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ABSTRACT 

 

The abundant availability of multi-scale very high-resolution (VHR) remote-sensing imagery precipitated 

the need for an image classification method to automatically learn relevant features from raw images and 

make land-cover class predictions in an end-to-end framework. For this, deep learning methodologies 

were adapted, specifically in the form of convolutional neural networks or CNNs. In this research, we 

investigate the ability of CNN structures to dynamically fuse multi-scale VHR satellite images, taken by the 

WorldViewIII sensor over parts of Quezon City, Mexico, to produce high-accuracy land-cover 

classification maps. We do so by comparing the classification results of a CNN that is designed to fuse 

discrete sets of multi-scale images, with the results of a CNN that was trained on images that were pan-

sharpened using an independent state-of the-art technique. In addition, this research applies the mean-

field approximation to the dense-CRF inference which models label and spectral compatibility in the pixel-

neighbourhood effecting a more locally, smooth segmentation. Finally, a recurrent neural network or 

RNN is also implemented in order to enhance the stand-alone fusion network by accounting for local 

class-label dependencies within its end-to-end structural framework by concatenating the class-probability 

scores of the first FCN with the raw input of the following FCN instance. We compare the dense-CRF 

optimized classification results with those obtained by applying the trained RNN classifier. Classification 

results indicate that our designed classification FCN models have performed favourably. The fusion 

network consistently produces high-accuracy land-cover classification maps effectively demonstrating the 

ability of FCN structures to dynamically fuse multi-scale images. Furthermore, the RNN results show an 

improvement on the singular fusion network performance. This illustrates the capacity of FCN 

architectures to account for local spatial and spectral dependencies in an image space, when implemented 

as a RNN. 

 

Keywords: Image classification, convolutional neural networks, conditional random fields, very high resolution satellite 

imagery 
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1. INTRODUCTION 

1.1.  RESEARCH MOTIVATION 

The commercial availability of very high-resolution (VHR) satellite imagery raised expectations of 

achieving improved land-cover classification maps. However, the results obtained from applying standard 

non-contextual supervised classifiers, like Gaussian Maximum Likelihood, were less than satisfactory 

(Moser, Serpico & Benediktsson, 2013). This failing was largely attributed to the increased spatial 

resolution and the limited spectral resolution of VHR satellite sensors. In effect, the spectral variability 

within thematic land-cover classes increased while ‘class-separability’ decreased (Carleer, Debeir & Wolff, 

2005). For VHR remote-sensing images there exists a high-degree of spatial correlation between 

neighbouring pixel values; and the colour and intensity of an individual pixel, irrespective of its context, is 

insufficient to determine its true class label. An established approach to account for this spectral 

complexity is to include hand-crafted features, like texture statistics, oriented gradients, and morphological 

profiles which tend to capture the local spectral variation around a given pixel (Volpi & Tuia, 2017). The 

nature of these descriptors is, however, controlled by a user-defined set of parameters; and their selection 

is usually guided by user-experience or by a trial and error procedure. These approaches are inherently 

suboptimal and non-exhaustive (Volpi & Tuia, 2017). Also, while hand-crafted features improve 

classification accuracy, their unbounded inclusion into the feature-set makes the model susceptible to the 

curse of dimensionality or Hughes’ phenomenon (Hughes, 1968). This is a significant limitation for both 

parametric and non-parametric supervised image classification methodologies; and accordingly justifies the 

need for a classifier that could automatically learn relevant features from a remote sensing data set. 

Accordingly, deep learning methodologies were adopted - specifically in the form of Convolutional Neural 

Networks (CNNs) – for image classification. CNNs were initially conceived and adapted for pattern 

recognition tasks. LeCun et al. pioneered their application for handwritten character recognition, 

formalizing the multi-tiered design (dubbed LeNet-5) that has served as a prototype for all subsequent 

architectures (LeCun et al., 1989). Since then, CNNs have demonstrated outstanding performance in tasks 

as diverse as face recognition, natural language processing, audio recognition and bioinformatics (Fu, Liu, 

Zhou, Sun, & Zhang, 2017). Their application to image classification, however, was hampered for a 

number of years by the following two factors: (i) the unavailability of large semantically labelled training 

data, and (ii) the high computational costs involved in training the network (Zeiler & Fergus, 2014). In 

recent years, advances in GPU technology have made the training of CNNs more computationally 

feasible. In 2012, Alex Krizhevsky and his team crafted a CNN (since known as AlexNet) that 

demonstrated state-of-the-art performance at the 2012 ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) (Krizhevsky, Sutskever & Hinton, 2012). This event proved a watershed for the 

application of CNNs for image classification. 

It is worth emphasizing that image classification, as understood in the domain of pattern recognition and 

computer vision, is essentially image categorization, i.e., assigning a single class label to an entire image. On 

the other hand, in the field of remote-sensing image classification implies assigning a single class label to 

each pixel of the image. To obtain such dense ‘pixel-label’ outputs, CNN architectures have typically 

employed a ‘patch-based’ approach. This involves decomposing the original image into small patches of 

uniform size and using the CNN to predict a class label for the pixel centred on each patch. These patch 

label predictions are later re-joined to produce the desired ‘pixel-label’ map at the original image 

resolution. A significant shortcoming of this approach is the redundancy involved in processing 

overlapping patches which leads to high computational costs. Furthermore, the segmentation of the larger 
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image leads to a loss of useful information contained at the patch boundaries. In 2015, Long et al. 

addressed this shortcoming and proposed the Fully Convolutional Network (FCN), replacing the fully 

connected layers in a standard CNN with convolution layers (Long, Shelhamer, & Darrell, 2015). The 

FCN helped mitigate the aforementioned limitations of the ‘patch-based’ approach by (i) reducing the 

number of trainable parameters without resulting in a loss of generality; (ii) enabling feature learning over 

the entire image instead of independently conducted patch-wise inference, and (iii) allowing arbitrary sized 

images to be accepted as input, and doing away with the complexity of decomposing and rearranging the 

image and the output respectively. 

The advantages of FCN notwithstanding, substantial challenges remain in trying to adapt them for land-

cover classification of VHR remote-sensing images. Due to considerations of computational feasibility, 

convolutional filters are kept small in size in order to reduce the total number of trainable parameters. 

This constraint, when combined with repeated max-pooling operations, progressively coarsens the feature 

representations produced as the output of each convolution layer. In recent years numerous modifications 

have been proposed to enhance the classification accuracies of CNNs, such as, the use of dilated 

convolution filters and up-sampling ‘deconvolution’ operations. Despite these developments, CNNs are 

susceptible to reduced localization accuracy due to their inherent invariance to spatial transformations 

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2015).  Consequently, the inferred result at the original 

image resolution suffers from non-sharp boundaries and blob-like segmentations (Zheng et al., 2015). 

In this context, Markov Random Fields (MRF) and its variant Conditional Random Fields (CRF) have 

been readily used to refine coarse pixel-level predictions and to produce sharp, fine-grained classification 

maps (Zheng et al., 2015). These are a class of probabilistic graphical models, usually applied as a post-

processing step, which transform the semantic-labelling problem into a Bayesian maximum a-posteriori 

(MAP) inference, conditioned on a random field (group of pixels), constituting the Markovian 

neighbourhood of a given pixel (Krähenbühl & Koltun, 2011). While MRF models the spatial dependency 

between pixels considering only class labels, the CRF takes into account both class labels and spectral 

values (Li, 2009). The efficacy of CRF models is predicated on their ability to incorporate contextual 

information (such as the presence of edges, homogeneous image regions and texture) as a linear 

combination of pairwise energy potentials (Moser et al., 2013). This encourages class label agreement 

between spectrally similar valued pixels resulting in a smooth and homogenous output.  

In applying CRF modelling to classify VHR imagery, one needs to account for long-range dependencies 

between pixel values in the image. In order to do so CRFs need to consider higher-order neighbourhoods, 

and go beyond the adjacency structure of commonly used pixel models (Krähenbühl & Koltun, 2011). 

Defining CRF models over the complete set of pixels in an image, however, exponentially increases the 

combination of pairs to consider and renders the procedure computationally prohibitive. In a 

breakthrough, a mean-field approximation to the fully-connected dense-CRF inference was developed 

with striking computation efficiency. This algorithm replaced the conventional posterior probability with a 

product of independent marginal distributions for each pixel in the entire image space; and further utilizes 

a contrast-sensitive two kernel potential and high-dimensional filtering to optimize the implementation of 

the dense-CRF inference (Krähenbühl & Koltun, 2011). 

This research integrates various applied methods from across remote-sensing image-classification and 

RGB-oriented image-segmentation literature into a methodological framework to assess the efficacy of 

CNN structures to dynamically fuse multi-scale VHR images for generating high-accuracy land-cover 

classification maps. More specifically, this work combines the receptive-field-enlargement capacity of 

dilated convolutional filters and implements a ‘downsampling-upsampling’ architecture that allows for the 

dynamic fusion of MS and PAN image data in order to generate high-accuracy land-cover classification 
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maps. In addition, to further refine the classification maps this research applies the fully-connected dense-

CRF inference algorithm as developed by Krähenbühl et al. (2011). This study also investigates the 

potential of using a recurrent network architecture or RNN to incorporate contextual neighbourhood 

information by co-joining two instances of an FCN into an end-to-end block of trainable parametric 

weights. In doing so, the research argues, the FCN-RNN implementation accounts for the spatial auto-

correlation between image pixels and simulates the pairwise compatibility modelling of the CRF inference. 

All classification methodologies proposed herein are compared on the basis of overall classification 

accuracy and the computational cost of their implementation. 

1.2. RESEARCH IDENTIFICATION 

This research work builds on previous efforts to use deep fully convolutional architectures to detect 

informal settlements in VHR remote-sensing images as proposed by Persello and Stein (2017). The 

motivation stems from the tractability of the CNN modelling paradigm to allow for the construction of 

complex non-linear networks that can dynamically downsample and upsample image features within the 

network. The novelty of this research lies in the design and implementation of a FCN that can dynamically 

fuse multi-scale images for generating high-accuracy and large-scale land-cover classification maps. We 

further implement a recurrent network architecture that explicitly incorporates the class-probability scores 

of a FCN as an additional, explicit, input into a second instance of the same network and trains both 

network parameters simultaneously. In doing so, the first network learns class-label and contextual 

dependencies between image pixels via the parameter weights of the convolutional filters and the second 

network uses this additional information to predict higher accuracy classification maps. In this research, 

we have also applied the fully-connected dense-CRF inference, which was originally developed for 

segmenting ground-perspective RGB images for the land-cover classification of large-scale remotely-

sensed images (Krähenbühl & Koltun, 2011). A list of research objectives along with specific research 

questions pertaining to each objective are provided below. 

1.3. RESEARCH OBJECTIVES 

1. Design and train a FCN that dynamically fuses multi-scale (multispectral - MS and panchromatic - 

PAN) VHR remote-sensing images. 

 

2. Design and train a FCN-RNN that concatenates two instances of a FCN, allowing both network 

parameters to be trained simultaneously in an end-to-end block of learnable parametric weights. 

 

3. Apply and assess the ability of fully-connected dense-CRF inference for refining the pixel-label 

classification of non-RGB remote-sensing VHR satellite images (Krähenbühl & Koltun, 2011). 

 

4. Compare classification methodologies based on overall accuracy and computational feasibility.  

 

1.4. RESEARCH QUESTIONS 

Objective 1: 

 How is the dynamic fusion of multi-scale images achieved within the FCN network design? 

What architectural parameters and network training hyper-parameters influence the success of 

applying FCN architectures for image fusion?  
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 What parameters enable the pixel-level classification of VHR remotely-sensed satellite 

imagery? 

Objective 2: 

 How is the FCN-RNN developed? 

 What aspects of the FCN-RNN architecture motivate the comparison with the MRF/CRF 

inference?  

Objective 3: 

 How is the fully-connected dense-CRF implementation applied to the classification problem?  

 What are the relevant inputs and parameters required for specifying the dense-CRF model? 

What is their impact on the classification results? 

Objective 4: 

 What is the difference in classification accuracy between a FCN trained on pan-sharpened 

images and a FCN that dynamically fuses discrete multi-scale images? 

 What is the difference in classification accuracy between FCN+CRF and RNN? 

 What is the difference in computational requirements between the proposed methods? 
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2. LITERATURE REVIEW 

This chapter begins with a literature review of research applications of CNNs for image segmentation and 

image classification and focuses on studies that have used CNNs, MRFs and CRFs particularly for land-

cover classification of VHR remote-sensing satellite images. The following sections present an overview of 

the design and mechanism of CNNs and MRF/CRF models and motivates the need for applying the 

fully-connected dense-CRF inference for refining CNN generated class-probability scores. 

2.1. RELATED WORK 

Convolutional Neural Networks (CNNs) were first conceived and developed for computer vision and 

pattern recognition tasks. One of their first applications was for the automatic recognition of handwritten 

characters (LeCun et al., 1989; Bengio et al., 1998). But after AlexNet (the CNN crafted by Krizshenvsky 

et al.) outperformed all other state-of-the-art classifiers at the ImageNet Large-Scale Visual Recognition 

Challenge (ILSVRC) of 2012, the application of CNNs for image classification and segmentation has 

become more widespread. 

The AlexNet architecture, which was originally conceived for object recognition, consisted of 5 

convolutional and 3 fully connected layers. Other notable design features included: (i) the utilization of the 

‘drop-out’ strategy - to mitigate the tendency of CNNs to over-fit the training data; and (ii) the 

substitution of the sigmoidal nonlinear activation function with the rectified linear unit (or ReLU), which, 

being unsaturated, enables the efficient propagation of gradient descent through the network (Krizhevsky 

et al., 2012). Over the years, numerous studies have introduced prominent modifications with the aim of 

improving computational efficiency and increasing the discriminative power of CNNs. In 2014, Zeiler and 

Fergus demonstrated improved performance by reducing the stride and the receptive field of the first 

convolutional layer of the AlexNet architecture (Zeiler & Fergus, 2014). Soon after, the ‘VGG network’ 

was developed that consisted of 16 convolutional and 3 fully connected layers, illustrating the potential of 

layer depth in crafting more robust and accurate classifiers (Simonyan & Zisserman, 2014). In the same 

year, GoogleNet (also known as SermaNet) upended the traditional stacking of neural layers with its multi-

scale architecture and demonstrated significant improvement in computational efficiency (Szegedy, Liu, 

Jia, & Sermanet, 2014). The following year, Long et al. developed the Fully Convolutional Neural Network 

(FCN) (Long et al., 2015). This was a milestone in overcoming the challenges of the ‘patch-based’ 

classification approach and led to substantial improvements in the overall efficiency of the network 

training procedure. 

It is worth emphasizing that the afore-mentioned CNNs were used for the purpose of RGB-image 

categorization and segmentation. Several studies have, however, already applied CNNs to classify 

remotely-sensed images. In one of its first applications, CNNs were used for detecting vehicles in high 

resolution satellite imagery (Chen, Xiang, Liu, & Pan, 2014). Later, Romero et al. (2015) utilized a sparse 

unsupervised convolutional network for classifying remotely-sensed imagery. Also, Langkvist et al. (2016) 

investigated the effect of multi-scale architectures on land-cover classification accuracy. In the same year, 

Cheng et al. (2016) used CNNs for object detection in very high-resolution remote-sensing images. More 

recently, Maggiori et al. (2017) implemented a two-step FCN training procedure for the land-cover 

classification of large-scale remotely-sensed image data.  

Using CNNs for the purpose of land-cover classification of VHR satellite imagery entails producing dense 

‘pixel-label’ output maps. To this end, a large number of parameters are required to be learned during the 

network training procedure. This represents a significant challenge. In recent years, a number of 
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innovative strategies have been proposed to increase the discriminatory powers of CNNs while reducing 

the overall computational cost of training the network. For instance, Chen et al. (2015) have proposed to 

replace downsampling operations from the last few max-pooling layers with dilated convolutional filter. 

This technique essentially enlarges the receptive field of the convolutional filter without increasing the 

number of its trainable parameters. The receptive field of a convolutional filter determines the portion of 

the image that is linearly transformed using parametric kernel weights. Another approach that is gaining 

tractability is including upsampling ‘deconvolutional’ layers into the network architecture that are capable 

of refining coarse feature representations. To this end, Badrinarayanan et al. (2017) devised a deep 

convolutional encoder-decoder architecture that used the ‘VGG network’ as a base model, but replaced its 

fully-connected layers with a sequence of decoders – one corresponding to each encoder. In this manner, 

each decoder uses max-pooling indices from its matching encoder and maps low-resolution feature 

representations to full input resolutions - thus producing denser, high-resolution classified maps. This 

‘encoder-decoder’ structure effectively eliminates the training required for upsampling coarse resolution 

feature maps. Other works have also investigated the possibility of refining pre-trained networks using 

data augmentation and transfer learning strategies to compensate for the lack of labelled remote-sensing 

data (Nogueira, Penatti, & Jefersson, 2017; Scott et al., 2017) 

In the domains of image classification and image segmentation Markov Random Field (MRF) and its 

variant Conditional Random Field (CRF) have also been extensively applied to refine patchy and non-

homogenous segmentation maps. Extensive work has been done on modelling contextual information 

using Markov Random Fields for predicting land-cover categories using high-resolution satellite imagery 

(Moser & Serpico, 2009; Moser et al., 2013). In other applications, a pairwise CRF inference  has been 

applied to incorporate texture and other contextual information for object-class segmentation (Shotton, 

Winn, & Rother, 2006). Hierarchical CRF modelling has also been used for object class segmentation 

(Ladicky, Russell, Kohli, & Torr, 2009). CRF modelling has also been used for detecting built-up area in 

optical and synthetic aperture radar images (Kenduiywo, Tolpekin, & Stein, 2014). More recent studies 

have combined the Bayesian framework of CRF modelling with the automatic feature learning capacities 

of CNNs for semantic labelling of aerial and satellite images (Paisitkriangkrai, Sherrah, Janney, & Hengel, 

2016). Other closely related works have also used dilated convolutional filters for processing multi-scale 

images and further applied CRF modelling to refine class-region boundaries (L. Chen et al., 2015; Fu et al., 

2017). 

In the next sections, we briefly describe the mathematical and theoretical foundations of CNNs and 

MRF/CRF model(s) as applied for land-cover classification of VHR remote-sensing images. 
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2.2. A BRIEF OVERVIEW OF CONVOLUTIONAL NEURAL NETWORKS 

In machine learning, artificial neural networks or ANNs consist of a system of interconnected neurons 

such that each neuron takes an input vector 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑑} and performs a dot-product operation 

with a vector of weights 𝐰 = {𝑤1, 𝑤2, … , 𝑤𝑑}. Here 𝑑 is the number of inputs to the given neuron. A 

bias term 𝑏 is appended to this product and the output is thereafter passed through an activation function. 

Figure 1 depicts a schematic representation of an artificial neuron. A mathematical definition of a neuron 

layer is given as follows:  

𝑌 =  σ(𝐰 ⋅ 𝐱 + 𝑏) 

 

(1) 

In Equation (1), σ is called the activation function. A vector of weights, along with the bias term constitute 

the parameters controlling the value of output Y.  

 

 

 

 

 

 

 

 

 

 

 

When these neurons are arranged in a linear sequence of processing layers they are said to form a linearly-

connected ANN as shown in Figure 2. When network layers are linked in a non-linear sequence, where 

inputs can be shared by multiple layers, the network is said to have a skip-layer architecture (Fu et al., 

2017). 

 

 

 

 

 

  

Figure 1: Schematic Representation of an ANN-Neuron 

Figure 2: Schematic Representation of a Linearly Connected ANN 
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In the domain of image classification, the artificial neuron is modelled in the form of a convolutional layer 

that convolves the input image using kernel weights, the neural network is referred to as a CNN. Each 

layer of the CNN sequentially implements convolution, non-linear activation and region-based pooling on 

the input image patch. A deep CNN can be crafted by stacking many such CNN layers, such that low-

level features are combined with features that display a higher level of abstraction (Längkvist et al., 2016). 

To represent the CNN mathematically, it can be understood as a function g mapping image-data 𝐱 to an 

output vector 𝐲 of class-label predictions. Let this be defined as follows: 

𝐲 = g(𝐱) (2) 

In Equation (2), the image data 𝐱 has a 4-dimensional structure such that 𝐱 ∈  ℝ𝐻×𝑊×𝐹×𝑁. Here 𝐻,𝑊 

and 𝐹 represent the height, width and the number of feature channels in the input image while 𝑁 

represents the number of such 3-dimensional tensors that together make up the contents of a single input 

batch. The output vector 𝐲 ∈  ℝ𝐜, assuming that we have 𝐶 user-defined land-cover classes. The 

function g is the composition of a sequence of functions, such that  g =  f1° ⋯ °fL. Here 𝐿 signifies the 

number of layers in the network and 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐋 represent the outputs of each network layer 

respectively. Meanwhile 𝐱𝟎 denotes the network input. Each intermediate output 𝐱𝐋 is found by applying 

the function fL with paramters 𝐰𝐋 on the output of the previous layer 𝐱𝐋−𝟏 such that: 

𝐱𝐋 =  fL(𝐱𝐋−𝟏;  𝐰𝐋) (3) 

The aim of training a CNN is to optimize the values of the weights and biases so that the overall loss 

between the predicted and the ground truth labels is minimized. The loss function ℓ quantifies the error in 

classification and is defined as follows: 

ℓ(𝐲, 𝐜) =  ∑ ℓ(𝑦𝑖, 𝑐𝑖)

𝑁

𝑖=1

 (4) 

In Equation (4), 𝐲 ∈  ℝ𝐻×𝑊×𝐶×𝑁 and 𝐜 ∈ ℤ𝐻×𝑊×1×𝑁. Here, 𝑁 corresponds with the number of discrete 

pixels across all input patches for which there exists a corresponding ground reference label. 

Consequently, 𝑦𝑖 represents a vector of 𝐶 class-probability scores for all pixels of the input image batch. 

Similarly, 𝑐𝑖 represents a vector of ground reference labels. One of the most frequently used loss functions 

is the softmax log-loss which is defined as follows: 

ℓ(x, c) =  −𝑥𝑐 + log (∑ 𝑒𝑥𝑘

C

k=1

) (5) 
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Once the loss function has been specified, the learning of the weights happens by computing the partial 

derivatives of the cumulative loss with respect to each parameter weight and by recursively propagating 

the gradient backwards through the network using the chain rule. A user-specified learning rate 𝜆 

determines the proportion of the gradient loss to be used in adjusting the weights. This weight update 

procedure is represented as follows: 

𝑤𝑖 ←  𝑤𝑖 + 𝜆
∂ℓ

∂wi
 (6) 

W now briefly describe the salient constitutive elements of a CNN, and their functionality with respect to 

the image classification procedure.  

Convolutions: A convolutional layer in a CNN consists of a square shaped filter of size 𝑀 ×  𝑀 with 

learnable parameter weights 𝒘. Each filter is applied by sliding it over the input image, implementing a 

dot-product operation between corresponding filter weights and image spectral values. The repeated 

application of this procedure generates unique values for the output feature map (at the spatial coordinates 

found at the centre of the filter application). Eventually, a learned bias term is appended to each feature 

map as well. For instance, to generate 𝐾’ feature maps from a 𝐾 dimensional input image would require 

((𝑀 ×  𝑀 ×  𝐾’)  +  𝐾’) number of learnable parameters in the convolutional layer. The size of the 

output feature map is determined by two other factors, namely: stride and padding. Stride is the interval 

difference between successive filter applications as it slides over the input image, while padding controls 

the number of 0 valued rows and columns appended to the borders of the input image (Volpi & Tuia, 

2017). Dilation, on the other hand, allows convolutional filters to effectively increase the size of their 

receptive fields without increasing the number of its learnable parameters. This is implemented by 

inserting zeros between the weighted elements of a convolutional filter. Thus, a dilation factor of 𝑑 

applied to a filter of size 𝑀, effectively increases its kernel size to 𝑑 × (𝑀 − 1) + 1 (Vedaldi & Lenc, 

2014). 

Non-Linear Activations: The neural network community has, over the years, experimented with various 

forms of non-linear activation functions. Examples of saturating non-linear activation functions include 

the exponential and the hyperbolic tangent. The drawback of using these activation functions is that their 

gradients tend to zero when the input magnitude is large leading to negligibly small updates to the weight 

associated with each parameter (Volpi & Tuia, 2017). This is popularly termed as the ‘vanishing gradient’ 

problem and it slows down the training of the network. On the other hand, non-saturating activation 

functions like the Rectified Linear Unit (ReLU) train several times faster as they are not susceptible to the 

problem of vanishing gradients (Krizhevsky et al., 2012). In recent years, a variant of the ReLU called the 

‘Leaky ReLU’ has been readily adopted as it allows for gradient propagation in neurons that would, in 

other circumstances, be considered ‘dead’ or ‘deactivated.’ 

Maximum or Average Pooling: This layer within the neural network has the function of aggregating the 

input signal information over user-defined window sizes. The two standard pooling strategies include 

maximum and average pooling. While the former returns the maximum value from amongst the input 

cells, the latter returns the average of the input values. The use of this layer makes the CNN more robust 

in allowing the network to recognize objects independently of their spatial location within the input image 

(Volpi & Tuia, 2017). 
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Dropout: This is now a widely applied technique to mitigate overfitting of neurons within the network. It 

involves coercing the output of a neuron to zero and, by doing so, preventing neurons in a particular layer 

from becoming co-dependent on each other (also referred to as co-adaption). The use of the  dropout 

layer within the network significantly increases the convergence time of a neural network (Krizhevsky et 

al., 2012). However, it also results in making the network more robust to input variance and increases the 

generalization capability of the trained model (Volpi & Tuia, 2017). 

2.3. A BRIEF OVERVIEW OF MARKOV AND CONDITIONAL RANDOM FIELDS 

Markov Random Field (MRF) and its variant Conditional Random Field (CRF) are a class of probabilistic 

graphical models that have found wide application in the fields of image restoration and image 

classification (Li, 2009). The efficacy of MRF/CRF models is predicated on their ability to incorporate 

contextual information as a linear combination of pairwise energy potentials (Moser et al., 2013). This 

encourages class label agreement between spectrally similar valued pixels, resulting in a smooth and 

homogenous segmentation/classification output. While MRF models the spatial dependency considering 

only class labels, the CRF takes into account both class labels and spectral values (Li, 2009). 

A formal definition of a MRF is as follows: 

Let a set of random variables 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑚} be defined on the set I containing 𝑚 sites in which each 

random variable 𝑦𝑖  (1 ≤ 𝑖 ≤ 𝑚) takes a label from set L. The family 𝑓, in such a case, is called a random 

field. In the context of an image classification task, 𝑓 is equivalent to the set of pixel DN values. I is 

equivalent to an image containing 𝑚 pixels; and the label set L corresponds to the user-defined set of 

semantic (land-cover) classes, e.g., L = {water, built-up, impervious surface, etc.). 

For a given pixel-label configuration 𝑟 (where 𝑟 ∈ I and 𝑟𝑖 ∈ L) to be a MRF, the probability density 

function applied at all locations 𝑚 should satisfy the following properties: 

• Positivity: 𝑃(𝑟𝑖)  >  0 for all sites 𝑖 

• Markovianity: 𝑃(𝑟𝑖| 𝑟𝑚−𝑖) =  𝑃(𝑟𝑖| 𝑟𝑁𝑖
) 

• Homogeneity: 𝑃(𝑟𝑖| 𝑟𝑁𝑖
) is the same for all sites 𝑖 

Here, 𝑚 − 𝑖 indicates the set difference (i.e. set of all pixels excluding 𝑖). 𝑟𝑚−𝑖 denotes the set of labels at 

sites in set 𝑚 − 𝑖 and 𝑁𝒊 denotes the set of neighbours of pixel 𝑖 (Tso & Mather, 2009). 

A global optimization for the arrangement of pixel-labels is provided by the Gibbs Random Field (GRF) 

probability distribution and is defined as following: 

𝑃(𝑟) =  
1

𝑍
exp [−

𝑈(𝑟)

𝑇
] (7) 

In Equation (7), 𝑈(𝑟) is called an energy function that is defined locally in a constrained neighbourhood 

or random field. Also 𝑇 is a constant, referred to as temperature. 𝑍 is normalizing factor also referred to as 

a partition function and is defined as the sum of all possible pixel-label configurations. 

While an MRF models the local dependencies of a given pixel within a specified image region (or 

quantization level), the GRF describes the global properties of an image in terms of the joint distribution 
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of classes for all pixels (Tso & Mather, 2009). Given the constraints specified by the Gibbs probability 

distribution in Equation (7), it can be argued that maximizing 𝑃(𝑟) is equivalent to minimizing the energy 

function 𝑈(𝑟), which is defined as following: 

𝑈(𝑟) = ∑ 𝑉𝑐(𝑟)

c ∈C

 (8) 

In Equation (8), clique 𝐶 is a collection of all possible cliques such that 𝑪 = 𝑪𝟏 ∪ 𝑪𝟐 ∪  𝑪𝟑 ∪ …, and 

𝑉𝑐(𝑟) is called the potential function defined for clique type 𝑐. Consequently, clique 𝐶 is a subset of 𝑁𝑖 

comprising of adjacent or nearby pixels that specify the neighbourhood of pixel 𝑖. This can be a single site, 

or a neighbouring pair, or even a more complex arrangement of neighbouring pixels, as shown in Figure 3. 

The most general form of the energy function, most readily deployed for image classification tasks, and 

based upon the pairwise clique potential function, is usually defined as follows: 

𝑈(𝑟) =  ∑ 𝑉1(𝑟𝑖)

i∈I,{i}∈𝐂𝟏

+  ∑ 𝑉1(𝑟𝑖, 𝑟𝑖′)

i∈I,{i,i′}∈𝐂𝟐

 (9) 

In Equation (9), the energy function is expressed as a linear combination of two components. The first 

component can be understood as the unary energy or the class-likelihood of a given pixel. The second 

component, however, accounts for the spatial context of each pixel, and is computed by testing the label 

compatibility of a given pixel with all other pixels in its clique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Equation (9) and Figure 3, one can see that as the clique-size increases and accommodates a higher 

order of neighbourhood pixels, the computation of the pairwise potential becomes increasingly complex. 

This context illuminates the significance of the fully-connected dense-CRF inference algorithm as 

proposed by Krähenbühl and Koltun (2011).  

Figure 3: 1st and 2nd order neighbourhood clique arrangements 
 Source: Li (2009) 
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The mean-field approximation to the fully-connected dense-CRF inference replaces the coventionally used 

posterior distribution 𝑃(𝑥) with a distribution 𝑄(𝑥) that is defined as a product of independent marginal 

distributions 𝑄𝑖(𝑥𝑖) over all random variables – pixels – of the input image. Krähenbühl and Koltun 

(2011) define 𝑄𝑖(𝑥𝑖) by the following Gibbs energy distribution: 

𝑄𝑖 =
1

Zi
⋅ exp {− ψu(xi) − (∑ μ(l, l′) ∑ w(m) ∑ k(m)(𝐟i, 𝐟j)Qj(l′) 

j≠i

K

m=1l′∈L

)} (10) 

In Equation (10), ψu refers to the unary potential energy of pixel 𝑥𝑖. This is the likelihood of pixel 𝑥𝑖 to 

belong to class-label 𝑙. Further, w(m) are linear combination weights where 𝑚 - an index that goes from 1 

to 𝐾 – reflects the number of dimensions of the input image (in our case, 𝐾 = 3). Also, μ is a label 

compatibility function, commonly referred to as the Potts model. The pairwise energy potential is 

formulated by aggregating the label compatibility function over all-other class-labels 𝑙′, across all 

dimensions of the input image, and for every pixel 𝑗 in the neighbourhood of 𝑖 captured by the Gaussian 

kernels. Finally, k(𝐟i, 𝐟j) is expressed as a linear combination of two Gaussian kernels and is defined as 

follows: 

k(𝐟i, 𝐟j) = 𝑤(1) ⋅ exp (−
|𝐩i −  𝐩j|

2

2𝜃𝛼
2  −  

|𝐈i −  𝐈j|
2

2𝜃𝛽
2 ) + 𝑤(2) ⋅ exp (−

|𝐩i −  𝐩j|
2

2𝜃𝛾
2 ) (11) 

In Equation (11), feature vector 𝐟 is expressed as a concatenation of vectors 𝐩 and 𝐈 such that 𝐟 = 𝐩||𝐈. 

Here, 𝐩𝑖 and 𝐩j are the position vectors and 𝐈i and 𝐈j are spectral DN-value vectors for pixels 𝑖 and 𝑗 

respectively. The parameters 𝜃𝛼, 𝜃𝛽 and 𝜃𝛾 are equivalent to measures of variance that control the 

effective size of the Gaussian kernels. Further, 𝑤(1) and 𝑤(2) are weight measures that determine the 

proportion of influence that each kernel has in the computation of the pairwise potential. For effectively 

applying the dense-CRF inference we need to optimize for the value of these parameters. This process has 

been described in Section 3.3. 
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3. METHODOLOGY 

This chapter is structured to begin with a description of the method used to train and refine the 

architectural design and the network training hyper-parameters of the SimpleNet and the FuseNet 

networks. Thereafter, we describe the process of optimizing the kernel parameters of the mean-field 

approximation to the dense-CRF inference algorithm. Finally, we present the method used to train and 

reconfigure the ReUseNet. 

In summary, the methodology highlights the flexibility of CNN architectures that allows them to simulate 

common image enhancement procedures within its trainable block of parametric weights. In particular, we 

assess their ability to: (i) dynamically fuse multi-scale images for land-cover classification, and (ii) capture 

contextual information via the learned convolutional filter weights when implemented in the form of a 

recurring neural network. In such a RNN, two instances of the same FCN (FuseNet) are joined in a 

manner where the contextual information captured via the learned convolutional filter weights (of 

FuseNet1) are explicitly incorporated as an additional input into the succeeding (independently initialized) 

instance  of the FCN (FuseNet2). In this manner the ReUseNet can be considered similar to the 

MRF/CRF models. 

In order to meet the research objectives we first designed and fine-tuned the architectural parameters and 

the network training hyper-parameters of the following two CNN architectures:  

1. SimpleNet - a FCN design in which the network layers are linearly connected to one another – 

with the output of the first layer being used as an input to the second layer and so on. In this 

network the dimensions of the input-image is not altered as the patch is processed through 

the network. The SimpleNet is trained on images that were pan-sharpened using the Gram-

Schmidt’s spectral sharpening technique. The experimental method used to determine the 

design and parameter configuration for SimpleNet is described in Section 3.1. Once the 

SimpleNet design is fixed we train it on two different pan-sharpened image databases for 

generating the final classification results. These consist of (i) 4000 patch samples per training 

images (pan-sharpened using the Gram-Schmidt spectral sharpening technique) and (ii) 2000 

patch samples per training image (pan-sharpened using the Subtractive Resolution Merge 

technique).  

2. FuseNet – a FCN that takes as input discrete sets of MS and PAN image blocks. This 

network uses a skip-architecture and employs convolutional and de-convolutional operations 

to dynamically fuse multi-scale data in order to generate land-cover classification maps at the 

PAN resolution. The experimental method used to determine the design and parameter 

configuration of the FuseNet is described in Section 3.2. For the final classification results, in 

order to draw a meaningful comparison with the SimpleNet case, the final FuseNet design is 

also trained on two different image databases, comprising of 4000 and 2000 samples each 

collected randomly from both the MS and PAN training image sets.  

In addition, the mean-field approximation to the fully-connected dense-CRF inference (DCRF) is 

applied to further refine the accuracy of the land-cover classification maps (Krähenbühl & Koltun, 2011). 

The method for optimizing the five pairwise potential kernel parameters is described in Section 3.3.  

Finally the ReUseNet (RNN) is designed and trained. For this, two instances of a FCN (FuseNet) are 

joined such that the class-probability scores of the first FCN are concatenated with the raw input to the 

succeeding instance of the same network. The ReUseNet, in this manner, implements a recurring network 
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architecture that enables the combined FCN structure to simultaneously train two instances of the same 

network in an end-to-end trainable block of parametric weights. The experimental method for formalizing 

the parametric design of the ReUseNet is described in Section 3.4. A sensitivity analysis of the FCN and 

dense-CRF parameters is provided in Chapter 5. The final classification results for all methods are 

presented in Chapter 6. A flowchart depicting the methodology is presented in Figure 4. 

 

 

Figure 4: Research Methodology Flowchart 
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3.1. TRAINING AND CONFIGURING – SIMPLENET (SNN) 

The method to refine the SimpleNet design involves the iterative re-configuration of its architectural 

elements and network training hyper-parameters. For this we utilized a training image database consisting 

of 2000 samples of image-patches of size 65 × 65 × 4. These were collected randomly from the set of 

training images that were pan-sharpened using the Gram-Schmidt spectral sharpening technique. A 

summary of the spatial and spectral characteristics of the dataset and the experimental layout of the 

training, validation and test tiles is provided in detail in Chapter 4. Figure 5 shows a graphical 

representation of the baseline network architecture that was used as a reference in order to methodically 

assess the sensitivity of the network to incremental changes in hyper-parameter values. 

The baseline network consists of four convolution layers, each followed by a data normalization layer and 

a leaky ReLU layer. The first layer of 32 convolution filters has a kernel size of 3 × 3 and a dilation factor 

of 1 (default). The following two layers comprise of 64 convolution filters each. Their kernel sizes are 

3 × 3  and 5 × 5  respectively, with a dilation factor of 2. The final layer consists of 32 convolution filters 

with a kernel size of 5 × 5  with a dilation factor of 3. The last convolutional layer has an added max-

pooling layer with window-size 3 × 3. In addition, a dropout layer (with probability 0.5) was used before 

classifying the output. A complete list of hyper-parameter values used in the baseline experiment is 

presented in Table 1. Further, all experiments were carried out using two different learning rates with each 

training step lasting for 100 epochs each. 

Table 1: Baseline Architecture and Hyper-Parameter Values 

Hyper-Parameter
a
 Value(s) 

Layers I-C1-B1-A-C2-B2-A-C3-B3-A-C4-B4-A-MP4-D1-O 

Patch Size 45 

Kernel Depth 32, 64, 64, 32 

Kernel Size (Dilation) 3(1), 3(2), 5(2), 5(3) 

Pooling Size NA, NA, NA, 3 

Learning Rate 10−5, 10−6 

Weight Decay 5 × 10−4 

Momentum 0.9 

Number of Epochs 100, 100 

a Layer Notation: I = Input, C = Convolution, B = Batch Normalization, A = ReLU Activation (Leak 

Rate = 0.1), MP = Max-Pooling, D = Dropout (Rate = 0.5), O = Output. The network parameters were 
initialized using the normalization technique (Glorot & Bengio, 2010). The convolution and pooling 
strides was set to 1. A fixed mini-batch size of 32 was used in all experiments. 

Figure 5: Schematic Representation for the Baseline FCN Architecture 
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The method to optimize the SimpleNet design is divided into three steps. We first investigate the effect of 

varying the patch-size of the input training image. Further we also assess the effect of altering the depth of 

the network. In Table 2 each row represents a modification to the specified parameter value as compared 

with the baseline state described in Table 1. 

Table 2: SimpleNet Experiments – Patch Size and Layer-Depth 

Modified Parameter
a
 Value(s) 

Patch Size 65 

Patch Size 85 

Patch Size 125 
Layer Depth 
(Removing) 

I-C1-B1-A-C2-B2-A-C3-B3-A-MP3-D1-O 

Layer Depth 
(Adding) 

I-C1-B1-A-C2-B2-A-C3-B3-A-C4-B4-A-C5-B5-A-MP5-D1-O 

a Layer Notation: I = Input, C = Convolution, B = Batch Normalization, A = ReLU Activation (Leak 

Rate = 0.1), MP = Max-Pooling, D = Dropout (Rate = 0.5), O = Output. The network parameters were 

initialized using the normalization technique (Glorot & Bengio, 2010). The convolution and pooling 

strides was set to 1. A fixed mini-batch size of 32 was used in all experiments. 

 

Subsequently, we focused on optimizing the architectural parameters of the SimpleNet. To this end, we 

experimented with the effect of including additional max-pooling layers into the baseline network 

architecture. We also investigated the effect of increasing the number of filters per convolutional layer and 

tested different kernel sizes with varying dilation factors. The list of parameter configurations that were 

iteratively modified in order to refine the SimpleNet architecture are presented in Table 3. 

Table 3: SimpleNet Experiments – Architectural Parameters 

Modified Architectural 

Parameter
a
 

Value(s) 

Layers (Adding MP3) I-C1-B1-A-C2-B2-A-C3-B3-A-MP3-C4-B4-A-MP4-D1-O 

Layers (Adding MP2/3) I-C1-B1-A-C2-B2-A-MP2-C3-B3-A-MP3-C4-B4-A-MP4-D1-O 

Layers (Adding MP1/2 

/3) 

I-C1-B1-A-MP1-C2-B2-A-MP2-C3-B3-A-MP3-C4-B4-A-MP4-D1-O 

Kernel Depth 32, 32, 32, 32 

Kernel Depth 64, 64, 64, 64 

Kernel Size (Dilation) 3(1), 3(1), 3(1), 3(1) 

Kernel Size (Dilation) 3(1), 3(1), 3(2), 3(2) 

Kernel Size (Dilation) 3(1), 3(1), 5(2), 5(2) 

Kernel Size (Dilation) 3(1), 5(1), 3(2), 5(2)  

Kernel Size (Dilation) 3(1), 5(1), 5(2), 5(3) 

Kernel Size (Dilation) 3(1), 3(2), 3(2), 5(2) 

Kernel Size (Dilation) 3(1), 3(2), 5(2), 5(2) 

Kernel Size (Dilation) 5(1), 3(2), 5(2), 5(3) 

Pooling Size 3,3,3,3 

Pooling Size 5,5,5,5 
a 

Layer Notation: I = Input, C = Convolution, B = Batch Normalization, A = ReLU Activation (Leak Rate 

= 0.1), MP = Max-Pooling, D = Dropout (Rate = 0.5), O = Output. The network parameters were 

initialized using the normalization technique (Glorot & Bengio, 2010). The convolution and pooling strides 

was set to 1. A fixed mini-batch size of 32 was used in all experiments. 
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Finally, we also varied the hyper-parameters that collectively determine the procedure for training the 

network. These include the number of training epochs, the learning rate and the proportion of ‘decay’ for 

each weight update. Table 4 provides a list of the hyper-parameter value combinations that were explored 

in order to locate a set of parameter configurations that would optimize the performance of the 

SimpleNet. 

Table 4: SimpleNet Experiments – Training Epochs, Learning Rate & Weight Decay 

Modified Hyper-Parameter Value(s) 

Learning Rate (10−3, 10−4), (10−4, 10−5), (10−6, 10−7) 

Weight Decay 10−4 

Weight Decay 10−3 

Number of Epochs 200, 200 

 

In this manner, the SimpleNet design was incrementally refined. A schematic representation of the final 

SimpleNet architecture is shown in Figure 6. 

This SimpleNet architecture shown in Figure 6 is finally trained on two different training image databases 

for generating the final classification results. In the first case, we train the SimpleNet using 4000 samples 

of image-patches of size 45 × 45 × 4 collected from each of the three training tiles that were pan-

sharpened using the Gram-Schmidt spectral sharpening technique. In the second case, the SimpleNet is 

trained using 2000 samples collected randomly from the set of images that were pan-sharpened using the 

Subtractive Resolution Merge technique. The final SimpleNet is trained using two different learning rates 

10−5 and 10−6, with each training step lasting for 100 epochs each. The value for the weight decay 

parameter is held constant at 5 ×  10−4. The final classification results are presented in Chapter 6. 

  

Figure 6: Schematic Representation of the Optimized Simple Neural Network Architecture 
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3.2. TRAINING AND CONFIGURING - FUSENET 

The FuseNet is designed to determine an optimal FCN architecture that can dynamically fuse multi-scale 

remote-sensing images for generating high-accuracy land-cover classification maps. To reiterate, the 

objective of designing the FuseNet is to draw a comparison with the classification performance of the 

SimpleNet model that is trained using a set of pan-sharpened images.  

In order to refine the FuseNet architecture and its network hyper-parameters a training image database is 

created that comprises of 2000 random samples taken from 3 × 2 (MS, PAN) tiles each. These image-

patches were collected in the following patch-size combinations [(32 × 32), (128 × 128)] from the sets 

of MS and PAN input images respectively. The salient blocks of the FuseNet architecture (presented in 

the sequence as processed within the network) are as follows: 

1. The Downsampling Block (DS): in this block the input PAN image is downsampled to match 

the dimensions of the MS input image. Experiments investigate the step-wise implementation 

of the downsampling procedure (so for example, downsampling by a factor of two + 

downsapling by a factor of two vs. downsampling by a factor of four).  

2. Concatenation Layer (CNCT): Concatenates the downsampled PAN features and the MS 

feature input along the third dimension.  

3. Bottleneck (BN): A block of convolutional layers sharing and successively transforming 

feature representations with a string of 3 × 3 and 5 × 5 filters with varying factors of 

dilation. The features, at this point within the network, are their smallest size (usually 

downsampled four times or even 16 times from the input patch sizes of 32 × 32 or 128 ×

128) after which they are upsampled to make final class-label predictions. 

4. Upsampling Block (US): Deconvolution filters with adjustable parameters are trained to 

upsample image features within the FCN. Similar to the downsampling block the effect of 

step-wise up-scaling of the image was investigated for this block. 

A graphical representation of the FuseNet architecture is given below in Figure 7. 

 

 

 

 

 

 

 

 

 

  

Figure 7: FuseNet Architecture 
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Additionally, we also investigated the effects of enhancing the number of features (for example, increasing 

4 MS features to 16) of the input MS image (FEMS). For this, we apply unit-filter single-stride 

convolutions to multiply the input features and generate fully-connected representations at the same input 

dimensions. These investigations were motivated by the observation that the volume of the concatenated 

spatio-spectral information (both downsampled PAN and input MS features), should be in relative 

proportion to their occurrence in the raw-data representations. The FuseNet architectural design (shown 

in Figure 7) specifies the order of the experimental method as presented below. The method employed to 

refine the architecture and parameter configuration of the FuseNet model involved incrementally 

optimizing the parameters block-by-block.  

Table 5 summarizes the method to refine the structure of the DS, FEMS and BN blocks. Here we 

determine whether the FuseNet architecture is more amenable to downsampling in one step or two steps, 

the worth of increasing the number of features of the MS input patch and the ideal arrangement of 

convolutional blocks within the bottleneck layer. For this the size of the smallest feature within the 

network is maintained at 32x32. Here the notation [D,P,S] – shown in the tables below as a part of each 

convolutional filter block – indicates the factors for dilation, padding and stride associated with the every 

convolutional layer. 

Table 5: FuseNet Experiments - DS, FEMS & BN Blocks (for feature size = 32) 

Fuse
Net 

Block 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US 

 
CNCT 

1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

DS 1 step 
[4x4] 

3x3 (32) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

2 step 
[2x2, 2x2] 

3x3 (32) 
[1,1,1] 

 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

 

FEMS  - 3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

- 3x3 (32) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

- NA/Raw 
(4) 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

 

BN 
(32) 

- - 3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 (6) 

- - 3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

4x4 (6) 

- - 3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 (6) 

- - 3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

3x3 (64) 
[2,2,1] 

4x4 (6) 

- - 3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 (6) 

- - 5x5 (64) 
[1,2,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 (6) 

LR(Epochs): 10−4(80), 10−5(40); Weight Decay: 5  × 10−4 
[D,P,S] = [Dilation, Pad, Stride] 
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Next, we investigate the effects of including an additional downsampling step (DS1) (post-concatenation 
of MS and PAN features) into the network design. The size of the smallest feature in the bottleneck, 
consequently, becomes equal to 16x16. The different architectural arrangements for the network in this 
case are summarized in Table 6. 

Table 6: FuseNet Experiments - BN (smallest feature size = 16) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

DS1 
[D,P,S] 

BN US 

 
CNCT 

1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

- 4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

- 4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

LR(Epochs): 10−4(80), 10−5(40); Weight Decay: 5  × 10−4 
[D,P,S] = [Dilation, Pad, Stride] 

 

Thereafter, we investigate the inclusion of another downsampling step (DS2) into the network. This 

reduces the size of the smallest feature within the network to 8x8. These different architectural 

configurations are listed in Table 7. 

Table 7: Experiments - BN (smallest feature size = 8) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

DS1 
[D,P,S] 

DS2 
[D,P,S] 

BN US 

 
CNCT 

1st Cnv 
[D,P,S] 

2nd Cnv  
[D,P,S] 

- - 3x3 (64) 
[1,1,2] 

 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

- - 3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

LR(Epochs): 10−4(80), 10−5(40); Weight Decay: 5  × 10−4 
[D,P,S] = [Dilation, Pad, Stride] 

 

Similar to the investigations made on the downsampling or DS block (Table 5), we intend to ascertain the 

effect of step-wise upsampling on the accuracy of the obtained land-cover classification maps. The 

combination of upsampling strategies explored for the US block are listed in Table 8. 
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Table 8: FuseNet Experiments – US 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US 

 
CNCT 

1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

- - - - - 1 step 
[4x4] 

- - - - - 2 step 
 [2x2, 2x2] 

Upsampling Experiments (with size of smallest feature = 8) 

- - - - - 4 Step 
[2x2; 2x2; 
2x2; 2x2] 

- - - - - 2 step 
 [4x4, 4x4] 

LR(Epochs): 10−4(80), 10−5(40); Weight Decay: 5  × 10−4 
[D,P,S] = [Dilation, Pad, Stride] 

 
Finally, we also investigate: (i) the effect of including another loss function into the network (at the point 
in the network, post the BN block, when the size of the feature map becomes equal to the size of the 
multispectral training input) and (ii) the appropriate learning rate for the network. In this manner, 
proceeding block-by-block, we refine the architecture and the network training hyper-parameters of the 
FuseNet. Table 9 shows the best parameter configuration for each block that together defines the final 
FuseNet architecture. 

Table 9: FuseNet Architecture 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US 

 
CNCT 

1st Cnv 
[D,P,S] 

2nd Cnv [D,P,S] 3rd Cnv [D,P,S] 

3x3 (16) [1,1,2] 
 

3x3 (32) [1,1,2] 

3x3 (16) [1,1,1] 
 

[32+16 = 48 
feat.] 

3x3 (64) [1,1,1] 5x5 (64) [1,2,1] 3x3 (64) [2,2,1] 4x4 (6) 

 

The FuseNet model specified in Table 9 is finally trained using two different image databases for 

generating the final classification results. For the first set of results, we use an image database consisting of 

4000 samples of training patch-sizes 32x32x4 and 128x128x1 collected from each of the three training tiles 

from the sets of MS and PAN images respectively. In the second case, we use an image database of 2000 

samples collected from each of the three training tiles from the sets of MS and PAN images respectively. 

Both networks are trained using two different learning rates, 10−4 and 10−5, with each training step 

lasting for 100 epochs each. The value for the weight decay parameter is held constant at 5 ×  10−4. The 

trained network is used to predict classification maps for Tile 32 and Tile 103 respectively. The final 

classification results are presented in Chapter 6. 
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3.3. DENSE-CRF – PARAMETER OPTIMIZATION 

The mean-field approximation to the fully-connected dense-CRF inference reformulates the pairwise 

energy potential as a linear combination of two Gaussian kernels (see Equation (11) in Section 3.3). 

This two kernel formulation yields five model parameters: 𝜃𝛼, 𝜃𝛽, 𝑤(1), 𝜃𝛾 and 𝑤(2). The first kernel 

accommodates both spatial and spectral differences between pixels 𝑖 and 𝑗. The parameters  𝜃𝛼 and 𝜃𝛽 

control the ‘width’ of the kernel - effectively filtering an acceptable deviation of values. Here 𝑤(1) controls 

the proportion of the kernel weight. The second kernel, on the other hand, only takes into account the 

spatial position of pixel-labels and its variance is controlled by parameter 𝜃𝛾 while 𝑤(2) has the same 

interpretation as its first-kernel counterpart. The implementation of the algorithm requires two inputs 

from the user: (i) raw image with spectral DN values and (ii) class-probability scores generated using the 

SimpleNet of Section 3.1. Both data are rescaled to an 8-bit radiometric resolution prior to being used in 

the model. In addition, an epsilon value is added to the rescaled class-probability scores in order to meet 

the positivity criterion for defining a Markov Random Field mentioned in Section 2.3. 

To optimize the kernel parameters we recursively narrowed the search range for each parameter. In this 

we were guided by relevant academic literature, especially the suggestion of maintaining parameter value 

𝜃𝛾 = 1 (Krähenbühl & Koltun, 2011). The parameter search space for the first batch of experiments (in 

total 144 per validation tile) to optimize the dense-CRF inference is shown in Table 10.  

Table 10: Dense-CRF - Batch 1 Experiments 

DCRF  

Parameters 

Initial Parameter 

Search Ranges 

Number of  

Experiments 

w(1) 1,3,10,15,30,50 24 

θα 1,3 72 

θβ 1,5,10,15 36 

θγ 1 144 

w(2) 10−4, 10−2, 1 48 

 

For the next batch of experiments, we target one parameter at a time - only changing its value while 

holding all other parameters constant at the following default values: 𝑤(1) = 50, 𝜃𝛼 = 3, 𝜃𝛽 = 10, 

𝑤(2) = 0.01 and 𝜃𝛾 = 1. By readjusting the parameter search ranges to centre on these newly identified 

intervals we recursively optimize the classification performance of the dense-CRF model.  

Table 11 summarizes the second batch of experiments. Here, we simultaneously tested configurations for 

parameters 𝜃𝛼 and 𝜃𝛽 (a total of 32 experiments). Additionally, lengthier search ranges were tested for 

parameters 𝑤(1), 𝑤(2) and 𝜃𝛾 as well. Experiments where two variables were tested simultaneously are 

indicated with a × - implying all combinations between the sets of parameter values.  

Table 11: Dense-CRF - Batch 2 Experiments 

DCRF Parameters Value(s) Number of 

Experiments 

θα × θβ (3,5,7) × (4,6,10,15) 12 

θα × θβ (4,5,6,7) × (3,4,5,6,7) 20 

 

θγ 1,3,5,7,9 5 

θγ ×  w(2) (1,3,5) × (1,5,20) 9 

w(1) 1,10,20,50,80,100,150,200,500,1000 10 
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Upon analysing the experimental results, we pick parameter configurations that are stable and consistently 

high-performing across both validation tiles. Once the parameter values are fixed we applied the dense-

CRF inference on the SimpleNet generated classification scores. The classification results as observed on 

Tile 32 and Tile 103 are presented in Chapter 6. 

3.4. TRAINING AND CONFIGURING – REUSENET 

The motivation for designing the ReUseNet was to simulate the underlying mechanism of MRF/CRF 

models that apply context-sensitive label-similarity statistical modelling to refine land-cover classification 

maps. This research posits that the RNN structure explicitly incorporates pixel-context information, via 

the functionality of the receptive fields of convolutional filters. Receptive fields specify the portion of the 

input feature image that is encoded via convolutional filter weights to produce a singular output for the 

subsequent feature map. As the filter slides over the input image, or feature map, depending on its 

receptive field, it captures and compresses neighbourhood spectral information around a given pixel into a 

single cell value for the subsequent feature map. The training of these cascading filter weights is what 

determines the final classification scores. In Figure 8 a simple graphical representation of the ReUseNet 

architecture is shown. The architecture of the ReUseNet consists of two instances of the FuseNet network 

designed in Section 3.2. This is also referred to as a RNN. A simple graphical representation of the 

ReUseNet architecture is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

In Figure 8, both networks are initialized with different parameters but are joined by concatenating the 

class-probability scores of the first network with the PAN input of the succeeding network. The second 

network is an exact copy of the first. In this manner, the ReUseNet implements a recurring FCN 

architecture where the parameters of both networks are trained simultaneously in an end-to-end manner. 

In formalizing its design we investigated the influence of including another loss function into the network 

(at the end of FCN1; as also shown in Figure 8). In the case of a dual-loss network, the user needs to 

further specify the weight proportion to be used for balancing the two objective loss functions within the 

network. Table 12 presents a list of ReUseNet architectures that were investigated in order to determine 

whether including an additional loss is beneficial for increasing the overall accuracy of the classification. 

Furthermore, in this case of a two-loss network, we investigated varying the proportion of the weights for 

each objective loss function. 

Figure 8: A graphical representation of ReUseNet 

1st FCN 2nd FCN 
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Table 12: ReUseNet Experiments with Additional Loss 

Number of Loss 

Functions in ReUseNet 

Weight of 

Objective Loss 2 

Single Loss 1 

Double Loss 0.8 

Double Loss 0.7 

Double Loss 0.5 

Double Loss 0.3 

 

Further, as a control for the ReUseNet model, we extracted class-prediction scores (using a singular instance 

of a FuseNet) of the images in the training set. These class-prediction scores are later concatenated with 

the raw-PAN features of the respective training images. This new set of 7 dimensional PAN resolution 

features, along with the raw-MS images, are thereafter used to generate a new image database using the 

same training patch locations as the ones used in the training of the singular FuseNet model. At this point 

a fresh, newly initialized, FuseNet model is trained on this new image database.  

The final ReUseNet architecture consists of two loss functions, with the weight of the second objective 

loss function (shown as Loss2 in Figure 8) equal to 0.7. For generating the final classification results, the 

ReUseNet is trained using an image database of 4000 samples of training patch-sizes 32 × 32 × 4 and 

128 × 128 × 1 collected from each of the three training tiles from the sets of MS and PAN images 

respectively. Furthermore, we also train the ReUseNet network on an image database in which 2000 

samples were collected from each of the three MS and PAN sets of training tiles. The ReUseNet(s) are 

trained using two different learning rates, 10−4 and 10−5, with each training step lasting for 100 and 50 

epochs each. The value for the weight decay parameter is held constant at 5 × 10−4. The trained 

network is used to predict classification maps for Tile 32 and Tile 103 respectively. The final results are 

presented in Chapter 6. 
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4. DATA 

The image data used in this research was acquired by the WorldView III (DigitalGlobe) VHR satellite 

sensor. In all 7 tile-sets of panchromatic (PAN) and multispectral (MS) images were used. These depict 

semi-urban to highly urbanized areas of Quezon City – a densely populated city in the Philippines. The 

salient spatial and spectral characteristics of the dataset are summarized in Table 13.  

Table 13: Raw Data - Image Characteristics 

Image Number of Band(s) Image Dim 

[row,col] 

GSD (meters) 

MS 4 - Red, Green, Blue and NIR 800 x 800 1.24 

PAN Single 3200 x 3200 0.31 

 

In all experiments that were carried out as part of this research method a consistent division of the image 

data set is maintained in the following manner: Tile 78, Tile 82 and Tile 100 are used only for training the 

proposed FCN classification model(s), Tile 45 and Tile 105 are used only for validating the reconfiguration 

of the FCN networks and the DCRF parameters and Tile 32 and Tile 103 are exclusively used for testing 

and comparing the final classification accuracy of the chosen network models and methods. The study 

area along with the layout of the training, validation and testing sets of images is shown in Figure 9. 

Figure 9: Study Area and Layout of Training, Validation and Testing Tiles 
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4.1. DATA PREPARATION  

Ground Reference 

In order to ensure the availability of adequate ground reference data for the training, validation and testing 

of the FCNs, the image-tiles were manually annotated and classified into the following six land-cover 

categories: (i) Built-Up, (ii) Low Vegetation, (iii) Tree, (iv) Cars, (v) Water and (vi) Impervious Surface.  

A sample of both MS and PAN images, along with the annotated ground reference that was prepared, is 

shown in Figure 10. For an account of the number of ground truth pixels collected per class per image tile, 

see Appendix E. 

Data Augmentation 

Due to the large number of parametric weights in even modestly designed CNN architectures, large 

amounts of annotated data are required to adequately train the network. To compensate for the 

volumetric demands of semantically-labelled data, image transposition has been suggested as a means to 

augment the amount of available training data (Scott et al., 2017). In our experiments we implemented this 

using a MATLAB function (padarray) that pads an input image with a mirror reflection of itself - effectively 

implementing image transposition (or mirroring) along the borders of each training patch. 

Pan-Sharpening 

One of the objectives of this research is to assess the ability of CNNs to fuse multi-scale VHR images. In 

order to draw a meaningful comparison with the FuseNet approach, the SimpleNet was trained and 

reconfigured using images that were pan-sharpened using a third-party commercially licensed software. To 

pan-sharpen the raw MS and PAN images we used the Gram-Schmidt spectral sharpening technique 

available in ESRI’s ArcMap. Further, we also used the Subtractive Resolution Merge technique from 

ERDAS Imagine. We use these to two sets of pan-sharpened images to construct two different databases 

for testing the final classification results of the SimpleNet. These results are presented in Chapter 6. 

 

Figure 10: A Sample of the Panchromatic (L), Multispectral and Ground Reference Data 
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4.2. IMAGES FOR TESTING CLASSIFICATION ACCURACY 

As part of the research method, we use two tiles – Tile 32 and Tile 103 – for testing the final classification 

accuracy of our proposed approaches. Figure 11 shows the true-colour composite image of the two tiles 

that were used for testing the land-cover classification performance of the four classification 

methodologies proposed in this research.  

The coordinate reference system is WGS 1984 UTM Zone 51. The map projection used is Transverse 

Mercator. Further, all classification maps in Chapter 6 are also presented at the same scale as shown in 

Figure 11. 

 

 
 

 

(a) Tile 32 (b) Tile 103  

 
Figure 11: True Colour Composite (R, G, B) of Testing Tiles 
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5. PARAMETER SENSITIVITY ANALYSIS  

In this chapter we first present a sensitivity analysis of the parameters used in the FCN design and assess 

their impact on the overall classification accuracy. This analysis is based on the classification results of Tile 

45 and Tile 105. These are provided in Appendix A and B at the end of this report. For FCN parameters, 

we further sub-divided them into two categories, namely architectural parameters and the network training 

hyper-parameters. The architectural parameters are patch-size, layer depth, kernel depth, kernel size, 

number of max-pooling layers and the size of the pooling windows. The hyper-parameters are learning 

rate, weight decay and the number of training epochs. In the following text we first analyse the influence 

of each of these parameters on the overall accuracy of the classification results. Herein, the experimental 

results are interpreted in relation to the objectives of the study, as specified in Section 1.3. Thereafter, we 

also analyse the sensitivity of the overall classification accuracy to changes in the value of the kernel 

parameters of the mean-field approximation to the dense-CRF inference algorithm. 

5.1. FCN ARCHITECTURAL PARAMETERS 

Training Image Patch Size: In the SimpleNet experiments listed in Appendix A, we can see that 

increasing the patch-size of the training image does not necessarily translate into an increased overall 

accuracy score. This is because the ability of a CNN to exhaustively capture relevant features from an 

input training patch depends on the architecture of the network. In the case of our experiments, the 

network form is static, which explains its fluctuating classification performance as we increase the input 

patch-size. This highlights the necessity of adapting network designs for different scales and sizes of the 

input training image patch. The disadvantage of using a large input training patch-size is however more 

readily apparent as the computational time drastically increases with an increase in the patch-size. 

Layer Depth: While the baseline SimpleNet architecture consisted of four convolutional blocks, we also 

tested architectures with three and five convolutional blocks of layers. Our experiments with layer depth 

revealed, quite expectedly, that overall accuracy and layer depth are positively correlated. However, 

increased layer-depth comes at an increased computational cost. And further even smaller finely-tuned 

architectures can outperform more complex FCNs that have not been adequately optimized. This is 

shown in the experimental results provided in Appendix A, where the best performing 4-block network 

was even better than the 5-block network that was tested. 

Kernel Depth: Increasing the number of convolutional filters per block increases the overall accuracy of 

the classification but only by a marginal amount. Furthermore, the computation costs increases linearly 

with an increase in the kernel depth per convolutional layer. See Appendix A for metrics on classification 

accuracy and network training time. 

Kernel Size: For producing high accuracy land-cover classification maps it is extremely important to 

optimize for the appropriate sequence of convolutional filters (with varying factors of dilation), given a 

fixed layer depth and training image patch-size. This is demonstrated by the list of experiments in 

Appendix A and B respectively. Further, larger kernel sizes lead to higher computation cost during the 

training of the network. 

Max Pooling Layer: This layer makes the network more robust to object translation and rotation within 

the image (Längkvist et al., 2016). From the SimpleNet results we can see that their iterative addition into 

the baseline architecture increases the overall accuracy of the classification. Furthermore, larger pooling 

windows of size 5x5 seem more suited for input features than windows of size 3x3. 
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5.2. FCN HYPER-PARAMETERS 

Learning Rate: We trained our FCNs using a two-step training procedure with differential learning rates. 

As can be seen in the results of Appendix A and B, optimizing for the appropriate learning rate is 

important for the overall accuracy of the classification results. Interestingly, in the case of the SimpleNet 

experiments, where the network was trained on image samples taken from the set of pan-sharpened 

images of size 45 × 45 × 4, the appropriate learning rate combination was found to be 10−5 and 10−6; 

while in the case of the FuseNet experiments where image samples were collected in sizes of 32x32x4 and 

128x128x1 from the set of MS and PAN images the appropriate learning rate combination was found to 

be 10−4 and 10−5. 

Weight Decay: Changing the value of this parameter had a minimal impact on the overall classification 

accuracy. This can be seen in results provided in Appendix A. 

Number of Training Epochs: The number of epochs required to adequately train an FCN depends on 

the amount of training data being fed to the network, along with the cumulative number of parameters 

that are required to be learned during the training procedure. Over-training the network can lead to loss in 

the generalization capabilities of the network and usually the worth of increasing the number of training 

epochs can be gauged by assessing the network error (observe the flattening of the error curve) during the 

training process. In the cases tested for this research, we find that increasing the number of training 

epochs beyond a certain threshold does not lead to increase in the overall accuracy of the classification. 

5.3. DENSE-CRF PARAMETERS 

In order to optimize the classification performance of the dense-CRF model, the search-space or the 

range of parameter values were iteratively refined. The method for optimizing the parameter values of the 

dense-CRF model involved the following: 

The experimental results of Table 10 of Section 3.3, are subset to contain only the observations that 

exceed the 85th percentile of the distribution of overall accuracy (OA) of the classification of Tile 45 and 

Tile 105 respectively. These subsets are referred to as Best45 and Best105 respectively and contain 22 and 

21 experimental observations each. These subsets are further grouped by each parameter value and 

analysed. Table 14 lists the number of experiments in the Best45 and Best105 sets for each parameter-

value configuration.  

Table 14: Number of Experiments per Parameter-Value Pairs in Best45 and Best105 

 Values Experiments 

in Best45 

Experiments 

in Best105 

𝒘(𝟐) 𝟏𝟎−𝟒 7 6 

𝟏𝟎−𝟐 7 7 

1 8 8 

 

𝜽𝜶 1 - - 

3 22 21 

 

𝜽𝜷 1 - 7 

5 12 14 

10 10 - 

15 - - 
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𝒘(𝟏) 1 - 2 

3 - 5 

10 4 4 

15 6 4 

30 6 3 

50 6 3 

 

In Table 14 we can see that upon grouping the Best45 and Best105 experiments by each parameter-value 

pair, a pattern is clearly reflected in the distribution of experiments for parameters 𝜃𝛼 and 𝜃𝛽. The 

distribution for parameter 𝜃𝛼 shows a clear predomination for the value 3 suggesting an optimal value that 

is equivalent or higher. On the other hand, the optimum for parameter 𝜃𝛽, as suggested by its uneven 

distribution, should lie closer to a range centred on value 5. For parameters 𝑤(1) and 𝑤(2) this analysis 

proves inconclusive. All tested values for these parameters were equally present in the Best45 and Best105 

sets. However, the distribution of 𝑤(1) provides an indication to test for higher values of the parameter.  

Figure 12 and 13 depict scatter plots showing the effect of parameters 𝜃𝛼 and 𝜃𝛽 on the overall 

classification accuracy.  

   

Figure 12: Plot (a): OA on Tile 45 and θα; Plot (b) OA on Tile105 and θα 
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Figure 13: Plot (a): OA on Tile 45 and θβ; Plot (b) OA on Tile105 and θβ 

The experiments shown in Figures 12 and 13 are those given in Table 11 of Section 3.3. However, for the 

purpose of scaling the display of the scatter plots, the results (shown in Appendix C) were subset to 

contain only experiments that had an overall accuracy of over 94 percent and over 91 percent as measured 

on Tile 45 and Tile 105 respectively. While the scatter plots in Figures 12 and 13 contradict the intent to 

come up with a single set of kernel parameters that would be suitable for a general classification case, they 

at the least indicate 𝜃α and 𝜃𝛽 configurations that are more stable and consistently high-performing. In the 

case of parameter 𝜃𝛼, as shown in Figure 12, the model’s performance on Tile 45 indicates an optimal 

value close to 5. In the case of Tile 105 the optimum seems closer to 4. Between the two we settle on the 

value of 5, as is indicated by a vertical line in the plots in Figure 12. For parameter 𝜃𝛽, on the other hand, 

the value of 3 seems outstandingly high-performing as observed on the results of both validation tiles. 

This has also been in indicated with a vertical line in the plots of Figure 13. 

As a note for the reader, the first batch of dense-CRF experiments (shown in Table 10 of Section 3.3) 

were too large to be included in the Appendix of this document; but would be included in the 

‘Supplementary Data’ submitted for archival purposes at the end of the thesis period to the research 

supervisor. All experimental results for the second batch of dense-CRF experiments are provided in 

Appendix C. 

In analysing the experimental results of the other three parameters we found that they had a minimal 

impact on the overall classification accuracy. The optimum value for each parameter is decided as the 

following: 𝜃𝛼 = 5, 𝜃𝛽 = 3, 𝑤(1) = 50, 𝑤(2) = 0.01, and 𝜃𝛾 = 1. Once the parameter values are fixed 

we test the final dense-CRF model on Tile 32 and Tile 103. 
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6. RESULTS 

Having designed the three FCN networks, and optimized for the values of the dense-CRF parameters, we 

finally present two sets of classification results for the four methodologies – SimpleNet (SNN), FuseNet 

(FNN), SimpleNet+Dense-CRF (DCRF) and ReUseNet (RNN) - as observed on Tile 32 and Tile 103.  

1. Result I - In the first set of results, the three FCNs were trained on an image database created by 

collecting 4000 random samples from each of the 3 training tiles. Furthermore, the image-set used 

for training the SimpleNet, for the first set of results, was pan-sharpened using the Gram-Schmidt 

spectral sharpening technique.  

2. Results II - For the second set of results, the FCNs were trained on a database of 2000 samples 

collected from each training tile. Also in this case, the pan-sharpening of the images, used for 

training the SimpleNet, was done using the Subtractive Resolution Merge technique. 

 

6.1. RESULTS I 

The SimpleNet derived in Section 3.1, the FuseNet designed in Section 3.2, the dense-CRF model as 

specified in Section 3.3 and the ReUseNet designed in Section 3.4 were used to predict land-cover 

classification maps for Tile 32 and Tile 103 respectively. In this case, the SimpleNet was trained on 4000 

samples that were collected from images that were pan-sharpened using the Gram-Schmidt spectral-

sharpening technique. The FuseNet and the ReUseNet were trained on 4000 image samples collected 

from both sets of MS and PAN training image tiles. Table 15 depicts a summary of the overall accuracies 

of all four classification methodologies as observed on Tile 32 and Tile 103 respectively.  

Table 15: Overall Accuracy (%) - Tile 32 and Tile 103 

 SNN FNN DCRF RNN 

OA(%) – Tile 32 97.53 97.05 98.20 97.21 
OA(%) – Tile 103  93.35 92.88 94.53 93.61 

 

An overall assessment of Table 15 shows that the SimpleNet classification performs marginally better than 

the FuseNet classification results by an average of 0.48%. Further, on applying the dense-CRF inference 

on the SimpleNet generated scores the overall accuracy of the classification increases by an average of 

0.93%. Also, the ReUseNet results marginally improve on the FuseNet performance by 0.45% as 

measured by an average of the overall accuracy of the two results.  

We now compare the cumulative proportion of pixels per land-cover class in each of the 8 (4x2) 

classification maps. Table 16 shows the percentage of pixels per class-label for each classification map. 

Table 16: Percentage of Total Pixels per Class-Label per Classification Method 

Tile 32 SNN FNN DCRF RNN  Tile 103 SNN FNN DCRF RNN 

Built-Up 27.92 27.74 27.56 27.59  Built-Up 43.74 41.49 43.77 41.82 

Low-Veg 23.03 24.60 22.81 26.14  Low-Veg 9.95 10.94 9.77 11.69 

Tree 30.74 29.23 30.70 27.84  Tree 35.64 34.97 35.54 34.00 

Cars 0.85 1.43 0.57 1.74  Cars 0.89 1.51 0.58 1.82 
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Water 1.14 0.86 1.12 0.00  Water 0.43 0.29 0.37 0.00 

Imp. Surf 16.33 16.15 17.24 16.69  Imp. Surf 9.34 10.79 9.97 10.66 

 

Table 16 provides a nuanced picture of the change affected by each methodology on the proportion of 

pixels per class-label as seen on the final classification maps. In this table, observing the changing 

proportions of pixels classified as class ‘Cars’, we can see how the FuseNet and ReUseNet methods 

consistently predict a significantly higher proportion of pixels as ‘Cars’ than do the other two 

methodologies. Further, the decrease in the proportion of pixels classified as class ‘Cars’, as effected by the 

dense-CRF on the SimpleNet classification scores, is also important to note. In Table 14, it is interesting 

to observe the column for class ‘Water’. In this, we again notice a significant difference between the 

performance of the FuseNet and the ReUseNet methods as compared to the other two methodologies. 

Further, it is remarkable that while the FuseNet manages to predict ‘Water’ class pixels, the ReUseNet is 

completely unable to do so. Finally, it is also worth observing that in the classifications results for Tile 32, 

for class ‘Low-Veg’, the FuseNet and the ReUseNet methods predict a higher percentage of pixels as 

compared with the other two classification methods. Further, for class ‘Tree’ this trend is reversed, where 

now the FuseNet and the ReUseNet methods predict a smaller proportion of pixels as compared with the 

results of SimpleNet and SimpleNet+dense-CRF methodologies. 

We now present the producer and user accuracy metrics and the classification maps for all four methods 

as observed on Tile 32. Thereafter, we also present the producer and accuracy metrics for the classification 

results as observed on Tile 103. The classification maps of Tile 103, however, can be seen in Appendix F. 

Tile 32 

Table 17 presents a summary of the producer and the user accuracy statistics for all four classifications 

results as observed on Tile 32. 

Table 17: Producer and User Accuracy Metrics for Tile 32 

 SNN (%) FNN(%) DCRF(%) RNN(%) 

  UA PA UA PA UA PA UA PA 

Built-Up 94.02 98.11 93.02 98.20 95.84 98.53 94.77 97.79 

Low-Veg 99.19 99.57 99.12 99.54 99.31 99.81 97.91 99.93 

Tree 99.59 99.62 99.52 99.51 99.61 99.84 99.38 98.67 

Cars 95.07 63.03 82.76 64.06 97.80 51.72 82.02 70.57 

Water 84.83 62.69 68.69 30.42 88.90 91.23 0.00 0.00 

Imp. Surf 97.47 90.50 97.00 88.26 98.19 93.02 97.32 91.67 

 

In Table 17, we can observe the difference between the proposed classification methods by observing 

their performance for class ‘Cars’ and class ‘Water’. We see that for class ‘Cars’ the SimpleNet user 

accuracy is significantly higher than that of the FuseNet model. It is also interesting to observe that the 

producer accuracy of class ‘Cars’ drops significantly after applying the dense-CRF inference on the 

SimpleNet classification results. Further, the ReUseNet shows improved performance in detecting class 

‘Cars’ as can be observed by the increase in the producer accuracy for the class as compared with the 

FuseNet classification results. For class ‘Water’ one can observe that the SimpleNet and the 

SimpleNet+dense-CRF methods perform significantly better than the FuseNet and the ReUseNet 

methods. The consistent inability of the ReUseNet to predict pixels of class ‘Water’ is a striking result and 

of noticeable concern. 
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In Figure 14, we present the classification maps for the SimpleNet and the FuseNet methods as observed 

on Tile 32. Here, we can visually corroborate the patchy classification of class ‘Water’ by the FuseNet 

method and compare it with the smoother segmentation results of the SimpleNet classification map. 

Further, one can also observe the over-estimation of class ‘Cars’ in the FuseNet map as compared with 

the SimpleNet results. 

Tile 32 – SimpleNet  

 

Tile 32 – Ground Reference  

OA: 97.53    

Tile 32 – FuseNet  

  

OA: 97.05   

Figure 14: SimpleNet and FuseNet Classifications Maps for Tile 32 

In Figure 15, we present the classification maps of the SimpleNet+dense-CRF and the ReUseNet 

methodologies.  

Legend 
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Tile 32 – SimpleNet+Dense-CRF 

 

Tile 32 – Ground Reference  

OA: 98.20    

Tile 32 – ReUseNet  

  

OA: 97.21   

Figure 15: SimpleNet+Dense-CRF and ReUseNet Classification Maps for Tile 32 

In comparing the classification maps of the SimpleNet+dense-CRF and the ReUseNet methods, one can 

clearly see the performance of the dense-CRF inference in refining the results of the SimpleNet 

classification. In Figure 15 we can see the inability of the ReUseNet to predict pixels of class ‘Water’ and 

compare that with the smooth, classification output of the SimpleNet+dense-CRF method. Further, 

observing the ReUseNet classification map, one can see its over-estimation of class ‘Cars’ as compared 

with the SimpleNet+dense-CRF classification map. 

 

Legend 
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Tile 103 

Table 18 presents a summary of the producer and the user accuracy statistics for all four classifications 

results as observed on Tile 103. 

Table 18: Producer and User Accuracy Metrics for Tile 103 

 SNN(%) FNN(%) DCRF(%) RNN(%) 

  UA PA UA PA UA PA UA PA 

Built-Up 95.18 96.13 97.45 93.22 95.83 97.95 98.10 93.75 

Low-Veg 98.77 77.37 98.87 82.18 99.34 77.55 97.90 86.31 

Tree 98.23 99.66 97.15 99.67 98.42 99.75 97.91 99.66 

Cars 66.83 65.73 57.60 65.99 78.04 59.27 44.40 65.78 

Water 88.97 62.09 98.17 51.20 98.63 55.30 0.00 0.00 

Imp. Surf 62.97 89.69 56.22 94.27 68.81 94.61 59.81 97.76 

 

In Table 18, we see that the producer accuracy for class ‘Low-Veg’, for the SimpleNet and the 

SimpleNet+dense-CRF methods, is considerably less compared with its counterpart in the case of the 

FuseNet and the ReUseNet methods. For class ‘Impervious Surface’ it is striking to note its consistently 

low user accuracy across the four methods. However, the producer accuracies for the same class are 

reasonably high, with the FuseNet and ReUseNet performing better than the other two methods. In 

addition, for class ‘Cars’ one can observe how the dense-CRF inference improves on the user accuracy of 

the SimpleNet method, but shows decreased performance as measured by their producer accuracy scores. 

Further, the low user-accuracy scores for class ‘Cars’ in the case of the FuseNet and ReUseNet 

classification results, is explained by the increased prediction of class ‘Cars’ by the two methods (as also 

shown in Table 16). The classification maps for Tile 103, due to considerations of length, are provided in 

Appendix F. The confusion matrices for all classifications maps in Results I are given in Appendix H. 

6.2. RESULTS II 

For this set of results, the SimpleNet was trained on 2000 samples that were collected from each training 

image that was pan-sharpened using the Subtractive Resolution Merge technique. The FuseNet and the 

ReUseNet were trained on 2000 image samples collected from each training image in MS and PAN sets. 

Table 19 depicts a summary of the overall accuracies of all four classification methodologies as observed 

on Tile 32 and Tile 103 respectively.  

Table 19: Overall Accuracy (%) - Tile 32 and Tile 103 (Result II) 

 SNN FNN DCRF RNN 

OA(%) – Tile 32  89.06 96.07 89.63 96.93 
OA(%) – Tile 103  85.62 93.24 86.10 93.29 

 

An overall assessment of Table 19 shows that the FuseNet and the ReUseNet methods have 

outperformed their counterparts by a significant margin. While the FuseNet classification improves on the 

overall accuracy of the SimpleNet classification by an average of 7.32%, the ReUseNet classification 

improves on the overall accuracy of the SimpleNet+Dense-CRF classification by an average of 7.25%. 

Furthermore, the dense-CRF inference certainly helps in refining the SimpleNet generated classification 

maps with an average improvement of 0.53% as measured on the overall accuracy of the two 



 

37 

classifications. Also, the ReUseNet improves on the overall accuracy of the FuseNet method by an 

average of 0.46%. 

We now compare the cumulative proportion of pixels per land-cover class in each of the 8 (4 × 2) 

classification maps. Table 20 shows the percentage of pixels per class-label for each classification map. 

Table 20: Percentage of Total Pixels per Class-Label per Classification Method (Result II) 

Tile 32 SNN FNN DCRF RNN  Tile 103 SNN FNN DCRF RNN 

Built-Up 29.66 29.91 32.43 27.13  Built-Up 40.88 42.91 41.44 39.81 

Low-Veg 24.16 23.19 23.70 24.84  Low-Veg 6.09 10.59 5.58 12.73 

Tree 35.17 30.85 33.67 29.20  Tree 42.30 35.53 41.55 33.99 

Cars 0.77 1.44 0.52 1.79  Cars 0.57 1.43 0.35 2.21 

Water 2.69 0.00 1.98 1.30  Water 0.84 0.00 0.73 0.49 

Imp. Surf 7.55 14.62 7.69 15.73  Imp. Surf 9.32 9.54 10.34 10.78 

 

In Table 20 we can see that for class ‘Tree’ the FuseNet and the ReUseNet predict a significantly smaller 

proportion of pixels as compared with the SimpleNet and the SimpleNet+dense-CRF methods. This 

trend is reversed, for the classification results of Tile 32 for class ‘Impervious Surface’ and for the 

classification results of Tile 103 for class ‘Low-Veg’. Furthermore, it is interesting to observe that the 

FuseNet and the ReUseNet methods consistently over-estimate the presence of class ‘Cars’ as compared 

with the SimpleNet and the SimpleNet+dense-CRF methods. Also, for class ‘Water’ we observe that while 

the FuseNet is unable to predict any pixels as being of class ‘Water’, the ReUseNet improves on the 

singular FuseNet architecture and rectifies the classification accuracy for this particular class. This result is 

in stark contrast to the first set of classification results provided in Table 16. We now present the producer 

and user accuracy metrics and the classification maps for all four methods as observed on Tile 32. 

Thereafter, we also present the producer and accuracy metrics for the classification results as observed on 

Tile 103. The classification maps of Tile 103, for the second set of results, can be seen in Appendix G. 

Tile 32 

Table 21 presents a summary of the producer and the user accuracy statistics for all four classifications 

results as observed on Tile 32. 

Table 21: Producer and User Accuracy Metrics for Tile 32 (Result II) 

 SNN(%) FNN(%) DCRF(%) RNN(%) 

  UA PA UA PA UA PA UA PA 

Built-Up 75.97 95.16 89.37 98.33 75.10 96.69 92.87 98.07 

Low-Veg 97.89 97.51 99.53 98.54 98.52 98.61 99.04 99.16 

Tree 96.71 99.98 99.44 99.78 98.55 99.94 99.50 98.99 

Cars 93.09 58.90 90.43 59.00 96.72 49.77 81.61 68.98 

Water 45.71 94.94 0.00 0.00 79.69 100.00 89.12 92.08 

Imp. Surf 89.65 37.61 96.46 84.30 88.40 36.22 96.56 86.86 

 

In Table 21, the low producer accuracy of the class ‘Impervious Surface’ in the SimpleNet and the 

SimpleNet+dense-CRF classification results is a striking result. Further, class ‘Cars’ is a challenging class 

to accurately predict as is shown by its low producer accuracies across all method results. It is also 

interesting to observe that the ‘Water’ class, which was missing from the FuseNet classification has been 
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accurately captured by the ReUseNet model. This reflects the self-learning capability of the ReUseNet 

architecture and is in stark contrast with its performance as reflected in Results I. In Figure 16, we present 

the classification maps for the SimpleNet and the FuseNet methods as observed on Tile 32.  

Tile 32 – SimpleNet 

 

Tile 32 – Ground Reference  

OA: 89.06    

Tile 32 – FuseNet 

  

OA: 96.07   

Figure 16: SimpleNet and FuseNet Classifications Maps for Tile 32 (Result II) 

In comparing the classification maps, with a particular focus on the road network that runs - from centre-

bottom to the top-left corner - we can discern a more accurate classification for class ‘Impervious Surface’ 

by the FuseNet method. This visual hypothesis is corroborated by observing the producer accuracy for 

this class in the two classification methods presented in Table 21. Here, one can also observe the over-

Legend 
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estimation of class ‘Cars’ by FuseNet method as compared with the SimpleNet results. Finally, FuseNet’s 

inability to accurately predict any pixels as belonging to class ‘Water’ is noteworthy. In Figure 17, we 

present the classification maps of the SimpleNet+dense-CRF and the ReUseNet methodologies. 

Tile 32 – SimpleNet+Dense-CRF  

 

Tile 32 – Ground Reference  

OA: 89.63    

Tile 32 – ReUuseNet  

  

OA: 96.93   

Figure 17: SimpleNet+Dense-CRF and ReUseNet Classification Maps for Tile 32 (Result II) 

The classification maps in Figure 17 reveal how the SimpleNet+dense-CRF classification frequently 

overestimates the presence of the ‘Built-Up’ class at the expense of the ‘Impervious Surface’ class. Further, 

it is interesting to note how the ReUseNet improves on the classification of class ‘Water’ as compared 

with the results of the FuseNet classification shown in Figure 16. Finally, from inspecting the two 

Legend 
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classification maps one can discern how the ReUseNet tends to over-predict pixels as belonging to class 

‘Cars’. 

Tile 103 

Table 22 presents a summary of the producer and the user accuracy statistics for all four classifications 

results as observed on Tile 103. 

Table 22: Producer and User Accuracy Metrics for Tile 103 (Result II) 

 SNN(%) FNN(%) DCRF(%) RNN(%) 

  UA PA UA PA UA PA UA PA 

Built-Up 93.55 89.14 93.90 94.50 94.16 89.63 96.87 91.47 

Low-Veg 98.75 49.93 99.12 83.70 99.78 50.56 98.23 87.81 

Tree 84.82 99.99 98.00 99.71 85.18 99.98 98.44 99.40 

Cars 81.78 62.30 47.81 59.98 89.76 50.48 51.99 62.61 

Water 67.40 95.24 0.00 0.00 70.29 97.42 92.87 93.76 

Imp. Surf 47.98 84.52 68.48 92.91 48.37 87.34 59.44 96.56 

 

In Table 22, we see that the producer accuracy for class ‘Low-Veg’, for the SimpleNet and the 

SimpleNet+dense-CRF methods, is considerably less compared with its counterpart in the case of the 

FuseNet and the ReUseNet methods. For class ‘Impervious Surface’ it is striking to note its consistently 

low user accuracy across the four methods. However, the producer accuracies for the same class, shows 

the reverse trend. For class ‘Impervious Surface’ the FuseNet and ReUseNet methods perform better than 

the SimpleNet and SimpleNet+dense-CRF methods. In addition, for class ‘Cars’ one can observe how the 

dense-CRF inference improves on the user accuracy of the SimpleNet method, but shows decreased 

performance as measured by their producer accuracy scores. The classification maps for Tile 103, due to 

considerations of length, are provided in Appendix G. The confusion matrices for all classifications maps 

in Results II are given in Appendix I. 
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7. DISCUSSION AND CONCLUSION 

The FCN(s) designed as part of this methodology, along with the dense-CRF implementation, were able 

to address the need outlined by the objectives of this research. The FuseNet demonstrated the capability 

of FCN structures to alter image resolution and dynamically fuse multi-scale images for generating high-

accuracy land cover classification maps. While Results I indicate the superior performance of the 

SimpleNet model over the FuseNet approach, as measured by the overall classification accuracy, the 

overall accuracy of the FuseNet model is nevertheless high. Results II, however, clearly demonstrate the 

consistent performance of the FuseNet as compared to the SimpleNet classification results. Both sets of 

results provide compelling evidence for the ability of FCN structures to combine multi-scale images with 

high-accuracy. Also, in terms of computational cost and tractability the FuseNet model is more convenient 

and overall less of a burden on system and man-power resources. An overall assessment of the 

classification results indicates that while the FuseNet is almost as accurate as the SimpleNet model, it 

utilizes only half as much of the systems’ resources. This behaviour can be gauged by observing the 

average training time per experiment as shown in Table 22. This is possible because the FuseNet 

accommodates input from discrete image datasets and creates an end-to-end framework that fuses and 

classifies multi-scale raw-image pixels simultaneously. The ReUseNet, on the other hand, demonstrates the 

self-learning capability of the FCN-RNN structure by its improved performance over the singular 

FuseNet classification model (as observed across all classification results provided in Chapter 6). The 

ReUseNet also shows the FCNs ability to capture pixel-context through convolutional filter weights and 

further demonstrates the flexibility of FCN structures to implement non-linear architectures. That our two 

main FCN networks, that were primarily crafted in order to fulfil the first two objectives of this research, 

have managed to achieve their functional utility, serves to underscore the strength of this study. Also, the 

dense-CRF inference is successfully applied to the classification scores of the SimpleNet and improves the 

overall accuracy of the classification. 

We now consolidate our findings from this research and address the questions associated with each of the 

four research objectives, in the order specified in Section 1.4.  

Research Questions - Objective 1 

How is the dynamic fusion of multi-scale images achieved within the network design? What 

architectural parameters and network training hyper-parameters influence the success of 

applying CNN architectures for image fusion? 

The dynamic fusion of multi-scale images is achieved by utilizing convolutional and de-convolutional 

filters within the FCN architecture. The latter are essentially upsampling filters with learnable parameter 

weights. In order to implement the FuseNet we had to employ a skip-architecture that allowed for the 

non-linear arrangement of layers within the network. The sequence of steps followed within the network 

for implementing a dynamic fusion network are: (i) downsampling the PAN input to match the 

dimensions of the MS input, (ii) process concatenated features through a block of convolutional layers 

with a sequence of 3 × 3 and 5 × 5 convolutional filters with varying factors of dilation, and (iii) 

upsampling bottleneck features to PAN dimensions for producing final class-probability scores. For a 

detailed description of the method used to derive the FuseNet please see Section 3.2.  

The classification accuracy of the fusion network depends on a number of aspects such as, the factor used 

for downsampling image features, the point of concatenation of the MS and PAN features, the ratio of the 

number of MS features to the number of PAN features, the number of convolutional blocks in the 

bottleneck layer along with the size of the filters and their respective dilation factors in each block, and 
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finally the factor used for upsampling the network features to the dimensions of the output image. From 

the FuseNet experimental results presented in Appendix B we arrive at the following conclusions: (i) Step-

wise downsampling is preferable to downsampling in a single step, (ii) enhancing the number of MS 

features prior to concatenation with the PAN features increases the overall accuracy of the FuseNet 

classification, (iii) the upsampling of network features in a single-step is better than upsampling in 

multiple-steps. Overall the performance of the FuseNet demonstrates the utility of the FCN classification 

paradigm to enable the dynamic fusion of multi-scale images for producing high-accuracy land-cover 

classification maps in an end-to-end framework. Furthermore, the significantly shorter training time for 

the FuseNet, as compared with the SimpleNet, is an added advantage for the method. 

What network parameters enable the pixel-level classification of VHR remotely-sensed satellite 

imagery? 

In assessing the impact of the network parameters on the overall classification accuracy of the validation 

set of Tile 45 and Tile 105, we made a broad distinction between architectural parameters and network 

training hyper-parameters. The latter group includes values pertaining to the number of training epochs, 

the learning rate of the neural network, and the weight decay associated with each weight update. In 

refining the SimpleNet and the FuseNet, the methods for which are described in Section 3.1 and Section 

3.2 respectively, we separately optimized the architecture and the network hyper-parameters. 

In the case of the SimpleNet experiments, changing the patch-size of the input training image was found 

to have a marginal impact on the overall accuracy of the classification. We can see this from the 

experimental results listed in Appendix A. However, the computational cost required for training the 

network increases quite substantially. Further, the introduction of max-pooling layers into the baseline 

architecture leads to an increase in the overall accuracy of the classification. We also conclude that the size, 

dilation and sequence of the convolutional filters are very significant for generating high-accuracy land-

cover classification maps. The size of the convolutional filter determines the receptive field of the kernel, 

that determines the portion of the image ‘seen’ by the convolutional filter (Maggiori et al., 2017). Having 

large filter sizes means having a large number of trainable parameters, which effectively slows down the 

time required for training the network. Furthermore, while it may seem desirable to increase the number 

of filters per convolutional block, our experimental results indicate this to not have a very significant 

impact on the overall classification accuracy. 

In addition to these architectural parameters, the design of the FCN(s) also entails optimizing for hyper-

parameter values that control the training of the network. These are namely, learning rate, weight decay 

and the number of training epochs. Through our experiments we indicate the importance of choosing the 

right learning rate for training the FCN(s). The parameter for weight decay and the number of training 

epochs, out of the values tested and shown in Appendix A and B, have shown to have a marginal effect 

on the overall accuracy of the classification results. See Section 5.1 and Section 5.2 for a more detailed 

discussion of the same. 

Research Questions - Objective 2 

How is the FCN-RNN developed? 

First, the FuseNet is refined over many experimental trials. The method, described in Section 3.1 and the 

experimental results given in Appendix B, illustrate the various permutations of the architectural 

parameters and the network training hyper-parameters that were incrementally tested in order to optimize 

the architecture of the FuseNet. Once this is achieved, we bring together two copies of the FuseNet and 

join them in a manner such that the class-probability scores predicted by the 1st FCN are concatenated 
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with the raw-PAN input of the 2nd FCN. At this juncture we additionally experiment with introducing a 

second loss layer into the network, and varying the respective weights of the two objective loss functions. 

The results for these experiments are provided in Appendix D. The final ReUseNet architecture is trained 

on an image database of 4000 (and 2000) samples of training image-sizes of 32 × 32 × 4 and 128 ×

128 × 1 taken from the set of MS and PAN images respectively. The ReUseNet is trained using two 

different learning rates  10−4 and 10−5, with each training step lasting for 100 and 50 epochs respectively. 

The value for the weight decay parameter is held constant at 5 ×  10−4. The trained network is used to 

predict land-cover classification maps for Tile 32 and Tile 103 respectively. The resulting metrics and 

maps are presented in Chapter 6. 

What aspects of the FCN-RNN architecture motivate the comparison with the MRF/CRF 

inference? 

The MRF/CRF inference models contextual relationship by aggregating a measure of similarity based on 

class-labels and spectral DN values between pairs of pixels defined in a Markovian neighbourhood. This 

pairwise potential energy in linear combination with the unary potential energy, derived from a FCN 

generated class-probability scores, is used to generate a posterior probability map for the distribution of 

the random variable. 

On the other hand, a recurrent neural network structure enables the combined FCN model to retain 

information about past inputs, thereby allowing it to discover contextual dependencies between pixels that 

might not be in close proximity (Pascanu, Mikolov, & Bengio, 2013). It does so via the use of 

convolutional filter weights, which are the basic building blocks of all FCNs. The receptive field of a 

convolutional filter is a function of the kernel size; and, in effect, regulates the size of the input image or 

feature that is linearly transformed by its parameter weights. The receptive field, in this manner, can be 

interpreted as a measure of the size of the neighbouring context of an image pixel. As image features are 

cascaded through the network and acted upon by additional convolutional filters, the effective receptive 

field size in relation to the input image drastically increases. For instance, in a two layer network 

(consisting of two 3 × 3 convolutional filters arranged one after the other) the effective receptive field of 

the 2nd convolutional filter in relation to the input image would be 9 × 9. It is for this reason that 

increasing the depth of a neural network does not necessarily lead to a substantial increase in the overall 

accuracy of the classification. See the SimpleNet results in Appendix A for experiments relating the impact 

of layer depth on the overall accuracy of the classification. Through this cascading procedure, however, 

CNNs can learn to predict context-sensitive class-probability scores.  

In the case of the recurrent neural network or the RNN, two instances of a high-performing FCN are 

joined such that their network parameters can be trained in an end-to-end block of parametric weights. 

Specifically, the network concatenates the class-probability scores of the 1st FCN with the PAN input of 

the 2nd FCN. The RNN, in this manner, explicitly incorporates pixel-context in the form of class-

probability scores, as an additional input into the 2nd instance of the FuseNet. By simultaneously training 

the parametric weights of both networks, the RNN, it can be argued, simulates the underlying mechanism 

of the CRF inference, where class-probability scores in addition to spectral DN values are used for 

refining classification maps. 
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Figure 18: Visual Comparison between Dense-CRF and ReUseNet 

Figure 18 shows the classification maps (from Results II) of the four methodologies developed for this 

research on a small portion of Tile 32. The aim of the graphic is to juxtapose the classification 

performance of the SimpleNet+Dense-CRF and the ReUseNet methodologies. CRFs have long been 

applied to refine coarse pixel-level label predictions to produce sharp boundaries and fine-grained 

segmentation maps (Zheng et al., 2015). By enforcing spectral and class-label homogeneity, the CRF 

inference favours the generation of smoothly connected regions of the same land-cover class. While this 

behaviour can be prominently seen when comparing the two classification maps of the SimpleNet and the 

SimpleNet+Dense-CRF methodologies, we argue that a similar effect can be observed in comparing the 

FuseNet and the ReUseNet classification maps as well. The ReUseNet implementation, in this manner, 

demonstrates the ability of FCN architectures to account for spatial autocorrelation between image pixels 

in a VHR multispectral remote-sensing image. 

Research Questions - Objective 3 

How is the fully-connected dense-CRF inference applied to the classification problem? 
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The mean-field approximation to the dense-CRF inference is formulated as a linear combination of two 

Gaussian kernels (see Equation (10) in Section 2.3) and is implemented by optimizing for the five 

parameters that together define the pairwise potential energy of the dense-CRF approximation. In this 

equation, the first kernel considers both spatial and spectral distances between two pixels, while the 

second kernel considers only spatial proximity. The five parameters either control the weight of the 

respective kernels in the overall pairwise-energy computation, or are factors controlling the ‘width’ of the 

kernel or its permissible deviation of values from that of pixel 𝑖. The parameter values of the dense-CRF 

model are optimized, by iteratively refining the search range of the values and by selecting final parameter 

configurations that consistently generated high-accuracy classification maps. For a detailed discussion of 

the method see Section 3.3. For a discussion of the sensitivity of the overall classification accuracy to 

changes in kernel parameter values see Section 5.3. 

What are the relevant inputs and parameters required for specifying the dense-CRF model? What 

is their impact on the classification results? 

The implementation of the mean-field approximation to the dense-CRF inference requires two user 

inputs: (i) raw-image with spectral DN values and (ii) class probability scores for each image pixel. 

Equation (10) listed in Section 2.3 shows the formulation of the pairwise energy potential as a linear 

combination of two Gaussian kernels. This equation is determined by the following five parameters: 𝜃𝛼, 

𝜃𝛽, 𝑤(1), 𝜃𝛾 and 𝑤(2). The two kernels are respectively called the ‘appearance kernel’ and ‘smoothness 

kernel’. The ‘appearance kernel’ takes into account both ‘colour’, i.e. a measure of spectral reflectance 

captured by the raw-DN value, and spatial proximity. The ‘smoothness kernel’ is said to remove small 

isolated regions from the classification maps (Krähenbühl & Koltun, 2011). For this reason, the value of 

the 𝜃𝛾 parameter is kept small. In the experimental results listed in Appendix C, we found the overall 

classification accuracy as observed on Tile 45 and Tile 105 to be most sensitive to changes in the values of 

parameters 𝜃𝛼 and 𝜃𝛽. These parameters control the spatial and the spectral similarity between pixel-pairs 

allowed for in the first Gaussian kernel of Equation (10). We also tested the other three parameters over 

longer search ranges and finally decided on the five parameter value combinations that consistently 

produced higher classification maps. The experimental method explained in Section 3.3, the results 

reported in Appendix C, and the sensitivity analysis provided in Section 5.3, illustrate the impact of 

making  incremental changes to kernel parameter values on the overall classification accuracy.   

Research Questions – Objective 4 

What is the difference in classification accuracy between a FCN trained on pan-sharpened 

images and FCN that dynamically fuses discrete multi-scale images? 

In Results I in Chapter 6, we see that the SimpleNet trained on the set of images that were pan-sharpened 

using the Gram-Schmidt spectral sharpening technique performs better as compared to the FuseNet 

classification showing an average improvement in overall accuracy of 0.43% as observed on the 

classification maps of Tile 32 and Tile 103 respectively. Upon inspecting the class-specific producer and 

user accuracy metrics for the classification of Tile 32 (as provided in Table 17) we see that the FuseNet 

model has difficulty in accurately predicting pixels of class ‘Water’ and class ‘Cars’. Further, on inspecting 

the classification results of Tile 103 (as shown in Table 18) we see that the user-accuracy of the class 

‘Impervious Surface’ is low for the FuseNet classification results. In summary, Results I indicate the 

superior performance of the SimpleNet FCN that was trained using images that were pan-sharpened using 

the Gram-Schmidt spectral sharpening technique. Nevertheless, the high-accuracy displayed by the 

FuseNet model also illustrates the ability of FCN architectures to dynamically fuse multi-scale images. 



 

46 

Results II however indicate the consistently high-performance of the FuseNet model in comparison with 

the SimpleNet. In Results II, we see that the FuseNet method outperforms the SimpleNet method by an 

average of 7.32% as measured by the overall classification accuracy of Tile 32 and Tile 103 respectively. 

Upon inspecting the class-specific producer and user accuracy metrics for the classification of Tile 32 (as 

provided in Table 21), and the confusion matrices provided in Appendix I, we see that the SimpleNet 

finds it difficult to distinguish between ‘Built-Up’ and ‘Impervious Surface’  class pixels.  Also, the inability 

of the FuseNet to detect pixels of class ‘Water’ is noteworthy. In the classification results of Tile 103 (as 

shown in Table 22), we observe SimpleNet’s persisting troubles with the class ‘Built-Up’.  Further, 

reflecting on the breakdown of producer and user accuracies it seems that the class ‘Cars’ is a challenging 

class for both the SimpleNet and the FuseNet methods respectively. In summary the Results II highlight 

the superior performance of the FuseNet as compared with the SimpleNet classification results, effectively 

demonstrating the FCNs ability to dynamically fuse multi-scale images and to produce consistently high 

accuracy land-cover classification maps. 

What is the difference in classification accuracy between FCN+CRF and RNN? 

In Results I, upon comparing the classification accuracy of the SimpleNet+dense-CRF and the ReUseNet 

methods, we see that the method using the dense-CRF inference outperforms the classification of the 

ReUseNet method by 0.96% as measured by the average of the overall accuracy of the two classification 

methods respectively. 

In Results II, we observe that the ReUseNet classification clearly outperforms the SimpleNet+dense-CRF 

method by an average of 7.25% as measured by the overall accuracy of the two classification methods 

respectively. 

What is the difference in computational requirements between the proposed methods? 

The average training time per epoch for training the three FCNs, as derived from the experiments given in 

Appendix A, B and D respectively, is given in Table 23. 

Table 23: Average Training Time per FCN 

 Average Training Time per 
Experiment (sec) 

Average Training 
Time per Epoch (sec) 

SimpleNet 11897 59.49 
FuseNet 7497 62.48 

ReUseNet 22199 147.99 

 

Here, we can see that the ReUseNet takes the maximum amount of time to train. This is quite expected 

since the ReUseNet has over twice the amount of parameters contained within a singular FuseNet 

network. We see from Table 22 that the average training time per experiment in the FuseNet case is the 

minimum amongst the three values. Further, it bears mentioning that the average training time per epoch 

is a cumulative function of the size of the image database, along with the number of network parameters 

that are required to be learned during the training procedure. 

Concluding Remarks 

In this study, we designed the FuseNet that can dynamically fuse multi-scale VHR remote-sensing images 

for generating high-accuracy land-cover classification maps in an end-to-end framework with striking 

computational efficiency. We also implemented a recurrent network architecture in the form of the 

ReUseNet that was able to improve on the classification of the standalone fusion network. The RNN 
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effectively displayed the ability of FCN structures to (i) capture pixel-context through the weights of the 

convolutional filter, where receptive fields determine the neighbourhood of the pixel, and (ii) to account 

for these local spatial and spectral dependencies by incorporating the class probability scores of a fusion 

network as an explicit input into the succeeding instance of the network. The RNN, in this manner, 

highlights the extended context learning capability of the FCN classification paradigm. 

However, there remain significant limitations to the proposed approach. Firstly, there is an inherent 

randomness that is incorporated at the stage of preparing an image database for training the FCN(s). The 

image database is created by randomly sampling 2000 (or 4000) row and column numbers from a set of 

ground-referenced pixel locations from each training image. For this reason, it is unfortunately difficult to 

reproduce the results of this research, but comparable results can nevertheless be achieved by following 

the research methodology provided herein. In addition, the limited availability of densely labelled ground 

reference data was a concern for this study.  

For future research efforts, the inherent richness of possible parameter variations in even modestly sized 

FCN structures offers large scope for increased experimentation with architectural and hyper-parameter 

configurations. While the architectural elements and the network training hyper-parameters for the 

SimpleNet and the FuseNet models were extensively experimented with, only a limited number of 

experiments were carried out on the ReUseNet model. Further methodical exploration of the RNN 

structure could perhaps reveal a more suitable architecture for fusing multi-scale VHR remote-sensing 

images. In other recommendations, the FCN networks that were designed as part of this research method 

could be augmented with the use of a customized loss function - one that was sensitive to the ‘proximity’ 

between class-labels. This means that, given a true class-label of ‘Built-Up’, the loss function induced 

penalty for a predicted label ‘Impervious Surface’ should be less than if the prediction were ‘Water’. The 

underlying assumption in the construction of such a customized loss-function is that certain land-cover 

classes have a higher probability of being alike, or in ‘proximity’ to each other, than other land-cover 

classes. Further, given the challenge of integrating multi-scale image data, it would be useful to investigate 

the effect of different image scales and image resolutions on the design and configuration of network 

parameters. With regards to the implementation of the mean-field approximation to the dense-CRF 

inference, further research can explore incorporating higher-order neighbourhoods and advanced pairwise 

energy formulations that integrate relationships between land-cover classes, their spectral sub-classes, and 

edges or zones of sharp spectral transition (Moser et al., 2013). Also, as it stands now, the dense-CRF 

implementation of Krahenbuhl et al. accepts only a three-band image input. This is because the algorithm 

was crafted for the image segmentation of RGB-images. In order to adapt it for use on multispectral 

remote-sensing images, the dense-CRF inference can be appropriately altered to accommodate a larger 

number of image bands. This could potentially increase its effectiveness for the land-cover classification of 

VHR remote-sensing images. Lastly, the research done by Zheng et al., of incorporating the 

implementation of the mean-field approximation of the dense-CRF inference as a trainable layer within 

the FCN structure, is promising and worth exploring (Zheng et al., 2015). 
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APPENDIX 

Appendix A: SimpleNet Experimental Results - Tile 45 and Tile 105 

Hyper-
Parameter 
Modified 

Value(s) OA_45 OA_105 Training 
Time (sec) 

Baseline NA 93.84 88.14 11432 

Patch Size 65x65 93.77 87.97 22049 

Patch Size 85x85 94.41 89.27 36728 

Patch Size 125x125 93.52 88.33 81527 

Layer Depth 
(Removing) 

I-C1-B1-A-C2-B2-A-C3-B3-A-MP3 
-D1-O 

91.67 85.88 7312 

Layer Depth 
(Adding) 

I-C1-B1-A-C2-B2-A-C3-B3-A-C4-
B4-A-C5-B5-A-MP5-D1-O 

94.23 89.30 13674 

 

Layers 

(Adding MP3) 

I-C1-B1-A-C2-B2-A-C3-B3-A-

MP3-C4-B4-A-MP4-D1-O 

94.10 89.83 11710 

Layers 

(Adding MP2 

& MP3) 

I-C1-B1-A-C2-B2-A-MP2-C3-B3-

A-MP3-C4-B4-A-MP4-D1-O 

94.39 90.04 12028 

Layers 

(Adding MP1, 

MP2 & MP3) 

I-C1-B1-A-MP1-C2-B2-A-MP2-C3-

B3-A-MP3-C4-B4-A-MP4-D1-O 

94.33 90.13 12178 

Pooling Size 3,3,3,3 94.33 90.13 12178 

Pooling Size 5,5,5,5 94.86 90.94 12808 

Kernel Depth 32, 32, 32, 32 93.38 87.67 9974 

Kernel Depth 64, 64, 64, 64 93.41 88.19 16735 

Kernel Size 

(Dilation) 

3(1), 3(1), 3(1), 3(1) 91.09 85.30 9687 

Kernel Size 

(Dilation) 

3(1), 3(1), 3(2), 3(2) 92.04 85.54 9594 

Kernel Size 

(Dilation) 

3(1), 3(1), 5(2), 5(2) 93.07 87.44 13677 

Kernel Size 

(Dilation) 

3(1), 5(1), 3(2), 5(2)  92.67 85.74 12227 

Kernel Size 

(Dilation) 

3(1), 5(1), 5(2), 5(3) 93.79 88.11 12217 

Kernel Size 

(Dilation) 

3(1), 3(2), 3(2), 5(2) 92.82 87.11 9413 

Kernel Size 

(Dilation) 

3(1), 3(2), 5(2), 5(2) 93.78 87.55 11307 
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Kernel Size 

(Dilation) 

5(1), 3(2), 5(2), 5(3) 93.63 87.69 11740 

 
Learning 
Rate 

0.001, 0.0001 92.62 86.76 12221 

Learning 
Rate 

0.0001, 0.00001 92.96 87.51 12177 

Learning 
Rate 

0.000001, 0.0000001 93.64 87.89 12217 

Weight Decay 0.0001 93.58 87.43 12159 
Weight Decay 0.001 93.66 87.78 12170 
Number of 
Epochs 

200, 200 93.93 88.33 27808 

 

Appendix B: FuseNet Experimental Results - Tile 45 and Tile 105 

Downsampling Layer Experiments 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US OA 
Tile 45 

OA Tile 
105 

Train 
Time 
(sec) & 

CNCT 
1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

93.33 86.51 7465 

3x3 (16) 
[1,1,1] 

 
 

9x9 (32) 
[1,4,4] 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

 

92.85 86.77 9131 

9x9 (32) 
[1,4,4] 

 
 

NA 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

91.90 86.40 7204 

FEMS Layer Experiments 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US OA 
Tile 45 

OA Tile 
105 

Train 
Time 
(sec) & 

CNCT 
1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

NA/ Raw 
Band Input 

 
[32+4 =   
36 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

92.96 87.00 7126 
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3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

93.52 87.44 7495 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

93.33 86.51 7465 

 
Bottleneck Experiments (with size of smallest feature = 32) 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN  OA 
Tile 45 

OA Tile 
105 

Train 
Time 
(sec) CNCT 1st Cnv 

[D,P,S] 
2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

92.46 86.06 6879 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.40 86.49 6858 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.58 87.65 7563 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.56 87.34 6900 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

93.52 87.44 7495 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

5x5 (64) 
[1,2,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

92.98 86.36 7989 

Bottleneck Experiments (with size of smallest feature = 16) 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

DS BN US OA 
Tile 45 

OA Tile 
105 

Train 
Time 
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 CNCT 1st /2nd Cnv 
[D,P,S] 

2nd /3rd Cnv 
[D,P,S] 

3rd /4th Cnv 
[D,P,S] 

(sec) 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 
 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

2x2 
(6) 

 
 

4x4 
(6) 

92.72 86.04 6252 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

2x2 
(6) 

 
 

4x4 
(6) 

92.52 85.56 6237 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

2x2 
(6) 

 
 

4x4 
(6) 

92.97 86.59 6384 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

2x2 
(6) 

 
 

4x4 
(6) 

93.09 85.83 6757 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

3x3 (64) 
[2,2,1] 

2x2 
(6) 

 
 

4x4 
(6) 

92.27 86.18 6386 

Bottleneck Experiments (with size of smallest feature = 8) 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

FEMS 
[D,P,S] 

BN US OA 
Tile 45 

OA Tile 
105 

Train 
Time 
[TT]  CNCT 1st Cnv 

[D,P,S] 
2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

 
 

4x4 
(6) 

92.10 84.29 5977 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

4x4 
(6) 

 
 

4x4 
(6) 

90.68 82.85 6150 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(64) 

 
 

4x4 
(6) 

92.15 84.69 6193 

Upsampling Experiments 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

CNCT BN US OA 
Tile 45 

OA Tile 
105 

Train 
Time 
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 1st Cnv 
[D,P,S] 

2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

[TT] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(64) 

 
 

4x4 
(6) 

92.15 84.69 6193 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

4x4 
(6) 

 
 

4x4 
(6) 

92.10 84.29 5977 

 
3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

2x2 
(6) 
2x2 
(6) 
2x2 
(6) 
2x2 
(6) 

91.07 84.58 6770 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,2] 

 
 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[1,1,1] 

2x2 
(32) 
2x2 
(32) 
2x2 
(6) 
2x2 
(6) 

91.47 85.13 6523 

Experiments with Additional Loss 

Patch Size [128,32]; LR(Epochs): 10−4(80), 10−5(40) 

DS 
[D,P,S] 

CNCT BN US OA 
Tile 45 

OA 
Tile 
105 

Train 
Time 
(sec)  1st Cnv 

[D,P,S] 
2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
3x3 (32) 
[1,1,2] 

NA/ Raw 
Band Input 

 
 

[32+4 =   
36 feat.] 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,2] 

5x5 (64) 
[2,4,1] 

Loss 
+ 
 

4x4 
(6) 

92.81 87.59 7358  
[loss2 wt. 
= 0.7] 

3x3 (16) 
[1,1,2] 

 
3x3 (32) 
[1,1,2] 

NA/ Raw 
Band Input 

 
 

[32+4 =   
36 feat.] 

3x3 (64) 
[1,1,2] 

3x3 (64) 
[1,1,2] 

5x5 (64) 
[2,4,1] 

Loss 
+ 
 

4x4 
(6) 

92.29 86.59 7368  
[loss2 wt. 
= 0.5] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

NA/ Raw 
Band Input 

 
 

[32+4 =   
36 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

92.96 87.00 7126 
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3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

Loss
+ 
 

4x4 
(6) 

93.48 87.07 8123 
[loss2 wt. 
= 0.6] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (32) 
[1,1,1] 

 
 

[32+32 = 
64 feat.] 

3x3 (64) 
[1,1,1] 

3x3 (64) 
[2,2,1] 

5x5 (64) 
[2,4,1] 

4x4 
(6) 

93.33 86.51 7465 

Experiments with Learning Rate; 

Patch Size [128,32]; LR(Epochs): 𝟏𝟎−𝟒(80), 𝟏𝟎−𝟓(40) 

DS 
[D,P,S] 

CNCT BN US OA 
Tile 45 

OA 
Tile 
105 

Train 
Time 
(sec)  1st Cnv 

[D,P,S] 
2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.58 87.65 7563 

LR(Epochs): 𝟏𝟎−𝟓(80), 𝟏𝟎−𝟔(40) 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

92.44 86.00 7345 

LR(Epochs): 𝟏𝟎−𝟑(80), 𝟏𝟎−𝟒(40) 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.07 86.58 7349 

Experiments with Weight Decay; 

Patch Size [128,32]; LR(Epochs): 𝟏𝟎−𝟒(80), 𝟏𝟎−𝟓(40) WD = 0.0001 

DS 
[D,P,S] 

CNCT BN US OA 
Tile 45 

OA 
Tile 
105 

Train 
Time 
(sec)  1st Cnv 

[D,P,S] 
2nd Cnv 
[D,P,S] 

3rd Cnv 
[D,P,S] 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

93.46 86.72 8045 

WD = 0.001 

3x3 (16) 
[1,1,2] 

 
 

3x3 (32) 
[1,1,2] 

3x3 (16) 
[1,1,1] 

 
 

[32+16 = 
48 feat.] 

3x3 (64) 
[1,1,1] 

5x5 (64) 
[1,2,1] 

3x3 (64) 
[2,2,1] 

4x4 
(6) 

92.95 86.97 8266 
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Appendix C: Dense-CRF Experiments (2nd Batch) – Tile 45 and Tile 105 

𝛉𝛂 𝛉𝛃 OA – Tile 45 OA – Tile 105 

3 4 94.60 91.45 
3 6 94.62 91.45 
3 10 94.70 91.03 
3 15 94.51 90.41 
5 4 94.83 91.50 
5 6 94.75 91.22 
5 10 94.52 90.11 
5 15 93.78 88.37 
7 4 94.72 91.27 
7 6 94.53 90.86 
7 10 93.98 89.40 
7 15 92.95 86.21 

 
4 3 94.77 91.58 
4 4 94.84 91.51 
4 5 94.82 91.49 
4 6 94.76 91.27 
4 7 94.81 91.17 
5 3 94.90 91.48 
5 4 94.83 91.50 
5 5 94.75 91.37 
5 6 94.75 91.22 
5 7 94.70 91.01 
6 3 94.80 91.56 
6 4 94.79 91.45 
6 5 94.73 91.23 
6 6 94.68 91.02 
6 7 94.60 90.67 
7 3 94.77 91.50 
7 4 94.71 91.27 
7 5 94.65 91.04 
7 6 94.53 90.86 
7 7 94.50 90.60 

 

𝛉𝛄 OA – Tile 45 OA – Tile 105 

1 94.70 91.03 

3 94.70 91.03 

5 94.70 91.03 

7 94.71 91.02 

9 94.72 91.01 

 

𝐰(𝟐) 𝛉𝛄 OA – Tile 45 OA – Tile 105 

1 1 94.69 91.02 
1 3 94.68 90.96 
1 5 94.40 90.54 
5 1 94.65 91.06 
5 3 94.41 90.72 
5 5 93.62 88.90 
20 1 94.66 91.15 
20 3 93.94 89.83 
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20 5 87.49 82.89 

 

𝐰(𝟏) OA – Tile 45 OA – Tile 105 

1 94.42 90.70 

10 94.63 90.95 

20 94.67 90.96 

50 94.71 91.03 

80 94.69 91.03 

100 94.70 91.02 

150 94.66 91.02 

200 94.67 91.02 

500 94.65 91.07 

1000 94.66 91.06 

 

Appendix D: ReUseNet Experiments – Tile 45 and Tile 105 

Number of Loss 

Function in ReUseNet 

Weight of 

Objective 1 

TT (sec) OA- Tile 45 OA – Tile 105 

Single Loss 1 24534 92.66 86.29 

Double Loss 0.8 28711 95.06 88.29 
Double Loss 0.7 28920 95.01 88.57 
Double Loss 0.5 - 94.68 88.18 
Double Loss 0.3 28831 93.90 87.53 

 

Control Experiment TT (sec) OA45 OA105 

FuseNet_Scores+FuseNet2 15816 94.23 89.79 

 

Appendix E: Ground Reference Pixels Annotated per Class per Tile 

  Tile 32 Tile 45 Tile 78 Tile 82 Tile 100 Tile 103 Tile 105 

Built-Up 694810 1186802 1153967 890312 1499922 857494 844186 

Low Veg 881970 128933 197838 316407 54792 272643 484311 

Tree 601717 374808 266812 289433 214261 479736 449219 

Cars 15711 25331 28502 35557 37291 8075 31167 

Water 13671 292 10516 8092 22436 13630 4349 

Imp. Surface 347165 347805 319701 422154 350066 112563 358949 

Total 2555044 2063971 1977336 1961955 2178768 1744141 2172181 
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Appendix F: Classification Maps for Tile 103 (Result I) 

Tile 103 – SimpleNet  

 

Tile 103 – Ground Reference  

OA: 93.35    

Tile 103 – FuseNet  

  

OA: 92.88   

 

 

Legend 
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Tile 103 – SimpleNet+DenseCRF  

 

Tile 103 – Ground Reference  

OA: 94.53    

Tile 103 – ReUseNet  

  

OA: 93.61   

 

 

 

 

 

Legend 
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Appendix G: Classification Maps for Tile 103 (Result II) 

Tile 103 – SimpleNet  

 

Tile 103 – Ground Reference  

OA: 85.62    

Tile 103 – FuseNet  

  

OA: 93.24   

 

 

Legend 
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Tile 103 – SimpleNet+DenseCRF  

 

Tile 103 – Ground Reference  

OA: 86.10    

Tile 103 – ReUseNet  

  

OA: 93.29   

 

 

 

 

 

Legend 
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Appendix H: Confusion Matrices (Results I) 

SimpleNet Classification - Tile 32 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 681683 1695 302 4440 5101 31840 94.02 
Low_Veg 4818 878183 1912 7 0 393 99.20 
Tree 1473 346 599407 253 0 377 99.59 
Cars 119 0 0 9902 0 395 95.07 
Water 1446 3 64 1 8570 19 84.83 
Imp. Surf 5271 1743 32 1108 0 314177 97.47 
PA 98.11 99.57 99.62 63.03 62.69 90.50  

FuseNet Classification – Tile 32 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 682277 606 285 3919 9105 37314 93.02 
Low_Veg 4462 877948 2598 1 0 725 99.12 
Tree 1308 230 598786 85 61 1236 99.52 
Cars 409 0 0 10065 346 1342 82.76 
Water 1759 0 3 0 4159 134 68.69 
Imp. Surf 4595 3186 45 1641 0 306414 97.00 
PA 98.20 99.54 99.51 64.06 30.42 88.26  

SimpleNet + DCRF - Tile 32 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 684588 1094 48 4349 1199 23020 95.84 
Low_Veg 4797 880287 885 10 0 447 99.31 
Tree 985 540 600733 283 0 538 99.61 
Cars 40 0 0 8125 0 143 97.80 
Water 1471 0 5 0 12472 81 88.90 
Imp. Surf 2929 49 46 2944 0 322936 98.19 
PA 98.53 99.81 99.84 51.72 91.23 93.02  

ReUseNet – Tile 32 
 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 679477 34 632 2898 11213 22711 94.77 
Low_Veg 8126 881359 6860 28 387 3387 97.91 
Tree 1354 142 593689 82 544 1602 99.38 
Cars 755 0 154 11087 286 1235 82.02 
Water 0 0 0 0 0 0 - 
Imp. Surf 5098 435 382 1616 1241 318230 97.32 
PA 97.79 99.93 98.67 70.57 0.00 91.67  

SimpleNet Classification - Tile 103 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 824305 23993 104 2243 5167 10238 95.18 
Low_Veg 991 210947 1386 32 0 224 98.77 
Tree 2092 5895 478105 182 0 464 98.23 
Cars 1912 54 13 5308 0 655 66.84 
Water 896 0 124 4 8463 25 88.97 
Imp. Surf 27298 31754 4 306 0 100957 62.97 
PA 96.13 77.37 99.66 65.73 62.09 89.69  

FuseNet – Tile 103 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 799314 7056 308 1983 6597 4943 97.45 
Low_Veg 1256 224058 1214 49 0 46 98.87 
Tree 2932 10412 478159 264 55 374 97.15 
Cars 2220 589 31 5329 0 1083 57.60 
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Water 129 0 0 0 6978 1 98.17 
Imp. Surf 51643 30528 24 450 0 106116 56.22 
PA 93.22 82.18 99.67 65.99 51.20 94.27  

SimepleNet+DCRF - Tile 103 

 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 839906 22713 129 2382 6093 5276 95.83 
Low_Veg 429 211423 929 18 0 37 99.34 
Tree 1911 5140 478556 176 0 481 98.42 
Cars 1054 23 7 4786 0 263 78.04 
Water 20 0 72 3 7537 10 98.63 
Imp. Surf 14174 33344 43 710 0 106496 68.81 
PA 97.95 77.55 99.75 59.27 55.30 94.61  

ReUseNet – Tile 103 
 Built-Up Low_Veg Tree Cars Water Imp. Surf UA 

Built-Up 803927 4542 273 1966 7525 1292 98.10 
Low_Veg 1709 235310 1275 44 1827 204 97.90 
Tree 2931 5795 478082 404 749 329 97.91 
Cars 3953 495 15 5312 1491 698 44.40 
Water 0 0 0 0 0 0 - 
Imp. Surf 44974 26501 91 349 2038 110040 59.81 
PA 93.75 86.31 99.66 65.78 0.00 97.76  

 

Appendix I: Confusion Matrices (Results II) 

SimpleNet Classification - Tile 32 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 661186 9806 24 4649 692 194005 75.97 
Low_Veg 6370 860039 29 374 0 11800 97.89 

Tree 7172 11473 601624 57 0 1782 96.71 
Cars 415 0 1 9253 0 271 93.09 

Water 5854 18 39 752 12979 8754 45.71 
Imp. Surf 13813 634 0 626 0 130553 89.65 

PA 95.16 97.51 99.98 58.90 94.94 37.61  

FuseNet Classification – Tile 32 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 683210 10772 513 5042 13562 51398 89.37 
Low_Veg 2303 869057 807 21 3 947 99.53 

Tree 1065 685 600388 101 65 1459 99.44 
Cars 266 0 0 9269 2 9713 90.43 

Water 0 0 0 0 0 0 - 
Imp. Surf 7966 1456 9 1278 39 292648 96.46 

PA 98.33 98.54 99.78 59.00 0 84.30  

SimpleNet + DCRF - Tile 32 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 671785 5449 29 4935 0 212374 75.10 
Low_Veg 5362 869668 235 243 0 7273 98.52 

Tree 2240 5789 601349 50 0 788 98.55 
Cars 166 0 0 7820 0 99 96.72 

Water 1889 0 104 599 13671 893 79.69 
Imp. Surf 13368 1064 0 2064 0 125738 88.40 

PA 96.69 98.61 99.94 49.77 100.00 36.22  

ReUseNet – Tile 32 
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 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 681373 6159 383 2632 1083 42038 92.87 
Low_Veg 2740 874546 5410 16 0 343 99.04 

Tree 1378 394 595637 87 0 1145 99.50 
Cars 462 0 0 10837 0 1980 81.61 

Water 1166 17 241 0 12588 113 89.12 
Imp. Surf 7691 854 46 2139 0 301546 96.56 

PA 98.07 99.16 98.99 68.98 92.08 86.86  

SimpleNet Classification - Tile 103 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 764327 35188 5 2095 635 14777 93.55 
Low_Veg 1315 136143 13 186 8 196 98.75 

Tree 8574 76479 479697 323 6 492 84.82 
Cars 887 0 11 5031 0 223 81.78 

Water 4500 0 0 39 12981 1739 67.40 
Imp. Surf 77891 24833 10 401 0 95136 47.98 

PA 89.14 49.93 99.99 62.30 95.24 84.52  

FuseNet – Tile 103 
 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 810290 33251 187 2218 10438 6585 93.90 
Low_Veg 622 228193 1175 87 21 116 99.12 

Tree 2206 5619 478346 384 1107 460 98.00 
Cars 2325 159 21 4843 1958 824 47.81 

Water 0 0 0 0 0 0 - 
Imp. Surf 42051 5421 7 543 106 104578 68.48 

PA 94.50 83.70 99.71 59.98 0 92.91  

SimepleNet+DCRF - Tile 103 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 768565 32136 9 2675 352 12516 94.16 
Low_Veg 39 137836 10 199 0 51 99.78 

Tree 6592 76072 479655 328 0 438 85.18 
Cars 350 0 4 4076 0 111 89.76 

Water 4411 0 39 30 13278 1132 70.29 
Imp. Surf 77537 26599 19 767 0 98315 48.37 

PA 89.63 50.56 99.98 50.48 97.42 87.34  

ReUseNet – Tile 103 

 Built-Up Low_Veg Tree Cars Water Surf UA 

Built-Up 784326 20407 32 1915 738 2263 96.87 
Low_Veg 1584 239411 2536 13 0 187 98.23 

Tree 3213 3336 476837 398 113 489 98.44 
Cars 3422 306 113 5056 0 828 51.99 

Water 662 0 212 1 12779 106 92.87 
Imp. Surf 64287 9183 6 692 0 108690 59.44 

PA 91.47 87.81 99.40 62.61 93.76 96.56  

 

 

 


