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ABSTRACT 

Coal fire has been a major concern for the coal industries, environmental departments, and other national 

agencies in India. The vulnerability associated with the coal fire is inextricably linked with environmental 

impacts. Systematic monitoring is of paramount importance concerning the impacts of habitats living 

within the close proximity of the coal fire-affected regions. Remote sensing provides a cost-effective 

solution in detecting and monitoring the coal fire-affected areas. In this study, the potential of channel-

specific surface reflectance of Landsat-8 OLI and VIIRS data have been explored in detecting and 

delineating the regions affected by surface coal fires. The core objective of this research is to formulate a 

methodology by blending Landsat-8 and VIIRS data with a view to generating a high-resolution and high-

frequency synthetic coal fire products. 

 

The Jharia coalfield, India has been chosen as a study area for the current research. It is majorly affected 

by surface and sub-surface coal fires in India and a significant amount of potential coal resources have 

been depleted. In detecting the coal fire, the reflectance-based active fire detection method was 

incorporated to check its fidelity in delineating surface coal fire affected pixels. After observing the 

underestimation caused by the existing active fire detection method, a normalised reflectance-based active 

fire detection method was established and the fidelity of this algorithm was tested for other actual Landsat 

scenes over the similar region in Jharia coalfield. On the other hand, in view of generating the high-

frequency and high-resolution synthetic coal fire products, the current study explored several 

spatiotemporal fusion methods within the framework of weight function based techniques to blend the 

high spatial resolution Landsat-8 data with the high temporal resolution VIIRS data within the similar 

spectral domains broadly matches with each other. The fire responsive spectral channels lying within the 

domain of NIR and SWIR regions were employed for spatiotemporal fusion methods. Consequently, the 

methods named STARFM and ESTARFM were explicitly implemented in this research. 

 

The performance of these spatiotemporal fusion methods was evaluated qualitatively and quantitatively 

using several assessment metrics. With a view to improving the accuracies further, the modified STARFM 

and the modified ESTARFM methods were established. In order to generate a high-resolution and high-

frequency synthetic coal fire products, this study executed a novel reflectance-based active fire detection 

method on synthetically predicted Landsat like images derived from the spatiotemporal fusion methods. 

Also, the accuracy assessments of the synthetic coal fire products were carried out by assessment metrics 

linked with the corresponding confusion matrix. Moreover, a coal fire product quality index (CFPQI) was 

designed to designate the overall quality of the synthetic product. It was observed that the modified 

ESTARFM outperformed all other fusion in terms of spatiotemporal fusion methods as well as for the 

synthetic coal fire products generated from it. 

 

In light of the above discussions, this study built an overall framework for generating the high-frequency 

and high-resolution synthetic coal fire products which could be used for systematic mapping and 

monitoring of the regions affected by surface coal fire. Interestingly, the established novel coal fire 

detection method was successful in resolving the underestimation caused by the existing active fire 

detection method. In future studies, the fidelity of the novel coal fire detection techniques could be tested 

for other coal fire-affected regions such as in China, Australia and the USA. Also, a fusion-based neural 

network could be designed for locating the fire pixels more accurately in the synthetic images. 

 

Keywords: Coal Fire, OLI, Spatiotemporal Fusion, VIIRS, STARFM, ESTARFM 
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1. INTRODUCTION 

1.1. Motivation 

“A coal fire is defined as combustion of coal in a coal seam (or a pile of stored or waste coal), which has a 

potential to burn for a long time by spreading along both directions of the strike and dip of the coal seam” 

(Kuenzer, 2004). Coal fire can be broadly categorized as surface and sub-surface fire (Gangopadhyaya, 

2003). The surface fires are commonly found in spoil stack of overburden as well as in opencast mining 

region. However, the subsurface fires are appeared due to the penetration of oxygen via mining induced 

cracks or fissures towards underground mining areas. Generally, coal fires are caused by an exothermic 

reaction of carbon content with the adsorption of oxygen at the exposed surface (Kuenzer, Zhang, 

Tetzlaff, et al., 2007). If the temperature of coal reaches a threshold value (between 80ºC to 120ºC), the 

obnoxious gaseous products (e.g., NO, SO2, CO, CH4) are emitted (Chatterjee, 2006). Furthermore, the 

temperature will continue to increase to reach a state of ignition temperature (between 230ºC to 280ºC), 

thereby resulting in the burning of coal (Huo et al., 2014). Moreover, the spontaneous, active fire starts 

propagating from the source of ignition towards subsequent fire-prone zone under the influence of wind, 

rainfall, topography, geological phenomena (faults, folds, dikes). Consequently, coal fire triggers 

operational constraints which eventually leads to the hindrance of efficient production in the mining 

environment. Therefore, systematic monitoring of coal fire is essential to predict the probable directional 

propagation of active fires accurately. As the in-situ measurement is time-consuming and incurs a 

significant cost, the application of remote sensing methods is a powerful tool for assessing as well as 

predicting the unknown coal fire regions (Kuenzer, 2004). 

 

The vulnerability associated with the active fire-affected areas is intricately related to dangerous 

consequences of environmental degradation in various countries across the globe such as China, India, 

and Australia (Kuenzer, Zhang, Tetzlaff, et al., 2007). Consequently, coal fire depletes a large amount of 

prospective geologic reserve and the stability of environmental dynamics is deteriorated rapidly during the 

exploration as well as production phase of mining. Furthermore, it affects the environment by releasing 

gasses, fumes, as well as igniting grassland, brush, small trees and other topographic features which are 

prone to fire and as a consequence, the local ambient atmospheric temperature increases. Moreover, the 

process of land subsidence due to fire-affected areas collapse the surface infrastructures such as buildings, 

railroads, high-tension electric poles (Zhou, Zhang, Wang, Huang, & Pan, 2013). In essence, the active 

coal fire causes unprecedented surface subsidence where the massive amount of agricultural lands get 

affected which in turn is leading to production loss for the agricultural industries. Therefore, the existing 

surface, as well as sub-surface coal fire, is dynamically altering techno-economic factors that are 

inextricably linked with site-specific mining applications (Huo et al., 2014). Systematic mapping and 

monitoring of mining-induced fires are extremely helpful for quantifying the economic and environmental 

loss. 

 

A significant amount of research activities have been carried out with the help of numerous thermal 

infrared (TIR) data acquired by spaceborne, an airborne and ground-based instrument specifically in the 

field of active coal fire mapping and monitoring applications (Kuenzer & Dech, 2013). Interestingly, 

Visible Infrared Imaging Radiometer Suite (VIIRS) has gained a lot of popularity over the last few years 

due to its contribution towards primary remote sensing related applications in the domain of biomass 

burning, active fire identification (Bennett & Smith, 2017; Kanniah et al., 2016; Schroeder, Oliva, Giglio, 
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& Csiszar, 2014). On the other hand, Landsat series satellites have been extensively used for coal fire 

related applications over the last few decades (Raju, Gupta, & Prakash, 2013). There are various active fire 

mapping algorithms which were built upon VIIRS (Elvidge, Zhizhin, Hsu, & Baugh, 2013; Schroeder et 

al., 2014) and Landsat (Chatterjee, 2006; Roy, Guha, & Kumar, 2015; Schroeder et al., 2016) data, 

considerably used for distinguishing fire affected pixels from other ground sources. However, the 

possibility of blending the data derived from the sensors mentioned above will be advantageous for 

generating high resolution and high-frequency synthetic coal fire product. 

 

Recently, VIIRS data has been profoundly used for detecting active fire due to its ability to capture 

radiances from the ground sources more accurately in respect of its predecessors (Vadrevu & Lasko, 

2018). The VIIRS sensor which is mounted on the Suomi-NPP satellite and placed in a sun-synchronous 

orbit acquires co-registered data with a spatial resolution of 375 m and 750 m (Oliva & Schroeder, 2015). 

Earlier, two operational products were being generated using new VIIRS data for meteorological 

applications: the key Environmental Data Records (EDRs) and the Application-Related Products (Justice 

et al., 2013). Additionally,  a new active night fire detection algorithm was also designed to characterise hot 

sources using short-wave infrared (SWIR), near-infrared (NIR) and mid-wave infrared (MWIR) channels, 

of which elementary detection band (M10) was located at SWIR region between 1.571 µm to 1.631 µm 

(Elvidge et al., 2013). After all, the significant advantage of VIIRS is that it has drastically removed the 

errors appeared earlier from pixel-saturation, blooming as well as the dearth of in-flight calibration 

(Bennett & Smith, 2017). However, due to the low spatial resolution of VIIRS, the hot sources with 

smaller areas often get misidentified.  

 

Even though there is a significant remark of VIIRS in recent days, several research activities have also 

been performed by incorporating principles of thermal remote sensing on Landsat series satellite data for 

detecting active fire over the last few decades (Syed, Riyas, & Kuenzer, 2018). The Landsat-8 sensor, 

augmented with Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), was built by a 

joint collaboration of NASA-USGS team (Roy et al., 2014), flown in a sun-synchronous orbit with a 

spatial resolution of 30 m (Irons, Dwyer, & Barsi, 2012). Previous studies built an active fire detection 

algorithm which was designed as well as implemented on Landsat 7 ETM+ and ASTER data (Giglio et al., 

2008; Schroeder et al., 2008). In addition to previous work, an algorithm was developed on Landsat-8 / 

OLI data, of which the primary detection band (l7) was located at SWIR region between 2.11 µm to 2.29 

µm (Schroeder et al., 2016). However, simultaneous pixel saturation, folding of DN values have been 

significant disadvantages of active fire detection algorithms built over Landsat-8 data. 

 

The principles of thermal remote sensing have been widely used in the domain of active as well as passive 

fire monitoring applications (Kuenzer & Dech, 2013). The rate of exponential increment of voluminous 

satellite-derived remote sensing images of distinct characteristics including multi-temporal, multi-spectral, 

multi-polarization and multiresolution, has led the foundation of integrating different images to improve 

pre-existing information (Dong, Zhuang, Huang, & Fu, 2009). Therefore, the concept of image fusion is 

relevant to harmonize various spatial, spectral and temporal resolution images captured by distinct 

satellite/airborne sensors to generate composite images mostly applicable for change detection and 

monitoring related applications. The existing image fusion techniques can be broadly categorised as 

spatiotemporal, spatio-spectral and multi-sensor image fusion in the domain of remote sensing (Meng, 

Shen, Zhang, Yuan, & Li, 2015). The application of spatiotemporal image fusion technique plays a pivotal 

role in generating high resolution, high-frequency synthetic image product which is considerably helpful 

for producing images with high information content. Therefore, the dangerous consequences of coal fire 

can easily be mitigated with the help of systematic mapping and monitoring using spatiotemporal image 

fusion techniques that can be applied over the spaceborne sensors having complementary features.  
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In light of the above discussions, generating a high-frequency coal fire image product will be convenient 

for coal industries. There are several existing spatiotemporal image fusion algorithms predominantly used 

for miscellaneous remote sensing applications (Gao, Masek, Schwaller, & Hall, 2006; Hazaymeh & 

Hassan, 2015; Huang & Song, 2012; W. Zhang et al., 2013; Zhu, Chen, Gao, Chen, & Masek, 2010). 

Consequently, the quality assessment of a fused product plays a crucial role in remote sensing (Pohl & Van 

Genderen, 1998). Therefore, the propagation of uncertainty associated with the image fusion algorithms 

can be assessed to minimize the errors linked upon the synthetic end product. Furthermore, the spatial, 

temporal and spectral uncertainty of complementary inputs has to be explored to critically design a weight 

function to implement by incorporating distinct characteristics (spatial resolution, temporal resolution, and 

spectral resolution) of each data derived from each sensor. Also, the orbital parameters, as well as the 

spectral response function associated with coal fire for both sensors, are different from each other. 

Collectively, there are various advantages and disadvantages associated with VIIRS and Landsat 8 OLI / 

TIRS data concerning different fire detection algorithms. Since both datasets provide complementary 

features concerning spatial and temporal resolutions, it is possible to formulate a methodology by blending 

these datasets, wherein, a high-frequency and high-resolution resolution synthetic Landsat images can be 

generated. Moreover, the synthetic coal fire affected pixel can be retrieved by designing criteria using the 

spectral characteristics of fire affected pixels derived from each image. Consequently, the end product will 

benefit the mining industry in respect of coal fire mapping and monitoring applications, and also the 

health & safety departments can use these products to assess the risk associated with fire propagation. 

Furthermore, the end product can be used for the environmental impact assessment of a specific mining 

area over a definite period by the departments entrusted with the environmental studies.  

1.2. Problem Statement 

Coal fire detection is based on the prevalence of at-sensor spectral radiance having a dominant emissive 

component within the spectral range of SWIR and TIR. Most of the sensors such as Landsat, VIIRS 

captures emitted radiation more effectively at night time. Hence, the availability of a night-time scene is 

reliable for estimating the radiant temperature of the earth surface. However, during the daytime, due to 

the mixing of reflected solar radiation with the emitted radiation, it is challenging to estimate accurate 

radiant temperature. The alternative way of distinguishing fire affected pixels is to introduce the concept 

of channel-specific spectral reflectance values of Landsat 8 OLI sensor as an input. Furthermore, 

generating a high-frequency and high-resolution synthetic coal fire product is reliable in detecting the 

sudden propagation of coal fire, thereby accurate monitoring can be performed. According to the author’s 

knowledge, both Landsat 8 OLI and VIIRS sensor have not been fused yet in the domain of coal fire 

related applications. 

 

Therefore, this study will attempt to apply various conventional as well as recent coal fire detection 

techniques to detect and distinguish active-fire affected pixels from its background. After successfully 

exploring various algorithms, this study will further explore the different spectral channels to construct a 

framework for spatial-spectral-temporal fusion technique by blending Landsat-8 OLI / TIRS and VIIRS 

dataset to generate high-resolution and high-frequency coal fire product. 
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1.3. Research Identification 

The overall focus of this research is to detect the surface coal fire by using VIIRS and Landsat 8 / OLI 

data, thereby to fuse the aforementioned dataset to generate a high frequency and high-resolution data 

product. 

1.4. Research Objectives 

The primary objective of this research is to investigate the multi-spectral information for the identification 

of coal fire from day-time VIIRS and Landsat 8 / OLI data to formulate a methodology for spatial-

spectral-temporal fusion by merging aforementioned data to generate high resolution and high-frequency 

data product. The overall objectives can be classified into three specific objectives. They are, 

1) Review and study contextual features, active fire identification method to detect fire-affected 

pixels. 

2) To explore and construct the spatial-spectral-temporal data fusion techniques in the context of 

coal fire related applications. 

3) To construct a novel method for detecting the coal fire pixels from the synthetic Landsat like 

images and its fidelity in the actual Landsat data. 

 Research Questions 

According to the specific research objectives, the following research questions can be addressed. 

1. Specific objective 1: 

a. Which contextual and spectral features derived from the datasets have been used in the 

identification of sub-pixel hot sources? 

b. Which thresholding techniques and classification methods have been used to detect and 

characterise sub-pixel hot sources? 

c. What kind of limitations are imposed on coal fire detection using Landsat 8 / OLI and VIIRS 

data due to sensor characteristics and environmental conditions? 

2. Specific objective 2: 

a. Which processing levels have been used so far to construct spatiotemporal fusion in reference 

to coal fire related applications? 

b. What kind of preprocessing technique is performed prior to the data blending keeping in 

view of spectral, temporal and spatial bias? 

c. Based on what parameters, the value of combined weights and conversion coefficients can be 

computed dynamically to predict the radiance image accurately? 

3. Specific objective 3:  

a. Which spectral features are to be used to generate criteria for extracting coal fire pixels from 

the synthetic image? 

b. How to design the criteria in view of its viability for retrieving the fire-affected pixels from 

the actual as well as the synthetic Landsat images? 

c. What thresholding techniques can be used? 
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1.5. Innovation 

The study attempts to construct a spatiotemporal fusion framework using VIIRS and Landsat 8 OLI data 

to generate a high-resolution and high-frequency product in order to detect and delineate the coal fire 

related thermal anomalies. The study proposes to formulate a methodology for detecting coal fire from 

synthetic images which will be generated using the spatiotemporal fusion methods. 

1.6. Research Workflow 

A Generalized workflow of the research has been depicted in Figure 1.1.  
 

Figure 1.1. Generalized methodology 

1.7. Thesis Outline 

The entire thesis has been organized into seven chapters. Chapter 1 describes some basic concepts of the 

topic, research identifications, corresponding research objectives and associated research questions along 

with the depiction of the schematic workflow of this research. Chapter 2 elucidates the basic principles of 

thermal and shortwave infrared remote sensing and its applications for coal fire detection techniques as 

well as the miscellaneous domain of spatiotemporal fusion methods. Chapter 3 introduces the methods 

adopted for spatiotemporal fusion approaches. Chapter 4 describes the chosen study area, datasets and 

software used for this research. Chapter 5 highlights the results obtained. Chapter 6 describes the critical 

interpretations of the results. Chapter 7 concludes the research with an answer to the research objectives 

and the associated future scope of this study.  
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2. THEORY AND LITERATURE REVIEW 

This chapter highlights the brief review of coal fire detection methods using satellite remote sensing. 

Section 2.1 elucidates the coal fire detection methods and the importance of thermal remote sensing in 

delineating coal fire regions. Section 2.2 depicts the miscellaneous applications of Landsat series satellite 

data in detecting and delineating coal fires. Section 2.3 elucidates the several spatiotemporal fusion 

approaches in generating high-resolution and high-frequency synthetic images largely applicable for 

change detection and monitoring related applications. 

2.1. Coal fire detection using satellite remote sensing 

The satellite remote sensing is largely used for coal fire detection and monitoring applications. The domain 

of thermal and shortwave infrared remote sensing plays a pivotal role in detecting and monitoring coal fire 

regions. In the next section, the underlying theoretical basis of these remote sensing approaches is 

elucidated. 

 Importance of thermal infrared remote sensing 

The application of thermal infrared remote sensing (TIRS) plays a significant role in detecting coal fire 

related thermal anomalies (Kuenzer & Dech, 2013). TIRS remote sensing explicitly uses the atmospheric 

window ranges from 3 µm to 5 µm and 8 µm to 14 µm because of insignificant atmospheric interaction. 

Therefore, the emitted electromagnetic radiation is captured by the thermal sensors which in turn, is 

effective in identifying hotspots or high-temperature objects or sub-pixels hot sources. The spectral 

radiant intensity of an object is regulated by Planck’s radiation equation. Therefore, it is possible to 

retrieve the kinetic temperature of an object or a pixel in an image (in remote sensing), and those thermally 

anomalous pixels or objects can be distinguished from its surroundings. This chapter has depicted some of 

the underlying theoretical principles of thermal physics. 

 Theoretical basis of thermal remote sensing 

2.1.2.1. Planck’s Law 

Planck’s law describes the density of electromagnetic spectral radiance emitted by a Black Body at a 

specific temperature and frequency can be defined (Boya, 1900) as follows in Eq.  (2.1): 

 

Lλ =  
2hc2λ−5

e
hc

λkTrad
⁄

− 1
  (2.1) 

 

Where, 

Lλ         Spectral radiance (W m−2 sr−1 µm−1) 

λ      Wavelength (m) 

Trad   Radiant temperature of the object (K) 

h         Planck’s constant = 6.26 × 10-34  J s  

c       Speed of Light = 3 × 108  m/s  

k       Boltzmann constant = 1.381 × 10-23  J/K 

 

In reference to thermal remote sensing, after retrieving at-sensor spectral radiance from raw digital data, 

the kinetic temperature of an object can be estimated as described in Section 2.1.2.4.  
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2.1.2.2. Stefan’s Boltzmann Law 

The total amount of radiant flux (Mλ) emitted per unit surface area of a blackbody is strictly proportional 

to the fourth power of the temperature (T) on which it is emitting per unit time over the entire spectral 

range: 

 

Mλ =  σ ×  T4 (2.2) 

 

Where σ is the Stefan-Boltzmann constant with a value of 5.67 × 10-8 W m−2 K  −4    

 

No material on Earth surface is a perfect emitter. Therefore, the emissivity of real material is always less 

than 1. The emissivity of a particular object depends on the wavelength at which it radiates. 

 

 

Figure 2.1. The relationship between radiant intensity and wavelength (Voigt, Tetzlaff, Zhang, & Ku, 2004) 

2.1.2.3. Peak radiant emission and Wien’s displacement law 

The radiant energy of an object is a function of wavelength at a constant kinetic temperature. The kinetic 

temperature at which an object emits the highest radiant flux is termed as peak radiant emissive 

wavelength (λ max
). With the increasing temperature, the total amount of radiant energy increases, and the 

wavelength at which peak radiant emission occurs is shifted towards shorter wavelength (Figure 2.1). This  

phenomenon is attributed as Wien’s displacement law (Feynman, Leighton, & Sands, 1989): 

 

λ max
=  

2897

Trad
 (2.3) 

 

Where Trad is the radiant temperature at K, and 2897 is a constant with unit µm K. Therefore, the object 

with higher radiant intensity can be detected using SWIR spectral channel of thermal sensors.   
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2.1.2.4. Kinetic temperature, radiant flux and heat transfer 

Every material with a temperature higher than -273.73 ºC emits electromagnetic radiation. The kinetic heat 

is emitted due to the energy released during the random motion of particles within a matter. Consequently, 

the collision which is triggered by the Brownian motion is responsible for the change of energy state and 

the resulting electromagnetic radiation is emitted from the surface of the material. Therefore, the kinetic 

and/or internal as well as heat energy is then converted to radiant energy. 

 

The kinetic temperature of an object is the measure of the total concentrated heat of the surface material. 

It is measured by putting a thermometer in contact with the object. On the other hand, the radiant flux is 

the measure of the emitted electromagnetic radiation from an object. Therefore, the radiant temperature is 

quantified by estimating the total concentrated radiant energy of an object. Also, the kinetic temperature is 

always greater than the radiant temperature as the ratio of the amount of electromagnetic radiation emitted 

by a real object to a black body is always less than 1. The radiant temperature can be computed using Eq. 

(2.2): 

 

Trad =

hc
k

λ × ln [
2hc2λ−5

Lλ
+ 1]

 (2.4) 

 

In the Eq. (2.4), the central value of the wavelength of a specific spectral channel of the thermal sensor is 

considered for estimating radiant temperature. After computing the spectral radiance using a band-specific 

calibration coefficient, the pixel-integrated radiant temperature can be calculated using the above Eq. (2.4). 

Furthermore, after estimating the spectral emissivity (ԑλ), the kinetic temperature can be obtained using 

the following mathematical relation (Huo et al., 2015): 

 

Tkin =
Trad

ԑ0.25
 (2.5) 

 

Where ԑ denotes the emissivity of the material in Eq. (2.5). The aforementioned kinetic temperature in Eq. 

(2.5), can be used to identify hot sources or coal fires in the mining region. In essence, the satellite sensors 

which are augmented with the thermal spectral channel has been effectively used to detect and 

characterize thermally anomalous pixels (Syed et al., 2018).  

2.1.2.5. Spectral emissivity 

The emissivity of surface material can be determined by the ratio of the amount of electromagnetic 

radiation emitted at a given temperature with the amount of theoretical electromagnetic radiation emitted 

by a blackbody with the same temperature and wavelength: 

 

ԑλ =  
L(λ, T)

Lo(λ, T)
 (2.6) 

 

Where L(λ, T) is the spectral radiance of material at wavelength λ and temperature T, Lo(λ, T) denotes the 

spectral radiance of a blackbody at a similar wavelength and temperature.  An emissivity of a material is an 

intrinsic property and independent of irradiance.  

 

In reference to thermal remote sensing, the kinetic temperature of an object is obtained with known Trad 

and ԑ. The spectral emissivity of the earth surface is governed by several factors. The higher amount of 



SURFACE COAL FIRE DETECTION USING VIIRS AND LANDSAT 8 OLI DATA  

 

10 

water content generally results in higher emissivity due to the absorption properties within the IR region. 

Therefore, the thermal emissivity of water generally ranges from 0.97 to 1.0. With increasing vegetation 

cover, the thermal emissivity of a surface material increases (Jin & Liang, 2006). An empirical relationship 

was established between emissivity and Normalised Difference Vegetation Index (NDVI) for different 

surface cover (Van De Griend & Owe, 1993): 

 

ԑλ = a + b × ln(NDVI) (2.7) 

 

The a and b in Eq. (2.7), are two constants with a = 1.0094 and b = 0.047 with a correlation coefficient of 

0.941 for ԑλ  and NDVI (0.01 level of significance). In reference to thermal remote sensing, while 

generating the pixel-integrated temperature map for the datasets derived from the TIR channel, the above 

empirical relationship is applicable for those pixels where the NDVI is greater than zero. Furthermore, the 

reflectance of water-logged areas within the visible range is significantly higher than the NIR range, often 

leading to negative NDVI. Therefore, the Eq. (2.7), is invalid for those pixels. Moreover, in case of the 

rock surfaces and bare soil, the reflectance value is quite similar within the spectral range of red and NIR, 

thereby resulting in the value of NDVI closer to zero. As the fire-affected pixels in the mining region 

generally devoid of vegetation, the emissivity of sandstone, rock and loosely bare soils can be kept as 0.92 

(Buettner & Kern, 1965). 

2.2. Applications of Landsat series satellite sensors in detecting coal fire 

The Landsat derived satellite data have been used for several decades in coal fire mapping and monitoring 

applications (Chatterjee, 2006; Cracknell & Mansor, 1993; Kuenzer et al., 2007; Mansor et al., 1994; 

Oppenheimer et al., 1993). The thermal channel, as well as SWIR channel, is generally used for detecting 

surface and sub-surface coal fire. In case of the thermal channel, the satellite captures the emitted radiance 

and the signal which is captured within a spectral range of SWIR is composed of both emitted and/or 

reflected radiance from earth surface. Using the concept of kinetic temperature, the coal fire affected 

pixels are distinguished from other background pixels. 

 Importance of thermal infrared (TIR) channel 

From the year 1990 to 1997, the potential of TIR channel of Landsat TM was heavily explored to detect 

coal fire related thermal anomalies (Bhattacharya, Reddy, & Mukherjee, 1991; Cracknell & Mansor, 1993; 

Mansor et al., 1994; Prakash, Saraf, & Gupta, 1995; Van Genderen, & Cassells, 1996).  

 

The density slicing method was prevalent to characterise the thermal anomalies by incorporating the 

rigorous trial-and-error method and observing the statistical variations with slopes derived from the field 

data (Guha, Kumar, & Kamaraju, 2008; Prakash & Gupta, 1998). The daytime band 6 of Landsat TM, was 

primarily used for retrieving temperature threshold, however, due to reflected solar heating, sometimes the 

at-sensor radiant temperature was not representative of proper ground temperature, and as a result, the 

nighttime TM data were used to distinguish fire affected pixels from the background. The thermal 

anomaly of Jharia Coalfield, India was first detected using density slicing method incorporated on Landsat 

TM and a temperature threshold was set to 40º C  (Cracknell & Mansor, 1993; Mansor et al., 1994). The 

three steps were used to retrieve kinetic temperature from the raw digital data. At first, the raw digital data 

was converted to spectral radiance, and in the second step, using Planck’s radiation equation, the radiant 

temperature was calculated. Lastly, using the value of thermal emissivity, the kinetic pixel-integrated 

temperature map was generated. Therefore, to distinguish the coal fire affected pixels, the thresholding 

method was adopted to generate a coal-fire map. However, Prakash et al. (1995) carried out a thresholding 

method based on band-specific DN value to delineate fire-affected pixels from the background. Guha et 
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al. (2008) carried out a density slicing method over the Jharia coalfield to distinguish the coal-fire affected 

pixels for quantifying the coal fire affected areas using nighttime TIR channel of Advanced Spaceborne 

Thermal Emission and Reflected Radiometer (ASTER).  

 

Apart from density slicing, several complex methods were adopted to delineate the surface and sub-

surface coal fires from its surroundings (Chatterjee, 2006; Kuenzer, Zhang, Li, et al., 2007). The field-

based modelling was carried out by Chatterjee (2006), to explicitly distinguish the surface fire mixed pixels 

by assuming a typical 50 % of the mixed pixel got affected by the fire. Kuenzer et al. (2007) developed a 

rigorous moving window based approach (varying sizes from 11 × 11 to 35 × 35) to effectively select the 

local temperature thresholds by critically analysing the local histograms derived from those windows. 

However, the method was computationally intensive.  

 Importance of short-wave infrared channel 

During 1990, the potential of SWIR band was explored to detect and delineate the coal fire affected areas 

due to its ability of capturing both emitted and reflected signals from a hotspot or fire-affected pixels 

(Andres & Rose, 1995; Dozier, 1981; Francis & De Silva, 1989; Oppenheimer, Rothery, Fieri, Abrams, & 

Carrere, 1993; Prakash, Gupta, & Saraf, 1997; Reddy, Srivastav, & Bhattacharya, 1993; Rothery, Francis, & 

Wood, 1988). The Landsat TM was equipped with two SWIR channel: band 7 (centered at 2.215 µm) and 

band 5 (centered at 1.65 µm). According to the Planck’s radiation equation, the peak radiant emission is 

shifted towards the SWIR region as the temperature of a material increases. Therefore, the emitted 

component of a hot-source is captured more efficiently within the spectral range of the SWIR region. The 

pixel-integrated kinetic temperature was calculated using the dual-channel-based temperature retrieval 

method by incorporating the band 5 and band 7 (Oppenheimer et al., 1993). Furthermore, the 

temperature and area of a typical sub-pixel hot source were retrieved using the dual-channel (band 7 and 

band 5 of Landsat TM) based approach (Dozier, 1981).  

 

In order to correct the captured radiance at SWIR region which is composed of both emitted and 

reflected signals (solar radiance), the neighbourhood pixels can be considered to subtract the combined 

DN value from the actual DN value of hotspot with an extended assumption of absence of emitted 

radiation from the neighbourhood. Chatterjee (2006) investigated the saturation of TIR channel at 70 ºC, 

and hence the SWIR channel was considered to delineate the surface and sub-surface areas where the 

temperature sensitivity of channel 7 of Landsat TM was 160 ºC to 277 ºC broadly matches with the actual 

coal fire temperature (150 ºC to 250 ºC) of Jharia coalfield. However, the method is restricted to the 

assumption of the presence of a reflected solar component, spectral emissivity and the absence of emitted 

component along with the availability of two SWIR channel in a sensor. 

 Recent work 

Recently, several research activities have been carried out to detect active fire affected pixels using 

reflectance and radiance value as an input. Schroeder et al. (2016) have developed a completely new active 

fire detection algorithm using the concept of bi-channel based fixed thresholding technique which was 

established upon a previously built ASTER and Landsat-7 / ETM+ (Giglio et al., 2008), by taking into 

consideration of visible as well as near-infrared bands. However, simultaneously ambiguous pixel 

saturation over the channel 7 centered at SWIR region as well as spurious DN folding, has been identified 

as a major constraint. Furthermore, the accurate retrieval of temperature and area of sub-pixel hot sources 

with an assumption of homogeneous temperature, have been developed using band 7 (centered at SWIR 

region) of Landsat 8 / OLI data recently (Kato, Kouyama, Nakamura, Matsunaga, & Fukuhara, 2018). 

The study has shown the potential of Landsat 8 / OLI data over MODIS and VIIRS, in case of detecting 

small hotspots. However, the aforementioned study has a crucial limitation (assumption of a singular 
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component of sub-pixel hot sources) while the multiple heat sources (heterogeneous temperature) come 

into the picture. Roy et al. (2015) have depicted a cluster-based separated max-min radiant temperature 

approach to distinguish coal fires from the background, using unbiasedly scattered homogeneous blocks 

of pixels from ASTER (band 13, block (9×9)) and Landsat-8 (band 8, block (27×27)) data. Interestingly, 

the detection of the surface, as well as sub-surface fire during the summer season, has various challenges 

due to ambiguousness arises between coal-fire pixels and the water bodies in reference to Land Surface 

Temperature (LST) (Mukherjee, Mukherjee, & Chakravarty, 2018). However, the novelty of the proposed 

method relies on the detection as well as separation of water bodies from other objects prior to analysing 

fire-affected pixels on the image. 

 Active fire detection algorithm using Landsat 8 OLI 

Schroeder et al. (2016) developed an algorithm based on dual-channel based fixed-threshold integrated 

with the contextual approach to extract the potentially unambiguous active fire affected pixels by 

exploiting the differential spectral response of SWIR and NIR channel of Landsat 8 OLI data. The 

algorithm was previously developed for Landsat 7 ETM+ as well as ASTER (Giglio et al., 2008). 

Consequently, the active fire detection (AFD) algorithm which was primarily built on utilizing the channel 

7 of Landsat 8 OLI sensor, can be split into two modules: (i) daytime and (ii) nighttime detection. 

2.2.4.1. Daytime detection  

The daytime detection consists of constructive conditional tests by incorporating the OLI channels as an 

input function. During the daytime, it has been observed that the SWIR channel (2.2 µm) captures the 

emitted as well as reflected signals from the hot sources. In order to exclude the effect of reflected 

component (daytime solar radiation) in channel 7 (2.2 µm), the channel 5 (0.865 µm) is considered which 

is usually insensitive to the emitted signals and depict a strong correlation with the channel 7 of Landsat 

sensor except for the fire affected areas (Giglio et al., 2008). Therefore, the potentially unambiguous active 

fire affected pixels are distinguished based on the following conditions: 

 

R75 > 2.5 AND r7 −  r5 > 0.3 AND r7 > 0.5  (2.8) 

 

Where Rij represents the ratios of the reflectance in channel i and channel j (i. e. ,
ri

rj
⁄ ), ri is the measure 

of reflectance. The test depicted in Eq. (2.8), has been successful in extracting the potentially unambiguous 

active coal fire affected pixels. However, due to the existence of active fires with higher intensity in a pixel, 

may lead to Digital Number (DN) folding within the spectral range of channel 7, thereby resulting in the 

radiometric artifact. In order to detect pixels with such an ambiguous property, the second test has been 

performed utilizing the channel 1 (0.443 µm band), 5 (0.865 µm band), 6 (1.6 µm band) and 7 (2.2 µm 

band):  

 

 r6 > 0.8 AND r1 < 0.2 AND (r5 > 0.5 OR r7 < 0.1)  (2.9) 

 

Accompanying the extraction of fire affected pixels, the threshold in Eq. (2.8) is further weaken to select a 

significant number of candidate pixels for subsequent analysis: 

 

R75 > 1.8 AND r7 − r5 > 0.17 (2.10) 

 

By executing the aforementioned test sequences, if the shortlisted candidate pixels pass the test (2.10), 

should meet the subsequent criteria based on fixed thresholds integrated with the contextual tests as 

depicted here: 
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R75  >  R75
̅̅ ̅̅ ̅ + max(3σR75

, 0.8) (2.11) 

 

AND 

 

r7  >  r7̅ + max(3σr7
, 0.08) (2.12) 

 

AND 

     

R76 >  1.6 (2.13) 

 

Where ri ̅and σRij represent the mean and standard deviation of estimated band ratio (using channel 7 and 

channel 5) by utilizing a 61 × 61 window centered at valid candidate pixels shortlisted using Eq. (2.10). 

However, the selection of optimal window size can be investigated considering the spatial variability. 

Moreover, a pixel can be categorized as a fire affected pixel if its reflectance is greater than zero and meet 

all the criteria of the aforementioned test sequences (3.4a − 3.4c) and if there exists no ambiguity 

between water and fire affected pixels. In order to address the effect of water pixels, two distinct tests are 

executed: 

 

 {r4 > r5 AND r5 > r6 AND r6 > r7 AND r1 −  r7 < 0.2} (2.14) 

 

AND 

 

{(r3 >   r2) OR  (r1 > r2 AND r2 >  r3 AND r3 > r4 )}   (2.15) 

 

The tests in Eq. (2.14) and Eq. (2.15), are distinctly effective in mapping the shallow as well as the deep 

water bodies respectively. However, the ambiguities may exist between the water pixels and the pixels 

covered by cloud and shadow as the valid background statistics are not addressed to distinguish between 

the two (Schroeder et al., 2016). In contrast, the overall active fire detection technique is not affected by 

the effect of excluding the background statistics mentioned earlier.  

2.2.4.2. Nighttime detection  

Using the SWIR channel 7 of Landsat 8 OLI, it is possible to retrieve the fire affected pixels from the 

nighttime scene by incorporating a direct threshold: 

 

L7 > 1 W m−2 sr−1 µm−1   (2.16) 

 

Where L7 represents the spectral radiance of channel 7. The Eq. (2.16) is similar to Giglio et al. (2008). 

Furthermore, a detailed treatment of the aforementioned test sequences is depicted and evaluated by 

Schroeder et al. (2016). 

2.3. Satellite-based image fusions 

With the rapid development and availability of distinct sensors for miscellaneous remote sensing 

applications, the possibility of integrating different sensor derived datasets have led the foundation of 

improving the information in a spatial, temporal and spectral domain. Each and every space-borne sensors 

have their own distinct characteristics. In reference to earth observation, image fusion can be defined as a 

process of integrating multiple images to produce a synthetic composite with improved information 
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content (Goshtasby & Nikolov, 2007). Traditionally, image fusion techniques can be grouped into 

different categories. According to different processing level, the fusion methods can be classified as a pixel 

based, feature-based or decision-based fusion (Ehlers, Klonus, Åstrand, & Rosso, 2010). Alternatively, it 

can also be classified according to multi-source or multi-sensor methods (Zhang,  2010). Another way of 

categorising the fusion technique is to incorporate the concept of statistical and numerical method, colour 

related method (HIS, RGB) and hybrid method (Ehlers et al., 2010; Roy et al., 2008; Zhang, 2008). An 

integrated fusion framework has been depicted in Figure 2.2. 

 

 

Figure 2.2.  A generic fusion framework. Source: Shen, Meng, & Zhang (2016) 

 

Among all the areas of image fusion, a new domain of spatiotemporal image fusion has evolved based on 

the framework of statistical and numerical methods. These methods incorporate the concept of integrating 

different satellite-derived images with distinct characteristics (spatial resolution, temporal resolution, 

orbital characteristics) to produce high spatial and temporal resolution synthetic image. In the next section, 

the broader view of spatiotemporal fusion has also been depicted. 

 Spatiotemporal data fusion methods 

A theoretical framework of a novel spatiotemporal fusion method was established by Gao et al. (2006) 

with an objective of producing synthetic daily reflectance images using Landsat (30 m spatial resolution 

with 16 day revisit) and MODIS (500 m spatial resolution with daily revisit) as an input. Later on, several 

methods of spatiotemporal fusion have been developed (Zhu et al., 2010; Fu, Chen, Wang, Zhu, & Hilker, 

2013; Weng, Fu, & Gao, 2014). The performance evaluation of different methods have been tested over 

various satellite images such as (i) Landsat and MODIS (Gao et al., 2006; Zhu et al., 2010); (ii) GOES and 

Landsat (Wu, Shen, Ai, & Liu, 2013); (iii) MODIS and HJ-1 (Meng, Du, & Wu, 2013); (iv) MERIS and 

Landsat (Zurita-Milla, Kaiser, Clevers, Schneider, & Schaepman, 2009) . Generally, the central idea of each 

spatiotemporal fusion model is to blend high spatial and low temporal resolution image with the high 

temporal and low spatial resolution image. Using these concepts, the synthetic images are generated to 

assess the temporal dynamics of several environmental parameters such as surface reflectance, Normalised 

Difference Vegetation Index (NDVI), Land Surface Temperature (LST), evapotranspiration (Anderson et 

al., 2011; Gao et al., 2006; J. Meng et al., 2013; Weng et al., 2014; Wu et al., 2013). According to the recent 

review by Zhu, Cai, Tian, & Williams (2018), the spatiotemporal fusion model can be broadly categorised 
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as: (i) unmixing based method (Zhang et al., 2013; Zhukov, Oertel, Lanzl, & Reinhäckel, 1999); (ii) 

bayesian-based method (Huang et al., 2013; Li et al., 2013); (iii) learning-based method (Huang & Song, 

2012; Song & Huang, 2013a); (iv) hybrid method (Rao, Zhu, Chen, & Wang, 2015; Zhu et al., 2016); (v) 

weighted-function based method (Gao et al., 2006; Zhu et al., 2010). A Generalized schematic layout of 

spatiotemporal fusion method has been depicted in Figure 2.2. 

2.3.1.1. Unmixing-based method 

The underlying concept of unmixing based fusion method is to incorporate the classification approaches 

in generating synthetic composites with high spatial and temporal resolutions. Furthermore, the linear 

spectral mixing technique is utilized for unmixing the coarse resolution pixels to estimate the value of fine 

resolution pixels. Using the concept of unmixing based fusion, the first model was introduced by Zhukov 

et al. (1999) named multi-sensor multi-resolution technique (MMT). The proposed MMT model has four 

major steps:  

 

1. Defining endmembers by classifying the fine resolution image;  

2. Computing the fraction of endmembers for each coarse resolution pixels;  

3. Using a pre-defined moving window, unmixing the coarse resolution pixels; 

4. Reconstructing an unmixed synthetic image by assigning derived reflectance to fine resolution 

pixels.  

 

Zurita-Milla et al. (2009) developed an unmixing based model using Medium Resolution Imaging 

Spectrometer (MERIS, 300 m spatial resolution) and Landsat (30m) time series data. The technique 

assigns an unmixed signal to the corresponding classes present in the neighbourhood of a central pixel 

within a moving window. The performance of the above model was strictly dependent on the accuracy 

and availability of land use land cover (LULC) database. The spatial temporal data fusion approach 

(STDFA) developed an unmixing model to estimate the change of reflectance from both input and 

predicted image through moving window, thereby assigning the change to the base fine resolution image 

(Niu, 2012).  

2.3.1.2. Bayesian method 

Bayesian-based methods incorporate the theoretical framework of Bayesian estimation to model the 

relationship between input and predicted images. The central idea of blending input images in Bayesian 

domain is to maximize the estimated conditional probability associated with corresponding fine and coarse 

resolution images (Shen et al., 2016). The Bayesian principles coupled with intuitive interpretations were 

used to model a flexible relationship between input and predicted images (Huang et al., 2013). In essence, 

the relationship between coarse and fine resolution images can be depicted as two types:  

 

1. The observed coarse and fine resolution image at the same date which is termed as a scale model 

in Bayesian framework;  

2. The temporal relationship between input images which can be described as a temporal model. 

 

Generally, the concept of point spread function (PSF) is used in a scale model to establish a relationship 

between the fine and coarse resolution image (Xue, Leung, & Fung, 2017). The methods of different 

Bayesian-based spatiotemporal fusion is used to describe the relationship depending on the rate of change 

of temporal dynamics governed by several environmental parameters such as phenology, forest fire, and 

trend of LST. The low pass filtering method was incorporated in unified fusion method to establish the 

relationship between the fine and coarse resolution images (Huang et al., 2013). The concept of covariance 

function was first introduced in the Bayesian Maximum Entropy (BME) model to establish a statistical 
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link between coarse and fine resolution image (Shen et al., 2016). Recently, a new spatiotemporal model 

was developed by combining the high pass frequency modulated from fine resolution image with the 

bilinear interpolation of coarse resolution image to establish a scale model integrating with the joint 

covariance based temporal model (Xue et al., 2017).  

2.3.1.3. Learning based method 

The theoretical concept of sparse representation-based spatiotemporal fusion model (SPSTFM) was 

developed by Huang & Song (2012), using three MODIS images (at date t1, t2 and t3) and two Landsat 

images (t1 and t3) as an input to predict the synthetic image product at date t2. The underlying concept can 

be depicted as: 

 

1. Incorporating a sparse representation technique to enhance the spatial resolution of MODIS 

images corresponding to the same resolution of Landsat image (30 m); 

2. Constructing an equivalent dictionary pair with corresponding Landsat and MODIS images at 

date t1 and t3 (M(t1) with L(t1); (M(t3) with L(t3)); 

3. Predicting and reconstructing the synthetic image using different parameterized weighting 

function. 

 

Even though SPSTFM provided better accuracy in comparison to STARFM, the method had a 

computational complexity. Later on, the complexity was reduced by Song & Huang (2013b) using a single 

pair of MODIS and single Landsat data. 

2.3.1.4. Hybrid methods 

The hybrid methods use to integrate the concept of distinct fusion techniques to develop an improved 

spatiotemporal fusion model. Interestingly, the flexible spatiotemporal data fusion (FSDAF) method 

successfully integrated the concept of weight-based function along with the unmixing based method to 

predict the abrupt land cover changes in the heterogeneous region (Zhu et al., 2016). Furthermore, the 

spatial and temporal reflectance unmixing model (STRUM) used a hybrid technique to integrate the 

concept of unmixing techniques with the theoretical framework of STARFM (Gevaert & García-Haro, 

2015).   

2.3.1.5. Weight-function based method 

The weighted function based methods design a weight based on statistical and numerical techniques and 

assign it to the central pixel of a moving window for estimating the surface reflectance. Gao et al. (2006) 

introduced the concept of spatial and temporal adaptive reflectance fusion model (STARFM) to produce 

synthetic Landsat-like daily surface reflectance product for monitoring phenology changes. Keeping in 

view of the orbital similarity between Landsat and MODIS, STARFM assumes the rate of change of 

reflectance between Landsat and MODIS images are consistent and comparable. The three major steps of 

STARFM includes: 

 

1. Extracting spectrally similar homogeneous pixels from the neighbourhood of Landsat image 

within a moving window. 

2. Computing a weight function and multiply with the summation of the difference of surface 

reflectance between two MODIS images at two different times at t1 and t2 is (Mt2
−  Mt1

) and 

Landsat image at t1  (Lt1
).  

3. Generating synthetic image at time t2 by assigning the weighted sum to the central pixel of the 

moving window. 
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Although STARFM generates the synthetic Landsat-like images, the major limitations include: (i) 

performance degrades while considering the heterogeneous region; (ii) the window size has to be tested 

for different applications; (iii) the spectrally similar homogeneous pixels may not present within the 

moving window. To overcome these limitations associated with heterogeneity, Zhu et al. (2010) developed 

an Enhanced STARFM (ESTARFM) model. A new concept of conversion coefficient was introduced to 

perform a regression analysis of spectrally similar homogeneous pixels using a dual pair of MODIS and 

Landsat data at two different dates. Using a dual pair of MODIS and Landsat datasets at two different 

dates t1and t3, the synthetic image is produced in an intermediate date t2 (t1 <  t2 <   t3). Even though 

the prediction accuracy was comparable with the original STARFM, it had similar problems associated 

with computation complexity and the size of the window as well as a selection of spectrally similar 

homogeneous pixels. In order to overcome the above limitations, Fu et al. (2013) modified the criteria for 

selecting spectrally similar homogeneous pixels. However, it had the same problem of computational 

complexity. Consequently, the concept of STARFM was used to miscellaneous applications such as 

evapotranspiration (Anderson et al., 2011), daily surface temperature retrieval (Liu & Weng, 2012). 

Integrating the concept of annual temperature cycle with the existing STARFM model, Weng et al. (2014) 

developed a spatiotemporal adaptive data fusion (SADFAT) model for temperature mapping. 

2.4. Theoretical framework of spatiotemporal fusion methods 

The spatiotemporal data fusion techniques have been widely used for various remote sensing applications. 

Gao et al. (2006) developed a novel spatiotemporal fusion technique named spatiotemporal adaptive 

reflectance fusion model (STARFM) using Landsat and MODIS images as an input.  

 

However, the author had also mentioned the possibility of using Landsat and VIIRS data as an input to 

explore the different domain of remote sensing applications. It was developed by selecting the pixels with 

spectral similarity (high spatial resolution image) within a moving window. Using those spectrally similar 

pixels, the subsequent weights are assigned to the central pixel for computing the surface reflectance at the 

predicted date. The corresponding weights are computed using the concept of the spectral difference, 

spatial difference and temporal difference between the spectrally similar pixels with the subsequent coarse 

and fine resolution pixels. Figure 3.2 depicts an underlying working principle of STARFM. 

The input dataset which has been used to blend and produce a synthetic Landsat like image (Figure 3.2): 

1. Coarse resolution image (VIIRS) at t1 

2. Fine resolution image (Landsat 8 OLI / TIRS) at t1 

3. Coarse resolution image (VIIRS) at t2 

 Algorithmic overview of STARFM 

The pre-requisite criterion of implementing the STARFM algorithm is to calibrate the observation from 

different sensors (pre-processing such as re-projection, resampling, scaling of the reflectance value) into 

surface reflectance, including the atmospheric correction. However, the systematic biases are anticipated 

due to the dissimilarities associated with the chain of processing scheme, bandwidth, spectral response 

function, geolocation error and distinct sensor characteristics.  

 

If the aforementioned biases are neglected, a coarse resolution heterogeneous pixel with a surface 

reflectance of Ht can be aggregated to a linear combination of the product of surface reflectance (Ft
i) of 

fine resolution homogeneous pixels with the fraction of area coverage (At
i ) by individual pixel: 

 



SURFACE COAL FIRE DETECTION USING VIIRS AND LANDSAT 8 OLI DATA  

 

18 

Ht = ∑ Ft
i  ×  At

i

n

i=1

 (2.17) 

 

Where i is the spatial index of corresponding homogeneous pixels, and n  denotes the number of 

homogeneous pixels within the spatial bound of a coarse resolution heterogeneous pixel. However, it is 

difficult to get a unique solution (using Eq. (2.17) considering the similarity of areas for all the fine 

resolution pixels. Therefore, if it is possible to get the value of Ft
i  from the neighbouring pixels, the 

corresponding biases between actual and predicted pixels can be eliminated. 

 

 
 

Figure 2.2. The Schematic working principle of STARFM.  Initially, the fine resolution image at t1 is used to search 

for spectrally similar homogeneous pixels within a moving window in step (1). In the next step (2), the homogeneous 

pixels (marked red) are further filtered out from a moving window (central pixel marked in green). Afterwards, the 

weight is assigned to the central pixel according to the spectral difference, spatial difference and temporal difference 

derived from the pixels associated with the single pair of coarse resolution images at t1 and t2 and fine resolution 

image at t1 considering the corresponding location of spectrally similar homogeneous pixels (3). At last, the 

reflectance of the central pixel is estimated (4) using the combined weight derived in step (3).  

Hence, the goal is to extract spectrally similar homogeneous pixels considering the effect of the 

neighbourhood for a candidate pixel. After performing the down-scaling operation (bilinear interpolation, 

nearest neighbour interpolation) of VIIRS surface reflectance product within the bounds of the spatial 

resolution of Landsat 8 OLI product, the surface reflectance value of a fine resolution homogeneous pixel 

can be expressed as: 

 

  L(xi, yi, tk) = V(xi, yi, tk)  +  ԑk (2.18) 

 

Where (xi, yj) is the location of both Landsat 8 OLI and VIIRS pixel which shares the same size and 

coordinate system, and  tk  represents the acquisition date, L(xi, yi, tk) and V(xi, yi, tk)  represent the 

surface reflectance of Landsat 8 and VIIRS respectively, ԑk denotes the difference in surface reflectance. 
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Now if we want to predict the surface reflectance of Landsat 8 at tp, the predicted value of synthetic pixels 

can be expressed as: 

 

L(xi, yi, tp) = V(xi, yi, tp) + ԑp (2.19) 

 

If the topographic changes and system errors are neglected within the prediction date (tp) and estimation 

date (tk), the assumption of ԑk = ԑp will lead to: 

 

L(xi, yi, tp) = V(xi, yi, tp)  +  L(xi, yi, tk) −  V(xi, yi, tk) (2.20) 

 

However, the situation in Eq. (2.20) cannot be satisfied because of changes in topography between the 

date tk  and  tp , differential solar geometry, variations in bidirectional reflectance distribution function 

(BRDF) and associated biases in reference to the distinct sensor. Therefore, to estimate the surface 

reflectance of the central pixel of a moving window, the computation of the weight (Wijk ) plays a pivotal 

role. The weight is estimated using the spectral, spatial and temporal difference between the 

corresponding VIIRS and Landsat pixels (spectrally similar and homogeneous) simultaneously extracted 

within a moving window. 

 

L(xw/2, yw/2, tp) = ∑ ∑ ∑ Wijk ×
n 

k=1

w 

j=1

w

i=1
(V(xi,yj,tp) +  L(xi,yj,tk)  −  V(xi,yj,tk)) (2.21) 

 

Where w × w  denotes the area of the square window, L(xi, yj, tk) indicates the predicted value of 

synthetic Landsat pixel. In order to compute the weight (Wijk ), the spectrally similar homogeneous pixels 

have to be extracted. In order to perform the aforementioned task, the criteria can be established 

considering the overall spectral variance of an image within a distinct spectral domain and the number of 

classes associated with a chosen study area: 

 

|L(xi, yj, tk) −  L (xw
2⁄ , yw

2⁄
,
 tk)| ≤  2 ×

σ(B)

n
 (2.22) 

                                      

Where L(xi, yj, tk)  denotes a pixel belonging to the domain of square window, σ(B) indicates the 

standard deviation of the entire image with band B, n denotes the number of classes of a chosen study 

area. If a pixel satisfies the criteria in Eq. (2.22), it will be termed as a spectrally similar homogeneous pixel.  

After extracting those spectrally similar homogeneous pixels within a moving window from the Eq. (2.22) 

, the computation of the weight (Wijk)  is performed by considering the spectral difference, spatial 

difference and temporal difference between the homogenous pixels in Landsat 8 and the pixels with a 

similar location in VIIRS within a moving window of equal size. 

2.4.1.1. Spectral Difference:  

The spectral difference is the estimate of the difference between the value of surface reflectance of a 

Landsat 8 homogeneous pixel L(xi, yj, tk)  and the VIIRS pixel  V(xi,yj,tk)  within the same moving 

window.   

 

Sijk  =   |L(xi, yj, tk) −  V(xi,yj,tk)| (2.23) 
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Where Sijk  indirectly measures the approximate homogeneity between the VIIRS pixels. Therefore, a 

smaller value in Eq. (2.23) indicates the spectral similarity within the proximity of fine resolution pixels. If 

Sijk = 0, the predicted value of surface reflectance should also be equal to the value of L(xi, yj, tk). 

2.4.1.2. Temporal Difference: 

The temporal difference is the estimate of the difference between the value of surface reflectance of a 

VIIRS pixel V(xi, yj, tp)  at the predicted date and the VIIRS pixel V(xi,yj,tk) at date tk within the similar 

moving window.  The location (xi, yj) is similar to the homogeneous pixel of Landsat 8. 

 

Tijk =  |V(xi, yj, tp)  −  V(xi,yj,tk)| (2.24) 

 

Where Tijk measures the rate of change of reflectance between  tp and tk for a VIIRS pixel at the location 

of (xi, yj). The higher value of the temporal difference in Eq. (2.24), typically indicates a rapid change of 

phenology between the observed and the predicted date. 

2.4.1.3. Spatial Difference: 

The spatial difference is the measure of the Euclidean distance between a candidate homogeneous pixel 

and a central pixel within a moving window at the date tk  

 

dijk
2 = (xi − xw

2⁄ )
2

 +  (yi − yw
2⁄ )

2
 (2.25) 

 

The distance mentioned in Eq. (2.25), has been converted to a relative distance Dijk by considering the 

implementation scheme: 

 

Dijk = 1.0 +  
dijk

A
 (2.26) 

 

Where A is the measure of relative importance of spatial distance with respect to the spectral and temporal 

difference. A is normally kept as the half of the width of the square window  (w
2⁄ ) during the time of 

implementation. Generally, the value of the weight is inversely proportional to the distance between a 

central pixel and a spectrally similar pixel.  

2.4.1.4. Combined weight 

If we combine the spectral difference(Sijk), temporal difference (Tijk) and spatial difference(Dijk), the 

resulting equation will be: 

 

Cijk = Sijk × Tijk × Dijk (2.27) 

 

The normalised reverse distance is considered as a weight function (Wijk): 

 

Wijk = (
1

 Cijk
) / (∑ ∑ ∑

1

Cijk

n 
k=1

w 
j=1  w 

i=1 ) (2.28) 
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If the VIIRS surface reflectance does not change from tk to tp, the resulting value will be V(xi, yj, tp) =

 V(xi, yj, tk), then Tijk = 0 and Cijk = 0, and the weight (Wijk ) is set to maximum value. In that case, the 

resulting value of the synthetic central pixel will be L (xw
2⁄ , yw

2⁄ , tp) = L (xw
2⁄ , yw

2⁄ , tk). The initial 

assumption was, if no changes happen in the surface reflectance of VIIRS, then no changes should 

happen in the Landsat 8 OLI. 

 

On the other hand, if the Landsat 8 surface reflectance is equal to the surface reflectance of VIIRS. 

L(xi, yj, tk) = V(xi, yj, tk), then Sijk = 0 and Cijk = 0, and the weight (Wijk ) is set to maximum value. 

Therefore, the resulting value of the synthetic central pixel would be estimated as L (xw
2⁄ , yw

2⁄ , tp) =

 V (xw
2⁄ , yw

2⁄ , tp).  

 Algorithmic overview of Enhanced STARFM: 

Zhu et al. (2010) further improved the STARFM for heterogeneous surfaces using the concept of linear 

regression and conversion coefficient to assign a weight for estimating the predicted reflectance.  

 

The basic assumption of ESTARFM is that the data derived from different sensors with the same 

acquisition date are comparable after atmospheric correction, radiometric calibration and geometric 

correction. However, systematic biases are expected due to dissimilarities associated with the orbital 

parameters, spectral bandwidth, and differential radiometric response of the corresponding sensors. The 

central idea of ESTARFM is to consider the correlation between multisource data to fuse information 

within a similar spectral range of multi-sensors. Moreover, the concept of heterogeneity of earth surface is 

introduced to further improve the performance of original STARFM.   

The input dataset which has been used to blend and produce a synthetic Landsat like image (Figure  

1. Coarse resolution images (VIIRS) at t1 and t3 

2. Fine resolution image (Landsat 8 OLI / TIRS)at t1 and t3 

3. Coarse resolution image (VIIRS) at t2 

2.4.2.1. Pure coarse-resolution pixel 

With an assumption of the coarse-resolution image being re-projected and resampled to the same bounds 

and extent of a fine resolution image, the difference between the value of coarse resolution and fine 

resolution pixel results from systematic errors. Moreover, those errors cannot be corrected by geometric 

rectification, atmospheric correction and all other sources associated with it. 

 

Therefore, a linear model can be established considering the reflectance value of corresponding coarse and 

fine resolution pixels as: 

 

F(x, y, tk, B) =  a × C(x, y, tk, B)  +  b (2.29) 

 

Where F, C is the value of fine and coarse resolution surface reflectance, (x, y) denotes the location of 

pixels, tk  is the acquisition date, B corresponds to band with similar spectral range, a and b are the 

coefficient of the linear regression model. With an extended assumption of sensor stability,   the Eq. (2.29) 

should be consistent. However, due to the differences in solar geometry, altitude variation, and associated 

bias, systematic variability cannot be eliminated. Therefore, there exists a location dependency of the 

coefficients a and b in Eq.(2.29). 
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Figure 2.3. The schematic working principle of ESTARFM. At first, the spectrally similar homogeneous pixels 

(marked in red) are extracted from a moving window (central pixel marked in green) using fine resolution image at t1 

and t3. Moreover, the intersection of similar pixels along with the corresponding pixels from the re-projected and 

resampled coarse resolution images (marked in red) at t1 and t3 are used to compute weight. In the next step, the 

reflectance of the central pixel is computed using the estimated weight and conversion coefficient of similar pixels.  
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Henceforth, the localised value of a and b should be taken into consideration. If two images are acquired 

simultaneously at the date t0 and tp, the Eq. (2.29) can be written as Eq. (2.30) and Eq. (2.31): 

 

F(x, y, to, B) = a × C(x, y, to, B) + b (2.30) 

 

F(x, y, tp, B) = a × C(x, y, tp, B) + b (2.31) 

 

From Eq. (2.30) and Eq. (2.31), the following equation can be obtained: 

 

F(x, y, tp, B) =  F(x, y, to, B) + a × (C(x, y, tp, B) − C(x, y, to, B))   (2.32) 

 

The Eq. (2.32) shows the predicted reflectance at date tp is the sum of fine resolution reflectance at a date 

to and the change of reflectance between the corresponding coarse-resolution pixels at to and tp with a 

coefficient of a. If two pairs of the input image at a time tm and tn are acquired, the correlation coefficient 

can be obtained using linear regression between fine resolution pixels against coarse resolution pixels at a 

time tm  and tn . Consequently, the correlation coefficient is valid for surfaces which do not change 

rapidly between observed and predicted date. 

2.4.2.2. Heterogeneous coarse-resolution pixel 

Due to the existence of heterogeneity of land cover surfaces, most of the pixels exhibit complex property. 

If a mixed pixel can be modelled by the product of fractional area coverage of a land cover type with the 

corresponding reflectance, a mathematical relationship can be established between the changes in 

reflectance from 𝐭𝐦 to 𝐭𝐧. Assuming the negligible change in surface properties between 𝐭𝐦 and 𝐭𝐧, the 

relationship between the reflectance of coarse resolution heterogeneous pixel and the fine-resolution 

homogeneous pixel can be written as: 

 

Cm  =  ∑ fi

M

i=1 

(
1

a 
Fim  −  

b

a
)  +  ԑ   (2.33) 

 

Cn  =  ∑ fi

M

i=1 

(
1

a 
Fin  −  

b

a
)  +  ԑ   (2.34) 

 

Where Cm and Cn are the corresponding reflectance (coarse resolution) at the date tm and tn respectively, 

fi  denotes the fractional area coverage of ith  endmember, Fim  and Fin  denotes the reflectance (fine 

resolution image) of ith endmember, M is the total number of endmembers, a and b denotes the relative 

calibration coefficient between coarse resolution and fine resolution pixels. Here, all the fine resolution 

pixels within the bounds of coarse resolution pixels can be attributed to the relative endmembers. From 

Eq. (2.33) and Eq.  (2.34), it can be written as: 

 

Cn −  Cm = ∑
fi

a

M

i=1 

(Fin −  Fim)   (2.35) 
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An extended assumption can be made to model a linear change in reflectance of each endmember from 

the time tm to tn. Therefore, a linear relationship can be established between the changes of reflectance of 

ith endmember from time tm to tn. 

 

Fin = hi × ∆t + Fim   (2.36) 

 

Where ∆t =  tm − tn, hi represents the rate of change of reflectance between tm and tn. The assumption 

of linearity between the short periods can be made as it is difficult to model a non-linear relationship of 

the rate of change of reflectance due to the heterogeneous complexity of earth surfaces. Then, the Eq. 

(2.35) can be rewritten as: 

 

Cn − Cm = ∆t × ∑
fi × hi

a

M

i=1

   (2.37) 

 

With the known value of surface reflectance of  lth endmember at date tm and tn, the difference ∆t can be 

represented as: 

 

∆t =  
Fln − Flm

hl
   (2.38) 

 

Where hl denotes the rate of change of reflectance of  lth endmember between date tm and tn. Combining 

Eq. (2.37) and Eq. (2.38), it can be encapsulated as: 

 

Fln −  Flm

Cln  −  Clm
=  

hl

∑  M
i=1

fi × hi
a

= vl    (2.39) 

 

The right part of the Eq. (2.39), depicts the ratio of the rate of change of reflectance for lth endmember 

and a mixed coarse resolution pixel. Thus, the value of vl  represents a proportion of linearity between 

each endmember against a coarse resolution heterogeneous pixel aligning with the prior assumption of 

linearity. In this case, an endmember is considered to be a fine resolution pixel (x, y) falling within the 

bound of the coarse-resolution heterogeneous pixel. Therefore, for each endmember, a conversion 

coefficient v(x, y) can easily be determined using linear regression. With a single pair of fine and coarse 

resolution image, the predicted reflectance at (x, y) can be rewritten as: 

 

F(x, y, tp, B) = F(x, y, to, B)  +  v(x, y) × (C(x, y, tp, B)  −  C(x, y, to, B))   (2.40) 

 

As the Eq. (2.32) and Eq. (2.40), has a similar form, but Eq. (2.32) depicts that the pure pixels are 

normalised between different resolution images, however, the Eq. (2.40) determines the relationship 

between the rate of change of reflectance between an endmember and a coarse resolution heterogeneous 

pixel. Moreover, Eq. (2.32) and Eq. (2.40) considers only distinct information from a single pixel, 

however, the result can be further improved by introducing the concept of moving window to extract 

spectrally similar homogeneous pixels from the neighbourhood (Gao et al., 2006). Therefore, Eq. (2.40) 

can be further modified by assuming a square window (area w × w) and considering the central pixel of 

that window as: 
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F (xw
2

,  yw
2

, tp , B) = F (xw
2

,  yw
2

, to , B)  + ∑ Wi

N

i=1

× Vi × (C(xi, yi, tp, B)  −  C(xi, yi, to, B)) 

 

  (2.41) 

 

Where N denotes the number of spectrally similar homogeneous pixels including the central pixel of the 

moving window, (xi, yj)  denotes the location of ith  similar pixel, Wi  is the weight contributed by ith 

similar pixel. The homogeneous pixels are characterised by similar land cover type as the central pixel 

within a window. The window size w is inversely proportional to the homogeneity of the surface. Vi is the 

conversion coefficient of ith similar pixel. 

2.4.2.3. Extraction of spectrally similar homogeneous pixels 

The spectrally similar homogeneous pixels are extracted either by performing unsupervised clustering 

method or by incorporating fixed-thresholding technique using the difference of reflectance value between 

central pixels of a moving window with all other pixels. The homogeneous pixels are extracted using the 

Eq. (2.22) as described in Section 2.4.1. 

2.4.2.4. Computation of weight (𝐖𝐢) 

The weight Wi for ith similar pixels are computed by incorporating the concept of the contribution of 

each similar pixel with respect to their corresponding spatial distance from a central pixel of the moving 

window. The pixel with higher similarity and lesser distance contributes to the higher weight. The 

correlation coefficient of each fine-resolution pixel with corresponding coarse resolution pixel within the 

same moving window is used to compute weight: 

 

Ri =  
E[(Fi − E(Fi))(Ci − E(Ci))]

√V(Fi) ×  V(Ci)
 (2.42) 

 

Fi = {F(xi, yi, tm, B1), … , F(xi, yi, tm, BN), F(xi, yi, tn, B1), … , F(xi, yi, tn, BN)} 

 

Ci = {C(xi, yi, tm, B1), … , C(xi, yi, tm, BN), C(xi, yi, tn, B1), … , C(xi, yi, tn, BN)} 

 

Where Ri indicates the spectral correlation coefficient of each similar pixel within a moving window, Fi 

and Ci denotes the spectral vector of each spectrally similar pixels for each band (from B1 to BN) at time 

tm and tn.  V(Fi), V(Ci) denotes the variance of fine and coarse resolution pixels respectively. The range 

of Ri varies between -1 to +1. The spectral distance between a similar pixel and central pixel is determined 

using Euclidean distance: 

 

di = 1 +
√(xi −  xw/2)

2
+  (yi −  yw/2)

2

w
2⁄

 
(2.43) 

 

After combining the Eq. (2.42) and Eq. (2.43), an index (Di) can be used to represent the relative 

contribution of each pixel: 

 

Di = (1 − Ri) × di (2.44) 
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In the Eq. (2.44), a larger value of Di represents a relatively lesser contribution towards computing the 

synthetic reflectance of a predicted pixel located at the centre of the moving window. Therefore, the 

normalised weight of each similar pixel with respect to all other similar pixels within a moving window can 

be defined as: 

 

Wi =  

1
Di

⁄

∑ 1
Di

⁄N
i=1

 (2.45) 

 

The range of Wi varies from 0 to 1, and the combined weight of all similar pixels within a moving window 

is 1.  In a situation where ‘P’ number of extracted similar pixels and their corresponding coarse resolution 

pixels are pure, the weights are assigned as 1 P⁄  for those pixels, and the weights of the (N − P) pixels are 

assigned according to the Eq. (2.45). 

2.4.2.5. Calculation of the conversion coefficient(𝐕𝐢) 

The linear regression analysis considering all the similar pixels within a moving window is performed to 

estimate the conversion coefficient. The gradient of the linear regression line (for every moving window) 

is the actual measure of  vi  after computing the correlation of each fine resolution pixel against the 

corresponding coarse resolution pixel at date tm and tn. Due to several constraints associated with the 

pre-processing of both coarse and fine resolution images in relation to the non-removal of positional 

accuracy as well as systematic biases, aggregating information from spectrally similar homogeneous pixels 

from the neighbourhood would be reliable to estimate the conversion coefficient. 

2.4.2.6. Estimation of the reflectance of the central pixel 

After estimating the value of weight (Wi) as well as the conversion coefficient (Vi), the prediction of 

higher resolution reflectance at the date tp is performed using two pairs of fine and corresponding coarse 

resolution images at the date tm  and tn  with an additional coarse resolution image at the date  tp . 

Consequently, the normalised-inverse change of reflectance between the prediction date tp  and base 

date tm and tn is used to estimate the following parameter: 

 

Tk  =  

1
|∑ ∑ C(xi, yj, tk, B) − w

j=1
w
i=1 ∑ ∑ C(xi, yj, tp, B)w

j=1
w
i=1 |⁄

∑ 1
|∑ ∑ C(xi, yj, tk, B) − w

j=1
w
i=1 ∑ ∑ C(xi, yj, tp, B)w

j=1
w
i=1 |⁄k=m,n

    (2.46) 

 

Where Tk denotes the temporal weight of each pixel with respect to all other similar pixels. Therefore, the 

accuracy of prediction can be increased by incorporating a linear combination of temporal weight with the 

corresponding synthetic central reflectance value at date tp . Thus, the final reflected radiance can be 

written as: 

 

F (xw
2⁄ ,  yw

2⁄ , tp , B)  =  Tm × Fm (xw
2⁄ ,  yw

2⁄ , tp , B)  +  Tn × Fn (xw
2⁄ ,  yw

2⁄ , tp , B)   (2.47) 
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3. METHODOLOGY 

This chapter highlights the methods and approaches used for detecting coal fire affected pixels in actual 

Landsat images as well as synthetically predicted Landsat like images generated from the various multi-

sensor fusion methods.  Section 3.1 describes the flowchart of experiments conducted for the current 

study. Section 3.2 elucidates the novel coal fire detection method established. Section 3.3 depicts the 

modifications performed on ESTARFM and STARFM method. Section 3.4 describes the qualitative and 

quantitative assessment of synthetic products derived from spatiotemporal fusion methods. 

 

Figure 3.1. The experimental setup 

3.1. Experimental setup 

The Landsat 8 OLI and VIIRS were used to detect the coal fire from the actual image and synthetically 

predicted image derived from spatiotemporal fusion method. In Figure 3.1, it was shown that several 

experiments were conducted in subsequent stages of research. 

 Experiment 1 

In the first experiment as shown in Figure 3.1, Landsat-8 data was used to detect and delineate the coal 

fire affected pixels by incorporating the AFD. After observing the underestimation caused by AFD, a 
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novel coal fire detection method named Normalised Reflectance-based Active Fire Detection (NRAFD) 

method was established. Furthermore, a comparative analysis was performed between AFD and NRAFD. 

The results and the associated comparative analysis of the first experiment were reported to Section 5.1.  

 

Due to the unavailability of a reference map of coal fire for the chosen study area, a visual inspection was 

carried out to assess the fidelity of the newly developed NRAFD method for extracting coal fire affected 

pixels. However, it is difficult to investigate the mixed pixels which are lying within the close proximity of 

the coal fire regions. The pixels which are appeared as bright yellow and yellowish red using the FCC 

composite of band 5, band 6 and band 7 in Landsat 8 OLI, are referred to as coal fire affected pixels.  

 Experiment 2  

The second experiment was carried out with the implementation of STARFM and the modified STARFM 

in a python environment. The quantitative and qualitative assessments of the fused products derived from 

these two spatiotemporal fusion methods were performed by several metrics (Section 3.4). The 

assessments of the synthetic Landsat products were done by producing the fused images on a particular 

date overlapping with the 16 days repeat cycle of Landsat-8 OLI sensor. The results and comparative 

analysis of experiment 2 were illustrated in Section 5.2.  

 

For STARFM and modified STARFM, the actual Landsat and VIIRS datasets on December 24, 2017, 

along with another dataset of VIIRS on January 9, 2018, were used to generate a synthetic Landsat image 

January 9, 2018.    

 Experiment 3  

In the third experiment as depicted in Figure 3.1, the ESTARFM and modified ESTARFM were executed 

in a python environment. The subsequent qualitative and quantitative assessments of the fused products 

derived from these two spatiotemporal fusion methods were carried out using several metrics (Section 

3.4). The assessments of the fused products were performed by producing the synthetic image on a 

particular date overlapping with the 16 days repeat cycle of Landsat-8 OLI sensor.  

 

For ESTARFM and modified ESTARFM, one pair of actual Landsat-8 and VIIRS on December 24, 2017 

(1st observed date) and one pair of actual Landsat-8 and VIIRS on January 25, 2018 (2nd observed date), 

were used to generate a synthetic image on January 9, 2018 (predicted date). A detailed treatment of these 

experimental results and associated comparative analysis was reported to Section 5.2.2.  

 Experiment 4  

In the fourth experiment in Figure 3.1, the NRAFD method was executed on synthetic products derived 

from experiment 2 and experiment 3. After that, the results of different synthetic coal fire maps were 

compared with the actual coal fire map from experiment 1 on the same date. The comparative analysis 

was carried out by deriving confusion matrix for actual and synthetic coal fire map. The results and 

associated comparative analysis were highlighted in Section 5.3.  

 

The reason of selecting the prediction date on January 9, 2018, was that an actual Landsat scene was 

available on the chosen date, and hence, the necessary performance evaluation between different fusion 

methods was carried out based on several assessment metrics.  
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3.2. Normalised Reflectance-based Active Fire Detection Method (NRAFD) 

The NRAFD method was developed by using the stepwise normalisation between the concurrent fire 

responsive channels of Landsat 8 OLI sensors from NIR to SWIR region respectively. Using the AFD 

algorithm, the actual surface coal fire pixels were extracted by incorporating the concurrent test sequences 

(Section 2.2.4). Consequently, the spectral pattern of the fire affected pixels was extracted using all the 

spectral channel of Landsat 8 OLI data. The interpretation of spectral trend and the associated channel-

specific normalisation procedures have been elucidated below. 

 Interpretation of spectral trend 

The spectral pattern (lower left in Figure 3.3) clearly depicts that between the channels 5 to 7, the trend of 

surface reflectance is strictly increasing for active fire pixels. Moreover, the slope between channels 6 and 

7 was significantly higher than the slope between channels 5 and 6. Interestingly, the effect of 

corresponding slopes was addressed by channel-specific normalisation between band 5, band 6 and band 7 

for designing criteria to distinguish those pixels which were following the spectral trend as depicted in 

Figure 3.3.  

 Channel-specific normalisation  

Let us assume that the surface reflectance of a typical fire affected pixel is ρ5, ρ6 and ρ7 for channels 5 to 

7 respectively. The band-specific normalisation between the band 7 and band 6 as well as band 6 and band 

5 will be: 

 

I1 =  
ρ7 − ρ6

ρ7 + ρ6
  AND I2 =  

ρ6 − ρ5

ρ6 + ρ5
 (3.1) 

 

If the ratio between the reflectance ԑ67 =
ρ6

ρ7
⁄  and ԑ56 =

ρ5
ρ6

⁄  are replaced in the Eq. (3.1), it will 

yield in the form: 

 

I1 =  
1 − ԑ67

1 + ԑ67
  AND I2 =  

1 − ԑ56

1 + ԑ56
      where,     ԑ67, ԑ56 ≤ 1  (3.2) 

 

The criteria  ԑ67, ԑ56 ≤ 1 will satisfy the properties of coal fire affected pixels as depicted in Figure (3.3). 

Furthermore, the scatterplot also illustrates a strong correlation between the channel 5 and the channel 7 

as well as between the channel 6 and channel 7, except for the anomalous fire affected pixels (encircled in 

red, Figure 3.2). Therefore, to select the candidate pixels, the ratios were exploited vis-à-vis spectral trend.  

 

Now, it is known that the band 7 and band 6 receive emitted as well as reflected radiation and the 

sensitivity of band 7 is greater than band 6 in respect of capturing the emitted radiation from the fire 

affected areas. However, the slope between band 7 and band 6 is greater than the slope between band 6 

and band 5 (Figure 3.7). Therefore, it can be written as: 

 

ԑ67 <  ԑ56 =  {
1 + ԑ67 < 1 + ԑ56  
1 − ԑ67 > 1 − ԑ56  

 (3.3) 

 

Utilizing the equations Eq. (3.1), Eq. (3.2) and Eq. (3.3), the overall criteria can be integrated to: 

 

I1 =  
ρ7 − ρ6

ρ7 + ρ6
> 0.0  AND I2 =  

ρ6 − ρ5

ρ6 + ρ5
> 0.0 AND I1 >  I2  (3.4) 
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(a) 

 

 
(b) 

 

Figure 3.2: Scatter plots between SWIR and NIR channel of subset extracted from Landsat 8 OLI data. (a) – the 

scatterplot between the reflectance of band 6 and band 7 of Landsat 8 data. (b) – the scatter plot between the 

reflectance of band 5 and band 7 of Landsat 8 OL data. The value 1.6 typically indicates the sensor saturation. 

 

 

Figure 3.3. The Coal fire region in Jharia Coalfield. Upper left is the FCC composite of band 5, band 6 and band 7 of 

Landsat 8 OLI data. The pixels falling into the yellow circle of the upper right figure represents the fire affected 

pixels. The lower yellow pixels in lower right are extracted using the AFD (section 3.1). The pattern in the lower left 

figure depicts the spectral trend of surface reflectance of coal fire affected pixels. 
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As the trend between channels 5 to 7 in Landsat-8, exhibited a strictly increasing response, the 

corresponding ratios of  I1 and I2  was set to greater than zero, the index I1 was set to greater than I2 in 

the third condition of Eq. (3.4).  

 

After executing the Eq. (3.4) for channels 5, 6 and 7 in Landsat-8 data, the test successfully extracted a 

significant number of coal fire affected pixels which were underestimating after incorporating the AFD 

algorithm for the same data (Section 2.2.4). However, an additional number of pixels covered by riverbed 

and overburden materials (in context of surface mining, the overburden material appears as brown for the 

FCC composite of channel 5, 6 and 7 of Landsat 8 OLI data), were also extracted using Eq. (3.4). 

Therefore, another criterion was added to the Eq. (3.4) for distinguishing those pixels from the actual coal 

fire-affected pixels. The overall criteria can be integrated to: 

 

I1 =  
ρ7 − ρ6

ρ7 + ρ6
> 0.0  AND I2 =  

ρ6 − ρ5

ρ6 + ρ5
> 0.0 AND I1 >  I2 AND I3 =  

ρ7 − ρ5

ρ7 + ρ5
> 0.25  (3.5) 

 

3.3. Modifications performed on STARFM and ESTARFM 

 Computation of weight for modified STARFM 

The original STARFM used the concept of pixel vector in order to retrieve the spectrally similar 

homogeneous pixels from the moving window using Eq. (2.22). However, we proposed to treat each 

spectral channel (band 5, band 6 and band 7 of Landsat-8) separately for extracting similar pixels using the 

Eq. (2.22).  

 Computation of weight for modified ESTARFM 

In reference to extracting the spectrally similar homogeneous pixels, instead of utilizing the concurrent use 

of three spectral channels together as pixel vectors (band 5, band 6 and band 7 of Landsat-8 sensor), each 

channel has been considered separately for extracting similar pixels. Furthermore, in the original 

algorithm, the Landsat scene from tm and tn were utilized to filter out the spectrally similar homogeneous 

pixel vectors and the vectors with locational similarity (each pair of pixel vectors encircled in blue within 

(A ∩ B) in Figure 3.4), were considered for computing the correlation coefficient in Eq. (2.42). However, 

we utilized the intersected as well as non-intersected portions from each date (Ai ∪ Bi, where i ∈ (1, 3), 

and i represents each individual spectral channel as in Figure 3.4) after splitting each of the pixel vectors, 

and creating 6 distinct sets depicted in Figure 3.4. Moreover, A1 ∪  B1, A2 ∪  B2, and  A3 ∪  B3 have 

been used to compute the correlation coefficient for band 5, band 6 and band 7 respectively (Figure 3.4).  

 

Therefore, if M number of pixels are extracted from ith  band at date tm  and N number of pixels are 

shortlisted at the date tn, the number of shortlisted pixels can be put to a single set: 

 

Sn = {
FnK = {F(xi1, yj1, tn, Bi), … , F(xiN, yjN, tn, Bi)}

CnK = {C(xi1, yi1, tn, Bi), … , C(xiN, yiN, tn, Bi)}
   i ∈ (1, K)  ∨  tk ∈ (tm, tn) 

 

Sm = {
FmK = {F(xi1, yj1, tm, Bi), … , F(xiN, yjN, tm, Bi)}

CmK = {C(xi1, yi1, tm, Bi), … , C(xiN, yiN, tm, Bi)}
   i ∈ (1, K)  ∨  tk ∈ (tm, tn) 
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Figure 3.4. A and B denote the set of all spectrally similar pixel vectors for date 1 and date 2 in ESTARFM (encircled 

in red). In the original ESTARFM, each pair of spectrally similar pixel vectors (encircled in blue within A ∩ B) in the 

intersected portion with the locational similarity have been considered for estimating the correlation coefficient in 

Eq. (2.44). However, in the modified ESTARFM, all the spectrally similar pixel vectors have been split into three 

component, and corresponding 6 sets (A1 ∪ B1 for band 5; A2 ∪ B2 for band 6; A3 ∪ B3 for band 7 in Landsat 8 

OLI data) are established.  The Ai ∪ Bi, i ∈ (1, 3), has been considered for estimating the correlation coefficient for 

individual pixels.  

Where Sm and Sn denote set of the similar pixels extracted from fine resolution pixels and corresponding 

coarse resolution pixels, and FmK , FnK , denote the set of all similar pixels extracted from a moving 

window of actual Landsat images at tm and tn respectively, and CmK, CnK denotes the pixels (resampled 

coarse resolution pixels at tm and tn for VIIRS) correspond to a similar location of the pixels in FmK, FnK 

respectively. If FnK and FmK  as well as CnK and CmK are combined, the distinct sets can be written in 

form of: 

 

F(m+n)K =  {F(xi1, yj1, tm, Bi), … , F(xiM, yjM, tm, Bi), … , F(xi1, yj1, tn, Bi), … , F(xiN, yjN, tn, Bi)} 

 

AND 

     

C(m+n)K =  {C(xi1, yj1, tm, Bi), … , C(xiM, yjM, tm, Bi), … , C(xi1, yj1, tn, Bi), … , C(xiN, yjN, tn, Bi)} 

 

The F(m+n)K corresponds to (Ai ∪ Bi) for ith spectral channel of the high-resolution image in Figure 3.4. 

Also, C(m+n)K corresponds to set of similar pixels (extracted from resampled coarse resolution pixels) 

with locational similarity for fine resolution similar pixels in F(m+n)K. 

 

Therefore, the corresponding correlation coefficient of similar pixels can be written as: 

 

RL =
E [(FL − E(F(m+n)K)) (CL − E(C(m+n)K))]

√V(F(m+n)K) ×  V(C(m+n)K)

,               L ∈ {1, (M + N)} (3.6) 
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Where, 

L – The total number of pixels from a moving window at  tm and tn,  

E(F(m+n)K), E(C(m+n)K) −  Mean of all the similar pixels extracted from moving windows at  tm and tn 

V(F(m+n)K), V(C(m+n)K) − Variance of the similar pixels extracted from moving windows at tm and tn 

FL, CL − is the Lth fine resolution pixel from the set F(m+n)K and C(m+n)K respectively 

(M + N) – The total number of similar pixels extracted from fine resolution Landsat images at tm and tn 

 

Utilizing the value of RL, the corresponding weights are estimated in Eq. (2.45). Therefore, the subsequent 

tests are repeated distinctly using NIR, SWIR1 and SWIR2 channels of both VIIRS and Landsat 8 OLI 

data. 

3.4. Qualitative and quantitative assessment of the fusion methods 

The quantitative and qualitative assessments are carried out to check the feasibility of a fused product for 

miscellaneous applications in remote sensing. The qualitative assessments are performed based on visual 

interpretations to assess that the rate of change of phenology from the observed and predicted date are 

captured accurately or not. Furthermore, the similarity of spatial pattern in phenology between the 

observed and predicted date is assessed for its consistency with the actual product. On the other hand, 

quantitative assessments are performed using several assessment metrics. 

 Root Mean Square Error (RMSE) 

In this study, the quantitative assessments of fused products are carried out by estimating the root mean 

square error between the synthetically predicted images with the actual images of Landsat 8 OLI data. 

Therefore, it can be formulated as: 

 

RMSE =  √∑ (xi −  yi)
N
i=1

2

N
     (3.7) 

 

Where xi and yi denote the corresponding surface reflectance value of ith pixel in the actual and predicted 

image respectively, and N denotes the total number of pixels in the actual and synthetic image, the similar 

date of prediction and date of acquisition of the actual scene. 

 Absolute Average Difference (AAD) 

The AAD can be estimated for the actual and predicted image of Landsat 8 OLI data. It also indicates the 

biases of synthetic product. It can be written as: 

 

AAD =  
∑ |xi − yi|

N
i=1

N
     (3.8) 

 

 Correlation Coefficient (CC) 

The CC is a measure of linear correlation between two Random variables X and Y. In this study, if the set 

of actual values (Landsat image) are assigned to the random variable of X, and the set of predicted values 

(synthetic Landsat image) are assigned to another random variable Y, the formula can be depicted as: 

 



SURFACE COAL FIRE DETECTION USING VIIRS AND LANDSAT 8 OLI DATA  

 

34 

ρX,Y =  
E[(X −  µX)(Y −  µY)]

σXσY
     (3.9) 

 

Where, 

ρX,Y  - Correlation coefficient and the value ranges from -1 to +1. +1 indicates a total positive 

correlation, -1 denotes a negative correlation and 0 indicates no correlation,  

µX, µY  - Mean of X, Y respectively, 

σX, σY  - Standard deviation of X, Y respectively,  

E  - Expectation. 

 The ErreurRelative Globale Adimensionnelle de Synthèse (ERGAS) 

The index ERGAS is the measure of similarity between the reference and fused image (Xue et al., 2017). It 

also considers the number of bands employed for spatiotemporal fusion. The index can be formulated as: 

 

ERGAS = 100
h

l
√

1

Nban
∑ (

RMSEk
Mk

⁄ )
2

 

Nban

k=1

   (3.10) 

 

Where, 

H   - Spatial resolution of fine resolution image (Landsat 8 OLI), 

l    - Spatial resolution of coarse resolution image (VIIRS), 

Mk   - Mean of the kth band employed for fusion, 

Nban  - Number of bands employed for spatiotemporal fusions 

 

Considering the ideal cases, if the channel-specific RMSE values are zero, the estimated value of ERGAS 

should be zero.  

3.5. Assessment metrics for evaluating the performance of synthetic coal fire product: 

The NRAFD method was applied to the synthetic products derived from several spatiotemporal fusion 

methods, with a view to delineating the surface coal fire affected pixels from its background. 

Consequently, the quantitative and qualitative assessments of the coal fire products derived from the 

synthetic images are carried out with several matrices. A brief overview of different metrics is illustrated 

below.  

 True Positive Rate (TPR) 

The TPR is the ratio of true positive (TP) with the summation of true positive (TP) and false negative 

(FN). The equation can be depicted as: 

 

TPR =  
TP

TP + FN
   (3.11) 

 

In this study, the synthetic Landsat composites were classified as coal fire (surface coal fire) and non-coal 

fire region by incorporating the NRAFD method. Later on, the binary classified image was assessed 

through these metrics. A lower value of  FN in Eq. (3.11) represents the higher TPR.  
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 Positive Predictive Value (PPV) 

The PPV is the ratio of the true positive (FP) with the summation of true positive (FP) and false positive 

(FP). PPV can be written as: 

 

PPV =  
TP

TP + FP
   (3.12) 

 

A lower value of FP in Eq. (3.12) represents the higher value of PPV. The PPV ranges from 0 to 1. 0 

designates the highest quality in terms of precision of a statistical test. On the other hand, 1 designates the 

lowest quality. 

 F1  Score 

F1 score denotes the accuracy of the test in statistical analysis (binary classification) and is estimated by 

taking the harmonic mean of TPR and PPV. The F1 score can be written as: 

 

F1 =  (
TPR−1 + PPV−1

2
)

−1

 (3.13) 

 

The value of F1 score ranges from 0 to 1. ‘0’ represents the worst quality and ‘1’ designates the highest 

quality in terms of a statistical test.  

 Matthews Correlation Coefficient (MCC) 

The MCC is the estimate of assessing the quality of binary classifications. It is primarily used in machine 

learning approaches. It takes into account the value of true positives, false positives, true negatives, and 

false negatives. Also, the coefficient is independent of the size of the classes (Matthews, 1975). It can be 

depicted as: 

 

MCC =  
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
   (3.14) 

 

Where, 

TP – true positive, TN – true negative, FP – false positive, FN – false negative  

 Coal Fire Product Quality Index (CFPQI) 

In order to address the combined effect of F1 Score and MCC, the harmonic mean of MCC, TPR and 

PPV have been considered to designate as a quality of the end product. Here, the harmonic mean 

addresses the sensitivity of the MCC more effectively than simple arithmetic mean (e.g., if the prediction 

accuracy of F1score and accuracy is higher, doesn’t necessarily indicate a higher value in MCC. Therefore, 

it can be written as: 

 

CFPQI = (
TPR−1 + PPV−1 + MCC−1

3
)

−1

 (3.15) 

 

Theoretically, the highest values of TPR, PPV and MCC should be 1. Consequently, the CFPQI holds the 

highest possible value of 1. Therefore, the CFPQI ranges from 0 to 1. ‘0’ indicates the lowest quality 

product. On the other hand, ‘1’ indicates the highest quality of the product. 
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4. STUDY AREA AND DATASETS 

4.1. Study Area 

The Jharia coalfield is primarily known for its robust industrialized zone with the richness of high-grade 

coking coal. With an estimated reserve of 19 million tons, Jharia coalfield is also known for its highest coal 

resources in India. The location and spatial extent is about 1150 km southeast of Delhi and 250 km 

northeast of Calcutta with 23º38́ N to 23º51́ N latitude and 86º07́ E to 86º30́ E longitude with a spatial 

coverage of 280 km2. The activity of coal mining initiated during the year of 1984 and the first fire was 

detected in the year of 1916. The topographic elevation ranges from 150 m to 300 m above mean sea 

level. Furthermore, 70 major surface and subsurface fires were reported after the nationalisation of the 

coal industry. The location and spatial extent of the Jharia coalfield have been depicted in Figure 4.1. 

Figure 4.1. The location and spatial extent of Jharia coalfield 

A significant amount of research activities have been carried out over the last few decades over the surface 

and subsurface fire of Jharia coalfield using the application of thermal as well as shortwave infrared 

remote sensing (Bhattacharya & Reddy, 1994; Bhattacharya et al., 1991; Chatterjee, 2006; Cracknell & 

Mansor, 1993; Gupta, Mohanty, Kumar, & Banerjee, 2014; Mishra, Bahuguna, & Singh, 2011; T. K. 

Mukherjee, Bandyopadhyay, & Pande, 1991; Prakash & Gupta, 1998; Prakash et al., 1995; Saraf, Prakash, 

Sengupta, & Gupta, 1995). The southeast part of the coalfield is covered by Damodar River. The 

dynamics of land surface have been changing which led to serious environmental degradation due to 

severe issues associated with coal fire. Consequently, the people who use to live within the close proximity 

of coal fire-affected areas, are majorly affected and several accidents have occurred. Therefore, the chosen 
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study area needs to be researched for the systematic detection and monitoring of coal fire (Kuenzer, 

Hecker, Zhang, Wessling, & Wagner, 2008).  

4.2. Dataset extraction and preprocessing  

 LANDSAT 8 OLI/TIRS 

The Landsat 8 OLI surface reflectance product (level 2 atmospherically corrected and terrain corrected) 

with product identity has been depicted below. 

 

Table 4.1 The Landsat 8 OLI surface reflectance product with the product ID 

Landsat 8 OLI (product ID) 

 

                                              Date of Acquisition 

"LC08_L1TP_140043_20171224_20180103_01_T1" December 24, 2017 

 

"LC08_L1TP_140043_20180109_20180119_01_T1"                                                        January 9, 2018 

 

 

Preprocessing 

The Landsat 8 OLI surface reflectance product was manually cropped to the region which is covered by 

the major coalfield areas. The location and spatial extent of the cropped area was 413130.0 m (upper left – 

axis x) to 453990.0 m (lower right – axis x) with 2637330.0 m (upper right – axis y) to 2614110.0 m (lower 

right – axis y) with a projection system of WGS 84, UTM 45, North. The dimension of the cropped image 

was 775 rows × 1363 columns with a spatial coverage ≈ 950.69 km2 ((a) in Figure 4.2). 

 VIIRS 

The VIIRS surface reflectance product (VNP09GA) with product identity is shown in Table 3.2. 

 

Table 4.2: The VIIRS surface reflectance product which is used for spatiotemporal fusion  

VIIRS (product ID) 

 

Date of Acquisition 

“VNP09GA.A2017358.h25v06.001.2017360195442.h5”                         December 24, 2017 

 

“VNP09GA.A2018010.h25v06.001.2018011100233.h5”                                    January 9, 2018 

 

“VNP09GA.A2018025.h25v06.001.2018026084420.h5”                                                     January 25, 2018 

 

 

Preprocessing 

The preprocessing included the re-projection and resampling of VIIRS surface reflectance product 

(VNP09GA).  

 

1. The HDF-EOS to GeoTIFF conversion tool (HEG) has been used to re-project the VIIRS data 

from sinusoidal to UTM, WGS84 (45 North) projection system with a spatial resolution of 463.0 

m for I band and 927.0 m for M band (Taaheri, 2018). 
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2. After reprojection, the resampling of VIIRS data has been performed by incorporating the nearest 

neighbour and bilinear resampling method to resample the 463.0 m resolution I band and 927.0 

m resolution M band to 30.0 m resolution. 

3. The region was manually cropped to the similar spatial extent of the subset in Landsat 8 OLI.  

Table 4.3: Input dataset and the associated spectral range used for spatiotemporal fusion methods for 

generating synthetic Landsat like images and the date of acquisition of Landsat 8 OLI and VIIRS scene. 

Input 

Dataset 

Spectral range (1) 

(NIR) 

Spectral range (2) 

(SWIR1) 

Spectral range (3) 

(SWIR2) 

Acquisition date 

Landsat 8 

OLI 

B5 (0.85 – 0.88 µm) B6 (1.56 – 1.65 µm) 

 

B7 (2.08 – 2.35 µm) 

 

December 24, 

2017 

VIIRS1 I2  (0.85 – 0.88 µm) I3 (1.55 – 1.75 µm) 

 

M11 (2.23 – 2.28 µm) 

 

January 9, 2018 

VIIRS2 I2  (0.85 – 0.88 µm) I3 (1.55 – 1.75 µm) 

 

M11 (2.23 – 2.28 µm) 

 

January 25, 2018 

 

(a) (b) 

 

Figure 4.2. The surface reflectance of band 6 in Landsat 8 OLI composite (Date – December 24, 2017), (b) – the 

surface reflectance of channel I3 in VIIRS composite (Date – December 24, 2017). 

4.3. Sensor characteristics 

The different specifications of Landsat 8 and VIIRS sensors have been depicted in respect of distinct 

characteristics associated with the spatial, temporal, spectral resolution, and corresponding scanning width. 

 

Table 4.4 The distinct sensor characteristics 

Specifications 

 

Landsat 8 OLI / TIRS VIIRS 

Spatial Resolution 30.0 m 375.0 m, 750.0 m 

   

Spectral Resolution 8 Bands 21 Bands 

   

Temporal Resolution 16 days Daily 

   

Scanning width 170 km × 185 km 3040 km × 12 km 
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4.4. Description of products 

 Dataset description (Landsat 8 OLI) 

The standard terrain and atmospherically corrected surface reflectance products (Level 2) of Landsat 8 

OLI / TIRS sensors are generated by Landsat Surface Reflectance Code (LaSRC) which incorporates the 

aerosol inversion test using coastal aerosol band, uses climate data from MODIS as well as implement a 

unique radiative transfer model (U.S Geological Survey, 2018).  

 Dataset description (VIIRS) 

The VIIRS observation includes 375.0 m spatial resolution for Imagery Resolution band (I) and 750.0 m 

spatial resolution of moderate resolution band (M). The NPP/VIIRS surface reflectance products 

(VNP09GA) are generated using VIIRS top-of-atmospheric reflectance, VIIRS visible band, cloud mask 

and atmospheric parameters as input. The generated product is further resampled to 463.0 m for I1-I3 

bands and 927.0 m for M1-M8 and M10-M13 by incorporating the unique pixel aggregation scheme. 

Moreover, the products are gridded to 10 km × 10 km frame using sinusoidal projection (EARTHDATA, 

2019). 

4.5. Software used 

All the methods have been applied and implemented in a python environment (Python 3.7). In carrying 

out preprocessing, ERDAS IMAGINE 2016 and ENVI 5.3 CLASSIC have been used. For the generation 

of maps, ArcMap 3.1 has been used.  
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5. RESULTS AND ANALYSIS 

This chapter depicts the results achieved by incorporating the following methods in Section 3.1, which are 

aligning with the specific objectives. Section 5.1 depicts the results achieved for different coal fire 

detection methods and associated comparative analysis. Section 5.2 reports the results achieved by 

incorporating different spatiotemporal fusion methods and comparative analysis between them. Section 

5.3 illustrates the performance evaluation of a novel coal fire detection method (NRAFD) on synthetic 

Landsat images with the actual Landsat image using various coal fire detection methods explored in this 

research.  

5.1. Comparative analysis between AFD and NRAFD 

 Results of AFD 

The active fire detection method was performed by using the Landsat 8 OLI data on January 9, 2018, as 

an input. The initial test sequence using Eq. (2.8), extracted 92 pixels with the spatial coverage ≈ 0.08 km2. 

The extracted pixels are defined as potentially ambiguous fire affected pixels. After that, the second test 

utilising Eq. (2.9), was conducted to detect the highly energetic fires often leading to DN folding in 

channel 7 of Landsat 8 OLI data. However, no pixels were shortlisted after executing the test. 

Furthermore, the thresholds in Eq. (2.8), were relaxed in Eq. (2.10), in order to select a significant number 

of candidate pixels for subsequent analysis. The test using the Eq. (2.10), extracted 292 pixels with a spatial 

converge ≈ 0.26 km2. Furthermore, the shortlisted candidate pixels (equation 3.3) were passed through a 

fixed threshold along with the contextual criteria in Eq. (2.11). After concurrent execution of all the test 

sequences, 198 pixels (spatial coverage ≈ 0.18 km2) were delineated as potentially unambiguous fire 

affected pixels. 

 

In this study area, a visual inspection was carried out to check the associated ambiguities between the coal 

fires affected pixels and the pixels covered by water bodies and shadows. However, such ambiguity didn’t 

exist for the chosen study area. Even though the AFD method was able to delineate a significant number 

of fire-affected pixels, it was underestimating for some of the fire affected regions as depicted in Figure 

5.1. From (a2) vs (b2) and (a4) vs (b4) in Figure 5.1, the method was unable to extract an additional 

number of fire affected pixels which were also appearing as yellowish red (encircled in yellow in Figure 

5.1) typically depicting the fire-affected pixels with low intensity. 

 Results of NRAFD 

The improved criteria detected an additional number of fire affected pixels. In the original AFD, the test 

sequences specified in Section 5.1.1, extracted 198 number of pixels (spatial coverage ≈ 0.18 km2). 

However, the improved criteria in Eq. (3.5), detected 630 number of fire affected pixels (spatial coverage 

≈ 0.50 km2) with an overlap of 190 pixels (spatial coverage ≈ 0.17 km2) in reference to the pixels extracted 

by AFD. Therefore, the overlapping regions between these two algorithms were 95 % (190 / 198) 

considering the fidelity of AFD. Moreover, the pixels underestimating in AFD was successfully extracted 

by NRAFD (marked in yellow circle in a(2) vs (c2) and (a4) vs (c4) in Figure 5.1). Furthermore, it was 

observed that for some of the regions which were within the close proximity of active fire, hold a 

probability of being a mixed pixel (colours ranging between brown to brownish red). For those pixels 

(mixed), the NRAFD method led to overestimation or underestimation for some of regions. The 

quantitative assessments of those pixels were ceased due to the unavailability of reference coal fire map for 

the entire coalfield. Furthermore, there might be some errors associated with the systematic visual 
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inspection between the location of actual fire pixels in FCC composite (channel 5, 6 and 7 of Landsat-8) 

and the location of pixels belonging to coal fire (in form of a binary image). 

 

(a) (b) (c) 
 

(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 
 

Figure 5.1. (a) The detected coal fire pixels are marked in yellow for the chosen study area using AFD executed on 

Landsat-8 OLI (acquisition date – January 9, 2018). (b) FCC composite of channel 5, 6 and 7 of Landsat 8 OLI data 

where the fire affected pixels are appearing as yellow/yellowish red. (a1 – a4) corresponds to the similar location in 

(b1 – b4) and (c1 - c4). (c) The detected coal fire pixels are marked in yellow for the chosen study area using 

NRAFD.  

 
The NRAFD method was tested for 24 cloud-free scenes of actual Landsat-8 data from January 2014 to 

January 2018 for the same study area. As the method was successful in extracting the coal fire affected 

pixels for all the scenes, the NRADF was chosen as a reference method in terms of generating synthetic 

coal fire products as reported in Section 5.2. 
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5.2. Results of spatiotemporal fusion methods  

 Comparative analysis between STARFM and modified STARFM 

The STARFM was implemented as well as executed in a python environment. The corresponding spectral 

domains which were matching successively for Landsat 8 OLI and VIIRS, used to generate synthetic 

Landsat like images (Table 4.3). As the Landsat-8 sensor has a repeat cycle of 16 days, the single pair of 

VIIRS at December 24, 2017 and January 9, 2018 with the actual Landsat data on December 24, 2017, 

were used to generate the synthetic Landsat data on January 9, 2018 over the spectral channel of NIR, 

SWIR1 and SWIR2. We selected 1410 m × 1410 m as moving window which is approximately 3 × 3 

VIIRS 463.0 m resolution pixel (I band) or approximately 47 × 47 Landsat-8 30-m resolution pixel. Also, 

we utilized the similar window size for fusing M11 band (spatial resolution 927.0 m, and resampled to the 

30.0 resolution using bilinear resampling method; SWIR2 region) of VIIRS data with the band 7 (spatial 

resolution 30.0 m, SWIR2 region) of Landsat-8 OLI data. The number of classes was set as 10 in Eq. 

(2.22).  In order to select a spectrally similar homogeneous pixel vector, the condition in Eq. (2.22) had to 

be passed 3 times as the dimension of the pixel vector was 3 × 1 (NIR, SWIR1 and SWIR2 in Landsat-8). 

After that, the weighting function in Eq.  (2.28) was used for predicting the surface reflectance in the 

central pixel of a moving window. The land cover type was homogeneous for the regions where the 

overburden materials from the surface mining operations appeared as small brownish contours, however, 

for most of the surface type, the phenology was heterogeneous. Also, the very large patches of similar 

surface types were lesser in the chosen study area. Due to that, a pure coarse resolution homogenous pixel 

from VIIRS data might not be found. Generally, STARFM performs better if there exist homogeneous 

pixels in low-resolution VIIRS data. On the other hand, for modified STARFM, the distinct channels are 

considered for extracting similar pixels (for example, while predicting the reflectance in NIR channel, the 

other channels such as SWIR1 and SWIR2 was not considered as described in Section 3.3.1). It was done 

to extract the additional number of similar pixels for estimating the reflectance using the weight function 

depicted in Eq. (2.28).  

 

Figure 5.2 (a), (b) and (c), shows the synthetic FCC composite (band 5, 6 and 7) of actual Landsat-8 data 

(a), predicted Landsat-8 using STARFM (b), and predicted Landsat-8 (c) by incorporating the modified 

STARFM respectively. It was observed that the FCC composite between actual and predicted images are 

comparable, and exhibit spectral similarities between different phenology. Also, it was found (within the 

zoomed window in (a), (b) and (c) in Figure 5.2) that the brightness of the few coal fire affected pixels 

(from yellow to yellowish red) got reduced for the synthetically predicted images. Moreover, the channel 

specific scatterplots between the actual and predicted Landsat image for STARFM (ab1 - ab3 in Figure 

5.2) and modified STARFM (ac1 – ac3 in Figure 5.2), depict a strong correspondence with the actual 

Landsat image. For both of these methods, the number of outliers was comparatively less for band 5 (ab1 

in Figure 5.2) and band 6 (ab2 in Figure 5.2). However, for band 7, the number of outliers was slightly 

higher for both of these methods (ab3 vs ac3 in Figure 5.2). The synthetically generated products using 

these two methods on January 9, 2018, were assessed quantitatively with the actual Landsat image on the 

same date by estimating several metrics (Table 5.1). The RMSE and AAD were approximately similar for 

the corresponding synthetic channels (using STARFM and modified STARFM) with the actual channels 

of Landsat 8. However, from the Table 5.1, the CC is slightly higher for each channel of synthetic product 

derived from the actual STARFM in reference to the modified STARFM (NIR band: 0.960 vs 0.958; 

SWIR1 band: 0.972 vs 0.971; SWIR2 band: 0.961 vs 0.959). Moreover, the value of ERGAS was lower 

(0.511 in Table 5.1) compared to modified STARFM. As it was known that the lower the value of 

ERGAS, the better the quality of fusion (Xue et al., 2017). Therefore, the spectral similarity was higher for 

the fused products derived from STARFM in respect of modified STARFM, with the reference image in 

January 9, 2018. 
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(a) (b) (c) 
 

(ab1) (ab2) (ab3) 

(ac1) (ac1) (ac3) 
 

Figure 5.2 (a) The FCC composite of actual Landsat-8 image using band 5, band 6 and band 7 on January 9, 2018. (b) 

FCC composite of synthetic Landsat-8 images using similar channels on January 9, 2018 by incorporating STARFM. 

(c) FCC composite of synthetic Landsat-8 images using similar channels by incorporating Modified – STARFM. 

(ab1-ab3) depicts the scatterplots between the actual (a) and synthetic Landsat image (b) for band 5 (ab1), band 6 

(ab2) and band 6(ab3) respectively. (ac1 – ac3) depicts the scatterplots between the actual (a) and predicted (c) 

Landsat image for channel 5 (ac1), channel 6 (ac2) and channel 7 (ac3) respectively. 
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 Comparative Analysis between ESTARFM and modified ESTARFM 

The ESTARFM and modified ESTARFM were implemented and executed in a python environment using 

the two pairs of Landsat and VIIRS acquired at 24 December 2017 (1st observation date) and 25 January 

2018 (2nd observation date) and another VIIRS data on January 9, 2018 (prediction date). After 

successfully implementing both methods, synthetic Landsat like products were generated on January 9, 

2018. The similar spectral channels (Table 4.3), between Landsat-8 and VIIRS, were incorporated for the 

aforementioned spatiotemporal fusion methods. We selected the moving window size as 47 × 47, using a 

similar principle as depicted for STARFM and modified STARFM in Section 5.2.1. Also, a similar number 

of classes was set in Eq. (2.22). In case of ESTARFM, the spectrally similar homogeneous pixel vectors 

were extracted from the band 5, band 6 and band 7 of actual Landsat 8 OLI data on December 24, 2017, 

and January 25, 2018. Also, the pixel vectors (band 5, 6 and 7) satisfying the criterion in Eq. (2.22), for two 

aforementioned observed dates with a locational similarity within the corresponding moving windows, 

were extracted for estimating the corresponding weight and conversion coefficient to predict the 

reflectance of the central pixel. It was observed that, to select a spectrally similar pixel vector, the criterion 

in Eq. (2.22), had to be passed for 6 times consecutively (3 times for 3 spectral channels on the 1st 

observed date – 24/12/2017 and 3 times for 3 channels on the 2nd observed date 2 – 25/01/2018). Due 

to that, the number of shortlisted spectrally similar pixel vectors from the moving windows were relatively 

lower as the homogeneous patches with larger size were comparatively lesser for the chosen study area. As 

a result, the computation of the correlation coefficient in Eq. (2.42), for estimating corresponding weights 

in Eq. (2.45), were leading to underestimation or overestimation for some of the pixels. For a similar 

reason, the conversion coefficient which was estimated by the slope derived from the regression line, 

leading to the erroneous prediction of surface reflectance for some of the pixels. Due to these 

uncertainties, the artifacts appeared while predicting the reflectance of the central pixel for a few of the 

moving windows (Figure 5.3 (b), a product derived by incorporating the ESTARFM).  

 

Figure 5.3 shows the synthetic FCC composite (band 5, 6 and 7) of actual Landsat-8 data (a), predicted 

Landsat-8 using ESTARFM (b), and predicted Landsat-8 (c) by incorporating the modified ESTARFM 

respectively. In order to overcome the artifacts associated with the synthetic Landsat-8 products (encircled 

yellow in zoomed view of Figure 5.3 (b)), the ESTARFM was modified to improve the quality further. 

Instead of using 3 spectral channels together as in original ESTARFM, we proposed to utilize the channel-

specific retrieval of similar pixels within each spectral range separately (Section 3.3.2). Consequently, the 

effects of artifact were significantly reduced, and as a result, the actual FCC composite and predicted FCC 

composite over the similar region in Figure 5.3 (a) and (c), respectively, exhibited spectral similarities 

between different phenology. Moreover, the channel specific scatterplots between the actual and predicted 

Landsat image for ESTARFM (ab1 - ab3 in Figure 5.3) and modified ESTARFM (ac1 – ac3 in Figure 5.3), 

depicted that the significant number of outliers were removed for band 5 and band 6 in modified 

ESTARFM (ac1 – ac2 in Figure 5.3). Also, the scatterplots (ab3; ac3 in Figure 5.3) illustrated the linear 

relationship and depicted a strong correlation between the two. Table 5.1 depicts the quantitative 

assessment of the prediction error between various spatiotemporal fusion methods. It was observed that 

the performance of modified ESTARFM was slightly higher than the ESTARFM in respect of AAD. 

(AAD values – NIR band: 0.010 vs 0.006; SWIR1 band: 0.012 vs 0.007; SWIR2 band: 0.006 vs 0.006). 

Moreover, the estimated RMSE was relatively lower for modified ESTARFM in reference to other 

spatiotemporal fusion methods (Table 5.1). The correlation coefficients of band 5, band 6 and band 7, 

were relatively higher for modified ESTARM in respect of other spatiotemporal fusion methods depicted 

in Table 5.1. Furthermore, the estimated ERGAS was minimum (0.401 for modified ESTARFM as in 

Table 5.1) in comparison to other spatiotemporal fusion methods. Also, the change of phenology was 

comparable during the short period. Moreover, all the spatiotemporal fusion methods depicted a strong 
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correspondence qualitatively and quantitatively with each other. As a whole, the modified ESTARFM 

outperformed all other fusion methods in terms of assessment metrics. 

 

(a) 

 

(b) 

 

(c) 

 

(ab1) (ab2) (ab3) 

(ac1) (ac2) (ac3) 
 
Figure 5.3. (a) The Landsat-8 FCC composite image using band 5, band 6 and band 7 on January 9, 2018. (b) FCC 

composite of synthetic Landsat-8 images using similar channels on January 9, 2018 by incorporating ESTARFM. (c) 

FCC composite of synthetic Landsat-8 images using similar channels by incorporating Modified – ESTARFM. (ab1 - 

ab3) depicts the scatterplots between the actual (a) and synthetic Landsat image (b) for band 5 (ab1), band 6 (ab2) 

and band 6 (ab3) respectively for ESTARFM. (ac1 – ac3) depicts the scatterplots between the actual (a) and predicted 

(c) Landsat image for channel 5 (ac1), channel 6 (ac2) and channel 7 (ac3) respectively for modified ESTARFM. 
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 Overall comparative analysis between various spatiotemporal fusion methods 

In respect to evaluating the performance quantitatively, the modified ESTARFM outperformed all other 

spatiotemporal fusion methods which were explored in this study (Table 5.1). As per visual inspection, the 

spectral similarities were closer to the reference image for the products derived from the various 

spatiotemporal fusion methods except for ESTARFM (artifacts encircled in yellow for (b) in Figure 5.3), 

on January 9, 2018. Also, the quantitative metrics such as RMSE, AAD were relatively lower compared to 

other fusion methods, in all the spectral channels employed for the fusion techniques. From the Table , 

the correlation coefficients between the actual and fused images for different spectral channels using 

modified ESTRAFM, were slightly higher than those derived from STARFM (NIR band: 0.960 vs 0.979; 

SWIR1 band: 0.972 vs 0.983; SWIR2 band: 0.961 vs 0.974). Also, the value of ERGAS was relatively lower 

for modified ESTARFM in reference to other fusion approaches.  

 

Table 5.1. The performance evaluation of various spatiotemporal fusion methods (within each spectral domain) are 

depicted in terms of RMSE, AAD, CC and ERGAS (Section 3.4). The B5, B6 and B7 correspond to the NIR (0.865 

µm band), SWIR1 (1.6 µm band) and SWIR2 (2.2 µm band) channels respectively. The actual and modified-version 

of various spatiotemporal fusion methods are listed in the 1st column. 

Approaches RMSE AAD CC ERGAS 

B5 B6 B7 B5 B6 B7 B5 B6 B7  

STARFM 
 

0.012 0.013 0.012 0.009 0.009 0.008 0.960 0.972 0.961 0.511 

Modified-
STARFM 
 

0.012 0.013 0.012 0.009 0.009 0.008 0.958 0.971 0.959 0.524 

ESTARFM 0.015 0.018 0.010 0.010 0.012 0.006 0.934 0.937 0.967 0.678 
 

Modified-
ESTARFM 

0.009 0.010 0.010 0.006 0.007 0.006 0.979 0.983 0.974 0.401 

5.3. Results and comparative analysis of coal fire detection on synthetic images 

The novel coal fire detection method (NRAFD) was executed on the products derived from various 

spatiotemporal fusion methods. Also, the quantitative assessments of coal fire maps were carried out by 

several metrics. 

 Experimental results after executing NRAFD on STARFM and modified STARFM 

Figure 5.4 shows the synthetic coal fire map generated using the STARFM (a) and modified STARFM (b) 

methods on January 9, 2018. The yellow colour represents the location of the extracted coal fire pixels 

after executing the NRAFD method.  

 

The NRAFD method was applied to the fused products derived from STARFM and modified STARFM 

for retrieving synthetic coal fire affected pixels. From the Table (a) and (b) in Figure 5.4, the estimated 

number of actual coal fire affected pixels (630 Landsat pixels) with the spatial coverage ≈ 0.57 km2, were 

retrieved after executing the NRAFD method on actual Landsat-8 image. Using STARFM, the total 649 

number of synthetic coal fire pixels were filtered out with a spatial coverage ≈ 0.58 km2, of which the total 

380 number of synthetic pixels with the spatial coverage ≈ 0.34 km2 hold the locational similarity with the 

actual coal fire map derived on January 9, 2018. Also, the total number of false positives which appeared 

in synthetic coal fire map was approximately 0.24 km2. Moreover, the estimated area of ≈ 0.23 km2, got 

undetected in the synthetic coal fire map which was extracted in an actual coal fire map. On the other 

hand, the estimated overlapping region between the actual coal fires maps with the synthetically predicted 
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coal fire map derived from modified STARFM, was approximately 0.33 km2. However, the false positives 

which appeared in the products generated using the modified STARFM were slightly higher than the 

actual STARFM (Overlapping region: 0.27 km2 vs 0.24 km2).  

 

  

(a) (b) 
 
Figure 5.4 The predicted coal fire map derived by incorporating the NRAFD method on synthetic Landsat images 

(spectral range – band 5, band 6 and band 7 of synthetic Landsat 8 data). (a) Synthetic coal map generated from 

actual STARFM. (b) Synthetic coal map generated from modified STARFM 

 Experimental results after executing NRAFD on ESTARFM and modified ESTARFM 

Figure 5.5 depicts the synthetic coal fire map generated using the synthetic Landsat images derived from 

ESTARFM (a) and modified ESTARFM (b) methods on January 9, 2018. The novel NRAFD method was 

applied for extracting the location of synthetic coal fire pixels. The yellow colour represents the location of 

the extracted coal fire pixels. It was observed that a significant number of false positives appeared on the 

coal fire map derived from the actual ESTARFM (encircled cyan in the zoomed view, (a) in Figure 5.5). 

From Table (c) and (d) in Figure 5.6, the spatial coverage of the actual coal fire affected pixels was 

approximately 0.57 km2.  

 

Using ESTARFM, 1121 number of synthetic coal fire pixels were retrieved with a spatial coverage ≈ 1.00 

km2, of which the total 416 number of synthetic pixels with the spatial coverage ≈ 0.374 km2 overlapped 

with the actual coal fire map derived on January 9, 2018 ((c) in Figure 5.6). Furthermore, the total of 0.63 

km2 appeared as false positives which got detected as coal fire. Also, the estimated area of ≈ 0.20 km2, 

remain undetected in the synthetic coal fire map in reference to actual coal fire map. Using the modified 

ESTARFM, 706 number of synthetic coal fire pixels were retrieved with a spatial coverage ≈ 0.63 km2, of 

which, 418 number of synthetic pixels with the spatial coverage ≈ 0.376 km2 overlapped with the actual 

coal fire map derived on January 9, 2018. Furthermore, the total 0.254 km2 appeared falsely which got 

detected as coal fire in the synthetic coal fire product. However, the estimated area of ≈ 0.20 km2, remain 

undetected in the synthetic coal fire map in reference to actual coal fire map on January 9, 2018. 
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(a) (b) 
 
Figure 5.5. The predicted coal fire map derived by incorporating the NRAFD method on synthetic Landsat images 

(spectral range – band 5, band 6 and band 7 of synthetic Landsat 8 data). (a) Synthetic coal map generated from 

actual ESTARFM. (b) Synthetic coal map generated from modified ESTARFM 

 Accuracy assessments of coal fire maps derived from synthetic Landsat images using various 

spatiotemporal fusion approaches 

The coal fire maps generated by executing NRAFD method on the synthetic products derived from 

various spatiotemporal fusion methods were evaluated by assessment metrics coupled with the confusion 

matrices. It was observed that the coal fire products generated by modified ESTARFM outperformed all 

other spatiotemporal fusion methods in terms of assessment metrics. The F1 score (ranges from 0 to 1, 

both inclusive) of modified ESTARFM was 0.625 along with the TPR as 0.663. Furthermore, the value of 

PPV was the highest (0.592 from Table 5.1) for the modified ESTARFM compared to other 

spatiotemporal fusion methods. Even though the value of TPR for ESTARFM was closer to modified 

ESTARFM, the value of the PPV was lowest in comparison to other fused products strictly indicating the 

presence of false alarms with a higher rate. Also, the CFPQI (ranges from 0 to 1), which was established 

for evaluating the quality of synthetic coal fire product, depicted the highest value (0.626 from Table 5.1) 

for the coal fire map derived from modified ESTARFM. 

 

In light of the above discussions, it was observed that the performance evaluation of several 

spatiotemporal fusion methods was comparable with others (Table 5.1). The relative differences between 

the values of the assessment metrics are within the acceptable limit as per previous studies in reference to 

the methods of spatiotemporal fusion approaches. In this context, it is noteworthy that there had been no 

previous literature related to the quantitative assessments of the synthetic coal fire products generate by 

spatiotemporal fusion methods over the region of Jharia coalfield, India. Although accuracies of the fused 

images are within the acceptable limit for the spatiotemporal fusion methods (Table 5.1), it doesn’t 

necessarily imply the improvement of the synthetic coal fire products subsequently (Table 5.1).  
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                                     (c)                                                                                 (d) 
 
Figure 5.6. Table (a) depicts the confusion matrix for STARFM generated using the actual and predicted coal fire 

map on January 9, 2018. Table (b), (c) and (d) depict the confusion matrices derived from similar experimental results 

for modified STARFM, ESTARFM and modified ESTARFM respectively. 

 
Table 5.1. Quantitative assessment of the quality of the fused products using several metrics derived from the 

confusion matrices. 

Approaches 
 

F1 Score MCC TPR  PPV CFPQI 

STARFM 
 

0.594 0.594 0.603 0.586 0.594 

Modified 
STARFM 
 

0.571 0.571 0.593 0.551 0.571 

ESTARFM 
 

0.474 0.495 0.660 0.371 0.481 

Modified 
ESTARM 

0.625 0.627 0.663 0.592 0.626 
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6. DISCUSSION 

This chapter illustrates the scientific investigations of the obtained results (Chapter 5), aligning with the 

specific objectives associated with the coal fire detection methods and spatiotemporal fusion approaches. 

 

The AFD method as stated in Chapter 2, was used to detect and delineate the coal fire-affected regions in 

Jharia Coalfield, India. As per visual inspection, it was found that the AFD method was underestimating 

for some of the regions which were also affected by a surface coal fire. The underestimation was caused 

by the effect of contextual analysis concerning the background statistics. Also, this underestimation can be 

attributed to the higher fixed threshold values between the ratios of reflectance in the intermediate test 

sequences for the fire responsive channels. In this context, the AFD method was unable to identify the 

coal fire pixels with lower intensities (pixels corresponding to yellowish red and red colour). Therefore, a 

novel coal fire detection method (NRAFD) was established based on the channel specific normalisation. 

The advantage of the normalisation was that, by setting appropriate thresholds (Eq. (3.5)), the slope 

effects neglected the background statistics based on the spectral pattern which was strictly increasing from 

band 5 to band 7. Hence, NRAFD effectively extracted the previously undetected coal fire pixels. As a 

result, this novel method was successfully able to resolve the underestimation caused by the existing AFD 

method. 

 

In this study, several weight-function based spatiotemporal fusion methods were incorporated to generate 

synthetic Landsat like images with a view to producing the high-resolution and high-frequency synthetic 

coal fire products. The comparative analysis in Chapter 5 showed that the modified ESTARFM produced 

more accurate results in comparison to the other spatiotemporal fusion techniques as discussed in Chapter 

3. These improvements were caused by the channel-specific retrieval of similar pixels from a moving 

window. Here, the window wise correlation and conversion coefficients were used to generate a weight 

function for predicting the surface reflectance of the central pixel. Due to that, the artifacts appearing on 

the synthetic images were significantly removed in modified ESTARFM. 

 

As part of the third objective, the goal was to detect and delineate the coal fire affected pixels from the 

synthetic Landsat images derived from the spatiotemporal fusion methods explored in this study. It was 

observed that the accuracies achieved from the synthetic coal fire pixels could not be compared because 

there were no relevant studies in this framework. Also, the investigations showed that the higher 

accuracies in the spatiotemporal fusion methods (Chapter 3) didn’t necessarily imply the higher accuracies 

in the coal fire products derived from these synthetic images. In essence, the surface coal fire cannot be 

treated as a large patch (consisting of homogeneous pixels). Therefore, the probability of overlap between 

the pixels in the actual Landsat image and synthetic image pixels is relatively lower for the synthetic coal 

fire maps generated from the spatiotemporal fusion methods.  

 

In light of the above discussions, the novel coal fire detection method (NRAFD) which was established in 

this study, didn’t explicitly address the retrieval of sub-surface coal fire pixels. On the other hand, this 

study has explored the weight-function based spatiotemporal fusion framework in generating the synthetic 

Landsat images. However, the accuracy of the fused images may further be improved in other 

spatiotemporal fusion frameworks (e.g., Bayesian method, learning based method). Moreover, the 

systematic visual inspections were carried out due to the unavailability of the reference maps for checking 

the fidelity of the NRAFD method in retrieving the coal fire affected pixels. Also, the sensitivity of the 

accuracies of the fused images with the accuracy of the synthetic products was not explored. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

The core objective of this research is to formulate a methodology for generating a high resolution and 

high-frequency coal fire product by harmonizing the high spatial resolution Landsat 8 OLI data with the 

high temporal resolution VIIRS data within the spatiotemporal fusion framework. The chosen study area 

was Jharia coalfield, India. To achieve the overall objective, we developed distinct methodologies such as a 

novel reflectance-based active fire detection method, modified spatiotemporal fusion approaches, 

generation of synthetic Landsat like images and associated synthetic coal fire products. The performance 

of these methods was evaluated quantitatively and qualitatively. Section 7.1 elucidates the necessary 

conclusions which were drawn from the results aligning with the specific objectives. 

7.1. Response to the research objectives 

In response to the research questions linked with the specific objectives, overall conclusions were drawn 

for the specific objectives. 

 Response to objective 1 

The goal of the first objective was to review and study the active fire detection methods for detecting and 

delineating the surface fire-affected areas. A contextual review of different coal fire detection methods was 

reported in Section 2.2. In this study, the channel-specific reflectance-based active fire detection method 

(AFD) was incorporated to retrieve the coal fire affected pixels from Landsat 8 OLI data. In was observed 

that the AFD method was successful in delineating a significant number of the surface coal fire affected 

pixels (appeared pure yellow and yellowish red in FCC composite of band 5, band 6, and band 7 of 

Landsat 8 OLI). However, the AFD method was unable to detect a significant number of fire-affected 

pixels which were also appearing as red and yellowish red as reported in Section 5.1. To resolve the 

underestimation as mentioned earlier, a normalised reflectance-based active fire detection (NRAFD) 

method was developed using the concept of channel-specific normalisation as presented in Section 3.2. 

The method was found to be successful in retrieving an additional number of fire-affected pixels which 

was undetected in AFD method. The fidelity of this method was tested on multiple Landsat-8 OLI (from 

January 2014 to January 2018) scenes over the chosen study area. The performance of the novel NRAFD 

method concludes that the method was successful in overcoming the underestimation caused by original 

AFD method. Therefore, this method was chosen as a reference in retrieving the coal fire pixels from the 

synthetic images generated from the spatiotemporal fusion approaches. 

 Response to objective 2 

The second objective was dedicated to exploring the spatiotemporal fusion methods within the domain of 

miscellaneous fusion framework as reported in Section 2.3. In this research, the weight-function based 

fusion framework was utilized to harmonize the high spatial resolution Landsat 8 OLI data with the high 

temporal resolution VIIRS data (spectral domain: band 5 – I2 (NIR); band 6 – I3 (SWIR1); band 7 – M11 

(SWIR2); corresponding spectral channel of Landsat and VIIRS sensor respectively as described in Table 

4.3). Consequently, the STARFM and ESTARFM methods were incorporated to generate the synthetic 

Landsat like images. The qualitative and quantitative assessments of the predicted images were carried out 

about the actual images based on several metrics (RMSE, AAD, CC, and ERGAS) as reported in Section 

5.2. It was observed that a significant number of artifacts appeared in the synthetic FCC composite 

generated from ESTARFM method (encircled yellow in the zoomed window of (b) in Figure 5.3). 

Therefore, the modified STARFM and the modified ESTARFM were established with the view to 

improving the overall accuracy (Section 3.3). Also, a comparative analysis between these methods was 
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reported in Section 5.2. Interestingly, the quantitative assessments of the fused images concluded that the 

modified ESTARFM outperformed all other fusion methods in terms of generating synthetic images with 

higher spectral similarity as illustrated in Section 5.2.3.  

 Response to objective 3 

The third objective was dedicated to detecting coal fire pixels from the synthetic images generated from 

spatiotemporal fusion methods, thereby assessing the quality of the synthetic coal fire products in 

reference to actual coal fire products. The novel NRAFD method was applied to the synthetic images for 

retrieving the coal fire affected pixels. Furthermore, the qualitative and quantitative assessments of these 

products were carried out based on several metrics (F1 Score, MCC, TPR, PPV). Also, a new product 

quality index (CFPQI) was designed to address to the quality of the synthetic products as reported in 

Section 3.5.5. The assessments of the synthetic coal fire products concluded that a synthetic product 

derived from modified ESTARFM method outperformed all other spatiotemporal fusion methods 

(Section 5.3.3).  

7.2. Applicability of the research 

This research was carried out with a view to establishing a framework for systematic monitoring of the 

surface coal fires of Jharia coalfield, India. Moreover, the directional propagation of coal fire within a 

period can be monitored and associated precautionary measures can be taken into considerations. 

7.3. Recommendations 

1. The novel coal fire detection method (NRAFD) could be tested for the other mining regions 

which are also affected by coal fire such as China, USA and Australia. Also, the reflectance-based 

coal fire detection method could also be further improved by incorporating different 

environmental parameters such as the direction of the wind, topographic variations and so on. 

 

2. To generate a high-frequency coal fire product, a fusion-based neural network can be designed to 

predict the location of coal fire more accurately.  

 

3. The uncertainty assessment of the synthetic coal fire products can be carried out in future studies, 

and the quality of the fused product can be further improved. 
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APPENDIX-A 

The Landsat 8 OLI scenes which were used as inputs for the novel reflectance-based active fire detection 

(NRAFD) method.  

 

Table A-1: The table shows the Landsat 8 OLI scene ID with the corresponding acquisition date. 

 

Sequence No 

 

Landsat 8 OLI scene ID Acquisition Date 

1 "LC81400432014030LGN01" 2014-01-30 

2 "LC81400432014078LGN01" 2014-03-19 

3 "LC81400432014094LGN01" 2014-04-04 

4 "LC81400432014270LGN01" 2014-09-27 

5 "LC81400432015017LGN01" 2015-01-17 

6 "LC81400432015033LGN02" 2015-02-02 

7 "LC81400432015081LGN01" 2015-03-22 

8 "LC81400432015145LGN01" 2015-05-25 

9 "LC81400432015353LGN01" 2015-12-19 

10 "LC81400432016004LGN02" 2016-01-04 

12 "LC81400432016036LGN01" 2016-02-05 

13 "LC81400432016084LGN01" 2016-03-24 

14 "LC81400432016116LGN01" 2016-04-25 

15 "LC81400432016164LGN01" 2016-06-12 

16 "LC81400432016308LGN01" 2016-11-03 

17 "LC81400432016356LGN02" 2016-12-21 

18 "LC81400432017022LGN01" 2017-01-22 

19 "LC81400432017054LGN00" 2017-02-23 

20 "LC81400432017086LGN00" 2017-03-27 

21 "LC81400432017118LGN00" 2017-04-28 

22 "LC81400432017134LGN00" 2017-05-14 

23 "LC81400432017326LGN00" 2017-11-22 

24 "LC81400432017358LGN00" 2017-12-24 
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The coal fire maps which were generated after executing the NRAFD method over the Landsat scenes as 

depicted in Table A-1. 

 

 

(1) (2) (3) 

(4) (5) (6) 

(7) (8) (9) 

(10) (11) (12) 

(13) (14) (15) 
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(16) (17) (18) 

(19) (20) (21) 

(22) (23) (24) 

 

Figure A-1. The coal fire maps generated using the Landsat 8 OLI scenes depicted in Table A-1. The number in 

Table A-1 (Sequence No) corresponds to similar number in this figure.  
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