data rate of 100 bps us-
ing quadrature phase shift keying (QPSK) modulation. A sensor node works on low
data rates, which require narrowband filters for improving signal-to-noise ratio (SNR)
and sample rate conversion. Two types of low pass filters are simulated for sample

iii

IV SUMMARY

rate conversion and efficient hardware resources realization. The Finite Impulse Re-
sponse (FIR) filters are simulated in the initial design due to the simplicity and ease
of implementation on hardware. The FIR filters are easy to implement, but they
have high hardware resource requirements due to extensive multipliers usage. The
cascaded integrator-comb (CIC) low pass filters are efficient in such applications
due to their multiplier-less structure, but the passband droop limits their advantages.
Moreover, hardware resources are fewer in a sensor node for minimizing power
consumption on a coin cell battery. The proof of concept is verified and analyzed
through simulations in the Simulink. It is deduced that the CIC filters are an optimum
solution for resource constraint design, and cascading an FIR filter at the lower sam-
pling frequency side can correct the passband droop .
A successful transmission and reception of a 200-bit packet verify the proof of con-
cept in Hardware Description Language (HDL) based simulations. The MATLAB
HDL coder shortens the development time by directly generating the HDL codes for
the system design. The block diagram developed in the Simulink can serve as a
basic structure on which new physical layers can be implemented and verified for
the sensor node.

Contents

Summary iii

List of acronyms ix

1 Introduction 1

1.1 Available LPWAN standards . 3

1.1.1 Sigfox . 3

1.1.2 LoRa . 4

1.1.3 Narrowband IoT (NB-IoT) . 5

1.2 Motivation . 5

1.3 Work of others . 7

1.4 Research scope . 8

1.5 Research goal . 10

1.6 Report organization . 11

2 Hardware Architecture Design 13

2.1 Introduction . 13

2.1.1 SDR transmitter block diagram 14

2.1.2 SDR receiver block diagram . 15

2.2 Available SDR platforms . 16

2.2.1 BladeRF x40 . 16

2.2.2 LimeSDR mini . 17

2.2.3 ADALM PLUTO . 17

2.2.4 Conclusion . 18

2.3 Reconfigurable hardware layout . 19

2.3.1 One chip solution . 19

2.3.2 Two chip solution . 20

2.3.3 Three chip solution . 28

2.4 Conclusion . 29

v

VI CONTENTS

3 Field Programmable Gate Array (FPGA) 31
3.1 Introduction . 31

3.1.1 Configurable logic blocks . 32
3.1.2 Configurable I/O blocks . 32
3.1.3 Programmable interconnects 32
3.1.4 Clock circuitry . 33

3.2 Types of FPGA . 33
3.2.1 Static memory . 33
3.2.2 Flash programming . 34
3.2.3 Anti-Fuse technology . 34
3.2.4 Examples of FPGA families . 34

3.3 Two chip FPGA based design . 34
3.3.1 QPSK transmitter . 35
3.3.2 QPSK receiver . 40
3.3.3 Simulation Verification, FPGA synthesis, and power report . . . 49

3.4 Three-chip based solution design . 53
3.4.1 FPGA filter and interface design 54

3.5 Simulation and results . 60
3.5.1 Interpolation . 60
3.5.2 Decimation . 65
3.5.3 Hardware synthesis and power estimates 68
3.5.4 Power consumption estimate 70

3.6 Conclusion . 71

4 Microcontroller 73
4.1 Introduction . 73
4.2 Three chip design . 73
4.3 Receiver . 74

4.3.1 Deserializer1D HDL coder . 75
4.4 Testing and verification . 75

4.4.1 Pulse shaping filters . 75
4.4.2 Microprocessor profiling . 79
4.4.3 Processor-In-Loop (PIL) testing 80

4.5 Conclusion . 82

5 Integrated System Verification 85
5.1 Channel . 86
5.2 Testing Results . 86

5.2.1 Data reception at constant EbNo 86
5.2.2 BER vs EbNo Plot . 86

CONTENTS VII

6 Conclusion And Future Work 89
6.1 Conclusion . 89
6.2 Future work . 90

References 93

VIII CONTENTS

List of acronyms

ADC analog to digital converter

BER bit error rate

BLE bluetooth low energy

CLBs configurable logic blocks

DAC digital to analog converter

DSP digital signal processor

FIR finite impulse response

FPGA field programmable gate array

GPP general purpose processor

HDL hardware description language

IF intermediate frequency

IoT internet of things

LNA low noise amplifier

LTE long-term evolution

LPWAN low power wide area network

LVDS low voltage differential signal

MOSI master out slave in

MISO master in slave out

MSPS mega samples per second

QPSK quadrature phase shift keying

ix

X LIST OF ACRONYMS

PHY physical layer

PSoC programmable system on chip

RF radio frequency

RFSoC radio frequency system on chip

SCLK serial clock

SDR software defined radio

SELN select active low

SNR signal-to-noise ratio

SPI serial peripheral interface

SoC system on chip

SRAM static random access memory

Wi-Fi wireless fidelity

WSN wireless sensor network

UNB ultra narrow band

Chapter 1

Introduction

Advancement in wireless technology is paving grounds for new communication de-
vices. More and more devices are being deployed into the already crowded electro-
magnetic spectrum. Internet-of-Things (IoT) is one of the emerging fields in the cur-
rent era, which was envisioned in 1990. IoT includes a multitude of wireless devices
such as wireless sensor networks (WSN), Near Field communication, machine-to-
machine communications, Body Area Networks (BAN) and already mature personal
area networks such as Wi-Fi, Bluetooth, cellular, etc [1]. The vision behind the WSN
is the collection and monitoring of the environmental variables (temperature, sound,
vibration, pressure, and motion, etc) [2]. Wireless sensor nodes have affected the
common-man lifestyle due to the ease of accessibility and the new concept of smart
homes. WSN are mostly deployed in places that are not easily accessible for human
intervention and battery replacement. Some of the applications of WSN can be seen
in Figure 1.1.

Figure 1.1 only gives a glimpse of the vast number of applications of wireless

Figure 1.1: Application of wireless sensor nodes WSN [2]

1

2 CHAPTER 1. INTRODUCTION

sensor networks. As per the studies of [3], by the end of 2020, the world will have
twenty-five billion sensor nodes. Ownership of 6-7 nodes per person can easily
elaborate the humongous problem of spectrum usage by billion of nodes. Commu-
nication in such an environment is a challenge for communication engineers, who
have to ensure reliable communications among end nodes but not at the cost of high
power consumption. High power consumption is a threat to the life of a coin cell op-
erated sensor node. One example of a gigantic network that contains thousands of
nodes is the low power wide area network (LPWAN). Large area transmissions and
remote terminals follow the Shannon-Hartley channel capacity theorem as follows:

C = B log2(1 + SNR) (1.1)

C is the capacity of the medium in bits per second, B is the bandwidth of the signal
transmitted in hertz (Hz) and SNR is the signal-to-noise ratio. From 1.1, it can be
deduced that if the bandwidth is lowered then SNR must be increased for maintain-
ing the same channel capacity and BER. Low data rates and larger coverage area
resulted in the emergence of LPWAN. It has gained importance over the competing
radio technologies (Zigbee, bluetooth low energy (BLE) etc) due to the competing
technologies having shorter coverage range and higher device cost. The cellular
networks can be a favorable option for LPWAN based applications due to the al-
ready deployed vast network of gateway nodes. High device power consumption
and expensive frequency spectrum had hindered their scalability in a long-range,
low data rate and low power consuming option for LPWAN.
LPWAN nodes are designed on a single-hop communication basis in which nodes

are connected in a star topology (Figure 1.2). In star topology, every user has to
transmit/receive data to/from the gateway nodes. The gateway nodes are interlinked
over a fixed communication medium (e.g. the internet) to form an interconnected in-
formation cloud. Interconnectivity among the gateway nodes and the end nodes

Figure 1.2: LPWAN topology [4]

1.1. AVAILABLE LPWAN STANDARDS 3

is a key feature in transforming normal factories into the smart factories [5]. The
challenge for a base station is to serve thousands of end nodes without request-
ing repeated transmissions and dropped packets. Keeping in mind the severity of
the problem many protocols, standards, and technologies have evolved. Among
the available technologies, three of them are the main competitors and are highly
adopted by different countries (Sigfox, LoRa, NB-IoT).

1.1 Available LPWAN standards

1.1.1 Sigfox

Sigfox is a patented technology of a French company founded in 2010. It provides
end-to-end IoT connectivity to nodes based upon a proprietary protocol [6]. Sigfox
deploys its own base stations which are equipped with an IP-based backbone. It can
support two transmission data rates of 100 bps and 600 bps depending upon the re-
gion of deployment [7]. A Sigfox gateway restricts 140 uplink messages per day with
a maximum of 12 bytes payload [7]. The communication link between a node and a
gateway is asymmetric which allows a maximum of 4 downlink messages of 8 bytes
per day. Asymmetry of the link requires highly reliable uplink communication. That’s
why it supports both frequency and time diversity. Uplink messages are transmitted
multiple times (three times by default) to ensure successful information reception at
the gateway. The sub-1GHz band (Europe 868.180MHz-868.220MHz) is divided
into 400 orthogonal channels with 100 Hz bandwidth (40 channels are reserved) [6].
Sigfox utilizes frequency and time diversity (Figure 1.3) by transmitting messages
multiple times at different frequencies. Spatial diversity is achieved by the reception
of the same message by multiple of neighbouring gateways (three by default).

Figure 1.3: LPWAN frequency and time diversity plot [8]

4 CHAPTER 1. INTRODUCTION

1.1.2 LoRa

Lora is developed by Semtech for long-range, low power and low data rate applica-
tions [9]. It operates in the same unlicensed ISM sub-1GHz band as Sigfox. It uses
a proprietary spread spectrum technique for modulation with a maximum data rate
of 50 kbps. It supports bidirectional communication but most of the traffic is gener-
ated by the end nodes. It has an adaptive data rate feature that changes data rate
depending upon the communication link status and spreading factor used from the 6
available choices. Data transmitted by the end device is received simultaneously by
the neighboring gateways as shown in Figure 1.4. The redundant reception helps in
successful data transfer but the network server is intelligent in discarding the redun-
dant packets based on the time difference of arrival (TDOA).
The LoraWAN supports three classes of end devices namely A, B, and C. Class
differentiation depends on the reception mechanism for a bidirectional data link. A
class-A end device supports bi-directional communication whereby the uplink trans-
mission period is followed by two receive windows. The transmission period de-
pends on the application’s data rate requirements. Class-A end device consumes
less power among the three device classes. These devices are preferred when short
downlink transmission messages are required after uplink messages. A Class-B de-
vice in conjunction with a random receive window opens a scheduled receive slot.
Time-synchronized beacons are transmitted by the base station which helps the
network server to know when the device is in listening mode. A Class-C device is
always in listening mode except when they are transmitting. The next version of the
LoraWAN is under development that will support roaming and temporary switching
between device class from A to C [6].

Figure 1.4: LoraWAN network architecture

1.2. MOTIVATION 5

1.1.3 Narrowband IoT (NB-IoT)

The NB-IoT is a narrowband IoT technology, introduced by the 3GPP group in June
2016. Unlike its competitors, NB-IoT shares a licensed frequency band with a global
system for mobile (GSM) and long-term evolution (LTE). NB-IoT has a bandwidth of
200 kHz which is equal to one resource block in GSM and LTE transmission [10].
NB-IoT is regarded as a new air interface but it is being developed on already present
LTE infrastructure. NB-IoT is scalable up to 100k end devices per cell with the ca-
pability of adding more devices by allocating more carriers to the NB-IoT frequency
bank. NB-IoT employs QPSK modulation with a maximum payload size of 1600
bytes. The data rate can varry up to 200 kbps in downlink and 20 kbps in uplink [10]
NB-IoT uses single carrier frequency division multiple access (FDMA) for uplink and
orthogonal frequency division multiple access (OFDMA) in the downlink. NB-IoT fu-
ture improvements are suggested by the 3GPP group in their 15th release, one of
them is the mobility for the upcoming NB-IoT devices.
Depending on the application requirements and data communication factors, one of
the IoT technologies is selected from the available LPWAN solutions. Requirements
can be low cost, long battery life, quality of service (QoS), coverage range or ease
of scalability, etc.

The differences between the three technologies are summarized in Table 1.1. From
the table, it can be concluded that the LoRa and Sigfox can be preferred over NB-IoT
based on spectrum cost. However, if low latency and Quality-of-Service (QoS) are
required then NB-IoT is the only choice among the three of them due to the licensed
spectrum. If scalability is the main goal then NB-IoT will be the best due to already
developed LTE and GSM infrastructure.

1.2 Motivation

Recently we have seen much development in the LPWAN field but mostly it is soft-
ware oriented. Fewer research is conducted in the node hardware reconfigurability
area. The available LPWAN sensor nodes are ASIC-based which means their hard-
ware interconnections can not be changed after final product deployment. LPWAN
is a developing technology, which sees breakthroughs every year. To make already
deployed infrastructure compatible with a new technology or protocol is nearly im-
possible. Compatibility requires new node deployment in the same coverage area.
The choice of redeployment is not favorable because sometimes nodes are deployed
in hardly accessible areas. The redeployment of nodes requires time and labor that
companies can not afford in the race of capturing the market first.

6 CHAPTER 1. INTRODUCTION

Already available SDR platforms are bulky and expensive, which makes them an
unfavorable choice for being used as LPWAN sensor nodes. Moreover, some SDR
platforms also require an external processor for processing data.
A LPWAN is intended for low power, low data rates, and long-range communication
among interconnected sensor nodes. These are the distinguishing features com-
pared to the conventional wireless networks that require high operating power and
connect multiple users or businesses for high data rates. The LPWAN supports
up to 50 kbits per channel which suffice sensor node communication needs [11].
This study focuses on the feasibility and software verification of reconfigurable LP-
WAN nodes. The main focus of this work will be on developing a standalone re-
configurable node that is suitable for LPWAN communication. The reconfigurability
of LPWAN nodes will help companies to get their infrastructure deployed first and
PHY/MAC layers may be upgraded or reconfigure later without the need for rede-
ployment. These nodes will be economical relative to the high-end processing SDR
platforms prices and comparable to the available ASIC-based LPWAN nodes avail-
able in the market.

Table 1.1: Sigfox, LoRa and NB-IoT features overview
LoRa Sigfox NB-IoT

Frequency
Unlicensed ISM band
(868 MHz in Europe)

Unlicensed ISM band
(868 MHz in Europe)

Licensed LTE
frequency band

Modulation CSS BPSK QPSK
Bandwidth 250 kHz and 125 kHz 100 Hz 200 kHz

Transmission
constraint

Unlimited
140 uplink messages
and 4 downlink mes-
sages per day

unlimited

Maximum Pay-
load

243 bytes
12 bytes uplink and 8
bytes downlink

1600 bytes

Adaptive rate Yes No No
Latency variable variable fixed
QOS No No Yes

Scalability
Requires standard
specific base station

Requires standard
specific base station

compatible with
GSM or LTE
network

Standardization LoRa Alliance SigFox company 3GPP

1.3. WORK OF OTHERS 7

1.3 Work of others

The LPWAN allows new applications and devices development but due to several
constraints, it requires nonconventional protocol design [2]. Having an adequate
amount of resources on board while minimizing the power consumption of the de-
vice is a challenge for a designer. Several constraints motivate huge research in the
standardization process and attract industrial investments in this field [2]. In [12],
the author discusses the equal importance of the transmission protocol and the pro-
cessing algorithm on basis of energy consumption. RF transmission consumes high
power in the conversion of a signal from the digital domain to the analog space. Sig-
nal processing software/protocol energy requirements can not be left unattended. It
can happen that signal processing may take a considerable time which can make
energy consumption in comparable to the transmission of a signal [12]. In [13] the
authors developed a delay aware algorithm which controls the total number of active
nodes while keeping optimum connectivity of the network. The algorithm will help
in keeping information delay to sink under the required value and meanwhile reduc-
ing the energy consumption by the network. Most of the research work is carried
out in the development of a power-saving algorithm and cross-layer protocol design
for sensor nodes. Less work is carried out in the domain of reconfigurable sensor
nodes.
Openchirp is a management framework for LPWAN that gives access to the user
over the web [14]. The Openchirp currently supports loRaWAN (LoRa LPWAN pro-
tocol) with future support for Bluetooth, IEEE 802.15.4, and other IoT communication
protocols is envisioned. The authors developed the hardware (name as LPRAN)
shown in Figure 1.5. The LPRAN board consist of an FPGA, an RF chip, and a
low noise amplifier (LNA). The RF chip provides an I and Q raw signal data as a
sigma-delta modulated streams in reception. An onboard FPGA and external micro-
controller Raspberry pi 3 do the rest signal processing tasks. The LPRAN board is
developed for gateway nodes thats why it has more hardware resources on-board
than actually required for end node. The LPRAN board currently supports LoRaWan
based reception only. The LPRAN board doesn’t fit the thesis scope owing to multi-
ple reasons: high hardware cost, the receiver only functionality, and not a compact
solution for the end node device.

In [15] the authors demonstrated a reconfigurable LPWAN solution on the Cy-
press programmable system on chip (PSoC) technology. Unlike openchirp, the
PSoC solution is a proof of concept for the reconfigurable LPWAN nodes with an
external protocol specific (LoRa) RF IC. This hardware has a limitation of working
on LoRa protocol only. The discussed PSoC hardware is not suitable for reconfig-
urable node implementation due to the limited application on one LPWAN protocol.

8 CHAPTER 1. INTRODUCTION

Figure 1.5: The LPRAN board and its block diagram

As most of the research is software oriented, the thesis focuses on the hardware
design aspects. The problem of transitioning from one service (e.g Lora) to other
service (e.g. Sigfox or NB-IoT) is nearly impossible with the same gateway or end
node. A user must buy new supplier specific gateway node for communication over
the new desired network. A reconfigurable LPWAN node that can be reprogrammed
in the field with a new protocol, a new physical layer, or on which new investigations
can be carried out without taking the pain of redesigning a product is envisioned
in the thesis. This will tremendously reduce the time to market for any product in
this domain. The prime focus of the thesis is to design cost and power-efficient
reconfigurable LPWAN end device. The thesis motto is One node for all.

1.4 Research scope

WSN nodes are mostly scattered in a sensor field as shown in Figure 1.2. They
have the capability of sensing, monitoring, and routing data to the sink. The WSN
protocol stack consists mainly of five layers as shown in Figure 1.6 [16].

• Application layer:
The highest layer in the protocol stack is responsible for formatting user data
according to the standard and acts as an interface between the lower layers.

• Transport layer:
It helps in maintaining the flow of data if required by sensors.

• Network Layer:
Network layer takes care of routing the data over the network between nodes

1.4. RESEARCH SCOPE 9

and the sink.

• Data Link Layer:
Also known as MAC layer, it is responsible for medium access control (MAC),
frame detection and avoids collision over the air of the data packets between
users.

• Physical Layer:
This layer addresses the needs of physical channel parameters like modula-
tion, frequency selection, data encryption, transmission, and reception tech-
niques. It acts as a conversion medium between digital data (bits) and analog
data (radio signals).

The basic hardware architecture of a sensor node consists of four subunits as shown
in Figure 1.7: sensor unit, processing unit, transceiver unit, and power unit. [16].
The research’s main focus will be to design and develop a reconfigurable LPWAN
node PHY layeer. The designed node will operate in the sub-1Ghz band and it will be
limited to ultra narrowband communications only. A proof of concept is to be verified
after the hardware implementation by using development kits but due to COVID-
19, it is limited to the simulational verification only. As stated earlier, sensor nodes
consist of mainly four sub units but the thesis scope deals with the processing unit
and the transceiver part. The sensor unit selection or power/voltage management is
out of the thesis scope. The reconfigurable node estimated cost will be less than ¤
30 making it economical w.r.t other LPWAN solutions available.

Figure 1.6: Wireless sensor network protocol stack [2]

10 CHAPTER 1. INTRODUCTION

Figure 1.7: Sensor basic hardware structure [16]

1.5 Research goal

In order to design a reconfigurable node for UNB communication in the sub-1Ghz
band this thesis focuses on the following points.

1. Investigate the feasibility of the reconfigurable node design according to the
scope defined based upon the literature survey.
Three different architecture implementations are investigated and analyzed for
the final node design.

2. Validating the finalized architecture on development kits.
Design validation was to be done on the evaluation kits for a proof of concept.
Due to the COVID-19 outbreak, the hardware implementation was limited to
simulation verification only. Simulation design and implementation are limited
to the PHY layer only.

3. System performance evaluation in a given scenario:
The bit error rate (BER) vs EbNo graph is plotted for benchmarking system
performance in a wireless AWGN channel. The performance of the designed
node is compared with the theoretical performance as described in [17] and
MATLAB implementation.

4. The final hardware design is proposed based on the results of the simulations.
The final hardware will have the following characteristics:

• SDR-based standalone module

• Supports sub-1Ghz band

• Max Bandwidth 600 kHz

• Cost < ¤30

• low power consumption

• GPIO capability for interfacing sensors

System validation will be done on the parameters provided in Table 1.2.

1.6. REPORT ORGANIZATION 11

Data Rate 100bps
Packet size 200 bits
Modulation QPSK

Samples per symbol 16
Max Frequency offset 10 Hz

Table 1.2: Reconfigurable node hardware design parameters

1.6 Report organization

To answer the research questions, available software-defined radio (SDR) architec-
ture is discussed in Chapter 2. The SDR architecture investigation will conclude
the sensor node hardware architecture design. In Chapter 4 and Chapter 3 the
FPGA and microcontroller-based wireless system modules are discussed and criti-
cally evaluated. Chapter 5 is about the integrated system testing results of the whole
system. The last chapter concludes the study and proposes some recommendations
for future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Hardware Architecture Design

Abstract:

The software-defined radio basic implementation concepts are discussed in this
chapter. Some available SDR platforms are studied for a hardware implementation
design of the required sensor node. The three different architectural designs are
investigated and an optimal LPWAN hardware architecture is proposed based on
the thesis scope.

2.1 Introduction

Since the creation of the universe, human beings had vastly relied on communication
for information transfer. Though the mode of communication has evolved from fire
signs to high-speed wireless communication. What has remained the same is the
telecommunication fundamentals from the time of Shannon [18]. With the advent
of fast processing hardware like DSP, FPGA, and SoC computationally intensive
algorithm solutions are now possible. Fast processing hardware requires commu-
nication engineers to solve the latest technical challenges like fast switching clock
management, data transfer between different domains, power management, etc.
Software-defined radio (SDR) can be broken down into two words. First, software-
defined that includes the implementation of key elements of the transmission using
programming [18]. Second, the term ”Radio” that includes the means of communi-
cations through the air.
An SDR is a class of reconfigurable devices that can alter the systems software
implementation or PHY after been deployed in the field. This ability of SDRs to re-
configure helps in interoperation among different standards. The reprogramming of
SDR is done in software while hardware remains the same. The same SDR can
be reconfigured for different frequency bands, modulation, data rates, and basic ar-

13

14 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

chitecture, etc. Reconfiguring the same hardware helps in lowering the time of the
design cycle.
The SDR basic hardware architecture can be seen in the Figure 2.1. The main part
of the SDR concept lies in the baseband processing module, where the physical
layer is implemented and reconfiguration takes place when it is desired. The SDR
concept can be subdivided into a transmitter module and a receiver module.

Figure 2.1: Software defined radio basic architecture [19]

2.1.1 SDR transmitter block diagram

The SDR transmitter (Tx) block diagram can be seen in Figure 2.2. The baseband
processing unit acts as an interface between the user data and the rest of the SDR
units. The baseband processor provides data to the digital upconverter (DUC) in dot-
ted lines for filtering and up-conversion to the intermediate frequency (IF). The base-
band sampling frequency and the digital local oscillator frequency must be equal to
the digital-to-analog converter (DAC) sampling frequency to avoid signal harmonics.
The digital local oscillator frequency is mostly equal to the DAC sampling frequency
but the baseband sample frequency is normally lower. The baseband sampling
frequency is increased by a factor of N (interpolation factor) with the help of an in-
terpolation filter. The interpolated and filtered data is transferred to the DAC.
DAC data is upconverted to RF frequency by a mixer and an analog local oscil-
lator. Finally before transmission, the power amplifier boosts the signal power for
successful transmission via the medium.

2.1. INTRODUCTION 15

Figure 2.2: Software defined radio Tx functional block diagram [20]

2.1.2 SDR receiver block diagram

The receiver (Rx) module is the opposite of the transmitter module as discussed
in the section earlier. Figure 2.3 shows a receiver block diagram of an SDR. The
RF tuner receives and translates the frequency of the incoming signals to IF. The
downconverted IF analog data is converted to digital samples by an analog-to-digital
(ADC) converter. This digitized data is transferred to the digital down converter
(DDC) block (dotted lines). The DDC consists of three major sections:

• A digital mixer

• A digital local oscillator

• A FIR lowpass filter

The digital mixer and a local oscillator translate the received IF samples to the base-
band samples for further processing by the FIR low-pass filter. The FIR low-pass
filter acts as a decimator and it also limits the baseband signal bandwidth.
The digital baseband samples are further processed by the baseband processor to
recover the original data which was transmitted.

Figure 2.3: Software defined radio Rx functional block diagram [20]

16 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

2.2 Available SDR platforms

The SDR concept motivates researchers, scientists, and hobbyists which are coming
up with new designs and solutions for SDR. SDR software can be an open-source
(GNU Radio) or licensed (Matlab, NI Labview, etc) package. A licensed hardware
requires a software subscription before any development. An SDR comes in dif-
ferent configurations from full transceiver reconfigurability to receiver reconfigurable
only. The cost price of an SDR depends on the functionality and add-on features
available.
In the thesis, low-cost (≤$ 500) SDR transceivers are studied for the tentative hard-
ware architecture design.

2.2.1 BladeRF x40

The bladeRF x40 is a next-generation full-duplex SDR platform developed by the
Nuand LLC with an operating RF frequency from 300 MHz to 3.8 GHz [21]. The
BladeRF functional block diagram can be seen in Figure 2.4. The main core of SDR
lies in the Altera Cyclone IV FPGA, which performs signal processing, data buffer-
ing and controls RF transceiver chip. The FPGA can be programmed via USB/JTAG
interface with the help of free open source software available online. The Lime Mi-
cro LMS6002D RF transceiver chip is capable of managing RF signals from simple
Frequency modulation (FM) to latest 4G LTE [21]. The price for the SDR is $ 420.

Figure 2.4: The BLadeRF functional block diagram [22]

2.2. AVAILABLE SDR PLATFORMS 17

2.2.2 LimeSDR mini

LimeSDR mini is another option for low budget SDR enthusiasts with lower specifi-
cations than its’ predecessor LimeSDR, developed by the Lime Microsystems. The
basic block diagram of the LimeSDR mini is given in Figure 2.5. It contains Altera
MAX 10 FPGA that is interfaced to the Lime LM7002 RF transceiver and USB 3.0
controller for data communication. The FPGA programming is done via the JTAG
port. The RF transceiver IC covers range from 10 MHz up to 3.5 GHz. It has only
one transmit and one receive channel with a bandwidth of 30.72 MHz and sampling
frequency of 30.72 MSPS. The price of limeSDR mini is $ 175.

Figure 2.5: LimeSDR mini block diagram [23]

2.2.3 ADALM PLUTO

The ADALM-Pluto SDR is a portable RF lab developed for understanding SDR con-
cepts. It can generate and acquire RF signals from 325 MHz to 3800 MHz with a
sampling rate varying up to 61.44 MSPS. It can easily be operated via a USB in-
terface in Windows and Linux interface. A basic block diagram is shown in Figure
2.6.

ADALM-Pluto contains AD9363 high-performance RF agile transceiver designed
by the Analog Devices. The RF transceiver is interfaced with the Xilinx Zynq all-
programmable SoC (AP SoC) [24]. The Zynq SoC is complemented by an ARM-
based processor with hardware programmability of an FPGA.

18 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

Figure 2.6: ADALM-PLUTO block diagram [24]

2.2.4 Conclusion

Table 2.1 lists some of the SDR platforms studied for reconfigurable sensor node
hardware design. The SDR platforms lesser than $ 500 are investigated for node
hardware layout design.

Table 2.1: SDR platform comparison

Name
Frequency

(MHz)

Bandwidth
ADC sampling

rate (Msps)

Tx/Rx

capability

Processing chip RF chip used Cost($)

AD-FMCOMMS4 70-6000 0.2-56 MHz 61.44 2/2 No AD9364 399

ADALM-Pluto 325-3800 upto 20 MHz 0.0652 - 61.44 1/1 Zynq Z-7010 AD9363 150

AirSpyR2 24-1700 10 Mhz 2.5-80 Rx only No
Rafael Micro

R820T2

169

BLadeRF 300-3800 upto 28 MHz 40 1/1 Altera Cyclone IV LMS6002 420

FREESRP 70-6000 56 MHz 61.44 1/1 Xilinx Artix 7 AD9364 420

HACKRF 1-6000 20 MHz 2-20 1/1 Microcontroller Maxim 2837 299

LimeSDR mini 10-3500 30.72 MHz 30.72 1/1 Altera Max 10 LMS7002 175

Myriad RF-1 300-3800 28 MHz 40 1/1 No LMS6002 299

The AD-FMCOMMS4 and the Myriad RF-1 are only RF transceiver chipboards
with an FPGA Mezzanine Card (FMC) connector for an external processor. An ex-
ternal processor can be an FPGA/SoC/microcontroller depending on the application
requirements. The AirSpyR2 can only receive RF signals which are then transferred
to an off-board processor for further processing. The three mentioned SDR solutions
are not appropriate w.r.t the scope of the thesis. The HackRF SDR is a standalone

2.3. RECONFIGURABLE HARDWARE LAYOUT 19

solution that has a microcontroller as the main processing device. The rest of the
SDR mentioned in the table have FPGA based processing. SDR insight can be con-
cluded that the basic elements of an reconfigurable device are an RF transceiver
chip, data processing element, and power management module. Data processor
can be an FPGA, an SoC, a microcontroller or it can be a mixture of multiple data
processing devices.

2.3 Reconfigurable hardware layout

After the architecture study of the SDR, it is clear that there can be many alternatives
to design a reconfigurable SDR sensor node. A block diagram of a sensor node is
the same as Figure 1.7. The PHY can be implemented on different baseband pro-
cessors such as an FPGA, GPP and DSP [25]. The reconfigurable node hardware
design according to the sensor node block diagram can be implemented on a single
chip platform, two-chip platform, or a three-chip platform.

2.3.1 One chip solution

A one chip solution of reconfigurable sensor node is shown in Figure 2.7. A radio

Figure 2.7: Illustration of a one chip design for a reconfigurable node using RFSoC
as a single processing, and a transceiver unit.

frequency system on chip (RFSoC) combines the RF upconversion/downconversion
and direct RF signal sampling onto a single chip. This removes the need for buffers
in data paths and packs the RF components into a single chip package [26]. The
Xilinx has produced industry-only RFSoC adaptable platform [27]. The Xilinx RFSoC
gen 1 can support up to 4 GHz analog bandwidth. The RF sampling rate is 4.094
GSPS with 12 bit sample depth. Built-in RF-DAC and RF-ADC remove the need of
external DAC/ADC for upconverion or downconversion respectively.

20 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

RF Transceiver IC requirements

Frequency Band 862 MHz - 860 MHz (European ISM band)
Data interface I/Q data interface

Power consumption 30mA-70mA (Active current rating)
cost(¤) ≤ 30 (complete sensor node)

Table 2.2: RF tranceiver IC required parameters

This is not an optimum solution for a hardware layout due to the expensive RFSoC
chip that costs approximately $ 4000.

2.3.2 Two chip solution

The next option is a two-chip solution which can be seen in Figure 2.8. Before finaliz-
ing the baseband processing chip it is wise to select an RF transceiver IC. The RF IC
will govern the interfaces required for interconnection with the baseband processing
unit. The RF transceiver chip selection criteria are given in Table 2.2 based on the
scope defined in chapter 1. The power consumption of the available LPWAN nodes
gives an estimate for the desired node power consumption. The Laird RM186 LoRa
transceiver module consumes 30.9 mA while transmitting at 3.3 V supply voltage.
Another Lora solution manufactured by Techship (AcSIP S76s) consumes 65 mA at
3.3 V supply voltage. Sigfox module consumes 33 mA (InnoComm SN10) to 58 mA
(Radiocrafts RC1682) at 3.3 V supply voltage. Based on the current ratings of the
available LPWAN modules the reconfigurable node RF transceiver IC must have low
or approximately equal power consumption compared to the available modules in
the market.

Figure 2.8: Illustration of a two chip design for a reconfigurable node using an FPGA
or a microcontroller as a processing unit and an RF IC as a transceiver
unit.

2.3. RECONFIGURABLE HARDWARE LAYOUT 21

2.3.2.1 RF Transceiver Selection

According to the thesis scope, two RF ICs were found to satisfy the requirements
given in Table 2.2. One IC is from the Semtech corporation and the other one is
from Atmel Corporation. The Semtech RF IC was used in the OpenChirp project
discussed earlier for the development of the LPRAN hardware board. The differ-
ences between the two ICs are summarized in Table 2.3. The Atmel transceiver has

Table 2.3: Available RF transceiver IC
Semtech 1257 Atmel AT86RF215IQ

Cost ($) 6.6 4.93
Size 5 x 5 mm 7 x 7 mm
RF Band 862-960 MHz 863-879 MHz & 2.4 GHz
Tx Bandwidth 210 - 870 kHz 80 - 1000 kHz
RX Bandwidth 250 - 750 kHz 160 - 2000 kHz
IQ data standard 1 bit serial LVDS 1 bit serial LVDS/SLVDS

Tx 58 mA @ 3.3 V and -5 dBm 67 mA @ 3.0 V and - 5 dBm
RX 20 mA @ 3.3 V 23 mA @ 3.0 V
Standby 1.5 mA @ 3.3 V 6.28 mA @ 3.0 V

Current Rating

Sleep 0.5 uA @ 3.3 V 30 nA @ 3.0 V
Noise figure (dB) 7-10 4.5
Tx power max (dBm) +8 +16
ADC/DAC sampling frequency 32 or 36 MSPS 32 MSPS
Available Transceiver 1Tx 1 Rx 1 Tx 2 Rx

a bit high (4.7 % in transmission mode) power consumption at 3.0 V as compared
to the Semtech 1257 IC. A lesser noise figure of about 2.5 dB and less expensive
than its competitor makes it a favorable choice. The Atmel IC can also operate on
dual bands mentioned in the table because of a separate transceiver. Based upon
the parameters (highlighted in green) in Table 2.3 the Atmel AT86RF215IQ IC is
selected as an RF transceiver IC for the reconfigurable node.

RF IC interface layout
The transceiver IC selected in the last section will now define the interface connec-
tions with the baseband processing unit. The Atmel RF IC transfers data in and
out at 64 MHz with double data rate (DDR) technology. In DDR technology, data
is transferred at both of the clock edges to the baseband processor. Data is trans-
ferred serially via a differential (LVDS) interface. The effective data rate is 128 Mb/s
composed of 16bits at 4MHz sampling frequency for each of the I-data and Q-data
streams [28]. The I/Q interface layout of the Atmel86RF215IQ is given in Figure 2.9.
The receiver and transmitter interfaces of the IC are serial and differential as shown

22 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

in Figure 2.9. The AT86RF215 IC generates a clock signal (RXCLKP/RXCLKN) for
the external baseband processor to get it synced to the internal clock. The same
clock can be used by an external processor to feed TXCLKP/TXCLKN to the RF IC
back for data transmission.

Figure 2.9: Atmel RF86215 IQ data interface Layout [28]

IQ word format
The data transmission rate is same for the IQ interface which can handle different
sampling rate from 400 ksamples/s up to 4 Msamples/s. The sample rate must be
same for TX I/Q data streams as configured in the internal TXDFESR register. Zero
words must be padded by baseband processor in between data samples as shown
in the Figure 2.10 if the data sampling rate is lesser than 4 MSPS. The sample
rate of RX I/Q data is consolidated by the transmitter interface of RF IC with zero
paddings (Figure 2.10), to keep the interface data rate 128Mb/s. The I/Q interface
serializes/deserializes the 32 bit word. The 32-bit word contains two bit I-channel

Figure 2.10: I/Q word format [28]

2.3. RECONFIGURABLE HARDWARE LAYOUT 23

synchronization pattern followed by 14 I-data and then a two bit Q-channel sync
pattern followed by 14 bit Q-data as given in Table 2.4. The external baseband
processor must insert the required number of zero words according to the sample
rate (SR) register, else the data will be discarded by the RF IC I/Q interface.

Table 2.4: I/Q data interface word frame format
Bit[31:30] Bit[29:16] Bit[15:14] Bit[13:0]

I SYNC=0b10 I DATA[13:0] Q SYNC=0b01 Q DATA[13:0]

RF IC control interface

The operation of the transceiver IC is controlled via serial peripheral interface (SPI)
interface that is connected to the external processor. The external processor acts
as an SPI master for accessing registers and frame buffers of AT86RF215IQ.

Table 2.5: SPI signals

SPI Signal Direction Description
SCLK Input SPI clock signal
SELN Input SPI select signal, active low
MOSI Input SPI data master output, slave input signal
MISO Output SPI data master input, slave output signal

RF interface functional drawing

The RF IC requires 5 differential (LVDS) data communication ports for information
transfer with the external processor. Three differential signals are required at the re-
ception channel; one differential signal for the clock and the other two data signals for
both RF bands one each. Two differential signals are required for the transmission
channel; one for clock input and the other for data transfer. This can be seen in Fig-
ure 2.9. To control the interface selection and data flow parameters the SPI interface
is required. The SPI protocol requires 4 connection lines(serial clock (SCLK),select
active low (SELN),master out slave in (MOSI),master in slave out (MISO)) for com-
munication between RF transceiver chip and baseband processor.
The updated two chip reconfigurable design can be seen in Figure 2.11.

24 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

Figure 2.11: RF interface connection diagram

Baseband processor interface

Minimum input clock rate 64 MHz (DDR) or 128 MHz (Single clock edge)
Data interface 5 x I/Q LVDS interface
SPI interface RF IC registers configuration

Power consumption lowest
cost(¤) ≤ 25.07 (Node cost without RF IC)

Table 2.6: RF tranceiver IC required parameters

2.3.2.2 Baseband Processing unit

Baseband processing tasks can be done on an FPGA, DSP, SoC/PSoC or micro-
controllers [25], [29]. Which semiconductor device is used is purely dependent on
the requirement of the application. Selection depends on the number of required
resources for a specific implementation. A best-fit solution for one problem doesn’t
mean it will be best for every solution. Each semiconductor device has its own mer-
its and demerits. We investigated different options for the reprogrammable LPWAN
node baseband processor design. The RF IC selection has resulted in additional
requirements for the baseband processor interface as listed in Table 2.6.

System on Chip (SoC) FPGA
An SoC FPGA is an integrated chip with a central processing unit, a memory unit, re-
configurable logic elements and input/output ports on a single substrate [30]. There
are many types of SoC available for the intended application. A general-purpose
SoC is characterized by large processors, large-on-chip cache, memory controllers
and a few high speed interface peripheral connectivity [31]. A high-end SoC often

2.3. RECONFIGURABLE HARDWARE LAYOUT 25

has multiple processor cores, multiple caches, memory controllers and different as-
sortments of interfaces [31]. SoCs are preferred over conventional hardware due
to their compactness and most of the required features are on a single chip. Less
external interconnections are required for data transfer. SoCs from different vendors
have been considered to be used as a baseband processor. The comparison of
available SoCs is given in Table 2.7. The lowest configuration SoC FPGAs by the
Altera and the Xilinx have 25k logic blocks. The SoC FPGA by the Altera, the Xil-
inx and the Atmel are SRAM-based while the Microsemi provides flash-based SoC
FPGA. The price range for a 25k logic block SoC FPGA by any vendor is from ¤40
to ¤47. An on-chip ADC is only available on the Xilinx SoC FPGA. On-chip ADC
can be beneficial in sampling the sensor data.

Table 2.7: SoC comparison table
Altera SOC V CSEA2 Xilinx 7007S MicroSemi(Actel) FPSLIC(Atmel)

Logic Blocks 25k 23k 6k(M2S005) 27k(M2S025) 5K
Block Memory 10MiB 1.8MiB 191kB 400kB 16KB
Number of I/O 145 128 84 93

Controller
Dual Core
ARM cortex A9

Single Core
ARM Cortex A9

ARM M3 processor
(RISC based)

AVR 8Bit RISC

FPGA type SRAM based SRAM based Flash based SRAM based

Interface
SPI, QSPI, USB,
Ethernet, I2C
and CAN

2xQSPI, 2x UART,
2x CAN 2.0B,
2x I2C, 2x SPI

2xSPI, I2C, CAN
UART,
2 Wire Serial

Package UBGA-484 CSBGA-225 VF(G)256 FCSG325 LQFP-144
Dimension (mm2) 19x19 13x13 14x14 11x11 22x22
Cost(¤) 41.79 40.28 17.54 46.54 10.53
Voltage(core) 1.1 V 1.2V 1.2 V 3 V

Remarks LVDS
LVCMOS,LVDS
and SSTL

LVDS,LVTTL,LVCMOS ————

ADC No 2x12Bit ADC (1 MSPS) No No

Conclusion
According to the project’s scope, an SoC FPGA didn’t seem to be a suitable option
w.r.t. the high price per logic element. Although they qualified the interface require-
ments (5x LVDS interface, an SPI, and minimum interface clock of 64 MHz support)
as listed in Table 2.6 but IC cost is a bottleneck in SoC FPGA based solution. In
chapter 3 logic elements requirements are discussed in more detail.

Field Programmable gate Array (FPGA)
FPGA is a family of semiconductor devices that consists of a matrix of a config-
urable logic block (CLB) that can be interconnected in many ways via programmable

26 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

interconnects [32]. An FPGA can be configured using a hardware description lan-
guage by the customer after it is delivered. The reconfigurability after deployment
has earned them the name of field-programmable. FPGAs comparison Table 2.8
presents the available FPGAs that can be used in a two chip design.

Table 2.8: Available FPGA comparison for two chip design
Lattice

LFE5UM-85F-6MG285C

Xilinx(Spartan 7)

XC7S50-1FTGB196C

Altera (10M50SCE144C8G)

MicroChip

ProASIC Plus(APA075)

Logic Blocks 84k 52k 50k 75k

Block Memory 3744 kb 2700 kb 1638 kb 27 kb

Number of I/O 118 100 101 158

FPGA type SRAM SRAM Non Volatile FPGA Flash Based

Interface LVDS25 (400 MHZ) LVDS25 LVDS (up to 500 Mbps) No lvds

Package 285-CSFBGA 196-CSBGA EQFP-144 PQFP-208

Dimension (mm2) 10 x 10 15x15 22x22 28x28

Cost(¤) 25.474 43.32 43.61 58.65

Supply current 212 + 9.5 mA(SERDES) 300mA power on ,95 VCCInt 25mA/I/O 15mA quiscent

Conclusion
An FPGA seems to be a good option for the reprogrammable node processing unit
based upon cost, interface and logic elements count. The SRAM-based FPGA takes
high starting currents due to the programming of the logic elements. The LPWAN
node will be in sleep mode mostly, so every wake-up call requires FPGA to be re-
programmed. The SRAM or partial SRAM FPGAs were not considered based upon
power consumption. More discussion is done in chapter 3 about the FPGA type
and logic resources requirements. A true flash-based FPGA retains the logic pro-
gramming code even after set to sleep. The logic retention removes the need for
reprogramming and conserves valuable node power. The fLash-based FPGAs are
mainly manufactured by the Microsemi Corporation.

Microcontrollers
A microcontroller is a small computer on a single chip similar to SoC but it is less
sophisticated. An SoC may contain a couple of microcontrollers in a single chip as a
component. The recent development in the silicon industry has also pushed a cou-
ple of microcontrollers into a single die [33]. Microcontrollers are used in automated
systems, embedded products, and devices. Some microcontrollers can operate as
low as 4 kHz making them power saving devices. A nice feature about microcon-
trollers is that they retain the algorithm even in sleep mode. Microcontrollers initially

2.3. RECONFIGURABLE HARDWARE LAYOUT 27

were only programmed by assembly language, but now high-level programming lan-
guages such as C, Python, and JavaScript are widely used by programmers [33].
To make a required standalone reconfigurable node, the microcontroller must be ca-
pable of processing I/Q interface data at both clock edges with a 64 MHz clock or
128 MHz at any one edge of the clock. As per the investigation, there were no mi-
crocontrollers found that can operate on both clock edges. Microcontrollers having
a minimum clock frequency of 128 MHz are listed in Table 2.9 for comparison.

Table 2.9: Microcontrollers with operating frequency 128 MHz or above

STMicroelectronics NXP Cypress MicroChip Toshiba

Name STM32F730R8T6 LPC54005 CY8C6036BZI-F04 ATSAMS70J19A-AN TMPM4G6FEFG(DBB)

Price(Euro) 4.46 5.64 6.28 7.15 7.88

Package LQFP-64(10x10mm) LQFP-100(14x14mm) BGA-124(9x9mm) LQFP-64(14x14) LQFP-100(14x14mm)

Core ARM cortex M7(32 bit) ARM cortex M4(32bit) ARM Cortex M4F(32bit) ARM cortex M7 ARM cortex M4

LVDS interface No No No No No

Data Ram Size 276 kB 360kB 128kB 256kB 128kB

Interface I2S, SAI, SPI, USB I2C, I2S, SPI, USART UART, SPI, I2C, S/PDIF, SPI, UART/USART, USB I2C, SPI, UART

I/O voltage 1.7 V to 3.6V 1.71 V to 3.6 V 1.7 V to 3.6 V 1.7 to 3.6V

Max Clock(MHz) 216 180 150 300 160

Number of I/O 50 64 104 44 91

ADC/DAC 3x12bit/2x12 bit 12bit 12bit/12bit 5 channel 12 bit/12 bit 12 bit/ 8 bit

Supply Voltage 1.7∼3.6V 1.71∼3.6V 1.7 V to 3.6 V 1.7 V to 3.6 V 2.7∼3.6V

Power consumption

Run 138mA(max clock) 35mA 10mA approx. for both cores 57mA(90ma max) 50mA

Stop 0.45mA 8.3mA 4mA(core only) 20mA 9.5mA

Standby 1.09uA(at 250C) 55uA 7uA 3.8∼8uA 9.6uA

Conclusion
The microcontroller only solution looks good as a baseband processor due to low
price but power consumption at high frequencies is higher due to increased clock-
ing/switching activity. This increased clock speed is not desired, as the reconfig-
urable maximum available bandwidth is 600 kHz as per LPWAN standard. More-
over, microcontrollers lack an LVDS interface which is a compulsory requirement of
the I/Q interface. This interface requirement can be fulfilled by using an interface
converter chip between RF IC and microprocessor. Lastly, the microcontroller’s in-
herent nature of sequential operation requires microcontrollers to be faster than 128
MHz in order to avoid overrun or overflow conditions.

28 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

2.3.3 Three chip solution

Finally, a three-chip solution is investigated in light of the requirements imposed
by the reconfigurable LPWAN nodes. A three-chip solution block diagram can be
seen in Figure 2.12. As explained earlier in Section 2.1, IF samples are first down-
converted or upconverted before or after baseband processing. An FPGA is the
best option for digital upconversion and downconversion due to flexibility and a high
degree of programmability [34]. Parallelism is inherent in an FPGA due to which it
can implement and perform parallel computation as required in the filtering process.
More information on FPGA types is provided in chapter 3 but for the solution, a true
flash-based FPGA is selected as an upconverter or downconverter. The flash-based
FPGAs are produced by the Microsemi only.

Figure 2.12: Illustration of a three-chip design for a reconfigurable node using an
FPGA as a data reformatting and filtering device, a microcontroller as
a signal processing device inside the processing unit, and the Atmel
RF IC as a transceiver device.

The microcontroller specifications can now be relaxed as high-speed data will be
upsampled/downsampled inside an FPGA. The maximum allowable analog band-
width as per LPWAN ECC standard specifications can be 600 kHz. The Nyquist
sampling criteria for aliasing free signals states that sampling frequency must be
1200 kHz or above. The RF IC selected can support a maximum of 4 MSPS at the
I/Q interface so a microcontroller operation clock frequency of 4 MHz or more can
do the tasks for the desired node over the entire LPWAN frequency band.

Conclusion
Low power FPGAs and their inherent parallelism nature make them an optimum
solution for any design. They can be used as a sampling rate converter with low

2.4. CONCLUSION 29

pass filtering. The FPGA will act as an interface between the RF IC and the micro-
controller. It will receive data from the RF IC serially and transfers it to the micro-
controller and vice versa. The microcontroller will further process the low data rate
signals for recovery of the information. Tentative interface requirements of the FPGA
and RF IC are summarized in Table 2.10

Table 2.10: Reconfigurable node tentative requirements based on thesis scope
Frequency band 862 MHz - 860 MHz (European ISM band)

Minimum analog bandwidth 600 kHz
FPGA Clock Frequency 64 MHz (DDR) or 128 MHZ

Microcontroller clock frequency 4 MHz (minimum)
Number of SPI interface 3 (minimum)

Number of LVDS interface 5
Cost ¤30

Number of LVDS interface 5
Dimensions (cm2) ≤ 5 x 5

2.4 Conclusion

There are three alternatives for designing a reconfigurable LPWAN node, namely
one-chip design, two-chip design, or three-chip design. The one-chip design is the
most convenient one as all of the required resources are in a single chip (RFSoC).
The single-chip solution doesn’t fit the node requirement of low cost. An RFSoC is
too expensive to be used as a transceiver in a reconfigurable node.
The two-chip solution that contains an FPGA or a microcontroller as the main pro-
cessing unit seems to be a good option. The microcontroller-based solution is power
expensive as it requires an interface level converter for LVDS to TTL/LVCMOS. Fast
sampling clock requirements is also a drawback in a microcontroller-based design.
Further investigation of the FPGA-based two-chip solution w.r.t. hardware resources
and power consumption is done in Chapter 3.
The three-chip solution seems to be an optimum solution in which the FPGA acts as
a sample rate converter and low pass filter. While baseband processing is performed
by the microcontroller at the lower sampling rates. The three-chip design is further
investigated in Chapter 3 for FPGA modules and Chapter 4 for the microcontroller-
based subsystems.

30 CHAPTER 2. HARDWARE ARCHITECTURE DESIGN

Chapter 3

Field Programmable Gate Array
(FPGA)

In this chapter, the FPGA basic architecture and the underlying technologies are
discussed. Further investigation is done on the two-chip design and the three-chip
design. The FIR low pass filters and the CIC filters are investigated for UNB signals.
Results of the designed filters are discussed based upon power consumption and
the required amount of FPGA resources.

3.1 Introduction

The interesting thing that happened in the silicon industry is the explosion of the
number of transistors on a unit area. Moore’s observation states that the number of
transistors on a chip will be doubled every two years. [35]. The industry is transition-
ing from simple central processing unit (CPU) and microcontrollers based devices to
single-chip solutions having multiple architectures, one of the well-known types is an
field programmable gate array (FPGA). FPGAs can be configured by the designer
or customer after manufacturing or after their deployment. In the past, FPGAs were
used for low complexity designs but due to unprecedented logic density and amal-
gamate of different features like DSP blocks, clocking circuitry, and memory blocks
made them a favorable option for any design. The advantage of an FPGA based
design is that both hardware and software designs can be started simultaneously
for development. Multiple design iterations and testing can be done before freezing
the final design. An ASIC fabrication can take weeks and modifications are not pos-
sible after the fabrication process. On the contrary, an FPGA can be reconfigured in
minutes at the desktop [36].
An FPGA basic architecture is vendor-specific but in general, they have the same
underlying concept as shown in Figure 3.1. A general FPGA contains CLBs, config-

31

32 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

urable I/O blocks, and programmable interconnect.

Figure 3.1: FPGA generic architecture [36]

3.1.1 Configurable logic blocks

The FPGA basic building block consists of CLBs (brown colored Figure 3.1). It
consists of vendor specific programmable logic structure. Different vendors have
different number of logic elements in a single CLB. A CLB is connected to the other
CLBs with the help of programmable interconnection for implementing the logic de-
sign. The CLBs contain Look Up tables (LUTs), multiplexers, and flip flops. Special
flip-flops are used as a clocked storage elements [37].

3.1.2 Configurable I/O blocks

A configurable I/O block (Figure 3.1 ”colored green”) contains input buffer and output
buffer to carry logic into or out of the FPGA environment. These are tri-state buffers,
configured according to the application requirements.

3.1.3 Programmable interconnects

Programmable interconnects as the name suggest, connect different CLBs to the
rest of the available elements depending on the design specifications. A basic block
diagram of programmable interconnections is shown in Figure 3.2. There is a mix-
ture of short lines (black arrow lines) and long lines (black solid lines) for intercon-
nection. The special long lines are known as global clock lines intended for clocking
purposes. These special clock lines are connected to CLBs and clock buffers for low
latency and fast propagation of the signal. [37].

3.2. TYPES OF FPGA 33

3.1.4 Clock circuitry

The special I/O blocks with fast clock driving buffers are distributed around the chip.
They connect clock input pads to the global clock lines for low latency across the
FPGA dye.

Figure 3.2: Programmable interconnect (Xilinx Fpga) [36]

3.2 Types of FPGA

In the race of FPGA reconfigurability, different programming technologies had been
introduced by vendors. The difference lies in the implementation of the technology.
Some of the renowned programming technologies are the static memory FPGA, the
flash-based memory FPGA and the anti-fuse FPGA [37].

3.2.1 Static memory

The static random access memory (SRAM) based FPGAs use static memory cells
which are distributed throughout the FPGA dye. The SRAM cells are used to pro-
gram the routing interconnections and it also retains the code for the CLB logic
design. The SRAM-based FPGA technology is widely adopted due to its use of the
standard CMOS process technology. The SRAM-based FPGAs can be indefinitely
reprogrammed theoretically. The main disadvantage of SRAM-based FPGA is the
volatile nature. The moment it is powered off the logic code disappears. Due to
this reason, external nonvolatile memory is attached to reconfigure the FPGA after
rebooting. Programming of an FPGA from an external source increases the device
cost, area overhead, and power requirements. Programming externally can be a
security concern in a critical application as the configuration file is readable by the
intruder. In some cases, it can be decoded also. These security concerns are ad-
dressed by SRAM-based FPGA manufacturers by pushing programming flash into
the FPGA dye.

34 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

3.2.2 Flash programming

Due to the volatile nature of SRAM-based FPGAs, the flash-based FPGAs emerged
as an alternative. A flash-based FPGA can retain the logic code even after it is pow-
ered off. However, they have a limit on the number of times it can be reconfigured
or reprogrammed. The Flash-based technology uses non-standard CMOS process
technology. This is one of the reasons that the SRAM-based FPGAs are ahead in
the number of transistors in a chip unit area.

3.2.3 Anti-Fuse technology

This technology is an alternative to both the technologies as discussed earlier due
to its non-volatile nature and area efficiency. The main drawback of the technology
is non reprogrammability after it is programmed once. Programming can be done
either by the vendor or at a user’s desktop.

3.2.4 Examples of FPGA families

The Table 3.1 shows different FPGA families availble in the market for different tech-
nology type. Most of the vendors manufacture the SRAM-based based FPGAs. The
Flash-based FPGAs are manufactured by limited vendors like the Microsemi (Actel).

Table 3.1: Available FPGA families [36]
SRAM FLASH Anti-Fuse Hybrid (Embedded FLash/SRAM)
Altera Stratix
Cyclone II
Atmel AT6000

Actel ProAsic Actel SX

AT40K
Lattice EC and ECP
Xilinx Spartan and Virtex

Actel Igloo Quicklogic Eclipse

Lattice XP Family

3.3 Two chip FPGA based design

A larger amount of logic elements, numerously inbuilt features, and instant pro-
grammability by HDL have made FPGAs a favorable choice for approximately every
system design. A two-chip solution was discussed earlier in Section 2.3.2 in which
an FPGA acts as the main processing unit. After the signal processing, informa-
tion is transferred directly to the RF transceiver IC for upconversion over the serial

3.3. TWO CHIP FPGA BASED DESIGN 35

interface. For the receiving part, this is done in the reverse order. The baseband
processor comprises of two top modules, a QPSK transmitter and a QPSK receiver
(Figure 3.3).

Figure 3.3: QPSK transceiver block diagram

3.3.1 QPSK transmitter

A QPSK transmitter is designed using HDL compatible blocks available in the Simulink.
The HDL compatible blocks can be used to generate VHDL/Verilog code directly
from the Simulink implementation and design verification. The HDL codes are used
in the synthesis and the power estimation of the design in the LiberoSoc 12.2v soft-
ware (free license provided by Microsemi Corporation). The HDL based QPSK
transmitter is adapted from the MATLAB example available online [38]. The block
diagram of the QPSK transmitter is shown in Figure 3.4. The QPSK transmitter
consists of a data generation and packetization block, a symbol mapping block, a
pulse shaping block, and an interface formatter block. Pipeline registers are used
between blocks and components for reducing the combinatorial path latency and
achieve maximum clocking frequency.

Figure 3.4: QPSK transmitter block diagram

36 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

3.3.1.1 Data generation and packetization

The data generation and packetization module accepts the incoming serial data bits
and converts them into a packet of 200-bits. A 26-bit barker code header is in-
serted by the transmitter for packet detection at the receiver side by auto correlating
the receiver’s matched filter output. The block diagram for the data generation and
paketization and generation module is shown in Figure 3.5.

Figure 3.5: QPSK transmitter generation and packetization block diagram

A Packetizer FSM
The packetizer state machine is designed on Moore’s state machine principles which
consist of two states: pack preamble and load data. The pack preamble state as-
serts the load preamble signal for the initialization of counter. The pack preamble
state moves to the append data state after loading the 26-bit preamble. The state
machine remains in the append data state for the next 174-bits. The preamble bits
appended with the data bits make up a 200-bit packet ready for further processing.

Data source
Two lookup tables (LUTs) are used in the data source block: the preamble lookup
and the data lookup as shown in Figure 3.6. The preamble lookup is invariant during
the whole transmission because it contains the barker code header bits sequence.
It resets after reaching the maximum preamble counter value (i.e. 26). The Data
lookup contents vary during the whole transmission process and wrap around after
achieving the last data entry. The data lookup first entry is ”Hello World 000” and the
number field increments to 999 before wrapping. The load data strobe from finite
state machine (FSM) enables the scrambler at the start of the data bits and also

3.3. TWO CHIP FPGA BASED DESIGN 37

controls the 2:1 mux for routing preamble or data bits to the output. The load data
strobe is high when data bits are been padded to the preamble bits. This ensures
that preamble bits are not scrambled. Additive scrambler is used to randomize the

Figure 3.6: QPSK transmitter data source block diagram

data bits. It is common that long 1’s or 0’s are present in information bits which make
timing recovery difficult at the receiver side. Additive scrambler with the help of shift
registers and XOR gates randomizes the data pattern based upon the scrambling
polynomial. The scrambler polynomial is represented by equation.

ScrambledOut = 1 + x2 + x3 + x4 (3.1)

The initial states of the shift registers are loaded with zeros. The block implementa-
tion of the scrambler is shown in Figure 3.7. The enabled system is used to ensure
scrambling of new data to be done only.

Figure 3.7: Scrambler block diagram

38 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Bit pairing Scrambled data is packed into two unsigned bits symbols as required
by the QPSK symbol mapper. The bit pairing reduces the sample rate to half (i.e.
50 bps). The bit pairing block is given in Figure 3.8 The upper downsampler selects
the second phase (Quadrature phase) and the lower downsampler selects the first
phase (In phase) bit. The concatenation block packs both the phase bits for further
symbol mapping.

Figure 3.8: Bit pairing block diagram

A valid signal strobe is generated to control the scrambler on time and transfer valid
data to the succeeding blocks. The valid data signal is also downsampled by 2 due
to downsampling of data by the bit pairing block (Figure 3.5). The Pipeline registers
are used inbetween data transfers for minimizing critical path delays.

3.3.1.2 QPSK symbol mapping

The QPSK modulation technique alters the phase of the carrier to transfer informa-
tion. The general formula for a PSK signal can be given as [39]

si(t) =

√
2E

T
cos (ω0t+ φi) 0 ≤ t ≤ T and i = 1...M (3.2)

Where E represents symbol energy, T is the symbol period, ω0 equals to 2πf0 (fun-
damental frequency), φi is equal to 2π

M
i different phases and M equals to modulation

order (4 for QPSK). The signal space (si) specifies the point where the incoming bits
will be mapped on a constellation diagram. Figure 3.9 shows constellation points of
a QPSK modulator using Gray coding. Digital data is packed into 2 bits per symbol
by bit pairing block and mapped according to the constellation points by the QPSK
modulator block. The block diagram depicts the QPSK modulator used from Com-
munications toolboxTM in Simulink. The incoming data is digital which have infinite

3.3. TWO CHIP FPGA BASED DESIGN 39

bandwidth due to square pulse characteristics. Infinite bandwidth only exists theo-
retically but in actual scenario spectrum/bandwidth is limited for a specific user. The
spectrum confinement is done by pulse shaping filters according to the applicable
standards.

(a) QPSK constellation
diagram

(b) Block diagram

Figure 3.9: QPSK constellations and block diagram

3.3.1.3 Pulse shaping filters

In a digital communication system, two requirements make pulse shaping a signal
necessary. The first requirement is to limit the bandwidth of the signal and the
second one is to minimize ISI in bandwidth-limited channels. Both requirements are
accomplished by a pulse-shaping filter. There are three types of pulse shaping filters
such as sinc filters (Boxcar filters), Gaussian filters, and raised cosine filters. The
raised cosine filters are widely used in reducing the ISI by attenuating the start and
the end portion of a symbol. They have a maximum amplitude in the middle of the
symbol period and almost zero amplitude at integer multiples of symbol frequency
(1/ Ts). The major drawback of these filters is that they have an additional bandwidth
requirement, which can be represented as :

BW = Rs(1 + α) (3.3)

Where BW specifies final bandwidth, Rs is the symbol rate and α is the roll-off factor.
The roll-off factor varies from 0 to 1. To have zero ISI, the transmitter filter, channel
response, and receiver filter altogether must satisfy Nyquist ISI criteria. The best
which fulfills the Nyquist criteria is raised cosine filter. Due to this reason square
root raised cosine filters are used at the transmitter and receiver in conjunction [40]
as seen in 3.4.

|Hrrc(f)| =
√
|Hrc(f)| (3.4)

40 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

The transmit pulse shape filter is used from the Communication Toolbox library with
a roll-off factor of 1 and 16 output samples per input symbol. Effective sample rate
is increased to 800 (50 symbol/sec * 16) samples/sec after the pulse shaping filter.

3.3.1.4 Transmit interface formatter

The pulse-shaped and bandlimited digital data for further transmission requires re-
formatting according to the requirement of the RF IC interface. The RF transceiver
interface is discussed earlier in Figure 2.10. The transmitter interface formatter per-
forms two tasks on the user data. Firstly, it appends a 2-bit sync mark to the I and Q
channel data. Secondly, it increases the data rate from 11.2 kbps (I and Q channel
each) to 128 Mbps by appending the required number of zeros. The bit concat block
from the HDL Coder library appends the sync mark bits at the beginning of I-data
and Q-data streams. After the symbol mapper subsystem. the data output type is
complex (x +ιy). The complex data is converted to real and imaginary components
for further processing on both the chains separately. The real part is represented
by I data and the imaginary part is represented by Q data as shown in Figure 3.10.
This separated data is fed to the least significant bits port of the bit concate block
(Figure 3.10(a)). The constant 2 in the figure represents (’1’ and ’0’) I data sync
mark to be inserted, while constant 1 represents (’0’ and ’1’) Q data start sync mark
as specified by the RF chip interface specifications. The I-data and Q-data are 14
bits signed integers but after appending the 2-bits sync mark it converts to 16-bit
unsigned integers each. The I and the Q data is joined together by the bit concat
block as shown in Figure 3.10 (a) to make it a 32-bit unsigned integer. The final
32-bit integer is fed to the state machine with a valid strobe.
The state machine has two states; start and data select (Figure 3.10(b). The Start
state initializes the state machine with the required variable values and waits for the
valid strobe to get high. When the Start state encounters valid high at the input port,
the state changes to the next state (data select). The data select state has two con-
ditional statements; one condition outputs 32-bit data serially which was received
at the input port as a 32-bit word. After transferring I-data and Q-data serially, the
second condition gets true which outputs 288 (9x32) zeros serially at 128 Mbps as
required by the RF IC receiver interface at 400 kSamples/s.

3.3.2 QPSK receiver

The information transmitted by the sender is intercepted at the receiver antenna.
The received data is corrupted by interference present in the medium. Which can be
other users operating in the same frequency band. The task of the receiver is difficult
than the transmitter as it has to decode the information from the received distorted

3.3. TWO CHIP FPGA BASED DESIGN 41

(a) Transmit interface block diagram

(b) Block Diagram

Figure 3.10: Interface formatter state machine

data. Data recovery at the receiver requires frequency and phase compensation to
undo the effects of the channel. A QPSK receiver is designed using HDL optimized
blocks available in the Simulink. The receiver design is adopted from MATLAB HDL
optimized QPSK example [41]. The receiver block diagram can be seen in Figure
3.11. The receiver block consists of a receiver interface block, HDLRX block, Packet
decoding block, and display block (BitsToASCII).

Figure 3.11: Receiver Simulink block diagram

42 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

3.3.2.1 Receiver interface

The receiver interface acquires the serial data from the RF chip and discards the un-
wanted zero words as per sampling requirement. It is the opposite of the transmitter
interface. The RF receiver interface is implemented in the state transition diagram
using Moore’s state machine. In the state transition flow graph, there are five states
as shown in Figure 3.12. State 1 is the default state which initializes the registers
and checks for data activity. If data bit ’1’ is received then state is changed to State
2. Which checks for the next data bit. If the next bit is zero then it transitions to
the State 3. A state transition to State 3 confirms a positive I channel sync mark
reception. State 3 stores the remaining 14 data bits and waits for zero-valued bit
after I data storage. If zero is received at the right instant then the state is changed
to State 4 for Q sync mark verification. After the Q sync mark verification, data is
latched in State 5. which marks the end of I/Q data packet and resets the whole
procedure for new data packet reception.

Figure 3.12: State transition diagram for RF receiver interface

After the reformatting of the data, it gets processed by the HDLRx block. The
HDLRx block is the core of the receiver where baseband processing takes place.
The HDLRx block diagram can be seen in Figure 3.13. The HDLRx block consists
of an automatic gain control (AGC), a matched filter, a frequency compensation
(coarse and fine), and a data decoding subsystem.

3.3.2.2 Automatic gain control (AGC)

An AGC block is used at the start of the receiver chain to restrict the amplitude
of a signal at an optimum level for timing error detector and carrier synchronizer
blocks. The timing error detector and carrier phase detector outputs depend on the

3.3. TWO CHIP FPGA BASED DESIGN 43

Figure 3.13: Receiver HDL optimized (HDLRx) simulink block diagram

received signal amplitude. It is convenient to fix amplitude rather than recomput-
ing loop filter constants of phase synchronizer [17]. The AGC restricts amplitude
to 1/upsamplingfactor (i.e 16) for coarse frequency compensation subsystem. The
AGC block diagram is shown in Figure 3.14. The received signal modulus is com-
puted by hardware friendly algorithm by Marvin Freking [42]. He states that modulus
can be estimated by adding |L| + 0.4 |S|, where |L| represents absolute value larger
among both I or Q channel, and |S| represents lower value of the both. Mod value
is used to compute the error signal for the feedback loop. The feedback loop error
value is multiplied by the predefined loop gain value and then applied to the inte-
grator. A gain block is used to restrict the maximum gain values to save the circuit
from saturation due to high signal amplitude levels at the input. Integrator output is
multiplied by the received signal to adjust the gain accordingly. The output of the
AGC is a complex signal representing both I and Q channel data.

Figure 3.14: Automatic gain control block diagram

3.3.2.3 Matched filter

The goal of the digital receive filter is to extract the baseband pulse from the noisy
signal and improves the SNR ratio simultaneously. An optimal solution is the matched

44 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

filter [43]. The impulse response of the matched filter can be written as

h(t) =

ks(T − t) 0 ≤ t ≤ T

0 elsewhere
(3.5)

Where k is a constant, T is symbol duration and s(T-t) is the original signal time-
reversed and shifted to the positive time axis. From 3.5, it can be deduced that
match filters impulse response is maximum when it is equal to received signal (s)
time-reversed and shifted else it is zero. The root raised cosine filters are commonly
used at transmitter and receiver in conjunction. The match filter gives the highest
amplitude pulse at the middle of the eye-opening due to maximum correlation and
it has almost zero amplitude at nTs/2. The matched filtered output can be seen
in the Figure 3.15 with roll-off factor = 1 and samples per symbol = 16. The blue
line represents filtered data while the yellow line represents the input data. It is
observed that at a given noise level SNR is improved by the filtering process. This
will ease data recovery processing in later stages. A matched filter can be used as
a decimator for reducing data rates during further processing. Data is upsampled at
the transmitter by 16 but the receiver match filter decimates data by 8 and makes 2
samples available per symbol.

Figure 3.15: Matched filtered output

3.3.2.4 Coarse frequency compensation

The difference in the intercepted data frequency and the oscillator frequency at the
receiver drifts the signal spectrum resulting in constellation rotation. If the frequency
offset is greater than 10% of carrier frequency then frequency compensation is done

3.3. TWO CHIP FPGA BASED DESIGN 45

in two steps. First, coarse frequency compensation is done to lessen the frequency
offset lower than 10%. Then residual frequency offset is corrected by fine frequency
compensation block [44], [45]. If frequency impairments are not compensated be-
sides having perfect timing synchronization, it can drastically affect the BER. The
correlation-based algorithm in coarse frequency compensator block corrects input
frequency offset. A residual frequency offset is still present which rotates the con-
stellation. This residual frequency offset is corrected by a carrier synchronizer block
later. The block diagram of the coarse frequency compensation subsystem is shown
in Figure 3.16. The incoming complex signal is raised to power 4 for computing the
fourth tone of the incoming signal. The Luise algorithm is implemented to calculate
phase offset using coordinate rotation digital computer (CORDIC) algorithm. The
offset phase calculated by the algorithm is fed to the complex-to-magnitude-angle
HDL optimized block from the DSP toolbox library. The error magnitude is sent
to the numerically controlled oscillator (NCO) for the generation of a complex si-
nusoidal signal at the output. This complex exponential signal is multiplied by the
received signal to remove phase offset. The NCO maps lookup table into the ROM
as suggested by the Luise algorithm. Residual frequency error can be observed in
the constellation diagram (Figure 3.17).

Figure 3.16: Coarse frequency compensation subsystem block diagram

Figure 3.17: Coarse frequency compensation constellation diagram

46 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

3.3.2.5 Carrier synchronization

Carrier phase error causes the symbol to rotate on the constellation diagram and it
keeps on changing regions. This region shift can cause large bit error even in the
presence of symbol synchronization and no additive white Gaussian noise (AWGN).
The carrier phase block at the receiver mimics the phase and frequency of the lo-
cal oscillator at the transmitter. It removes the residual frequency and phase offset
left after coarse carrier synchronizer. The carrier synchronizer block operates on
phase-locked loop (PLL) principal, which uses a direct digital synthesizer (DDS) for
estimating the phase error based on the received signal phase and nearest constel-
lation phase [17]. The fine frequency compensation output in Figure 3.18(b) can
be seen with data points at perfect constellation instances for QPSK signals. The
randomness of the constellation is due to the pulse shaping filters quantization and
imperfect sampling instances. The block diagram for fine frequency and phase offset
subsystem is shown in Figure 3.18 (a). The input signal from the coarse frequency
compensation block is fed to the maximum likelihood phase error detector (PED)
block. The PED output is filtered by a loop filter for output stability. The phase calcu-
lation block computes the residual phase offset and generates a complex sinusoidal
signal. The generated complex signal is used to remove the offset of the incoming
signal from the coarse frequency offset block.

(a) Fine frequency compensation sub-
system block diagram

(b) Constellation diagram of QPSK fine
tuned signal

Figure 3.18: Fine frequency and phase compensation

3.3.2.6 Timing recovery

To recover the transmitted signal with maximum SNR, a perfect clock sampling in-
stant is required like at the transmitter. Due to wastage of spectrum, the data gen-
eration clock at the transmitter is never sent with the data signal. The received
symbols get dispersed if they are not sampled at the instant when SNR maximum

3.3. TWO CHIP FPGA BASED DESIGN 47

by the receiver sampling clock. Symbol timing synchronization operates on phase
locked loop (PLL) principal. Which generates an error at every sampling period to
correct the clock timimng mismatch. The timing error detection (TED) can be done
by decision-directed or non-data-aided methods. The decision-directed TED can be
done by zero-crossing timing error detector (ZCTED) or Mueller-Mueller timing error
detector (MMTED) technique. The non-data-aided TED can be done by Gardener or
Early-Late method. The ZCTED method is used in the given system for computing
timing error. The zero-crossing requires 2 samples/symbol at the input for estimat-
ing the error. The block diagram of timing synchronizer is given in Figure 3.19. The
input samples are passed through a ZCTED to calculate the timing error. The timing
error is calculated by detecting zero crossings in the eye diagram. The timing recov-
ery system consists of four sub-blocks as shown in Figure 3.19(a) -TED, loop filter,
interpolation filter control, and interpolation filter. The timing error signal is filtered
before applying it to the interpolation control subsystem. The interpolation control
subsystem performs two tasks. Firstly, it generates a valid signal for data decod-
ing in the later stages. Secondly, it enables the TED at the right instant to sample
the incoming data. The interpolation control subsystem updates the timing error
and feeds it to the interpolation filter. The interpolation filter acts accordingly and
generates an interpolated output at the required maximum eye amplitude instant for
minimizing the sampling time error. Interpolation filter is farrow parabolic filter with α
= 0.5 and coefficients 1, -1/2 and 3/2 as illustrated in [17] (Chapter 8). In the Figure
3.19(b), symbol synchronizer output can be seen. It can be observed that the data
points lie near the constellation points. It confirms that the timing synchronizer has
attained a lock to the transmitter sampling frequency.

(a) Timing recovery subsystem block diagram (b) Constellation diagram of QPSK sig-
nal after timing recovery

Figure 3.19: Timing recovery subsystem

48 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

3.3.2.7 Data decoding

In the receiver chain, the data decoding subsystem is the last stage where opera-
tions are carried out on the received samples. The data decoding is done via phase
estimation correction by correlating the barker code sequence with the input stream.
The phase rotation compensation is required due to the possibilty that the carrier
synchronizer block may lock at 0 ,π /2, 3 π /2 or π phase offset [17] (Chapter 7).
The block diagram of the data decoding subsystem is shown in Figure 3.20. The
data is transferred with a valid strobe signal to the data decoding subsystem by
timing synchronizer subsystem. The data decoding subsystem performs frame syn-
chronization by autocorrelating the received data with barker codes inserted at the
transmitter. The modulus of matched filter output is compared to the threshold. If the
output is equal to or greater than the threshold, an enable signal turns high. Mean-
while, the conjugate of the received signal is calculated and halted at the enabled
high signal. The halted conjugate signal phase tells about phase rotation if any was
present in the received signal. If phase rotation was observed then derotation is
done by multiplying the conjugate value with all the received frame bits. After phase
derotation data is demodulated using a QPSK demodulator from the Communica-
tions Toolbox HDL support.
The QPSK demodulator maps received complex signals to bits for information re-
covery to be done in the packet decoding subsystem.

Figure 3.20: Data decoding subsystem block diagram

3.3.2.8 Packet decoding subsytem

In Subsection 3.3.2.7, it is stated that the data processing is sample-based, but
for complete information reception, the whole packet should be stored, processed
and decoded. The packet decoding subsystem stores the data in 200-bits packet
(26bits barker code and 174-bit data payload). This buffered data is decoded after
ripping off the preamble header (26-bits) from the packet length. The block diagram

3.3. TWO CHIP FPGA BASED DESIGN 49

for the packet decoding subsystem is given in Figure 3.21. The deframer MATLAB
function block stores the incoming bits and packs them into a 200-bits packet. The
packet is transferred to the descrambler block with a valid data (framed data) strobe.
The descrambler block from Communication Toolbox is used to descramble the data
bits. It can be observed in Figure 3.21 that the descrambler is placed inside an
enabled subsystem, which turns on when the valid strobe is high. A high valid
strobe means data of 200-bits is ready to be fetched from deframer output. The
descrambler block diagram in Figure 3.22 shows a selector block from the HDL
coder library which selects the required number of bits from the packet stored. The
selector block reformats or discards bits as per requirement. The remaining 174-bits
(data bits) are descrambled by the descrambler block. The descrambler polynomial
is the same as the transmitter scrambler polynomial as stated earlier.

Figure 3.21: Packet decoder subsystem block diagram

Figure 3.22: Descramble subsystem block diagram

Descrambled data is displayed on MATLAB diagnosis window by BitstoASCII
block (Figure 3.11).

3.3.3 Simulation Verification, FPGA synthesis, and power report

3.3.3.1 Simulink Verification

The QPSK transmitter and receiver are interconnected as shown in Figure 3.3 for
validating systems performance. The Bit-to-Ascii MATLAB function block was used
to fetch the descrambled data and then pack it into 7 bits. The ASCII represented
by 7 bits is then displayed on the MATLAB’s diagnostic window. The output of the
diagnostic window can be seen in Figure 3.23 for characters (Hello World 000-999)
sent from the transmitter which were accurately received without errors. Moreover, it

50 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

also calculates BER by comparing the bits received with the transmit pattern known
locally. The BER plots are given in the Chapter 5 for the whole integrated system.

Figure 3.23: Diagnostic window output

3.3.3.2 Hardware synthesis report

The HDL code was generated after simulation verification to have an estimate of
the FPGA resources needed in the transceiver system design. Based on the re-
sources required, conclusion can be drawn in light of the thesis scope. The HDL
code generated from Simulink HDL coder was synthesized using Libero Soc v12.2
software.

Transmitter FPGA resources report
Figure 3.24(a) displays a smart design implemented in Libero SoC of a QPSK trans-
mitter. The HDL Tx depicts the transmission part which contains data generation
and packetization subsystem, symbol mapping subsystem, pulse shaping subsys-
tem and concatenation of I-data and Q-data in transmit interface block. The Trans-
mit state Machine depicts the state machine as mentioned in Figure 3.10(a). The
resource utilization report in Figure 3.24(b) displays the number of resources re-
quired to implement a transmitter on an IGLOO2-M2GL005 FPGA. The transmitter
requires a minimum of 2566 look-up table (LUT) and a 2097 D-flip flop (DFF) FPGA.
In the designed system, data was generated by data generation and packetization
subsystem as a packet of 200-bits. Due to packet generation, data was initialized as
a primitive in the data source submodule HDL implementation which utilized 1497

3.3. TWO CHIP FPGA BASED DESIGN 51

LUTs and 42 DFFs. If the data comes from any external serial source then resource
requirements will be lesser than what was displayed in the synthesis report. Ap-
proximately 1069 (2566 − 1497) 4LUTs and 2055 (2097 − 42) DFFs are required
when an external serial data source is present. A total of 7 I/O ports are required
for communication with the external modules. 4 ports are used as an input (CLK
(800 Hz), Clk 0 (128Mhz), reset and clk enable) pads and the remaining 3 ports
are used as an output (chip enable out (ce out), serial-out data (Serial Out RF), and
valid strobe (debug only)) pads. As discussed earlier, the data generation source
is internal in the transmitter designed above, but if a data source is external then
input pad requirement will increase based on the interface connections between the
sensor and the FPGA.

(a) QPSK transmitter RTL diagram (b) QPSK transmitter FPGA synthesis
report

Figure 3.24: QPSK transmitter HDL based design

Receiver FPGA resources report
The receiver plays a vital role in the whole communication chain because it has
to deal with the noisy channel. Extracting information from the received signals
requires some additional steps to be done as discussed earlier. These essential
tasks make receiver circuitry heftier in terms of area requirements. The register
transfer level (RTL) schematic in Figure 3.25 shows the HDL blocks of the receiver
which resembles the Simulink block diagram as discussed earlier. The intercon-

Figure 3.25: Receiver circuitry RTL schematic

nections of the three modules displayed in the RTL schematic are according to the
Simulink block diagram. After the interconnection, the whole system was synthe-
sized in Libero SoC v12.2 for M2GL-025 FPGA due to limited resources on M2GL-

52 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

005 FPGA. The synthesis report (Figure 3.26) shows that approximately 24k 4LUTs
and 14k DFFs are required for the receiver implementation on an FPGA. Moreover,
it also requires 34 Multiply Accumulate (MAC) blocks for multiplications. Data trans-
fer in and out of an FPGA requires 9 I/O pads (5 inputs and 4 outputs). The output
ports can vary depending on the sensor node interface and functionality in response
to data received. Functionality can involve the collection of data from an external
sensor or execute instructions accordingly.

Figure 3.26: Receiver synthesis report

3.3.3.3 Power utilization

In a power limited system, energy source is the most important part of a WSN
nodes. The power consumption analysis report was generated by the SmartPower
tool available as a widget in Libero SoC v12.2.

Transmitter power consumption report
Power consumption for transmitter can be seen in Figure 3.27(a) which is approxi-
mately 17 mW (12.8 mW static and 3.55 mW dynamic). Static power is calculated
when there is no circuit activity and dynamic power is computed when the circuit
is operational. In Figure 3.27(b) both clocks of 800 Hz (CLK) and 128 MHz (clk 0)
power usage percentage is displayed. It is observed that 97% power is consumed
in 128 MHz clock circuitry switching.

3.4. THREE-CHIP BASED SOLUTION DESIGN 53

(a) QPSK transmitter power estimates (b) QPSK transmitter FPGA synthesis
report

Figure 3.27: QPSK transmitter power analysis and synthesis

Receiver power consumption report
The receiver circuitry needs more power than the transmitter system due to higher
logic resources requirements. The power consumption report (Figure 3.28) shows
that a receiver requires approximately 3 times more dynamic power than a transmit-
ter. This difference will increase at faster data rates.

Figure 3.28: Receiver power consumption report

3.4 Three-chip based solution design

In Chapter 2, a hybrid solution was discussed as an option. A hybrid solution can
consist of multiple digital processing devices like a microcontroller, an FPGA, and
an SoC. In a three-chip solution, the microcontroller will act as a baseband signal
processor while the FPGA performs upsampling or downsampling. The FPGA at the
transmitter interpolates data received from the pulse shaping filter by 500 to make

54 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

400 kSamples/s, as the minimum requirement of the RF chip. The receiver FPGA
decimates the data by a factor of 500 to make it 800 bps (Figure 3.29).

3.4.1 FPGA filter and interface design

The block diagram in Figure 3.29 displays the FPGA connections with the RF IC and
the microcontroller. The microcontroller acts as a data source at the transmitter side
and as a data sink in the reception chain. The data is generated at a rate of 100
bps, scrambled, QPSK modulated, and pulse shaped by the microcontroller. The
pulse shaped data is transferred to FPGA via the serial interface at 11.2 kbps (800
x 14 bps). After interpolation at the FPGA, the data is formatted according to the
RF IC serial interface requirements. The sample rate after interpolation is increased
by an interpolation factor of 500 (400 kSamples/s). The RF IC has a fixed sampling
rate of 4 MSamples/s with I-data and Q-data 16 bits each. If the information data
sample rate is less than 4 Msps then zero padding is done according to Figure
2.10. The serial data rate of RF IC after zero padding converts to 128 Mbps. In
the reception, all the steps are reversed. First, the data is received by the FPGA
from the RF IC interface serially at 128 Mbps. After reception required I-data and
Q-data bits are extracted from the received stream. The I and Q data is decimated
by 500 and transferred to the microcontroller over the serial interface at 11.2 kbps
(800x14 bps) data rate. A microcontroller performs the rest of the demodulation
and decoding part. In the given LPWAN scenario, filters plays an important role in
improving the SNR of the received signal and it is used as a sample rate converter
too. The low data rates necessitates the use of sample rate converters. The RF
IC sampling rate is fixed to 4Msps and each sample is of 32 bits. It can support
a minimum sampling rate of 400 ksps with the help of zero padding. The LPWAN
node maximum allowable bandwidth is 600 kHz at the sub-1Ghz band in Europe as
per ECC standards.

3.4.1.1 Filter design

An ultra-wideband signal is a reality due to fast data converters and complex digital
hardware that can operate on a GHz scale. The extraction of narrowband signals
from the wideband signals is now a requirement of low data rate systems. This ex-
traction requires narrowband filters and sample rate converters. The sample rate
conversion can not be done by simply discarding or padding samples due to the
aliasing effect. A low pass filter is required to limit the frequency spectrum of re-
sampled signal and attenuation of high-frequency aliasing interference. A low-pass
filter can be implemented in the microcontroller, GPP, DSP, or FPGA. In [46] the
authors recommended implementing filters on an FPGA to be a better option due

3.4. THREE-CHIP BASED SOLUTION DESIGN 55

Interpolation
factor = 500

Decimation
factor = 500

RF
Transceiver

Tx_RF

Rx_RF

Rx_Mc

x_Mc

Microcontroller

Tx clk

Tx Data

Rx clk
Rx Data

Sample rate 800 Hz
Sample rate
400 ksps Sample rate 4 Msps (128 Mbps)

QD

ID

VI
ID

VI

VQ

VQVQ

VQ VQ

VQ

ID ID

ID ID

QD

VI VI

VI VI

QD QD

QDQD

ID = I-channel data
VI = I-channel data valid
QD = Q-channel data

VQ = Q-channel data valid

Figure 3.29: FPGA implementation block diagram

to the inherent parallel processing nature. Parallel processing is advantageous in
filter processing due to concurrent multiplications and addition. There are two basic
types of filters; finite impulse response (FIR) filters and infinite impulse response
(IIR) filters. The filter general transfer function is expressed as follows [39].

H(z) =
b0 + b1z

−1 + ...+ bnz
−n

1 + a1z−1 + ...+ aMz−M
(3.6)

Digital filters with M ≥ 0 (aM 6= 0) are called IIR filters. The denominator of the
transfer function shows poles of the filters and in the time domain these poles are
modeled as feedback delay elements [17]. The current output depends on the previ-
ous input values with feedback that makes impulse response infinite. The IIR filters
have an advantage in terms of lesser hardware area requirements as compared to
the FIR filters. The disadvantage of an IIR filter is the nonlinear group delay. The
nonlinear group delay alters the phase of passband frequency components differ-
ently. The Filters with M = 0 and a1 = 0 are called as FIR filters.

3.4.1.2 FIR filter

The FIR filter is a special case of an IIR filter. If a sequence x(n) is applied to the
FIR filter then output sample y(n) is given as.

y(n) =
M∑
n=0

h(k)x(n− k) (3.7)

y(n) is the convolution of the input sequence with the filter impulse response. In a
multi-rate system, sometimes large rate changes are required which results in the

56 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

need of fast multipliers and very long filters length of the FIR filter implementation
[47]. The most popular filter implementations are shown in Figure 3.30 and 3.31.

Figure 3.30: Tapped Delay line filter [48]

Figure 3.31: Partial sum accumulator [17]

In Figure 3.30, delay elements are seen in the input signal path. Due to this
structure this type of FIR filters is called tapped-delay-line filters. A two-input adder
is connected to the coefficient multiplier, which in hardware language is known as
Multiply-Accumulate (MAC) block. The filter in Figure 3.31 is known as the trans-
posed form of FIR filter. In this structure, delay elements are connected to the
adders, and input is directly multiplied by the filter coefficients. This type of struc-
ture is also known as a partial sum accumulator [17]. The FIR multi-rate filters are
used in hardware design, but due to massive hardware requirements make them
an unfavorable choice. The hardware requirements can be relaxed by the half-band
filters or the polyphase filter implementation [49]. The half-band filters can work on a
rate change factor of 2’s power only, while polyphase filters still require a large num-
ber of multipliers. Figure 3.32(a) shows an extensive amount of FPGA resources
required for the FIR polyphase interpolater filter based on parameters specified in
the Table 3.2. It is not practical to implement such a large amount of multipliers on
any hardware. A multi-stage filter design can be adopted to reduce hardware re-
sources utilization, but from Figure 3.32 (b) it can be observed that still for the same
implementation, 116 multipliers are needed.

The FIR filter can be implemented in multistages to reduce hardware resource
utilization but large amount of multipliers are still required. The synthesis report

3.4. THREE-CHIP BASED SOLUTION DESIGN 57

Table 3.2: Parameters for filter design
pass band frequency 100 Hz

stopband frequency 250 Hz
pass band ripple 0.1 dB

stopband attenuation 60 dB
interpolation/decimation factor 500

(a) MATLAB resources estimation for FIR
polyphase interpolator

(b) Multistage implementation of FIR
direct-form filter

Figure 3.32: MATLAB filter resources estimates (Interpolation factor = 500)

for resource estimation is shown in Figure 3.33. It can be observed that the FIR
filter synthesized using integrated MAC blocks requires lesser FPGA resources but
a large amount of MAC blocks(34). If synthesis process is restricted to the available
logic resources use only then total count jumps to 8730 from 2441 (4LUT). Power
consumption for both cases is almost the same 22.4 mW (15.9 mW static and 6.5
mw dynamic) as given in Figure 3.34 .

3.4.1.3 Cascaded integrator-comb (CIC) filters

The cascaded integrator-comb (CIC) filters were proposed by the Hogenaur [50]
in 1981. Since then, they have become a popular choice when large sample rate

58 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

(a) Synthesis report without MAC block (b) Synthesis report with MAC block

Figure 3.33: Multistage FIR filter synthesis on M2GL025 (interpolation factor = 500)

Figure 3.34: Power consumption for IGLOO2 M2GL-025 FPGA with MAC blocks

conversion is needed. They have a multiplierless structure which consist of adders
and delay elements only. A commonly used decimation filter is recursive running
sum (RRS) filter with transfer function [51] as below:

H(z) =

[
1

R

(
1− z−R

1− z−1

)]N
(3.8)

Where R is the decimation ratio, and N is the number of filter stages. An efficient
realisation of RRS requires equal number of comb and integrator stages separated
by sample rate changing switch [50] . A CIC filter basic block diagram can be seen
in Figure 3.35. Where C represent comb stages with a transfer function given as :

HC(z) = 1− z−RM (3.9)

The comb sections operates at low sampling rate fs/R, where R is the required
rate change factor. M is a differential delay which is mostly 1 or 2 [50]. The blue box
represents an integrator block that operates at the sampling frequency fs and act as

3.4. THREE-CHIP BASED SOLUTION DESIGN 59

Figure 3.35: CIC decimator and integrator block diagram [52]

a single pole filter with a unity feedback. The system function of an intergrator is
represented as:

HI(z) =
1

1− z−1
(3.10)

The combined CIC filter system function for N stages can be obtained by multiplying
the 3.9 with 3.10 as the linear time invariant systems (LTI) property holds. The
transfer function is as follows.

H(z) = HN
I (z)HN

c (z) =

(
1− z−RM

)N(
1− z−1

)N =

[RM−1∑
k=0

z−k
]N

(3.11)

It can be observed from 3.11 that a CIC filter frequency response is equivalent to N
cascaded FIR filters. The magnitude response of the filter can be given as

|H(f)| =
∣∣∣∣sin πMf

sin πf
R

∣∣∣∣2N (3.12)

After doing little bit of manipulation and using approximation sinx ≈ x (for small
values of x) magnitude response can be estimated as

|H(f)| =
∣∣∣∣RM sin πMf

πfM

∣∣∣∣2N 0 ≤ f < 1/M (3.13)

This approximation helps in determining the nulls of the power spectrum, which are
located at reciprocal of differential delay value (M). Another observation about pass-
band droop is the dependency on filter stages. Larger the number of the stages,
higher will be the passband droop. The passband droop can be compensated by
reducing stages but then it will increase side lobe levels as an artifact. The Filter
stages (N), rate change factor (R) and differential delay (M) are the only tuneable
parameters for obtaining required frequency response. The gain of the CIC decima-
tion filter is calculated as

G =
(
RM

)N (3.14)

60 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

The gain in 3.14 helps in calculating the total number of output bits required for
registers in comb and integrator stages of a decimator filter.

Bout =
⌈
N log2RM +Bin

⌉
(3.15)

Bout is the number of bits at the output of the filter without pruning. Bin represents
number of input bits of the filter. For the given system, output bits are calculated to
be 50 bits (4*log2 500 + 14). These 50 bits can be reduced to required output bits
by pruning as discussed by Hogenaur [50].

Compensation filter
The magnitude droop can be compensated by applying an FIR filter which has a
frequency response equals to the inverse of the CIC filter frequency response [52]. A
widely known compensation filter is the inverse sinc filter with a magnitude response
as

|H(z)| =
∣∣∣∣MR

sin
(
πf/R

)
sin
(
πMf

) ∣∣∣∣ (3.16)

When the rate change factor (R) is large, then the magnitude can be approximated
to an inverse sinc function. That is why the FIR compensation filter is known as an
inverse sinc filter too.

3.5 Simulation and results

The CIC filters were implemented and tested in the Simulink (MATLAB). The param-
eters for analyzing filter are the same as in Table 3.2. A 4-stage CIC interpolator
and decimator was selected based upon the design procedure given in [50].

3.5.1 Interpolation

An interpolator is used to upsample a signal by inserting zeros in between the sam-
ples. The number of zeroes depends on the rate factor R. If R is 500 then 499
(R-1) zeroes are inserted between consecutive samples. An interpolator was first
implemented in the MATLAB script for comparing it with the Simulink model. The
filter response is shown in Figure 3.36. It can be seen from the filter response
that the interpolator circuit alone does not qualify for the parameters selected. The
sidelobe level is higher than 60 dB with 1 dB passband ripple. If we zoom the fre-
quency response to passband frequency, we can see passband droop of the CIC
interpolator filter (blue line) (Figure 3.37). This droop is adjusted by the compensa-
tion filter when both are cascaded together. The cascaded CIC-compensation filter

3.5. SIMULATION AND RESULTS 61

frequency response (red line) has a passband ripple of 0.1 dB while the CIC interpo-
later alone passband ripple was approximately 1 dB. The quantized filter response
is also shown in the figure which specifies that how much a filter differs in frequency
response when its arithmetic type is changed from double to fixed-point. The filter
coefficients quantization error is negligible that’s why the plot shows two lines (blue
and red solid lines). Fixed-point filter designs are preferred due to limited hardware
resources. The filter frequency graphs are plotted using the MATLAB FVTool. The

Figure 3.36: MATLAB Interpolator with FIR compensator output

FVTool is a filter visualization software which displays magnitude response, phase
response, step response, impulse response and hardware resource estimates. The
CIC interpolator and FIR compensator filter cascaded system requires 12 multipliers
and 19 adders as shown in Figure 3.38.

3.5.1.1 Simulink system verification

Implementation The cascaded filter was implemented in the Simulink as shown
in Figure 3.39. A source generator block was connected to the CIC interpola-
tion filter and compensation filter subsystem. The source generator block uses a
phase/frequency offset block for frequency and phase shifting the incoming signal.
An input signal with frequencies starting from 0 Hz to 1200 Hz was applied to the
CIC-FIR compensation cascaded system for plotting the system transfer funstion.
The compensation filter is placed before an interpolator filter due to the low sam-
pling rate at the input of the filter. An economical filter design in terms of hardware

62 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Figure 3.37: Passband droop and compensation of CIC interpolator

Figure 3.38: MATLAB resourses utilization information for cascaded CIC filter

resources can be achieved by connecting the FIR compensation filter before the
interpolation CIC filter as shown in Figure 3.40.

Cascaded CIC-FIR interpolator filter frequency response The system verifica-
tion is done for the interpolation filter by applying signals at the input of the CIC
interpolator and compensation filter cascade with a frequency of 0 to 1200 Hz using
the phase/frequency offset block from the Communication Toolbox library. Figure
3.41 shows the cascaded CIC-FIR filter frequency response. It is observed that
passband droop is compensated well with a 0.1 dB passband ripple. The aliasing

3.5. SIMULATION AND RESULTS 63

Figure 3.39: Cascaded CIC-FIR interpolation filter implementation block diagram

Figure 3.40: CIC-FIR filter simulink implementation block diagram

level is below 40 dB too. If more attenuation is needed of the aliasing components
then CIC interpolation stages can be increased.

Eye diagram for ISI distortion An eye diagram represents the effects of inter sym-
bolic interference (ISI) and quantization noise on the signals applied to the cascaded
system. Parameters like undershoot, overshoot, sync delays with the system clock,
and signal levels can be seen in the eye diagram. All of these parameters affect
the eye structure. The more the distortion is more it is susceptible to noise. An eye
diagram is drawn overlaying the consecutive bits on the same plot. The wider the
eye-opening is the better the BER system will achieve. Easily distinguishable high
and low levels and fewer amplitude variations represent a system with high BER.

64 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

0 200 400 600 800 1000 1200

Frequency (Hz)

-150

-100

-50

0

A
m

pl
itu

de
 (d

B
)

CIC-FIR interpolator Frequency response

X 592.2
Y -47.9

X 100.2
Y -0.6059

X 20.16
Y -0.565

Figure 3.41: CIC interpolator and Compensator frequency response

While ISI and noise distortion results in closure of the eye. The eye diagram can be
seen in Figure 3.42. Perfect sampling time is at the middle of the eye where SNR is

Figure 3.42: Eye diagram for cascaded CIC-Compensator filter

maximum. Horizontal eye width is the same as the bit duration of 10 ms. The cross-
ing level for the filter should be ideally 0 but due to filtering it is 0.02 . This increased
level will induce ISI of approximately -31 dB (20(log(0.02/0.72)) normalized to max
amplitude.

3.5. SIMULATION AND RESULTS 65

Dynamic range and effective bits of the filter The dynamic range in dB specifies
the difference between the levels of the highest signal to the lowest signal a system
can measure. For example, if the filter has a dynamic range of 40 dB and can
measure a maximum signal of 10 dB then the lowest signal it can measure will
be -30 (10 − 40) dB. The designed cascaded filter outputs one value with multiple
samples (500 for the given scenario) for two consecutive input values as shown in
Figure 3.43. The upper subplot in the figure shows input samples with an 800 Hz
sample rate while the lower plot is the output of the CIC-FIR interpolator cascaded
filter. Input data width is 14 bits but after 1-bit loss (one output value for 2 input
values) output data width reduces to 13 bits. The dynamic range can be calculated
by the formula 20log (minimum amplitude / maximum amplitude) as 78.26 dB (20
log (1/213)).

Figure 3.43: Cascaded interpolator and FIR filter time domain response

3.5.2 Decimation

Decimation is done by downsampling the incoming sequence and then low pass
filtering it. A lowpass filter is applied to remove high-frequency interference compo-
nents. The frequency response of the filter is given in Figure 3.44. The passband
droop is corrected by compensation filter as plotted in Figure (3.44b). The passband
ripple is also adjusted as can be seen from the Figure 3.44b (orange line) to 0.1 dB
as per requirements.

3.5.2.1 Simulink verification

Implementation
The cascaded decimation filter was implemented in Simulink as shown in Figure
3.45. A signal generation block same as the previous section was connected to

66 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

(a) CIC-Compenstor cascade frequency response

(b) Zoomed frequency response of CIC-Compensation filter

Figure 3.44: MATLAB implementation of CIC-Compensation filter

the CIC decimator and compensation filter cascade submodule. In the decimation
process, an FIR filter is placed after the CIC decimator. The compensation FIR filter
is placed at low sampling frequency due to fewer hardware resources required for
computations [50]. The cascaded filter implementation block is shown in Figure 3.45.
A CIC Decimation HDL optimized block from the DSP system Toolbox HDL support
library is connected to the FIR compensation filter subsystem. A compensation filter
is placed inside enable subsystem for making sure it operates only when valid data
from the CIC decimator is received. Valid data is received when a valid strobe is set
high by the CIC decimation block.

Overall system frequency response
Figure 3.46 shows the frequency response of the decimator and compensator cas-
caded system. The simulink implementation verifies the MATLAB implementation

3.5. SIMULATION AND RESULTS 67

Figure 3.45: Cascaded filter implementation

as the side lobe level is less than 60 dB. The black line represents the CIC decima-
tor frequency response compared to the cascaded system response (red line). The
pass band droop is corrected by the cascaded filter to 0.1 db and aliasing signals
are also attenuated by approximately 60 dB.

Figure 3.46: Decimation and compensation filter frequency response

Eye diagram
An eye diagram is used to analyze the filter distortions. If an eye is close or distorted
then we say it is a bad system. The eye diagram for the cascaded response is given
in Figure 3.47. It shows a high Q factor (23) at BER threshold 10−12 settings (ITU
specified) which means it induces little to no distortion in the signal. The higher the

68 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Q-factor cleaner is the signal.

Figure 3.47: Eye diagram for cascaded decimation filter

Dynamic range
The dynamic range of the decimation filter is the same as the interpolation filter.
The decimation CIC-FIR cascaded filter inserts 1-bit loss like the interpolation filter
as shown in Figure 3.48. The uppermost stem plot shows the input data received
at the input of the cascade system at a sample rate of 400 kHz.The stem plot’s high
density means that it has 500 samples at 400 Ksps. The Middle plot displays a valid
strobe for the succeeding system to fetch valid data. The lowermost plot displays
the final output of the cascaded system decimated data. The Decimator system
produces 1 output value for every two input values. This can be confirmed by two
high valid strobes at the same level of output data while two input values are fed to
the decimator system. The valid signal frequency is 800 Hz (400e3 / 500 (decimation
ratio) which is the decimated data rate. The decimator cascaded systems dynamic
range is the same as the interpolator cascaded system discussed earlier (i.e. 78.26
dB).

3.5.3 Hardware synthesis and power estimates

The cascaded FIR-CIC filters HDL files were generated by the MATLAB HDL coder
(version 3.17). The overall design of the CIC-FIR interpolator and CIC-FIR decima-
tor system with the required data interfaces were synthesized in Libero SoC v12.2
for IGLOO2-005 flash-based FPGA. The block diagram shown in Figure 3.29 was

3.5. SIMULATION AND RESULTS 69

Figure 3.48: Decimation filter time domain stem plot

followed for HDL synthesis.
Synthesis report informs us about the hardware resources required in an implemen-

(a) Receiver implementation design

(b) Transmitter implementation design

Figure 3.49: Transmitter and receiver FPGA implementation design

tation of a design. In a three-chip solution, filters are implemented on an FPGA.

70 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

The FPGA implementation schematic drawing of the transmitter and the receiver
are shown in Figure 3.49. In Figure 3.49 (a) receiver’s input data formatter block re-
ceives data from RF IC and transfers it to the I and Q filter chain as shown. The I and
Q block performs decimation on the received data and sends it to the microcontroller
interface (mc interface). The microcontroller interface transfers data to the external
microcontroller via a serial interface (@11.2kbps). The transmitter in Figure 3.49 (b)
receives data from external microcontroller on a serial interface (@11.2 kbps). The
serial data is deserialized by serial to parallel block for I channel and Q channel filter
blocks. These filter blocks interpolate data by 500 (interpolation ration) and trans-
fer it to the FPGA RF subsystem. The FPGA RF subsystem deserializes the data
and appends the required number of zeros. The output of the FPGA RF block (Se-
rial out RF) is connected to the RF chip. Figure 3.50 a and b displays the required
number of resources needed for implementing receiver chain and transmitter chain
in FPGA respectively. The CIC interpolator cascaded with FIR filter occupies only
2569 (42 %) 4LUT and 1575 (25 %) DFFs of the IGLOO2-005 FPGA.

(a) FPGA receiver chain resources (b) FPGA transmitter chain resources

Figure 3.50: Hardware resource synthesis report on IGLOO2-M2GL005 (Mi-
crosemi)

3.5.4 Power consumption estimate

In a battery limited product power consumption plays a vital role in product life. The
power consumption of the transmitter and receiver chain is shown in Figure 3.51. It

3.6. CONCLUSION 71

can be observed from Figure 3.51 that both the transmitter and the receiver chain
consumes almost equal power which is logical because the CIC interpolator and the
decimator are the mirror image of each other for the same number of filter stages.
Mirror image means integrator filter precedes comb filters in CIC decimation filters
while in CIC interpolation filters comb filters leads the integrator filters. A small differ-
ence in resource requirements is observed due to the RF interface implementation
design. A transmitter RF interface requires a concatenate block for sync mark in-
sertion and a state machine for serializing the data with required zero bit padding.
While receiver RF interface just checks for sync mark and stores data accordingly.

(a) FPGA transmitter chain power consump-
tion estimates

(b) FPGA receiver chain power consumption
estimates

Figure 3.51: Power consumption report for Tx and Rx FPGA filter design on
IGLOO2-M2GL005 (Microsemi)

3.6 Conclusion

The reconfigurable nodes will be in sleep mode for approximately 99 % of the time.
So it is advisable to turn off the FPGA for saving power. If FPGA is turned off then
SRAM-based FPGA will lose its configuration. To reconfigure again, high currents
at startup are required and it will take time to reconfigure itself. The flash-based
FPGAs are handy in this scenario because they can be turned off and they do not
require reconfiguration too. A flash-based FPGA consumes 33% less power than
their competitors [53]. Due to low power operation and almost zero reconfiguration
time, the flash-based FPGAs are the best option for decimation and interpolation
stages. Table 3.3 shows the tentative minimum resources requirements for a two-
chip and three chip-based node design.

It is concluded from the table that a two-chip transmitter design requires 5140
(2566 + 2574 (CIC-FIR interpolator)) 4LUTs and 3377 (CIC-FIR interpolator)) DFFs.

72 CHAPTER 3. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Table 3.3: Hardware resources required for FPGA implementation
Two Chip Design Three Chip design

Parameters Tx Rx Interpolator Decimator
4LUT 5140 26482 2574 2703
DFF 3377 15848 1280 1746
MAC 0 34 11 11

Interfaces 3 input
2x output (LVDS)

2 LVDS input
and 3 x output

8 x input
2 x output (LVDS)

2x LVDS, 3 x input
6 x output

Minimum Clock
frequency (MHz)

128 128 128 128

Dynamic power
(mW)

3.55 9.988 3.176 3.492

While receiver requires 26482 (23779 + 2703 (CIC-FIR decimator)) 4LUTs and
15848 (14102 + 1746 (CIC-FIR decimator)) DFFs. In a three-chip solution, transceiver
filters require 5277 4LUTs and 3026 DFFs. Another important factor affecting the
choice of an FPGA is the math block requirements. A three-chip design transceiver
requires 22 MAC blocks. One MAC block consumes 213 4LUTs if hard MAC blocks
are not used while synthesizing. The Microsemi IGLOO 2 M2GL010 has 22 MAC
blocks and double the number of resources than the M2GL005 FPGA. The M2GL-
005 FPGA is not suitable for a three-chip transceiver design because it only has
11 MAC blocks. The approximate logic resources required to implement the re-
maining 11 MAC blocks are 2343 4LUTs. That means a total of 7620 4LUTs are
required. M2GL-005 FPGA has only 6060 4LUTs so M2GL-010 qualifies for a three
chip-based implementation depending on the resources required. The power con-
sumption and price per piece (¤13.7 (M2GL010T-FGG484)) further make M2GL-
010 a favorable option. The Microsemi’s other FPGA families were discarded as an
option due to the price per piece for required amount of the logic resources. The
IGLOO2 M2GL005 has 6060 4LUTs and 11 MAC blocks that can be used for either
transmitter or receiver chain only.

Chapter 4

Microcontroller

In this chapter, a microcontroller-based processing module design and simulations
results are discussed. The transmitter and the receiver modules are the same as
discussed earlier in chapter 3.

4.1 Introduction

A microcontroller can be considered as an independent system with a processor,
RAM, ROM, and interface peripherals. They are found in a computer, laptops, in-
dustrial instruments, voltmeters, cell phones, airbags, routers, etc. They have in-
struction based architecture either it is RISC (Reduced Instruction set computer) or
CISC (Complex instruction set computer). In Chapter 3 we have designed a dec-
imator and an interpolator filter. This filter helps in down/up sampling the data by
decimation/interpolation ratio of 500. The modulator and demodulator with required
baseband signal processing blocks are implemented in a microcontroller. The PHY
will be implemented on a microcontroller and end-to-end verification is done with-
out rate conversion filters (FPGA). The microcontroller PHY testing the transmitter
modules are connected directly to the receiver system.

4.2 Three chip design

A microcontroller is a vital component in the three-chip design. The microcontroller
collects data, processes it, and transfers it to either an FPGA or to the sensors
attached. A transmitter accepts user data in analog or digital format. If data is analog
it is first digitized by the ADC. The digital data is source coded first, packetized,
modulated, and pulse shaped as per standards. The block diagram of the transmitter
is shown in Figure 4.1. The transmitter consists of a packet generator, a QPSK
modulator, a pulse-shaping filter, and a serializer interface. It can be noticed that

73

74 CHAPTER 4. MICROCONTROLLER

in a three-chip solution no RF interface is required at the microcontroller side. The

Figure 4.1: Microcontroller based QPSK transmitter

microcontroller transfers or receives data at 11.2 kbps to or from an FPGA for I-data
and Q-data streams via the serializer interface. The first three submodules are the
same as the FPGA QPSK transmitter discussed earlier. The Serializer interface is
implemented here because data needs to be transferred between the FPGA and the
microcontroller.
The serializer submodule consists of Compex to Real-Imag block from the HDL
Coder library which converts complex input to real and imaginary components. The
real part represents I-data and the imaginary branch represents Q-data. Divided
channel data is then serialized using Serializer1D block from the HDL Coder library
as shown in Figure 4.2. The I-data and the Q-data are transferred to the FPGA
with a valid strobe indicating valid data. The I-data and Q-data of 14-bits each are
converted to a serial data rate of 11.2 kbps (800 * 14). These separated branches
are filtered and interpolated in the FPGA.

Figure 4.2: Transmitter serial interface

4.3 Receiver

The receiver block diagram can be seen in the Figure ??. The receiver block con-
sists of the Desrializer1D block from the HDL library, an adaptive gain control (AGC),

4.4. TESTING AND VERIFICATION 75

a matching filter, a frequency compensation(Fine and coarse) block, a symbol timing
recovery block, and a data decoding subsystem (Figure ??).

Figure 4.3: Microcontroller based receiver simulink block diagram

4.3.1 Deserializer1D HDL coder

Deserializer1D converts the incoming serial stream to parallel data. I-data and Q-
data is 14-bits so deserializer converts serial data to 14 bits parallel bus for each
channel. After converting serial stream to parallel bits, data rate drops to 800 bps
from 11.2 kbps. This 800 bps is processed for information recovery.

4.4 Testing and verification

The testing is done to quantify the system performance according to predefined
standards or conditions. The quantization of floating data and pulse shaping filters
truncated impulse response introduces some error in the final output. This error is
recorded for system performance. The advantage of pulse shaping a signal is that it
reduces bandwidth but that comes at a cost of introducing quantization error to the
signal. The QPSK transmitter and the receiver were interconnected to evaluate the
system performance. The system performance can be judged by calculating the ISI
levels, error vector magnitude (EVM), Root-mean-square (RMS) error percentage,
and observing eye diagrams.

4.4.1 Pulse shaping filters

Two filters were tested for reconfigurable nodes implementation design. Parameters
for the filters are shown in Table 4.4.1

Filter 1 Filter 2 Filter 3

Filter span 10 10 10
Roll off 1 1 0.5

Samples per symbol 8 16 16

76 CHAPTER 4. MICROCONTROLLER

Figure 4.4: Filter 1 ISI measurement

Figure 4.5: Filter 2 and Filter 3 ISI measurements

The ISI measurements were taken by convolution of the filter impulse response
by its own impulse response (convolving transmit filter with receive filter) and then
skipping intermediate sample while keeping sample at nTs (n = 1-10). It can be
observed from the Figure 4.4 and Figure 4.5 that as the samples per symbol at

4.4. TESTING AND VERIFICATION 77

the output of the filter increase the ISI decreases. Figure 4.4 represents peak ISI
amplitude of -37 dB for the output samples per symbol = 8 and the roll-off equal to
1, while filter 2 have a peak ISI amplitude of -41dB. This ISI increased attenuation of
filter 2 w.r.t filter 3 is due to excessive roll-off bandwidth. The larger the filter samples
per symbol lesser will be the ISI but more computation-intensive will it be due to
multipliers requirement. Total multipliers required can be calculated as samples per
symbol multiplied by the filter symbol span.
The filter 2 and the filter 3 have a different roll-off of 1 and 0.5 respectively. It can
be concluded that as the filter excess bandwidth increases ISI will decrease. This
is again counter-intuitive that infinite in frequency domain means limited in the time
domain and vice versa [43].
Visually the effect of excess bandwidth of the pulse shaping filter can be seen from
Figure 4.6 and 4.7. Figure 4.6 is more distorted than the Figure 4.7 due to roll-off
factor difference which induces noise in the given eye diagram. In the given scenario,

Figure 4.6: Filter 3 eye diagram

the roll of factor = 1 is selected due to minimum ISI injection in the initial transmission
stage and secondly, we can use upto 600 kHz bandwidth in sub-1GHz band while
the given node only occupies up to 100 Hz bandwidth only.
The input signal after pulse shaping at transmitter can be seen in the Figure 4.8.
We can observe that square pulse are now smoothly transitioning from high to low
and vice versa. Smoother transitions in time domain have lesser high frequency
components thus limiting the bandwidth of the signal of interest.

78 CHAPTER 4. MICROCONTROLLER

Figure 4.7: Filter 2 eye diagram

Figure 4.8: Pulse shaped data output of filter 2 at the transmitter

4.4. TESTING AND VERIFICATION 79

Constellations plots are obtained at the receiver end after the matched filters to
get the EVM and RMS error. Figure 4.9 shows the constellation plot at the output
of matched filter. Transmitter and receiver filters had the parameters of filter 2 as

Figure 4.9: Receiver matched filter output constellation diagram

given in Table 4.4.1. The quantization noise due to truncated filters response and
the coefficients in RRC filters is almost negligible. The EVM for the given system is
below 65 dB and RMS EVM (%) is almost zero upto 1 decimal point. This means
that both transmit and receive filters are adding barely any noise to the signal.

4.4.2 Microprocessor profiling

In the Simulink, a solver profiler was used to get the estimate for the required maxi-
mum sampling frequency for the baseband processor. Figure 4.10 shows the solver
profiler output for the transmitter and receiver modules. It can be deduced from
the figure that the maximum sample rate required, is equal to the serial data inter-
face clock, that is between FPGA and microcontroller. The minimum sampling clock
which a microcontroller must have is ≈ 22.4kHz.

80 CHAPTER 4. MICROCONTROLLER

(a) Transmitter baseband profile chart (b) Tx profiler information

(c) Receiver baseband profile chart (d) RX profiler information

Figure 4.10: Solver profiler for baseband transmitter and receiver

4.4.3 Processor-In-Loop (PIL) testing

MATLAB Simulink supports PIL testing in which code is compiled and run on hard-
ware connected to the model. The code is directly downloaded to the hardware and
it can be analyzed in the Simulink like a normal program. A QPSK transmitter code
with an output data rate of 800 bps was compiled on the available board (Arduino
UNO Figure 4.11 (a)). The program memory and data memory required for a mi-
crocontroller can be seen in Figure 4.11 (b) The output of the simulation block was
compared to the output from the code running on Arduino UNO. The Figure 4.12 (a)
displays a zero error between PIL output and the simulation output for both I-channel
and Q-channel data. It can be concluded from PIL testing that a microcontroller hav-
ing 11276 bytes of program memory and 1386 bytes of data memory can be used
as a transmitter only node.

(a) Arduino Uno board PIL setup (b) Transmitter microcontroller
Parameters

Figure 4.11: Microcontroller based QPSK transmitter testing

Likewise transmitter, the receiver PIL testing steps were performed on the Ar-
duino Uno board. The receiver chain is more complicated than the transmitter

4.4. TESTING AND VERIFICATION 81

(a) PIL block verification Simulink

(b) PIL and Simulink block output difference

Figure 4.12: PIL verification on Arduino Uno board

side so the whole receiver code memory and program memory requirements were
greater than the available resources on an Arduino Uno board. That’s why sep-
arately each block was compiled and placed inside the receiver chain and errors
were observed at the packet decoding end. All of the blocks worked on the Arduino
Uno board as per simulation results discussed in Chapter 3. The separate compila-
tion helped in getting an estimate of microcontroller resources for the whole receiver
chain. The data memory and program memory for receiver subblocks are given

82 CHAPTER 4. MICROCONTROLLER

in Table 4.1. To implement a QPSK receiver, approximately 22 kbytes of program
memory and 2 Kbytes of data memory are required.

Block name Program memory (ROM) kilobyte Data memory (RAM) kilobyte

AGC and RRC filter 5 2.5
Coarse frequency offset 4 0.5

Fine frequency offset 4 0.2
Timing Synchronizer block 5 0.1

Data Decode block 3 0.4
Packet decode 1 0.2
Total (approx) 22 3.9

Table 4.1: Memory requirments for microcontroller-based QPSK receiver imple-
mentation

Table 4.2 shows some of the low-powered microcontrollers designed specifically
for IoT products with longer battery life.

Table 4.2: Low-power 32-bit microcontrollers
Power

Name Speed (MHz) Core RAM (kilobytes) ROM (kilobytes) Interfaces

Active (µA/MHz) Standby µA Sleep µA Deep sleep µA

Package (mm2) Cost ($)

STM32L081CZ 32 ARM Cortex M0+ 20 128 40 gpio , 2x SPI 93 0.86 0.43 0.29 7 x 7 3.55

STM32L431 80 ARM Cortex M4 with FPU 64 128 83 gpio, 3x SPI 84 280 nA 28 nA 8 nA 5 x 5 4.2

MicroChip SAM 10/11E16A 32 ARM Cortex M23 16 16/32/64 25 gpio , 1x SPI 25 1.5 0.5 100 nA 2.79 x 2.79 1.49

SAM L21E18 48 ARM cortex M0+ 16 256 51 gpio, 1 xSPI 35 1.2 0.9 200 nA 9 x 9 3.79

Intel SEC1000 32 X86ISA 80 384 32 gpio , 1x SPI 250 - - 650 nA 6.4 x 6.33 11.12

Maxim 32666 96 ARM Cortex M4 384 1000 37 gpio, 1 xSPI 27 12.3 7.8 0.39 4.1 x 3.7 6.52

Analog ADuCM355 26 ARM Cortex M3 64 128 17 gpio, 1 x SPI 30 8.5 - 2 6 x 5 5.90

4.5 Conclusion

The main concern in the microcontroller selection is the power consumption, mem-
ory (program and data), and the required number of interface peripherals. Program
memory and data memory controls the size of code that can be uploaded to the
microcontroller. Table 4.1 indicates memory requirements for a receiver. In a QPSK
transceiver design, approximately 33 kbytes of program memory and 5kbyes of data
memory is required. The minimum number of GPIOs required in a transmitter im-
plementation is 8. All of them as an output (clock, reset, valid strobe, data) for
I-channel data and Q-channel data 4 each. The microcontroller-based receiver re-
quires 6 input (chip enable, valid strobe, data) ports for I-channel and Q-channel 3

4.5. CONCLUSION 83

each. Additionally, the microcontroller must have an SPI interface for RF transceiver
IC registers configuration.
All of the microcontrollers listed qualified for the reconfigurable node hardware w.r.t
memory requirements and peripheral requirements. The power consumption met-
rics for low power microcontrollers are defined by the Embedded Microprocessor
Benchmark Consortium (EEMBC). This metric is also known as the ULP mark. The
ULP mark is mostly quoted in the datasheet by the vendor. Higher the ULP mark
better is the device power saving capability [54].
All microcontrollers given in the table doesnot have the ULP mark stated. To decide
among these microcontrollers node daily activity specification were decided on fol-
lowing parameters as given in Table 4.3. Day active time means how many times
a node is on for transmission in a day. Rest of the time is considered as a sleep
period.
According to node activity parameters devices were considered either active or in

Clock frequency 32 MHz

Data rate 100 bps
Packet size 200 bits

Messages per day 96 (1 message every 15 minutes)
message duration 2.0 s

Table 4.3: power consumption calculating parameters

deep sleep. Only two modes were considered due to non availability of current con-
sumption value for different modes. Number of peripherals active in different modes
are also not same. Table 4.4 shows the current consumption per day calculated
based on the formula given.

C = F ∗ A ∗Nm ∗Md + Cd ∗ Ti (4.1)

Where C is power consumption in a day (mAsec), F is the operating frequency (32
MHz), A is the active state current (µ A) , Nm is number of messages per day, Md is
message duration (sec), Cd is deep sleep current (µ A) and Ti is the inactivity time
per day (sec).

Based on the values in Table 4.4 the Microchip’s Sam10 microcontroller had the
least current consumption. The ULP mark for SAM 10 is 410 as reported which is
the highest among the reported microcontrollers in Table 4.2. The Microchip SAM
10/11E16A microcontrollers are best fit for the reconfigurable LPWAN nodes with a
program memory usage of 51% (22k/64k) and data memory consumption of 31%

84 CHAPTER 4. MICROCONTROLLER

Microcontroller Active current µ A Deep Sleep current µ A
Power consumtion
(mAsec)

STM32L081CZ 93 0.29 596
STM32L4 84 0.08 522
Microchip
SAM10/11E16A

25 0.1 162

SAM L21/22 35 0.2 232
Intel SEC1000 250 0.65 1592
Maxim 32666 27 0.29 190
Analog ADUC355 8.5 2 224

Table 4.4: Approximate power consumption per day

(5k/16k) and transmission of 4 messages per hour with a packet size of 200-bits.

Chapter 5

Integrated System Verification

In this chapter, an end-to-end communication system was simulated for validation
of the concept. The system was connected as shown in Figure 5.1. The transmitter
chain is connected to the receiver chain via the AWGN channel.

Figure 5.1: Overall system testing block diagram

The baseband modulator was connected to the FPGA interpolator via the serial
interface. The serial interface consists of 14 bits of signed data at 800 bps data rate.
The serial data is deserialized inside the FPGA for the interpolation process. The
upsampled data is transferred to the RF transmitter interface. The RF interfaces are
explained in Chapter 3. The RF Tx interface formats the data according to the Atmel
RF IC data requirements. The RF IC transmits data to the receiver via the channel
interface. A noisy data is received serially by the RF Rx interface. The receiver
RF interface provides data to the FPGA decimator for downsampling and filtering.
The downsampled data is transferred via a serial interface to the receiver baseband
processor.

85

86 CHAPTER 5. INTEGRATED SYSTEM VERIFICATION

5.1 Channel

The performance of a system in a noisy channel medium plays a vital role in bench-
marking a system’s performance. An AWGN channel was inserted between the
transmitter and the receiver to replicate a real scenario. Figure 5.2 shows a Phase/Frequency
offset block from the Communication ToolBox library which gives a frequency shift
of 10 Hz to the incoming signal. The frequency-shifted signal is delayed using a
delay block with a random fractional frame delay value ranging from 0 to 4. In the
last step, an AWGN channel noise is added to the signal using an AWGN block from
Communication Toolbox library. This way a real-world communication scenario in a
noisy medium was modeled.

Figure 5.2: Channel simulink block diagram

5.2 Testing Results

5.2.1 Data reception at constant EbNo

A successful transmission of data packets was observed in the Simulink diagnostic
window. The received packet contain 11 characters of ”Hello World” appended with
a repeated counter values from 000 to 099. The packet reception was successful
for whole transceiver chain as can be seen in Figure 5.3.

5.2.2 BER vs EbNo Plot

A BER vs EbNo plot depicts the system performance in the noisy channel. It plots
the number of error received at a specific EbNo value The overall system ber curve
plot in Figure 5.4 shows the variation of simulated values (red line) to the theoretical
ones (blue line). The difference is due to the known phase of the received signal in
the theoretical calculation but in simulation, the signal phases are estimated. The
signal phase estimation can have residual values which can worsen the BER. At
low EbNo values, the AWGN noise is a dominant factor in having high BER. But at

5.2. TESTING RESULTS 87

Figure 5.3: Demodulated packets at the receiver output

Figure 5.4: Overall system BER vs EbNo

the high EbNo values, the BER value difference to the reference value is less due
to the lesser impact of the AWGN noise than the combined effect of sync errors
at the receiver and ISI induced by the channel. A BER of 10−3 is sufficient for the
LPWAN nodes as data is transmitted multiple times and environment variables did
not change frequently so low BER can be tolerated. A BER of 10−3 means for every
1000 bits received, 1 bit will be corrupted. If we translate this BER to our scenario
then it will equal to 1-bit error for every 5 packets received.

88 CHAPTER 5. INTEGRATED SYSTEM VERIFICATION

Chapter 6

Conclusion And Future Work

6.1 Conclusion

In this thesis, design and simulational verification was done for designing a reconfig-
urable SDR based LPWAN node. A one-chip solution consists of an RFSoC that is
much too expensive for a low-cost solution. A two-chip solution based on an FPGA
or a microcontroller and an RF transceiver chip was also not suitable because a
substantial amount of resources is required (approx 30k LE) in case of an FPGA
and a very high operation clock (> 128 MHz) for a microcontroller-based design.
The simulation results confirm that a reprogrammable node can be implemented on
a standalone reconfigurable embedded three-chip platform consisting of an FPGA,
a microcontroller, a sensor unit, and a power management unit. The FPGA logic
resources required for transceiver filter implementation are approximately 8k LUTs.
While the microcontroller minimum program memory should be 33 kilobytes and the
data memory must be approximately 6 kilobytes. The latest microcontrollers have a
sufficient number of interface general-purpose input/output (GPIO) required for data
communication in sensor nodes.
The designed block diagram can be used for further development of the node PHY
design. The model can be used for further testing of a different PHY or implement-
ing an adaptable data rate design up to 600 kbps (upper limit of the sub-1GHz
standard). The block diagram for the tentative layout of the node is shown in Figure
6.1.

The cost budget in Table 6.1 shows that the data processing part will cost approx-

Table 6.1: Cost and power budget for reconfigurable node
FPGA Microcontroller RF IC Total

Cost (¤) 15.93 1.56 4.02 21.51
Current requirements (mA) 9.817 (TX) + 9.723 (Rx) 2.9 67 89.44

89

90 CHAPTER 6. CONCLUSION AND FUTURE WORK

Figure 6.1: Sensor node layout

imately ¤22. The remaining ¤8 will be used for the power management unit, sensor
unit, printed circuit board (PCB) manufacturing, and miscellaneous components.
The pcb area constraint for the design implementation is in the limits as specified
in the thesis scope. The power consumption for a three chip solution is lower than
the other available options. To conclude, at this point reconfigurable node is feasible
based upon the simulation results and scope defined.

6.2 Future work

Sample rate conversion and low-pass filtering the signal is the main bottleneck for
system design, which can be tackled by implementing the CIC filters. The CIC filters
are good at large sample rate conversion but the effectiveness was limited to 25 %
of the passband frequency. A new class of filters can be investigated like CIC filters
with sharpening techniques in multiple stages which can use fewer FPGA resources.
When extra resources are available on an FPGA then the coordinate rotation digital
computer (CORDIC) algorithm can also be implemented inside the FPGA, in order
to replace multipliers with shifters, adders, and subtraction blocks.
The CIC decimator and interpolator are structurally the same for a given number of
stages so a multiplexed system can be designed in an FPGA that uses the same
CIC filter blocks for the decimation and the interpolation.

6.2. FUTURE WORK 91

The scope of the thesis was limited to the narrowband signals but in the future maxi-
mum allowable data rates for LPWAN standard can be simulated or validated for the
reprogrammable node.
In this study, power management unit for the reconfigurable node was not consid-
ered, power planning for such a node can be a good idea for a future research topic
and finding ways to prolong node life. The feasibility of a secondary power source
can be investigated like an energy harvesting technique. Energy harvesting tech-
niques can make reconfigurable nodes to be batteryless.

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] S. TABBANE. (2016) Iot network planning•. [Online]. Available:
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/
Events/2016/Dec-2016-IoT/IoTtraining/IoT%20network%20planning%20ST%
2015122016.pdf

[2] Wireless Sensor Networks Technology and protocol. IntechOpen, 2012.

[3] S.-H. H. Rashmi Sharan Sinha, Yiqiao Wei, “A survey on lpwa technology: Lora
and nb-iot.”

[4] L. IOT. (2015) Which wireless network should you choose•. [Online]. Available:
http://www.lprsiot.com/networks/

[5] D. M. Hernandez, G. Peralta, L. Manero, R. Gomez, J. Bilbao, and C. Zubia,
“Energy and coverage study of lpwan schemes for industry 4.0,” in 2017 IEEE
International Workshop of Electronics, Control, Measurement, Signals and their
Application to Mechatronics (ECMSM), 2017, pp. 1–6.

[6] F. C. Kais Mekki, Eddy Bajic and F. Mayer, “A comparative study of lpwan tech-
nologies for large-scale iot.”

[7] SIGFOX. (2019) Sigfox technology. [Online]. Available: https://www.sigfox.com/
en/what-sigfox/technology

[8] AVENT. (2019) About sigfox. [Online]. Available: https://www.avnet.com/wps/
portal/apac/products/c/lpwan/lpwan-nbiot-technology/about-sigfox?locale=zh

[9] L. A. T. Committee, “LorawanTM 1.0.3 specification.”

[10] Y. . E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman,
and H. S. Razaghi, “A primer on 3gpp narrowband internet of things,” IEEE
Communications Magazine, vol. 55, no. 3, pp. 117–123, 2017.

[11] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and
T. Watteyne, “Understanding the limits of lorawan,” IEEE Communications Mag-
azine, vol. 55, no. 9, pp. 34–40, 2017.

93

https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Dec-2016-IoT/IoTtraining/IoT%20network%20planning%20ST%2015122016.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Dec-2016-IoT/IoTtraining/IoT%20network%20planning%20ST%2015122016.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Dec-2016-IoT/IoTtraining/IoT%20network%20planning%20ST%2015122016.pdf
http://www.lprsiot.com/networks/
https://www.sigfox.com/en/what-sigfox/technology
https://www.sigfox.com/en/what-sigfox/technology
https://www.avnet.com/wps/portal/apac/products/c/lpwan/lpwan-nbiot-technology/about-sigfox?locale=zh_
https://www.avnet.com/wps/portal/apac/products/c/lpwan/lpwan-nbiot-technology/about-sigfox?locale=zh_

94 BIBLIOGRAPHY

[12] C. Buratti, A. Conti, D. Dardari, and R. Verdone, “An overview on wireless sen-
sor networks technology and evolution,” Sensors (Basel, Switzerland), vol. 9,
pp. 6869–96, 09 2009.

[13] C. Cheng, C. K. Tse, and F. C. M. Lau, “A delay-aware data collection network
structure for wireless sensor networks,” IEEE Sensors Journal, vol. 11, no. 3,
pp. 699–710, 2011.

[14] A. Dongare, A. Luong, A. Balanuta, C. Hesling, K. Bhatia, B. Iannucci, S. Ku-
mar, and A. Rowe, “Demo abstract: The openchirp low-power wide-area net-
work and ecosystem,” in 2018 17th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks (IPSN), 2018, pp. 138–139.

[15] T. Truong, H. Le, and T. Nguyen, “A reconfigurable hardware platform for low-
power wide-area wireless sensor networks,” Journal of Physics: Conference
Series, vol. 1432, p. 012068, 01 2020.

[16] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393 –
422, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128601003024

[17] Digital communication A Discrete-Time Approach. Pearson International Edi-
tion, 2009.

[18] Software Receiver Design. Cambridge press, 2011, ch. 1.

[19] Wikipedia. (2020) Software-defined radio. [Online]. Available: https:
//en.wikipedia.org/wiki/Software-defined radio#:∼:text=Software%2Ddefined%
20radio%20(SDR),personal%20computer%20or%20embedded%20system.

[20] Software Defined R ware Defined Radio Handbook adio Handbook adio Hand-
book. Pentek, Inc, 2011.

[21] nuand. (2020) bladerf x40. [Online]. Available: https://www.nuand.com/
bladerf-1/

[22] ——. (2020) bladerf x40. [Online]. Available: https://www.nuand.com/product/
bladerf-x40/

[23] LimeSDR. (2020) Limesdr-mini. [Online]. Available: https://wiki.myriadrf.org/
LimeSDR-Mini

[24] Mouser. (2020) Adalam-pluto. [Online]. Available: https://nl.mouser.com/
datasheet/2/609/ADALM-PLUTO-Product-Highlight-1633770.pdf

http://www.sciencedirect.com/science/article/pii/S1389128601003024
http://www.sciencedirect.com/science/article/pii/S1389128601003024
https://en.wikipedia.org/wiki/Software-defined_radio#:~:text=Software%2Ddefined%20radio%20(SDR),personal%20computer%20or%20embedded%20system.
https://en.wikipedia.org/wiki/Software-defined_radio#:~:text=Software%2Ddefined%20radio%20(SDR),personal%20computer%20or%20embedded%20system.
https://en.wikipedia.org/wiki/Software-defined_radio#:~:text=Software%2Ddefined%20radio%20(SDR),personal%20computer%20or%20embedded%20system.
https://www.nuand.com/bladerf-1/
https://www.nuand.com/bladerf-1/
https://www.nuand.com/product/bladerf-x40/
https://www.nuand.com/product/bladerf-x40/
https://wiki.myriadrf.org/LimeSDR-Mini
https://wiki.myriadrf.org/LimeSDR-Mini
https://nl.mouser.com/datasheet/2/609/ADALM-PLUTO-Product-Highlight-1633770.pdf
https://nl.mouser.com/datasheet/2/609/ADALM-PLUTO-Product-Highlight-1633770.pdf

BIBLIOGRAPHY 95

[25] K. Konkani, “Efficient reconfigurable architecture of baseband demodulator in
sdr,” International Journal of Research in Engineering and Technology, vol. 3,
no. 2, pp. 536–541, 2014. [Online]. Available: http://www.ijret.org

[26] W. G.Wong. (2019) Rfsoc delivers fpga flexibility with high-speed rf.
[Online]. Available: https://www.electronicdesign.com/industrial-automation/
article/21807610/rfsoc-delivers-fpga-flexibility-with-highspeed-rf

[27] Xilinx. (2020) Zynq ultrascale+ rfsoc. [Online]. Available: https://www.xilinx.
com/products/silicon-devices/soc/rfsoc.html

[28] Atmel AT86RF215 Device Family, ATmel.

[29] T. P. Truong, H. T. Le, and T. T. Nguyen, vol. 1432, p. 012068, jan 2020. [Online].
Available: https://doi.org/10.1088%2F1742-6596%2F1432%2F1%2F012068

[30] Xilinx. (2020) System on a chip. [Online]. Available: https://en.wikipedia.org/
wiki/System on a chip

[31] B. Moyer, “Chapter 5 - design considerations for multicore soc in-
terconnections,” in Real World Multicore Embedded Systems. Ox-
ford: Newnes, 2013, pp. 117 – 197. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780124160187000018

[32] wikipedia. (2020) Field-programmable gate array. [Online]. Available: https:
//en.wikipedia.org/wiki/Field-programmable gate array

[33] ——. (2020) Microcontroller. [Online]. Available: https://en.wikipedia.org/wiki/
Microcontroller

[34] R. K. Kodali, L. Boppana, and G. Gayathri, “Fpgas in software defined radio,”
in 2013 15th International Conference on Advanced Computing Technologies
(ICACT), 2013, pp. 1–6.

[35] Intel. (2020) Excerpts from ’a conversation with gordon moore: Moore’s law.
[Online]. Available: http://large.stanford.edu/courses/2012/ph250/lee1/docs/
Excepts A Conversation with Gordon Moore.pdf

[36] B. Zeidman(EETimes). (2020) All about fpgas. [Online]. Available: https:
//www.eetimes.com/all-about-fpgas/

[37] Tree-Based Heterogeneous FPGA Architectures. Springer Science+Business
Media New York 2012, 2012.

http://www.ijret.org
https://www.electronicdesign.com/industrial-automation/article/21807610/rfsoc-delivers-fpga-flexibility-with-highspeed-rf
https://www.electronicdesign.com/industrial-automation/article/21807610/rfsoc-delivers-fpga-flexibility-with-highspeed-rf
https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html
https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html
https://doi.org/10.1088%2F1742-6596%2F1432%2F1%2F012068
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
http://www.sciencedirect.com/science/article/pii/B9780124160187000018
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microcontroller
http://large.stanford.edu/courses/2012/ph250/lee1/docs/Excepts_A_Conversation_with_Gordon_Moore.pdf
http://large.stanford.edu/courses/2012/ph250/lee1/docs/Excepts_A_Conversation_with_Gordon_Moore.pdf
https://www.eetimes.com/all-about-fpgas/
https://www.eetimes.com/all-about-fpgas/

96 BIBLIOGRAPHY

[38] I. The MathWorks, “Hdl optimized qpsk transmitter.” [Online]. Available:
https://nl.mathworks.com/help/comm/ug/hdl-optimized-qpsk-transmitter.html

[39] Digital Signal Processing Principles Algorithms and Applications, 3rd ed.
Prentice-Hall, 1996.

[40] “Pulse shaping.” [Online]. Available: https://en.wikipedia.org/wiki/Pulse shaping

[41] I. The MathWorks, “Hdl optimized qpsk re-
ceiver.” [Online]. Available: https://nl.mathworks.com/help/comm/ug/
hdl-optimized-qpsk-receiver-with-captured-data.html

[42] M. E. Frerking, Digital Processing in communication systems. Kluwer Aca-
demic Publishers, 2003.

[43] B. Sklar, Digital Communications: Fundamentals and Applications. USA:
Prentice-Hall, Inc., 1988.

[44] Synchcronization Techniques for Digital Receivers. Plenium Press, 1997.

[45] E. Sourour, H. El-Ghoroury, and D. McNeill, “Frequency offset estimation and
correction in the ieee 802.11a wlan,” in IEEE 60th Vehicular Technology Con-
ference, 2004. VTC2004-Fall. 2004, vol. 7, 2004, pp. 4923–4927 Vol. 7.

[46] F. Salewski and S. Kowalewski, “Exploring the differences of fpgas and mi-
crocontrollers for their use in safety-critical embedded applications,” in 2006
International Symposium on Industrial Embedded Systems, 2006, pp. 1–4.

[47] M. P. Donadio. (2020) Cic filter introduction. [Online]. Available: http:
//home.mit.bme.hu/∼kollar/papers/cic.pdf

[48] keysight. (2020) Choosing a filter response type. [Online]. Available:
http://literature.cdn.keysight.com/litweb/pdf/ads15/dfilter/df042.html

[49] S. Sharma, S. Kulkarni, V. M., and P. Lakshminarsimhan, “Hardware realization
of modified cic filter for satellite communication,” in 2010 International Confer-
ence on Computational Intelligence and Communication Networks, 2010, pp.
41–44.

[50] E. Hogenauer, “An economical class of digital filters for decimation and in-
terpolation,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 29, no. 2, pp. 155–162, 1981.

[51] G. Jovanovic Dolecek and F. Harris, “On design of two-stage cic compensation
filter,” in 2009 IEEE International Symposium on Industrial Electronics, 2009,
pp. 903–908.

https://nl.mathworks.com/help/comm/ug/hdl-optimized-qpsk-transmitter.html
https://en.wikipedia.org/wiki/Pulse_shaping
https://nl.mathworks.com/help/comm/ug/hdl-optimized-qpsk-receiver-with-captured-data.html
https://nl.mathworks.com/help/comm/ug/hdl-optimized-qpsk-receiver-with-captured-data.html
http://home.mit.bme.hu/~kollar/papers/cic.pdf
http://home.mit.bme.hu/~kollar/papers/cic.pdf
http://literature.cdn.keysight.com/litweb/pdf/ads15/dfilter/df042.html

BIBLIOGRAPHY 97

[52] A. Corporation. (2007) Understanding cic. [Online]. Available:
Applicationnote455

[53] L. Cattaneo. (2016) Microsemi soc fpgas. [Online]. Avail-
able: https://indico.cern.ch/event/489996/contributions/2285681/attachments/
1343728/2024822/InvitedSpeaker Luca Cattaneo.pdf

[54] “Eembc reveals benchmark results from low power microcon-
trollers.” [Online]. Available: https://www.elektroniknet.de/elektronik/halbleiter/
eembc-enthuellt-benchmark-ergebnisse-von-low-power-mikrocontrollern-113319.
html

Application note 455
https://indico.cern.ch/event/489996/contributions/2285681/attachments/1343728/2024822/InvitedSpeaker_Luca_Cattaneo.pdf
https://indico.cern.ch/event/489996/contributions/2285681/attachments/1343728/2024822/InvitedSpeaker_Luca_Cattaneo.pdf
https://www.elektroniknet.de/elektronik/halbleiter/eembc-enthuellt-benchmark-ergebnisse-von-low-power-mikrocontrollern-113319.html
https://www.elektroniknet.de/elektronik/halbleiter/eembc-enthuellt-benchmark-ergebnisse-von-low-power-mikrocontrollern-113319.html
https://www.elektroniknet.de/elektronik/halbleiter/eembc-enthuellt-benchmark-ergebnisse-von-low-power-mikrocontrollern-113319.html

	Summary
	List of acronyms
	Introduction
	Available LPWAN standards
	Sigfox
	LoRa
	Narrowband IoT (NB-IoT)

	Motivation
	Work of others
	Research scope
	Research goal
	Report organization

	Hardware Architecture Design
	Introduction
	SDR transmitter block diagram
	SDR receiver block diagram

	Available SDR platforms
	BladeRF x40
	LimeSDR mini
	ADALM PLUTO
	Conclusion

	Reconfigurable hardware layout
	One chip solution
	Two chip solution
	Three chip solution

	Conclusion

	Field Programmable Gate Array (FPGA)
	Introduction
	Configurable logic blocks
	Configurable I/O blocks
	Programmable interconnects
	Clock circuitry

	Types of FPGA
	Static memory
	Flash programming
	Anti-Fuse technology
	Examples of FPGA families

	Two chip FPGA based design
	QPSK transmitter
	QPSK receiver
	Simulation Verification, FPGA synthesis, and power report

	Three-chip based solution design
	FPGA filter and interface design

	Simulation and results
	Interpolation
	Decimation
	Hardware synthesis and power estimates
	Power consumption estimate

	Conclusion

	Microcontroller
	Introduction
	Three chip design
	Receiver
	Deserializer1D HDL coder

	Testing and verification
	Pulse shaping filters
	Microprocessor profiling
	Processor-In-Loop (PIL) testing

	Conclusion

	Integrated System Verification
	Channel
	Testing Results
	Data reception at constant EbNo
	BER vs EbNo Plot

	Conclusion And Future Work
	Conclusion
	Future work

	References

