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Developing quadratic programming constraints for
human safety: an application of unified safety

criteria to multi-task robot control.
Martijn Chamroeun Bustraan

Abstract—As more and more applications of robots are in
the vicinity of or in collaboration with humans, human safety
is a topic of growing importance. The incorporation of human
safety awareness into robotic manipulator control schemes has
therefore become a broadly researched topic in recent years. At
the same time, a lack of research on human safety in the context
of balancing humanoid control methods has been identified
[1]. This paper seeks to make up for this lack by proposing
an implementation of human safety awareness as inequality
constraints for quadratic programs, an optimization process
frequently used by humanoids and other multi-tasking robots.
The proposed constraints are developed based on the mechanisms
of human-robot collisions and the unification of measures used
to assess the severity of human injuries. The constraints are then
validated using a 6-DoF manipulator in 50 randomized scenarios.
The results show that the constraints improve the overall safety
of a human obstacle but cannot guarantee it due to insufficient
robustness of the constraints.

I. INTRODUCTION

In the past decades, developments in the field of robotics has
enabled the creation of increasingly intelligent and dexterous
machines. Traditional industrial manipulators are large, heavy,
and their control does not take the presence of humans into
account so a physical safety barrier is constructed around
them. Modern robot designs strive to incorporate human safety
protocols into their control, allowing them to safely collaborate
with humans.

Guaranteeing the safety of humans in close proximity to
a robot is heavily researched but remains a challenging task.
When no contact between a robot and human is required, one
can keep the human safe by gradually slowing and eventually
stopping the robot’s motion as a person approaches [2], [3].
Robotic manipulators have also been successfully controlled
to actively avoid obstacles when planning their paths, thereby
improving productivity while maintaining human safety [4],
[5]. When the collaboration between human and robot does
require contact during operation other methods for guar-
anteeing safety have to be considered. The state-of-the-art
approaches for ensuring human safety during physical human-
robot interaction (pHRI) monitors one or more metrics related
to human injuries (e.g. contact force, pressure, velocity, energy,
or power) and adapts or extends a control method to ensure
these remain within safe ranges [6]–[9].

In parallel to these studies, the design and control of self-
balancing humanoids is another subject that is undergoing
significant development. Self-balancing humanoids are typ-
ically bipedal or use a two-wheeled base to navigate their

environment. Such designs make the robot more agile and
widely applicable compared to fixed-base or non-balancing
robots at the cost of being more complex systems. While
walking humanoids have been made for at least 20 years
( [10], [11]), studies are still being performed to improve
walking stability and robustness and explore new methods
of control [12]–[14]. Simultaneously, other recent research
in humanoid robotics includes performing multiple tasks like
walking, obstacle avoidance, disturbance rejection, and inter-
acting with the environment all at once while maintaining
balance [15]–[17]. An often chosen method to make the best
use of a humanoid’s flexibility in accomplishing all these
tasks despite their complexity is optimization-based control;
quadratic programming (QP) in particular is a popular choice
of optimization process [16].

Literature seeking to apply the concepts of human safety
to the control scheme of a balancing humanoid is scarce.
Recently, Aller et al. [1] performed a survey of over 200
publications to establish the readiness of humanoid robots for
real-world applications, their performance in locomotion tasks,
and bench-marking scenarios and performance indicators used.
In this work they identified a lack of research on establishing
criteria and bench-marking for human safety. The goal of this
paper is to address this deficiency by beginning to bridge
the gap between human safety concepts developed using
manipulators and the multi-task control methods deployed in
humanoid control.

To achieve this, the concepts of human safety awareness
must be implemented within an optimization-based controller.
Very few papers have been published on this topic and those
that have remain limited to a single task and/or make use
of optimization processes that are not commonly used in
humanoid control. The work by Meguenani et.al. in [18]
and [19] presents constraints for the energy of the robot
and the contact force during collision which are then used
in a QCQP (quadratically constrained quadratic program)
optimization process. Their contact force constraint requires
another controller to set a desired trajectory for the contact
point which cannot be done during multi-task control, where
a desired trajectory can be defined based on each task. [20]
also created a contact force constraint for a 1-DoF contact
model using IFT (Iterative Feedback Control) which was then
imposed on a SQP (Sequential Quadratic Program). Humanoid
control methods based on QCQP or SQP can be made but QP
remains most used due to its theoretical and practical efficiency



[21]. However, no literature could be found on human safety
constraints developed for a QP-based controller.

Hence, in this work we present QP-compatible safety con-
straints intended to ensure the safety of humans is maintained
while in proximity to a (multi-tasking) robot. The set of
constraints is made concise by considering the interrelation of
the injury measures and safety criteria. Once these constraints
have been determined they are evaluated in simulation using
a 6-DoF manipulator.

The rest of this paper is structured as follows. In section
II essential theoretical background is discussed. Based on
this, safety criteria are chosen in section III which are then
translated into QP-compatible constraints in section IV. The
simulation setup and robot used to validate the constraints is
described in section V and the control of the robot is presented
in section VI. The results of the validation experiments are
presented and analyzed in section VII. Lastly, conclusions and
recommendations for future work are found in section VIII.

II. BACKGROUND

In order to develop human safety constraints for QP-based
robot control it is necessary to first cover a number of un-
derlying topics. First, the dynamics of human-robot collisions
(HRCs) and their characteristic force profile are discussed.
Second, a summary of human injury measures and safety
metrics is presented which is followed by a discussion on
the interrelation between these. Finally, a description of the
quadratic programming optimization process is given.

A. Human-robot collision dynamics

Before human safety awareness can be incorporated into any
form of control it is necessary to understand the dynamics of
the collision and its characteristic force profile over time. In
[22], Haddadin and Croft give an overview of the current state
of the art in pHRI, including how a HRC can be modeled and
its force profile characterized. During a collision the equations
of motion of a robot with n joints can be written as:

M(q) q̈ + C(q, q̇) q̇ + g(q) + τD(q, q̇) = τ + τ e (1)

Where q ∈ Rn is the vector of joint positions, M(q) ∈ Rn×n
is the joint-space inertia matrix, C(q, q̇)q̇ ∈ Rn is the torque
vector due to Coriolis and centripetal forces, g(q) ∈ Rn is
the torque vector due to gravity, τD(q, q̇) ∈ Rn is the torque
vector due to joint friction, τ ∈ Rn are the applied actuator
torques, and τ e ∈ Rn are the joint torques due to external
wrenches.

The twist of a contact point c on the robot with respect to
and expressed in the inertial frame is denoted as T0,0

c . Since
this point is on the robot its motion must also be directly
related to the robot’s joint positions and velocities. The twist
of a frame is related to the joint velocities through:

T0,0
c = Jc(q) q̇ , Jc =

[
Jc,ω(q)
Jc,v(q)

]
(2)

Where Jc(q) ∈ R6×n is known as the geometric Jacobian for
the frame at the contact point.

The external wrench applied to the robot at the contact
point expressed in the inertial frame is denoted as W0

e . The
power transferred to the robot should be the same regardless
of whether twists and wrenches or joint velocities and torques
are used. Hence, τ e can then be obtained through

W0
e T

0,0
c = τ>c q̇

W0
e Jc(q) q̇ = τ>e q̇

τ e = Jc(q)
>
W0,c

e
>

(3)

Using the Jacobian of the contact point it is also possible
to determine the effective mass mc of the robot acting in the
collision direction:

mc(q) =
[
û>(q) Jc,v(q) M−1(q) J>c,v(q) û(q)

]−1
(4)

Where û(q) ∈ R3 is a unit vector in the collision direction
from the contact point.

Collision force profile: Typically, the force applied during
a collision between a robot and human consists of two distinct
consecutive phases. First there is a short impact phase which
is followed by a quasi-static contact phase [22].

The impact phase can be well understood using the model-
ing done above. During this initial impact period the entirety
of the robot can be condensed to a point mass with mass
mc, velocity v0,0

c , and a description of its curvature (the
effect of which goes beyond the scope of this work). The
characteristics of the colliding body part also play an important
role, especially its reflected inertia and contact stiffness. This
phase can then be well understood using a relatively simple
mass-spring-mass model. The force magnitude profile of such
a model contains a single peak the magnitude of which
computed as [22]:

Fmax
imp =

√
mcmh

mc +mh

√
khv

h
c,0 (5)

Where Fmax
imp is the maximum contact force due to this phase,

mc is the effective mass of the robot as defined in (4), mh

is the reflected inertia of the human, kh the human contact
stiffness, and vhc,0 the relative initial velocity between the robot
and human.

During the quasi-static contact phase the robot applies either
a pushing force when the struck body part is free to move or
a crushing force when it is clamped into place. This phase
is highly dependent on the robot’s design and control and is
especially important when the human is clamped since then
the largest forces are applied. The force applied by the robot
at the point of contact can be found through

Fc = J>
†

c,v(q) τ (6)

Where J>
†

c,v(q) is the pseudoinverse of the transposed geo-
metric jacobian of the contact point. Naturally, the contact
force could be large enough to penetrate or break human
tissue/structure and so it is also limited by the human tissue
resistance to crushing.

For free collisions, the maximum applied force in this
second phase is typically lower than that of the first for



robot velocities greater than 0.3 m s−1 [22]. For free collisions
against soft-tissue, these two phases could even simplify into a
single initial impact phase after which contact is lost again. If
the pushing force during this phase does the exceed peak force
of the first phase it is predominantly driven by the actuator
torques and the reaction of the human body which is mainly
governed by its reflected impedance. However, the applied
pushing force could still never exceed the crushing force that
would be applied if the human was clamped, with all other
things being equal.

B. Injury measures and safety metrics

The human body can sustain many types of injuries includ-
ing bone fractures, internal injuries, abrasions, and lacerations
due to being cut, stabbed, gashed, or crushed. In [22] Haddadin
and Croft identify under what conditions each of these forms
of injury is likely to occur and what factors determine its sever-
ity. Tadele et. al. in [23] have performed a literature review
on current safety metrics used to embed safety-awareness into
robots. Both their findings are summarized here to gain insight
into what causes injuries and what metrics are used to mitigate
them.

Contact force: According to [22] the force applied during
contact is an effective injury measure for each form of injury
and contact. [23] has also found works that consider large
forces as the cause of potential injuries and thus implement
force-based criteria into control. The human body’s tolerance
to contact forces varies depending on the struck part, with
the neck having the lowest tolerance [23]. Some control the
applied force directly to implement safety, others have defined
new safety metrics based on force such as the danger index
or impact potential [23].

Compression: Haddadin and Croft in [22] state that a
measure known as the compression criterion can act as an
injury measure for fractures as well as crushing and gashing
lacerations during blunt contacts. The compression criterion
is the compression of the chest expressed as a percentage of
the original chest depth [24]. [23] discusses a similar injury
measure called the viscous criterion as an injury measure for
constrained organ damage. The viscous criterion is defined
as the product of the rate of compression and the percentage
of compression [24]. The rate of kinetic energy transfer has
been suggested as a viscous criterion safety metric [23].
It is important to note that both the compression criterion
and viscous criterion are by definition only relevant during
collisions against the human chest and abdominal areas.

Energy: Tadele et. al. in [23] state some consider a large
amount of uncontrolled energy is a cause of accidents in robots
and have identified energy limits that cause fractures of the
skull and damage the spinal cord. In contrast to this, [22]
suggests that energy is an effective energy measure only in
case of dynamic loading of a sharp contact which can cause
cutting and stabbing lacerations and abrasions. [22] chooses
to relate energy to fractures in different manner as will be dis-
cussed later. Many works have effectively implemented safety-

awareness into their control methods through controlling the
energy of the robot, see for instance [8], [18], [19] or [25].

Energy density: Instead of energy, [22] states that energy
density acts as an injury measure for fractures and other
injuries during the dynamic loading of a blunt contact. Both
[22] and [23] state a strong correlation exists between the pain
felt by a human and the impact energy density. [23] goes on to
state that energy density limits of the skin have been used to
design safer robot coverings. [22] does not explicitly provide
its reasoning for using energy density instead of energy for
blunt contacts beyond that its used to evaluate lacerations.
It is thought that the authors of [22] considered force and
compression sufficient to adequately measure fracture injuries
and density was added to evaluate possible lacerations during
the contact.

Stress: Stress is indicated as an injury measure for all
forms of sharp contact by [22]. The review by Tadele et.
al. [23] agrees with this as they describe the use of stress
as a safety metric for mitigating skin injuries and soft-tissue
injuries, which can be caused by sharp contacts. The works
referenced by [23] all use stress (some in conjunction with
energy density) in order to design the shape, elastic modulus,
and thickness of a robot covering.

Others: Haddadin and Croft in [22] also discuss injury
evaluation by a medical expert via the AO-classification as
being the most precise method of judging the extent of any
injury. This can only done after the injury has been sustained
and so is used in experimental studies to define what is known
as a risk curve. [6], a work also described by [23], defines
such a curve where the observed injury was directly related to
impactor mass, velocity, and geometry.

Acceleration based metrics are also discussed in [23] but
are not included in [22] as an injury measure. Acceleration
based metrics stem from the head injury criteria (HIC), used
in biomechanics studies and accident research in fields such
as the automotive industry. In robotics it has been used as a
severity indicator for potential injury due to blunt impact to
the human head [23]. However, while HIC is a standardized
metric in automotive crash tests, there is a need for other safety
metrics in robotics due to the difference in injury types and
operating speeds [23].

C. Interrelation of safety metrics

The detailed reviews by Haddadin and Croft in [22] and
Tadele et. al. in [23] show that many factors come into play
when determining effective ways to measure the severity of
injuries as well as robot control and design methods for
mitigating them. Many of these factors are closely related to
one another which raises the question if one of these factors
can be carefully controlled such that all factors remain within
safe ranges. Let us consider the connections between the
energy of a robot and the other identified injury measures.

Force: Limiting the robot’s kinetic energy involved in a
collision is done through controlling the component of the
robot’s velocity toward the human and/or the effective robot
mass. These also directly relate to the maximum force applied



during the initial impact phase of a collision through (5).
The applied force can also be determined by monitoring the
rate of change of momentum, which makes use of the same
properties as energy. The force applied during the quasi-static
contact phase is highly dependent on the control method and
therefore the potential energy stored in the controller. Whether
the potential energy stored in the controller can be estimated
depends on the type of robot used and how it is controlled.
If it can be estimated then contact forces during quasi-static
contact can be limited by controlling this potential energy.

Compression: The compression criterion is a measure how
much the chest has been compressed relative to normal.
Compression of the chest is caused by the application of force
and so is not directly related to energy but rather indirectly
through the forces applied by the robot due its kinetic and
potential energy. The viscous criterion, on the other hand, is
the product of the rate of compression and the relative chest
compression and therefore more directly related to energy. The
rate of compression is directly related to the velocity of the
robot at the contact point which can also be controlled by
ensuring a low kinetic energy. Furthermore, [23] has suggested
that the rate of kinetic energy transfer can act as safety metric
for the viscous criterion, further suggesting that the viscous
criterion can be brought to safer ranges by limiting the robot’s
kinetic energy.

Energy density and stress: If the contact area of the
collision can be determined then the energy density can also
be controlled through controlling energy. Stress is a measure
of the amount of force experienced by a material per unit area
and so can only be related to energy through the relations
between energy and force.

In order to confirm whether safety is guaranteed from
injuries correlated to measures other than energy additional
properties of the collision must be monitored. The collision
time would have to be known in order to determine the rate
of energy transfer during the collision which can be used as
a metric for the viscous criterion. The compression distance
should be monitored to gain insight into the compression
criterion and viscous criterion. If the potential energy of the
controller and the applied force due to it cannot be determined
then another method for constraining this force would have to
be found. As mentioned above, the contact area of the collision
needs to be known to determine the danger due to energy
density and stress.

In this way one can see how by controlling energy other
injury measures can also be brought to safer ranges. The
effective mass and/or velocity of the robot in a collision
influences every injury measure except applied force due to
controller potential energy. Kinetic energy is the only injury
measure that is directly dependent on both of these and so can
be considered a central injury measure that is easily related
to all the other measures. Even the applied force, which is
a relevant measure for all types of injury and contact, can
be considered less central when realizing that the applied
force in the first phase of contact is turn dependent on the
properties that make up the robot’s kinetic energy as shown

in (5). Whether the control of a single injury measure such as
energy can be proven to yield sufficient safety from all forms
of injury in a general form is an interesting and useful question
to answer, but one which goes beyond the scope of this work.

D. Quadratic programming

Practically all humanoids have a large number of degrees of
freedom in branched structure. This gives them a high degree
of redundancy and thus many possible ways to complete
its goal(s). Modern methods of humanoid control maximize
the humanoid’s agility and versatility in multi-task situations
through whole-body control [12].

A whole-body control method should be capable of achiev-
ing multiple objectives such as remaining in balance while
completing tasks with its hands. The humanoid’s motions
should be able to conform to certain constraints like preventing
self-collisions or maintaining certain contact forces. Analyti-
cally finding a solution for a vector of inputs that achieves all
goals and conforms to all constraints is a challenging task. It
is made more complex by the fact that a range of solutions
could be possible and tasks and constraints can be added
and removed depending on the current environment and user
wishes. As, such most if not all humanoid whole-body control
frameworks make use of optimization processes.

A popular type of optimization process in humanoid control
is known as quadratic programming due to the availability of
solvers that are both fast and reliable in conjunction with the
availability of more powerful CPU’s [16]. Mathematically it
can be phrased as:

min
x

1

2
x>Qx + f> x (7)

s.t.


Ax ≤ b

Aeq x = beq

xmin ≤ x ≤ xmax

(8)

The goal of QP is to find the vector of arbitrary length x ∈
Rk that minimizes the objective function given in (7) while
conforming to the constraints stated in (8). In order for the
optimization to work Q ∈ Rk×k must be a symmetric real
matrix and f ∈ Rk a real vector. Any linear combination of the
elements of x can be set as a constraint through A ∈ Rj×k and
b ∈ Rj or through Aeq ∈ Rj×k and beq ∈ Rj for inequality
and equality constraints, respectively; where j indicates the
number of constraints. Finally, the output can be constrained
to remain within a designated range through xmin ∈ Rk and
xmax ∈ Rk.

In humanoid control literature QP is used to minimize a
large variety of different functions depending on the context
in which QP is used. The work in [12] is concerned with
whole-body balancing in multi-contact scenarios, where a
QP optimization is used for the distribution of the desired
CoM wrench among the end-effectors in contact with the
environment. QP is used in [14] in the context of standing-
up control to ensure the control commands follow the laws
of contact-consistent operational space control and contact
conditions related to the center of pressure and friction cones



simultaneously. [16] makes use of whole-body momentum
in combination with finding joint accelerations and ground
reaction forces in a single QP formulation. The framework also
includes a method to specify various motion tasks which are
also taken into account by the optimization process. In [17] a
QP-based low-level controller is used to generate body torques
based on operational space objectives and center of mass
(CoM) motion policies provided by a high-level controller.
[26] make of use of an unconstrained QP formulation to
optimize the realization of instantaneous capture point position
goals, base frame velocity goals, and torque input minimiza-
tion during a 2D push recovery of a wheeled-base humanoid.

Most, if not all, operate by choosing (7) to be a error signal
between desired and actual properties of the humanoid. This is
typically expressed as a function dependent on, among others,
variables that drive the robot such as its joint accelerations or
torques.

III. ESTABLISHING SAFETY CRITERIA

In this section controllable safety criteria will be proposed
for guaranteeing a human’s safety within a robot’s workspace.
The collision between a human and robot is modeled as
described in section II-A. First the assumptions made for
the modeling of the obstacles and contact are discussed.
Then safety criteria are proposed for both phases of contact
discussed in section II-A.

A. Assumptions

Throughout the rest of this work the following assumptions
are made with respect to representing human obstacles and
modeling the contact between a human obstacle and the robot:
• The positions of all nearby obstacles is known to the

robot at all times.
• The human obstacle is considered to be a single point,

representing the center of a human body part, with a
sphere around it. Anything inside this sphere is consid-
ered in contact with the human obstacle.

• Contact is considered to be a one-dimensional collision
along the direction of contact and the effects due to the
collision contact area and impactor shape are neglected.

• The human obstacles cannot move and any collision is
considered to clamp the obstacle.

• The dynamics of a collision between the human obstacle
and the robot are independent of the direction and angle
of impact.

The detection of obstacles, human or otherwise, is an on-
going topic of research and essential for enabling robots to
accomplish their goals in an arbitrary environment. In fact,
many robots already make use of advanced computer vision
for obstacle detection such as Spot and Atlas developed by
Boston Dynamics1, the CRX line by Fanuc2, and EVE by
Halodi3. There is also high demand for advanced obstacle

1https://www.bostondynamics.com/
2https://crx.fanucamerica.com/
3https://www.halodi.com/ever3

detection and human identification in other rapidly developing
industries such as self-driving cars. Hence the assumption
that a collaborative robot is equipped with similar vision
capabilities is considered reasonable.

In practice a human obstacle would never be just a single
point but rather a series of connected bodies not unlike a
robot. Then, just as the entire robot is made equivalent to
a point mass for the purposes of collision analysis, so to can
the human body be made equivalent to a reflected inertia and
contact stiffness experienced by this robot equivalent point
mass. Of course this is still a simplification since in reality a
HRC is never just between two points but between two three-
dimensional bodies.

The assumption that the collision is considered one-
dimensional simplifies the collision so that shear forces applied
between the human and robot do not need to be modeled. The
contact area and impactor shape could be taken into account
even when simplifying the collision in this way, however, it
was chosen to neglect these in this work in order to focus on
the development of the criteria and constraints rather than the
modeling of a complex collision. Due to these assumptions,
the injury measures of energy density and stress cannot be
taken into account.

Considering an obstacle to be clamped when in contact puts
it in the most dangerous form of contact since then the largest
forces are applied during the quasi-static contact phase. When
a human is clamped it is considered to have an infinite reflected
inertia [7]. Eliminating the motion of the obstacle entirely
means the velocity of the obstacle does not play a role in
the collision. While the effects of a human’s motion on their
safety should eventually be taken into account by a safety
constraint, this was left outside of the scope of this work.

The direction and angle of impact would in reality also
affect the collision. It can influence the contact stiffness and
reflected inertia of the human experienced by the robot as well
as the criteria limits for safe behavior. However, by making
the proposed safety criteria either independent with respect to
these or configurable the criteria can be extended to include
direction and angle of impact in a later work.

B. Impact phase safety criteria

Following section II-A, this first phase is dominated by
the impact collision properties of both bodies: the effective
mass and velocity of the robot as well as the contact stiffness,
velocity, and reflected inertia of the human. It can be modeled
as a mass-spring-mass system where one mass has the robot’s
effective mass and velocity, the other the human’s reflected
inertia and velocity, and the spring is the contact stiffness of
the human body at the point of impact.

Conform to the assumptions made, injuries during this
phase can be caused by large impact forces, too much energy
involved in the collision, and exceeding compression and
viscous criteria limits in case of collisions against the torso. It
could be possible to define a safety criteria for each of these,
but by making use of the reasoning in section II-C it can be

https://www.bostondynamics.com/
https://crx.fanucamerica.com/
https://www.halodi.com/ever3


Fig. 1: Diagram illustrating the definition of the approaching
point pα on the robot for a particular obstacle pφ.

argued that an energy-based criteria alone could be sufficient
to guarantee safety during this phase of the collision.

The robot has both kinetic energy due to its motion and
potential energy stored in its controller and due to gravity
(which is assumed to be adequately compensated). This first
phase of a collision is dominated by collision dynamics and
these dynamics can in turn be considered a function of the
kinetic energy present during the collision. Potential energy
stored in the controller can still influence this phase but only
when this is converted to kinetic energy before the collision
occurs. Hence, for this phase, a safety criteria will be proposed
based on kinetic energy. In principle, kinetic energy involved
in the collision can be supplied by either the robot or human.
However, under the assumption that the human obstacle is
immobile all kinetic energy must be provided by the robot.

In order to use this as a safety metric for robotic humanoids
it is desirable that the kinetic energy involved in the collision
is controlled while imposing minimal constraints on its motion
possibilities. The robot can then still accomplish its tasks as
best as possible while guaranteeing safety.

In section II-A it is discussed how the collision is modeled
by reducing the robot down to an effective point mass and
velocity. In order to make this reduction a point on the robot
must be defined at which the effective mass and velocity is
calculated. To accomplish this a point on the robot is defined
called the approaching point for a particular obstacle. For
a particular obstacle the approaching point on the robot is
defined as the point that is closest to the obstacle and has a
positive velocity toward it.

Figure 1 shows an illustration to further clarify what the
approaching point is. In the figure two links of an arbitrary
robot are shown along with the Cartesian velocities of their

end-points relative to the inertial frame and expressed in the
inertial frame. The position of the obstacle in the inertial is
given by p0

φ and the position of the approaching in the inertial
frame by p0

α. While link i is closer to the obstacle than link
i − 1 it is moving away from the obstacle and therefore not
suitable for the approaching point. One end of link i − 1 is
moving toward the obstacle while the other is moving away.
Therefore, the approaching point is selected as the closest
point to the obstacle within the segment of link i− 1 that has
a positive velocity toward the obstacle. The distance between
the approaching point and the obstacle is then given as dαφ.
If no point on the robot has a positive velocity toward the
obstacle then it is considered safe.

By only considering the safety of human obstacle with
respect to the approaching point the robot is given as much
freedom of movement as possible while still ensuring that
collisions between the obstacle and the robot occur safely. The
kinetic energy of the robot involved in a collision between the
obstacle and the approaching point is:

Eimp(q, q̇) =
1

2
mαφ(q)vαφ(q, q̇)

2 (9)

Where mαφ is the equivalent mass of the robot computed at
p0
α in the direction of p0

φ and vαφ the scalar velocity of α
in the direction of φ. Based on the information provided in
section II-A, each is computed as follows:

mαφ(q) =
(
Jαφ(q) M−1(q)J>αφ(q)

)−1
(10)

vαφ(q, q̇) = Jαφ(q) q̇ (11)

Jαφ(q) ≡ û>αφ(q) Jα,v(q) (12)

Where M(q) is the joint-space mass matrix of the robot,
Jα,v(q) the Jacobian relating the joint velocities, q̇, to the
Cartesian velocity of the approaching point v0,0

α , and ûαφ(q)
the unit vector pointing from p0

α to p0
φ. Note that vαφ must

by definition be positive since p0
α must be approaching the

obstacle.
The initial impact phase of a collision is considered safe as

long as
Eimp(q, q̇) ≤ Elim (13)

holds when the collision occurs. Activating this constraint
just before a collision occurs could force to robot to have
to try to reduce its impact energy by a large amount in a
small time window. This could be physically impossible, cause
erratic behavior, or impair essential functions such as gravity
compensation or balancing. At the same time, forcing the robot
to operate with low energies while the obstacle is relatively far
away can be considered an unnecessary limit on performance.
To balance these, the energy limit of the approaching point
is defined as a function of the distance separating it from the
obstacle:

Elim(dαφ) =

{
Esafe dαφ ≤ dsafe
Esafe + κE(dαφ − dsafe) dαφ > dsafe

(14)



Where dsafe is the maximum distance for which the kinetic
energy is limited to Esafe. For distances larger than dsafe,
the constraint is linearly relaxed at a rate of κE .

Naturally, the value of Esafe will depend on what degree
of harm is considered unsafe, where on the human body
the collision occurs, and whether the human is clamped. For
instance, in [22] a number of experiments were performed
wherein impacts were made on the lateral surface of the upper
arm while it was clamped. The pain felt by the target was
recorded using the visual analog scale (VAS) where a score of
0 indicates no pain and a score of 10 the worst pain possible.
If the initial impact of a collision is deemed safe as long as
it results in little to no pain to the upper arm, a score of 2 or
lower, then Esafe should be set to 4.5 J.

Energy can be controlled through either the effective mass
or effective velocity of the approaching point toward the
obstacle. The velocity of the robot is more straightforward to
control and has a squared relationship with the kinetic impact
energy. Keeping in mind that the velocity of the approaching
point must be greater than zero, the impact energy criteria can
be rewritten as:

vαφ(q, q̇) ≤

√
2Elim(dαφ)

mαφ(q)
(15)

C. Quasi-static contact phase safety criteria

After the initial impact of the collision has taken place,
the robot could keep applying a force on the human in its
attempt to complete a task. During this phase of the collision
in combination with the assumption that the human is clamped,
the robot applies a crushing to the human obstacle. The contact
force is listed by [22] as a useful injury measure in each
possible collision type. Therefore, ensuring the contact force
remains safe could in theory guarantee safety from all injuries
during this phase of the collision.

These contact forces can be thought of as arising from
potential energy stored in the controller that is seeking to push
the contact point further toward the human. For manipulators,
this potential energy of the controller can be estimated in
various ways as shown in [8] and [19]. When considering
humanoids, these same concepts become difficult to apply
since it is not driven by a single control goal, but continually
seeking to optimally achieve multiple goals at once. Since the
potential energy stored in the controller is not guaranteed to be
computable for multi-tasking robots an energy-based criteria
to limit the contact forces in this phase cannot be employed.

Instead, we propose to consider criteria for quasi-static
contact safety only once contact has been established. The
detection, localization, and estimation of external contact
forces is possible (e.g. [27] and [28]) and can be used as the
trigger for when this criteria should be monitored.

The obstacle is considered as a single point, however, any
part of the robot within a sphere surrounding it is considered
in contact with the obstacle. For each link with a segment
within this sphere, its contact point is defined as the point on
the link that is closest to the obstacle.

Fig. 2: Diagram illustrating the definition of a contact point
pc on the robot for a particular obstacle pφ.

The definition of a contact point on a link is illustrated in
figure 2. The obstacle is positioned with respect to the inertial
frame at p0

φ and has a contact radius of rφ. A segment of an
arbitrary link is within this contact radius and so the contact
point on the robot, p0

c , is defined as the point on the link closest
to the obstacle. The distance between p0

c and p0
φ is then given

by dcφ. Note that if two links are within the contact radius
then a contact point is defined for each.

The effective force applied by the robot at a contact point
can be determined the same way as shown in II-A, namely:

Fc = J>
†

c,v(q) τ (16)

The component of this force that is directed toward the human
is then isolated as follows:

Fcφ = û>cφ(q)Fc (17)

Where ûcφ(q) is unit vector pointing from p0
c to p0

φ. A human
in quasi-static contact with a robot should be safe from injuries
due to the contact force so long as

Fcφ ≤ Fsafe (18)

for the duration of the contact period. The value of Fsafe is
of course dependent on which part of the human is at risk of
being crushed. In [7], Lucci et. al. state that for a clamped
upper arm the applied force should not exceed 150 N.

IV. DERIVING SAFETY CONSTRAINTS

In the preceding section two safety criteria were determined,
the first to ensure safety during the initial impact phase of a
collision and a second for the quasi-static contact phase that
follows. In this section these criteria will used to formulate



constraints that are compatible with a quadratic program.
As discussed in section II-D, many humanoid robots use
QP optimization to determine the optimal control signal for
achieving its tasks as best as possible while adhering to a set
of constraints. Human safety is perhaps the most important
thing a robot should able to guarantee in all its actions. The
control signals found by the QP solver must adhere to the
constraints imposed on it. Hence, the safety criteria described
in section III will be formulated as inequality constraints for
a QP solver.

Depending on the goals a multi-tasking robot is attempting
to achieve the variables for which the QP is minimized
can vary but the joint torques and/or joint accelerations are
practically always included. In order to formulate constraints
that can be implemented with little or no changes into any
humanoid control scheme, we will show that the developed
criteria can be expressed as either joint acceleration or torque
constraints.

To achieve this, we use a discrete linear approximation of
the robot’s equations of motion. Assuming that q, q̇, and q̈
are known at discrete time k, we approximate q and q̇ at time
k + 1 as:

q̇|k+1 = q̇|k + δtq̈|k (19)

q|k+1 = q|k + δtq̇|k +
δt2

2
q̈|k (20)

Where δt is the time-step size between times k and k+1. The
joint acceleration applied over this time-step, q̈|k, is assumed
to be constant. It is either obtained from the QP solver directly
or, if the solver returns joint torques, can be calculated through
rewriting equation (1) into:

q̈|k = M−1(q|k)
(
τ |k + τ e|k − γ|k

)
(21)

With

γ|k ≡ C(q|k, q̇|k) q̇|k + g(q|k) + τD|k(q|k, q̇|k) (22)

Where the assumption is made that the applied actuator torque
over the time-step, τ |k, is constant.

A. Initial impact constraint

Given that q|k and q̇|k are known at time k, we would like
to formulate a constraint for q̈|k such that Eimp|k+1 is less
than or equal to Elim|k+1. By substituting (19) and (20) into
(9) the impact energy at time k + 1 as a function of q̈|k can
be determined. However, this would be a non-linear function
with respect to q̈|k and, as shown in (8), inequality constraints
for a QP must be linear with respect to the input vector.

Therefore, q|k and q̇|k will be used to determine the
constraint instead. Since both of these are known Jαφ, M,
γ, τ e, and dαφ can then be computed. However, in order
for the constraint to then effectively limit Eimp|k+1 it must
be assumed that q, q̇ and the parameters dependent on them
do not change significantly over time. This does introduce
error into the constraint, the significance of which should be
evaluated.

Starting from (15), a linear constraint for the joint acceler-
ations imposed by an obstacle can then be derived as:

vαφ|k+1 ≤

√
2Elim
mαφ

Jαφ q̇|k+1 ≤

√
2Elim
mαφ

δtJαφ q̈|k ≤

√
2Elim
mαφ

− Jαφ q̇|k (23)

Substituting (21) for q̈|k then yields an equivalent constraint
for the joint torques:

δtJαφ M−1 τ |k ≤

√
2Elim
mαφ

− Jαφ(q̇|k + δtM−1 (τ e − γ))

(24)

B. Quasi-static contact constraint

The criteria to guarantee crushing forces remain safe can
also be phrased as a linear inequality constraint. However, just
as with the impact constraint, ûcφ, J>

†

c,v , M, γ and τ e must
be computed using q|k and make use of the assumption that
they do not change significantly over a single time-step. The
significance of the error introduced by this assumption must
also be evaluated. The constraint for joint torques can now
be obtained in a straightforward way by using (16), (17), and
(18), namely:

Jcφ,F τ |k ≤ Fsafe (25)

Where Jcφ,F ≡ û>cφ J>
†

c,v Using (21) we can also derive a
constraint in terms of joint accelerations:

Jcφ,F M q̈|k ≤ Fsafe + Jcφ,F (τ e − γ) (26)

V. SIMULATION SETUP

In this section the simulation setup used for validating the
developed safety constraints is discussed. First a kinematic
model of the used robot is described, followed by establishing
its dynamic properties. Finally, the implementation of contact
forces applied by the human on the robot is presented.

Applying the QP constraints to a humanoid robot was not
possible as those available did not provide access to their
QP solver. Instead of applying the constraints through the
humanoid control API, it was chosen to design a manipulator
in MATLAB in order to have full access to the QP solver.
While this manipulator does not have a multi-task control
framework it does enable testing of the QP-compatible con-
straints proposed in section IV.

A. Kinematic description

A schematic 2D diagram of the used robot viewed in the yz-
plane is shown in figure 3. It is a serial manipulator consisting
of six links and has six degrees of freedom. The frame Ψ0

shows the position of the world frame. The frames Ψ1 through
Ψ6 are each placed at the base of a link and oriented such



Fig. 3: Schematic diagram of the robot viewed in the yz-plane.
A revolute joint at a frame’s origin is indicated with a double
arrow head or a filled dot at the origin, representing rotations
along the z- and x-axes respectively.

that the frame’s z-axis runs along the link’s length. At each
of these frames there is also a joint that allows for rotation
relative to the previous frame in the chain. For example, Ψ3

(link 3) can only rotate about its z-axis relative of Ψ2 (link
2) and Ψ4 (link 4) can only rotate about its x-axis relative to
Ψ3. The manipulator’s end-effector is at the end of the sixth
link and represented by Ψ7. In the reference configuration the
manipulator is completely straight along the world z-axis with
no relative rotation between any frames. The configuration
shown in figure 3 then corresponds to:

q =
[
0 −π/4 0 π/2 0 −π/4

]>
Points on a link between the frames are parametrized as in

[4]:

pi,s = pi + s(pi+1 − pi), vi,s = vi + s(vi+1 − vi) (27)

Where pi and pi+1 are the positions of Ψi and Ψi+1 in the
world frame while vi and vi+1 are their corresponding linear
velocities, and s ∈ [0, 1]. This means that an infinitely thin
wire model of the manipulator is used to determine the location
of the approaching point and contact points on the manipulator.
This simplifies the process of finding these points and their
geometric Jacobians within this simulation environment but
does not hinder the validation of the safety constraints.

B. Dynamic properties

The robot’s equations of motion can be stated as in (1),
namely:

M(q) q̈ + C(q, q̇) q̇ + g(q) + τD(q, q̇) = τ + τ e (28)

Before the robot’s joint accelerations in response to applied
actuator torques can be determined it is necessary to be able
to find the other components as functions of the joint position
and velocity.

Mass and inertia components: Each link is given the
inertial properties of a cylinder with a length of 0.5 m, radius
of 5 cm, and a mass of 5 kg. The principal inertia frame of
a link i is located 0.25 m in the z-direction above Ψi, or in
other words, when s = 0.5 in (27).

The joint-space mass matrix M(q), torques due to cen-
tripetal and coriolis forces C(q, q̇)q̇ and torques due to gravity
g(q) are all fully determined by the mass and rotational inertia
of the links and the current configuration and velocity. The
manipulator’s motion is too complex for these components to
be found analytically using MATLAB’s Symbolic Toolbox,
which is why its Robotics System Toolbox is used instead.
This toolbox provides efficient functions for determining each
of these components as well as the poses and geometric
Jacobians of each frame. It requires a kinematic description of
the robot with each link’s mass and rotational inertia properties
in URDF format.

Joint friction: The model and coefficients of the friction of
the robot’s joints is based on the parameter identification of the
KUKA LBR iiwa 14 R820 done in [29]. The KUKA iiwa 14
is a manipulator with size and total mass comparable to the
manipulator used in this work and with the same sequence
of joint axes. Thus the friction of its joints was deemed a
reasonable estimate. In [29] the model used for the friction is:

τD(q̇) = Dvq̇ + Dssign(q̇) (29)

Where Dv and Ds ∈ Rn×n are diagonal matrices containing
the viscous and coulomb friction parameters. The sign()
operator returns a vector/matrix containing the sign of each
element in the operand vector/matrix.

In [29] the physical friction parameters for each of the iiwa
14 joints were identified. While these parameters for the first
six of its seven joints could be used directly, the links farther
along the iiwa 14 are much smaller and lighter than those
used in this simulation. Which is why the friction parameters
of the iiwa 14’s first joint are used for all joints acting in the
z-axis. Similarly, the friction parameters of the second joint
off the iiwa 14 are used for all joints acting in the x-axis.
These first two links have a mass relatively close to those in
this simulation. Hence, for this simulation the viscous friction
parameters are:

Dvi = 0.241 50 N s m−1 for i = 1, 3, 5

Dvi = 0.373 28 N s m−1 for i = 2, 4, 6
(30)



and the coulomb friction parameters are:

Dsi = 0.319 09 N for i = 1, 3, 5

Dsi = 0.181 30 N for i = 2, 4, 6
(31)

Here i is used to indicate the position in the diagonal matrices.

C. Contact torques

The obstacle is modeled using the properties of the upper
arm, and thus has a contact stiffness, kh, of 30 N mm−1

[7]. For the contact radius, rφ, 0.01 m was deemed a suit-
able estimate for the upper arm compression before bone is
reached. No literature could be found stating an estimate for
the damping due to the human upper arm during a collision.
Since it is expected that some damping would be present a
viscous damping parameter, Dφ, of 0.1 N s m−1 is chosen.

The force applied by the human obstacle to the robot is then
formulated as:

Fh = (kh(rφ − dcφ) +Dφvcφ) ûφc (32)

Where dcφ is the distance between the contact point and the
obstacle, vcφ is the velocity of the contact point towards the
obstacle, and ûφc is the unit vector pointing from the obstacle
to the contact point. The joint torques caused by this external
force on robot are then determined using

τ e = J>c,v Fh (33)

VI. CONTROL

In this section it will be discussed how the robot described in
section V is controlled to reach a target position while taking
constraints into accounts. To do this a general overview of the
entire simulation procedure is first provided. Then the method
for determining the desired actuator torques for the robot to
complete it task is discussed. Finally, the quadratic program
which finds the optimal actuator torques to complete the task
while adhering to constraints is discussed.

A. Overall simulation procedure

Before diving into the details of how the robot is controlled,
it is useful to first look at an overview of the control and
simulation process. A block diagram showing this overview is
provided in figure 4.

Through a combination of an impedance controller and
gravity compensation the desired torque vector for the robot’s
end-effector to reach a desired goal destination is computed.
This is then is limited to not exceed the maximum torque
the actuators can apply. A QP solver is then used to find
the torque vector that minimizes its least-square error with
the desired torque while complying to the safety constraints
discussed in section IV. Since the QP solver finds an optimal
torque for the actuators the safety constraints as stated in (24)
and (25) are used in the solver. The torques computed by
the quadratic program are then also limited to not exceed a
specified physical actuator limit.

The actuator torques and the torques due to contact with
the obstacle are then applied to the robot to determine the
resulting joint accelerations using (21). The joint positions and
velocities for the next discrete time are then determined using
the discrete linear approximation given in (20) and (19). Once
these are obtained the process can be repeated until the total
time has been simulated.

B. Task control

Operating principles: The primary controller used to com-
plete the task is an impedance controller. This impedance
controller can be thought of as a multidimensional spring with
stiffness matrix K ∈ R6×6 between the end-effector frame
with pose H0

x and another frame in space with pose H0
f . This

virtual spring applies a wrench at the end-effector in an attempt
to make H0

x identical to H0
f . The stiffness matrix of this spring

is defined as [8]:

K =

[
Ko Kc

K>c Kt

]
(34)

Where Ko, Kt, and Kc ∈ R3×3 are the symmetric rotational,
translational, and coupling stiffness matrices. For each of these
stiffness matrices one can also define the corresponding co-
stiffness matrices: Go, Gt, and Gc. When the stiffness matrix
is known the co-stiffness matrix can be found via [8]:

Gi =
1

2
tr(Ki)I3 −Ki (35)

Where tr() is the tensor trace operator, and i is a placeholder
for either o, t, or c. Beyond the stiffness matrix the wrench
exerted by this spring is dependent on the relative pose
between the two frames:

Hf
x =

[
Rf
x pfx

0>3 1

]
(36)

and its corresponding inverse:

Hx
f =

[
Rx
f pxf

0>3 1

]
(37)

Using these relative poses and the co-stiffness matrices the
wrench exerted on the end-effector by the virtual spring
expressed in its frame can be determined through [8]:

m̃x
S = −2as(GoR

f
x)− as(GtR

x
f p̃

f
xp̃

f
xRf

x)− 2as(Gcp̃
f
xRf

x)
(38)

F̃xS = −Rx
fas(Gtp̃

f
x)Rf

x − as(GtR
x
f p̃

f
xRf

x)− 2as(GcR
f
x)
(39)

Where as() is an operator that returns the skew-symmetric part
of a square matrix. From m̃x

S and F̃xS the components that
make up the wrench on the end-effector, W0

S , can be directly
found. This wrench is then transformed to be expressed in the
inertial frame and translated into the joint-space of the robot:

(W0
S)> = Ad>Hx0 (Wx

S)> (40)

τS = J>x (W0
S)> (41)

Therefore by applying an actuator torque of τS the robot will
move as if being pulled by this multidimensional spring.



Fig. 4: Block diagram showing the control and simulation process for a time-step k.

In addition to this spring, an impedance controller can also
add additional viscous damping to the robot to achieve the
desired dynamic behavior. This damping can be implemented
either via a multidimensional damper between the current and
desired end-effector poses or by injecting additional damping
on each of the joints directly. In this work it was chosen
to inject the damping on the joints directly. Furthermore, a
gravity compensation term is added so that this does not need
to be done by the impedance controller’s spring. The actuator
torques for task completion are therefore computed as:

τ t = τS − Bq̇ + τ g (42)

Where B ∈ R6×6 is diagonal matrix containing the additional
viscous damping coefficients applied to each joint and τ g is
the torque vector required to compensate for gravity.

This torque could already be used as a desired torque for
the quadratic program, however, then the physical limits of the
actuators are not taken into account. An actuator always has
a specified maximum torque that it can apply and so this will
also be implemented on this manipulator. The desired torque
given to the QP solver is then:

τ ∗ = sign(τ t)
>min(τmax, |τ t|) (43)

Where τmax is a vector containing the maximum allowed
torque for each joint and min() is an operator that performs
an element-wise comparison between the operands and selects
the lower value.

Practical Implementation: During simulations the purpose
of the impedance controller is to bring the end-effector from its
initial position, p0

x,0, to a goal position p0
x,∗. Only the postion

of the end-effector is controlled to reach a goal, it is free reach
the position in any orientation. Hence, the stiffness matrices
of the impedance controller are set as

Kt = 175I3, Ko = 0I3, Kc = 0I3 (44)

The damping matrix of the impedance controller is set to

B = 7.5I6 (45)

The gravity compensation term is set to τ g = g(q) such that
the gravity terms cancel in (28).

When the determining the friction parameters in section V
the values for the first two joints of the KUKA iiwa 14 were
used. For this reason the torque limits of these joints will also
be used. According to its datasheet both these joints have a
torque limit of 320 N m, and so each element of τmax is set
to 320.

Before the controller can be be used it is also necessary
to define H0

f . While it is possible to make this pose matrix
constant and located at p0

x,∗ this would result in very large
torques being applied when the simulation begins. This is
caused by the large extension of the virtual spring with almost
no damping to mitigate it yet since joint velocities are initially
zero. Instead the position of the other end of the spring, p0

f , is
made to travel in a straight line from p0

x,0 to p0
x,∗ over time.

It is defined as:

p0
f (t) =

{
p0
x,0 + t

T∗ (p0
x,∗ − p0

x,0) for t < T ∗

p0
x,∗ for t ≥ T ∗

(46)

Where t is the current simulation time and T ∗ is the total
time in which p0

f travels from p0
x,0 to p0

x,∗. T
∗ is set to 2.5

seconds. To prevent relative rotation between H0
x and H0

f from
playing a role, the rotation matrix of H0

f is made the same as
that of the end-effector.

C. Quadratic program

The goal of the quadratic program is to compute the torque
vector that completes the manipulators task as best as possible
while ensuring that the safety constraints are followed. Without
the presence of obstacles the manipulator can complete its task
by applying τ ∗. Therefore we can state the objective function
for the quadratic program as the least-square-error measure
between τ ∗ and the functions input:

min
τqp
||τ ∗ − τ qp||2 + ε||τ qp||2 (47)

Where ε||τ qp||2 with ε << 1 has been added as a regulariza-
tion task to minimize the norm of the computed torque vector.



In order to use this objective function it must be rewritten to
match the format of (7). This is done as follows:

min
τqp
||τ ∗ − τ qp||2 + ε||τ qp||2

= min
τqp

(τ ∗> − τ>qp)(τ ∗ − τ qp) + ετ>qpτ qp

= min
τqp

(1 + ε)τ>qpτ qp − 2τ ∗>τ qp

= min
τqp

1

2
τ>qp[2(1 + ε)I6]τ qp + (−2τ ∗)>τ qp (48)

Therefore by setting Q = 2(1+ε)I6 and f = −2τ ∗ (as given in
(7)) the objective function has been written in the QP format.
In this derivation it is used that components not dependent on
τ qp do not influence at which τ qp the function is minimal and
that τ ∗>τ qp = τ>qpτ

∗.
Constraints: The only constraints that are imposed in the

quadratic program are the safety constraints given in (24) and
(25). For each obstacle there is one constraint for the impact
energy and a contact force constraint for each link currently
in contact. Each individual constraint i has the following
structure:

Aiτ qp ≤ bi

Where Ai ∈ R1×6 is a row vector and bi a scalar. For the
impact energy constraints

Ai = δtJαφ M−1

bi =

√
2Elim
mαφ

− Jαφ(q̇|k − δtM−1 (τ e − γ))

and for contact force constraints

Ai = Jcφ,F

bi = Fsafe

The total number of constraints imposed in the quadratic pro-
gram will vary in time depending on whether the approaching
point at the current time for an obstacle and on how many links
are currently in contact with an obstacle. However, regardless
of the number of constraints the rows Ai and scalars bi can
always be stacked to form one large set of constraints. For
instance, if there is one obstacle for which there is currently
a approaching point on the robot and one link in contact then
the quadratic program can be fully stated as:

min
τqp

1

2
τ>qp[2(1 + ε)I6]τ qp + (−2τ ∗)>τ qp (49)

s.t.Aτ qp ≤ b (50)

with

A =

[
δtJαφ M−1

Jcφ,F

]
(51)

b =

[√
2Elim
mαφ

− Jαφ(q̇|k − δtM−1 (τ e − γ))

Fsafe

]
(52)

Torque limit: After the QP solver has found the optimal
joint torque vector τ qp it is first limited before being applied
to the manipulator. This is done via:

τ = sign(τ qp)
>min(τmax, |τ qp|) (53)

The torque limit of the actuators could also have been imposed
as a limit within the QP, however, then there is a risk that the
problem could become infeasible due the safety constraints
requiring torques larger than the limit. By limiting the torques
in this way insight is gained into whether the physical limits
in actuating the manipulator prevents the obstacle from being
safe.

VII. VALIDATION OF SAFETY CONSTRAINTS

In this section the results of the simulations described in
section V are discussed. The constraints should always be able
to keep Eimp below Elim throughout the motion and Fcφ
below Fsafe in case of contact. The performance of the two
constraints will be done separately as each has unique sources
of error.

A. Test method

In order to test the effectiveness of the constraints in a
variety of motions, 50 scenarios with randomized conditions
are produced. For each scenario a random goal position is set
and a random starting configuration that is at least 2 m away
from its goal. Care was also taken that the goal position and
the initial end-effector position are more than 1 m away from
the base of the robot in the xy-plane. This is done to avoid
beginning or ending in a singular configuration.

In each scenario the manipulator successfully reaches its
goal within 5 seconds when there are no obstacles present. An
obstacle is then placed such that it collides with a randomly
chosen point along the manipulator at a randomly chosen time
in its motion. The scenario with the obstacle in place is then
simulated once without safety constraints and another time
with safety constraints.

In each scenario the robot is simulated for a total of 5
seconds and the discrete time step size δt is 0.002 seconds. The
safety constraints were configured as followed: Esafe = 3 J,
dsafe = 0.1 m, κE = 17.5 J m−1, and Fsafe = 150 N.

B. Impact phase constraint

Overall effect: Figure 5 shows the difference between the
impact energy of the approaching point and the specified
limit against the approaching point’s distance to the obstacle
for all 50 scenario’s with and without the safety constraints
active. The full range of data is shown in figure 5a while
figure 5b is zoomed in to the cases when there is contact.
In general it can be seen that when the constraints are used
the kinetic energy of the approaching point less frequently
becomes unsafe, however, significant errors are still made.
This also confirmed by table I where it is shown that with
the constraint active the energy limit is exceeded roughly half
as often. The limit is still exceeded when the constraint is
active, however, the average and standard deviation of the



(a) Impact energy constraint error against distance to obstacle.

(b) Impact energy constraint error against distance to obstacle,
zoomed in to contact radius.

Fig. 5: Difference between impact energy of approaching point
and current energy safety limit against distance to obstacle.
The performance with and without the constraints active is
shown and the regions where the obstacle is safe and unsafe
are also indicated.

excess energy are both significantly lower when the constraints
are active.

The optimal torques found by the QP solver are guaranteed
to adhere to the constraints given. Therefore, any errors must
arise from either changes to the parameters used in the
constraint from one time-step to next or the physical limits of
the actuators. In figure 5b a clear spike in the error is shown
to be present regardless of whether the constraints are active.
Such a spike could be caused by one significant source of
error or a cluster of sources acting simultaneously. One would
have to investigate the scenario in which the spike occurred to
determine the cause for that specific case. Instead of analyzing
the 50 scenarios individually, it was chosen to investigate all
the scenarios at once in order to determine what are likely the
most significant sources of error for an arbitrary run.

Without constraints With constraints
Positive error 6.2% 3.5%
Average positive
error 8.39 4.03

Standard deviation
of positive error 16.50 9.71

TABLE I: Table summarizing the effect of the impact energy
constraint on the safety of an obstacle.

Fig. 6: Energy exceeding the safety limit against the norm of
the change in joint position over the time-step.

Fig. 7: Energy exceeding the safety limit against the norm of
the change in joint velocity over the time-step.



Fig. 8: Energy exceeding the safety limit against the norm of
difference between the unlimited joint torques found by the
QP solver and the the limited torques applied at the joints.

Joint position and velocity changes: In section IV it
is discussed that, in order to formulate the constraints, the
assumption must be made that the joint positions, velocities,
and parameters dependent on them do not change significantly
over time. Figures 6 and 7 show the unsafe errors made by the
impact constraint (also called excess impact energy) against
the magnitude of the change in joint position and velocity,
respectively.

In figure 6 one can see that there are a handful of cases
where we see large changes in joint position having a relatively
large excess energy but one can also see instances of low
error at similarly large joint position differences. The largest
constraint errors are made when the joint position changes
comparatively little. These points, with excess energy above
100 J and smaller than 0.1 rad joint position difference mag-
nitude, do still exhibit a slight trend of increasing with joint
position difference. The lack of a clear relationship between
large changes in joint position and the error made by the
constraints suggests that it is not a dominant cause for the large
errors made by the constraint. However, the change in joint
position does introduce some error and it is possible that there
are conditions under which the constraint is more sensitive to
changes in joint position.

Figure 7 does not show any significant relationship between
the change in joint velocity over a time-step and the error made
by the constraint. This can be seen by the fact that despite there
being a broad range for the change in velocity there is no trend
showing an increase in excess energy with large changes in
velocity.

Actuator torque limit: One possible source of error is the
torque limiter placed between the torques computed by the QP
solver and those applied to the robot joints. Figure 8 shows
the relation between how significantly the torques found by the
QP solver are limited and the error made by the constraint.

In this figure it can be seen that, in general, as the difference

Fig. 9: Energy exceeding the safety limit against the magnitude
of Jαφ when the torque found by the QP solver was not
affected by the actuator limits. The black dashed line is
||Jαφ|| = 0.03

between τ qp and τ increases the error by made the constraint
also increases. This indicates that one reason why the robot
cannot adhere to the impact energy constraint is that the
physical limits of the actuators do not allow for the necessary
torque to be applied to dissipate the approaching point’s
excess energy within a single time-step. One can also see
distinctly different trends in how the excess energy increases
with increased difference between optimal and applied torque.
These trends are determined by the current configuration and
velocity of the robot as well as its control task, causing the
energy of the approaching point to be dissipated more quickly
in some cases than others. It was decided not to investigate
these specific cases further in order to focus on identifying
other causes of error for the constraint.

In figure 8 one can also see a vertical line of points at zero,
where the torque found by the solver is not limited at all. This
confirms that the physical limit of the actuators is not the only
source of error present. Although this was already known,
investigating the cases where the optimal torque was not
physically limited can give further insight into the generally
most significant sources of error.

Effective mass of the robot: One apparent source of error
present in the simulation when investigating the cases where
the QP solver was not limited by actuator limits was found to
be the magnitude of Jαφ, defined in (12). Figure 9 shows the
excess energy against the magnitude of Jαφ while the optimal
torque was within actuator limits. In this figure one can see
that the constraint often makes errors when the magnitude of
this vector is nearly zero. This is caused by the effective mass
of the approaching point becoming extremely large in these
cases. The relationship between the effective mass and the
magnitude of Jαφ is shown in figure 10.

By looking at (10) the reason for this relationship between
the effective mass and Jαφ becomes quite clear. The effec-



Fig. 10: Effective mass of approaching point toward obstacle
against the magnitude of Jαφ when the torque found by the
QP solver was not affected by the actuator limits. The black
dashed line is ||Jαφ|| = 0.03

tive mass has a roughly inverse square relationship with the
components of Jαφ and so when the values in Jαφ are very
small, mαφ becomes very large. Beyond the effective mass
reaching extremely large values, figure 10 also shows that
the effective mass becomes very sensitive to changes in the
magnitude of Jαφ which is to be expected considering their
inverse square relation. The effective mass is then also very
sensitive to changes in q since it determines Jαφ. This leads
to the impact energy constraint being very sensitive to small
changes in joint position which can result in large errors being
made.

As shown in (12), Jαφ is composed of the unit vector
pointing from the approaching point to the obstacle and the
Jacobian relating the joint velocities to the Cartesian velocity
of the approaching point. Its magnitude can be small due to
the Cartesian velocity of the approaching point being nearly
perpendicular to the unit vector toward the obstacle. The
magnitude of Jαφ can also be small due to the Jacobian
having zero and near zero entries. This could be the case if the
approaching point is found to be near the base of the second
link for instance. These points do have a velocity but a very
small one and only affected by the first two joints.

Change in approaching point link number: Each time-step
the approaching point on the robot is found again. Between
two time-steps the approaching point could in principle switch
from being at the end-effector to being halfway along the
second link. This can have a large impact on the constraint
since the distance to the obstacle, its effective mass, and
velocity can all change significantly due to this. The effect
of such a switch is entirely dependent on the specific case.
For example, if the approaching point is moved to a point
farther away and moving slowly it appears to have a positive
effect. It is also possible that while limiting the energy of the
approaching point other parts of the robot must move quickly

Fig. 11: Excess energy of the approaching point against the
change in link the approaching point is on. A value of 1 means
that the approaching was on link i the previous time-step but
is now on link i+ 1. Only cases where the optimal torque is
not limited and ||Jαφ|| > 0.03 are shown.

to complete the task. If such a part then comes closer to the
obstacle and becomes the approaching point it suddenly has a
significant amount of energy that must be dissipated.

Figure 11 shows the change in the link number the ap-
proaching point is on against the excess energy of the ap-
proaching point. In this figure only cases where the optimal
torque is not limited and ||Jαφ|| > 0.03 are shown in order to
filter out the points related to these already identified sources
of error. In this figure it can be seen that the largest remaining
errors occur when the approaching point has switched to a
different link from where it was the previous time-step. At
the same time, it is also noted that the small errors made
by the constraint also occur in these cases. As was described
before a change in link number for the approaching point is
not necessarily detrimental. However, it increases the risk of
error as it increases the chance that the parameters used in the
constraint in one time-step are not even remotely similar to
those used in the next.

C. Quasi-static contact constraint

For the analysis of the quasi-static contact constraint sce-
nario 50 was removed from the data set. In this scenario
the obstacle was placed on top of the second joint causing
the first and second link to always be in contact with the
obstacle. With the contact points located at or very near the
second joint of the manipulator the geometric Jacobian for the
contact points is entirely populated with zero and near-zero
values (order of 10−5 and lower). The pseudoinverse of such
a geometric Jacobian then contains very large values (order of
104 and greater) which leads to the calculation of extremely
large contact forces ranging from being in the order of 105

to the order of 1017. Therefore, this scenario is considered an



Fig. 12: Difference between applied force and Fsafe against
the distance to the obstacle. The performance with and without
the constraints active is shown and the regions where the
obstacle is safe and unsafe are also indicated.

Without constraints With constraints
Number of scenarios
with contact 49 27

Total seconds of contact
across all scenarios 9.722 3.326

Positive error 25.6% 14.3%
Average positive
error 1.9× 103 14.2

Standard deviation
of positive error 1.8× 103 56.8

TABLE II: Table summarizing the effect of the contact force
constraint on the safety of an obstacle.

anomaly for the purposes of analyzing the performance of the
contact force constraint.

Overall effect: Figure 12 shows difference between the
force applied by the robot and Fsafe against the distance
to the obstacle for the remaining 49 scenario’s with and
without the constraint active. The figure clearly shows that
implementation of the constraints reduces the forces applied
by the robot effectively in general. However, even with the
constraints active the applied force does still exceed Fsafe at
times.

The overall effect of the constraint is summarized in table
II. In this table it can be seen that when the constraints
are active roughly half the scenarios no longer collide with
the obstacle. This is due to the manipulator finding other
paths to complete its task due to the constraint on the impact
energy of the approaching point. The average collision time
in a scenario with contact is also reduced from 0.2 s without
constraints to 0.12 s with constraints. Table II also shows that
the contact force exceeds the limit roughly half as often with
the constraints active. Furtermore, the constraints drastically
reduces the average force applied exceeding the limit as well
as the standard deviation. All in all, it can be said that the

Fig. 13: Excess force applied by the robot against the distance
to the obstacle. A red circle around a point indicates that that
point is a first contact point.

constraints have a positive effect on the safety of the obstacle
in terms of the force applied to it. However, the constraint
cannot be said to guarantee the safety of the obstacle so the
remainder of this section will identify the causes of the contact
force exceeding its limit despite the constraint.

First contact: Figure 13 shows the contact forces that
exceeded the safety limit with the constraints active with the
first contact points indicated with red circles around them. One
of these first contact points is very close to the obstacle. In the
scenario this occurred the obstacle was placed such that it was
in contact with the manipulator at the start of the simulation
time. With the exception of this point, the figure shows that
the most significant errors correspond to the first time contact
is detected. This is before the contact force constraint is put
into effect since that is only done after contact is detected.
One might expect that this could be caused by the physical
limits of the actuators or the impact energy exceeding its limit.
However, the optimal torque is not limited nor does the impact
energy exceed its limit for any of these points, first contact or
not.

The reason these occur is thought to be because, the
potential energy in the controller is not fully controlled. The
impact energy constraint controls the kinetic energy of the
approaching point and the potential energy of the controller
indirectly as it is converted into kinetic energy. When contact
is first detected the actuator torques are optimized to limit the
kinetic energy of the contact point including the converted
potential energy, but the remaining potential energy of the
controller is not constrained yet and is then free to exert a large
force for one time-step before this is limited by the contact
force constraint.

Changes in joint position: Just as with the impact energy
constraint, in order to formulate the contact force constraint the
assumption had to be made that the joint positions would not
change significantly from one time-step to the next. In order



Fig. 14: Excess force applied by the robot against the magni-
tude of the change in joint position.

to evaluate the impact of this assumption the contact forces
in excess of the safety limit are shown against the change
in joint position in figure 14. The change in joint position
induces error due to difference in the parameters used in the
constraint between the two time-steps. The first contact points
are therefore not shown here since constraint was not active
yet.

Figure 14 shows that as the change in joint position over
a time-step increases the error made by the constraint also
increases as one would expect. There are a few cases where
low error and high error occur for similar changes in joint
position. Both motion of the manipulator and the computation
of the parameters used in the constraint are highly non-linear
so a certain amount of inconsistencies are to be expected.
Furthermore it also possible that the same change in joint
position caused a similar increase in contact force but the
previous contact force was further below the limit. This
increase would then raise the force to just above the limit
instead of roughly 20 N above it.

VIII. CONCLUSION

In conclusion, this work has attempted to introduce human
safety concepts to control methods used by multi-tasking
robots such as humanoids. This was done by first investigating
the behavior of a human-robot collision and what the relevant
measures are for determining the severity of an injury. Then a
safety criteria was proposed for each phase of a collision be-
tween robot and human. The first criteria is based on limiting
the kinetic energy of the nearest approaching point on the robot
toward the obstacle. The second criteria is based on limiting
the applied crushing force by the robot to the obstacle after
contact has been detected. The criteria were then transformed
into QP-compatible linear inequality constraints for the robot
that constrain either the joint torques or accelerations.

The performance of the joint torque version of the con-
straints was tested in simulation. It was shown that the

constraints significantly improve the safety of an obstacle
placed in the manipulator’s path compared to having no safety
constraints. The constraints cannot guarantee safety, however,
as energies and forces exceeding their limits were still present.
For the energy-based constraint the errors are attributed to a
combination of joint position changes over a single time-step,
physical limits of the actuator, the effective robot mass nearing
a singularity, and a change in the link the approaching point
is on. For the contact force-based constraint the errors are
attributed to a combination of being the first instance of contact
and changes in the joint position over a single time-step.

Improvements to these constraints should focus on im-
proving their robustness. One way this can be done is by
considering the impact energy of each link rather than the
whole robot to prevent the approaching point position from
changing too much. By only considering points with a large
enough Jαφ magnitude singularities of the effective mass
could be avoided. The force applied at the first instance of
contact can be limited by activating this constraint a small
distance before contact is established rather than once contact
is established. Finally, a smaller time-step size would reduce
errors due to changes in joint positions over time.

Beyond these improvements other future work can be done
to develop better safety constraints for multi-tasking robots.
Future work that would contribute to the development of these
constraints is a deeper investigation into how the distance-
based energy limit function could be determined based on, for
instance, the mass and rotational inertia of the manipulator
links. It is also worth investigating whether a single carefully
chosen safety criteria can ever sufficiently guarantee harm
from all forms of injury.
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enhance safety in human-robot interactions,” in 2018 IEEE 23rd Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 1, 2018, pp. 693–698.

[4] A. M. Zanchettin, B. Lacevic, and P. Rocco, “A novel passivity-
based control law for safe human-robot coexistence,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2012,
pp. 2276–2281.

[5] C. Byner, B. Matthias, and H. Ding, “Dynamic speed and
separation monitoring for collaborative robot applications – concepts
and performance,” Robotics and Computer-Integrated Manufacturing,
vol. 58, pp. 239 – 252, 2019. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S073658451830259X

[6] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel,
R. Burgkart, A. Bicchi, and A. Albu-Schäffer, “A truly safely moving
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Y. Nakamura, O. Khatib, and G. Venture, Eds. Springer International
Publishing, 2017, pp. 809–818.

[20] U. S. Park, Y. Yamada, and Y. Nakabo, “Force control with safety
constraints via iterative feedback tuning,” in 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 3670–3675.

[21] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), 2016, pp. 842–849.

[22] S. Haddadin and E. Croft, Physical Human–Robot Interaction. Springer
International Publishing, 2016, pp. 1835–1874. [Online]. Available:
https://doi.org/10.1007/978-3-319-32552-1 69

[23] T. S. Tadele, T. de Vries, and S. Stramigioli, “The safety of domestic
robotics: A survey of various safety-related publications,” IEEE Robotics
Automation Magazine, vol. 21, no. 3, pp. 134–142, 2014.

[24] L. Thollon, Y. Godio, S. Bidal, and C. Brunet, “Evaluation of
a new security system to reduce thoracic injuries in case of
motorcycle accidents,” International Journal of Crashworthiness,
vol. 15, no. 2, pp. 191–199, 2010. [Online]. Available: https:
//doi.org/10.1080/13588260903102062

[25] M. Laffranchi, N. G. Tsagarakis, and D. G. Caldwell, “Safe human
robot interaction via energy regulation control,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp.
35–41.

[26] N. Gupta, J. Smith, B. Shrewsbury, and B. Børnich, “2d push recovery
and balancing of the ever3 - a humanoid robot with wheel-base, using

model predictive control and gain scheduling,” in 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids), 2019, pp.
365–372.

[27] J. Vorndamme, M. Schappler, and S. Haddadin, “Collision detection,
isolation and identification for humanoids,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 4754–4761.

[28] D. Popov and A. Klimchik, “Real-time external contact force estimation
and localization for collaborative robot,” in 2019 IEEE International
Conference on Mechatronics (ICM), vol. 1, 2019, pp. 646–651.

[29] Y. R. Stürz, L. M. Affolter, and R. S. Smith, “Parameter
identification of the kuka lbr iiwa robot including constraints on
physical feasibility,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6863
– 6868, 2017, 20th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896317317147

https://doi.org/10.1177/0278364916653815
https://doi.org/10.1177/0278364916653815
https://doi.org/10.1007/978-3-319-32552-1_69
https://doi.org/10.1080/13588260903102062
https://doi.org/10.1080/13588260903102062
http://www.sciencedirect.com/science/article/pii/S2405896317317147


APPENDIX A
A BRIEF INTRODUCTION TO USED SCREW THEORY

Throughout this work screw theory is used to model to the robot, the interaction between the robot and the obstacle, set
the safety criteria, and determine the torque due to the impedance controller. This appendix is intended to introduce the key
concepts of screw theory used in the main body of this work.

A. Poses

Consider two frames in space denoted with Ψi and Ψ0. The pose of a frame describes its position and orientation in space
with respect to another frame. The pose of Ψi with respect to the inertial frame Ψ0 is defined as:

H0
i =

[
R0
i p0

i

0>3 1

]
(54)

Where R0
i ∈ SO(3) is a rotation matrix describing the orientation of Ψi with respect to Ψ0, p0

i ∈ R3 is a vector describing
the location of Ψi with respect to Ψ0, and 0>3 is a 3-element row vector of zeros. This additional row of three zero’s and a
one allows for pose matrices to be easily used to change the reference frame in which a point a in space is expressed. If the
position of a point p is known with respect to the frame Ψi this is denoted with pi. The position of p with respect to the
frame Ψ0, p0, can then be found as:

P0 = H0
i P

i (55)

Where P0 and Pi ∈ R4 are known as the homogeneous coordinates of p0 and pi respectively. They are defined as:

P0 ≡
[
p0

1

]
, Pi ≡

[
pi

1

]
(56)

Dual to the pose matrix H0
i is the pose matrix Hi

0 which expresses the location and orientation of Ψ0 with respect to Ψi:

Hi
0 = (H0

i )
−1 =

[
(R0

i )
> −(R0

i )
>p0

i

0>3 1

]
=

[
Ri

0 pi0
0>3 1

]
(57)

Note that the product of a pose matrix and its inverse yields the identity matrix. Now consider that there is a third frame in
the space, Ψj , and that the pose of Ψj with respect to Ψi, Hi

j , is known. The pose of Ψj with respect to Ψ0 can be obtained
through:

H0
j = H0

i Hi
j (58)

B. Twists

A twist is the generalization of velocity for a rigid body and describes both the rotational and translational motion of a
body. Consider a frame Ψi attached to a moving rigid body such that a point a on the body is fixed with respect to Ψi. Now
consider another frame Ψj that is not attached to the body. The velocity of the point a expressed in Ψj can then be written as:

Ṗj = Ḣj
i P

i

Ṗj = Ḣj
i Hi

j P
j

Ṗj =

[
Ṙj
i ṗji

0>3 0

] [
Ri
j pij

0>3 1

]
Pj

Ṗj =

[
Ṙj
i Ri

j Ṙj
i p

i
j + ṗji

0>3 0

]
Pj

Ṗj =

[
Ṙj
i Ri

j ṗji − Ṙj
i Ri

j p
j
i

0>3 0

]
Pj (59)

Since Rj
i belongs to the group SO(3) it is known that Ṙj

iR
i
j is a skew-symmetric matrix that can be written in the form:

Ṙj
i Ri

j =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (60)

The skew-matrix contains three unique values meaning it can also be constructed from the elements of a vector. The following
notation is therefore introduced:

x =

x1x2
x3

 ∈ R3 ⇒ x̃ ≡

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (61)



In the case of the screw-symmetric matrix Ṙj
iR

i
j the equivalent vector that can construct this matrix represents the generalized

angular velocity of Ψi with respect to Ψj expressed in Ψj . It is written as:

ωj,ji ∈ R3 ⇒ ω̃j,ji = Ṙj
i Ri

j (62)

Using this, the velocity of the point p can be written as:

Ṗj =

[
ω̃j,ji ṗji − ω̃

j,j
i pji

0>3 0

]
Pj

Ṗj =

[
ω̃j,ji ṗji + pji × ω

j,j
i

0>3 0

]
Pj

Ṗj =

[
ω̃j,ji vj,ji
0>3 0

]
Pj (63)

Where vj,ji represents the translational velocity of Ψi with respect to Ψj expressed in Ψj . This matrix contains 6 unique values
and so can also be represented through:

Tj,j
i =

[
ωj,ji
vj,ji

]
∈ R6 ⇒ T̃j,j

i ≡
[
ω̃j,ji vj,ji
0>3 0

]
(64)

Tj,j
i is called the twist of Ψi with respect to Ψj expressed in Ψj . Another twist can also be found by rewriting the expression

for Ṗj in a different manner, namely:
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j Ḣj
i P

i
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Ti,j
i is called the twist of Ψi with respect to Ψj expressed in Ψi. Through these derivations it can be seen that a twist describes

both the rotations and translations between two frames over time. If these frames are each attached to a rigid body it turns out
that the twist between the two frames will be the same regardless of where on the rigid bodies the frames are attached. Due
to this twists can also describe the rotation and translation of an entire rigid body relative to another rigid body expressed in
a reference frame.

C. Wrenches

It is known that the power of a purely translating body is:

Power = Fv (66)

Where F ∈ R3 is the applied force as a row vector (co-vector), and v ∈ R3 is its velocity as a column vector. Since the twist
is the generalization of velocity there must an analogous vector for the generalization of its forces. This generalization of force
is known as a wrench and it is defined as:

Wi =
[
mi Fi

]
(67)

Where mi represents the torques applied to a body, Fi represents the linear forces applied to the body, and i indicates the
frame the wrench is expressed in. The total power of a rigid body due to translation and rotation can then be computed if the



body’s twist and wrench are expressed in the same frame. In the case of a body a, its power expressed in the inertial frame
Ψ0 is found as:

Power = W0
aT

0,0
a (68)

D. Adjoints

Adjoints are matrices that facilitate the change of reference frame a twist or wrench is expressed in. As one can imagine,
changing the reference frame will be dependent on the pose of the of the current reference frame relative to the new reference
frame. Consider the twist of body a relative to a body b expressed in the frame Ψi: Ti,b

a . In order to express the twist between
these two bodies in another reference frame Ψj we write:

Tj,b
a = AdHji

Ti,b
a (69)

Where AdHji
∈ R6×6 is the Adjoint of Hj

i and it defined as:

AdHji
≡
[

Rj
i 0

p̃ji Rj
i Rj

i

]
(70)

Changing the reference frame in which a wrench is expressed is done through:

(Wi)> = Ad>
Hji

(Wj)> (71)



APPENDIX B
USED CODE

In this appendix the MATLAB code used to generate the results is provided. First the two primary files are presented. In the
first the 50 scenario conditions are found, and the second simulates each of each scenarios while applying the safety constraints.
Afterwards the supporting functions created are presented and finally the urdf file with the manipulator description is shown.
Any used functions not listed in this appendix are functions native to MATLAB 2020a or its Robotics Systems Toolbox.

A. Primary scripts

1) FindScenarios.m: The MATLAB script used to generate the conditions of the 50 scenarios is as follows:

clear all
close all
clc
addpath('Kinematics');
addpath('ScrewTheory');
addpath('SafetyFunctions');
addpath('urdf');

tStart = tic;
% Load robot model
robot = importrobot('myrobot.urdf');
robot.DataFormat = 'column';
robot.Gravity = [0;0;-9.81];
N = robot.NumBodies-1;

% Set homogeneous joint damping
% Friction is dependent on joint axis
BvisX = 0.37328; BvisZ = 0.24150; % Viscous friction coefficients
Bvis = diag([BvisZ; BvisX; BvisZ; BvisX; BvisZ; BvisX]);
BcoulX = 0.18130; BcoulZ = 0.31909; % Coulomb friction coefficients
Bcoul = diag([BcoulZ; BcoulX; BcoulZ; BcoulX; BcoulZ; BcoulX]);
% Define friction torques as function of joint velocity
B = @(dq) Bvis*dq + Bcoul*sign(dq);

% Set total simulation time and stepsize
T = 5;
dt = 0.002;
ITER = T/dt;

% Set Control parameters
Kp = 175*eye(3);
Kd = 7.5*eye(N);
TtoGoal = 2.5; % Time in which end of spring goes from pEE0 to goalPos
maxTau = 320; % Maximum allowed torque, based on KUKA iiwa 14
e = 0.01;

ro = 0.01; % Radius of collision sphere.
%% Find scenarios
% In each iteration of the while loop, we generate a random end-effector
% goal and a randomized starting configuration. We then simulate the motion
% and determine if the manipulator successfully reached its goal by looking
% at the distance between the end-effector and the goal of the last time
% discrete times. If successful a obstacle is placed at a random point
% along a random link at a random time. The first link is not included
% since it only rotates in place.



numContactPaths = 0;
maxContactPaths = 50; % Total number of paths to find
% We store the found initial configuration and goal position pair and the
% position of the obstacle in space. We also store some other data related
% to the obstacle placement in case insight into this is desired during
% further analysis.
q0Contact = zeros(6,maxContactPaths); % Initial config
qContact = zeros(6,maxContactPaths); % Config at contact
nContact = zeros(1,maxContactPaths); % Link of contact
sContact = zeros(1,maxContactPaths); % Position on link of contact
goalPosContact = zeros(3,maxContactPaths); % Goal Position
oContact = zeros(3,maxContactPaths); % Obstacle position
tContact = zeros(1,maxContactPaths); % Time of contact

while numContactPaths < maxContactPaths
disp(['Starting new scenario. Number of paths found so far: ', ...

num2str(numContactPaths)]);
% Make arrays to store q, dq, ddq, end-effector position and control
% error
q = zeros(N, ITER+1);
dq = zeros(N, ITER+1);
ddq = zeros(N, ITER+1);

pEE = zeros(3, ITER+1);
% These are for determining if the target is successfully reached.
d_error = zeros(1,ITER+1); % EE distance to target
vEE_goal = zeros(1,ITER+1); % EE velocity to target

% Set motion target
% Bounds for goal position so that it is reachable
gp_maxCoXY = 2.5;
gp_minCoXY = -2.5;
gp_maxCoZ = 2.5;
gp_minCoZ = 0;
gp_rmin = 1.5;
gp_rmax = 2.5;

goalPos = zeros(3,1);
gp_ok = false;
while ˜gp_ok

goalPos(1:2) = (gp_maxCoXY - gp_minCoXY).*rand(2,1) + gp_minCoXY;
goalPos(3) = (gp_maxCoZ - gp_minCoZ).*rand(1,1) + gp_minCoZ;

% Avoid goals close to base in xy-plane to limit chance for
% singular configurations.
if (norm(goalPos(1:2)) > 1.0)

gp_r = norm(goalPos);
if (gp_r > gp_rmin && gp_r < gp_rmax)

gp_ok = true;
end

end
end

% Determine initial configuration
d0 = 0;
d0_min = 2;



q0_max = pi;
q0_min = -pi;
while d0 < d0_min

q0 = (q0_max-q0_min).*rand(N,1) + q0_min;
HEE0 = getTransform(robot, q0, robot.BodyNames{end});
pEE0 = HEE0(1:3,4);
if norm(pEE0(1:2)) > 1.0 % Avoid initial EE positions close to base

d0 = norm(goalPos - pEE0);
end

end
q(:,1) = q0;

%% Simulate motion
for i = 1:1:ITER+1

M = massMatrix(robot,q(:,i));
invM = M\eye(N);
G = gravityTorque(robot,q(:,i));
Cdq = velocityProduct(robot,q(:,i),dq(:,i));
beta = Cdq + G + B(dq(:,i));

% Get kinematics of robot at current time
Hi = getJointPoses(robot, q(:,i));
pn = getJointPositions(Hi);
Jn = getJointJacobians(robot,q(:,i));

pEE(:,i) = pn(:,end); % End-effector position
d_error(i) = norm(goalPos-pEE(:,i)); % Distance to goal
uEE_goal = (goalPos-pEE(:,i))/d_error(i);
vEE_goal(i) = uEE_goal.'*Jn{7}(4:6,:)*dq(:,i);

% Impedance control to goalPos
t = (i-1)*dt;
% Set current position of spring end-point
if t < TtoGoal

pf = pEE0 + (t/TtoGoal)*(goalPos - pEE0);
else

pf = goalPos;
end
Hf = Hi{7}; % To give spring end the same R as the EE
Hf(1:3,4) = pf;

HEE_f = inverseH(Hf)*Hi{7}; % EE pose relative to goal
REE_f = HEE_f(1:3,1:3);
pEE_f = HEE_f(1:3,4);

mtilde = -as(0.5*Kp*REE_f.'*tilde(pEE_f)*tilde(pEE_f)*REE_f);
ftilde = -REE_f.'*as(0.5*Kp*tilde(pEE_f))*REE_f ...

- as(0.5*Kp*REE_f.'*tilde(pEE_f)*REE_f);
WEE = [mtilde(3,2); mtilde(1,3); mtilde(2,1); ...

ftilde(3,2); ftilde(1,3); ftilde(2,1)];
W0 = Adjoint(inverseH(Hi{7})).'*WEE;

tauVS = Jn{7}.'*W0; % Torque due to virtual spring
tauVD = -Kd*dq(:,i); % Additional joint damping
tauImp = tauVS + tauVD;
tauDes = tauImp + G; % Desired actuator torque



% Cap desired torques to known limits
tauDes = sign(tauDes).*min(maxTau,abs(tauDes));

% Do QP optimization
Q = 2*(1+e)*eye(N);
f = -2*tauDes;

A = [];
b = [];

options = optimset('Display', 'off'); % Suppress solver messages
% Determine optimal torque input using QP solver
tauOpt = quadprog(Q,f,A,b,[],[],[],[],[],options);
% Cap tauOpt according to actuator torque limit
tauOpt = sign(tauOpt).*min(maxTau,abs(tauOpt));

% Determine joint acceleration as sum of homogeneous dynamics
% and control torques
ddq(:,i) = invM*(tauOpt - beta);
% Determine joint position and velocity after step by assuming
% ddq is constant throughout step.
dq_next = dq(:,i) + dt*ddq(:,i);
q_next = q(:,i) + dt*dq(:,i) + (dtˆ2/2)*ddq(:,i);

if i ˜= ITER+1
q(:,i+1) = q_next;
dq(:,i+1) = dq_next;

end
end

% Last 10 instances are within 0.01m of the target with low velocity it
% is considered a successfull run.
if (sum(d_error(end-9:end)<=0.01) == 10 && ...

sum(vEE_goal(end-9:end)<=0.01) == 10)
% Choose random time interval
i_c = randi(ITER+1);
% Choose random link that isnt 1 since that can only rotate in
% place
n_c = randi([2,6]);
% Choose random point along link to place obstacle
s_c = rand;
% Get joint positions at time i_c
pn_c = getJointPositions(getJointPoses(robot, q(:,i_c)));
o = pn_c(:,n_c) + s_c*(pn_c(:,n_c+1) - pn_c(:,n_c));

% Just be sure, check if collision occurs
contact = checkForCollisions(pn_c, o, ro);
if contact

numContactPaths = numContactPaths + 1;
q0Contact(:,numContactPaths) = q0; % Initial config
qContact(:,numContactPaths) = q(:,i_c); % Initial config
nContact(numContactPaths) = n_c; % link of contact
sContact(numContactPaths) = s_c; % Position on link of contact
goalPosContact(:,numContactPaths) = goalPos; % Goal Position
oContact(:,numContactPaths) = o; % Obstacle position
tContact(numContactPaths) = (i_c-1)*dt; % Time of contact



disp('Valid path found!!!');
end

end
end
% Save data for use in RunScenarionsWithSafety.m
save('ContactScenarios.mat', 'numContactPaths', 'q0Contact', 'qContact', ...

'nContact', 'sContact', 'goalPosContact', 'oContact', 'tContact', ...
'Kp', 'Kd', 'B');

% Display total simulation time in minutes in the command window after
% completion.
totaltime = toc(tStart);
total_minutes = totaltime/60

2) RunScenariosWithSafety.m: The MATLAB script used to run all found scenarios while considering safety of the obstacle
is:

clear all
close all
clc
addpath('ScrewTheory');
addpath('SafetyFunctions');
addpath('Kinematics');
addpath('urdf');
% Load scenario conditions
load ContactScenarios.mat;

tStart = tic;
% Load robot model
robot = importrobot('myrobot.urdf');
robot.DataFormat = 'column';
robot.Gravity = [0;0;-9.81];
N = robot.NumBodies-1;

% Set homogeneous joint damping
% Friction is dependent on joint axis
BvisX = 0.37328; BvisZ = 0.24150; % Viscous friction coefficients
Bvis = diag([BvisZ; BvisX; BvisZ; BvisX; BvisZ; BvisX]);
BcoulX = 0.18130; BcoulZ = 0.31909; % Coulomb friction coefficients
Bcoul = diag([BcoulZ; BcoulX; BcoulZ; BcoulX; BcoulZ; BcoulX]);
% Define friction torques as function of joint velocity
B = @(dq) Bvis*dq + Bcoul*sign(dq);

% Set total simulation time and stepsize
T = 5;
dt = 0.002;
ITER = T/dt;

% Set Control parameters
Kp = 175*eye(3);
Kd = 7.5*eye(N);
TtoGoal = 2.5; % Time in which end of spring goes from pEE0 to goalPos
maxTau = 320; % Maximum allowed torque, based on KUKA iiwa 14
e = 0.01;

% Distance based energy limit
Edmin = 0.1;



Edmax = 0.5;
Esafe = 3;
Emax = 10;
kElim = (Emax - Esafe)/(Edmax - Edmin);
fElim = @(d) (d <= Edmin)*Esafe + (d > Edmin)*(Esafe + kElim*(d-Edmin));

% Contact force limit
Fsafe = 150;

% Create cells to store data from each run for later analysis. Since
% simulating all 50 scenarios takes a long time, a lot of data is stored in
% case insight into them is desired later.

% Load mat to store data in.
load ResultsWithSafety;

nFailed = 0; % Track number of failed scenarios
for run = 41:1:50

disp(['Starting run ', num2str(run)]);
% Configuration variables
q = zeros(N, ITER+1);
dq = zeros(N, ITER+1);
ddq = zeros(N, ITER+1);
tauAct = zeros(N,ITER+1); % Applied torque
tauOpt = zeros(N,ITER+1); % Torque found by solver
invM = cell(1,ITER+1);
pEE = zeros(3, ITER+1);

q(:,1) = q0Contact(:,run);
% Save initial end-effector position
HEE0 = getTransform(robot, q(:,1), robot.BodyNames{end});
pEE0 = HEE0(1:3,4);

% Task variables
goalPos = goalPosContact(:,run);
derror = zeros(1,ITER+1);

% Eimp safety tracking variables
Eimp = -1*ones(1,ITER+1);
Elim = -1*ones(1,ITER+1);
pa = zeros(3,ITER+1);
dao = -1*ones(1,ITER+1);
vao = -1*ones(1,ITER+1);
Jao = cell(1,ITER+1);
na = zeros(1,ITER+1);
sa = -1*ones(1,ITER+1);

% Contact dynamics variables
o = oContact(:,run);
ro = 0.01;
kc = 30e3;
CI = cell(N,1); % Contact Info
tauc = zeros(N,ITER+1);

% Applied force tracking variables
Fc = zeros(N,ITER+1);



Fh = zeros(N,ITER+1);
pc = cell(N,ITER+1);
doc = zeros(N,ITER+1);
vco = zeros(N,ITER+1);
uoc = cell(N,ITER+1);
Jc = cell(N,ITER+1);
invJcT = cell(N,ITER+1);

% try
for i = 1:1:ITER+1

M = massMatrix(robot,q(:,i));
invM{i} = M\eye(N);
G = gravityTorque(robot,q(:,i));
Cdq = velocityProduct(robot,q(:,i),dq(:,i));
beta = Cdq + G + B(dq(:,i));

% Get kinematics of robot at current time
Hi = getJointPoses(robot, q(:,i));
pn = getJointPositions(Hi);
Jn = getJointJacobians(robot,q(:,i));

pEE(:,i) = pn(:,end); % End-effector position
derror(i) = norm(goalPos - pEE(:,i));

% Search for collision points, determine force applied by robot
% on human, determine force applied by human on robot
CI = findCollisionInfo(pn, Jn, o, ro);
if ˜isempty(CI)

nCI = length(CI);
for c = 1:1:nCI

% Store contact data
pc{CI(c).nl,i} = CI(c).pc;
uoc{CI(c).nl,i} = CI(c).uoc;
doc(CI(c).nl,i) = CI(c).doc;
% We do -CI(c).uoc since uoc points from the obstacle
% to the robot.
vco(CI(c).nl,i) = -CI(c).uoc.'*CI(c).Jc*dq(:,i);
Jc{CI(c).nl,i} = CI(c).Jc;
invJcT{CI(c).nl,i} = CI(c).invJcT;
% Force applied at this time is due to torque computed
% and applied over previous time-step.
if i ˜= 1

Fc(CI(c).nl,i) = -CI(c).uoc.'*CI(c).invJcT*tauAct(:,i-1);
else

% At t = 0 no applied torque yet
Fc(CI(c).nl,i) = 0;

end

F_HS = kc*(ro - CI(c).doc)*CI(c).uoc;

if (vco(CI(c).nl,i) > 0)
F_HD = 0.1*vco(CI(c).nl,i)*CI(c).uoc;

else
F_HD = [0;0;0];

end
Fh(CI(c).nl,i) = norm(F_HS + F_HD);



% Add contact torque to total
tauc(:,i) = tauc(:,i) + CI(c).Jc.'*(F_HS+F_HD);

end
end
% Determine impact energy to obstacle
DI = findDangerInfo(pn, Jn, dq(:,i), invM{i}, o);
if ˜isempty(DI)

Eimp(i) = DI(1).E;
Elim(i) = fElim(DI(1).d);
pa(:,i) = DI(1).p;
dao(i) = DI(1).d;
vao(i) = DI(1).vu;
Jao{i} = DI(1).J;
na(i) = DI(1).nl;
sa(i) = DI(1).s;

end

% Impedance control to goalPos
t = (i-1)*dt;
if t < TtoGoal

pf = pEE0 + (t/TtoGoal)*(goalPos - pEE0);
else

pf = goalPos;
end
Hf = Hi{7}; % To give spring end the same R as the EE
Hf(1:3,4) = pf;

HEE_f = inverseH(Hf)*Hi{7}; % EE pose relative to goal
REE_f = HEE_f(1:3,1:3);
pEE_f = HEE_f(1:3,4);

mtilde = -as(0.5*Kp*REE_f.'*tilde(pEE_f)*tilde(pEE_f)*REE_f);
ftilde = -REE_f.'*as(0.5*Kp*tilde(pEE_f))*REE_f ...

- as(0.5*Kp*REE_f.'*tilde(pEE_f)*REE_f);
WEE = [mtilde(3,2); mtilde(1,3); mtilde(2,1); ...

ftilde(3,2); ftilde(1,3); ftilde(2,1)];
W0 = Adjoint(inverseH(Hi{7})).'*WEE;

tauVS = Jn{7}.'*W0; % Torque due to virtual spring
tauVD = -Kd*dq(:,i); % Additional joint damping
tauImp = tauVS + tauVD; % Torques from impedance control
tauDes = tauImp + G; % Desired actuator torque
% Cap desired torques to known limits
tauDes = sign(tauDes).*min(maxTau,abs(tauDes));

% Do QP optimization
Q = 2*(1+e)*eye(N);
f = -2*tauDes;

A = [];
b = [];

% Set safety constraints: Impact energy and contact force
% limits
if ˜isempty(DI)

AE = dt*DI(1).J*invM{i};



bE = sqrt(2*Elim(i)/DI(1).m) - DI(1).J*(dq(:,i) ...
+ dt*invM{i}*(tauc(:,i) - beta));

A = [A; AE];
b = [b; bE];

end

if ˜isempty(CI)
nCI = length(CI);
for c = 1:1:nCI

AF = -CI(c).uoc.'*CI(c).invJcT;
bF = Fsafe;

A = [A; AF];
b = [b; bF];

end
end

options = optimset('Display', 'off'); % Suppress solver messages

% Determine optimal torque input using QP solver
tauOpt(:,i) = quadprog(Q,f,A,b,[],[],[],[],[],options);
% Cap tauOpt according to actuator torque limit
tauAct(:,i) = sign(tauOpt(:,i)).*min(maxTau,abs(tauOpt(:,i)));

% Determine joint acceleration as sum of homogeneous dynamics, control
% torques, and contact torques.
ddq(:,i) = invM{i}*(tauAct(:,i) + tauc(:,i) - beta);
% Determine joint position and velocity after step by assuming
% ddq is constant throughout step.
dq_next = dq(:,i) + dt*ddq(:,i);
q_next = q(:,i) + dt*dq(:,i) + (dtˆ2/2)*ddq(:,i);

if i ˜= ITER+1
q(:,i+1) = q_next;
dq(:,i+1) = dq_next;

end

% prog = i/(ITER)*100;
% if floor(prog) == prog
% disp(['Simulation progress: ', num2str(i/ITER*100), '%']);
% end

end

% Store all data from run
qAllRuns{run} = q;
dqAllRuns{run} = dq;
ddqAllRuns{run} = ddq;
tauActAllRuns{run} = tauAct;
tauOptAllRuns{run} = tauOpt;
taucAllRuns{run} = tauc;
invMAllRuns{run} = invM;
derrorAllRuns{run} = derror;

ElimAllRuns{run} = Elim;
EimpAllRuns{run} = Eimp;



paAllRuns{run} = pa;
daoAllRuns{run} = dao;
vaoAllRuns{run} = vao;
JaoAllRuns{run} = Jao;
naAllRuns{run} = na;
saAllRuns{run} = sa;

FcAllRuns{run} = Fc;
FhAllRuns{run} = Fh;
pcAllRuns{run} = pc;
docAllRuns{run} = doc;
vcoAllRuns{run} = vco;
uocAllRuns{run} = uoc;
JcAllRuns{run} = Jc;
invJcTAllRuns{run} = invJcT;

% catch e
% disp(['An error occured with identifier: ',e.identifier]);
% disp(['The error message is: ',e.message]);
% nFailed = nFailed+1;
% end
end

save('ResultsWithSafety.mat', 'qAllRuns', 'dqAllRuns', 'ddqAllRuns', ...
'tauActAllRuns', 'tauOptAllRuns', 'taucAllRuns', 'invMAllRuns', ...
'derrorAllRuns', 'ElimAllRuns', 'EimpAllRuns', 'paAllRuns', ...
'daoAllRuns', 'vaoAllRuns', 'JaoAllRuns', 'naAllRuns', 'saAllRuns', ...
'FcAllRuns', 'FhAllRuns', 'pcAllRuns', 'docAllRuns', 'vcoAllRuns', ...
'uocAllRuns', 'JcAllRuns', 'invJcTAllRuns');

simtime = toc(tStart);
sim_hours = simtime/3600;
disp(['Completed in ', num2str(sim_hours), ' hours. ', num2str(nFailed), ...

' scenarios failed.']);

B. Safety functions

The functions within the SafetyFunctions path are:
1) findDangerInfo.m:

function allDangerInfo = findDangerInfo(pn, Jn, dq, invM, o)
% This function determines which point on the robot, if any, is closest to
% an obstacle with a positive velocity toward it. It then outputs
% information related to this point.
%%% Inputs:
% pn: Positions of all frames on the robot, which are the link starting
% points and the end-effector. Each column is a set of (x,y,z) coordinates.
% Jn: Geometric Jacobians of each of these frames. dq: Joint velocity
% vector.
% invM: Inverse joint-space mass matrix.
% o: Position of the obstacles in the world frame. Each column is a set of
% (x,y,z) coordinates.
%%% Output:
% AllDangerInfo: array of Danger Information structs, one for each
% obstacle, containing information about its corresponding point alpha on
% the robot.

G = size(o,2); % Number of obstacles



N = length(dq); % Number of links

TJoints = zeros(6,N+1); % Twists of the frames at pn
vJoints = zeros(3,N+1); % Velocities of the frames at pn
for i = 1:1:N+1

TJoints(:,i) = Jn{i}*dq;
vJoints(:,i) = TJoints(4:6,i);

end

vu_N = zeros(G,N+1); % Components of v_N in direction of obstacle
smin_N = zeros(1,N); % Position along each link closest to obstacle that is moving

toward it
dmin_N = zeros(1,N); % Smallest distance between obstacle and link part moving toward

it.

allDangerInfo = [];

for m = 1:1:G
% Initialize
vu_N(m,1) = velToObst(pn(:,1),vJoints(:,1),o(:,m));
for n = 1:1:N

% Find velocity of endpoint on other side
vu_N(m,n+1) = velToObst(pn(:,n+1),vJoints(:,n+1),o(:,m));

if (vu_N(m,n) > 0 && vu_N(m,n+1) > 0)
% Entire link poses danger since both ends have a positive
% velocity to the obstacle. We then find the point along the
% link that is closest to the obstacle.
[smin_n, dmin_n] = minDistToObst(pn(:,n), pn(:,n+1), o(:,m), [0 1]);
smin_N(n) = smin_n;
dmin_N(n) = dmin_n;

elseif (vu_N(m,n) <= 0 && vu_N(m,n+1) > 0)
% Part of link poses danger. The start of the link has negative
% velocity to the obstacle while the end of the link has a
% positive velocity. So we first find where on the link this
% velocity switches to positive. Then we find the closest point
% to the obstacle of this part of the link.
sSwitch = vuSwitchPoint(pn(:,n), vJoints(:,n), pn(:,n+1), vJoints(:,n+1),

o(:,m));
[smin_n, dmin_n] = minDistToObst(pn(:,n), pn(:,n+1), o(:,m), [sSwitch 1])

;
smin_N(n) = smin_n;
dmin_N(n) = dmin_n;

elseif (vu_N(m,n) > 0 && vu_N(m,n+1) <= 0)
% Part of link poses danger. The start of the link has positive
% velocity to the obstacle while the end of the link has a
% negative velocity. So we first find where on the link this
% velocity switches to positive. Then we find the closest point
% to the obstacle of this part of the link.
sSwitch = vuSwitchPoint(pn(:,n), vJoints(:,n), pn(:,n+1), vJoints(:,n+1),

o(:,m));
[smin_n, dmin_n] = minDistToObst(pn(:,n), pn(:,n+1), o(:,m), [0 sSwitch])

;
smin_N(n) = smin_n;
dmin_N(n) = dmin_n;

elseif (vu_N(m,n) <= 0 && vu_N(m,n+1) <= 0)



% Link poses no danger. Both ends have a negative velocity
% toward the obstacle so its impossible for any point between
% these to have a positive velocity. We mark this links
% distance and position with Inf.
smin_N(n) = Inf;
dmin_N(n) = Inf;

end
end
% Find the link with the closest distance to the obstacle.
[dmin, idx] = min(dmin_N);
if (dmin == Inf)

% Entire robot is moving away from obstacle so skip.
continue;

end
% Find position and velocity of the alpha for this obstacle.
smin = smin_N(idx);
ps = pn(:,idx) + smin*(pn(:,idx+1) - pn(:,idx));
vs = vJoints(:,idx) + smin*(vJoints(:,idx+1) - vJoints(:,idx));
% Find unit vector pointing from alpha to obstacle.
u = (o(:,m) - ps)/dmin;
% Find velocity of alpha toward obstacle.
vu = u.'*vs;

% Store information related to alpha for use in other code.
DangerInfo.obst = o(:,m); % Corresponding obstacle position
DangerInfo.no = m; % Obstacle number
DangerInfo.d = dmin; % Distance to obstacle
DangerInfo.p = ps; % position of alpha in world frame
DangerInfo.nl = idx; % Link number that alpha is on
DangerInfo.s = smin_N(idx); % Alpha's position along link
DangerInfo.u = u; % unit vector toward obstacle from alpha.
DangerInfo.vu = vu; % velocity of alpha toward obstacle

% Determine jacobian of alpha as weighted combination of jacobians for
% the ends of the link.
Js = Jn{idx}(4:6,:) + smin*(Jn{idx+1}(4:6,:) - Jn{idx}(4:6,:));
% Determine effective mass of robot toward obstacle from alpha
ms = 1/(u.'*Js*invM*Js.'*u);
% Determine kinetic energy toward obstacle from alpha
E = 0.5*ms*vuˆ2;

% Store this information as well
DangerInfo.E = E;
DangerInfo.Js = Js;
DangerInfo.J = u.'*Js;
DangerInfo.m = ms;

allDangerInfo = [allDangerInfo, DangerInfo];
end
end

2) findCollisionInfo.m:

function allCI = findCollisionInfo(pn, Jn, o, ro)
% This function determines which links if any are in contact with the
% obstacle and outputs the information necessary to apply forces to the
% robot at this point and determine contact force constraints.



%%% Inputs:
% pn: Positions of all frames on the robot, which are the link starting
% points and the end-effector. Each column is a set of (x,y,z) coordinates.
% Jn: Geometric Jacobians of each of these frames.
% o: Position of the obstacles in the world frame. Each column is a set of
% (x,y,z) coordinates.
% ro: Contact radius of obstacle.
%%% Output:
% allCI: array of CI (contact information) structs for the links that are
% determined to be in contact with the obstacle.

N = 6; % Number of links
G = size(o,2); % Number of obstacles
allCI = [];

for m = 1:1:G
for i = 1:1:N

% Find minimal distance of link to obstacle and location along
% link.
[smin, dmin] = minDistToObst(pn(:,i),pn(:,i+1),o(:,m), [0 1]);
if dmin < ro

CI.nl = i; % Link number
CI.s = smin; % placement along link
CI.o = o(:,m); % obstacle it is in contact with
CI.pc = pn(:,i) + smin*(pn(:,i+1) - pn(:,i)); % position of contact point

in world frame
CI.poc = CI.pc - CI.o; % Vector from obstacle to contact point.
CI.doc = dmin; % distance between obstacle and contact point
CI.uoc = CI.poc/CI.doc; % unit vector from phi to c

% Determine jacobian of contact point as weighted combination
% of jacobians for the ends of the link.
CI.Jc = Jn{i}(4:6,:) + smin*(Jn{i+1}(4:6,:) - Jn{i}(4:6,:));
CI.invJcT = pinv(CI.Jc.'); % pseudoinverse of transposed jacobian

allCI = [allCI CI];
end

end
end
end

3) velToObst.m:

function vToO = velToObst(r,v,o)
% This function determines the component of a point velocity in the
% direction of another point.
%%% Input:
% r: The position of the moving point.
% v: The linear velocity of r
% o: The position of the point we want to know the velocity towards.
%%% Output:
% vToO: The velocity of the point r in the direction of the point o.

d = norm(o - r);
u = (o - r)/d;

vToO = u.' * v;



end

4) minDistToObst.m:

function [smin, dmin] = minDistToObst(r1, r2, o, s_range)
% This function calculates the minimum distance between a point and a link
% defined by its two ends and a parametrization parameter. By supplying the
% range of the parametrization parameter it is also possible to only
% consider a section of the link.
%%% Input:
% r1: The link's starting point position vector.
% r2: The link's ending point position vector.
% o: The position of the point to which the minimal distance is found.
% s_range: A 2 element array indicating the desired range of the
% parametrization parameter, s. s can be anywhere between 0 and 1. If s = 0
% then the starting point on the link is retrieved from the
% parametrization. If s = 1 then the ending point is returned. Any value in
% between will return the point that is that fraction away from the
% starting point and toward the ending point.
%%% Output:
% smin: The value of s yielding the smallest distance toward o.
% dmin: The smallest distance to o from the specificied section of the
% link.

rs = @(s) r1 + s*(r2 - r1);
d = @(s) norm(o - rs(s));

[smin, dmin] = fminbnd(d, s_range(1), s_range(2));
end

5) vuSwitchPoint.m:

function sSwitch = vuSwitchPoint(r1, v1, r2, v2, o)
% For a link where one end has a positive velocity toward a point and the
% other end a negative velocity, this function determines where along the
% link the velocity toward the point is zero.
%%% Inputs:
% r1: The position of the link's starting point.
% v1: The velocity of the link's starting point.
% r2: The position of the link's ending point.
% v2: The velocity of the link's ending point.
% o: The position of the point toward which we determine the velocity.
%%% Output:
% sSwitch: The value of the parametrization parameter s along the link for
% which the velocity toward the point o is zero.

syms s
assume(s >=0 & s <= 1);
assume(s, 'real');

rs = r1 + s*(r2-r1);
u = (o - rs)/norm(o - rs);
vs = v1 + s*(v2-v1);
vsu = (u.' * vs);

eqn = vsu == 0;



sSwitch = double(vpasolve(eqn,s,[0 1]));
end

6) checkForCollisions.m:

function collision = checkForCollisions(pn, o, ro)
% This function determines if there is contact and is therefore a
% simplified version of findCollisionInfo.m
%%% Inputs:
% pn: Positions of all frames on the robot, which are the link starting
% points and the end-effector.
% o: Position of the obstacle in the world frame.
% ro: Contact radius of obstacle.
%%% Output:
% collision: boolean that is true if contact is detected and false
% otherwise.

collision = false;
N = 6; % Number of link
M = size(o,2); % Number of obstacles

for m = 1:1:M
for i = 1:1:N

% Find minimal distance of link to obstacle and location along
% link.
[˜, dmin] = minDistToObst(pn(:,i),pn(:,i+1),o(:,m), [0 1]);
if dmin < ro

collision = true;
break

end
end

end
end

C. Kinematics functions

The functions within the Kinematics path are:
1) getJointPoses.m:

function jointPoses = getJointPoses(robot, q)
% This function returns the poses of the frames defined on the robot in the
% current coniguration.
%%% Inputs:
% robot: rigidBodyTree model of robot.
% q: Joint position vector
%%% Output:
% jointPoses: cell array containing the poses of the frames. Each pose is a
% 4x4 matrix containing the rotation matrix and position of the frame
% relative to the world frame.

jointPoses = cell(1,7);
for i = 1:1:7

jointPoses{i} = getTransform(robot, q, robot.BodyNames{i});
end
end



2) getJointPositions.m:

function jointPoints = getJointPositions(jointPoses)
% This funtion returns the positions of the frames defined in the
% rigidBodyTree model of the robot with respect to the world frame. It can
% be thought of as filtering out the rotation matrices from getJointPoses.
%%% Input:
% jointPoses: A cell array containing the joint poses of the frames on the
% robot.
%%% Output:
% jointPoints: A matrix where each column is a set of (x,y,z) coordinates
% belonging to a frame of the robot.

jointPoints = zeros(3,7);
for i = 1:1:7

pi = jointPoses{i}(1:3,4);
jointPoints(:,i) = pi;

end
end

3) getJointJacobians.m:

function Jn = getJointJacobians(robot,q)
% This function returns the geometric jacobians of the frames defined on
% the robot in the current coniguration.
%%% Inputs:
% robot: rigidBodyTree model of robot.
% q: Joint position vector
%%% Output:
% Jn: cell array containing the geometric jacobians of the frames. Each
% jacobian is a 6xN matrix that allows for the translation of the joint
% velocity vector into the twist of a frame.

Jn = cell(1,7);
for i = 1:1:length(robot.BodyNames)

Jn{i} = geometricJacobian(robot,q,robot.BodyNames{i});
end
end

D. Screw theory functions

The functions within the ScrewTheory path are:
1) Adjoint.m:

function AdjH = Adjoint(H)
% This function returns the Adjoint of a given homogeneous pose matrix H.
%%% Input:
% H: The homogeneous matrix expressing the pose of a frame relative to
% another frame.
%%% Output:
% AjdH: The Adjoint of the given homogeneous matrix.

R = H(1:3,1:3); % Get rotation matrix of frame
p_tilde = tilde(H(1:3,4)); % Get tilde form of position of frame

% Define and fill in the Adjoint matrix
AdjH = zeros(6,6);
AdjH(1:3,1:3) = R;



AdjH(4:6,1:3) = p_tilde*R;
AdjH(4:6,4:6) = R;
end

2) as.m:

function asA = as(A)
% This function returns the anti-symmetric part of any given matrix.
%%% Input:
% A: Any square matrix
%%% Output:
% asA: anti-symmetric part of A

asA = 0.5*(A-A.');

end

3) inverseH.m:

function H_j_i = inverseH(H_i_j)
% The function returns the inverse of a given homogeneous transformation or
% pose matrix. That is, if the given matrix expresses the pose of frame i
% with respect to frame j, this function returns the pose of frame j with
% respect to frame i.
%%% Input:
% H_i_j: The pose matrix of a frame i with respect frame j.
%%% Output:
% H_j_i: The pose matrix of frame j with respect to frame i.

H_j_i = eye(4);
H_j_i(1:3,1:3) = H_i_j(1:3,1:3).'; % Transpose the rotation matrix
H_j_i(1:3,4) = -H_i_j(1:3,1:3).'*H_i_j(1:3,4); % Express the location of j in i.
end

4) tilde.m:

function v_tilde = tilde(v)
% This function returns the tilde form of any twist, angular velocity, or
% position vector. Depending on the length of the input the output is
% either a 3x3 matrix or a 4x4 matrix.
%%% Inputs:
% v: This input vector can have a lenth of either 3 or 6. If it is 3 then
% it is seen as a position or velocity vector. If it is 6 then it is seen
% as a twist vector.
%%% Outputs:
% v_tilde: The tilde form of the input v. If v has length 3 then v_tilde is
% a skew matrix consisting of the components of v. If v has length 6 then
% v_tilde is the tilde form of a twist.

if length(v) == 3
v_tilde = [0,-v(3),v(2);

v(3),0,-v(1);
-v(2),v(1),0];

return
elseif length(v) == 6

w_tilde = tilde(v(1:3));
v_tilde = [w_tilde v(4:6)];
v_tilde = [v_tilde; zeros(1,4)];



else
disp('Input of incorrect length')
return

end
end

E. Robot description

The robot is described within a URDF file, which follows the XML format. The code describing the used model is:

<? xml v e r s i o n =” 1 . 0 ” ?>
<r o b o t name=” myrobot ”>

< l i n k name=” base ”>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 0 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<box s i z e =” 0 . 4 0 . 4 0 . 2 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t 0 1 ” t y p e =” r e v o l u t e ”>
<a x i s xyz=” 0 . 0 0 . 0 1 . 0 ” />
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 1 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” base ” />
<c h i l d l i n k =” l i n k 0 1 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 1 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”
i z z =” 0 .0063 ” />

< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t 0 2 ” t y p e =” r e v o l u t e ”>
<a x i s xyz=” 1 . 0 0 . 0 0 . 0 ” />
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 1 ” />
<c h i l d l i n k =” l i n k 0 2 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 2 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”



i z z =” 0 .0063 ” />
< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t 0 3 ” t y p e =” r e v o l u t e ”>
<a x i s xyz=” 0 . 0 0 . 0 1 . 0 ” />
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 2 ” />
<c h i l d l i n k =” l i n k 0 3 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 3 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”
i z z =” 0 .0063 ” />

< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t 0 4 ” t y p e =” r e v o l u t e ”>
<a x i s xyz=” 1 . 0 0 . 0 0 . 0 ” />
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 3 ” />
<c h i l d l i n k =” l i n k 0 4 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 4 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”
i z z =” 0 .0063 ” />

< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>



< j o i n t name=” j o i n t 0 5 ” t y p e =” r e v o l u t e ”>
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 4 ” />
<c h i l d l i n k =” l i n k 0 5 ” />
<a x i s xyz=” 0 . 0 0 . 0 1 . 0 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 5 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”
i z z =” 0 .0063 ” />

< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t 0 6 ” t y p e =” r e v o l u t e ”>
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 5 ” />
<c h i l d l i n k =” l i n k 0 6 ” />
<a x i s xyz=” 1 . 0 0 . 0 0 . 0 ” />
< l i m i t e f f o r t =” 1000 .0 ” v e l o c i t y =” 100 .0 ” />

< / j o i n t>

< l i n k name=” l i n k 0 6 ”>
< i n e r t i a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<mass v a l u e =” 5 . 0 ” />
< i n e r t i a i x x =” 0 .1073 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ” i y y =” 0 .1073 ” i y z =” 0 . 0 ”
i z z =” 0 .0063 ” />

< / i n e r t i a l>
<v i s u a l>

<o r i g i n xyz=” 0 . 0 0 . 0 0 . 2 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<geomet ry>

<c y l i n d e r r a d i u s =” 0 . 0 5 ” l e n g t h =” 0 . 5 ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< j o i n t name=” j o i n t E E ” t y p e =” f i x e d ”>
<o r i g i n xyz=” 0 . 0 0 . 0 0 . 5 ” rpy =” 0 . 0 0 . 0 0 . 0 ” />
<p a r e n t l i n k =” l i n k 0 6 ” />
<c h i l d l i n k =” e n d e f f e c t o r ” />
<a x i s xyz=” 0 . 0 0 . 0 0 . 0 ” />
< l i m i t lower =” 0 . 0 ” uppe r =” 0 . 0 ” e f f o r t =” 0 . 0 ” v e l o c i t y =” 0 . 0 ” />

< / j o i n t>

< l i n k name=” e n d e f f e c t o r ”>



< / l i n k>
< / r o b o t>
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