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ABSTRACT 

Indoor scene shows board application in our daily life, such as navigation, mapping, disaster management 

etc. In order to meet the demands of these applications, the Indoor Mobile Laser Scanner (IMLS) is widely 

utilised for acquiring indoor information. This is due to IMLS system not only obtain point clouds at a 

sufficient level of detail and accuracy within a short period but also provides a continuous trajectory of 

device locations. To have a better understanding of the indoor scene, several objects like doors, windows 

and space subdivision are the object of this research, which provides important architectural structure for 

indoor environments. 

This thesis proposes a workflow to subdivide space based on opening detection results. Up to now, many 

opening detection methods have been demonstrated based on trajectory and modelling which leads 

complicating operations, high computational load and low processing speed because they need analysis 

numerous points in the dataset. In this research, I demonstrated a novel opening detection method which 

can efficiently detects both doors and windows by analysing scanlines. This method could be even used in 

real-time processing. 

After that, a two-step space subdivision method based on extracted openings is described. Firstly, the 

trajectory points are subdivided into different spaces. Secondly, the corresponding point clouds that are 

related to the trajectory points within same space are subdivided based on the detected doors. In the end, 

doors, windows and space subdivision results were saved as point cloud label, which will be used for further 

investigations. 

The workflow has been tested on the real dataset that collected by ZEB-REVO from GeoSLAM Company. 

Finally, the experimental results validated the completeness and robustness of the proposed methods under 

different indoor environment and different scanning paths. 
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 INTRODUCTION 

 Motivation and Problem Statement 

The Environmental Protection Agency has a survey of national human activity and it indicated that the 

average American spends 87% of their life in indoors (Klepeis et al., 2001). It suggests the great potentials 

and broad applications of indoor scene in daily life. For instance, crime scene investigation (Buck U et al., 

2013), cultural heritage (Xu et al., 2014), indoor navigation (Peter et al., 2012) and mapping (Khoshelham 

& Elberink, 2012).  

In order to meet the demands of  these applications, laser scanners and RGB-D sensors have been widely 

utilized to acquire 3D point clouds in indoor environment. This is because they can acquire accurate 3D 

points within a short period. The RGB-D cameras are inexpensive and lightweight sensors that provide both 

color and depth information (Dos Santos et al., 2016), but the quality of  acquired data is constrained by the 

illumination condition (Kerl et al., 2015) while laser scanners can obtain three-dimensional point cloud data 

directly in a fast and detailed way (Sahin, 2015). The main types for laser data collection are Mobile Laser 

Scanner (MLS) and Terrestrial Laser Scanner (TLS). Unlike TLS, which needs tie points and a series of  

manual works, MLS can obtain sufficient level of  detail and accuracy within a short period. Hence, we use 

MLS to study indoor scenes in this research.  

Because of  the large and complex dataset, the lack of  texture information as well as the noise and occlusions 

the procedure of  classification is a primary challenging task (Hu & Ye, 2013). Few classification methods 

have been proposed to identify indoor scene by applying deep learning (Qi et al., 2016), boosting (Rottmann 

et al., 2005) or search-classify (Nan et al., 2012). However, these methods are based on the whole dataset, 

which needs complicating operations and leads to high computational load and low processing speed. 

Hebel & Stilla (2008) and Hu & Ye (2013) showcase that the processing based on a scanline can be executed 

comparatively fast and uncomplicated compared to 3D analysis. During scanner captures the scanline each 

time, we could classify it directly. Consequently, the methods would be applicable in online data preparation 

for subsequent analysis or real-time classification. Nevertheless, these approaches operate to detect objects 

in airborne laser scanner data. In a word, analyzing scan line could be an efficient, real-time algorithm, even 

can be used in online processing.  

One main drawback for the single scanline (see Figure 1-1 (b)) is that it provides limited information to 

recognize indoor scenes for occlusion, because it is represented by segments composed of  a set of  points. 

To overcome this drawback, I try to join analysis of  trajectory and neighboring scanlines to get fine details 

of  the indoor objects. Up to now, several algorithms have been proposed based on trajectory for the 

detection of  indoor object or different places (Díaz-Vilariño et al., 2017; Koppula et al., 2011; Rottmann et 

al., 2005). However, these methods just look at the shape of  trajectory which has limited capability to 

discriminate object that does not interact with the trajectory, such as the doors which are passed by the 

operator. 

Thus, the analysis by joining trajectory and point cloud data is presented in this research. Figure 1-1 (a) shows 

a part of  indoor point cloud and the corresponding trajectory of  the scanning system. Each scanline 
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connects with a point in trajectory by timestamp which could help to find their neighbor scanlines. The 

diacritical objects can be extracted by analyzing local geometric regularity in single scanline and their 

neighbors. This way, I can identify opening like walls and windows. Even the point cloud can be partitioned 

into different spaces based on the extracted information and trajectory. 

 
                                            (a)                                                                                 (b) 

Figure 1-1: The example of  point clouds (a) (grey: point cloud and red: trajectory) and 2D scanline (b) 
(blue: points and red: scanner location) from Zeb-REVO. 

 Research Identification 

The goal of this research is to detect openings and subdivide space based on scanline analysis, and partition 

space by joint analysis of trajectory, point cloud and extracted door. It can be used in many specific 

applications. Typical examples are simultaneous update of indoor scene in mobile robots and Simultaneous 

Localization and Mapping (SLAM). 

1.2.1. Research Objectives 

The overall objectives of  this research are to extract openings (doors and windows) and partition space. To 

meet the general objects, I subdivided it into the following sub-objectives: 

1. Design and implement the appropriate opening detection methods that are capable of  distinguishing 

door and window candidate in single scanline. 

2. Use neighboring scan lines for analysis to extract doors and windows. 

3. Space partitioning by joint analysis of  trajectory and doorframe. 

4. Analyzing extracted results.  

1.2.2. Research Questions 

The following research questions should be answered in order to achieve the above objects. 

Sub-objective 1: 

• Which objects can be extracted and detected in single scanline? 

• Which features can be utilized in detection processing? 

• What is the distribution of the noise and how can it be removed? 

 Sub-objective 2: 

• Will the adjacent scan line beneficial to recognize indoor objects? If it is, how many? 

• How to use adjacent scan line to improve detection results? 

 Sub-objective 3: 

•  Are the trajectory and extracted objects useful to special partitioning? 
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 Sub-objective 4: 

• How to evaluate the results? 

 Innovation  

The innovation of this research lies in design, implement a novel door and window detection method based 

on single scan line and their neighbours. The method based on scanlines will reduce the dimensionality of 

algorithm and processing time. Consequently, this method could be applied to online processing, SLAM 

and mobile robots.  

 Thesis Structure 

There are five chapters in this thesis. This chapter is gives a general concept regarding motivation, research 

objects, questions and innovation. Some relevant works are presented in Chapter 2. Chapter 3 describes the 

designed methodology and parameter analysis. The fourth chapter shows the performance of a set of steps 

in two datasets and discusses the results. The final chapter contains conclusion and recommendations.  
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 LITERATURE REVIEW 

 
This chapter reviews the existing classification and segmentation methods. I start with indoor 3D acquisition 

sensors followed by a brief description. Two different scanners are described and compared in this section. 

Several popular indoor laser scanners are also provided. After that, some state-of-the-art methodologies of 

point cloud will be presented in the two main aspects: segmentation and classification. Moreover, a short 

summary of literature review is given in the end. 

 Indoor 3D Acquisition Sensors 

There are two basic scanners for optically measuring which have been widely utilized to acquire indoor 3D 

information: RGB-D cameras and laser scanner. This is because they can accurately and robustly acquire 

3D points within a short period. 

2.1.1. RGB-D Camera 

The RGB-D camera is a specific type of depth sensing devices that work in association with RGB camera, 

can augment the conventional image with depth information in a per-pixel basis (Agapito et al., 

2015).  RGB-D sensors, such as Microsoft's Kinect as in Figure 2-1 (a), use RGB camera either combined 

with stereo sensing or time-of-flight laser sensing to generate depth estimates that can be associated with 

RGB pixels (Henry et al., 2010).  Hence, the point cloud that is constructed the depth image can have 

additional colour feature.  

As a light-weight and low-cost scanner, RGB-D camera becomes an attractive alternative to laser scanners 

in application areas such as object detection, cultural heritage conservation and indoor mapping. Pham et 

al. (2015) proposed a method that uses higher-order and hierarchical CRF model for semantic labelling in 

3D indoor scene. Quintana et al. (2016) demonstrated a novel approach that based on detection of 

rectangular point cloud data gaps to recognize open and closed doors by using the information provided by 

both RGB camera and 3D laser scanner. A graphical model that captures various features and contextual   

relations for scene understanding was presented by Koppula et al. (2011). 

However, the limitation of RGB-D scanners, as a sort of active sensing devices, have a very limited 

measurement range and colour features rely on captured images. Ishikawa et al. (2016), Susperregi et al. 

(2013) and Wen et al. (2014) used a multiple sensor fusion approach to cope with this limitation. And the 

result of these research shows that using complementary sensors and fusing their results could obtain high 

density and accuracy 3D data. 

2.1.2. Laser Scanner 

The term laser scanner covers time-of-flight (TOF) and phase-based laser scanners. TOF scanner measure 

the light traveling time from a source to a reflective target and back to the source (Vosselman & Maas, 2010). 

Compare to the RGB-D scanner, Laser scanner can obtain dense and accurate three-dimensional point 
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cloud directly, and it greatly improves the speed of data collection. Currently, the main types for laser data 

collection are divided mainly into two techniques: Terrestrial Laser Scanning (TLS) and Mobile Laser 

Scanning (MLS).  

Terrestrial Laser Scanners, like Leica C10 in (b) perform from a static position during the data acquisition. 

It is feasible for detailed small-area surveys having a typical radius for a high-density scan of less than a few 

tens of meters (Holopainen et al., 2013). Hence terrestrial laser scanners are being used more frequently for 

the reconstruction of building models, cultural heritage and civil engineering. But it is time-consuming for 

data acquisition of TLS due to the need for tie points and a series of manual works. Several authors have 

proposed different strategies for point cloud classification by using terrestrial laser scanning data. For 

example, Luo & Sohn (2013) used a conditional random field for line-based classification that labels TLS 

point clouds into vertical object, ground, tree and low objects.  

Mobile laser scanning is an emerging technology capable of obtaining sufficient level of detail and accuracy 

within a short period. MLS can obtain sufficient level of detail and accuracy within a short period. Many of 

the applications involve mobile mapping as well as indoor modelling are use mobile laser scanner in data 

acquisition (Kukko et al., 2012). In general, the mobile laser scanner has to be supplemented by GPS unit 

and Inertia Measurement Device (IMU) to acquire position information.  

Indoor mobile laser scanners are usually mounted on backpacks, push-car or held by hand that can move 

with operator. As illustrated in Figure 2.1 (c), the ZEB-REVO is a light-weight handheld laser scanner which 

consists of a 2D laser range scanner coupled to an IMU mounted on a motor drive. During the 

measurement, the rotating scanner head scans the surrounding with a high precision laser which captures 

more than 40,000 surface points per second. In the end, this system saves dataset as raw 2D points and 

inertial data. For generate 3D point clouds, it combines the 2D data with the IMU information by using a 

simultaneous localization and mapping (SLAM) algorithm.  

   
(a) Microsoft Kinect                               (b) Leica C10                         (c) ZEB-REVO 

Figure 2-1: Indoor laser scanner 

    Segmentation 

Segmentation is the process of detecting subsets in point clouds that are characterized by one or more 

characteristics in common. Point cloud segmentation plays an important role in object recognition and 

detection, since it can support classification as well as provide further feature extraction (Aijazi et al., 2016). 

Nowadays, some techniques for the segmentation have been developed for the extraction of 3d planes. 

There are also several methodologies working on 2D laser scanning data.  
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2.2.1. Segmentation into 3D Planes 

Some of the segmentation methods based on geometrical and radiometric characteristics, such as point 

position, locally estimated surface normal, residuals of best fitting surface procedures, points reflectance, 

etc. (Grilli et al., 2017). Shui et al. (2016) presented a coarse-to-fine planar shape segmentation method that 

based on region growing and RANSAC to segment planar shapes from complicated indoor scenes 

containing. A robust randomized shape detection algorithm based on random sampling to detects planes, 

spheres, cylinders, cones and tori was demonstrated by Schnabel et al. (2007). In another study, Zancajo-

Blazquez et al. (2015) proposed a methodology for the segmentation based on Principal Component 

Analysis (PCA) with the covariance method and the computation of the eigenvalues and eigenvectors. These 

methods require a fine-tuning of different parameters depending upon the nature of data and applications 

(Grilli et al., 2017).  

Deep learning and machine learning have emerged as another popular method for semantic segmentation. 

Qi et al. (2016) design an efficient and effective neural network (PointNet) for part segmentation and 

semantic segmentation. Tschannen et al. (2016) proposed a highly structured CNN architecture that 

combines a tree-like CNN-based feature extractor, a random layer realizing a radial basis function (RBF) 

kernel approximation for semantic segmentation. The weakness is these methods need large labeled data 

sets and requires parameter optimization. 

2.2.2. Segmentation of 2D Laser Scans 

There are three different segmentation algorithms for 2D laser scanning data: Successive Edge Following 

(SEF), Line Tracking (LT) as well as Iterative End Point Fit (IEPF) (Siadat et al., 1997; Nguyen et al., 2005; 

Peter et al., 2017). There are several methods are proposed to improve these segmentation algorithms. A 

kind of segmentation method based on testing a range of residuals was used on getting segment for single 

scan line which can produce accurate linear segments and preventing tilted segments (Peter et al., 2017). 

Hebel & Stilla (2008) use RANSAC method to fit line segments of 2D points in a scan line. According to 

their study, the number of inliers and the average distance of all inliers to the line are used to evaluate the 

quality of the fitted straight line. 

 Classification 

The classification has been a core topic of laser scanning as well as computer vision for many years. The 

goal of the classification is to define and assign points to specific classes according to different criteria (Grilli 

et al., 2017). Many researchers have tried to use various methods to classify point cloud. 

A fast scene classification algorithm to identify and categorize indoor environments based on onboard 

sensors was proposed by Shi et al. (2011). The strategy was based on a support vector machines classifier as 

well as an efficient feature selection algorithm.  

A search-classify approach is another method used for indoor scene understanding and point cloud 

classification(Nan et al., 2012). The key idea of this technique is to interleave the computations of 

segmentation and classification of the scene into meaningful parts of object. The algorithm can fit templates 

to objects, and is robust in noise and clutter. However, the drawback of this method is that the template 

fitting uses the upward direction with respect to the floor, which means objects not obey this assumption 

will yield wrong classification result. 
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In another study, Mura et al. (2014) proposed a method that combines occlusion-aware process and 

diffusion process for automatic reconstruction of indoor environment. It was concluded that this method 

is robust against clutter and occlusions, but this method did not detect opening area like window and door, 

neither perform well to recognize slanted walls, ceiling of different heights and staircases.  

Another study by Mattausch et al. (2014) used a patch similarity measure based on shape descriptors and 

spatial configurations of neighbouring patches to detect repeated indoor objects, like chair, cupboard, lamps 

and more. The method did not need any training and labelled dataset, and robustly filters out noise as well 

as effectively reduce computational cost and memory requirement, but the weakness is that it cannot 

represent small object that have many planar regions.  

In comparison, the processing based on scan line will faster and simpler. Hu & Ye (2013) proposed a 

Douglas-Peucker algorithm for segment the scan line into segment objects based on height variation and 

set a simple rule-based classification to distinguish building and non-building in outdoor environment. The 

authors claim the method is still needed 2D or 3D neighbourhood to meet higher detection quality. But the 

rules of classification it too simple to appropriate for analysis indoor scene which has complex, occlude 

environment, since it just considered the length of segments and the distance from points to digital elevation 

model.  

In another study, use of real-time capable filter operation that based on random sample consensus to 

distinguish clutter and men-made objects was demonstrated by Hebel & Stilla (2008). According to their 

study, a line-growing algorithm was used to form a connect surface in consecutive scan lines. It was 

concluded that 3D classification methods are time consuming and high algorithm complexity.  

As for door detection, Díaz-Vilariño et al. (2017) presented a method to detect local minimum of vertical 

distances based on a combination of trajectory. And Ochmann et al. (2014) set the rules to detect opening 

doors based on analysis the points on the overlap area. A method that use the point behind the detected 

façades planes is described by Tuttas & Stilla (2009). Another door detection method based on the detection 

of rectangular point cloud data gaps in the wall planes is proposed by Quintana et al. (2016). 
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 RESEARCH METHODOLOGY 

This chapter is organized as follows: Section 3.1 gives an introduction to the overall methodology to meet 

the research objectives. Following this, each step is described in detail. A description of the data acquisition 

is given in Section 3.2. Section 3.3 introduces the process of data pre-processing. The method of 

segmentation is presented in Section 3.4. Section 3.5 is devoted to illustrating the detail of extracted features. 

A final step is classification, how to classify point cloud, join analysis of neighbouring scanlines and more 

details which will be illustrated in Section 3.6.   

 Introduction 

The general framework of this research is shown in Figure 3-1. The dataset which contains the point clouds 

and the trajectory was acquired by the 2D laser scanners. In order to determine the effectiveness of real-

time processing, pre-processing is used to restore the scanlines. After that, segmentation and feature 

extraction are processed on each scanline separately. Some points, such as doorframe points, are 

differentiated and extracted to assign semantic labels by analysing the features of segments. To acquire 

reliable classification results, the neighbour scanlines will join analysis after project the scanline to world 

coordinate system. In the end, doors, windows and space subdivision results will be saved as point clouds 

labelling, which will be used for further investigations. 

It should be noted that the proposed method works on SLAM-based laser scanner, like ZEB-REVO used 

in this research, contains accurate and integrates scanlines and trajectory during data acquisition. This is 

because the scanlines’ orientation and translation with respect to the world coordinate systems origin will 

not be identified if without SLAM algorithm. 

Figure 3-1: The workflow of classification methodology 

Indoor point cloud 

Scanline {SL1}  

Segmentation 

Features extraction 

 

Classification 

Semantic Label 

Pre-processing 

Scanline {SLn}  Scanline {SLi}  
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 Data Acquisition 

The datasets were acquired by Zeb-REVO, a hand-held laser scanner, which has been described in Section 

2.1.2. It is equipped with a laser range scanner, an IMU and a motor drive. The characteristics of Zeb-REVO 

laser device are shown in the Table 1. The laser in this scanning system is a 2D time-of-light laser with 270 

degrees of view, 905 nm laser wavelength, up to 30 m scanning range and ±30mm scan range noise.  

Table 1:Technical characteristics of the Zeb-REVO according to the manufacturer datasheet. 

Point per scan line 432(0.625°interval) 

Field of view 270°*360° 

Scan rate 
100 lines/s 

43200 points/s 

During the data acquisition process, the rotating 2D scanner head rotates around the roll axis of the system 

and scans the indoor environment with a high precision scanline which captures around 100 scanlines per 

second. The quaternion is converted to Euler angles (roll, pitch and yaw) to represent how the pose of 

scanner changed during data acquisition, which is because they are conceptually easier to understand. Each 

value of Euler angles represents the rotation in degrees around one of the x, y and z axis in world coordinate 

system. 

The scanner orientation changing over time can be seen in Figure 3-2. The roll angle changed regularly as 

the scanner head rotate steadily. The pitch angle always keeps around 0°, this is because operator hold the 

instrument perpendicular to the floor. The changing yaw angle indicates the changes in horizontal 

orientation of the operator. 

 
Figure 3-2: An example of Scanner’s attitude (blue: roll angle; red: pitch angle; yellow: yaw angle). 

 Data Pre-processing 

Prior to segmentation, the time stamp is needed to split the whole point clouds into scanlines. The main 

intention of this step is restoring the data as it actually was like during data acquisition. A general diagram 

presenting the pre-processing process is shown in Figure 3-3. 
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 Figure 3-3: Flow-chart of pre-processing illustrated with a sample point cloud. (a) Raw sample 

point clouds coded with height values (b) 3D view of whole scanlines (different colours label 

different scanlines) (c) Projection result of a horizontal scanline. 

3.3.1. Method Description 

As described in Section 3.1, the input data of this research is 3D point clouds. The main idea is use time 

difference between neighbour points to find timestamp. Figure 3-4 shows an example of single scanline. In 

principle, the constant rotating scanner will send out laser beam each time when it rotated 0.625° in same 

scanline, and it will stop to send out laser beam until rotate 90° after this scanline (as shown in Table 1). 

Consequently, the time difference value between points within the same scanline is smaller.  

                    
Figure 3-4: Example of scanning angle in 3D (left) and 2D (right). 

3D point clouds 

Finding time stamps  

3D scanlines 

Rotation matrix 

2D scanlines 

(a) Raw Sample Point Cloud 

(b) 3D Scanlines 

(c) Example of a 2D horizontal Scanline 
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However, in practice not all scanlines have exactly 432 points, since surfaces that are more than 30m away 

from the scanner will not result in a valid signal. This situation may let bigger time difference within the 

same scanline. Considering this fact, a threshold thtime can be used to defined if the time difference of two 

neighbour points is large enough to separate point cloud into two scanlines. Once the time difference is 

higher than the threshold we conclude that the times stamp is between their corresponding times. 

Once the 3D scanlines are extracted, they are projected into 2D space, which are the input of segmentation. 

Projection is a procedure that restore the data as it actually was like during data acquisition. This step in 

other words can be seen as the transformation from world coordinate system to scanner coordinate system. 

Suppose the position of the scanner in world coordinates is P0, the scanline points in world coordinate is 

Pw [Xw, Yw, Zw] and it corresponding position in scanner coordinate system is Psl [Xsl, Ysl, Zsl]. The 

coordinate value of Psl can be calculated by Equation 3.1: 

[

𝑋𝑠𝑙
𝑌𝑠𝑙
𝑍𝑠𝑙
1

] = [
𝑅 −𝑅𝑃0

0 1
] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                                                    (3.1) 

Where R is the rotation matrix that converted from quaternion. The list of parameters used during pre-

processing is shown in Table 2.       

  

Figure 3-5: The example scanline before (left) and after (right) projection. 

Table 2: Parameters used in the pre-processing. (Default parameters shows in white rows) 

Parameter Name Description 

thtime The threshold of time difference to find out different scanlines 

3.3.2. Parameter Analysis 

The parameter thtime depends on the scanning system. Time difference, in general, is related to the scanning 

frequency. The Figure 3-6 shows the time difference between points in a 3-d dataset with 5000 points. The 

vertical (y) axis represents the time different, while the horizontal (x) axis represents the sequence of inputted 

point 1,2 …, 5000. It supports the fact that the time difference between scanlines will be larger than 
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neighbour points within same scanline obviously. After analysing the plot of time difference, we set thtime as 

2.25*10-3. 

 

Figure 3-6: The time difference of neighbour points 

To improve and check the quality of the scanline, the eigenvalues (λ1, λ2, λ3) can be applied to evaluate the 

result of pre-processing. In point clouds, the eigenvalues represent the variance of the coordinates of all 

points along the eigenvector. Eigen-features that derived from eigenvalues are commonly used to describe 

the local geometric characteristics as well as present check and prove whether the local geometry is planar, 

spherical and so forth (Lin et al., 2014). The basic assumption of the scanline is: if all points belong to the 

same scanline, they should lie on the same plane. In order to describe the geometric characteristics and 

indicate whether the geometry of an extracted single scanline is planar, eigenvalue is applied to evaluate the 

result of pre-processing. If certain scanlines are considered as not on the same plane, which means there are 

at least two scanlines in this extracted scanline point set. Therefore, a smaller threshold will be used to split 

it, and use eigen-features to analyse new the result again. 

  Segmentation 

In indoor environment, typic objects, like ceiling, floor as well as wall, will present as straight-line segments 

within the scanline. Moreover, segments can carry more information than analysing the point distribution 

in a local neighbourhood, and some segment features, such as the line vector, are stable and useful for 

classification (Vosselman et al., 2017). 

3.4.1. Method Description 

In this research, a line segmentation method was used to split single scanline into linear segments. The result 

of pre-processed 2D scanline, was used as input (as shown in Figure 8 (f)). This segmentation approach first 

used a number of points to fit a line and accepted it as a candidate if the mean values of a range of residuals 

is lower than a metric threshold. The following step combined the results of forward and backward 

processing to produce accurate linear segments and prevent tilted segments. The points will be labelled as 

belonging to different segments after the segmentation process. The detail of this algorithm was described 

in (Peter et al., 2017). Table 3 contains a list of the parameters used in the segmentation process with a brief 

description. 
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Table 3:Parameters used in the line segmentation process. (User-specified parameters shows in grey rows) 

Parameter Name Description 

minLen Minimum number of points in a segment considered to form a 
reliable segment. 

percentage The percentage of points (which are part of the segment) to use 
for testing 

N The number of points being used for initialization of a segment 

minTH Minimum number of mean distances above thresholds 

 σ A metric threshold 

3.4.2. Parameter Analysis 

As mentioned in the previous section, there are four main parameters which effect the result of 

segmentation. For analysis of the effect of different parameters and make a reliable visual comparison. Only 

varying one of the parameters where varied each time while keeping the others constant. Hence, it was 

repeated four times and the value shows in below. 

Table 4．Different segmentation parameter combinations 

In the implementation, different result is plotted (as shown in Figure 3-7) corresponding to the parameter 

combination respectively. The input parameter minLen affect if there are some small or unreliable segments 

to be discarded. It also can be seen as a threshold to remove small segments and apparent anomaly points. 

Compared the result of Figure 3-7 (a) and Figure 3-7 (b), the segment 5 in Figure 3-7 (a) was discarded. 

Hence, small segments will be discarded when we set big minLen. Figure 3-7 (c) shows the influence of the 

percentage; bigger the value of percentage, easier the segment be over-segmented. Hence, the segment 5 and 12 

in Figure 3-7 (a) where over-segmented when compare to the Figure 3-7 (c). For bigger minTH, smaller 

segments were discarded or under-segmented, like the segment 5 in Figure 3-7 (a) was discarded when 

compare with the Figure 3-7 (d). As for σ, I found small threshold might lead over-segmentation, like the 

segment 12 in Figure 3-7 (a) is over-segment into segment 13 and 14 in Figure 3-7 (e). It can be concluded 

that the first parameter combination not only can distinguish different segment but also identify short 

segment (like segment 4 in Figure 3-7 (a)). Note that, although it may generate over-segmentation result, it 

can extract most part of the segment as one segment. 

 

 

 

No. minLen percentage minTH σ 

1 3 0.15 2 0.02 

2 5 0.15 2 0.02 

3 3 0.30 2 0.02 

4 3 0.15 4 0.02 

5 3 0.15 2 0.01 
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                           (a) Best result                                                 (b)  Influence of  minLen, minLen = 5 

        (c) Influence of  percentage, percentage=0.30                            (d) Influence of  minTH, minTH=4 

                        (e) Influence of  σ, σ=0.01                                             (f) Raw example scanline 

Figure 3-7: Segmentation results for different combinations of the input parameters (plot (a) - (e) related 
to each parameter combination in Table 4 respectively, different colours label different scanlines) 
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   Feature Extraction  

Generating features is an essential task because it can help us gain knowledge about the local environment 

around a segment. In this section, the features are achieved by analysing the geometric features and local 

contextual information, which could be used as input to build classifier in the next section. 

Suppose we are given a number of segments 1, …, i that are extracted from one scanline. The segment 

features that are proposed in this section are separated into two types: segment features and features of a 

pair of segments. Segment features derived from analysis the point distribution in same segment. While 

another feature type describes the relation between a pair of segments. 

For each segment i, the segment features that used in my research are summarized in the flowing: 

1. Segment length Li:  

The Euclidean distance between first point and last point of segment i  

2. Segment size Si:  

The number of points in the segment i 

3. Normal vector and line vector of segment i: 

To estimate normal vector and line vector, I use eigenvalues that generated by PCA (Principal 

component analysis) of segment.  

4. Distance between scanner location and endpoints li: 

The Euclidean distance between centroid and endpoint (first point or last point) of segment i (as 

shown in Figure 3-8). 

5. The centroid of the segment i:  

We calculate the average values of the coordinate of points in the segment i. It can be seen as the mean 

distance from scanner position to the segment. 

6. Perpendicular distance from centroid to segment d0i: 

Let 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 be the linear equation of the segment that passes through those points, where a 

and b are element of normal vector. The distance can be obtained by Equation 3.1: 

𝑑 =
⃓𝑎𝑥0+𝑏𝑦0+𝑐⃓⃓

√𝑎2+𝑏2
                                                     (3.1) 

Where x0 and y0 are the scanner position. 

 

Suppose that segment j is the neighbour segment of segment i. The features of a pair segments are showing 

below: 

1. The scanning angle between segments θ: 

The angle is intuitively illustrated in Figure 3-8. It is defined with the scanner position being the vertex, 

and the nearest point of a pair of segments on the legs.  

2. Perpendicular and parallel: 

We can produce topological relations between a pair of segments based on included angle of normal 

vector. The angle between a pair of segments was calculated using: 

𝜃 = 𝑎𝑐𝑜𝑠⁡(
a⃗ ∙b⃗⃗ 

|a|∙|b|
)                                                       (3.2) 

Where θ is the angle between segments, 𝑎  and 𝑏⃗  are the normal vector of segments respectively. To find 

a segment parallel or perpendicular to another, we use a range variable of 4° considered in this case. 

Since it is rare to find perpendicular/parallel definitely. 

 



 

17 

3. Closest distance between neighbor segments dclosest: 
The Euclidean distance between nearest point of segment i and j. 

 

 

 

 

 

 

 

 

Figure 3-8: Example of neighbour segments 

    Classification 

The main task of classification is to label 𝐿 ∈ ⁡ {1,…𝐾} for each point. In this research, we are interested in 

doors and windows and space subdivision information. Hence, how generated features can be used to 

extract semantic information is the main problem. Here, we integrate generated features and our knowledge 

of the indoor environment to detect objects based on scanline analysis. 

3.6.1. Ceiling/floor Distance Function 

This proposed function is used to extract the distance from scanner to ceiling/floor (scanner height) which 

can be helpful for following classification. For example, distinguishing windows from opening detection 

due to the distance between window and floor.  

The scanlines contain information about the surrounding environment. However, scanlines that are acquired 

in different roll angles always show different distributions and provide different information in indoor space 

(As shown in Figure 3-9). For example, horizontal scanline shows mainly information about the walls, and 

the vertical scanline shows the information about ceiling and floor normally. Unlike slant scanlines that may 

scan the wall beside of the operator, vertical scanlines that are acquired by ZEB-REVO always acquires the 

point in front of the operator. Hence, vertical scanline is a good choice to find the distance from scanner to 

ceiling or floor.  

3.6.1.1. Method Description 

In principle, the vertical scanlines’ roll angle should be 90°/-90°. However, it is hard to find the exactly 

vertical scanlines. Therefore, I use an angle range th_angle to extract some scanlines that are nearly vertical.  

It should be noticed that these distances can only be acquired each time when the scanline is considered as 

vertical. 

dij 

θ 

i 

j 
o 

li 
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(a) 

 
(b)                                                  (c)                                                   (d) 

Figure 3-9: Example scanlines in different roll angles. (a) the overview of these different scanlines in 3D 
dataset. (b) roll angle=87.4098° (c) roll angle=177.9159° (d) roll angle=-162.6193° (black point is scanner 
position). 

Figure 3-9 provides an example of nearly vertical scanline. In 3D space, it is easy to identify ceiling and floor 

segments based on the normal vector and z value of the segment. However, as for 2D scanline (Figure 3-9 

(b)), it is hard to identify ceiling/floor segment since it lost both height information and top-down direction.  

The main idea to solve this problem is to project the direction vector of z-axis [0,0,1] to the 2d plane. Since 

if ceiling and floor planes are perpendicular with z-axis in 3D space, ceiling and floor segments will also 

perpendicular with projected vector V’ in 2D space. Moreover, other features, such as segments’ line vector, 

are also used in ceiling/floor detection. The process of this function is executed in the flowing steps: 

1. Get the vector V’ by project 3d vector [0,0,1] to the 2d plane. 

2. Find the horizontal segment above or below the centroid based on vector V’. 

3. Find the most reliable segment by analysis candidates. 

4. Use the roll angle of scanline to find the accurate distance. 

Figure 3-10 shows an example of vertical scanline. The vector V’ was projected by projection matrix (as 

specified in Section 3.1.3). Second step is to generate ceiling/floor candidates. In this step, segments are 

assigned as candidates while the included angle between line vector and vector V’ in the threshold th_vertical. 

Let vector vs link from centroid of scanline to the centroid of segment. Since vector V’ always point to the 

ceiling, if the vector vs shows the same direction with V’, which means this segment could be ceiling, and 

vice versa. In this example, the ceiling candidates are segment 8, 7 and 6. Meanwhile, the floor candidates 

are segment 1, 2 and 3. In order to find most reliable ceiling or floor segment, we considered segment length, 
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direction distance from centroid o to the segment and the spatial relationship. For some segments with 

length (Li) less than 1m, are judged not likely to be ceiling or floor. Although the segmentation method may 

generate over-segmentation result, the method will generally generate a long sub-segment and some short 

sub-segments rather than several mid-length segments (have discussed in Section 3.4.2). Therefore, this rule 

can help us remove some short segments, which might be light or pipeline in indoor environment. After 

short segments are removed, the direct distance d0i are calculated as the candidate distance from centroid to 

ceiling/floor. There are several situations in extracted distances: 

• More than one candidate distances from centroid to ceiling/floor: 

If the distance difference within a small threshold, let the mean of these distance be the final 

distance.  

If not, let line Lo parallel to vector V’ and passing through the centroid of the segment. Finding the 

closest segment S’ to line L0 and let d0i of the segment S’ as the final distance. 

• Only one candidate distance: let d0i be the final distance. 

In the last step, we use roll angle to adjust the distance to ceiling and floor in 3d space. Let th denote the 

roll angle and the adjusted distance is:  

𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = cos(|𝑡ℎ| − 90) ∗ 𝑑∗                                                        (3.3) 

Where 𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is the adjusted distance, d* is either of the dc and df. 

 
Figure 3-10: Example of a vertical scanline (different segment shown in a different colours; red point: 
scanner location; red line: projected direction vector of z-axis). 

Table 5: Parameters used in the ceiling/floor distance function. 

Parameter Name Description 

th_vertical Angle range th_angle to extract nearly vertical scanline. 

3.6.1.2. Parameter Analysis 

The angle range (th_vertical) is used for vertical scanline extraction.  If we set small value of th_vertical, it is 

possible miss the vertical scanline. In this scanning system, the roll angle difference between neighbour 

scanlines about 2°. Hence, we let th_vertical =2°, which means we are searching the scanline with roll angle 

in [88° 92°] or [-92° -88°]. 

3.6.2. Occlusion Function  

This section proposed a method to detect the occlusion based on single scanline. Although occlusion 

relations were not used for object detection and spatial subdivision, it is an important information in indoor 

reconstruction, which can fill the architectural structures later. Figure 3-11 shows an example of the 3D 

occlusion. It can be observed that a part of the wall plane is occluded by door plane. But in the 2D scanline, 

this occlusion relation shows like Figure 3-11(right). 
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Figure 3-11:  The example of occlusion in 3D plane (left, by manually extracted, red: door; blue: walls; yellow: 
floor) and 2D (right, different colour stands for different segments)  

3.6.2.1. Method Description 

Here, we only extract the candidate of occlusion relation between neighbouring segments, since it is difficult 

to determine whether there is occlusion relation between non-adjacent segments. Figure 3-11 (right) shows 

in red the segment i and in blue the segment j. Moreover, point o is the centroid of scanline. The pair of 

segments with occlusion relation should satisfy the following constraints: 

• Angle θ between segment i and j should smaller than threshold thangle. 

• Closest distance dclosest between segment i and j more than dynamic distance ddis. 

In the case of occlusion, the next ray (after the scanner moved by the angle increment) will return a point 

generally. In another word, the angle interval θ remains stable in the same scanline. If the angular interval 

between neighbour segments is obvious larger than the constant value, it may stand for several points are 

missed. The window area will rather show up as a data gap like this. And the occlusion relation is not existing 

in this situation anymore. Hence, this first constraint utilised for check whether there is occlusion relation 

between neighbour segments. We use threshold thangle to define if these two segments have the gap in 

between. The second criterion is used to find if these segments are close to each other when considering 

segmentation process may generate over-segmentation result. However, the closet distance (dclosest) between 

neighbor points will be affected by the distance from centroid o to these points (li). And this is the reason 

that I use dynamic threshold ddynamic in this step. The distance between closest points pj and pj as shown in 

Figure 3-11. The normal vector of segment i and j is 𝑉𝑖⃗⃗ and 𝑉⃗ 𝑗 respectively. There are mainly four steps to 

achieve dynamic threshold ddynamic. 

1. Since the scanning angle around 0.625°. A triangle (as shown in Figure 15) can be built by 

expected scanning angle and line vector.  

2. Calculate d1 and d2 based on the triangle.  

3. Let two times of the mean values of d1 and d2 as the dynamic threshold ddynamic. This is for move 

the effect of noise and system error. 

When two segments satisfy these conditions, we extract the distance between centroid o and endpoint sj or 

si. Hence the segment with longer distance occluded by shorter one. The parameter used in this function 

shows in Table 6. 

Table 6: Parameters used in the door detection function.  

Parameter Name Description 

thangle The threshold value of scanning angle between neighbour points. 
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3.6.2.2. Parameter Analysis 

The threshold value (thangle) of scanning angle between neighbour points is also depend on the scanner. The 

angle between two points is 0.648° generally. In experiment, I use 3° as threshold. If we set a big value, it 

might see two separate segments as connected. In contrast, small threshold may detect too many scanning 

gaps in scanline. 

3.6.3.  Opening Detection 

The opening is an essential component of indoor navigation and mapping. In this research, the aim is 

detecting opening based on scanlines analysis. However, we can use both specific criteria as well as candidate 

analysis to identify windows and doors in the future work.  This approach is divided into two parts:  

• Generation of opening candidates based on single scanline (scanner coordinate system). 

• Determination of the optimal opening by including neighboring scanlines in the analysis 

(local coordinate system). 

The openings, such as doors and windows, are usually seen as holes on a plane (Nikoohemat et al., 2017). 

Hence, the basic assumption is that opening area generally between two collinear segments in single scanline. 

The detection is started by finding a pair of collinear segments through a set of constraints and save the 

closest points in these extracted pair of segments as opening candidates. In order to analyse extracted 

opening candidates, we need project it to local coordinate system. The optimal openings are determined 

based on geometrical relations. This method could extract almost all windows, doors, either open or close, 

and work on real-time processing.  

3.6.3.1. Opening Candidate Generation 

At first, the parallel features (extracted from Section 3.5) of scanline were used to extract a pair of collinear 

segments. Figure 3-12 shows an example of door in horizontal scanline. As it can be observed that segment1 

and 9 are collinear. If there are at least three segments are collinear, we only consider a pair of segment that 

do not have another collinear segment in between. Because it is not possible have other objects between the 

doorframe frame on the wall plane. 

 

 

Figure 3-12: Detect door in the horizontal scanline (different colours label different segments, red point: 
scanner position) 
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The pattern of windows shows different characters with door. This is because the unfavourable material 

properties (Michailidis & Pajarola, 2016) of glass may miss the point cloud. However, in this dataset, when 

a laser beam penetrates window glasses (left window in Figure 3-13), some pluses will not be recorded by 

scanner when the distance beyond the measurement range, while some beams are reflected (the second 

window from right in Figure 3-13) when it bounces off the glass.  

 
Figure 3-13: Example point cloud of windows 

To extract opening candidates, these two situations should be considered. Once two collinear segments are 

extracted, a set of rules were used for find the opening segments. Let segment i and k on two sides of the 

opening area and line lik through these two segments.  

The rules of opening candidate extraction in single scanline are defined include the following: 

• If Si and Sk are neighbour segment, probably these segments belongs to the window frame. 

1. The scanning angle θ between these segments should lager than thangle  

2. The closest distance dclosest between Si and Sj should larger than 

• If there is at least one segment between segment i and segment k, probably these segments 

belongs to the door frame or there are points on the window 

1. Find segment between segment i and k. Let dmean be the mean Euclidean distance between the 

centroid of segment and the scanner position, dik be the mean distance between the closest 

endpoint of these two collinear segments and the scanner position. We found that the segment 

between the segment i and k should belong to another space. Hence, dmean  normally longer than 

dik. 

2. The minimum distance of these segment between the two collinear segments should longer 

than dik. 

3. The distance of the opening segments should longer than dmin. 

If these conditions are fulfilled, we save closest endpoints Pdoor1 and Pdoor2 of this pair of segments as the 

opening candidates. Although opening can be extracted in single scanline, there is still some uncertainty. As 

it can be observed in Figure 3-14, it is obviously having some miss extracted points in the extracted points 

candidate, this is because certain scanlines may affected by the occlusion and clutter in indoor environment.  
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       (a) 

(b) 

Figure 3-14: Top view of extracted opening candidates before (a) and after (b) improvement (different 

colour labelled different pair of points). 

3.6.3.2. Optimal Opening Determination 

In order to remove wrong points and save the segment in each opening area, we join the analysis of 

neighbour scanlines. We observed in Figure 3-14 (a) that the number of candidate point on doors or 

windows is obviously greater than the amount of miss extracted points. In xy-plane, the useful opening 

segments (defined by two endpoints) are generally close to each other. Consequently, we used following 

steps to find the opening segments. 

As a rule of thumb, for the opening O: {O1, …, Ok} which has dozens of candidates, more than Nd of 

candidates within certain range is sufficient to define the location of doorframe. 

1. Let point a and point b are the two endpoints of the opening segment. Since each side of the 

opening frame will be analysed in the following. It is important to find the point on the same side. 

I defined the point a be the point with smaller x coordinate, and point b is the bigger one. In order 
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to prevent the situation like two endpoints have same x coordinate. I set point a as the point have 

smaller y value, when the difference value of x coordinates smaller than the threshold. The extracted 

door frame points in the xy-plane of the local coordinate system as shown in Figure 3-15 . 

 
Figure 3-15. Example of detected opening candidates in XY-plane 

2. Make a buffer with radius rcircle_1 for all point a and point b. If more than Nd points are in same 

buffer and also for their corresponding point b, let the mean coordinates of point a and point b as 

the location of door frame. The doorframe segments will save by these two endpoints. This method 

will remove wrong point and remain the doorframe points, but the weakness is extract multiple 

doorframe points (like shown in Figure 3-16). 

 
Figure 3-16. Example result of Step 2 
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3. To refine the result of Step 2, a new buffer with radius rcircle_2 is used for merge the extracted 

doorframe points. An example as shown in Figure 3-17. 

 
Figure 3-17. Example result of Step 3 

4. Remove the detected opening that acquired by a number of point with low height variance. This is 

because the gap in the ceiling (The red circle in Figure 3-18) also meet the rules of opening candidate 

detection. 

 
Figure 3-18: Effects of other special distributions. 

Table 7: Parameters used in the door detection function.  

Parameter Name Description 

dmin 
The minimum Euclidian distance between a pair of opening 

points.  

rcircle_1, rcircle_1, The radius of finding circle. 

Nd 
The minimum number of segment to define the location of 

openings. 
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3.6.3.3. Parameter Analysis 

The minimum Euclidian distance (dmin) between a pair of doorframe points will affect the detected 

doorframe points. We use dmin=0.7 m as the threshold based on experiment. 

The radius (rcircle_1) of buffer and the minimum number (Nd) of the segment are important for door detection. 

If we set a big radius, it may merge these two doors together. The main object of step 2 is remove wrong 

door segment as well as merge the right door segments in opening detection. Meanwhile, big buffer size 

may lead more door segments in consideration, which means there are more possible effected by the wrong 

door candidates (an example as shown in the red circle in Figure 3-19 (a)). As for the minimum defined 

point number, small may remove opening area (an example as shown in the red circle in Figure 3-19 (b)). 

Hence, those two parameters were fixed to rcircle_1=0.3 and Nd =6 after the experiment. The parameter rcircle_2 

used to merge the segments that close to each other which set as 0.5(m) in this research. 

  
                        (a)  rcircle=0. 5 and Ndoor=6                                           (b) rcircle=0.3 and Ndoor=8 

Figure 3-19: Influence of the parameter rcircle_1 and Nd 

3.6.4. Space Subdivision 

A two-step subdivision process is defended in this Section.  First, the point in the trajectory is subdivided 

into different space in combination with the detected opening segments. This process is working on xy-

plane space, but it can be also generalized to 3D. Let k be the number of spaces labelling, x be the number 

of door frame segments. D_x denotes the list of distance between scanner’s location and opening segments. 

1. Input single scanline data and corresponding extracted features according in the order of time.  

2. The step 1 is repeated for extract opening candidates each time.  

3. Find the optimal openings based on extracted candidate. 

4. The extracted openings are used to subdivide trajectory. As for trajectory point that has th_space 

away from the door’s segment, we set this points as doorway. 

5. When trajectory passed through a new opening segment, we increment the value of space, and label 

the new space as the incremented space value. This opening segment is then defined as doorframe 

segment. 
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Figure 3-20: Example of trajectory subdivision result (different colours stand for different spaces). 

After trajectory subdivision process, the point cloud can be subdivided based on the defined doors.  

1. The point clouds subset is extract points based on the trajectory within same space, like in Figure 

3-21 (a). This process is used to speed up the subsequent process. 

2. As for each point cloud subset, we use the defined door to subdivide point cloud. This subdivide 

method based on the scanlines. The basic assumption is that if the point belongs to the space, the 

line links the scanner position and the point will not intersect with door segment in xy-plane. 

Therefore, we link the scanner location with each point of the scanline in xy-plane. If the line 

intersects with defined door segments, then the point label as the label of another space. 
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(a) 

 
(b) 

Figure 3-21: Example of the subset of point cloud. (a) all point cloud subset, (b) one of the point cloud 
subset. 
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 RESULTS AND DISCUSSION 

   Dataset Description 

The methodology of this research is tested in a real dataset, which includes both the 3D point clouds and 

the trajectory that collected by ZEB-REVO from GeoSLAM Company during the acquisition. The 3D 

point clouds were processed from raw laser range measurement and inertial data by using GeoSLAM’s 

SLAM algorithm. Point clouds file and trajectory file are normally related by timestamp, which meaning that 

from each position in the trajectory we not only know the pose of scanner but which single scanline in the 

dataset were acquired (Díaz-Vilariño et al., 2017).  

The two datasets that are tasted in this research was captured in one of the buildings of the Technical 

University of Braunschweig, Germany. A visualization of the two datasets can be seen in Figure 4-1. 

Dataset1 contains 7 rooms, 11 doors, both open and closed. Dataset 2 shows a long corridor and some 

rooms with windows. It is notice that operator did not go into some rooms in both of these datasets. 

  
Figure 4-1: Top-down view of tasted dataset: dataset 1(left) and dataset 2 (right) (grey: point cloud; red: 
trajectory). 
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   Preprocessing Result and Discussion 

4.2.1. Scanlines Generation Results 

 

 

Figure 4-2: Example of extracted scanlines (difference scanline labelled different colour). 

Table 8: The mean and variance of the Eigen value of the scanlines 

 Dataset 1 Dataset 2 

Eigen value V1 V2 V3 V1 V2 V3 

Mean 1.31e-05 0.78  2.02 3.05e-05 2.17 4.92 

Variance 9.73e-10 3.29 3.29 2.56e-09 1.75 10.32 

Figure 4-2 shows a part of scanline generation result in dataset 2. It ensures that the scanlines are distinctly 

separated even in planes of overlap. Table 8 shows the mean and variance of the Eigen value. As in illustrated 

in Section 3.3.1, the variance along the plane normal is estimated by smallest eigenvalue. Hence λ1 is used 

in this part to check the quality of the scanline. The result shows that almost all the extracted scanlines lie 

on the same plane, it almost does not have under-extracted scanlines. 

4.2.2. Projection Results 

 

(a) (b) 
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                                            (c)                                                                             (d)      

 

          

                                          (e)                                                                               (f) 

Figure 4-3: The resulting 2D scanlines where comparing with their corresponding 3D scanlines in terms of 
different roll angels ((a)(b): Roll = -37.7209, (c)(d): Roll = -154.2332, (e)(f):  Roll = 91.9130). 

 Segmentation Results 

In order to evaluate the performance of segmentation algorithm, I have tasted 50 scanlines acquired from 

different location and roll angel on both datasets. Figure 4-4 (a) to (c) show the processing results of 

segmentation in a variety of roll angles. 
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(a) Roll = -37.72°                                                     

 

(b) Roll = -154.23° 

                                 

 

 

 

 

 

 

 

 

 



 

33 

 

(c) Roll = 91.9130° 

Figure 4-4: Results produced by segmentation based on the scanlines with different roll angle. It should be 
notice that these results are produced based on the best parameter combination (as shown in Table 4). 

   Classification Result and Discussion 

4.4.1. Occlusion Detection Results and Discussing 

 
 
 
 
 
 
 
 
 
 
 

(a) 
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(b) 

Figure 4-5: The occlusion results in a part of the dataset. 

The segment between the endpoints of the segments that have occlusion relation were used for visualise 
occlusion relations. Figure 4-5 (a) presents numerous occlusion relations on the ceiling. And the 
corresponding point clouds shows there are some pipe lines close to the ceiling. Figure 4-5 (b) showcase an 
occlusion example between door (red plane) and wall (blue plane). 
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4.4.2. Door detection results and discussion 

 
(a) 

 
(b) 

Figure 4-6: Visual comparison of door extraction results and ground plan in dataset 1 and dataset 2. (a) 
extracted doors in dataset 1 (b) extracted doors in dataset 2 (doorframe segments are shown in different 
colours).  

Using the manually registered ground plan as reference, a visual analysis is carried out to check if the 
extracted doors are extracted correctly and completely: 

• In the Figure 4-6 (a), most of the extracted door segments match the corresponding doors in ground 

plan. However, door 1 and 2 do not match the door location so well (as shown in Figure 4-7). This 

can be explained by two reasons: the error in SLAM results or the wrong ground plan. 

 
Figure 4-7. Comparison of results obtained opening detection and ground plan (detail in Figure 4-6 (a), 
red: door location in ground plan). 

• It can be observed that the doors in both of the datasets have high detection accuracy, even for 

some doors (such as door 19 and 20 in Figure 4-6 (b)) closed to each other. 
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• This method can also detect closed door (like the door 3,9 in Figure 4-6 (a) and the door 13,14,19 

and 23 in  Figure 4-6(b)). But it is noticed the closed-door detection based on the door’s geometry 

so it cannot detect some closed-doors that are co-planar to the wall. 

• The door 9 in Figure 4-6 (b) did not fit well with the wall. Multiple reasons may let this result. First 

is the poor segmentation result. For example, if the points in corner are discarded in segmentation 

process, the accurate acquired point will not be used in opening detection. Second is sparse point 

in scanline.  

• The door between door 11 and 12 did not be detected. This is because the door is occluded by 

another object. Hence, the door does not show as the expected pattern in single scanline. 

  
(a) (b)            

       
(c) 

Figure 4-8. The dis-detected door in ground plane(a), xy-plane(b) and 3D point clouds (detail in Figure 
4-6 (b)). 

• Interestingly, the double door in the corridor area is extracted as door 15 and 18 in Figure 4-6 (b) 

after compared with ground plan. The reason why the double door is detected as two doors is the 

double door shows as one open door and one closed door (as shown in Figure 4-9) during data 

acquisition.  
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Figure 4-9: Point cloud of the double-door in corridor area. 

  
Figure 4-10: Compare detection result (left) with point clouds (right). 

The dataset 1 is acquired in basement, hence it not possible detect openings seems like window in point 
cloud. The corresponding point clouds (as shown in Figure 4-10 (right)) shows some part of this wall is 
concaved. This error demonstrates the door detection method may affected by some indoor objects that 
have the geometric structure similar with openings. 
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4.4.3. The subdivided trajectory results 

4.4.3.1. Trajectory subdivision 

 
(a) 

(b) 
Figure 4-11: The visualization of subdivided trajectory results in dataset 1(a) and dataset 2 (b). 

Figure 4-11 demonstrate the good trajectory subdivision results in both datasets. However, this method will 

produce wrong result when operator go into a space through one door and left this space from another 

room. This is because the method saves the label of space based on the door’s location.  
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4.4.3.2. Space Subdivision Results 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (b) 
Figure 4-12: Space subdivision result in 2D (a) and 3D (b) view. 

 
 
 

 
  



 

40 

  



 

41 

 

 CONCLUSION AND RECOMMENDATIONS 

The increasing quality of IMLS data has triggered this research on the suitability of object detection based 

on scanline analysis. This thesis investigated the possibility to detect objects based on using scanlines in 

IMLS data. The general conclusion is given in Section 5.1. After that, all the research questions are revisited 

in Section 5.2. Finally, based on Section 5.3 outlines the recommendation based on the conclusion and the 

research questions. 

 Conclusions 

In this study, the novel method is designed to detect openings as well as subdivide space based on scanline 

analysis. In order to work on the real-time processing, the detection method first generate the candidate 

based on the single scanline. As the scanline number increase during data acquisition, the number of the 

candidates is growing accordingly. After that, a determination method is used for extracting the optimal 

results. After visual comparison of the openings results and the ground plane, the detection method has 

demonstrated the validity of the algorithm for detecting both open and closed doors. Another research 

object is space subdivision. The space subdivision method was split into two steps. Firstly, the trajectory 

points are subdivided into different spaces. Secondly, the corresponding point clouds that related to the 

trajectory points within same space are subdivided based on the detected doors. In the end, openings 

information and space subdivision results are saved as point cloud label, which will be used for further 

investigations. 

 Answer to Research Questions 

1. Which objects can be extracted and detected in single scanline? 

The classification method is based on analysis geometric structure of single scanline. In this 

research, opening shows diacritical structure in scanline steady. Hence, it can be detected based on 

single scanline. But as for some indoor object, like curtain, may shows different pattern or multiple 

short segments in scanline, is hard extracted in single scanline. 

2. Which features can be utilized in detection processing? 

There are nine features of segments have been proposed based on analysis geometric and 

topological properties. 

3. What is the distribution of the noise and how can it be removed? 

The noise normally random distributed in the point clouds. However, it shows as the point or 

short segment in the scanline. These noises were removed by defined the minimum number of 

point to form the reliable segments in the segmentation process. 

4. Will the adjacent scanline beneficial to recognize indoor objects? If it is, how many? 

The adjacent scanline in this research is defined based on the time attribute. In the opening 

detection method, the adjacent scanlines were used for acquire opening candidates. However, the 

number of adjacent scanline cannot be determined. This is because the behavior of the operator 

during data acquisition will affect the number of the neighbor scanlines. Hence, it has different 

number of neighbor scanlines when detect different openings. 
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5. How to use adjacent scanlines to improve detection results? 

The adjacent scanlines provide more opening candidates in opening detection, which is helpful to 

remove some wrong extracted candidates and determine the optimal openings. In this research, I 

used an optimization method to analysis the candidates that extracted from adjacent scanlines for 

improve the detection results. 

6. Are the trajectory and extracted objects useful to space subdivision? 

The space subdivision method is based on the extracted doors. However, if we only use the 

extracted doors to subdivide space, it may lead high computational load and low processing speed 

because they need analysis numerous points. Trajectory is used to solve this problem. First of all, 

trajectory is easy to be subdivide by the detected doors based on distance from door segment and 

scanner position. Meanwhile, trajectory and point cloud are related by timestamp. Hence, the point 

clouds can be divided into several subsets based on corresponding subdivided trajectory. This step 

could reduce the processing time as well as computational load. 

7. How to asset the experiments result? 

The ground plan has been used to evaluate the detection results. 

 Recommendation 

The recommendations are listed as follows: 

1. Occlusion detection 

The occlusion detection proposed a possibility that generates the occlusion relations based on 

scanline, which could be used in indoor reconstruction in the future. In this research, the occlusion 

relations are only detected based on the single scanline, which is uncertainty. The future work will 

focus on combine all occlusion candidate in consideration. 

2. Openings detection 

Although the experiment shows good result in opening detection, it cannot separate doors and 

windows so far. The future work will focus on analysis the distribution of the opening candidates 

to detected doors and windows. In order to achieve this goal, the maximum, minimum and variance 

of z-coordinate value of the candidates will be analysis. Unlike doors, windows generally have a 

distance to the floor. Meanwhile, windows have lower height variance than doors. Hence, doors 

and window can be detected based on these assumptions. However, this assumption not work for 

windows to the floor. 

3. Space subdivision 

Even opening detection process can extract almost all of the windows and doors in the space, the 

door that not intersect with trajectory cannot be extracted as ‘door’ from the openings. If the doors 

and windows can be identified directly in the future work, it is possible to improve the space 

subdivision results. 
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