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Management summary 
This project was made possible by a contribution of the BMS COVID-19 fund from the University of 

Twente. With this study, we gained understanding in the spread of COVID-19 in the Netherlands. The 

study contributes with a system dynamics model that predicts the spread of the pandemic and with 

insights developed in measures and their impacts.  

The pandemic of COVID-19 affects and has been affecting the social and economic life of the world 
severely. Governments all over the world are taking several measures to control the pandemic. Yet, 
governments do not know exactly how much impact measures have on limiting the spread of the 
pandemic, and how factors such as weather impact spread. Our model predicting spread of COVID-19 
includes key factors and measures with a reasonable influence on the spread. Factors we study are 
incubation period, infectious period, asymptomatic fraction, reproduction rate, fatality ratio, age, 
weather (temperature, humidity, wind speed), contact rate (population density, adoption of 
government measures, places of infection), testing capacity. Measures we study are event allowance, 
school openings, catering services openings, facemasks, and self-quarantine. 

A way to express spread of a virus is with the effective reproduction rate, indicating the rate of 
transmission. The effective reproduction rate is normally determined with help of the number of 
infected cases or the number of confirmed cases on a day, depending on availability of data. A 
drawback of this approach is that the effective reproduction can only be accurately determined two 
weeks after, since the incubation period, testing delay and reporting delay take time. With backward 
linear regression, we develop a regression model, called 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡), that can predict the effective 
reproduction rate on day t with help of values for key factors and measures on day t.  

𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡)  =  1.22 − 0.013 ∗ average temperature − 4.179 ∗ staying home behaviour + 0.578 ∗ traveling behaviour

+ 0.066 ∗ school openings + 0.021 ∗ catering service openings − 0.109 ∗ event allowance + 0.095

∗ facemasks 

In this model, adoption of government measures, expressed with the variables staying home behaviour 

and traveling behaviour, has major impact on the effective reproduction rate. Ambient temperature 

also shows a considerable impact, with a higher reproduction rate when temperature decreases. Of 

the measures we study, event allowance has most impact. Impact of this measure is comparable to 

the impact of traveling behaviour. School openings, catering service openings, and facemasks, all show 

a positive relation to the effective reproduction rate. Consequently, spread increases with stricter 

measures, which is remarkable because this indicates that stricter measures lead to more spread. An 

explanation for these positive relations could be that the effect of a certain measure (e.g. school 

openings) is partially expressed with another variable (e.g. traveling behaviour), since traveling 

behaviour decreases when schools are closed. These kind of interactions between variables can be 

expressed with interaction terms. We check whether interacting terms add value for prediction of 

spread, by comparing performance of this interaction model with the linear model. We express 

performance of the models in test error, indicated with Mean Squared Error (MSE), and 𝑅2. An 𝑅2 

close to 1 indicates that the model explains a large proportion of variance in the response variable. 

While the interaction model outperforms 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) in performance, we consider the model to be 

overfit. This means that patterns found with training data do not exist in unseen data.  

In our system dynamics model, we determine the number of infected cases with 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). Next to the 

number of infected cases, we have to predict the number of confirmed cases on a day. We estimate 

the number of confirmed cases with help of multiple linear regression. The number of confirmed cases 

on day t is estimated with the number of tests and the number of infected cases on day t. We found 

that a logarithmic response improves prediction of the number of confirmed cases, leading to the 

following regression model for the number of confirmed cases. 
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𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 (𝑡)  =  𝑒4.86+4.74e−05∗num𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠+1.329e−04∗𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠  

With help of the regression models and the system dynamics model, we determine the effect of key 

factors and measures on spread simultaneously. We propose several policies to prevent spread of 

COVID-19. Performance of these policies is compared to performance of the actual policy, in terms of 

spread and number of days with strict measures. Two of the proposed policies, elimination of the virus 

and doing nothing to prevent spread, are not considered to be feasible in the case of COVID-19, since 

these policies would cause major damage to public health and economy. Feasible policies we study are 

mitigation, curbing, testing capacity (high/low), and facemasks (implemented/not implemented). Of 

these policies, mitigation and curbing determine their policy based on signal values. Where mitigation 

accepts circulation of the virus to a certain extent, curbing strives for little infections as possible. The 

Dutch government developed a route map to indicate which measures to implement when certain 

signal values are reached. For curbing we consider two additional versions, referred to as curbing type 

2 and curbing type 3, to see how stricter measures affect spread. In short, curbing type 1 acts according 

to signal values for the number of confirmed cases per day in the route map of the government, curbing 

type 2 applies only very soft measures or very strict measures, and curbing type 3 applies, regardless 

of spread, two weeks of soft measures and two weeks of strict measures sequentially.  

The policy with high testing capacity shows the lowest values of spread of all feasible policies. Curbing 

type 2 and type 3 show the lowest values of spread thereafter, yet with a considerably lower number 

of days with strict measures than the policy with high testing capacity and the actual policy. Mitigation 

results in lower values of spread than actual values on 31 November, but at the same time needs a 

much higher number of days with strict measures than the actual policy. Curbing type 1 results in 

somewhat higher values of spread than the actual policy and somewhat lower number of days with 

strict measures. We question the reliability of results for the policy facemasks. According to the model, 

spread would greatly reduce when no facemasks would have been implemented and would greatly 

increase when they are implemented. In reality, facemasks were obliged from 1 December until date 

of writing, and spread has not greatly reduced or increased within this time. Therefore we think we 

might not have sufficient observations for this measure to determine its effect, or this measure 

interacts with other factors or measures. The reason for curbing type 2, curbing type 3 and high testing 

capacity to perform well is found to be the high number of tests per day, that leads to a relatively high 

number of confirmed cases in quarantine. Curbing type 2 and type 3 are also found to perform well 

since these policies quickly react to spread by applying only strict measures. Curbing type 2 was found 

to perform better than curbing type 3 due to the timing of implemented measures. 

We study robustness of our model with multivariate and univariate sensitivity analysis, where we 

change input values for sensitivity parameters. Sensitive parameters are considered to be the basic 

reproduction rate, initial number of infected cases (on 2 February), quarantine fraction (number of 

confirmed cases effectively entering self-quarantine), and the fraction of asymptomatic cases. We 

learn from the sensitivity analysis that our model is very sensitive for changes. For example, the 

pandemic would have stopped existing after the first peak with a basic reproduction rate of 2. 

Therefore, calibrated values of input parameters in our model are considered to be good 

approximations, but might deviate a little in reality. We conclude from the sensitivity analysis that it is 

very important to combine a high testing capacity with a high quarantine fraction. High testing 

performs very well in terms of spread, yet when the quarantine fraction becomes low, curbing type 2, 

curbing type 3 and mitigation outperform the policy high testing. When the quarantine fraction 

becomes high, policies with actual, high, and low testing capacity all outperform remaining policies in 

terms of spread. Concluding, combining a high testing capacity with a high quarantine fraction is even 

more important to reduce spread than strictness and timing of implementation of measures.  
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1. Introduction 
On 31 December 2019, the Country Office of the WHO in the People’s Republic of China was informed 

about several cases of “viral pneumonia” with unknown cause. The viral pneumonia outbreak was 

identified as a novel coronavirus a few days later. On 30 January 2020, the WHO declared the outbreak 

of the coronavirus to be of international threat for public health and on 11 March 2020 the WHO 

declared the disease as a pandemic (WHO, 2020b). This novel coronavirus is called SARS-CoV-2 (Severe 

Acute Respiratory Syndrome coronavirus-2). The disease that is caused by  SARS-CoV-2 is called COVID-

19 (Coronavirus Disease 2019). The pandemic has been affecting and still affects the social and 

economic life of the world severely. Accurate prediction of the spread of the virus is key to deal with 

the pandemic and keep our social and economic life going. In this chapter, the characteristics and 

development of the virus will be discussed with a focus on the Netherlands. At the end of the chapter, 

the research motivation, research objective and research approach of this study are provided. 

1.1 Development and characteristics of a novel coronavirus 

1.1.1 Virus transmission 
The development of effective public health and infection prevention measures are essential to reduce 

the transmission rate of SARS-CoV-2. It is however not yet fully understood how, when and in what 

types of settings the virus spreads. Two important factors that have to be understanded to reduce 

spread are knowing how the virus is spreading and when an infected person can spread the virus. For 

both of these factors is not (yet) enough evidence available to be able to apply effective measures. 

According to the WHO, current evidence is suggesting that the virus is transmitted mainly when an 

infected person is in close contact with another person. Virus spreads primarily via liquid particles that 

can be different in size. Smaller particles are called “aerosols” and larger particles are called 

“respiratory droplets”. Respiratory droplets are more commonly causing spread, according to current 

evidence (WHO, 2020d). Infected persons spread respiratory droplets by talking, coughing, sneezing, 

or singing. Evidence further shows that SARS-CoV-2 can survive outside the body only for a limited 

amount of time, ranging from hours to days. This depends on type of surface, temperature, and the 

humidity of the environment. The WHO states that high-quality research is urgent for understanding 

the relative importance of different routes of transmission. Most important according to the WHO is 

to find out the role of airborne transmissions without aerosol generating procedures, risk factors and 

settings of superspreading events, the required dose of the virus needed for transmission, and the 

extent of transmission both pre-symptomatically and asymptomatically (WHO, 2020c). 

1.1.2 Symptoms  
The incubation period of COVID-19 is estimated to be on average five to six days, but can also be as 

long as 14 days. After this period, main symptoms of the disease are fever, cough, fatigue, slight 

dyspnoea, sore throat, headache, conjunctivitis, and gastrointestinal issues. A mild form of the disease 

is shown in about 80-90% of the cases. Serious symptoms are shown in approximately 10% of the cases 

and a critical condition develops in around 5% of the cases. These critical cases show pneumonia, 

shock, respiratory failure, multiorgan failure, and in the worst case death. Risk groups for a poor 

outcome of the disease mainly include higher aged individuals, or individuals with ischaemic heart 

disease, diabetes mellitus, hypertension, and chronic lung disease  (Pascarella et al., 2020). Next to 

cases with symptomatic disease, there are also cases with an asymptomatic disease. The fraction of 

asymptomatic cases is not yet discovered. According to Katri Manninen, this fraction is estimated to 

be 40%. Katri Manninen developed a graph that visualizes the typical progress of COVID-19, with 

estimates updated in October 2020 (see Figure 1). This graph is made according to estimates from 
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among others the WHO, ECDC (European Centre for Disease Prevention and Control), and the CDC 

(Centers for Disease Control and Prevention). What we see in this graph is that of all infected cases 

approximately 0.5-1% dies (Katri Manninen, 2020). The approximation is lower than some previous 

coronaviruses, with SARS-CoV and MERS-CoV having a mortality rate of respectively 10% and 35% 

(Pascarella et al., 2020).  

1.1.3 Worldwide spread of the virus 
At the beginning of March 2020, the number of new cases in the world started to grow exponentially. 

Approximately one month later, the number of cases per day flattened. Flattening of the curve was 

the result of social distancing measures that were implemented everywhere in the world. Many 

countries implemented strict distancing measures (e.g. lockdown) to be able to handle the number of 

people with the disease. After a while, economic and social pressures faced by governments and 

organizations forced them to gradually and safely release the social distancing measures again. On 

date of writing, 19 January 2021, the WHO reported 93,956,883 confirmed cases of COVID-19 

worldwide, including 2,029,084 deaths (WHO, 2020e). 

1.1.4 Spread of the virus in the Netherlands 
On 27 February, the first infected case of COVID-19 was identified in the Netherlands (RIVM, 2020h). 

This case and the new confirmed cases the few days thereafter were most probably infected in Italy 

(RIVM, 2020i, 2020g). The number of confirmed cases per day in the Netherlands started an 

exponential increase around the beginning of March, which we visualise in Figure 2 (RIVM, 2020f). 

After a peak with approximately 1000 new cases per day (called the “first peak”), the number of 

confirmed cases started to decline around the middle of April.  

Figure 1 Development of the typical progress of COVID-19 
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At the beginning of May the decline stopped and the number of confirmed cases remained low for a 

while. Around the middle of July the number of confirmed cases started to increase again.  

The first deceased case of COVID-19 in the Netherlands was announced on 6 March 2020. A few days 

later, a press conference led by the Dutch prime minister was held to express seriousness of the COVID-

19 situation in the Netherlands. The prime minister stated that the current economic situation in the 

Netherlands was good due to a low national debt, low deficits, low unemployment, and promising 

economic grow expectations. But he mentioned also that the pandemic could have a severe impact on 

all of this (Rijksoverheid, 2020c).  

The decline after the first peak was the result of the implementation of a so-called “intelligent 

lockdown”. This lockdown was called intelligent because Dutch residents had somewhat more freedom 

for movement compared to other countries that implemented a total lockdown (RTLnieuws, 2020b). 

The lockdown as expected had a severe impact on the Dutch economy and the social life of people. 

The Dutch government was forced to gradually release the lockdown. There is however lack of 

scientific evidence on how this can be achieved without causing damage (Block et al., 2020). Limited 

experience on how to gradually and safely release the lockdown is the cause of a new peak starting in 

the middle of July. This new peak became problematic after summer holidays, resulting in a 

significantly higher number of confirmed cases than in the first peak. The number of confirmed cases 

per day declined a little for a few weeks after implementation of stricter measures, yet increased again 

at the beginning of December to an even higher number of confirmed cases. At time of writing, the 

spread of COVID-19 is still worrying and the government is still trying to find the most appropriate 

measures. 

Up until 31 December 2020, the RIVM (the Dutch National Institute for Public Health and Environment) 

counted a total of 529,304 confirmed cases of COVID-19. The total number of cases that were 

hospitalized on this date is 27,738 and a total number of confirmed deaths of 11,627 (RIVM, 2020f). 

Figure 2 Number of confirmed cases per day in the Netherlands 
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1.2 Research motivation 
The number of new cases is still growing worldwide, the Netherlands is dealing with a third peak and 

the number of hospitalizations and deaths does not seem to decrease anywhere soon. The desire for 

a solution becomes greater with time, since problems caused by the virus are growing in number and 

size. Many people deal with psychological distress due to strict measures and the impact on the 

economy is severe everywhere in the world. However, governments are forced to take these measures 

to ensure that the number of diseased people remains manageable and hospitals are able to handle 

all care (Nicola et al., 2020; Qiu et al., 2020). 

1.2.1 Problem cluster 
To be able to improve impact of COVID-19 on social life and economy and to prevent hospitals from 

overflowing, finding the core problem of this problem context is key. The core problem can be found 

with help of a problem cluster. A problem cluster identifies the cause and effect relationships in the 

context of a problem, which leads to a core problem. Problems we identified in this study can be found 

in the problem cluster in Figure 3. Arrows indicate the relationship between problems by pointing from 

cause to effect. The problems without any cause are possible core problems. By improving (one of) 

these problems, the problems at the top will be improved as well (Heerkens & van Winden, 2017). 

Little information about key factors that influence the spread of COVID-19 

As stated by the WHO, high-quality research is urgent to understand the relative importance of 

different routes of transmission. This is required to develop effective public health and infection 

prevention measures, which is essential to reduce the probability of transmitting the virus. Since it is 

not yet fully understood how, when and in what types of situations the virus spreads, obtaining 

knowledge about the key factors that influence the spread is important.  

Vaccination is not (yet) effective enough to prevent spread of COVID-19 

The development of a safe vaccine takes a long time. Normally it takes years to develop a vaccine, but 

the development of a vaccine for COVID-19 happens rapidly due to the high need for this vaccine 

worldwide. At the beginning of January 2021, vaccination started in the Netherlands. From this 

moment, it still takes months before everybody in the Netherlands has received a vaccine and the 

whole Dutch population is protected against infection.  

Figure 3 Problem cluster 
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There is no treatment for the disease 

Until now, there is no effective treatment for the disease. Main therapies that are currently used to 

treat the disease are respiratory therapy, antiviral drugs, and chloroquine/hydroxychloroquine. While 

there were many therapies proposed to prevent infection or treat the disease, only implementing 

lockdown measures has shown to be effective for decreasing the rate of transmission. Though global 

and economic consequences of lockdown measures are severe (Pascarella et al., 2020). 

1.2.2 Core problem 
The core problem chosen to be solved in this study is “Little information about key factors that 

influence the spread of COVID-19”. We chose this core problem because the government can only 

apply effective measures when there is sufficient information about key factors that influence the 

spread of the COVID-19 virus. With sufficient information, impact of the virus on social life and 

economy can be reduced, and the number of diseased people can be controlled. Since it currently still 

takes months before vaccination leads to a protected population, the need for sufficient information 

is still relevant. To make the scope of the research manageable and discover the effect of country 

specific measures at the time this thesis is written, the scope of this study is limited to the spread of 

COVID-19 in the Netherlands.  
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1.3 Research objective and questions 
Until the start of this project, there has been no unified and holistic approach bringing all valuable 

knowledge about key factors that influence the spread of the virus together and taking into account 

preventive measures to model the spread of COVID-19 in the Netherlands. Existing models are quite 

generic and do not include measures that differ per country (e.g. closure of schools). This study will 

look at the impact of government measures (e.g. lockdown) and other factors (e.g. incubation period, 

weather) on the spread of a pandemic in a country. A factor is identified as a key factor if it considerably 

influences the spread of the virus. We will built a model to predict the future spread of the pandemic 

by using data from the current spread. Using the model, the impact of government measures as well 

as other factors on the spread of the virus can be investigated. Indicators (e.g. number of infections) 

will be used to be able to evaluate the spread. This study focusses on the spread in the Netherlands by 

including measures and factors that are relevant for the Netherlands in particular. In short, the 

objective of the study is as follows:  

 

1.3.1 Objective 
Understand the spread of COVID-19 by studying key factors affecting the spread of COVID-19 and the 

impact of measures taken to reduce the spread of COVID-19 in the Netherlands 

The key factors that affect spread of COVID-19 will be studied with help of a simulation model. The 

simulation model helps to develop insight for policymaking. We chose to use system dynamics to build 

the model. System dynamics is an approach that can help to understand non-linear behaviour of 

complex systems over time (Marshall et al., n.d.). The spread of COVID-19 can be seen as such a 

complex system which the whole world is trying to understand.  

The research objective leads to the main research question: 

1.3.2 Main research question 
What are the impact of government measures on the spread of COVID-19 in the Netherlands and how 

can we learn from this for future outbreaks and pandemics?  

We defined several research questions to be able to answer the main research question. The research 

questions will be answered with help of sub-questions. The research questions and sub-questions are 

provided below.  

1.3.3 Research questions 
1. How did the spread of COVID-19 develop in the Netherlands?  

Numbers that indicate the spread in the Netherlands are required to find out to what extent the impact 

of COVID-19 can be reduced with help of the proposed measures at the end of the report. We use 

historical data from the RIVM to acquire these numbers. Besides, the development of the spread of 

COVID-19 and its relation to implemented measures has to be known to be able to develop a reliable 

model. All of this will be outlined in Chapter 2. 

a) What indicators can provide a useful indication for the severity of spread?  

b) How did the indicators of spread evolve during the pandemic in the Netherlands?  

c) What measures were implemented to prevent spread in the Netherlands? 

d) What are the differences in spread of the virus between provinces?  
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2. What factors and measures should be considered in the model?  

Next to the required historical data about spread, key factors that influence the spread of the virus 

have to be discovered. A literature review will be performed to find out which factors possibly 

influence spread of the virus, and the relevance of those factors. Besides the factors that will be used 

as input for the model, we have to study measures that can be implemented in the Netherlands. The 

government currently implemented several measures to control spread of the virus. However, the 

extent to which applied measures are implemented could be adjusted. For example, when to open 

schools or whether to wear facemasks. The literature review will be done in Chapter 3.  

a) What factors possibly influence the spread of COVID-19? 

b) What is the relevance of these factors according to current literature? 

c) What measures can be considered to prevent spread in the Netherlands? 

d) What are the effects of these measures according to current literature? 

e) How to model spread of the virus in the population? 

 

3. How to include the key factors and measures in the model?  

It is very likely that not all factors identified in the literature review should be included in the model. 

Some factors may not considerably influence spread of the virus and can be left out. Of the key factors 

and measures that are influencing spread in the Netherlands it should be clear how to include these 

as parameters in the system dynamics model. This will be determined using statistical analysis, which 

we clarify in the Method (Chapter 4).  

a) What are the key factors influencing spread of the virus in the Netherlands? 

b) What is the relation between different key factors?  

c) What is the relation between key factors and measures?  

d) What input values should be used (parameter estimation)? 

e) How can the system dynamics model be validated? 

 

4. What policy can effectively reduce spread of the virus in the Netherlands?  

In Chapter 4 we determined how key factors and measures affect spread of COVID-19 in the 

Netherlands. In Chapter 5, we propose several policies to identify a combination of measures that can 

effectively reduce spread. The performance of these policies will be determined with help of a system 

dynamics model. Evaluation of feasible policies will be done in the Conclusion (Chapter 6). 

a) What policies exist to prevent spread of a virus?  

b) Which policies can effectively reduce spread of COVID-19 in the Netherlands? 

c) How do the policies perform (compared to the currently applied policy)? 

d) How robust is the model for changes in parameters (sensitivity analysis)? 

 

5. How can the outcome of the model be used? 

When it is clear which factors are key factors for the spread of COVID-19 and what measures should 

be implemented to be able to control the spread of the virus, we have to discover how this information 

can be used in practice. This will be done in the Chapter 6 (Conclusion and Discussion). 

a) How can the outcome of the models be used to identify the best policy to prevent 

spread of COVID-19 in the Netherlands? 

b) In what way can the outcome of the model be used in the fight against spread of 

COVID-19 worldwide? 

c) To what extent can the outcome of the model be used in future pandemics? 
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An overview of the content addressed per chapter is provided is Figure 4.  

1.4 Research approach 
System dynamics is a simulation modelling method that can capture complex and non-linear 

relationships between components in a complex system. Being nonlinear models, system dynamics 

models are sensitive to input parameters. This requires rigorous parameter estimation. Existing 

estimates and publicly available data will be used for parameter estimation. Statistical learning 

methods are used to consider possible relations and incorporate the relation between parameters (key 

factors and measures). Statistical analysis will be done using (multiple, non-) linear regression. 

Simulation of the model will be done with the system dynamics program Vensim. The system dynamics 

model will be calibrated to mimic spread and validated by comparing outcomes to actual spread. In 

the resulting system dynamics model we consider several policies where different measures are 

implemented. Lastly, a sensitivity analysis will be applied to evaluate the outcome of policies and to 

determine uncertainty of parameters in our system dynamics model. 

Deliverables  
At the end of the study, the outcome of the system dynamics model will be used to develop a proposal 

including appropriate measures for the fight against COVID-19 in the Netherlands.  

  

Figure 4 Overview of content addressed per chapter 
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2. Current situation 
To be able to reduce the effect of the pandemic on social and economic lives within the Netherlands, 

the development of spread of COVID-19 in the Netherlands should be analysed in depth. We do this 

by describing the development of four indicators of spread between 27 February and 31 December 

2020, with a short notion of implemented measures to provide context. We observe varying values of 

indicators over time in Section 2.2, and varying values across provinces in the Netherlands in Section 

2.3. These differences will be analysed briefly. 

2.1 Development of spread in the Netherlands  
In this section, the development of the most important indicators is outlined. Due to our particular 

interest and usefulness for predicting the severity of the spread, these indicators include the number 

of confirmed cases per day (symptomatic and asymptomatic), the number of hospitalized patients, the 

number of occupied Intensive Care (IC) beds, and the number of deaths per day. All measures we 

provide below originate from press conferences held by the Dutch prime minister and were gathered 

from the website of the Dutch Central Government (Rijksoverheid, 2020b). Most measures were 

communicated to the Dutch residents in the form of advices. 

2.1.1 Development of (confirmed) infected cases: Symptomatic 
On 27 February, the first infected case was identified in the Netherlands. The number of confirmed 

cases per day in the Netherlands started an exponential increase around the beginning of March. After 

a first peak of approximately 1000 new cases per day, the number of new cases per day started to 

decline from the middle of April. Around 10 May the decline stopped and the number of confirmed 

cases remains under 200 per day until the middle/end of July. After that, the number of confirmed 

cases per day increased again. This lead to a second and third peak in October and December.  

The first peak  

The first mild measures to prevent spread of the virus were implemented on 12 March. Large 

gatherings were cancelled and people were advised to work from home. Additionally, smaller 

gatherings (e.g. eating- and drinking occasions and sports clubs) were closed on 15 March and people 

were urged to keep 1.5 distance. On 23 March some effective measures were refined. All events and 

gatherings were prohibited and places where physical contact is unavoidable (e.g. hairdressers) were 

closed. The Dutch government refers to this combination of so-called lockdown measures as an 

“intelligent” lockdown. This means that people who show symptoms of illness were recommended to 

stay home. Healthy people were advised to work from home as much as possible. The intelligent 

lockdown showed to be effective because the number of confirmed cases per day started to increase 

less rapid and declined after a while. On 9 April, the prime minister spoke positively about the effect 

of the measures on the corona numbers in a press conference.  

Decline after the high peak 

On 21 April, a little while after the start of a decline in the new number of cases, the government 

decided about loosening some measures from 11 May. The first softened measures mostly affected 

children (e.g. partially opening primary schools). After 11 May, additional measures were gradually 

being softened. While softening measures, the threat of a possible increase of the number of new 

cases was taken in mind by the government. Softening of measures was particularly meant for helping 

the economy and social life. From 11 May, jobs that include physical contact (hairdressers, opticians, 

etc.) were allowed to open their doors again, while following the 1.5 meters distance rule. Besides 

softening of measures, the testing capacity gradually increased between 11 May and 1 June. Before 1 

June, only persons with a higher risk of a serious course of the disease or hospitalized patients could 
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be tested. After this date, everybody experiencing complaints was able to take a test. This may be the 

reason for a small increase in the number of confirmed cases around 1 June (see Figure 2).  

From 1 June, restaurants, cafes, cinemas, concert halls, and theatres were allowed to open again while 

following specific preventive measures (e.g. disinfection and keeping distance). From this time, the 

GGD (Dutch Public Health Services) also started a source- and contact investigation (Dutch: Bron- en 

Contact Onderzoek; BCO). The goal of this investigation is to prevent further spread of the virus by 

focussing on identifying persons with whom an infected person has been in (close) contact with (RIVM, 

2020j). The number of confirmed cases did not increase after these softened measures, they seemed 

to decrease even further. Next to opening catering services again on 1 June, public transport started 

to work their normal schedule again (with 40% capacity). Furthermore, secondary schools opened 

again with a strict social distancing policy. This means that not all children were able to attend at the 

same time and schools had to adjust their schedules. From 8 June, primary schools and child care 

opened fully again (with normal capacity and opening hours) and from 15 June students (MBO, HBO, 

WO) were allowed to take physical exams and follow practical education again.  

At the beginning of June, many Dutch residents started to think about how to spend their summer 

holidays (Rijksoverheid, 2020f). The government allowed them to spend their holidays outside the 

Netherlands, but advised to postpone their holidays or to stay in the Netherlands. Around the end of 

June, the prime minister declared that the most important corona numbers were low or even showed 

a little decline. For this reason the government decided to soften more measures, even while several 

(European) countries experienced an increase in number of confirmed cases after softening measures 

(e.g. Germany)  

On 1 July, sports- and fitness clubs, saunas, sports canteens, and casinos were allowed to open their 

doors again while following strict rules. Outside activities were allowed again with a maximum of 250 

people (e.g. soccer stadiums). The government emphasized the need of keeping 1.5 meters distance 

when stepping into social life like this again. Universities were allowed to fully open again, which was 

in reality at 1 September due to the summer holidays. In public transport, people were (still) required 

to wear a facemask but all seats were available again. Night clubs stay closed. We can see in Figure 2 

that after 1 July, the number of new cases per day remained under 200 for quite some time after 

softening of these measures.  

Second peak 

Approximately one month after the softened measures on 1 July, the number of new cases per day 

started to increase again (see Figure 2). This time somewhat less exponential than at the beginning of 

March. Most new cases occurred regional, in big cities like Amsterdam, Rotterdam, Den Haag, and 

Utrecht. While the number of new cases increased, the government did not decide to implement 

stricter measures again. After a few weeks, at the beginning of August, spread of the virus started a 

dangerous rise again. The government decided to take some additional measures. Introduction periods 

of universities were only allowed when mostly held online and with a strict end time. Catering services 

had to follow stricter rules and travellers from countries with risk for COVID-19 were obliged to stay in 

quarantine for two weeks after returning to the Netherlands (even with negative test results). At the 

end of the visualised period, the middle of August, the government declared that the number of new 

cases per day was still increasing compared to two weeks ago.  It was now clear that most infections 

occurred at home, for example at a birthday party or a dinner with friends. Therefore regional 

measures (e.g. wearing facemasks) were implemented (especially in big cities), and people were 

advised to limit the number of people at activities (e.g. birthday parties) at home to at most six people.  
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Around 15 August, the prime minister announced the need for people to keep following advices 

strictly, since more and more people were somewhat neglecting them. A few days later some regional 

measures were taken in big cities. Together these seemed to make people aware that they really have 

to take measures seriously for approximately two weeks, since the small increase that started before 

15 August stopped for a while. On 1 September, when the number of confirmed cases per started to 

increase again, few national measures were implemented to prevent a second peak from happening. 

These included prohibiting people to sing or scream when in groups and starting to educate personal 

in caring houses about COVID-19. On 20 September, additional regional measures were implemented. 

People were not allowed to meet with more than 50 people outside anymore and catering services 

had to close at 1.00 AM. One week later, more measures were implemented that were active for at 

least three weeks. This included reducing the maximum number of people at home and outside, closing 

catering services at 22.00 PM, sport games only allowed without audience, and recommendation of 

wearing facemasks in risk areas (big cities). Unfortunately these measures were not enough to prevent 

spread. At the beginning of September the number of confirmed cases per day increased exponentially 

until the middle of October. The number of confirmed cases becomes around six times as high than in 

the first peak. 

Around the highest point of the second peak, on 13 October, strict measures were added to current 

measures. Facemasks were recommended in all public areas. Catering services were closed, all events 

and drinking alcohol became prohibited, and performing sports was only allowed with a maximum of 

four people. After these new measures, the number of confirmed cases per day decreased. The level 

of confirmed cases before the start of the second peak was however not reached. The number of 

confirmed cases per day fluctuated around 5,000 for halve a month, and increased again at the 

beginning of December. 

Third peak  

The third peak that followed soon after the second peak reached a higher number of confirmed cases 

per day than the second peak. This peak lead the government to implement a lockdown measures on 

15 December. The effects of the second lockdown seem to be less effective than the effects of the first 

lockdown. This might be caused by the fact that catering services were closed and the maximum 

number of people at gatherings were small for quite some time already. Or a reason could be that 

people were getting more and more tired of all restrictions caused by the virus.  

One month after the third peak, around the middle of January, the number of confirmed cases per day 

still fluctuates around 6,000 per day. With a new and more contagious variant of COVID-19 entering at 

the end of December, spread of the virus remains worrying (RIVM, 2020m). Fortunately, vaccination 

in the Netherlands started on 8 January which provides hope for the pandemic to finally come to an 

end.  

2.1.2 Development of infected cases: Asymptomatic 
What is important to keep in mind is that in the early period of the pandemic, testing capacity was 

limited. This means that infected cases with mild symptoms or no symptoms at all were not tested in 

this period. The proportion of asymptomatic infections determined in this period is therefore likely to 

be biased. However, it is important to identify the number of asymptomatic infections since these 

cases might be hidden drivers of the virus (Nikolai, Meyer, Kremsner, & Velavan, 2020).  
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The definition of an asymptomatic case that is used by the WHO is an infected person without overt 

symptoms and who has been laboratory-confirmed COVID-19 carrier. Risk of spread of the virus 

increases when the size of the asymptomatic population becomes bigger, which means that it is very 

important to make people aware of preventive actions like washing hands and restricting traveling 

(Peirlinck et al., 2020). To be able to minimize risk of the spread, early differentiation between pre-

symptomatic and symptomatic infection is important to discover the true proportion of symptomatic 

versus asymptomatic cases.  

Estimating the proportion of asymptomatic cases 

Until now, the actual proportion of asymptomatic cases with COVID-19 is still uncertain. Recent 

evidence is suggesting that early identification of a pre-symptomatic case can be found in elevated 

serum/plasma lactate dehydrogenase levels, which may facilitate early differentiation. Yet with 

current data it is still hard to make a proper estimation. Early estimations are said to be between 18% 

and 81%, which is a very broad range.  Data of a comparison study is showing that characteristics of 

pre-symptomatic and asymptomatic infections are not the same and that younger aged people are 

more often showing asymptomatic or mild infections, which suggests them to be the (main) hidden 

spreaders of the virus. However, since the average age of COVID-19 infections is far above the age of 

children, their role in transmission is not clear yet (Nikolai et al., 2020).  

Recent antibody prevalence studies show an increasing amount of evidence for the number of 

unreported asymptomatic cases. The number of asymptomatic cases could even outnumber the 

confirmed symptomatic number of cases by an order of magnitude. This was observed in a study that 

was conducted in New York, where the number of confirmed cases was 10 times less than the number 

of cases with antibodies (Worldometers, 2020b). This could have been the reason for preventive 

strategies to fail. One study performed at the cruise ship Diamond Princess provides a proper 

estimation of the asymptomatic proportion due to the number of people and the tracking of 

asymptomatic cases. The outbreak of COVID-19 on the cruise ship led to 712 of 3711 persons being 

infected with the virus. At the time of testing, 58% of these infected persons were identified as being 

asymptomatic. The majority of those people remained asymptomatic (Sakurai et al., 2020). In the 

remainder of this report, we assume the estimate of Katri Manninen to be the best estimate for the 

proportion of asymptomatic cases (see Figure 1). This means 40% of all infected cases are assumed to 

be asymptomatic. Besides, we assume the development of the number of asymptomatic cases to be 

similar to the development of symptomatic cases. 

2.1.3 Development of the number of hospitalized patients  
One of the main reasons of the Dutch government to implement lockdown measures is to prevent 

hospitals from overflowing. Therefore the number of hospitalized patients is considered as an 

important indicator for the spread of COVID-19. In Figure 5, the number of hospitalized patients per 

day can be found. The graph was gathered from the RIVM (RIVM, 2020f).  

We observe that peaks occurred around the same time as the peaks that were observed for the 

number of confirmed cases per day. What is remarkable is that the first peak reaches a point that is 

almost twice as high as the highest point of the second peak and the third peak. This might indicate 

that the number of infected cases during the first peak was actually higher than in the second and third 

peak. However, there may also be other reasons for this observation (for example a decline of the 

hospitalization rate of infected cases).  
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2.1.4 Development of the number of occupied IC beds  
To be able to get insight in the experienced pressure at the Intensive Care of hospitals, the number of 

occupied IC bed admissions per day is provided in Figure 6. This number includes patients that were 

hospitalized in German hospitals when Dutch IC’s experienced overflow. The development of the 

number of IC bed admissions per day is very similar to the number of hospital admissions per day (NICE, 

2020). 

Figure 5 Number of hospitalized patients per day in the Netherlands 

Figure 6 Number of IC bed admissions per day in the Netherlands 
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2.1.5 Development of the number of deaths  
Around one week after the exponential increase of number of confirmed cases, the number of 

deceased people in the Netherlands started to grow exponentially (see Figure 7). The number of deaths 

per day, similar to the number of hospitalized patients and the number of IC bed admissions, did not 

increase together with the number of confirmed cases in the middle of July. We do observe a second 

and third peak. These peaks are more than half the first peak. In Section 2.2, we discuss possible 

reasons for this difference.  

 

  

Figure 7 Number of reported deaths per day in the Netherlands 
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2.2 Differences between the development of indicators 
As we could see in Section 2.1, all indicators show a rather similar development. The biggest difference 

is that the number of confirmed cases in the first peak is much lower than in the second and third peak, 

while for the other indicators we see the opposite. It is important to find out the reason for this, since 

this may help to discover how we can prevent hospitals from overflowing. We consider four possible 

reasons for this difference in development of indicators between the peaks. Firstly changes in age-

distribution, which means that the distribution of the age of infected persons in the first peak differs 

from the age-distribution of infected persons in the second peak. Secondly changes in gender-

distribution. Thirdly changes in hospital pressure, since there was more pressure in hospitals during 

the first peak than in the rest of the period. And lastly, changes in the number of tests. Another reason 

for the difference in development of the number of confirmed cases and the other indicators could be 

that the virus transformed between the two peaks. Since a considerable transformation of the virus 

only entered the Netherlands at the end of December, we do not include this possibility in our scope.  

Reason 1: Changes in age-distribution 
In Figures 8, 9 and 10, the age- (and gender-) distribution of confirmed cases, hospitalized patients and 

deaths in the Netherlands are visualized respectively. These figures originate from the weekly COVID-

19 update of the RIVM (RIVM, 2020j). In Figure 9, the distribution of the number of hospitalized 

patients shows that older people are more likely to be hospitalized. In the distribution of deaths (Figure 

10) this relation is even more obvious.  

Figure 10 Age-gender distribution of deaths in the Netherlands (from 27 February to 17 August);  
“Aantal” = Number, “Geslacht” = Gender “Man” = Male, “Vrouw” = Female, “Niet vermeld” = Not identified 

 

 

Figure 8 Age-gender distribution of confirmed cases in the Netherlands (from 27 February to 17 August) 
 

 

Figure 9 Age-gender distribution of hospitalized cases in the Netherlands (from 27 February to 17 August) 
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In the previous section, we observe that the first peak of the number of confirmed cases is much lower 

than the second and third peak, while for the other indicators the first peak is once as high. Based on 

the findings above we conclude that when the average age of infected cases decreased between the 

first and second peak, this results in a lower number of hospitalizations, IC occupations and deaths 

with the same number of confirmed cases. One study from the ECDC including infected cases from all 

over Europe indeed confirms that during the first peaks the age of infected persons was higher than a 

few months later. In Europe, 40% of the cases were aged 60 years or older and most cases were 

between 50 and 59 years old between January and May. In the months June and July, 17.3% of the 

cases were aged 60 years or older and most of the cases were aged between 20 and 29 years (19.5%) 

(ECDC, 2020). The effect of changes in age-distribution on spread will be studied in more depth in the 

literature review (Chapter 3). 

Reason 2: Changes in gender-distribution 
Next to the distribution of age, the distribution of gender is visualised in Figures 8, 9 and 10. We see 

that women are more likely to be infected (or are tested more often), but that men are more likely to 

be hospitalized or to die. Since we did not find any studies about changes in gender-distribution 

between February and December, we leave the effect of gender on spread out of our scope.   

Reason 3: Changes in hospital pressure  
During the first peak, hospitals were struggling with their available capacity. This could have caused 

differences between the development of indicators, because hospitals were having more sufficient 

capacity during the rest of the period. Hospital capacity can especially influence the number of deaths, 

because the number of deaths follows from provided healthcare. The effect of hospital pressure will 

be studied in more depth in the literature review. 

Reason 4: Changes in number of tests 
The number of tests performed per day significantly increased between 27 February and 31 December. 

Where the number of tests performed per week in the first week of June was around 40,000, at the 

end of December this number had increased to above 400,000 per week. At the beginning only people 

with chance of a severe course of the disease and hospital personnel were able to be tested. This 

contributed in significant differences in the number of confirmed cases between the first peak and the 

second and third peak. The effect of the number of tests on spread will be studied in more depth in 

the literature review. 
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2.3 Differences between provinces 
A drawback of existing models that aim to predict the spread of COVID-19 is that often average 

quantities are used to model spread in a large area. However, individual-specific control measures 

show to outperform population-wide measures in an outbreak (Lloyd-Smith, Schreiber, Kopp, & Getz, 

2005). This means that it can be particularly important to predict the spread on local level instead of 

national, such that estimations of parameters can be more precise. We scale down the spread in the 

Netherlands to spread in provinces to make sure that enough data is available. Unfortunately, there is 

far less data available from provinces in specific.  

The number of confirmed cases, the number of hospitalizations and the number of deaths reported 

per municipality are visualized in Appendix A. These graphs are gathered from the RIVM (RIVM, 2020a). 

We took three different moments to explain the differences in spread between provinces over time. 

These are the start of the first peak, the end of the first peak, and the start of the second peak in 

number of confirmed cases. 

The differences of spread between provinces in the Netherlands changed a lot over time. On 10 March, 

the RIVM posted a news report about the differences in infections between provinces. At that moment, 

there were 23,097 confirmed cases in the Netherlands, of which almost a quarter living in the province 

Noord-Brabant. The number of hospitalizations and deaths was also highest in Noord-Brabant. 

Thereafter the highest number of confirmed cases, hospitalizations and deaths were observed in 

Limburg, and in a small part of Gelderland and Zeeland (see Appendix A). Groningen showed the least 

number of infections (1.1%), followed by Drenthe (1.2%), Friesland (1.4%) and Flevoland (1.4%). The 

number of confirmed cases in Noord-Brabant seemed to flatten after a while and the number of 

confirmed cases in the northern part of the Netherlands remained low (RIVM, 2020k). At the end of 

the first peak, the spread was far more equally spread over the entire country. Only the northern part 

of the Netherlands showed a relatively low number of confirmed cases, hospitalizations and deaths.  

In Section 2.1.1 we already mention that the start of the second peak was mostly caused by infections 

in bigger cities, different from the spread during the first peak. The provinces Noord-Holland, Zuid-

Holland, and Utrecht (and one municipality in Friesland) were affected most at the beginning of the 

second peak, which is where bigger cities are located. Fortunately, the number of hospitalizations and 

deaths in the whole country remained low during this time. This indicates that the Netherlands could 

gain profit by implementing local control measures to prevent further spread. By what extent this is 

true in practice could be discovered by applying different measures in different provinces in the system 

dynamics model. However, during the second and the third peak the number of cases in the rest of the 

Netherlands started to increase as well. At the end of the third peak, the virus had spread everywhere 

in the Netherlands. For this reason, we do not test the effect of applying regional measures in this 

study.  
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2.4 Conclusion 
Now we answer research question 1, “how did the spread of COVID-19 develop in the Netherlands?”.  

 

Between the first infected case on 27 February and 31 December, the number confirmed cases per day 

showed three peaks. The first peak was flattened by implementing an intelligent lockdown. After a 

decline in number of cases due to this intelligent lockdown, measures were gradually softened. The 

number decreased to below 200 new cases per day and remained there for quite some time. The 

number of confirmed cases per day started to increase again around 1 July, when bigger events and 

sports were allowed again to a certain extent. At first sight, this increase in confirmed cases did not 

lead to higher values of other indicators. But after some time, the observed number of confirmed cases 

reached 10,000 and the number of hospitalizations, IC occupations, and deaths per day increased as 

well. While the number of confirmed cases in the second peak and the third peak were much higher 

than in the first peak, the number of hospitalizations, IC occupations, and the number of deaths 

observed during the second and third peak were approximately half of the observed values during the 

first peak. In the middle of December, lockdown measures were implemented for the second time to 

prevent the virus from spreading. 

Four possible reasons for the difference in peaks of indicators were discussed in Section 2.2. We 

observe that a change in age-distribution and a change in number of tests per day can significantly 

influence the development of indicators. This is assumed because there is evidence for these two 

factors to have changed within the studied period. In the second peak of confirmed cases, the age of 

infected cases is assumed to be lower than the age during the first peak. The number of tests 

performed per day increased with time, causing more and more people with mild or asymptomatic 

symptoms to be able to be tested. The effect of both age and number of tests on spread will be studied 

in more depth in the literature review. A change in hospital pressure can also be a reason for the 

difference in peaks of indicators, since hospital pressure during the first peak was higher than the 

experienced hospital pressure thereafter. Hospital pressure depends on the available and utilized 

hospital capacity. We identify in the literature review whether hospital pressure considerable affects 

spread. The gender of an infected case seems to influence the course of the disease, but we did not 

find evidence of a change in gender-distribution between February and December. Therefore this last 

reason is not taken into account in the scope of this study. 

Besides differences in spread between indicators, we observe differences in spread within the 

Netherlands. During the first peak, provinces Brabant and Limburg were mostly affected. The second 

peak started in bigger cities in Noord-Holland, Zuid-Holland, and Utrecht. During the second and third 

peak, the virus had spread over the whole country. Implementing regional measures is therefore not 

considered to be an effective strategy at this moment in time. 
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3. Literature research 
In this study, a system dynamics model will be built to be able to discover effective measures for 

preventing spread of COVID-19 in the Netherlands. Factors and measures that have substantial impact 

need to be identified to develop a reliable model. Key factors and measures will be used as input 

parameters for the model. In this chapter, we first define the factors we are going to study. Relevance 

of these factors will be determined with help of a literature review in Section 3.2. In Section 3.3, we 

identify and explain the measures that are considered to prevent spread of the pandemic. And in 

Section 3.4, we determine the approach that we use to build the system dynamics model.  

3.1 Factors influencing the spread of COVID-19 
As mentioned in Chapter 1, the WHO expressed the urgency to understand the relative importance of 

different routes of transmission required to develop infection prevention measures. Besides, the WHO 

suggests that the virus spreads primarily via contact routes and respiratory droplets. The WHO finds it 

most important that research is performed to among others risk factors, settings of superspreading 

events, and the extent of transmission both pre-symptomatically and asymptomatically. One major 

reason that much is still unknown about transmission is caused by the highly variable characteristics 

and behaviour of viruses, because each virus acts different (Wigginton & Boehm, 2020). This means 

that it is hard to learn from other viruses how SARS-CoV-2 spreads through the environment.  

For the reason above and the availability of data, the following factors are studied for their importance 

in the spread of COVID-19. We divide the factors in three types: Disease, demographics and other.  

 

 Disease: 

• Incubation period 

• Infectious period 

• Reproduction rate 

• (Case-) Fatality ratio 

 

Demographics:  

• Age 

 

Other:  

• Weather (temperature, humidity, wind speed) 

• Contact rate (population density, adoption of government measures, places of infection) 

• Testing capacity 

 

All parameters will be estimated with help of data from the period between 27 February (the first 

confirmed case) and 31 December. When considered necessary, we provide differences in estimates 

between provinces. For some factors, there may exist some delay that has to be included in the model. 

For example, delay due to incubation time or testing time. The literature review will help to discover 

possible delay and to discover how delay can be included in the model.  
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3.2 Relevance of the factors 
In this section, values of factors and their relevance will be determined with a literature study. As we 

mention in Section 2.2, values of indicators are changing differently over time. For this reason, 

estimates of some factors may deviate for different moments in time. For these factors we provide 

necessary information to give insight in these deviations. 

Factor 1: Incubation period 
The incubation period is the time between the moment of infection and the moment symptoms are 

showing. The incubation period of COVID-19 is estimated to be on average five to six days, but can be 

between 2-14 days (RIVM, 2020d). We assume an average incubation period of 5.5 days in our model. 

The testing and reporting delay for infections is between 1 and 4 days, for which we take an average 

of 2 days. Incubation time, testing delay and reporting delay together cause a person to be infected on 

average seven days before the infected case becomes a confirmed case.  

Factor 2: Infectious period 
The start of the incubation period is different from the start of the infectious period. The infectious 

period is the time period in which an infected person can infect others. There is not (yet) enough 

information about when an infected person is in his or her infectious period. In general it is assumed 

that an infected person can infect others when the infected person is showing symptoms, but there 

are indications for transmission of SARS-CoV-2 before symptom onset. The role of  asymptomatic cases 

in spread of the virus is still not fully understood (RIVM, 2020d). 

Viral detection 

Several studies show that 1 to 3 days before an infected person is showing symptoms, the virus can be 

detected. The amount of virus proven in the infected person is highest at the moment symptoms begin 

to show and gradually declines thereafter. However, detection of the virus does not necessarily mean 

that the person is able to transmit the virus. Viral detectability could cause overestimation of the 

infectious period between two and six days. The time period that the virus can be detected differs 

based on the severity of the disease. For asymptomatic cases, this turns out to be approximately 1 to 

2 weeks, for patients with mild to moderate disease for up to three weeks and for patients with severe 

disease this can be even longer (WHO, 2020c). Some studies reported an association between severity 

of disease and duration of the infectious period, though evidence for this relation is not strong (Byrne 

et al., 2020).  

Duration of infectious period 

Byrne et al. (2020), who study the infectious period with a literature review, suggest the duration of 

the infectious period of asymptomatic infections to be between 4 and 9.5 days. This distribution could, 

due to viral dynamics, have a longer tail with low probability for up to 20 days. In another simulation 

study, the infectious period for asymptomatic cases is assumed to be 5.76 days (Peirlinck et al., 2020). 

The infectious period of symptomatic cases is in several papers estimated to start approximately two 

days before symptom onset with a range between one and five days (RIVM, 2020d). The proportion of 

transmissions before symptom onset was estimated to be 44%, yet the accuracy of this estimate has 

to be questioned due to a lack of data. The infectious period continues for up to seven days from the 

onset of symptoms with a peak at 0.7 days (Byrne et al., 2020).  

Since the precise duration of the infectious period is still unknown, we estimate the duration of the 

infectious period. From Chapter 1, we find that a mild form of the disease is shown in about 85% of 

the cases, of which we assume 40% to be asymptomatic. Serious symptoms are shown in 

approximately 10% of the cases and a critical condition develops in around 5% of the cases. For 

asymptomatic cases the infectious period is assumed to be 6 days, for moderate symptomatic cases 9 
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days, and for severe symptomatic cases 15 days. This gives 40% of asymptomatic cases who have an 

infectious duration of 6 days and 60% of symptomatic cases for whom we assume an infectious period 

of 11 days. This leads to an average infectious period of 9 days. In the system dynamics model, the 

infectious period of all cases is assumed to be the same. The duration of the infectious period will only 

be distinguished based on severity of disease when we consider both symptomatic and asymptomatic 

cases, which we do in the sensitivity analysis. 

Factor 3: Reproduction rate 
The reproduction rate is a way to indicate spread of a virus, and thus can help to define the outbreak 

dynamics. The reproduction rate 𝑅 shows the rate by which the virus spreads. It indicates how many 

people are infected by one infected person on average. With a rate of 1, the number of infections per 

day will not change over time. When the rate is lower than 1, the number of infected persons will 

decrease and when the rate is higher than 1 the number of infections will increase. The effective 

reproduction rate is implemented in our model as the rate of transmission. 

Effective reproduction rate 

The extent by which an infectious individual transmits the virus is indicated with the reproduction rate. 

Yet there is a difference between the basic reproduction rate (𝑅0) and the effective reproduction rate 

(𝑅𝑒). The first applies when no outbreak control is applied to limit spread, and defines the rate as the 

average number of cases produced by an infected individual in a fully susceptible population (He, Yi, & 

Zhu, 2020). 𝑅0 is initially assumed to be 2.5 in our model. This is in accordance with information from 

the RIVM, who estimate 𝑅0 to be between 2 and 2.5 (RIVM, 2020c). The basic reproduction rate will 

eventually be calibrated in Chapter 4. The effective reproduction rate is influenced by external factors 

like contact rate and government measures (Peirlinck et al., 2020).  

Development of the effective reproduction rate in the Netherlands 

In first instance, the reproduction rate is calculated with help of the number of hospitalized patients. 

When this number is very low, there is not enough data to calculate a reliable reproduction rate and 

the number of confirmed cases is used instead. In Figure 11 and 12, the reproduction rate for the 

Netherlands is visualized (indicated with the dark purple line). These are estimations of the RIVM 

(RIVM, 2020j). The rate is determined based on hospitalizations on the left side of the dotted line 

(before 15 June). On the right side of the dotted line the rate is based on the number of infections 

Figure 11 Development of the reproduction rate in the Netherlands from 17 February until 13 July 
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(after 15 June). The light purple area indicates the bandwidth of the rate. When there is a limited 

amount of data available, the uncertainty of the rate is higher and the bandwidth of the real rate will 

become wider. Estimations of the rate are most accurate with data from 14 days ago, due to testing 

and reporting delay and time between successive infections. For this reason, the rate (dark purple line) 

in Figure 11 stopped around 23 December. 

As we can see in Figure 11, the reproduction rate was around 2 when COVID-19 started to spread in 

the Netherlands with a confidence interval from 0 to around 4. The rate remained above 1 until the 

middle of March. When comparing Figure 2 to Figure 11, we observe that a rate below 1 turned the 

increasing number of confirmed cases per day into a horizontal line. From the middle of March until 

the end of June the rate remained mainly below 1. At the beginning of July the rate increased above 

1 again. This caused the number of confirmed cases per day to increase again around the middle of 

July. From the beginning of August to the middle of August the rate declined to 1 and increased again 

after that. We learn from this is that the reproduction rate is an effective indicator for the prediction 

of the spread of the virus.  

Over- and underestimating the rate of transmission 

Just like for many other infectious diseases, the true level of transmission for COVID-19 is often 

underestimated. This is due to people who have been infected but are not detected as infected and 

thus not counted as infected. Effects of underestimation may even be enhanced during an epidemic, 

when testing capacity is limited. When dealing with limiting testing capacity, people in risk groups are 

more likely to be tested (WHO, 2020a). The effects of testing capacity will be taken into account with 

the factor “testing capacity”.    

Effective reproduction rate in the system dynamics model 

To be able to determine the number of infected cases in our system dynamics model, we have to 

predict the effective reproduction rate. Since we want to determine the effect of relevant factors and 

measures with our model, we will develop a regression model that predicts the effective reproduction 

rate based on the values of relevant factors and measures. This model is built in Section 4.3. 

 

  

Figure 12 Development of the reproduction rate in the Netherlands from 15 June until 28 December 
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Factor 4: Fatality ratio 
The fatality ratio is an important characteristic of an infectious disease. The ratio helps to understand 

the severity of the disease, can evaluate the quality of healthcare and identifies populations at risk. 

There exist two types of fatality ratios, the infection fatality ratio and the case fatality ratio. The 

infection fatality ratio (IFR) estimates the proportion of deaths among all infections, while the case 

fatality ratio (CFR) estimates the proportion of deaths among confirmed cases. The IFR is more 

accurate, but harder to determine.  

Calculating the case fatality ratio 

Since there exists no reliable data for the number of infected cases, we only calculate the CFR. We use 

the calculated CFR as indicator for the fatality ratio in the Netherlands. The CFR can be calculated with 

the following formula:  

 

𝐶𝑎𝑠𝑒 𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 (𝐶𝐹𝑅, 𝑖𝑛 %) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
 𝑥 100 

 

At present, it is very likely that a “misleading” estimate of the CFR will be made. A precise CFR can best 

be determined when the epidemic has ended (Worldometers, 2020b). Anderson, Heesterbeek, 

Klinkenberg & Hollingsworth (2020) suggest that the best estimate for the IFR of COVID-19 should be 

between 0.3% and 1% (Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020). When all infected 

cases would be confirmed cases, the CFR would be equal to the IFR. 

We calculate the CFR for each day between 1 April and 17 November. After 17 November, we do not 

have sufficient data available yet. In our calculation, we take the number of deaths of today and the 

number of confirmed cases of 3 weeks ago to determine the CFR of today. With these three weeks we 

take into account reporting delay (assumed 2 days), incubation time (2 – 14 days), and duration of the 

disease before death. These three weeks lay inside the range of Katri Maninnen (see Figure 1).  

Development of the case fatality ratio in the Netherlands 

In Appendix B, the development of the estimated CFR is visualised in a graph. For this calculation we 

use the number of deaths reported to the RIVM. However, the number of deaths reported to the RIVM 

is not  the real number of deaths caused by COVID-19. According to the CBS (Central Agency of 

Statistics), the number of reported deaths to the RIVM from March to June (6,115) was 3,952 less than 

the number of deaths reported to the CBS (10,067), which is a considerable difference (CBS, 2020). We 

do not take this difference into account in our model. 

We observe the CFR fluctuates a lot and see a decreasing trend from approximately 10% to 1% 

between April and November. According to an article of NU.nl, fluctuations in the ratio are caused by 

a reporting delay causing one day with many reported deaths (NU.nl, 2020f). In reality we assume that 

deaths are spread more equally over the week. Due to multiple factors that can cause over- or 

underestimation, the ratio might be biased at times. This is the reason for the large difference in CFR 

we observe in Appendix B. Below we shortly discuss considerable factors for over- or underestimation.  

Over- and underestimating the case fatality ratio 

It is important to notice that a fatality ratio is sensitive for over- and underestimation. Bad timing of 

the calculation can be a reason for this. For example, overestimation of the CFR was particularly the 

case at the beginning of the pandemic, when testing capacity was low and milder or asymptomatic 

cases were less likely to be identified as a confirmed case of the disease. Besides testing capacity, 

patient characteristics and hospital capacity show to influence the ratio and are thus important to take 

into account.  
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Age groups 

The higher the age of a person, the higher the CFR turns out to be (Wu & McGoogan, 2020). The case 

fatality ratio of COVID-19 was estimated to be 2.3% by Wu & McGoogan, where people between 70 

and 79 years show a ratio of 8%, people older than 80 years a ratio of 14.8%. While this is an early 

approximation of the CFR and likely to be biased, these differences between age-groups provide an 

insight in the effect of age on the CFR.  

Hospital capacity  

The number of deaths was particularly high during the first peak when hospitals were struggling with 

their available capacity. Therefore we consider pressure at hospitals to be able to influence the number 

of deaths. Normal capacity of the IC in the Netherlands is 1,150 beds (Venticare, 2020). Capacity can 

be extended when the need is high, which was the case during the first peak of infections. This way 

hospitals were able to take care of all patients and the fatality ratio is not assumed to have increased 

between February and December in our model.   

Testing capacity 

Since before 1 June not every Dutch resident was allowed to be tested, we consider the CFR before 

this date to be biased. After 1 June, the number of tests per day gradually increased until December. 

Due to utilization of testing capacity we consider the CFR in November to be the most accurate CFR for 

this study.  

Fatality ratio in the system dynamics model 

Since the number of tests per day gradually increased between April and November, we assume the 

average CFR in November to provide the most accurate estimate for the IFR. The average CFR of 

November is 0.9%, which lays inside the suggestion of Anderson et al. (2020). We will use the IFR to 

determine the number of deaths in the system dynamics model. The CFR will be used to express the 

fatality ratio, because this ratio is easier to measure since there exists publicly available data about the 

number of confirmed cases (WHO, 2020a). The correctness of our ratio will be investigated by 

calibrating the system dynamics model. 
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Factor 5: Age 
In Section 2.2 we conclude that the age of an infected case influences the rate of a case to be 

hospitalized or to die. Below we provide the age-distribution for confirmed cases, hospitalizations, and 

deaths, and the differences in age-distributions between provinces, to determine the relevance of this 

factor on spread. The age-distribution of indicators will be determined for three intervals to provide 

insight. For the number of hospitalizations and the number of deaths these intervals are the start of 

the first peak (end of March), the period between first and second peak (end of April), and the start of 

the second peak of infections (beginning of August). For the number of confirmed cases we determine 

the age-distribution for three moments after 1 July, because there is no publicly available data from 

before July. Next to the three above indicators, we find the age-distribution of patients who occupy an 

IC bed relevant, which we assume to be the same as the age-distribution of hospitalized cases.  

Distribution of the number of infected cases over age groups 

Unfortunately, there is a limited amount of publicly available data about the age of infected cases. For 

this reason, we observe historical data of the number of confirmed cases from the RIVM of three 

moments, with approximately one month in between. Data is separated per age-group and can be 

found in Table 1. We assume that mostly higher aged individuals were infected before July, with a 

gradual change to lower aged individuals. The highest number of infections on 24 March is seen in the 

age-group 55 to 59 years and after that between 70 and 85 years (Ranzijn, 2020). According to 

historical data of the RIVM, the highest number of infections until 17 August occurred at individuals 

aged between 50 and 59 (see Table 1). One month later the age-distribution changed with a highest 

number of infections for individuals aged between 20 and 29. Consequently, confirmed cases at the 

beginning of the studied period were on average older than at the end, with an average age of 58 years 

measured on 14 July and 50 years measured on 18 September. We assume this to mostly be caused 

by the fact that most younger people were not allowed to be tested at the beginning of the studied 

period, because they were not considered to be part of the risk group. To find out whether this is the 

case, we study test-adjusted incidence over age groups below. 

Table 1 Age-distribution of confirmed cases in the Netherlands 

Age-
group 

14-Jul 17-Aug 18-Sep 

0-9 1.0% 1.0% 1.0% 

10-19 2.0% 4.0% 6.0% 

20-29 10.0% 14.0% 19.0% 

30-39 10.0% 11.0% 13.0% 

40-49 12.0% 12.0% 12.0% 

50-59 18.0% 17.0% 16.0% 

60-69 12.0% 11.0% 10.0% 

70-79 13.0% 11.0% 9.0% 

80-89 16.0% 13.0% 10.0% 

90> 6.0% 5.0% 4.0% 
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Distribution of test-adjusted incidence over age groups 

A recent study observed that relative patterns of age, regardless of the epidemic phase, remain 

identical when adjusting for temporal trends of testing and disease incidence (Fisman et al., 2020). 

According to Fisman et al. (2020), individuals who are aged older are more frequently tested than 

younger people due to a difference in severity of the disease. This study compares observed infection 

incidence with test-adjusted incidence, which is found to considerably influence incidence per age-

group (see Figure 13). This means that when we take away effects of testing, the change in age-

distribution we observe in Table 1 would probably not have occurred. For this reason, we assume the 

age-distribution of infected cases did not significantly change between February and December 2020, 

and observed differences in age-distribution of confirmed cases within the studied period are mostly 

caused by differences in testing. Consequently, we do not distinguish in age-groups between infected 

cases in our model. 

Figure 13 Observed incidence versus test-adjusted incidence per age-group 

Distribution of the number of deaths over age groups 

We derive an age-distribution for deaths (Figure 14), based on data of the RIVM. In this figure we 

observe that the number of deaths in the Netherlands is increasing with age with an average age of 81 

years, and that the average age of deceased cases increases between the first peak and the second 

peak. The percentage of cases aged above 80 years increased and the percentage of cases aged below 

80 years decreased. We believe main causes for to be a change in reported number of COVID-19 deaths 

to the RIVM and actual number of COVID-19 deaths between first and second peak, and hospital 

personnel knowing better how to deal with the disease. While we observe a small change in age-

distribution between age groups of deaths, the average age of deaths in the Netherlands remained 

approximately 81 years between July and September. For this reason, we do not distinguish in age-

groups between deaths in our model. 

Compared to other countries, the Netherlands shows a relatively low number of deaths under 

hospitalizations. This is assumed to be due to the level of preparedness in the Netherlands (Aleva, van 

Mourik, Broeders, Paling, & de Jager, 2020). According to Worldometer, a reference website that 

provides counters and real-time statistics for diverse topics, the average age of deaths due to COVID-

19 worldwide is approximately 79 years (Worldometers, 2020a), which is somewhat lower than 

observed in the Netherlands. 
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Distribution of the number of hospitalized cases over age groups 

We derive an age-distribution of hospitalized cases (Figure 15), based on data of the RIVM. In the 

histogram we observe a small change in age-distribution between 27 February and 17 August. The 

percentage of young people of the total number of hospitalizations increases over time, while the 

percentage of older people decreases a little. However, the average age of hospitalizations in the 

Netherlands remained 66 years between July and September. For this reason, we assume the age-

distribution of hospitalized cases to remain the same within the whole studied period, and we do not 

distinguish in age-groups between hospitalizations and IC occupations in our model. 

Figure 15 Age-distribution of hospitalized patients for different phases 

  

Figure 14 Age-distribution of deaths for different phases 
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Differences in the distribution of age between provinces 

In Section 2.3, we observe differences in spread of COVID-19 between provinces. During the second 

peak, the virus mostly spread in bigger cities and the average age of confirmed cases declined. These 

bigger cities are located in provinces where the percentage of people aged between 20 and 29 is 

somewhat higher than in other provinces (e.g. Noord-Holland, Utrecht). To be able to take into account 

differences between provinces that are caused by age, we determine the number of people in a certain 

age-group (Table 2) and the average age (Table 3), for each province. Data was retrieved from StatLine, 

an open database of the CBS, and is from May 2020 (Statline, 2020).  

Table 2 Percentage of people in age-group per province 
 

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90> 

Groningen 0.09 0.11 0.16 0.11 0.12 0.14 0.12 0.09 0.04 0.01 

Friesland 0.10 0.12 0.11 0.11 0.12 0.15 0.13 0.10 0.04 0.01 

Drenthe 0.09 0.12 0.10 0.10 0.13 0.16 0.14 0.11 0.05 0.01 

Overijssel 0.10 0.13 0.12 0.12 0.13 0.14 0.12 0.09 0.04 0.01 

Flevoland 0.12 0.13 0.13 0.14 0.13 0.15 0.11 0.06 0.02 0.00 

Gelderland 0.10 0.12 0.12 0.11 0.12 0.15 0.13 0.09 0.04 0.01 

Utrecht 0.11 0.12 0.14 0.13 0.13 0.14 0.11 0.08 0.03 0.01 

Noord-Holland 0.10 0.11 0.13 0.14 0.13 0.14 0.11 0.08 0.04 0.01 

Zuid-Holland 0.11 0.11 0.13 0.13 0.13 0.14 0.11 0.08 0.04 0.01 

Zeeland 0.10 0.11 0.10 0.11 0.12 0.15 0.14 0.11 0.05 0.01 

Noord-Brabant 0.10 0.11 0.12 0.12 0.13 0.15 0.13 0.09 0.04 0.01 

Limburg 0.08 0.10 0.12 0.11 0.12 0.16 0.15 0.11 0.05 0.01 

 

Table 3 Average age per province 

Province Average age 

Groningen 41.80 

Friesland 42.86 

Drenthe 44.26 

Overijssel 41.46 

Flevoland 38.49 

Gelderland 42.26 

Utrecht 39.99 

Noord-Holland 41.06 

Zuid-Holland 40.82 

Zeeland 44.26 

Noord-Brabant 42.41 

Limburg 45.03 

 

In Table 2 and 3, we observe small differences in age-distribution between provinces. In first instance 

we will not take differences in age-distribution between provinces into account, since the main focus 

of this study is to analyse the spread of COVID-19 in the Netherlands.  
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Factor 6: Weather  
Whether the weather plays a role in the transmission of the virus is not yet clear. Since the virus is 

spreading world-wide, it is assumed that seasonal factors do not significantly influence the 

transmission of COVID-19. Yet there is evidence that exposure to ozone and periods with higher 

environmental temperature can worsen heart-, lung-, and airway disorders. If it can also deteriorate 

the course of COVID-19 disease is not known (Warmedagen, 2020). To discover whether seasonal 

factors influence the spread of the virus, we study the relation between the spread and the sub-factors 

temperature, humidity, and wind speed. The development of these factors is outlined below, with help 

of data from the KNMI (Dutch Royal Meteorological Institute)(KNMI, 2020). We assume the same 

values everywhere in the Netherlands. The temperature, humidity, and wind speed provided below 

were measured in the Bilt, a municipality in the middle of the Netherlands.  

Temperature  

The average and maximum temperature per day can be found in Figure 16. We see in this figure that 

temperature is steadily increasing towards summer and steadily declines after summer holidays. All 

peaks of the number of confirmed cases were observed when temperature was relatively low, which 

might indicate that a lower temperature has a positive effect on the spread. According to a systematic 

review, low temperature and low humidity are potentiating factors of spread of the virus  (Mecenas, 

da Rosa Moreira Bastos, Rosário Vallinoto, & Normando, 2020). 

 

Humidity 

The air can only contain a limited amount of moister. The amount of moister depends on the 

temperature. Both air containing a lot of moister and air containing very little moister can be perceived 

as uncomfortable (KNMI, n.d.). The amount of moister in the air is indicated by humidity. The mean 

relative humidity per day in the Netherlands is visualized in Figure 17.  

Air humidity can cause people to perceive the real temperature as another temperature (“sensed 

temperature”). The higher the humidity, the higher sensed temperature can become at the same real 

temperature. This can be dangerous for people, since it can lead to overheating. 

Figure 16 Average and maximum temperature per day in the Netherlands 
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People have to maintain their body temperature at approximately 37 degrees, but regulation of body 

temperature becomes harder when the environmental temperature and humidity increase. A 

temperature of 30 degrees Celsius with a humidity of 50% feels like 31 degrees, but with a humidity of 

80% this can feel as 38 degrees. Whether a high sensed temperature leads to an increase in spread will 

be identified in the statistical analysis. If this is the case, temperature and humidity together provide a 

better prediction for the spread of the virus than one of the two on its own.  

Wind speed 

Wind speed is measured by the KNMI in 0.1 m/s. The scale of Beaufort is used to express the speed of 

the wind. The mean wind speed on a day can be found in Figure 18. Based on the information in the 

figure it is hard to say something about the relation of wind speed and spread of the virus. With help 

of statistical analysis we identify whether there exists a relation between spread and wind speed. 

Figure 18 Average wind speed per day in the Netherlands 

Figure 17 Relative humidity per day in the Netherlands 
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Factor 7: Contact rate 
Contact rate indicates the extent by which a person is in contact with other persons. This rate 

significantly influences the way by which COVID-19 spreads, since people who have more contact with 

other people are more likely to infect or be infected. Due to the severe impact of contact rate, we 

identify ways to express this factor and consequently to be able to include contact rate in our model. 

We consider a positive correlation between contact rate and three sub-factors: Population density, 

adoption of government measures, and places of infection. Below, these sub-factors are quantified 

and their development between February and December is described. These sub-factors will be used 

to express contact rate in the remainder of this thesis. 

Population density 

The population density per province can be found in Table 4. The (average) population density in the 

Netherlands is 517 residents per km². We can see that there are big differences in number of residents 

between the provinces. When we take the population density of a province relative to the average 

number of residents in the Netherlands, we obtain the relative population density (last column in Table 

4). This ratio is taken as input for the population density in the model. Data is gathered from the online 

topographical database Metatopos (Metatopos, 2020). 

Table 4 Population density and spread per province 

Province Population 

density 

(residents 

per km²) 

Relative 

population 

density 

Groningen 252 0.5 

Friesland 195 0.4 

Drenthe 188 0.4 

Overijssel 350 0.7 

Flevoland 300 0.6 

Gelderland 420 0.8 

Utrecht 912 1.8 

Noord-Holland 1081 2.1 

Zuid-Holland 1374 2.7 

Zeeland 215 0.4 

Noord-Brabant 523 1 

Limburg 520 1 

 

In the table in Appendix C, we adjust the share of infections, hospitalizations, and deaths for population 

density. This means that we take the real number of infections, hospitalizations, and deaths for each 

province and adjust all relative population densities to 1. In this situation all provinces have the same 

population density. We observe that after adjusting for population density there remain considerable 

differences in the percentage of infections, hospitalizations, and deaths per province. Noord-Holland 

and Zuid-Holland show by far the highest share in infections before adjusting for population density. 

The share of hospitalizations and deaths in these two provinces are also high compared to other 

provinces. After adjusting, Gelderland and Noord-Brabant show the highest share in infections, 

hospitalizations, and deaths in the Netherlands. What we learn from this is that population density 

influences spread but does not fully explain differences in spread between provinces. Differences in 

other factors (e.g. contact density, age, and hospital capacity) are also causing differences in spread 

between provinces. The population density will not be included in further analysis, because this factor 

cannot be influenced in reality and the main focus of this study is to analyse spread of COVID-19 in the 

Netherlands. 
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Adoption of government measures 

It is hard to quantify the extent by which people adopt government measures. We take the adoption 

of government measures into account in two ways. We use the number of people staying at home per 

day (staying at home behaviour) and the extent by which people travel with public transport per day 

(traveling behaviour). Google provides data about how often people stay at home per day compared 

to a baseline. We quantify traveling behaviour with data about public transport.  

Staying at home behaviour  

In Figure 19, data from Google about mobility in the Netherlands is visualised from 10 March (just 

before implementation of the first government measures) until 31 December (Google.nl, 2020). The 

higher the observed value, the more people stay at home compared to the baseline. As a baseline, 

Google uses data from January 2020, before the implementation of measures in the Netherlands. We 

observe seasonality within a week, with lower percentages in weekends than on other days. This is 

assumed to be caused by people staying at home in weekends more often than on other days. To 

remove the effect of weekly seasonality, we additionally show the average percentage of people 

staying home per week. 

After first measures were implemented on 12 March we see a fast increase in the percentage of people 

staying at home compared to baseline, to approximately 18%. This percentage gradually declines to 

approximately 4.5% until around 18 September. Around this time, the government implemented 

stricter measures to prevent spread of the virus. This caused the number of people staying at home to 

gradually increase after this date. On 15 December, lockdown measures were implemented for the 

second time and the number of people staying home rises quickly to a similar level as at the start of 

first lockdown measures. We learn from this that changes in implemented measures have significant 

impact on staying home behaviour. The exact effect will be identified with help of statistical analysis. 

 

  

Figure 19 Staying at home behaviour in the Netherlands 
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Traveling behaviour 

In Figure 20, we provide data from Translink about the number of check-ins per day in public transport 

for 10 March until 31 December (Translink, 2020). As a baseline we use the number of check-ins on 8 

March to represent the number of check-ins per day before any measures were implemented. The 

number of check-ins on other days is taken relatively to this baseline. We observe the same weekly 

seasonality as with staying home behaviour. We assume this again to be caused by the fact that, before 

the start of the pandemic, people use public transport less often in weekends than on other days of 

the week. To remove the effect of seasonality, we take the average number of check-ins per week to 

represent values per day.  

When first government measures were implemented on 12 March, the number of check-ins declined 

fast. Thereafter, the number of check-ins per day gradually increased until 8 July. On this date summer 

holidays started, which means people travel to school or work less often. After 8 July we see a small 

decline and around 17 August, when first schools opened again, the number of check-ins increased. 

On 1 September all schools started again and the number of check-ins per day remained rather equal 

until around 10 December.  

On 28 September and 13 October, stricter measures were introduced. On both dates we see a decrease 

in traveling behaviour, of which a considerable decrease on 13 October. Around one month later, 

traveling behaviour had increased again to almost the level before 13 October. Traveling behaviour 

remained equal for quite some time thereafter. On 15 December, new lockdown measures made 

traveling behaviour decrease to 0.2. Based on these observations we believe that adjusting of 

measures affects traveling behaviour, yet effects do not always last long. What we learn from this is 

that there are considerable changes in traveling behaviour that can explain the adoption of 

government measures. 

  

Figure 20 Traveling behaviour in the Netherlands 
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Places of infection 

Another sub-factor we use to express contact rate is with places where people are exposed to 

infection, which we refer to as places of infection. In some places, the number of infections is observed 

to be much higher than in other places. Most government measures are implemented to reduce 

contact rate in places of infection. The intelligent lockdown implemented in the Netherlands to prevent 

spread during the first peak tempered contact rate a lot. Effects of this lockdown were severe, both 

negatively and positively. Spread of the virus was mitigated, but economy suffered (see Chapters 1 and 

2). After a while social distancing measures were gradually softened and facilities (e.g. schools, 

restaurants) partially opened again, leading to an increasing contact rate. At the end of August the 

increasing contact rate lead to a new peak in number of infections (de Beus, Rooze, & van Bree, 2020). 

Without the implementation of a second lockdown, economic consequences were expected to remain 

absent (NU.nl, 2020e). Unfortunately, the Dutch government was forced to implement new lockdown 

measures to prevent further spread of the virus at the middle of December. 

In Table 5, the percentage of infections in a certain place is provided. Data in this table is based on the 

source- and contact study of the GGD. Unfortunately, in approximately 60% of the cases the exact 

place of infection is hard to identify and thus not known (van Kempen & Soetenhorst, 2020). The 

numbers in Table 5 are therefore only an approximation. Data in the table shows the average 

percentage for the period from 31 August until 12 January (RIVM, 2020j). 

Place of infection Percentage of 
infections 

At home 52.7 

Visit at home (friends/family) 22.1 

Work 14.2 

School 5.5 

Traveling/holidays 0.3 

Catering services 0.6 

Party/birthday 0.4 

 

By more than half of the infected cases, “at home” is reported as a possible place of infection. 

Thereafter, “work” and “visit at home” are reported as most probable place of infection with a total of 

36.3% of reported places. School, catering services, traveling/holidays and party/birthday are reported 

by around 5% or less than 5% of the cases. The number of reported possible infections in remaining 

places are low and therefore not considered separately.  

From all reported places of infection in Table 5, we consider “school” and “catering services” as places 

that can have considerable influence on spread and are thus sensitive for measures. We believe that 

the number of reported places of infection for catering services is low (0.6%), because catering services 

were closed before 1 July and after 31 August. We include the place “events”, which represents 

gatherings with more than 30 people (e.g. festivals). Big events were prohibited from 15 March to 31 

December and thus not reported to the GGD as possible place of infection. However, due to the big 

impact this factor might have on spread, we include this factor as a place of infection in the model. The 

places at home, visit at home, work, traveling/holidays, are taken into account with the sub-factors 

staying at home behaviour and traveling behaviour that are discussed on the previous pages. In the 

remainder of this report, we refer to included places of infection as school openings, catering service 

openings, and event allowances. In Section 3.3, we quantify these places of infection based on 

implementation of measures concerning school openings, catering services openings, and events. 

Thereafter we can determine the effect of resulting measures on spread, which we do in Section 4.3. 

Table 5 Percentage of infections per place of infection reported to the GGD 
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Factor 8: Testing capacity 
In Section 2.2, we mention the effect of a change in test availability on the development of indicators. 

We assume that testing capacity can affect the number of cases in two ways. The first is that testing 

capacity can influence the total number of infections. The second is that testing capacity can cause a 

discrepancy between the number of infected cases and the number of confirmed cases. Below, we 

outline the development of testing capacity in the Netherlands, we provide the number of tests per 

week, we discuss testing and reporting delay, and differences in testing capacity between provinces.  

Development of the testing capacity 

At the start of the pandemic, testing capacity was minimal. Only people in risk groups, patients with 

high risk on a severe disease and healthcare personnel, could apply for a test. Testing capacity first 

increased on 6 April. This expansion of test capacity was only meant for workers in healthcare and for 

patients with high risk on severe COVID-19 disease (RIVM, 2020k). 

From 1 June, everybody with mild symptoms could apply for a test. The government assumed that in 

the first week of June the number of requests would be very high, causing the GGD to need more time 

for testing (Rijksoverheid, 2020e). From the 500,000 calls the GGD received in the first week, only a 

small part was performed. The RIVM calculated that 30,000 tests would have to be performed per day 

to be able to treat all people with complaints. But at that moment, pressure could not be handled (van 

de Klundert, 2020). 

On 12 July the media company NU.nl wrote about an increase in the number of requests. At that 

moment GGD’s could still handle the pressure, but it was not clear for how long. At 28 July, test 

capacity was almost reached with an increase in the number of requests of approximately 1,000 per 

day, fortunately still sufficient. While testing capacity was sufficient, it remained important to increase 

testing capacity to keep up the increasing number of requests (NU.nl, 2020a). 

From the beginning of September, testing capacity really became insufficient when the number of 

infections started to increase. It could take weeks before testing capacity would be sufficient, 

according to an article of NU.nl (NU.nl, 2020d). In another article published on 22 September, the GGD-

president declared that from the 38,000 daily requests only 28,000 could be satisfied. In the same 

article, the expectation was made that only from October all daily requests could be satisfied. This 

means that 50,000 tests would have to be available by then (NOS, 2020). Additionally, a thread 

developed for a new peak that could be higher than the first peak. This thread could be even higher 

when testing capacity is insufficient (NU.nl, 2020c). From October, testing capacity increased and 

testing delay decreased. Part of this increase in capacity is caused by the rise of so-called “quick tests” 

(Dutch: Sneltesten), which could help tracking of infected cases. In our model, we do not take quick 

tests into account and we assume testing capacity to be sufficient from October.  

Testing and reporting delay 

Test requests are mostly met within 48 hours. The outcome of a test is clear within 24 to 48 hours after 

taking the test. This means that after someone thinks they show symptoms of the disease, this person 

knows whether this is caused by COVID-19 between 48 and 96 hours (RIVM, 2020l). Testing and 

reporting delay influence the time between infection and confirmation, and consequently can affect 

spread of the virus. With a limiting testing capacity, people have to wait longer for a test, which can 

limit the isolation of infectious population and increase the number of infections.  
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Number of tests 

In Figure 21, we provide the number of tests per day. Data before 1 June was gathered from Datagraver 

(Datagraver, 2020). Data after 1 June was gathered from the Dutch central government (Rijksoverheid, 

2020a). We observe a gradual increase in number of performed tests until the middle of October, with 

a temporary decrease in the month November. This decrease happened just after the second peak and 

just before the third peak. We believe that a reduction of infected cases per day caused this temporary 

decline in number of tests. The number of tests per day in December is the highest of the whole period.  

We conclude that the number of tests increased significantly between March and December. When 

the number of tests in March would have been equal to the number of tests in December, the number 

of confirmed cases in March would have been much higher. Since we think there might exist a relation 

between the number of tests on a day and the reproduction rate, we study this relation in the statistical 

analysis. Besides, we use the number of tests to develop a regression model for the number of 

confirmed cases on a day in Section 4.3.4.  

Differences between provinces 

The place of residence determines how fast one can be tested, according to a podcast of NU.nl 

published on 28 July. Northern provinces like Overijssel, Friesland, and Groningen, can fulfil demand 

at the same day, but in a southern province (e.g. Brabant) the test has to be taken the next day mainly 

due to higher demand (NU.nl, 2020b). Around that time, the number of requests in the north of the 

Netherlands was lower than in the South. This caused testing capacity to be insufficient in nine regions. 

When testing capacity began to lack, it was lacking first at regions with the highest number of 

infections. After some time, the pressure could be partly solved when the regions with sufficient 

capacity replaced their capacity to regions in need of more capacity (Feenstra & Effting, 2020). Testing 

capacity within the whole country began to become insufficient from the first week of September 

(Dupuy, 2020). On 10 September, only four of hundred GGD locations had enough testing capacity, all 

other locations experienced pressure to deal with demand. Differences in testing capacity within the 

Netherlands will only be included in further analysis when we consider differences between provinces.  

Figure 21 Number of tests per day in the Netherlands 
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3.3 Measures to consider in the model 
The Dutch government implemented several measures to control spread of the virus. However, the 

effect of applied measures is not fully understood. In our study we consider the measures facemasks 

and self-quarantine, and the measures that express contact rate (i.e. school openings, catering service 

openings, and event allowance). In Section 3.3.1, we study the effectiveness facemasks, and in Section 

3.3.2 we identify the effectiveness of self-quarantine. In Section 3.3.3, we quantify the measures 

school openings, catering services openings, event allowance, and facemasks, to be able to determine 

their impact on the effective reproduction rate in the next chapter. We assume the measure self-

quarantine to have a constant value in our model. 

3.3.1 Facemasks 

In Chapter 1 we found that the virus spreads primarily via aerosols and respiratory droplets. 

Respiratory droplets are more commonly causing spread according to the WHO. These droplets can 

spread when an infected person sneezes or coughs. Facemasks do not prevent an individual from 

getting infected, but might prevent an infected person from spreading the virus. Wearing facemasks 

everywhere outside is not considered to prevent spread. Yet in public transport it might be hard to 

keep 1.5 meters distance. Therefore, the use of non-medical facemasks became mandatory in public 

transport on 1 June. Non-medical facemasks do not satisfy the guidelines for use in healthcare, and 

can therefore not be used there. Medical facemasks are mandatory in healthcare. We do not take 

these into account in the model. Public transport was the only setting where non-medical facemasks 

were introduced until 20 September. After 1 October, the government strongly urged people to wear 

a facemask in public places. The advice to wear a facemask was already given in a press conference in 

the middle of September in a few regions in bigger cities in the Netherlands. Two weeks thereafter, 

the prime minister changed that advice to a strong urge of wearing facemasks in all public places. On 

1 December, facemasks became mandatory in all public spaces. 

Since there is no strong evidence for the working of non-medical facemasks, we test the effect of this 

measure with our system dynamics model. To be able to do this, we identify the relation between 

wearing facemasks and the effective reproduction rate in the statistical analysis (Chapter 4).  

3.3.2 Self-quarantine 

When a person is infected or waits to be tested, the person has to stay at home until the disease is 

gone or the outcome of the test is negative. This measure is called self-quarantine. Self-quarantine 

reduces the probability that an infected person spreads the virus. This measure is very effective, since 

it can reduce contact rate significantly. The reason for this is that the number of infectious people is 

based on the infectious period and the number of infections on a day (RIVM, 2020b). Shortening of the 

(effective) infectious period can decrease the number of infectious people. In our model, we assume 

that confirmed infected cases can enter self-quarantine and non-confirmed cases cannot. When a 

confirmed case has entered self-quarantine, the case cannot infect another anymore. We indicate the 

fraction of confirmed cases effectively entering self-quarantine with the “quarantine fraction”. We did 

not find evidence for the effectiveness of self-quarantine in literature. Therefore, we initially assume 

a proportion of 70% of the cases (effectively) entering self-quarantine in our model. This value might 

have to be calibrated. 
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3.3.3 Quantification of measures 

The degree by which schools and catering services are opened, events are allowed, and facemasks are 

implemented will be quantified per day, based on the definition of measures in Table 6. In Chapter 4, 

assigned values per day are used to identify the effect of school openings, catering service openings, 

event allowances, and facemasks on the effective reproduction rate. For example, there is no contact 

between people in schools when all schools are closed, which can affect the reproduction rate. In the 

system dynamics model we can change values of measures, such that we are able to identify the impact 

of adjustments in measures on spread. Historical values of these measures are clarified in Appendix D, 

with additional dates of implementation.  

Table 6 Specification of values for measures 

Measure Value Definition  

Schools 

openings  

  

  

  

1 Normal education. Fully physical. 

2 Mostly physical education / Most schools open. 

3 Partially physical, partially non-physical education / Approx. half of schools opened. 

4 Mostly non-physical education /  most schools closed. 

5 All schools closed / only online education. 

Catering 

service 

openings 

  

  

  

1 All catering services normally opened. 

2 All catering services normally opened with distancing measures. 

3 All catering services opened, closing at 12 PM. With distancing measures 

4 All catering services opened, closing at 10 PM. With distancing measures 

5 All catering services closed. 

Events 

allowance 

  

  

1 All events allowed. 

2 Some events cancelled. 

3 Big events prohibited. 

4 Events prohibited and gatherings with maximum number of people.  

5 All events and gatherings are prohibited. No maximum 

Facemasks 

  

1 No facemasks. 

2 Facemasks in public transport only. 

3 Urge to wear facemasks.  

4 Strong urge to wear facemasks in all public spaces.  

5 Facemasks mandatory in all public spaces.  
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3.4 The model 
Compartment models in which individuals are passing through several stages of a disease are a 

common way for epidemiology models to base outbreak predictions on, for example the number of 

infections. The model of Kermack and McKendrick, the so-called SIR-model, is a well-known 

epidemiological model that can be used to determine the number of infections. Extensions of this 

model are the SEIR and the SEIIR model. The SEIR includes a distinction between infectious and non-

infectious incubation period, and the SEIIR includes a distinction between infectious and non-infectious 

incubation period and between asymptomatic and symptomatic cases.  

3.4.1 The SIR model 
This model distinguishes susceptible, infected, and recovered people in the population. The differential 

equations for the susceptible, infected, and recovered population are expressed with �̇�, 𝐼  ̇ and  �̇� 

respectively. 

𝑆 ̇ =  −𝛽𝑆𝐼 

𝐼̇ =   𝛽𝑆𝐼 − 𝛾𝐼 

�̇� =  𝛾𝐼 

Transition rates between different states are inverses of the contact period B = 1/β and the infectious 

period C = 1/γ. Fractions 𝑆, 𝐼, and 𝑅 represent the fraction of susceptible, infected, and recovered 

individuals respectively (Peirlinck et al., 2020). We assume the infectious period to be 9 days (see 

Section 3.2) and thus obtain a transition rate 𝛾 =
1

9
. To obtain the transition rate 𝛽 on day 𝑡, and 

consequently the number of infections on a day, we divide the effective reproduction rate 𝑅𝑒(𝑡) with 

the infectious period. A regression model for 𝑅𝑒(𝑡) will be developed with help of a multiple regression 

analysis in Section 4.3 to be able to express 𝛽(𝑡).  

𝛽(𝑡) =
𝑅𝑒(𝑡)

𝛾
 

However, in our model we want to include the fact that an individual is infected but has not yet entered 

the infectious period. This way we can obtain a more accurate prediction of the number of infections 

in the case of COVID-19. The SEIR model includes this distinction. 

3.4.2 The SEIR model 
A popular model to simulate the spread of COVID-19 is the SEIR model. This model adds an exposed 

part of the population to the SIR model, which is useful due to the relatively long latency phase of the 

disease. With this model we can include the fact that infected cases are not yet in their infectious 

period. The differential equation for each compartment is: 

𝑆 ̇ =  −𝛽𝑆𝐼 

�̇� =  𝛽𝑆𝐼− ∝ 𝐸 

𝐼̇ =  ∝ 𝐸 − 𝛾𝐼 

�̇� =  𝛾𝐼 

Here the transition rate from exposed to infectious, expressed with the inverse of the latent (pre-

symptomatic) period A = 1/α, and the fraction of exposed individuals 𝐸 are added (Peirlinck et al., 

2020). Yet an additional extension is required when we want to be able to include differences between 

asymptomatic and symptomatic cases, which is included in the SEIIR model. 
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3.4.3 The SEIIR model 
As a fifth compartment, an asymptomatic population can be included to make a clear distinction 

between symptomatic and asymptomatic cases. This was done in the study of Peirlinck et al. (2020). 

The differential equation for each compartment is:  

𝑆 ̇ =  −𝑆[𝛽𝑠𝐼𝑠 +  𝛽𝑎𝐼𝑎] 

�̇� =  −𝑆[𝛽𝑠𝐼𝑠 +  𝛽𝑎𝐼𝑎]− ∝ 𝐸 

𝐼𝑠 ̇ =  𝑣𝑠 ∝ 𝐸 − 𝛾𝑠𝐼𝑠 

𝐼�̇� =  𝑣𝑎 ∝ 𝐸 − 𝛾𝑎𝐼𝑎 

�̇� =  𝛾𝑠𝐼𝑠 +  𝛾𝑎𝐼𝑎 

In this model, the fraction of susceptible cases is divided in symptomatic (𝑣𝑠) and asymptomatic (𝑣𝑎),  

a distinction is made between contact rate of symptomatic cases (𝛽𝑠) and contact rate of asymptomatic 

cases (𝛽𝑎), and a distinction is made between the infectious period of symptomatic cases (𝛾𝑠) and 

asymptomatic cases (𝛾𝑎). This leads to a total contact rate 𝛽 and infectious rate 𝛾:   

𝛽 = 𝑣𝑠𝛽𝑠 + 𝑣𝑎𝛽𝑎   

𝛾 =  𝑣𝑠𝛾𝑠 +  𝑣𝑎𝛾𝑎 

3.4.4 The system dynamics model 
We will model the spread of COVID-19 based on the theories of the SEIR and the SEIIR model. In first 

instance, we determine the spread considering the same contact rate for symptomatic and 

asymptomatic cases and thus model spread with the SEIR model. In the sensitivity analysis we consider 

differences between symptomatic and asymptomatic cases and model according to the SEIIR model.  
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3.5 Conclusion 
Now we answer research question 2 “What factors and measures should be considered in the model?”:  

3.5.1 Factors 
Factors that we study in the literature review are: Incubation period, infectious period, reproduction 

rate, fatality ratio, age, weather, contact rate, and testing. The disease factors (incubation period, 

infectious period, reproduction rate, case fatality ratio) cannot be changed or conform in association 

with other factors. The incubation period is estimated to be between 2 and 14 days with an average 

of 5 to 6 days. There is not enough information about the infectious period yet. In general it is assumed 

that an infected person can infect other people when the infected person is showing symptoms. 

However, there is evidence for pre-symptomatic transmissions, in one study even estimated to be a 

proportion of 44% of total infections. We assume the duration of the infectious period depends on the 

severity of the disease. The infectious period of asymptomatic cases is assumed to last on average 6 

days and the infectious period of symptomatic cases 11 days. When assuming an asymptomatic 

fraction of 40%, this leads to an average infectious period of approximately 9 days. The reproduction 

rate is the rate by which the virus spread. It indicates how many people are infected by one infected 

person on average. The basic reproduction rate is assumed to be 2.5. The basic reproduction rate is 

influenced by external factors like government measures, leading to an effective reproduction rate. 

The effective reproduction rate will be determined in Chapter 4. The last disease factor we study is the 

fatality ratio. The CFR is the ratio of confirmed cases to deaths and is estimated to be 0.9%. We use 

the IFR to determine the number of deaths in the system dynamics model, which is assumed to be 

between 0.3% and 1.0% and initially included as 0.9% in the model.  

The age of an individual influences the probability of infection, hospitalization and death. We believe 

provinces experienced differences in spread which are caused by differences in age-distribution. In the 

first peak of infections, the number of hospitalizations and deaths was higher than in the second peak. 

At the same time, average age of confirmed cases was considerably lower in the second peak. Similar 

to the disease factors, age of individuals cannot be influenced with government measures. The impact 

of age will thus not be included in our model. 

The next factor considered to influence spread of COVID-19 is weather. Values of this factor cannot be 

influenced with government measures. To express weather, we study the sub-factors temperature, 

humidity and wind speed. Higher temperature shows to have a reducing effect on spread according to 

the literature review. The relation to spread of other factors is not clear from the literature study, we 

determine the relation between spread and the sub-factors of weather with help of statistical analysis.  

Next we study the effect of contact rate on spread. The goal of most government measures is to reduce 

contact rate, which makes it important to study contact rate when studying the effect of measures. 

We use sub-factors population density, adoption of government measures, and places of infection to 

express contact rate. Higher contact rates are observed in provinces with higher population density. 

Besides, contact rate increases when people take government measures less serious. We express the 

extent by which people adopt government measures with staying home behaviour and traveling 

behaviour. Places of infection we identify to be important for spread are schools, catering services, 

and events. Effects of these places of infection are taken into account with the measures school 

openings, catering services openings, and event allowance. 

Next to contact rate, effects of testing are large. In periods with low testing capacity (e.g. from February 

to June), the number of confirmed cases was far less than the number of infected cases. When people 

have to wait for a test in periods with an insufficient testing capacity, it is more likely that isolation of 

infectious cases is limited. This can increase the number of infections even further.  
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3.5.2 Measures 
In this study, we consider the measures school openings, catering services openings, event allowance, 

facemasks, and self-quarantine. We quantify the measures school openings, catering services 

openings, event allowance, and facemasks per day with a value 1, 2, 3, 4 and 5, indicating strictness of 

the measure (see Table 6). When adjusting measures later in this study, the values of these sub-factors 

can be tuned according to the specification of values in Table 6. Effectiveness of the measure self-

quarantine on spread is not clear (yet). We assume the quarantine fraction, the fraction of confirmed 

cases effectively entering self-quarantine, to be 70%. This value might have to be calibrated to obtain 

actual spread, which we do in the next chapter. 

3.5.3 The system dynamics model 
In first instance we built a SEIR model, meaning that we do not differentiate between symptomatic 

and asymptomatic cases. The SEIIR model will be applied in the sensitivity analysis when differences 

between asymptomatic and symptomatic infections are considered. 
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4. Method 
This chapter is especially important for the development of a reliable model. First the study design will 

be outlined in Section 4.1. In Section 4.2, we estimate values of factors when necessary, and in Section 

4.3, we identify relations between parameters with help of statistical analysis. In Section 4.4, 

parameter values are eventually calibrated to mimic actual spread.  

4.1 Study design 
We develop two regression models that we use in our system dynamics model, to obtain a model that 

can predict spread of COVID-19. One regression model expresses the effective reproduction rate and 

the other expresses the number of confirmed cases on a day. The approach we use to develop the 

regression models and the system dynamics model is provided in Sections 4.1.1 and 4.1.2 respectively. 

4.1.1 Developing the regression model 
The aim of this study is to predict the effect of factors and measures on spread of COVID-19 in the 

Netherlands. Factors that are tested for their relevance are “other factors” (temperature, humidity, 

wind speed, staying home behaviour, traveling behaviour, and testing capacity) from Section 3.1. 

Measures that are tested for their relevance are school openings, catering service openings, event 

allowance, and facemasks. In Figure 22, a flow chart visualizes how we obtain relevant input 

parameters, which we do in Section 4.3.  

Factors and measures are considered to be relevant parameters when they show a statistically 

significant relation to the effective reproduction rate. Together these relevant parameters are used to 

predict the effective reproduction rate with a regression model. Next to the reproduction rate, we 

develop a regression model for the number of confirmed cases per day. This will be done with the 

number of tests and the number of infected cases on a day.  

4.1.2 Developing and calibrating the system dynamics model 
With the regression models for the effective reproduction rate and the number of confirmed cases on 

a day, we are able to develop the system dynamics model in Section 4.4. Next to the relevant factors 

and measures in these regression models, disease factors have to be implemented in the system 

dynamics model. We use fixed input values for disease factors (i.e. incubation period, infectious period, 

basic reproduction rate, and fatality ratio), based on estimates from the literature review. These values 

will eventually be calibrated to mimic spread. Besides the disease factors, the initial number of infected 

cases and quarantine fraction might have to be calibrated to obtain actual spread. In Figure 23, a flow 

chart visualizes the approach we apply to calibrate parameters. 

Figure 22 Approach to identify relevant input parameters for the regression model 
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Before we can calibrate the model, we have to know the values of indicators for the simulated period. 

Indicators serve as output of the model, they indicate severity of the pandemic. In Section 4.4, we 

provide actual values of indicators on 31 November, since values until 31 November are used to train 

the model. After calibration, we still have to validate the model before we can use it. This will be done 

in Chapter 5 with help of data from 1 December until 31 December. 

4.2 Estimating values of factors 
Values of the factors incubation period, infectious period, basic reproduction rate, fatality ratio, 

temperature, humidity, wind speed, staying home behaviour, traveling behaviour, and number of 

tests, and of the measures school openings, catering service openings, event allowance, and facemasks 

have been determined in the literature review. Input values of these parameters are provided in Table 

14. Only the effective reproduction rate has to be estimated.  

4.2.1 Estimating the effective reproduction rate 
The relation between the effective reproduction rate 𝑅𝑒(𝑡) and all relevant parameters will be 

determined in Section 4.3 with help of multiple linear regression. Yet before we can identify these 

relations, we have to calculate the actual 𝑅𝑒(𝑡), to be able to compare the outcome of our model to 

the actual reproduction rate. We refer to the calculated effective reproduction rate as 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). 

Historical values of the effective reproduction rate will be calculated with the number of 

hospitalizations or confirmed cases per day from 27 February until 31 December. 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) is 

calculated in R with the function est.R0.TD. This is an implementation of the method provided by 

Wallinga & Teunis (Wallinga & Teunis, 2004). The method estimates the time dependent reproduction 

number, together with a confidence interval. Before we can use this function, we have to make 

assumptions about the mean generation interval for COVID-19. The mean generation interval 

represents the average time between the infected person’s first day of illness and the first day of illness 

for the person who infected them. The mean of this interval is approximately 4 days according to the 

RIVM (RIVM, 2020e). Since the RIVM does not provide an estimate for the standard deviation, we 

assume the standard deviation of the generation interval to be 3 days (Knight & Mishra, 2020). This 

means that we assume a gamma-distribution for the generation interval with a mean of 4 days and a 

standard deviation of 3 days in this function. A visualization of 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡), from 20 February until 

31 November, is provided in Appendix E, based on the number of infections and the number of 

hospitalizations respectively. We observe that the confidence interval of 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the 

number of hospitalizations is larger than the confidence interval based on the number of confirmed 

cases. We expect this observation, since incidence of hospitalizations approaches zero around June 

and is much lower than the incidence of confirmed cases. When developing the regression model of 

𝑅𝑒(𝑡) in Section 4.3, we use 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the number of hospitalizations before 1 June 

Figure 23 Approach to calibrate values of input parameters in the system dynamics model 
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and 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the number of confirmed cases after 1 June as actual 𝑅𝑒(𝑡). When 

calibrating the system dynamics model, we test whether this choice might have to be reconsidered 1.  

We calculate 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) for each day until 1 June based on the number of hospitalizations per 

day and 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) for each day thereafter based on the number of confirmed cases. We do this 

to increase reliability of 𝑅𝑒(𝑡), because the number of hospitalizations was very low after the first peak 

of infections and before 1 June not every infected person was allowed to be tested. This can cause a 

distorted approximation of the actual 𝑅𝑒(𝑡). To be able to determine 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the 

number of hospitalizations, we have to know the day of infection of hospitalized cases. We assume 

this to be 10 days before hospitalization, including an incubation period of 5 days, testing and reporting 

delay of 2 days, and a time between symptom onset and hospitalization of 3 days. For the confirmed 

cases we estimate the day of infection to be 7 days before confirmation, including an incubation period 

of 5 days and a testing delay plus reporting delay of 2 days. We observe in Figure 24 that these delays 

provide a good fit when comparing 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) to 𝑅𝑒(𝑡) of the RIVM. Observed differences in 

fluctuations are probably caused by different input settings for the function est.R0.TD. The RIVM did 

not publish the exact assumptions they make when calculating 𝑅𝑒(𝑡) with this function (yet). Since we 

do not have sufficient data to calculate 𝑅𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) after 31 November, our calculation stops there. 

Figure 24 Comparing the calculated reproduction rate to the reproduction rate of the RIVM 

 

  

 
1 During calibration we discovered that 𝑅𝑒

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) was too high after the first peak. Consequently, we were 

not able to obtain actual spread and had to update 𝑅𝑒
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). Instead of using the average value of 

𝑅𝑒
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡), we now use the lower bound of 𝑅𝑒

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) until 15 May. From 15 May until 1 June we use 

the mean of the lower bound of 𝑅𝑒
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) and the average of 𝑅𝑒

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). From 1 June, we use the 

mean value of 𝑅𝑒
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the number of hospitalizations. This way we get a steeper decline of the 

infectious population after the first peak and spread in our model comes closer to actual spread. 
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4.3 Statistical analysis 
It is possible that not all factors we study in the literature review should be included in the model. 

Some may not considerably influence spread and can be left out. Of key factors and measures that are 

influencing spread of the virus it should be clear how to include these in the regression model. Whether 

these parameters influence spread and to what extent will be investigated in this section. To do this, 

we express their effect on the effective reproduction rate (𝑅𝑒(𝑡)) with help of a regression model in 

Section 4.3.3. Next to 𝑅𝑒(𝑡), we develop a regression model for the number of confirmed cases per 

day in Section 4.3.4, to be able to estimate the number of confirmed cases per day in our system 

dynamics model. We provide the dataset we use and we explain the approach we apply to develop the 

regression models in Section 4.3.1 and Section 4.3.2. All coding in R is provide in Appendix Q. 

4.3.1 Dataset for multiple linear regression 
The dataset we use to estimate effects of factors and measures on 𝑅𝑒(𝑡) consists of 313 days of data, 

starting on 14 February and ending on 31 November. In Appendix F, a summary of the characteristics 

of all factors and measures can be found. Factors and measures that are tested on their relation to 

𝑅𝑒(𝑡) are relative humidity, temperature, wind speed, staying home behaviour, traveling behaviour, 

school openings, catering service openings, event allowance, facemasks and number of tests 2. Besides 

these parameters, we test whether adding the average 𝑅𝑒(𝑡) of two and/or one week before improves 

prediction accuracy. There remain 265 days of data after removing rows with missing data. Rows with 

missing data are mainly due to unavailable data about number of tests per day before 9 March. 

4.3.2 Developing a regression model 
With multiple linear regression we can identify the effect of each predictor on a response, in our case 

on 𝑅𝑒(𝑡) or on the number of confirmed cases. We can also check whether relations between 

predictors, factors and/or measures, exist. To identify relations between predictors, we insert 

interaction terms in the regression model and compare this model to the model without interaction 

terms. This way we can determine the added value of including interaction terms for prediction of 

spread. We also check whether adding non-linear variables might improve prediction of the spread.  

Obtaining a multiple (non-)linear regression model 

In the multiple linear regression, we assume the following formula where 𝑌 is the response and 𝑋𝑗 are 

the predictors: 

𝑌 ≈  𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ +  𝛽𝑝𝑋𝑝 + ∈ 

Quantifying the response with help of multiple variables is known to be a regression problem. Multiple 

linear regression is a relatively simple yet useful method to determine the response. The formula above 

is a linear model that provides an approximation of reality. In this formula, all predictors 𝑋𝑗 are 

considered to have a linear effect on 𝑌. Due to the rough estimations of some parameters (e.g. school 

openings), we have to accept the fact that it is not possible to reproduce the real 𝑅𝑒(𝑡) and number 

of confirmed cases using linear regression. The term ∈ refers to a random error of 𝑌, which is 

independent of the rest of the formula and has a mean of zero. Coefficient 𝛽𝑗 is the average effect on 

𝑌 when 𝑋𝑗 increases with one unit. Non-linear variables are added to the regression formula by 

changing 𝑋𝑗 to 𝑋𝑗
𝑖, where 𝑖 indicates the power. For example, the square root of a variable makes 𝑋𝑗 

turn into 𝑋𝑗
2. Interaction terms are added to the regression formula by multiplying one or more 𝑋𝑗’s.  

 
2 Note: After some modelling we excluded the number of tests as predictor for the effective reproduction rate, 
because we are not able to explain the large positive effect this predictor shows. This means that we only use 
number of tests as predictor in the regression model of the number of confirmed cases. 
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Multiple linear regression can be used to determine the effect of all predictors in the model. Yet, we 

first need to identify the parameters that add predictive value. There exist various methods to select 

relevant parameters. To obtain relevant parameters for 𝑅𝑒(𝑡), we apply the backward regression 

method. The backward regression method automatically selects predictors that are considered to be 

important for the model. The method starts with a model that includes all predictors and one-by-one 

removes predictors from the model. The method stops when some stopping criteria is reached. We do 

this in R with the function stepAIC. This method keeps minimizing the per step AIC-value to develop a 

final set of predictors for the desired response. The AIC (Akaike Information Criteria) quantifies the 

amount of information that is removed in each step, as it is an estimator of out-of-sample prediction 

error. For the regression model of the number of confirmed cases, we do not apply backward 

regression. This is because we only have two predictors, the number of infections and the number of 

tests on a day, to develop the regression model.  

Assessing the quality of the multiple linear regression outcomes 

We express the statistical significance of the relation between a parameter (e.g. school openings) and 

a response (𝑅𝑒(𝑡) or number of confirmed cases) with help of the p-value. We consider parameters to 

be statistically significant related to the response when the p-value is below 0.01. The * in the outcome 

of a model indicates the statistical significance of the p-value. Here “***” stands for a p-value <0.001, 

“**” for a p-value <0.01, “*” for a p-value <0.05 and “.” for a p-value <0.1.  

We express the quality of a regression model with the adjusted 𝑅2. The adjusted 𝑅2 indicates the 

quality of the model with a value between 0 and 1. The closer the value is to 1, the better the model. 

This approach other than the regular 𝑅2 adjusts for the number of variables in the model, because the 

regular 𝑅2 increases when more variables are added (James, Witten, Hastie, & Tibshirani, 2013). We 

use the regular 𝑅2 to determine 𝑅2 corrected for optimism. In the next paragraph we will outline how 

we correct for optimism.  

Besides expressing 𝑅2, we want the test error of our model to be as low as possible. This is important 

to determine the effect of using our formula on unseen data. We express the test error with the mean 

squared error (MSE). Knowing the test error is especially important when the ratio of parameters p to 

number of samples n increases, which is the case for models that include non-linear variables and/or 

interaction terms. In these models we expect that overfitting might play a role (James et al., 2013). 

Validation of the multiple linear regression outcomes 

We are aware that overfitting is a major problem in regression modelling (Steyerberg, 2009). To justify 

the quality and outcomes of our regression models, we validate the obtained models in two ways. First 

the quality of the regression models will be corrected for optimism by performing bootstrap. The 

bootstrap method estimates the accuracy of the method by running a certain method (in this case 

backward linear regression) multiple times with a different sample set (James et al., 2013). The regular 

𝑅2 and MSE after correcting for optimism will be called “corrected 𝑅2” and “corrected MSE”. We run 

the backward selection method 500 times to validate the quality of our model. The corrected 𝑅2 and 

corrected MSE are provided in 4.3.3 and are used to compare quality of the models. 

Second we test the effect of using a different response on the final regression model. We do this only 

for the regression model of 𝑅𝑒(𝑡), because in this model we do not know which predictors add value 

for prediction of spread. To validate the regression model of 𝑅𝑒(𝑡), we test the quality of the model 

with the predictors included in 𝑅𝑒(𝑡) and the number of hospitalizations or number of deaths as 

response. Validation is performed with these two responses, because the effective reproduction rate 

determines the number of infections and consequently the number of hospitalizations and deaths in 

our model. This validation will be done in Section 4.3.5. 
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4.3.3 Regression model for the effective reproduction rate 
In this section, we first discuss the effect of each predictor in Appendix F on 𝑅𝑒(𝑡) individually. 

Thereafter we obtain the regression model with multiple linear regression. 

Effect of individual predictors on the effective reproduction rate 

In Table 7 and 8, the normalized effects of all predictors can be found in linear form. We  provide 

normalized effects to be able to compare the effect of each predictor on the effective reproduction 

rate more easily. The estimate in the table indicates the value of the coefficient 𝛽𝑗, and the standard 

error indicates the standard error tells us the average amount that this estimate for 𝛽𝑗 differs from the 

actual value of 𝛽𝑗 (James et al., 2013). Thus the higher the standard error, the worse the accuracy of 

the estimate for 𝛽𝑗. Below we shortly discuss the effects of all predictors separately. 

Table 7 Estimated effects of full linear regression model (normalized) 

Predictor                                 Estimate Std. Error p-value 

Intercept 1.233 0.140 2.40e-16 *** 

Humidity 0.062 0.061 0.311 

Average temperature -0.319 0.077  4.90e-05 *** 

Wind speed -0.003 0.047 0.944 

Staying home behaviour -0.652 0.105 2.29e-09 *** 

Traveling behaviour 0.469 0.152 0.002 **  

School openings 0.269 0.058  6.88e-06 *** 

Catering services  0.086 0.079 0.278 

Event allowance -0.427 0.069 2.14e-09 *** 

Facemasks 0.269 0.045 6.19e-09 *** 

 
Table 8 Estimated effects of full linear regression model with average reproduction rate of 1 & 2 weeks before (normalized) 

Predictor                                 Estimate Std. Error p-value 

Intercept 0.198 0.146 0.177 

R1 week 0.916 0.073 < 2e-16 *** 

R2 weeks -0.102 0.044 0.021 *   

Humidity -0.017 0.052 0.749 

Average temperature -0.078 0.066 0.239 

Wind speed -0.024 0.038 0.522 

Staying home behaviour -0.369 0.091 7.26e-05 *** 

Traveling behaviour -0.038 0.155 0.804 

School openings 0.155 0.049 0.002 **  

Catering services  0.202 0.064  0.002 **  

Event allowance -0.112 0.082 0.170 

Facemasks 0.133 0.038 0.001 *** 
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In Table 8, we show the effect of including the average effective reproduction rate of both 1 and 2 

weeks before as an additional predictor. Especially the effective reproduction rate of 1 week before 

captures a lot of information for the regression model, because the estimate for 𝛽𝑗 is relatively high. 

We call this model the full linear model of 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡). The linear model without these predictors 

included (Table 7) is called the full linear model of 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). In these two models, we question the 

estimate of 𝛽𝑗 of predictors when the p-value is not statistically significant (> 0.01). As we can see, in 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) this is the case for humidity, wind speed, and catering service openings. The estimates of 

𝛽𝑗 for these predictors is relatively small. In 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡), the p-value is higher than 0.01 for the 

predictors humidity, average temperature, wind speed, traveling behaviour, and catering service 

openings. Since the effect of many predictors in the full linear model of 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) is not statistically 

significant, we only discuss effects of the predictors in 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). 

After the intercept, staying home behaviour has most effect on the effective reproduction rate in 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). When people stay home more often, 𝑅𝑒(𝑡) decreases. Event allowance and traveling 

behaviour show most effect on the reproduction rate thereafter. Stricter measures for the allowance 

of events and less traveling both reduce 𝑅𝑒(𝑡). Also average temperature has a relatively large effect 

on spread, where higher temperature leads to a lower 𝑅𝑒(𝑡). Stricter measures for school openings, 

catering service openings and facemasks increase 𝑅𝑒(𝑡) according to the regression model. The effect 

of catering service openings is small and not statistically significant. We think the cause for is that 

catering services were closed for a long time, which might cause the model to have a hard time to 

determine the effect of catering service openings. This could also be the case for the measure 

facemasks. Facemasks were only implemented as a measure at the end of the period used to develop 

the regression model. We believe that both the effect of facemasks and school openings in the 

regression model are quite large. Humidity and wind speed have the lowest effect on 𝑅𝑒(𝑡). Decreasing 

humidity and increasing wind speed leads to a decrease of 𝑅𝑒(𝑡).  

Regression models for the effective reproduction rate 

Above we identify the individual effect of predictors in the multiple linear regression. Here we apply 

backward regression to remove predictors that add no or little predictive value from the full regression 

model. First, we perform backward regression on the model with all variables in linear form. Hereby 

we study the linear relation between 𝑅𝑒(𝑡) and the parameters in Appendix F. The resulting model is 

called the “linear model”. Second we perform multiple linear regression with variables in linear and 

non-linear form (e.g. 𝑠𝑐ℎ𝑜𝑜𝑙 𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠2). We call this model the “polynomial model”. Lastly we perform 

multiple linear regression with interaction terms between variables. Interaction terms were included, 

because we think that some parameters are sensitive for interaction with other parameters. This 

model is called the “interaction model”. In this paragraph we only apply backward regression on 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). We identify whether adding the average 𝑅𝑒(𝑡) of two and/or one week before improves 

prediction accuracy in the next paragraph. 

Interaction terms we consider in the backward regression are: 

• Humidity * Average temperature 

• Staying at home behaviour * Traveling behaviour * School openings 

• Staying at home behaviour * Traveling behaviour * Catering openings 

• Staying at home behaviour * Traveling behaviour * Event allowance  

• Staying at home behaviour * Traveling behaviour * Facemasks 
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Comparing the regression models 

The outcomes of the backward regression for the linear model, interaction model, and polynomial 

model can be found in Appendix G. In the linear model, the backward regression method excludes the 

predictor catering services openings. But since we want to be able to express the effect of catering 

services openings, we add this predictor to the outcome of the backward regression model. From the 

interaction model, we exclude predictors that are not statistically significant relation (p-value > 0.01). 

In Appendix H, the histogram of residuals of the linear model and the interaction model are provided. 

We observe the residuals to be approximately normal distributed around zero, meaning both models 

indicate no non-linearity.  

The outcomes for the quality of all three models is provided in table 9. We observe that the polynomial 

model shows the highest MSE. We think this is because the polynomial model is overfitted. Meaning 

the model can predict 𝑅𝑒(𝑡) very well with current data, but not with unseen data. This would also 

explain the high values for 𝑅2. Since we find it important to have a low test error and the residual plots 

indicate no non-linearity, we exclude the polynomial model from further analysis. The MSE of the 

interaction model is a little lower than the MSE of the linear model. The corrected 𝑅2 of the interaction 

model is higher than the corrected 𝑅2 of the linear model. This indicates that the interaction model 

provides a more accurate prediction of 𝑅𝑒(𝑡) than the linear model.  

Table 9 Quality of regression models for the effective reproduction rate 

Model Adjusted 𝑹𝟐 Corrected 𝑹𝟐 Corrected MSE 

Linear 0.791 0.783 0.0197 

Polynomial 0.918 0.858 0.0319 

Interaction 0.882 0.849 0.0136 

 

The final regression model for the effective reproduction rate 

When we test the interaction model with unseen data, we observe some strange effects. For example, 

when setting traveling behaviour equal to traveling behaviour before the start of the pandemic, the 

effective reproduction rate fluctuates from around 2.5 to around 0.5 and back in a few days. The same 

is observed when changing input values of other predictors in this model. Because of these effects, we 

think the interaction model is overfitted. The interaction model can provide an accurate prediction 

with the dataset we use to build the model, but not for unseen data. The linear model does not show 

these effects. For this reason, we use the linear regression model to predict spread in the system 

dynamics model. We refer to this model as 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). 

For the linear model, we test whether adding the average 𝑅𝑒(𝑡) of 1 and/or 2 weeks before to the 

backward regression model improves prediction accuracy. We refer to this model as 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡). In 

Table 10 we observe that the quality of the linear model improves with the average 𝑅𝑒(𝑡) of 1 and/or 

2 weeks before included. The adjusted 𝑅2, corrected 𝑅2, and the MSE of linear 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) all score 

better after adding these predictors. 

Table 10 Quality of the linear and averaged linear regression model for the effective reproduction rate 

Model Adjusted 𝑹𝟐 Corrected 𝑹𝟐 Corrected 
MSE 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) 0.791 0.783 0.0197 

𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) 0.869 0.864 0.0099 
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We believe the reason for the quality of linear 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) to be higher is that this regression model 

provides less fluctuations for the effective reproduction rate, which means we obtain a more averaged 

development of the effective reproduction rate. The additional variables in 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) add extra 

information to 𝑅𝑒(𝑡), since these variables can identify time-series information (e.g. a recent trend in 

𝑅𝑒(𝑡)). However, while 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) is able to include recent trends in 𝑅𝑒(𝑡), we observe that the 

average 𝑅𝑒(𝑡) of 1 and 2 weeks before in 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) take a lot of information that is in 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) 

expressed with relevant factors or measures. Furthermore, when comparing the development of the 

two regression models over time, we observe that 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) needs more time to bring 𝑅𝑒(𝑡) below 

or above 1, which we believe is caused by the additional predictors. For this reason, we consider 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to provide a better approximation of 𝑅𝑒 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) on unseen data, and consequently a 

better prediction for 𝑅𝑒(𝑡) in our system dynamics model than 𝑅𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡). For this reason, we use 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to express the effective reproduction rate. In Appendix G, all predictors included in this 

model are provided with their estimate for 𝛽𝑗, the standard error of the estimate for 𝛽𝑗, and the p-

value. The predictor catering service openings does not show a statistically significant relation to the 

effective reproduction rate in this regression model. Yet we added this predictor to the linear backward 

regression model, because this predictor expresses the effect of a measure and we want to be able to 

test the effect of all measures.  

The estimates for 𝛽𝑗 in Appendix G result in the following regression model for the effective 

reproduction rate:  

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) =  1.22 − 0.013 ∗ average temperature − 4.179 ∗ staying home behaviour + 0.578 ∗ traveling behaviour

+ 0.066 ∗ school openings + 0.021 ∗ catering service openings − 0.109 ∗ event allowance + 0.095

∗ facemasks 

The normalized estimate for 𝛽𝑗 and the standard deviation of this estimate are provided in Table 11, 

to give insight in the relative effect each predictor on 𝑅𝑒(𝑡). 

Table 11 Normalized effects of the final regression model for effective reproduction rate 

Predictor                                 Estimate Std. Error 

Intercept 1.284 0.132 

Average temperature -0.339 0.075 

Staying home behaviour -0.663 0.098 

Traveling behaviour 0.477 0.145 

School openings 0.265 0.058 

Catering services  0.085 0.079 

Event allowance -0.434 0.068 

Facemasks 0.286 0.041 

 

Of the final model, all VIF (Variance Inflation Factor) values are below 10. The VIF value can assess 

multi-collinearity within a regression model. In practice, there typically exists a small amount of 

collinearity among predictors in a regression model. A VIF value that exceeds 5 or 10 indicates an 

amount of collinearity that might be problematic (James et al., 2013). Only staying home behaviour, 

traveling behaviour and catering services openings have a VIF value above 5, yet all below 10. In Section 

4.3.5, we further validate this model by assessing the quality of this regression model with the number 

of hospitalizations or deaths as response. 
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4.3.4. Regression model for the number of confirmed cases 
In our system dynamics model, we have to estimate the number of confirmed cases. The number of 

confirmed cases highly depends on the number of infections and the number of tests per day. We 

perform multiple linear regression to identify the relation between these three variables. We observe 

a statistically significant relation between the response number of confirmed cases per day and the 

predictors number of tests per day and number of infections per day. For this reason, we develop a 

formula that predicts the number of confirmed cases on a day with help of the number of infected 

cases and the number of tests on a day.  

The number of infected cases per day is unknown and has to be estimated before we can develop a 

regression model for the number of confirmed cases. We do this with data of the number of infectious 

cases. In Figure 25, the number of infectious cases per day is visualised. This figure originates from the 

weekly update of the RIVM (RIVM, 2020j). The dark purple line in the figure indicates the average 

infectious cases, and the light purple area indicates the lower and upper bound of the number of 

infectious cases. The number of infectious cases in this graph was determined with help of serological 

information and the number of hospital admissions. We believe the infectious population can provide 

an accurate indication of the number of infections when dividing the number of infectious cases on a 

day with the infectious period.  

 

Figure 25 Development of the number of infectious cases per day according to the RIVM 

The calculated number of infected cases per day according to the approach above is uncertain and can 

be high. This means the outcome of the linear regression model could become negative when we use 

different input values than the values we use to train the regression model. For this reason, we 

compare the linear regression model with the number of confirmed cases on a day as response and 

the linear model with the logarithm of the number of confirmed cases as a response. With the second 

model, the predicted number of confirmed cases cannot become zero. When we compare the two 

regression models, we observe the residuals in the residual plot to be more equally distributed in the 

model with a logarithmic response (see Appendix I). For this reason, we believe that the model with a 

logarithmic response can provide a more reliable outcome than the model without logarithmic 

response. This means we obtain the following formula for the number of confirmed cases on day 𝑡: 

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 (𝑡)  =  𝑒4.86+4.74e−05∗num𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠+1.329e−04∗𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠  
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In Table 12, the estimates of 𝛽𝑖 for the predictors in this model can be found, together with their p-

value and the standard error of the estimates for 𝛽𝑖. 

Table 12 Estimated effects of the resulting regression model for the number of confirmed cases 

Predictor Estimate  Std. error Pr(>|t|)     

(Intercept)                               4.860 0.056 < 2e-16 *** 

Number of tests 4.740e-05 2.483e-06 < 2e-16 *** 

Number of infected cases  1.329e-04 6.800e-06 < 2e-16 *** 

 

4.3.5 Validation of the regression model for the effective reproduction rate 

In Section 4.3.3, we apply bootstrap to validate the quality, expressed in test error and 𝑅2, for all 

models. In this section, we use the number of hospitalizations and number of deaths instead of the 

effective reproduction rate as response, to validate 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). We compare the corrected 𝑅2 and 

corrected MSE of 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to the corrected 𝑅2 and corrected MSE of the models for hospitalizations 

and deaths.  

In Table 13, results of all three models can be found. We use ten days before hospitalization as day of 

infection for the number of hospitalizations and 21 days (three weeks) before death as day of infection 

for the number of deaths. These assumptions are based on the development of the typical progress of 

COVID-19 (see Figure 1). 

Table 13 Quality of the validation regression models 

Response Adjusted 𝑹𝟐 Corrected 𝑹𝟐 Corrected MSE 

Effective reproduction rate 0.791 0.783 0.0197 

Number of hospitalizations 0.695 0.676 3139 

Number of deaths 0.752 0.745 388 

 

Based on the results in Table 13 we believe that 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) is valid, because we observe the model 

for the number of hospitalized cases and the model for the number of deaths have an adjusted 𝑅2 and 

a corrected 𝑅2 close to or above 0.7. We believe these values are sufficient. The MSE of the model for 

the number of hospitalizations and for the model of the number of deaths are a little high. However, 

since we do not know the exact date of infection for hospitalizations and deaths, we consider these 

test errors to be acceptable. 
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4.4 The system dynamics model 
In this section, we develop the system dynamics model we use to simulate spread of the virus. As input 

for the system dynamics model we use the regression models for the effective reproduction rate and 

the number of confirmed cases from Section 4.3, and remaining parameters in Table 14. Output of the 

system dynamics model is expressed with indicators of spread. As indicators we use the number of 

infected cases, number of confirmed cases, number of hospitalized cases, number of IC occupations, 

and number of deaths. Before we can use the model, we identify if and where calibration of input 

values is necessary in Section 4.4.1. We calibrate the model by comparing actual values to the outcome 

of our model.  

 

In Figure 26, a visualization of our system dynamics model, developed in Vensim, can be found. This 

model does not differentiate between symptomatic and asymptomatic cases, which means the system 

dynamics model is build according to the SEIR model from Section 3.4. The squares in the model 

together hold all individuals in the population, each square holding a different part of the population. 

Individuals flow from one state to another state according to the transition rates in Section 3.4.2. Next 

to the susceptible population, exposed population, infected population, and recovered population, we 

distinguish (un-)confirmed population and died population. The (un-)confirmed population consists of 

infected individuals who have been tested and may consequently not be infectious anymore, when 

the individual entered self-quarantine. The died population consists infected cases who are not 

infectious anymore and did not recover but die.  

Figure 26 Visualization of system dynamics model in Vensim 
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4.4.1 Calibration of input parameters 
We use actual values of the number of confirmed cases, number of hospitalized cases, number of IC 

occupations, and number of deaths on 31 November to determine whether input parameters need to 

be calibrated. Values are gathered from the RIVM and association NICE (National Intensive Care 

Evaluation), and provided in Table 15 (NICE, 2020; RIVM, 2020f). Actual values for the number of 

infected cases are not known and thus not provided. In Table 14, we provide calibrated values of input 

parameters. 

Calibration values of parameters in the system dynamics model 

To be able to obtain an accurate prediction of spread, we assume the first cases in the Netherlands 

have been infected on 2 February. We use 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to determine the effective reproduction rate 

starting from 27 February, which is the day of the first confirmed case according to the RIVM. Before 

this day, we assume a basic reproduction rate of 2.5 (before calibration).  

Table 14 Initial and calibrated values of input parameters for the system dynamics model 

 

We observe the calibrated value for the incubation period to be a little lower than the initial incubation 

period, yet still in the range of the RIVM. The calibrated infectious period is three days lower than the 

initial input value. The number of infected cases on 2 February is higher than initially assumed, just like 

the basic reproduction rate. The calibrated IFR is lower than the initial input value, but still in the range 

of Anderson, Heesterbeek, Klinkenberg & Hollingsworth (2020). The fraction of confirmed cases 

effectively quarantined is lower than initially assumed. We think the reason for this is that infected 

cases who are in quarantine have a hard time to not infect others in the same house. This assumption 

can be confirmed by the fact that approximately 50% of reported infection places is at home (Table 5).  

Calibration values of indicators in the system dynamics model 

In Table 15, we provide calibrated and actual values of indicators. Actual values were gathered on 20 

January and may have changed a little thereafter. We observe that calibrated values for all indicators 

in the table come close to the actual values on 31 November. 

Table 15 Calibrated values and actual values of indicators 

 Confirmed Deaths Hospitalizations IC occupations 

Actual values 529,304 9,653 27,738 5,551 

Calibrated values 529,719 9,583 27,548 5,510 

 

  

Parameter Values Value range Initial input value Calibrated input value 

Incubation 

period 

Days 2 – 14 5.5 5 

Infectious 

period 

Days 6 – 15 9 6 

Basic 

reproduction 

rate 

Numeric 0 - 5 2.5 3 

Initial 

infected 

Numeric - 111 600 

Infection 

fatality ratio 

Numeric 0.1% – 1.0% 0.9% 0.375% 

Quarantine 

fraction 

Percentage 0% – 100% 70% 52.5% 
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In Appendix J, we provide the development of all indicators after calibration. We observe that the 

number of confirmed cases per day is 1,191 at the highest point of the first peak and 10,453 at the 

highest point of the second peak. These values come close to actual values. For the number of 

hospitalized cases, the number of IC occupations, and the number of deaths, the first peak is a little 

lower than the second peak. Whereas in Section 2.2, we observe the first peak of these indicators to 

be once as high as the second peak. This could indicate that the IFR and the hospitalization rate in 

reality changed over time. Further discussion of the development of these indicators will be done in 

Section 5.1, where we validate our system dynamics model. 

Considering the calibrated values of our model are quite aligned with actual values, the actual total 

number of infected cases seems to be highly underestimated. In Section 4.3.4, we estimate the number 

of infected cases with help of the number of infectious cases. There we observe that the number of 

infectious cases per day during the first and the second peak is similar (see Figure 25). Consequently 

we believe the number of infected cases in the first and second peak are similar as well. The total 

number of infected cases on 31 November is 1,814,638 based on data in this figure, whereas the 

calibrated total number of infected cases in our model is much higher (3,006,600).  

4.5 Conclusion 
Now we answer research question 3: “How to include the key factors and measures in the model? “ 

In this chapter, we develop the system dynamics model that will be used to simulate policies in the 

next chapter. As fixed input parameters we use the incubation period, infectious period, basic 

reproduction rate, fatality ratio, initial number of infected cases, and the quarantine fraction. These 

factors are required to mimic spread, and are eventually calibrated in Section 4.4. Whether other 

factors (temperature, humidity, wind speed, adoption of government measures, and testing capacity) 

add predictive value for our model is determined with the backward regression method, since it is not 

clear yet whether these factors affect spread considerably. Factors and measures that add predictive 

value are included in a regression model that predicts the effective reproduction rate. The factors that 

remain after backward regression are temperature and adoption of government measures (staying 

home behaviour and traveling behaviour). All measures (school openings, caterings services openings, 

event allowance, and facemasks) are included in the model, because we want to express the effect of 

measures on spread. In the statistical analysis, we compare a linear, polynomial, and interaction model, 

to see which one provides the most accurate and reliable prediction. The first model including only 

parameters (factors and measures) in linear form, the second considering non-linear parameters as 

well, and the last considering relations between parameters by adding interaction terms to the linear 

model. The polynomial and the interaction model show better quality than the linear model with a 

higher adjusted 𝑅2 and corrected 𝑅2, and the interaction model also shows the lowest corrected MSE 

(test error) of all models. Yet both the polynomial and interaction model are considered to be overfit, 

and are thus not used in our system dynamics model. This remains 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to predict the effective 

reproduction rate and consequently the number of infected cases on a day. We predict the number of 

confirmed cases on day with the regression model 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 (𝑡), with help of the number of tests 

and the number of infected cases on a day. 

With all input above we develop the system dynamics model in Section 4.4, according to the SEIR 

model. Calibrated input values of parameters are provided in Table 14, and calibrated values of 

indicators in Table 15. We observe that obtained values for the number of confirmed cases, deaths, 

hospitalized cases, and IC occupations in our model are close to actual values on 31 November. 

Remarkably, the total number of infected cases is much higher than estimated in Section 4.3.4. 

Whereas we estimate 1,814,638 infected cases, the calibrated number of infected cases is 3,006,600.  
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5. Results 
In this chapter, we simulate multiple policies to prevent spread of the virus. In Section 5.1, we first 

validate our system dynamics model. In Section 5.2, we outline the policies that are considered and 

provide necessary information about the setup of these policies in the system dynamics model. We 

provide the results of all policies in Section 5.3, and in Section 5.4 we perform a sensitivity analysis to 

test the robustness of our model. 

5.1 Validation of the model 
Before we simulate spread for all policies, we validate our system dynamics model to make sure that 

outcomes are valid. We use input data from 1 December until 31 December to simulate spread with 

our model and we compare the outcomes of the effective reproduction rate, the infectious population, 

the number of confirmed cases, the number of hospitalized cases, the number of IC occupations, and 

the number of deaths to the actual spread in December. We compare the infectious population instead 

of the number of infected cases, because the RIVM provides estimates for the infectious population 

per day (see Figure 25).  

5.1.1 Comparing development of the effective reproduction rate   

In Figure 27, we visualize the development of 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) from the system dynamics model, and the 

development of the lower bound, upper bound, and average 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). We observe that the 

development of 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) is similar to the development of the average value of 𝑅𝑒 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). 

Remarkably, the highest observed value for 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) after implementation of the first 

government measures is 1.53, while the highest observed value for 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) is 1.26. The minimum 

value is 0.40 for 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) and 0.44 for 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). Further we observe that 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) 

sometimes exceeds the lower or upper bound of 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡), especially towards the end when the 

confidence interval becomes smaller. These observations indicate that 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) has a hard time to 

Figure 27 Effective reproduction rate from the system dynamics model and calculated effective reproduction rate 
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provide outliers. The development of this regression model shows less peaks than 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). We 

think these differences might be caused by the input values that are used for our regression model 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). In 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡), input values change less per day compared to input values of 

𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). For example, catering services might be closed for a long period, whereas the number 

of hospitalized or confirmed cases, the input values for 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡), change every day. Unless these 

differences in fluctuations, we believe the approximations of the effective reproduction rate made 

with 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) are valid and can be used for modelling the policies in Section 5.2. 

5.1.2 Comparing development of the infectious population  
In Figure 28, we compare the development of the infectious population from our system dynamics 

model with the development of the infectious population estimated by the RIVM (RIVM, 2020b). We 

observe that, before 1 June, the infectious population from our model lies between the lower and 

upper bound estimated by the RIVM. Besides, observed values from our model in the first and second 

peak are close to the average infectious population estimated by the RIVM.  

From 1 June, we observe that the infectious population starts to increase earlier than the estimates of 

the RIVM. This indicates that the value of 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) we use after June might be a little too high. 

Since we use 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) based on the number of confirmed cases to train our regression model 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) after 1 June, our calculation of 𝑅𝑒 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) might deviate a little from actual 𝑅𝑒(𝑡). On 

1 June, 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) lies around the upper bound of 𝑅𝑒 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). On this date, some measures were 

softened by the government. Unless the difference during the start of the second peak, the infectious 

period in our model at the highest point of the second peak is close to the estimate of the RIVM. After 

the second peak, we see a decline of the infectious population within the bounds until around 6 

December. According to RIVM estimates, the size of the infectious population starts to increase again 

around 6 December and decrease just after the implementation of lockdown measures on 15 

December. The infectious population from our simulation does not increase around 6 December but 

decreases from there.  

Figure 28 Infectious population from the system dynamics model and estimated infectious population by RIVM 
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Since 𝑅𝑒(𝑡) has a significant effect on the size of the infectious population, we think differences 

observed between 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) and 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) in Section 5.1.1 cause the difference in observed 

and actual infectious population. When looking to 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) and 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) in Figure 27, we 

see that the height of 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) around the end of November is a little higher than 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡), and declines to a somewhat lower point than 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) in the middle of December.  

5.1.3 Comparing development of the number of confirmed cases per day  
In Figure 29, the development of the number of confirmed cases from our model is compared to the 

actual number of confirmed cases. The development of the actual number of confirmed cases per day 

is similar to the observed number of confirmed cases in our system dynamics model.  

We observe the first confirmed case on the same day, but the first peak occurs a little earlier in our 

system dynamics model. When we vary the incubation period to try to obtain a later peak, this does 

not lead to an earlier peak. For this reason, we believe the small difference in start of peaks is not 

caused by a deviation between the actual incubation period and the incubation period we use in our 

model, which seems an obvious cause. We think the actual cause to be a small difference between 

𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) and the actual reproduction rate, because we observe in Section 5.1.2 that 𝑅𝑒 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) 

has a big impact on the infectious population and in Section 5.1.1 we observe that 𝑅𝑒 
𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) deviates 

a little from the average 𝑅𝑒 
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡). Unless these small differences between the actual confirmed 

cases and the confirmed cases from our model, we believe our model can provide a valid estimate for 

the number of confirmed cases per day. 

5.1.4 Comparing development of the number of hospitalized cases and IC occupations per day  
In Figure 30 and 31, the development of the number of hospitalized cases per day and the number of 

IC occupations per day from our model are compared to the actual values. Whereas the observed 

number of confirmed cases per day in our system dynamics model does not deviate a lot from actual 

values, there exists a considerable difference between the development of the observed number of 

hospitalizations and IC occupations in our model and the actual numbers. We observe the first peaks 

of these indicators from our model are about once as low as actual values in the first peak.  

Figure 29 The number of confirmed cases from the system dynamics model and actual number of confirmed cases 
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The number of hospitalizations and IC occupations on a day are determined by the number of infected 

cases and the hospitalization rate. The number of infected cases follows from the infectious 

population. The height of the first and second peak of the infectious population are within the range 

of the RIVM (Section 5.1.2). For this reason, we believe that differences in actual and observed peaks 

of hospitalizations and IC occupations are not caused by a wrong estimate of the number of infected 

cases, but mainly by a change in hospitalization rate. In our system dynamics model we assume a fixed 

hospitalization rate of approximately 0.8% from the number of infected cases and 5.5% from the 

number of confirmed cases. We think the hospitalization rate might have considerably decreased 

between the first and second peak. Whereas the heights of the first and second peak of the infectious 

populations lie within the range of the RIVM, the second peak starts earlier than the actual peak. We 

observe the same for the development of the number of hospitalizations and the number of IC 

occupations per day. Therefore we believe a difference in the infectious population to be the main 

cause for an earlier start of the second peak for the number of hospitalizations and the number of IC 

occupations per day. 

Figure 30 Number of hospitalized cases from the system dynamics model and actual number of hospitalized cases 

Figure 31 Number of IC occupations from the system dynamics model and actual number of IC occupations 
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5.1.5 Comparing development of the number of number of deaths per day  
In Figure 32, the development of the number of deaths per day from our model is compared to the 

actual development of the number of deaths. The development of the number of deaths per day from 

our model differs from the actual development. We observe the first peak to be around once as low 

as actual values in the first peak, similar to our observation for the number of hospitalizations and IC 

occupations per day.  

The number of deaths per day follows from the number of infected cases and the IFR. Since we observe 

in Section 5.1.2 the size of the infectious population in the first and second peak to be quite accurate, 

we think the difference between the actual and simulated development of the number of deaths is 

caused by a decrease in IFR between the first and the second peak. Next to that, we believe the second 

peak of the number of deaths per day to start earlier due to an early increase of the infectious 

population, similar to the hospitalizations and IC occupations. 

5.1.6 Comparing the outcomes of indicators  
According to data from the RIVM and from association NICE, there are 808,906 confirmed cases, 

11,627 deaths, 34,833 hospitalized cases, and 6,748 IC occupations on 31 December (NICE, 2020; 

RIVM, 2020f). For all indicators but the number of infected cases, values from our system dynamics 

model are somewhat lower than actual values (see Table 16). For the number of infected cases there 

is no data available.  

Table 16 Validation and actual values of indicators on 31 December 

 Infected Confirmed Deaths Hospitalizations IC occupations 

Actual values - 808,906 11,627 34,833 6,748 

Validated values 3,437,300 790,411 11,614 32,557 6,511 

 

We observe in Table 16 that observed values in our model are close to actual values for all indicators. 

The number of hospitalized cases deviates relatively the most from the actual value on 31 December, 

which we think is mainly caused by a change in hospitalization rate. 

Figure 32 Number of deaths from the system dynamics model and actual number of deaths 
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While actual values on 31 December come close to values from our model, the infectious population, 

number of deaths, number of hospitalizations and the number of IC occupations per day all show an 

earlier start of the second peak than observed in reality. For the number of deaths, hospitalizations 

and IC occupations we believe this earlier start compensates for the fact that values in the first peak is 

lower than the actual observed values in the first peak. Consequently, calibrated values on 31 

November are quite accurate, but small differences between observed values and actual values on 31 

December can be observed. Concluding, we believe the approximations made with our model are 

sufficient to be used for modelling the policies in Section 5.2, but we have to keep in mind the 

difference in development of the number of hospitalizations, IC occupations, and deaths when 

evaluating performance of policies. 
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5.2 Policies 
According to Red Team, an independent group of experts that aims to prevent and fight COVID-19 in 

the Netherlands, there exist roughly four strategies to prevent a virus from spreading. These strategies 

are “Do nothing”, “Mitigation”, “Curbing”, and “Elimination”. Which one works best for public health, 

healthcare, and economy depends on the characteristics of the virus (RedTeam, 2020). In Section 5.3, 

we test the effect of proposed strategies of Red Team in the case of COVID-19. We do this by defining 

policies that determine the measures implemented in each strategy, and to what extent. Besides these 

policies, we test the effect of the measure facemasks and of testing capacity on spread. We shortly 

explain all policies and the policy that was chosen by the Dutch government in Section 5.2.1. In Section 

5.2.2 and Section 5.2.3, we provide necessary information about how we model the policies.  

5.2.1 The policies to prevent spread 
As we mention above, we consider the following six policies: 

1) Do nothing (“Niets doen”): Let the virus move freely. 

2) Mitigation (“Mitigatie”): Accept circulation of the virus to a certain extent. 

3) Curbing (“Indammen”): Strive for as little infections as possible, pursue every infection. 

4) Elimination (“Uitroeien”): Make the virus disappear. 

5) Facemasks 

6) Testing capacity 

The first policy, doing nothing, is not realistic for COVID-19. When the government would do nothing 

to prevent spread, we would have experienced major damage to public health, healthcare, and 

economy. In the second policy, mitigation, the main goal is to develop herd immunity. However, this 

strategy is stubborn in practice since it is not (yet) clear how many people develop immunity and for 

how long immunity lasts. With the third policy, curbing, it is acceptable to have an outbreak now and 

then, but it is not accepted to let the outbreak become uncontrollable. This means that infected 

individuals will be identified by quick testing and in-depth source- and contact investigation. This policy 

requires strict signal values and sufficient testing capacity. In some countries (e.g. China, Japan) this 

strategy has been proven successful. Yet in Europe this might require an approach where countries 

work together due to the high contact rate between European countries. The fourth policy eliminates 

the virus. The feasibility of this approach for COVID-19 is low in a short amount of time, since it requires 

world-wide cooperation. Next to the strategies proposed by Red Team, we test whether the 

implementation of facemasks is valuable to prevent spread, and whether the number of tests on day 

has effect on spread. 

The policy that was chosen by the Dutch government is called “maximal control” (“maximaal 

controleren”). This policy can be seen as a mix of policies 2 and 3. The main focus of the government 

is to protect people who are vulnerable and prevent healthcare from overloading (RedTeam, 2020).  

5.2.2 Modelling the policies to deal with spread of the virus 
Here we explain how we model the proposed policies with our system dynamics model. In each policy, 

we start implementing measures on 15 March just like in reality.  

Policy 1: Doing nothing 

With this policy, no actions are taken to prevent spread and values for all input parameters remain 1 

the entire period. This means that no facemask measures were implemented. We use low testing 

capacity in this policy. Values used for low testing capacity are provided per date in Appendix K.   
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Policy 2: Mitigation 

With this policy, we use the number of IC occupations and hospital admissions on a day as a guideline 

to identify the measures to implement. Since the Dutch government uses hospital admissions and 

overload of IC occupations as a guideline to identify measures, we think this policy comes closest to 

the policy that is applied in the Netherlands.  

In this policy, we determine input values of the measures school openings, catering services openings, 

event allowance, and the factors staying home behaviour and traveling behaviour based on the signal 

values in Table 17, and we use input values for these measures from Table 16. How these values exactly 

will be used is explained in Section 5.2.3. For facemasks and testing capacity we assume the same 

values as were actually implemented. In Appendix L, we provide the input values of this policy used in 

the system dynamics model per date. As can be seen, we start implementing lockdown measures on 

15 March just like in reality. We do this to be able to better compare this policy to the actual policy. 

Policy 3: Curbing 

The Red Team denotes that the lesson learnt from countries who have successfully implemented 

curbing as policy use the number of confirmed cases as a guideline. The advantage of the number of 

confirmed cases as indicator to determine the policy is that this indicator indicates a change or trend 

in spread earlier than for example the number of hospitalizations. The drawback is that it takes a lot 

of time, money, and energy to successfully implement, due to the high testing capacity and strict 

follow-up of infected cases that is required. For this reason, we use the number of confirmed cases per 

day as indicator for when to implement softer or harder measures in this policy. 

Similar to the mitigation policy, we determine parameter input values of the measures school 

openings, catering services openings, event allowance, and the factors staying home behaviour and 

traveling behaviour based on signal values in Table 18, and we use input values from Table 17. For 

curbing this will also be explained in more depth in Section 5.2.3. Since curbing requires a high testing 

capacity to quickly identify infected cases, we simulate this policy with a high number of tests 

(specification of number of tests per date in Appendix K). Besides, we use the same values for the 

measure facemasks as actually implemented. In Appendix L, we provide the input values of this policy 

for the system dynamics model per date. Similar to the mitigation policy, we start implementing 

lockdown measures on 15 March just like in reality.  

Policy 4: Elimination 

With this policy, we implement the strictest input values for all measures, meaning input values of all 

measures are 5. We assume that wearing facemasks is strongly urged in the first month (input value 

4), from 12 March to 12 April, and mandatory thereafter (input value 5). Testing capacity is set high, 

to help quick tracking of infected cases. In practice this would mean that lockdown measures are 

implemented in the entire period. 

Policy 5: Wearing facemasks 

With this policy, we test what happens when wearing facemasks is mandatory in the entire period and 

when facemasks are not implemented at all. For the first, we assume a strong urge for wearing 

facemasks in the first month and mandatory wearing of facemasks thereafter. We do this because in 

reality it took some time to make wearing facemasks mandatory, due to government regulations. The 

values of all other parameters remain the same as in reality. 

Policy 6: Testing capacity 

With this policy, we test the effect of low testing capacity and of high testing capacity on spread. With 

a low testing capacity, the number of tests per week remains low in the whole simulated period. With 

a high testing capacity, the number of tests per week quickly becomes high. Input values of all other 
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parameters remain the same as in reality. In Appendix L, development of values for the number of 

tests is provided per week. Here we distinguish actual testing capacity, low testing capacity, and high 

testing capacity.  

An important parameter that influences the outcome of this policy is the fraction of confirmed cases 

that enters quarantine. A higher quarantine fraction means more confirmed cases in self-quarantine. 

We keep the quarantine fraction the same when modelling this policy. In the sensitivity analysis we 

consider changes in the quarantine fraction.  

5.2.3 Input values for mitigation and curbing policy 
In the previous section we mention that mitigation acts according to signal values of the number of 

hospital admission and IC occupations and curbing according to signal values of the number of 

confirmed cases. In this section we explain how we model these policies in the system dynamics model. 

Parameter values per risk level 

In order to model the mitigation and curbing policy proposed by Red Team, we use the route map 

(“routekaart”) of the Dutch government (Rijksoverheid, 2020g). The Dutch government uses this route 

map to determine what measures to apply. This route map consists of five risk levels. These risk levels 

indicate the measures that are implemented by the government when spread of the virus is in a certain 

state. The five risk levels are alert (“Waakzaam”), alarming (“Zorgelijk”), serious (“Ernstig”), very 

serious (“Zeer ernstig”), and lockdown. In Table 17, we establish the values each measure should have 

per risk level. This is in accordance with the values per risk level in the route map of the Dutch 

government and the parameter values in Table 6. 

Table 17 Parameter values of measures per risk level 

 
Before first 
measures 

Alert Alarming Serious Very 
serious 

Lockdown 

School 
openings 

1 2 2 3 4 5 

Catering 
service 
openings 

1 2 3 4 5 5 

Event 
allowance 

1 1 2 3 4 5 

Traveling 
behaviour 

1 0.5 0.5 0.3 0.3 0.2 

Staying home 
behaviour 

0 4.5% 4.5% 9% 13.5% 18% 

 

Values for traveling behaviour and staying home behaviour are not in the route map. The values we 

establish for these parameters are approximations, based on observed values from the past. The 

average values of staying home behaviour range from 0 to 18%, as we observe in Figure 19. Since we 

do not observe a clear pattern in the past for the serious, very serious and lockdown risk level, we 

assume a linear increase in staying home behaviour when going one risk level to the right. This way, 

the percentage of people staying home increases with 4.5% when we apply stricter measures (one risk 

level to the right) and decrease with 4.5% when we apply softer measures (one risk level to the left). 

We do observe similar values in the past for the alert and alarming risk level. For this reason, we 

assume the same percentage of people staying home in the alert and the alarming level.  
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For traveling behaviour we observe a pattern in the past (see Figure 20). Before any measures were 

implemented, traveling behaviour is 1 (baseline). During the first and second lockdown, traveling 

behaviour approaches 0.2. In other risk levels, values of traveling behaviour vary between 0.5 and 0.3.  

Indicator signal values per risk level 

Besides the measures that have to be implemented in each risk level, the values that indicators are 

allowed to take in each risk level are determined by the Dutch government. These so-called “signal 

values” are provided in Table 18. We assume that measures from a lower or higher risk level can only 

be implemented when measures of the current risk level are implemented for at least two weeks. We 

do this, because effects of adjusted measures are not immediately visible. 

Table 18 Signal values of indicators per risk level 

 
Alert Alarming Serious Very 

serious 
Lockdown 

Number of 
confirmed cases 

< 1,218 p/d 
(< 7 per 
100,000 
residents) 

1,218 – 
3,654 
(7 – 21 per 
100,000 
residents) 

3,654 – 
6,264 p/d 
(21 – 36 
per 
100,000 
residents) 

6,264 – 
8,700 p/d 
(> 36 per 
100,000 
residents) 

> 8,700 p/d 
(> 50 per 
100,000 
residents) 

Reproduction rate < 1 ≈ 1 > 1 > 1 n/a. 

Hospital 
admissions 

< 40 (p/d) < 40 (p/d) 40 – 80 
(p/d) 

> 80 (p/d) > 160 (p/d)  

IC occupations < 10 (p/d) < 10 (p/d) 10 – 20 
(p/d)  

> 20 (p/d) > 40 (p/d) 

 

For all risk levels but lockdown, value ranges in Table 18 are directly gathered from the route map of 

the government (Rijksoverheid, 2020g). For risk level lockdown we estimate signal values, because the 

route map does not provide these values. We do this based on signal values in other risk levels and 

observed values from the past, which we describe below. 

For the number of confirmed cases, the difference in number of cases per 100,000 residents is mostly 

around 14 or 15 cases when going one risk level to the left or right. Besides, the actual number of 

confirmed cases per day was between 8,000 and 9,000 just before the implementation of a second 

lockdown on 15 December. The number of confirmed cases before the first (intelligent) lockdown was 

very low due to a low testing capacity, and is therefore not considered to provide a good estimate. For 

these reasons, we assume that lockdown measures apply when the number of confirmed cases is 

above 8,700 (50 cases per 100,000 residents).  

On 16 March and 12 December, the number of hospitalizations was around 160. There is not a clear 

value for the number of IC occupations just before implementation of lockdown measures. In the route 

map, signal values for number of hospitalizations and IC occupations seem to be doubled when going 

one risk level to the right (stricter measures). For these reasons, we assume lockdown measures are 

implemented when the number of hospitalizations and IC occupations is once as high as in the very 

serious risk level. This means that lockdown measures apply when the number of hospital admissions 

is above 160 and the number of IC occupations is above 40 per day. 
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Modelling the mitigation policy 

Above we explain how we use signal values to determine values of input parameters. According to 

these signal values, measures of the alert or alarming risk level apply when the number of hospital 

admissions on a day is below 40 and the number of IC occupations is below 10. Because the signal 

values for these two risk levels are the same, we assume that the alert risk level can only be reached 

when alarming measures have been implemented for at least one month. We act according to the 

serious risk level when the number of hospital admissions is between 40 and 80 and the number of IC 

occupations is between 10 and 20, the very serious risk level when the number of hospital admission 

is above 80 and the number of IC occupations is above 20, and the lockdown risk level when the 

number of hospital admission is above 160 and the number of IC occupations is above 40 per day.  

Modelling the curbing policy 

To determine the performance of curbing, we distinguish three ways to implement the curbing policy, 

which we refer to as curbing type 1, curbing type 2 and curbing type 3. The first type uses the signal 

values for confirmed cases in Table 18 to determine when to implement certain measures. The second 

type uses the signal values in Table 19. This means that when the number of confirmed cases increases 

above 1,218 per day, we apply lockdown measures until the number of cases declines below 1,218 

again. When the number of confirmed cases per day is below 1,218, we apply the measures of the 

alert risk level. In the third type we only implement short and hard lockdowns of two weeks with two 

weeks of measures from the alert level thereafter.  

Table 19 Adjusted signal values per risk level for curbing type 2 

 
Alert Alarming Serious Very 

serious 
Lockdown 

Number of 
confirmed cases 

< 1,218 p/d 
(< 7 per 
100,000 
residents) 

   > 1,218 p/d 
(> 7 per 
100,000 
residents) 
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5.3 Performance of the policies to prevent spread of COVID-19 
In this section, we provide and evaluate results of all proposed policies from Section 5.2.1. We evaluate 

performance of the policies based on the number of infected cases and the number of days with strict 

measures, which we do in Section 5.3.2. We do not discuss results of the indicators deaths, 

hospitalizations, and IC occupations, since during validation we found that the development of these 

indicators deviates a little from actual development. Besides, these are fractions of the number of 

infected cases and thus the relative performance of these indicators is similar to the relative 

performance of infected cases. The indicator number of confirmed cases provides a wrong indication 

of spread when testing capacity is low and is therefore not used to indicate spread. This indicator can 

be used in the discussion, since in reality this indicator is used to express the number of infections.  

5.3.1 Performance of policies 
In Table 20, we provide the value of all indicators on 31 November per policy. We refer to the “actual 

policy” as the policy implemented by the Dutch government. In Table 21, we provide the number of 

days with strict measures per policy. Strict measures are considered to be measures of the serious, 

very serious, or lockdown risk level. We cannot provide a clear specification of the days with strict 

measures for the actual policy, facemasks, and testing capacity, because the Dutch government did 

not determine the policy exactly according to the route map in reality. 

Table 20 Performance of indicators on 31 November per policy 

Policy  Total 
infected 

Total 
confirmed 

Total 
deaths 

Total 
hospitalizations 

Total IC 
occupations 

Policy 0  Actual policy 3,006,600 529,719 9,583 27,548 5,510 

Policy 1 Doing nothing  10,989,500 5,869,190 40,619 106,962 21,392 

Policy 2 Mitigation  2,734,690 265,183 9,398 25,839 5,168 

Policy 3 Curbing type 1 4,417,520 1,016,010 15,502 41,952 8,390 

Curbing type 2 1,630,540 255,426 6,044 15,878 3,176 

Curbing type 3 2,436,290 444,190 9,098 23,817 4,763 

Policy 4 Elimination  597,688 46,254 2,244 5,856 1,171 

Policy 5 Wearing 
facemasks ever 

7,607,750 2,644,600 28,001 74,007 14,801 

Wearing 
facemasks 
never 

1,640,820 198,467 5,795 15,713 3,143 

Policy 6 Testing capacity 
high 

880,337 134,932 3,300 8,620 1,724 

Testing capacity 
low 

3,694,050 311,810 11,102 33,074 6,615 

 
Table 21 Number of days with strict measures per policy 

 

 

 

 

 

 

Next to total values of indicators on 31 November, we graphically show development of the total 

number of infected cases and the number of confirmed cases per day from 2 February until 31 

November (in Figure 33 and 34), to get better insight in the relative difference in performance of 

policies. We observe in Figure 34 that the number of confirmed cases for doing nothing is very high in 

Policy Days with 
strict 
measures 

Actual policy +/- 200 

Doing nothing 0 

Mitigation 260 

Curbing type 1 157 

Curbing type 2 96 

Curbing type 3 140 

Elimination 264 

Facemasks +/- 200 

Testing capacity +/- 200 
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the first peak, causing development of other policies to be somewhat less clearly visible. The remaining 

policies show similar heights of peaks, but on different moments in time. 

 

 

Figure 33 Total infected cases of all policies 

Figure 34 Number of confirmed cases per day of all policies 
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5.3.2 Conclusion of performance of policies 
Below we shortly discuss the results of the non-feasible and feasible policies to prevent spread of 

COVID-19, to obtain a better understanding in the performance of all policies. Non-feasible policies are 

considered to be elimination and do nothing. 

Performance of non-feasible policies  

As we expect, the policy elimination results in the lowest values of spread and the policy doing nothing 

results in the highest values of all policies. When the government would have done nothing to prevent 

spread, the total number of infected cases on 31 November would be almost 11,000,000 and the total 

number of deaths would be 40,619. When the government would have chosen to eliminate the virus, 

the total number of infected cases would be 597,688 and the total number of deaths 2,244. We assume 

that elimination and doing nothing are not feasible policies to prevent COVID-19 from spreading. Both 

policies would cause major damage to public health, healthcare, and economy. Elimination because all 

schools, catering service, and events would be closed for a long time, and doing nothing because 

hospital pressure would overflow.  

Performance of feasible policies  

We observe in Table 20 that when testing capacity would have been high from the start of the 

pandemic, observed spread with the actual policy would have been greatly reduced. High testing 

capacity shows after elimination lowest values for spread of all policies, with curbing type 2 thereafter. 

The number of days with strict measures on the other hand is relatively high for the policy high testing. 

Curbing type 2 shows the lowest number of days with strict measures of all feasible policies. 

The policy with high testing capacity results, after elimination, in the lowest total number of infections 

(880,337). This is more than 2,000,000 less than the number of infected cases with the actual policy. 

The policy with low testing capacity results, after doing nothing and curbing type 1, in the highest total 

number of infected cases (3,694,050), which is approximately 700,000 more than the actual number 

of infected cases. Whereas the number of infected cases with high testing and low testing differ 

greatly, the total number of confirmed cases for the policy with high testing capacity is just a little 

lower than the policy with a low testing capacity (134,932 versus 311,810). The number of days with 

strict measures of both policies is equal to the number of days with strict measures in the actual policy. 

Remarkably, the policies that use indicator values from the route map of the government to determine 

the policy, mitigation and curbing type 1, show the highest number of days with strict measures (of 

feasible policies). The policy mitigation results in a higher number of days with strict measures than all 

three types of the curbing. This could indicate that the signal values from the route map are not 

sufficient to efficiently prevent spread of the virus. Curbing type 2 and 3 apply only lockdown measures 

and have significantly less days with strict measures. At the same time, the values of all indicators for 

curbing type 2 and curbing type 3 are lower than the values of indicators from the policy mitigation. 

Consequently, the number of hospitalizations, IC occupations, and deaths observed with these policies 

is low. Curbing type 3 has more days with lockdown measures and results in somewhat higher values 

for indicators than curbing type 2, but performs better than mitigation type 2 and the actual policy.  

According to the linear regression model, the measure facemasks has a lot of impact on the spread of 

the virus. When facemasks would have been implemented from the start of the pandemic, the total 

number of infected cases would have been more than once as high than with the actual policy. When 

facemasks would not have been implemented at all, the number of infected cases would have been 

almost half of the number of cases from the actual policy. We believe that these results are 

remarkable. In the discussion we discuss this observation in more depth.  
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5.4 Sensitivity analysis 
In this section, we test the robustness of our model by making changes in values of sensitive variables. 

Sensitive variables are parameters that can significantly change the outcome of the model. We test to 

what extent this is the case for the basic reproduction rate, initial infected cases, quarantine fraction, 

and the fraction of asymptomatic cases. These parameters are considered sensitive, because values of 

these parameters vary a lot in literature. We determine robustness of our model with help of Monte 

Carlo simulation methods. Next to robustness of our model, we test robustness of the results from 

Section 5.3 by making changes in the quarantine fraction. We consider only this parameter because it 

is the only sensitive input parameter that can be influenced in reality. Other (calibrated) input 

parameters (incubation period, infectious period, basic reproduction rate, initial infected and the 

infection fatality ratio) cannot be influenced. 

5.4.1 Monte Carlo simulation 
Monte Carlo simulation methods are a way of computing results that rely on repeated random 

sampling. These methods are especially useful when studying systems that have a high number of 

degrees of freedom. They are able to provide a routinely better prediction than human intuition. 

Monte Carlo is a good method to apply on our model, since our model relies on many uncertain inputs 

(Vensim, n.d.). The program Vensim provides multiple options for setting up a sensitivity analysis. Two 

of these options are univariate sensitivity and multivariate sensitivity. With univariate sensitivity 

analysis we are able to study the effect of changing one parameter’s input value. To determine input 

values, the program automatically samples a set of numbers from a bounded domain that can be 

determined on forehand. With multivariate sensitivity analysis we are able to study the effect of 

changing multiple parameter’s input values at the same time. In Section 5.4.2, we apply multivariate 

analysis to see how sensitive the model is when we simultaneously change parameters for the actual 

policy. We apply univariate sensitivity analysis in Section 5.4.3 to get more insight in sensitivity of 

individual parameters. In both the univariate and multivariate sensitivity analysis, we run 500 

simulations per changing parameter. In the multivariate sensitivity analysis this results in 1500 

simulations in total. As output, Vensim graphically provides confidence intervals for indicator(s) of 

interest. From all simulations, 100% of the simulation are in the grey part, 95% in the blue part, 75% in 

the green part, and 50% in the yellow part that we observe in the sensitivity graphs. For each sensitivity 

test, we only provide the sensitivity graph of indicator(s) that are considered to be relevant. 

5.4.2 Multivariate analysis 
Here we change the basic reproduction rate, initial number of infected cases and quarantine fraction 

at the same time. Since our model is very sensitive, we let Vensim randomly pick numbers from a 

normally distributed domain. We do this because we want the program to know which values are likely 

to fit reality. In Table 22, we provide the distribution of the parameters that are considered in this 

multivariate sensitivity analysis. We make slight changes to the calibrated input values of the basic 

reproduction rate, initial infected cases, and quarantine fraction. Since we initially do not distinguish 

between asymptomatic and symptomatic cases in our model, this parameter is not taken into account 

in the multivariate analysis. We study what happens when we adjust our assumption of the fraction of 

asymptomatic cases with univariate analysis in Section 5.4.3.  

Table 22 Distributions for parameters in multivariate analysis 

Parameter Current input value Distribution {min; max; mean; 
standard deviation} 

Basic reproduction rate 3 {2.5; 3.5; 3; 0.15} 

Initial infected cases 600 {100; 1,100; 600; 100} 

Quarantine fraction 52.5% {0%; 100%; 50%; 10%} 
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In Appendix M, sensitivity results of the multivariate analysis can be found for all indicators. We 

observe that the simultaneous changes made in input values of the basic reproduction rate, initial 

infected cases, and the quarantine fraction have a major impact on the outcome of all indicators. 

According to the sensitivity graphs, spread in the Netherlands would have stopped after the first peak 

when the reproduction rate lies around 2.5, the initial number of infected cases is low, and the 

quarantine fraction approaches 100% (assuming it would not come back to the Netherlands another 

time). When the reproduction rate approaches 3.5, the initial number of infected cases is high, and the 

quarantine fraction approaches 0%, spread could become once as high as actual values. Results of this 

multivariate analysis are discussed in more depth in Appendix M. 

5.4.3 Univariate sensitivity analysis 
With help of univariate sensitivity analysis, we consider changes of input values for one parameter at 

the time. We do this for the basic reproduction rate, the number of infected cases, the quarantine 

fraction and the fraction of asymptomatic cases. Of these parameters, only the quarantine fraction can 

be influenced in reality. For the parameters that cannot be changed in reality we randomly pick values 

from a pre-specified domain. For the quarantine fraction we also use specific values to get insight in 

the effect of this parameter on the outcome of feasible policies. 

Basic reproduction rate and initial infected cases 

According to the RIVM, the basic reproduction rate ranges between 2 and 2.5. The basic reproduction 

rate in our model was calibrated to be 3. The initial number of infected cases was estimated to be 111 

on 14 February, based on an IFR of 0.9% and the first confirmed death on 6 March, and calibrated to 

be 600. When we use a different basic reproduction rate and/or initial infected cases, impact on spread 

is large. We apply four sensitivity tests and compare their outcomes to get more insight in the effect 

of these parameters. Specification of these tests is provided in Appendix N. In the figures in Appendix 

N, we provide the number of confirmed cases per day from all four sensitivity tests. 

We conclude from these sensitivity tests that when the reproduction rate lies between 2 and 2.5, the 

number of infected cases on 2 February has to be a lot higher than 600 to obtain actual spread. Since 

we think it would be strange that all these cases remained unidentified until 27 February, we believe 

that it is more likely to have a higher basic reproduction rate than a higher number of infected cases 

on 2 February. We believe that the combination of the calibrated input values that are used to simulate 

the policies in Section 5.2, a basic reproduction rate of 3 and 600 infected cases on 2 February, is a 

likely combination of input values.  

Quarantine fraction 

In Section 5.3, we observe that the number of tests per day has major effect on spread, based on the 

outcomes of the policy testing capacity. The number of tests per day affects the number of confirmed 

cases and consequently the number of cases entering self-quarantine. To analyze the effect of the 

fraction of confirmed cases that is effectively quarantined in more depth, we vary the quarantine 

fraction in several sensitivity tests. Specification of these tests is provided in Appendix O. 

We see that when we vary the quarantine fraction between 0% and 100%, this has major impact on 

spread. The number of confirmed cases per day ranges from approximately 300 to 20,000 is the first 

peak and from zero to almost 68,000 in the second peak. The total infected cases ranges from 

approximately 500,000 to 7,500,000 and the total deaths ranges from approximately 2,000 to 26,000. 

We observe that all policies show the lowest total number of infected cases with a quarantine fraction 

of 80%. These sensitivity tests show that when the number of tests per day and the quarantine fraction 

are both high, relatively low spread and a high number of days with soft measures (alert or alarming 

risk level) are achieved at the same time. No matter the policy that is chosen.  
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Fraction of asymptomatic cases 

We determine the impact of the fraction of asymptomatic cases by changing the infectious period. This 

means that when the fraction of asymptomatic cases would be higher than our assumption (40%), the 

average infectious period would become lower than 6 days. When the fraction of asymptomatic cases 

would below 40%, the average infectious period would become higher than 6 days.. In the univariate 

analysis, we consider two sensitivity tests. In the first we randomly pick values for the infectious 

duration from a normally distributed domain with mean 7.4 days, standard deviation of 1 day, a 

minimum of 4.4 days, and a maximum of 10.4 days. In the second test we consider a mean of 6 days, 

standard deviation of 0.2 days, a minimum 5 days and maximum 7 days. In Appendix P, we explain 

these choices in more detail, and we provide the sensitivity graphs for these two sensitivity tests.  

Based on the results of these tests we conclude that the infectious period and thus the fraction of 

asymptomatic cases is a sensitive parameter in our model. Small changes significantly influence the 

outcome. We believe the considerable difference between duration of the infectious period according 

to our findings in literature and duration of the infectious period in our model can have two causes. It 

could mean that infected cases are on average more infectious around symptom onset than currently 

found in literature, or it could mean that fraction of the number of cases without symptoms or with 

soft symptoms is higher than currently assumed in literature. 

5.5 Conclusion 
Now we answer research question 4: “What policy can effectively reduce spread of the virus in the 

Netherlands?” 

After validating the model in Section 5.1, we propose six policies to prevent spread in Section 5.2. 

These are doing nothing, mitigation, curbing, elimination, facemasks, and testing capacity. Doing 

nothing and elimination are not considered to be feasible for the Netherlands, since these policies 

would cause major to public, health, healthcare, and economy. Mitigation accepts circulation of the 

virus to a certain extent, while curbing strives for little infections as possible. We let mitigation 

determine the policy based on signal values for the number of hospital admissions and IC occupations, 

and curbing on signal values for the number of confirmed cases per day. The government developed a 

route map where these signal values are provided. We transform this route map by removing 

measures we do not consider (see Table 18). The measures implemented when certain signal values 

are reached are provided in Table 17. For curbing we consider two different versions additionally, that 

consider different signal values to determine the policy. These two versions, curbing type 2 and curbing 

type 3, only apply strict measures. Results of the system dynamics model show that curbing type 2 and 

curbing type 3 both outperform mitigation and curbing type 1 in terms of spread and number of days 

with strict measures. Curbing type 2 and curbing type 3 show the lowest number of days with strict 

measures of all policies. The policy with high testing capacity shows, after elimination, the lowest 

number of infected cases, while the policy with low testing capacity shows, after doing nothing and 

curbing type 1, the highest number of infected cases. The number of days with strict measures with 

the policy testing capacity is relatively high. Facemasks have a significant impact on spread in our 

model, yet we question this outcome. Results are discussed in more depth in the next chapter. 

The sensitivity analysis shows that our model is very sensitive. Small changes in input values of 

parameters can have significant impact on spread. As an example, to mimic spread, the basic 

reproduction rate has to be higher than 2.5, or the initial infected cases on 2 February has to be higher 

than 1,000. The last is considered to be unlikely, and we thus assume a basic reproduction rate of 3 

with 600 initial infected cases. Furthermore, we observe the quarantine fraction to have a significant 

impact on the performance of policies. This will be discussed in more depth in the next chapter. 
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6. Conclusions & Recommendations 
In this chapter, we answer the main research question:  

What are the impact of government measures on the spread of COVID-19 in the Netherlands and how 

can we learn from this for future outbreaks and pandemics?  

We answer this question in Section 6.1. In Section 6.1.1, we answer how the outcome of our model 

can be used in the Netherlands. In Section 6.1.2, we discuss how our findings can be used in the fight 

against the spread of COVID-19 worldwide, and in Section 6.1.3 to what extent our outcome can be 

used in future pandemics. In Section 6.2, we compare our findings to findings in literature, in Section 

6.3, limitations of our study are provided, and in Section 6.4, our recommendations from this study.   

6.1 Conclusions 

6.1.1 How can the outcome of the models we used in the Netherlands 
Below we first explain how the outcome of our model 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) can be used. Thereafter we provide 

main findings of our proposed policies, to identify the best policy to prevent spread of COVID-19 in the 

Netherlands.  

Outcome of the regression model 

In our system dynamics model, we use the regression model 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) to predict virus transmission. 

Below we shortly describe the main findings from this regression model. 

• The extent to which people adopt government measures has a major impact on the effective 

reproduction rate and consequently on spread. The normalized estimate for 𝛽𝑖 of staying 

home behaviour is -0.663 and the normalized estimate for 𝛽𝑖 of traveling behaviour is 0.477. 

• Stricter measures for event allowance considerably reduce spread, with a normalized estimate 

for 𝛽𝑖 of -0.434. 

• Higher ambient temperature decreases spread, with a normalized estimate for 𝛽𝑖 of -0.339. 

• Stricter measures concerning school openings (normalized estimate for 𝛽𝑖 = 0.265), catering 

services openings (normalized estimate for 𝛽𝑖 = 0.085) and facemasks (normalized estimate 

for 𝛽𝑖 = 0.286) increase spread in our model, which seems not to be in line with our findings in 

literature. We believe the reason for these positive relations is that the effect of a certain 

measure (e.g. school openings) is partially expressed with another variable (e.g. traveling 

behaviour). These interactions can be expressed with interaction terms, yet our interaction 

model is considered to be overfit and is thus not used (discussed in more depth in Section 6.2).  

• Other parameters we study that are not included in this regression model do not show a 

statistically significant relation to the effective reproduction rate, with humidity a p-value of 

0.311 and wind speed a p-value of 0.944. Therefore these parameters are considered to not 

add predictive value for the model.  

Performance of policies 

We propose six policies to prevent spread of the virus, doing nothing, mitigation, curbing, elimination, 

facemasks, and testing capacity. Of these policies, doing nothing and elimination are not considered 

to be feasible, since they would cause major damage to economy and social life. We assess the quality 

of the remaining policies based on spread, with the total number of infected cases on 31 November, 

and based on the number of days with strict measures, considered to be serious, very serious, or 

lockdown measures. Besides the number of infected cases, we provide the number of confirmed cases, 

because this indicator is used to express the number of infected cases by the government. Since this 

indicator can deviate a lot from the number of infected cases, the number of confirmed cases provides 

a distorted view on spread when testing capacity is low. All results are provided in Table 23 per policy. 
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Table 23 Summary of performance per policy 

Policy  Total 
infected 

Total 
confirmed 

Total days 
with strict 
measures 

Policy 0  Actual 
policy 

3,006,600 529,719 +/- 200 

Policy 1 Doing 
nothing  

10,989,500 5,869,190 0 

Policy 2 Mitigation  2,734,690 265,183 260 

Policy 3 Curbing 
type 1 

4,417,520 1,016,010 157 

Curbing 
type 2 

1,630,540 255,426 96 

Curbing 
type 3 

2,436,290 444,190 140 

Policy 4 Elimination  597,688 46,254 264 

Policy 5 Wearing 
facemasks 
ever 

7,607,750 2,644,600 +/- 200 

Wearing 
facemasks 
never 

1,640,820 198,467 +/- 200 

Policy 6 Testing 
capacity 
high 

880,337 134,932 +/- 200 

Testing 
capacity 
low 

3,694,050 311,810 +/- 200 

 

The goal of this study is to reduce the impact of preventive measures on social life and economy and 

to keep hospitals and IC units from overflowing, while effectively reducing spread at the same time. 

We conclude by comparing performance of all policies that implementation of strict measures is useful 

to reduce spread of COVID-19 effectively, especially when these measures are implemented early. 

Besides, we observe that a high testing capacity can really be valuable, but this requires the number 

of infected cases effectively entering self-quarantine to be high enough. We conclude this from our 

findings in the sensitivity analysis, where we compare the effect of a high testing capacity with a 

quarantine fraction of respectively 20%, 52.5% and 80%. The policy with high testing capacity performs 

very well in terms of spread, yet when the quarantine fraction becomes low, curbing type 2, curbing 

type 3 and mitigation outperform this policy. When the quarantine fraction becomes high, policies 

with actual, high, and low testing capacity all outperform remaining policies in terms of spread. Thus 

to effectively reduce spread, high testing capacity and high quarantine fraction together are even more 

important than the strictness and timing of implementation of measures. Yet the number of days with 

strict measures is high for these policies (see Appendix O). We therefore believe curbing type 2 to be 

the best policy to reduce spread. With this policy, strict measures are implemented early and a high 

testing capacity quickly identifies infected cases to effectively reduce spread, and this policy keeps the 

number of days with strict measures relatively low, which is better for economy and social life.  

Remaining important findings from our study are:  

• Since the number of days with strict measures with the policies mitigation and curbing type 1 

are considerably higher than with curbing type 2 and curbing type 3, we believe the signal 

values in the route map of the government are not sufficient to reduce spread quickly.  

• We observe the policy facemasks to provide remarkable values for the number of infected 

cases. The cause of this remarkable performance is its estimated effect in the regression 

model, which we believe is somewhat off. This will be discussed in more detail in Section 6.3. 

• The calibrated number of infected cases on 31 November is significantly higher than the 

estimated number of infected cases on 31 November.  
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6.1.2 How can the outcome of the model be used worldwide 
The regression models in this study are developed with data from spread in the Netherlands. This 

means that the estimated effects of key factors and measures on the spread of COVID-19 are 

specifically applicable for the Netherlands. We do not study to what extent estimated effects of these 

key factors and measures apply for other populations, while the effect of measures can have a 

drastically different impact when implemented in a different country (Haug et al., 2020). Differences 

in effects of parameters between countries can be caused by many factors. One of them being 

population density, which we found to have a considerable impact on spread. Another being the age-

distribution of a population. For these reasons, we cannot substantiate how well our model predicts 

spread in other countries. Fortunately, when acquiring data from another population, estimates can 

easily be updated by applying multiple linear regression on new data. Next to the regression models, 

the system dynamics model can easily be adapted to mimic spread for another population. 

Whereas the regression models and system dynamics model might have to be adapted before they 

can be used to mimic spread in another population, we believe that performance of our proposed 

policies can be used in other countries. 

6.1.3 How can the outcome of the model be used in future outbreaks and pandemics 
Just like our regression and system dynamics model can be easily adapted to mimic spread for another 

population, our models can be adapted for future outbreaks and pandemics of different viruses. 

An example for a likely cause of a future outbreak in the Netherlands is a recent change in the 

pandemic of COVID-19, with new variants that have arisen in different parts of the world. The most 

well-known variant in the Netherlands is the VK-variant (VK = Dutch abbreviation for United Kingdom; 

“Verenigd Koninkrijk”), which thanks its name to the place where it was first recognized. This variant 

appeared in the Netherlands in the end of December. The VK-variant is more contagious than previous 

variants in the Netherlands, and according to a recent advice of the Outbreak Management Team 

(OMT), a team who involves identifying and advising on outbreaks and threats of infectious diseases, 

more often leads to symptoms (Rijksoverheid, 2020d). These changes require the basic reproduction 

rate and the average infectious period of this variant to have higher values than calibrated values in 

our model. At moment of writing, the VK-variant is the most common variant of COVID-19 in the 

Netherlands that could, even with stricter measures, lead to a future outbreak. Since these new 

variants could cause new difficulties in handling with spread of COVID-19, a different policy might be 

required. Yet we believe that testing capacity and self-quarantine remain important, if not more 

important. Next to new variants of the virus, the start of vaccination in the Netherlands on 8 January 

could cause a different policy to be more applicable to effectively reduce spread. We do not study 

these changes of COVID-19 in our research. 

In addition to the adaptations we mention in Section 6.1.2, input values for disease factors (i.e. basic 

reproduction rate, initial infected cases, incubation period, infectious period, and fatality ratio) might 

require different input values when we have to deal with a pandemic of a different virus in the future. 
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6.2 Discussion 

6.2.1 Outcome of the regression models 
Findings of Haug et al. (2020) suggest that there exists no magical measure that is able to decrease the 

effective reproduction rate below one on its own. A suitable combination of measures is necessary to 

effectively prevent spread of the virus (Haug et al., 2020). With help of the backward regression 

method, we found the measures adoption of government measures, event allowance, school 

openings,  and facemasks, and the factor temperature together to provide a quite accurate prediction 

of the effective reproduction rate. Due to our particular interest, we added the measure catering 

services openings to this model. In the study of Brauner et al. (2020), who use data from January until 

May 2020, measures that can considerably reduce spread of COVID-19 are school closure, limiting 

gatherings to 10 people or less (i.e. event allowance), and closing face-to-face businesses (e.g. catering 

services). Our findings for school openings, catering services openings, facemasks, and adoption of 

government measures differ somewhat from findings in literature, which we discuss below.   

• School openings: In our regression model, stricter measures concerning school openings 

increase the effective reproduction rate. We did not find any study that has evidence for school 

openings to considerably increase or reduce spread on its own. Recent modelling studies of 

COVID-19 predict that closing schools alone prevents spread much less than other measures 

(Viner et al., 2020). The effect of closing schools even seems to have changed during the 

pandemic (Haug et al., 2020). According to Rozhnova et al. (2020), impact of this measure 

depends on remaining opportunities to reduce non-school-based contacts. If measures other 

than closing schools are undesired or already implemented and the effective reproduction rate 

is still close to 1, the additional benefit of closing schools may be considerable (Rozhnova et 

al., 2020). Since all studies found school closure to decrease the effective reproduction rate, 

which collides with our findings, we believe there exists an interaction between school 

openings and traveling behaviour. We think these two together lead to a negative effect on 

the effective reproduction rate. This assumption can be confirmed by the findings in our 

interaction model, in which we find a statistically significant interaction between the two (see 

Appendix G). Unfortunately, our interaction model does not provide a sufficient prediction for 

the effective reproduction rate and is thus not used in our study. 

• Catering services openings: The effect of catering services openings on spread of COVID-19 is 

low according to 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). According to Brauner et al (2020), closing among others catering 

services has moderate to small effect on spread. Yet in their study, catering services are 

considered to have a high infection risk. We think the reason for our findings to deviate from 

the findings of Brauner et al. (2020) could be caused by the fact that our regression model 

does not have sufficient data to determine the exact effect of closing catering services. This 

means that, similar to the measure school openings, the measure catering services openings 

might express its effect to a certain extent with help of staying home behaviour and/or 

traveling behaviour. In our interaction model there is a statistically significant relation between 

catering services openings and traveling behaviour, which supports this statement. 

• Facemasks: Implementation of facemasks makes the effective reproduction rate increase 

significantly according to 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡). We think the cause for this might be that people perceive 

a significant decrease in preferred distance from another person when this other person wears 

a facemask, in comparison to a person who does not wear a facemask. This assumption is 

supported by several studies (NU.nl, 2020g)(Cartaud, Quesque, & Coello, 2020). However, 

there does not exist clear evidence for facemasks to increase spread either, especially not to 

the extent in our regression model (NU.nl, 2020g). Concluding, there remain many mysteries 

about the working of facemasks still (Tabatabaeizadeh, 2021).  
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• Adoption of government measures: Our model expresses adoption of government measures 

with the parameters staying home behaviour and traveling behaviour. We find that the effect 

of people stay at home has a relatively large impact on the effective reproduction rate. We 

believe the reason for this is that the regression model partially expresses the effect of 

government measures (school openings, catering services openings, event allowance, 

facemasks) with the parameter staying home behaviour, because in reality, more people stay 

at home when government measures become stricter. We assume the same for the parameter 

traveling behaviour. However, traveling behaviour only takes into account the amount of 

traveling with public transport and no other ways of movement, leading to a somewhat smaller 

effect on the effective reproduction rate compared to staying home behaviour (normalized 

estimate 𝛽𝑠𝑡𝑎𝑦𝑖𝑛𝑔 ℎ𝑜𝑚𝑒 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 = -0.663, normalized estimate 𝛽𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 = 0.477). 

The above findings explain the reason for the measures school openings, catering openings, 

and facemasks to be positively related to the effective reproduction rate, while findings in 

literature propose the opposite. In our study, all parameters in 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) are adjusted at the 

same time, and thus the effect of a certain parameter (e.g. school openings) that is partially 

expressed with another parameter (e.g. traveling behaviour) neutralize each other. Despite 

these drawbacks in our linear model, we believe that 𝑅𝑒 𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) is able to provide a valuable 

estimate of the effective reproduction rate for the purpose of our study.  

6.2.2 Outcome of the system dynamics model 

Calibrated settings of input parameters of the system dynamics model 

From all calibrated parameters in our model, we believe the basic reproduction rate and initial number 

of infected cases to be the only parameters that need to be discussed. Findings for the basic 

reproduction rate in our model, calibrated to be 3, deviate from findings of the RIVM, who estimate 

the basic reproduction rate to be between 2 and 2.5. In literature, estimates for the basic reproduction 

rate of COVID-19 vary a lot, especially between countries. In one study, the basic reproduction rate is 

estimated to be 3.15 (He et al., 2020). In another study, the maximum basic reproduction rate in the 

Netherlands is even estimated to be approximately 6 (Linka, Peirlinck, & Kuhl, 2020). Furthermore, 

while the first cases of COVID-19 in the Netherlands were confirmed on 27 February, there exists a 

possibility that the first cases were already infected at the end of January (RTLnieuws, 2020a). Yet exact 

numbers are hard to discover. When the basic reproduction rate in our model is lower, this would lead 

to a higher initial number of infected cases. We cannot substantiate the initial number of infected 

cases to be higher, since we believe it would be rare that more than 600 cases remain unidentified 

until 27 February. For this reason, we believe a basic reproduction rate of 3 with 600 infected cases on 

2 February is an appropriate combination of initial settings to mimic actual spread in the Netherlands. 

Performance of policies to prevent spread 

There is ongoing research about the best policy to prevent spread. While some countries managed to 

effectively reduce spread, other countries were quickly overwhelmed. The Netherlands can be seen as 

one of the overwhelmed countries, being (at day of writing) ranked 75th by the country ranking of the 

Australian Lowy Institute. This institute compares performance of 98 countries with help of an own 

developed index. The relatively bad performance of the Netherlands in comparison to other countries 

could partially be due to population density, since countries with a smaller population generally have 

an advantage to deal with this kind of global crisis (Pandey, 2021). The Lowy Institute found that 

differences in population size between countries revealed the greatest difference in experiences with 

countries (Lowy Institute, n.d.). Unfortunately, this factor cannot be influenced with help of measures. 

Another cause of the low performance by the Netherlands could be timing, because timing of 

implementation can drastically influence the impact of measures (Haug et al., 2020). Or a lack of testing 
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capacity, since it is important to combine measures that prevent spread of COVID-19 with a sufficient 

testing policy and contact tracing of infected cases to end the pandemic (Giordano et al., 2020). Below, 

our findings for strictness of measures, timing of implementation, and for testing capacity are 

compared to findings in literature. 

• Strictness of measures: We observe that strictness of measures influences performance when 

comparing performance of mitigation and curbing type 1 to performance of curbing type 2 and 

curbing type 3. Mitigation and curbing type 1 determine their policy according to the signal 

values from the route map of the Dutch government. These policies both show higher values 

of spread than curbing type 2 and curbing type 3, and at the same time have a higher number 

of days with strict measures. However, mitigation and curbing type 1 apply more measures 

from the serious and very serious risk level, while curbing type 2 and curbing type 3 only apply 

lockdown measures. This indicates that signal values in the route map of the government are 

not sufficient to efficiently reduce spread, which supports the assumptions of Red Team. Red 

Team states that the signal values in the alarming, serious, and very serious risk level are not 

sufficient to come to the alert risk level quickly (RedTeam, 2020). Consequently, measures 

implemented in the risk levels alarming, serious, and very serious of the route map are too soft 

to effectively reduce spread.  

• Timing of measure implementation: When comparing performance of policies, we see that 

implementation of strict measures is useful to reduce spread of COVID-19 effectively, 

especially when they are implemented early. This conforms to the findings of Haug et al. 

(2020), who suggest that one measure can have a drastically different impact when 

implemented earlier or later, and the findings proposed in an article from the NRC (a Dutch 

newspaper), who state among others that a quick and aggressive approach is effective 

(Berkhout, 2021). We observe timing to influence performance in our findings when we 

compare performance of curbing type 2 and curbing type 3. Curbing type 2 leads to both a 

lower number of days with strict measures and lower values for spread than curbing type 3. 

Curbing type 2 implements lockdown measures when the number of confirmed cases rises 

above 870 per day and soft measures when the number of confirmed cases declines below 

870 per day, whereas curbing type 3 implements lockdown measures and soft measures in 

sequence every two weeks. This supports another statement of Red Team, who state that 

working with signal values from the number of confirmed cases works better to prevent spread 

than working with numbers of hospital admissions and IC occupations. Due to quicker 

availability of data for confirmed cases, this leads to better timing of measure implementation.  

• Testing capacity: In accordance with our findings in literature, we observe that testing capacity 

has major impact on spread. One study found that testing is one of the most effective ways to 

manage the pandemic, yet it requires a large testing capacity and consequently many working 

hours. It is therefore important to combine a large testing capacity with other measures (Cui, 

Ni, & Shen, 2021). Several other studies support that it is important to combine measures that 

prevent spread of COVID-19 with a sufficient testing policy and with contact tracing of infected 

cases, to end the pandemic (Giordano et al., 2020). Contact tracing and extensive testing are 

particularly effective when combined with quarantine (Girum, Lentiro, Geremew, Migora, & 

Shewamare, 2020). This is in accordance with our findings the sensitivity analysis. While a high 

testing capacity shows to be very effective, we observe that a high testing capacity with a low 

fraction of infected cases entering quarantine is considerably less effective (Appendix O). 

There remains uncertainty about the magnitude of the effectiveness of testing still, but 

combining early detection, early implementation of quarantine and other measures are 

important to keep spread low (Nussbaumer-Streit et al., 2020)(Fang, Nie, & Penny, 2020).  
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6.3 Limitations 
There remain some limitations in this study: 

• Not all measures that are included in the route map of the government are included in our 

analysis (e.g. sports or the newly implement curfew). Some measures that we do not include 

might show their impact in the regression model with another measure that we do take into 

account, of which we believe facemasks to be the most apparent example. 

• The number of tests on a day is not included in our prediction model for the effective 

reproduction rate, yet we did find a statistically significant relation between the two. 

Unfortunately, we are not able to substantiate the impact of the number of tests and therefore 

excluded the factor from our prediction model. In our current model, the measure facemasks 

shows a relatively high positive effect on the effective reproduction rate. We believe this factor 

might express some part of the impact previously expressed by the number of tests. We think 

a reason for this might be that the regression model wants to express an increase in 

contagiousness of the virus between February and December, or to express that people get 

tired of the pandemic, and uses the number of tests or the measure facemasks to express this 

in the model. Since both the number of tests per day and strictness of the measure facemasks 

(almost) only increase between February and December.  

• In our regression model, we use assigned values 1, 2, 3, 4, or 5 to express the measures school 

openings, catering service openings, event allowance, and facemasks. We believe that this 

expression of government measures can be improved to obtain a better prediction model.  

• We are aware that due to transformations of the virus, our findings might not be totally 

accurate anymore for future outbreaks of COVID-19 in the Netherlands. This is because new, 

more contagious variants of the virus are rising in the Netherlands and the same strict 

measures have less effect on spread. However, we believe that, at moment of writing, our 

findings for a remain valuable. Especially for the testing capacity and quarantine fraction. 

• Lastly, clear communication is a vital part of the policy to prevent spread of COVID-19 

(Anderson et al., 2020; Berkhout, 2021). The Dutch government has not always been clearly 

communicating with the Dutch population (e.g. when facemasks were recommended at some 

places but very few people actually used them at the beginning). Clear orders of the 

government seem to be most effective to reduce the effective reproduction rate for 

approximately two weeks, while recommendations seem to be not effective at all. Also Red 

Team believes clear communication to have an important impact on the effectiveness of the 

policy to reduce spread. We did not study the effect of clear communication, but we believe 

that clear communication can affect performance of policies considerably.  

6.4 Recommendations 
While the virus of COVID-19 is changing with upcoming new variants, we believe the following two 

recommendations remain important to make impact of measures on spread in the Netherlands most 

effective. Combining recommendation 1 and 2 is key to limit damage to public health and economy.  

1) Implement strict measures early 

Strict measures are most effective when implemented early to prevent a quick rise in the number of 

infected cases. We recommend to use signal values of the number of confirmed cases per day to base 

the policy on, and to lower the signal values per risk level in the route map of the government. 

2) Invest in a high testing capacity and high quarantine fraction simultaneously  

Combining a high number of tests with a high quarantine fraction shows to be very effective to prevent 

spread. A high number of tests with a low quarantine fraction is considerably less effective, which can 

even affect effectiveness of the implemented policy. 
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Appendix 

A. Spread of COVID-19 provinces 

Start first peak 
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End first peak 
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Start second peak 
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B. Development of the case fatality rate in the Netherlands 

 

 

C. Population density versus spread per province 
 

Province Share of 

infections 

per 

province  

Share of 

infections 

per province 

(adjusted) 

Share of 

hospitalizations 

per province 

Share of 

hospitalizations 

per province 

(adjusted) 

Share of 

per 

deaths 

province 

Share of 

deaths 

per 

province 

(adjusted) 

Groningen 0.01 0.03 0.01 0.01 0.00 0.01 

Friesland 0.01 0.04 0.01 0.03 0.01 0.03 

Drenthe 0.01 0.03 0.01 0.03 0.01 0.02 

Overijssel 0.04 0.08 0.05 0.07 0.05 0.08 

Flevoland 0.02 0.04 0.02 0.04 0.02 0.03 

Gelderland 0.10 0.16 0.12 0.18 0.11 0.16 

Utrecht 0.08 0.06 0.08 0.05 0.07 0.05 

Noord-

Holland 

0.20 0.12 0.14 0.08 0.13 0.07 

Zuid-

Holland 

0.30 0.14 0.20 0.08 0.22 0.09 

Zeeland 0.01 0.04 0.01 0.03 0.01 0.03 

Noord-

Brabant 

0.15 0.19 0.22 0.25 0.25 0.28 

Limburg 0.06 0.08 0.13 0.14 0.12 0.14 
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D. Defining values of measures 
Measure Value Reasoning Specification 

School 

openings 

1 No measure Normal education. Fully physical. 

 3 From 12 to 15 March, universities suspend 

physical education.  

Partially physical, partially non-physical 

education / Approx. half of schools 

opened. 

 5 After 15 March all schools close until 12 

May, assigned value is 5 (lockdown 

measure).  

All schools closed / only online education. 

 4 At 12 May primary schools open. Mostly non-physical education /  most 

schools closed. 

 3 At 2 June secondary schools also open. Partially physical, partially non-physical 

education / Approx. half of schools 

opened. 

 2 At 15 June universities are allowed to 

partially open for practical education and 

exams. 

Mostly physical education / Most schools 

open. 

 5 At 8 July all schools close due to summer 

holidays, the value becomes 5 (hard 

measure) since no contact anymore at 

schools.  

All schools closed / only online education. 

 3 At 17 August some primary and secondary 

schools open again. 

Partially physical, partially non-physical 

education / Approx. half of schools 

opened. 

 2 On 1 September universities are also 

open again and value 2 is assigned until 

16 December.  

Mostly physical education / Most schools 

open. 

 4 Two days before the start of the Christmas 

holidays, the primary and secondary 

schools closed. This was on 16 December 

Mostly non-physical education /  most 

schools closed. 

 5 On 18 December all schools and 

universities closed due to the Christmas 

holidays and the stricter government 

measures. 

All schools closed / only online education. 

Catering 

services 

openings 

1 No measure; until 16 March All catering services normally opened. 

 5 Every catering service is closed until 1 

June 

All catering services closed. 

 3 On 1 June catering services opened with 

moderate capacity/strict rules. 

All catering services opened, closing at 

12 PM. 

 4 On 28 September catering services have 

to close at 22 o’clock 

All catering services opened, closing at 

10 PM.  

 5 On 13 October all catering services close All catering services closed. 

Event 

allowance 

1 No measure All events allowed. 

 3 At 12 March events and gatherings with 

more than 100 persons are cancelled until 

23 March. 

Big events prohibited. 

 5 After 23 March all events are prohibited. 

Until 1 June. 

All events and gatherings are prohibited. 

 4 From 1 June until 1 July, gatherings with a 

maximum of 30 people are allowed and 

outside activities may find place with a 

maximum of 250 people. 

Events prohibited and gatherings with 

maximum number of people.  

 3 From 1 July inside activities do not have a 

maximum allowed number of people 

anymore. Yet people do have to stay on 

distance from each other. 

Big events prohibited. 
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 4 On 20 September measures are sharper. 

People were only allowed to meet with 

maximum 50 people (and from 1 October 

a maximum of 30 persons inside and 40 

persons outside). 

Events prohibited and gatherings with 

maximum number of people.  

 5 On 13 October all events prohibited. All events and gatherings are prohibited. 

No maximum. 

Facemasks 1 No measure; until 1 June No facemasks. 

 2 From 1 June wearing facemasks was 

obliged in public transport.  

Facemasks in public transport only. 

 3 From 28 September in some regions 

people were urged to wear facemasks 

Urge to wear facemasks.  

 

 4 From 13 October the government strongly 

urged people to wear facemasks in all 

public spaces. 

Strong urge to wear facemasks in all 

public spaces.  

 

 5 On 1 December, wearing facemasks 

became mandatory. 

Facemasks mandatory in all public 

spaces. 
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E. Calculated effective reproduction rate in R 
Above figure is based on the number of infections, beneath based on the number of hospitalizations. 
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F. Input data for multiple regression  

  

Parameter Values Value 
range 

Reproduction 
rate 

Numeric Min: 0.600 
Max: 3.270  
Mean: 
1.085 

Relative 
humidity 

Percentage Min: 38 
Max: 96 
Mean: 75 

Average 
temperature 

Degrees Celsius Min: 0.9 
Max: 27.0 
Mean: 12.9 

Maximum 
temperature 

Degrees Celsius Min: 3.7 
Max: 34.6 
Mean: 17.4 

Wind speed 0.1 meter/second Min: 9 
Max: 98 
Mean: 36 

Behaviour: 
staying at 
home 

Percentage Min: 0.000 
Max: 0.174  
Mean: 
0.078 

Behaviour: 
traveling 

Percentage Min: 0.115 
Max: 1.000 
Mean: 
0.413 

School 
openings 

I: Normal education. Fully physical. 
II: Mostly physical education / most schools open. 
III: Partially physical, partially non-physical education / Half of schools 
opened. 
IV: Mostly non-physical education / most schools closed. 
V: All schools closed / only online education. 

40 
91 
30 
44 
99 

Catering 
service 
openings 

I: All catering services normally opened. 
II: All catering services normally opened with distancing measures. 
III: All catering services opened, closing at 12 PM. With distancing 
measures. 
IV: All catering services opened, closing at 10 PM. With distancing 
measures. 
V: All catering services closed. 

44 
0 
121 
14 
125 

Event 
allowance 

I: All events allowed. 
II: Some events cancelled. 
III: Big events prohibited. 
IV: Events prohibited and gatherings with maximum number of 
people. 
V: All events and gatherings are prohibited. No maximum. 

40 
11 
82 
53 
118 

Facemasks I: No facemasks. 
II: Facemasks in public transport. 
III: Urge to wear facemasks in all public places. 
IV: Strong urge to wear facemasks in all public places. 
V: Facemasks mandatory in all public places. 

121 
119 
16 
48 
0 

Number of 
tests 

Numeric Min: 2,857 
Max: 
45,912 
Mean: 
17,695 
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G. Linear and Interaction regression model 
Linear regression model (after including catering service openings) 

Predictor                                 Estimate Std. Error p-value 

Intercept 1.220 0.177 3.80e-11 *** 

Average temperature -0.013 0.003 8.91e-06 *** 

Staying home behaviour -4.179 0.621 1.06e-10 *** 

Traveling behaviour 0.578 0.176  0.001 **  

School openings 0.066 0.015 8.41e-06 *** 

Catering services 0.021 0.020 0.280 

Event allowance -0.109 0.017 8.99e-10 *** 

Facemasks 0.095 0.014 3.79e-11 *** 

 

Polynomial regression model 

Predictor                                 Estimate Std. Error p-value 

(Intercept)           -3.688 2.017  0.069 .   

Wind speed             -0.058 0.018 0.001 **  

Staying home behaviour        67.41 11.54 1.67e-08 *** 

Traveling behaviour -9.939 3.108 0.002 **  

School openings 11.14 3.37  0.001 **  

Event allowance  -2.561 0.527 2.11e-06 *** 

I(Average temperature^2)         -0.003 0.001 0.003 **  

I(Average temperature^3)            0.000 0.000 0.004 **  

I(Average temperature^4)           0.000 0.000 0.002 **  

I(Wind speed^2)         0.002 0.001  0.001 **  

I(Wind speed^3)      0.000 0.000 0.002 **  

I(Wind speed^4)        0.000 0.000  0.003 **  

I(Staying home behaviour^2)   -1160 198 1.54e-08 *** 

I(Staying home behaviour ^3)     7809 1407 7.53e-08 *** 

I(Staying home behaviour ^4)   -18180 3472 3.59e-07 *** 

I(Staying home behaviour ^2)  41.61 9.67 2.46e-05 *** 

I(Staying home behaviour ^3)  -65.33 13.21 1.42e-06 *** 

I(Staying home behaviour ^4)   34.57 6.46 1.99e-07 *** 

I(School openings^2)            -5.096 1.608  0.002 **  

I(School openings^3)            1.000 0.326 0.002 **  

I(School openings^4)          -0.071 0.024 0.003 **  

I(Catering services openings^2)          0.544 0.106 5.76e-07 *** 

I(Catering services openings^3)           -0.105 0.021  6.41e-07 *** 

I(Event allowance^3)              0.064 0.014 4.56e-06 *** 

I(Facemasks^3)          0.003 0.001 0.003 **  
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Interaction regression model (after excluding predictors that are not statistically significant) 

Predictor                                 Estimate Std. Error p-value 

Intercept 0.431 0.211 0.042 * 

Humidity 0.003 0.001 0.001 ** 

Wind speed 0.002 0.001 2.79e-05 *** 

Staying home behaviour 9.137 1.047 3.58e-16 *** 

Traveling behaviour 0.345 0.197 0.080 . 

School openings -0.144 0.030 3.55e-06 *** 

Catering openings -0.216 0.042 6.07e-07 *** 

Event allowance 0.064 0.031 0.044 *   

Facemasks 0.369 0.083 1.49e-05 *** 

Staying home behaviour*Traveling behaviour -20.650 3.784 1.15e-07 *** 

Traveling behaviour*Event allowance -0.442 0.108 5.57e-05 *** 

Traveling behaviour*School openings 0.494 0.088 4.64e-08 *** 

Traveling behaviour*Catering openings 0.592 0.124 3.04e-06 *** 

Staying home behaviour*Facemasks -2.902 0.828 0.001 *** 
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H. Histogram of residuals for formula Re 
Multiple regression model for effective reproduction rate (linear model) 

Multiple regression model for effective reproduction rate (linear model with interaction terms) 
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I. Comparison of residual plots for formula number of confirmed cases 
Above residual plot is from the regression model without logarithmic response. Below residual plot is 

with logaritmic response. 
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J. Outcomes indicators system dynamics model 
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K. Input values for actual, low and high testing capacity per week 
 

WEEK  DATE ACTUAL LOW HIGH 

BEFORE  15/03/2020 2,857 2,857 2,857 
12 16/03/2020 3,143 3,143 5,000 
13 23/03/2020 3,571 3,571 5,000 
14 30/03/2020 3,714 3,714 5,000 
15 06/04/2020  5,000 5,000 10,000 
16 13/04/2020 5,429 5,000 10,000 
17 20/04/2020 5,000 5,000 15,000 
18 27/04/2020 3,714 5,000 15,000 
19 04/05/2020  3,714 5,000 20,000 
20 11/05/2020  4,286 5,000 20,000 
21 18/05/2020 3,714 5,000 25,000 
22 25/05/2020 4,286 5,000 25,000 
23 01/06/2020  6,983 5,000 30,000 
24 08/06/2020  8,165 5,000 30,000 
25 15/06/2020 8,811 5,000 30,000 
26 22/06/2020 8,765 5,000 35,000 
27 29/06/2020 9,623 5,000 35,000 
28 06/07/2020  10,722 5,000 40,000 
29 13/07/2020 12,661 5,000 40,000 
30 20/07/2020 15,932 5,000 45,000 
31 27/07/2020 14,515 5,000 45,000 
32 03/08/2020  14,110 5,000 50,000 
33 10/08/2020  15,146 5,000 50,000 
34 17/08/2020 19,401 5,000 50,000 
35 24/08/2020 22,340 5,000 50,000 
36 31/08/2020 25,254 5,000 50,000 
37 07/09/2020  27,341 5,000 50,000 
38 14/09/2020 27,563 5,000 50,000 
39 21/09/2020 29,621 5,000 50,000 
40 28/09/2020 31,600 5,000 50,000 
41 05/10/2020  39,783 5,000 50,000 
42 12/10/2020  44,390 5,000 50,000 
43 19/10/2020 45,912 5,000 50,000 
44 26/10/2020 41,983 5,000 50,000 
45 02/11/2020  34,860 5,000 50,000 
46 09/11/2020  32,342 5,000 50,000 
47 16/11/2020 36,335 5,000 50,000 
48 23/11/2020 37,054 5,000 50,000 
49 30/11/2020 45,919 5,000 50,000 
50 07/12/2020  63,279     
51 14/12/2020 68,538     
52 21/12/2020 58,655     
53 27/12/2020 49,917     
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L. Parameter values per day for mitigation and curbing policies 
In the tables below, we provide the date of implementation of new measures from the risk level in 

the cell to the right (e.g. first date is 15 March 2020, where lockdown measures are implemented). 

Mitigation policy 
Date Risk level 

15/03/2020 Lockdown 

30/03/2020 Very serious 

18/04/2020 Serious 

12/06/2020 Very serious 

01/07/2020 Serious 

11/09/2020 Very serious 

26/09/2020 Serious 

28/10/2020 Very serious 

 

Curbing policy 1 
Date Risk level 

15/03/2020 Lockdown 

30/03/2020 Alert 

14/04/2020 Alarming 

29/04/2020 Very serious 

14/05/2020 Serious 

29/05/2020 Alarming 

13/06/2020 Very serious 

28/06/2020 Serious 

31/07/2020 Alarming 

15/08/2020 Serious 

30/08/2020 Alarming 

14/09/2020 Serious 

29/09/2020 Alarming 

28/10/2020 Serious 

22/11/2020 Alarming 
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Curbing policy 2 
Date Risk level 

15/03/2020 Lockdown 

30/03/2020 Alert 

14/04/2020 Lockdown 

06/05/2020 Alert 

21/05/2020 Lockdown 

16/06/2020 Alert 

01/07/2020 Lockdown 

03/08/2020 Alert 

 

Curbing policy 3 
Date Risk level 

15/03/2020 Lockdown 

30/03/2020 Alert 

13/04/2020 Lockdown 

27/04/2020 Alert 

11/05/2020 Lockdown 

25/05/2020 Alert 

08/06/2020 Lockdown 

22/06/2020 Alert 

06/07/2020 Lockdown 

20/07/2020 Alert 

03/08/2020 Lockdown 

17/08/2020 Alert 

31/08/2020 Lockdown 

14/09/2020 Alert 

28/09/2020 Lockdown 

12/10/2020 Alert 

26/10/2020 Lockdown 

09/11/2020 Alert 

23/11/2020 Lockdown 
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M. Results multivariate sensitivity analysis 

Specification of tests 

Here we change the basic reproduction rate, initial number of infected cases and quarantine fraction 

at the same time. Since our model is very sensitive, we let Vensim randomly pick numbers from a 

normally distributed domain. We do this because we want the program to know which values are likely 

to fit reality. We provide the distribution of the parameters that are considered in this multivariate 

sensitivity analysis in the table below.  

Parameter Current input value Distribution {min; max; mean; 
standard deviation} 

Basic reproduction rate 3 {2.5; 3.5; 3; 0.15} 

Initial infected cases 600 {100; 1,100; 600; 100} 

Quarantine fraction 52.5% {0%; 100%; 50%; 10%} 

 

Outcomes of tests 

We can see that the total infected cases on 31 November ranges from approximately 500,000 to 

5,000,000, and the total confirmed cases ranges from approximately 35,000 to 2,600,000. Especially 

around the second peak, the confidence interval for the number of confirmed cases per day is wide. 

Where the first peak ranges from 300 to 3,000, the second peak ranges from 0 to 50,000. This means 

that when the reproduction rate lies around 2.5, the initial number of infected cases is low, and the 

quarantine fraction approaches 100%, the spread in the Netherlands would have stopped after the 

first peak (assuming it would not come back to the Netherlands another time). When the reproduction 

rate lies around 3.5, the initial number of infected cases is high, and the quarantine fraction approaches 

0%, spread could become almost be once as high as in reality. Yet the confidence interval for the 

number of confirmed cases is different from the confidence of the other indicators. The number of 

confirmed cases is far more likely to lie around the actual value. Further, the total number of deaths 

ranges from approximately 1,750 to 17,500. The total number of hospitalizations from 2,900 to 36,000 

and the total number of IC occupations from 600 to 7,500. 
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Confirmed cases per day  

 

Total confirmed cases   
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Total died cases 

 

Total dying per day   
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Total infected cases 

 

Infectious population per day  
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N. Results univariate sensitivity analysis; Basic reproduction rate and initial cases 

Specification of tests 

We do four different tests:  

1) We vary the basic reproduction rate in different simulations by letting the program pick values 

from a uniform distribution with a domain between 2 and 2.5.  

2) We vary the basic reproduction rate when picking values from a normal distribution with mean 

3, minimum 2.5, maximum 3.5 and standard deviation of 0.2.  

3) We use the calibrated basic reproduction rate (3) and vary the initial number of infected cases 

(on 2 February). Here we randomly pick values between 1 and 1000 infected cases.  

4) We combine changes of the basic reproduction rate and number of infected cases on 2 

February in a multivariate sensitivity analysis. In this multivariate sensitivity analysis we pick 

values for the basic reproduction rate from a univariate distribution between 2 and 2.5. The 

number of infected cases in this multivariate analysis ranges between 1 and 2000.  

Outcomes of tests 

1) We see that when using a basic reproduction rate between 2 and 2.5 instead of 3, the actual 

number of confirmed cases would by far not be reached. In the first peak, the highest point is 

approximately 500 cases per day. In the second peak the highest point is approximately 3,750 

cases per day.  

2) When using a basic reproduction rate between 2.5 and 3.5 with a mean of 3 and a standard 

deviation of 0.2, the first and the second peak show a large confidence interval. The first peak 

ranges between approximately 350 and 9,000 confirmed cases per day, where most 

simulations (50%) provide a value below 2,000. The second peak ranges from approximately 

3,750 to 10,500 confirmed cases per day, with most values (50%) above 9,000 at the highest 

point.  

3) When we let the initial infected cases range between 1 and 1,000 with a basic reproduction 

rate of 3, we obtain a very large confidence interval in the first peak. With the number of 

confirmed cases per day ranging from approximately 1 to 13,000. Most observations lie below 

approximately 5,000 at the highest point of the first peak. The confidence interval in the 

second peak is smaller, ranging from approximately 0 cases per day at the lowest and 10,500 

at the highest. Most of the observations in the second peak lie above 6,000 cases at the highest 

point.  

4) When using a basic reproduction rate between 2 and 2.5 and vary the initial number of 

infected cases between 1 and 2,000, we see that we are able to reach the actual spread. Where 

the range of the number of confirmed cases in the first peak is small, the range in the second 

peak is large. In the second peak, 75% of observation lie between 0 and 10,000.  
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Test 1; Confirmed cases per day  

 

 

Test 2; Confirmed cases per day  
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Test 3; Confirmed cases per day  

 

Test 4; Confirmed cases per day  
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O. Results univariate sensitivity analysis; Quarantine fraction  

Specification of tests 

We do two tests:  

1) In the first test we vary the quarantine fraction in the actual policy by randomly picking a 

quarantine fraction from a uniform distribution with a domain from 0% to 100%. We chose 

this large interval, since evidence for the actual fraction of cases that effectively enters 

quarantine is lacking. We provide the sensitivity graphs for the number of confirmed cases per 

day, infectious population, total infected cases and total died cases, to see the effect of these 

variations.  

2) We test what happens to the outcomes of policies when the quarantine fraction would be 80% 

or 20%. We do this for the feasible policies, being the actual policy, high testing capacity, low 

testing capacity, curbing (type 1, 2 and 3), and mitigation. Next to a bar graph with the 

sensitivity results of the total number of infected cases on 31 November, we provide the 

number of days with strict measures for each policy. 

Outcomes of tests 

1) We see that when we vary the quarantine fraction between 0% and 100%, this has a major 

impact on spread. The confirmed cases per day ranges from approximately 300 to 20,000 is 

the first peak and from zero to almost 68,000 in the second peak. The total infected cases 

ranges from approximately 500,000 to 7,500,000 and the total deaths ranges from 

approximately 2,000 to 26,000. The blue line in the graphs indicates the actual spread, with a 

quarantine fraction of 52.5%.  

2) In the bar graph (last figure), we provide results of the sensitivity tests for all feasible policies 

with a quarantine fraction of 52.5%, 20% and 80% respectively. We observe that all policies 

show the lowest total number of infected cases with a quarantine fraction of 80%. Based on 

the graph, it seems to differ per policy how effective quarantine is. Especially for the 

mitigation, curbing type 1 and curbing type 2 policy, the effect on spread of a smaller or larger 

quarantine fraction seems to be smaller. However, the number of days with strict measures 

changes for these policies with a different quarantine fraction. For curbing type 3, low testing 

capacity, high testing capacity, and the actual policy, the number of days with certain measures 

remains the same. When we apply the mitigation policy, all days (260) have serious, very 

serious or lockdown measures. Mitigation with a quarantine fraction of 80% has one short 

lockdown at the beginning and only serious measures thereafter. Mitigation with a quarantine 

fraction of 20% has almost an equal number of days with serious measures as with very serious 

measures. The policy with a high testing capacity and a quarantine fraction of 80% shows the 

lowest total number of infected cases, and the actual policy the lowest total number of 

infected cases thereafter. Yet the number of days with strict measures in these two policies is 

above 200. With curbing type 3, the spread is lower than curbing type 1 and curbing type 2, 

yet the number of days with strict measures is highest. 
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Test 1; Confirmed cases per day  

 

 

Test 1; Infectious population per day  
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Test 1; Total infected cases  

Test 1; Total died cases  
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Test 2; Total infected cases 

 

 

Test 2; Days with strict measures  

 

Policy Days with 
strict 
measures 

Actual +/- 200 

Mitigation (20%) 260 

Mitigation (52.5%) 260 

Mitigation (80%) 260 

Curbing 1 (20%) 200 

Curbing 1 (52.5%) 158 

Curbing 1 (80%) 99 

Curbing 2 (20%) 157 

Curbing 2 (52.5%) 96 

Curbing 2 (80%) 83 

Curbing 3 (20%) 140 

Curbing 3 (52.5%) 140 

Curbing 3 (80%) 140 
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P. Results univariate sensitivity analysis; Asymptomatic fraction (infectious period)  

Specification of tests 

We determine the effect of a change in asymptomatic fraction by changing the duration of the 

infectious period. We do it this way, since asymptomatic cases have a shorter infection duration and 

consequently shorter infectious period. When rewriting the formula for the infectious rate on page 45, 

we can determine the infectious period 
1

𝛾
, with 𝑣𝑠 the symptomatic fraction and 𝑣𝑎 the asymptomatic 

fraction. This gives the following formula for the duration of the infectious period: 

1

𝛾
=  𝑣𝑠 

1

𝛾𝑠

+  𝑣𝑎  
1

𝛾𝑎

 

In the literature review we found the infectious period of asymptomatic cases to be approximately 5.5 

days and the infectious period of symptomatic cases approximately 9 days. Considering these values, 

the infectious period in our system dynamics model should have been 7.4 days with 40% of the cases 

being asymptomatic.  

We do two sensitivity tests: 

1) We randomly pick values for the infectious duration from a normally distributed domain with 

mean 7.4 days, standard deviation of 1 day, a minimum of 4.4 days, and a maximum of 10.4 

days.  

2) We consider a mean of 6 days, standard deviation of 0.2 days, a minimum 5 days and maximum 

7 days.  

Outcomes of tests 

1) We see that confidence interval is large for all indicators. What is remarkable is that the first 

peak of number of confirmed cases per day reaches almost 50,000, while the second peak 

reaches maximally 15,000. Yet more than 95% of the simulations has a highest point of the 

first peak that lies below 3,500. This means that the infectious period is especially sensitive 

during the first peak. The total number of infected cases for this test ranges between 

approximately 100,000 and 5,300,000, the total number of confirmed cases ranges between 

approximately 24,000 and 1,080,000, and the total number of deaths between approximately 

400 and 18,400.  

2) We observe that the ranges are much smaller but still quite large. The total infected cases 

ranges from approximately 2,000,000 to 4,000,000 and the total number of confirmed cases 

from approximately 300,000 to 750,000. Concluding, the infectious period and thus the 

fraction of asymptomatic cases is a sensitive parameter in our model.  
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 Test 1; Confirmed cases per day  

 Test 1; Total confirmed cases   
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 Test 1; Total died cases  

 

Test 1; Total infected cases 
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Test 2; Total confirmed cases  

 

Test 2; Total infected cases 
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 Test 2; Confirmed cases per day 

 

Test 2; Total died cases  
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Q. R-code  
Below, we provide in bold the references to the report. 

# LOAD LIBRARIES ------------------------------------------------- 

library(ISLR) 

library(leaps) 

library(dplyr) 

library(forcats) 

library(psych) 

library(caret) 

library(randomForestSRC) 

library(MASS) 

library(rms) 

library(ROCR) 

library(pROC) 

library(DBI) 

library(RPostgreSQL) 

library(readr) 

library(tidyr) 

library(lubridate) 

library(lmtest) 

library(ggplot2) 

library(boot) 

library(bootStepAIC) 

library(R0) 

library(car) 

 

# DATA PREPERATION ------------------------------------------------- 

DATA <- read_delim(file = "C:/Users/cjten/Desktop/NewestCSV.csv", 

                   delim = ",", locale = locale(encoding = "ISO-8859-1"), 

                   col_names = TRUE, col_types = NULL) 

 

TestingDATA <- read_delim(file = "C:/Users/cjten/Desktop/Testing.csv", 

                   delim = ",", locale = locale(encoding = "ISO-8859-1"), 

                   col_names = TRUE, col_types = NULL) 

 

R_DATA <- read_delim(file = "C:/Users/cjten/Desktop/incidence1512.csv", 

                   delim = ",", locale = locale(encoding = "ISO-8859-1"), 

                   col_names = TRUE, col_types = NULL) 

 

R2DATA <- within(DATA,{ 

  Date <- NULL 

  Percentage_pos_tests <- NULL 

  Positive_tests_per_day <- NULL 

  R_RIVM <- NULL 

  Confirmed_cases <- NULL 

  Confirmed_infected <- NULL 

  Hospitalized_infected <- NULL 

  Estimated_infections <- NULL 

  Hospitalized_RIVM <- NULL 

  IC_occupations <- NULL 

  Deaths_RIVM <- NULL 

  Deaths_infected <- NULL 

}) 

 

incidence <- within(R_DATA,{ 

  Re_infections <- NULL 

  Re_hospitalizations <- NULL 

  Re_RIVM <- NULL 

  Confirmed_RIVM <- NULL 

  Hospitalized_RIVM <- NULL 

}) 
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# DESCRIPTIVE STATISTICS 

FrequentieTabel1 <- table(R2DATA$Facemasks) 

FrequentieTabel1 

 

FrequentieTabel2 <- table(R2DATA $Schools) 

FrequentieTabel2 

 

FrequentieTabel3 <- table(R2DATA $Catering) 

FrequentieTabel3 

 

FrequentieTabel4 <- table(R2DATA $Events) 

FrequentieTabel4 

 

 

# REMOVING ROWS WITH LACKING DATA ------------ 

dim(TestingDATA) 

TestingDATA <- na.omit(TestingDATA) 

dim(TestingDATA) # 

 

dim(R2DATA) 

R2DATA <- na.omit(R2DATA) 

dim(R2DATA) #  

 

dim(incidence) 

incidence <- na.omit(incidence) 

dim(incidence) 

 

## NORMALIZATION EFFECT --------------- 

## Normalize the input variables  

normalize <- function(x){ 

  return((x-min(x))/(max(x)-min(x)))} 

TransformedDataR <- as.data.frame(lapply(R2DATA[c(4,5,6,7,8,9,10,11,12,13,14)], normalize)) 

InputDataR <- cbind(R2DATA[c(1,2,3)],TransformedDataR[c(1,2,3,4,5,6,7,8,9,10,11)]) 

 

 

# ESTIMATING Re CALCULATED (Section 4.2.1) ----------------- 

# Size of mean generation interval 

mGT <- generation.time("gamma", c(3.99,2.95)) 

 

# Develop estimates for Re 

estR <- est.R0.TD(incidence$Confirmed_infected,mGT,begin = 1, end = 300, nsim = 1000) 

estR2 <- est.R0.TD(incidence$Hospitalized_infected,mGT,begin = 1, end = 300, nsim = 1000) 

 

# Plot calculated reproduction rates (Appendix E) 

par(mfrow=c(1,2)) 

plot(estR) 

plot(estR2) 

 

R_infections <- as.data.frame(estR$R) 

R_hospitalizations <- as.data.frame(estR2$R) 

 

# Confidence interval of calculated effective reproduction rates 

estR$conf.int 

estR2$conf.int 
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## REGRESSION MODEL FOR Re  (Section 4.3.3) --------------------------------- 

## LINEAR MODEL ----------------------------- 

# Full model normalized 

full_linear <- lm(R_calculated~ Rel_hum + Temp_ave + Wind_speed +  

                     At_home_average + Traveling_average + Schools + Catering + Events + Facemasks,  

                   data = InputDataR) 

summary(full_linear) #  

vif(full_linear) 

 

# Full model AVERAGED 

full_linear <- lm(R_calculated~ R1week + R2week + Temp_ave + At_home_average + Traveling_average +  

                    Schools + Events + Facemasks + Catering,  

                  data = R2DATA) 

summary(full_linear) #  

vif(full_linear) 

 

## NON LINEAR MODEL ------------------------------ 

full_poly <- lm(R_calculated~ Rel_hum + Temp_ave + Wind_speed +  

               At_home_average + Traveling_average + Schools + Catering + Events + Facemasks + 

I(Rel_hum^2) + I(Rel_hum^3) + I(Rel_hum^4) + I(Temp_ave^2) + I(Temp_ave^3) + I(Temp_ave^4) + 

I(Wind_speed^2) + I(Wind_speed^3) + I(Wind_speed^4) + I(At_home_average^2) + 

I(At_home_average^3) + I(At_home_average^4) + I(Traveling_average^2)+ I(Traveling_average^3) + 

I(Traveling_average^4) + I(Schools^2) + I(Schools^3) + I(Schools^4) + I(Catering^2)+ I(Catering^3) + 

I(Events^3) + I(Facemasks^3), data = R2DATA) 

summary(full_poly) # 

 

backward_poly <- lm(R_calculated ~ Wind_speed + At_home_average + Traveling_average +  

               Schools + Events + I(Temp_ave^2) + I(Temp_ave^3) + I(Temp_ave^4) +  

               I(Wind_speed^2) + I(Wind_speed^3) + I(Wind_speed^4) + I(At_home_average^2) +  

 I(At_home_average^3) + I(At_home_average^4) + I(Traveling_average^2) + I(Traveling_average^3) + 

I(Traveling_average^4) + I(Schools^2) + I(Schools^3) + I(Schools^4) + I(Catering^2) + I(Catering^3) + 

I(Events^3) + I(Facemasks^3), data = R2DATA) 

summary(backward_poly) # 

 

## INTERACTION MODEL -------------------------- 

full_interaction <- lm(R_calculated~ Rel_hum + Temp_ave + Wind_speed +  

              At_home_average + Traveling_average + Schools + Catering + Events + Facemasks + 

Rel_hum*Temp_ave + At_home_average*Traveling_average*Events + 

At_home_average*Traveling_average*Schools + At_home_average*Traveling_average*Catering + 

At_home_average*Traveling_average*Facemasks 

                          , data = R2DATA) #  

summary(full_interaction) #  

 

backward_interaction <- lm(R_calculated ~ Rel_hum + Temp_ave + Wind_speed + At_home_average +  

Traveling_average + Schools + Catering + Events + Facemasks + At_home_average:Traveling_average 

+ At_home_average:Events + Traveling_average:Events + Traveling_average:Schools + 

Traveling_average:Catering + At_home_average:Facemasks + Traveling_average:Facemasks + 

At_home_average:Traveling_average:Events + At_home_average:Traveling_average:Facemasks 

               , data = R2DATA) #  

summary(backward_interaction) #  

backward_interaction_significance <- lm(R_calculated ~ Rel_hum  + Wind_speed + At_home_average +  

Traveling_average + Schools + Catering + Events + Facemasks + At_home_average:Traveling_average 

+ Traveling_average:Events + Traveling_average:Schools + Traveling_average:Catering +  

              At_home_average:Facemasks, data = R2DATA) #  

summary(backward_interaction_significance) #  

 

 

## IDENTIFY NON-LINEARITY; RESIDUAL PLOTS ------------------------ 

par(mfrow=c(1,2)) 

plot(predict(full_linear),residuals(full_linear)) #  

plot(predict(backward_interaction),residuals(backward_interaction)) #  
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# BACKWARD SELECTION ------------------------------ 

## Backward stepwise selection 

step_backward <- stepAIC(full_linear, direction="backward", trace = FALSE) 

step_backward$anova 

step_backward$coefficients 

 

# BOOTSTRAP BACKWARD ------------------------------------ 

set.seed(100) 

BootBack <- boot.stepAIC(model_R_NORM, data = R2DATA, B = 500, alpha = 0.05,  

                         direction = "backward", verbose = T) 

BootBack$Significance # shows significance of all variables included in the model 

BootBack$OrigStepAIC 

 

## RESIDUAL HISTOGRAMS (Appendix H) ----------------------------- 

# LINEAR MODEL PLOT 

r0histogram <- qplot(full_linear$residuals, 

            geom = "histogram", 

            bins = 40) + 

  labs(title = "Histogram of residuals for linear regression model", 

       x = "residual") 

r0histogram #  

 

# INTERACTION MODEL PLOT 

r0histogramint <- qplot(backward_interaction$residuals, 

                     geom = "histogram", 

                     bins = 40) + 

  labs(title = "Histogram of residuals for interaction regression model", 

       x = "residual") 

r0histogramint #  

 

## FORMULA CONFIRMED CASES (Section 4.3.4) ----------------------------- 

# LINEAR TESTING MODEL 

Testing <- lm(Confirmed_infected~AverageTests+Besmettelijk_9, data = TestingDATA) 

summary(Testing) 

 

# LINEAR TESTING MODEL with LOG response 

TestingLOG <- lm(log(Confirmed_infected)~AverageTests+Besmettelijk_9, data = TestingDATA) 

summary(TestingLOG) 

 

# INTERACTION TESTING MODEL 

TestingInteraction <- lm(Confirmed_infected~AverageTests+Besmettelijk_9+AverageTests*Besmettelijk_9, data = 

TestingDATA) 

summary(TestingInteraction) 

 

# INTERACTION TESTING MODEL with LOG response 

TestingInteractionLOG <- 

lm(log(Confirmed_infected)~AverageTests+Besmettelijk_9+AverageTests*Besmettelijk_9, data = TestingDATA) 

summary(TestingInteractionLOG) 

 

par(mfrow=c(1,2)) 

plot(predict(Testing),residuals(Testing)) # 

plot(predict(TestingLOG),residuals(TestingLOG)) # 

plot(predict(TestingInteraction),residuals(TestingInteraction)) # 

plot(predict(TestingInteractionLOG),residuals(TestingInteractionLOG)) # 

 

#  PLOT RESIDUAL HISTOGRAM 

r0histogram <- qplot(TestingLOG$residuals, 

                     geom = "histogram", 

                     bins = 40) + 

  labs(title = "Histogram of residuals for testing", 

       x = "residual") 

r0histogram #  
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# MAKE TEST AND TRAINING DATASET 

set.seed(1234) 

model <- createDataPartition(TestingDATA$Confirmed_infected, p=0.8, list=FALSE) 

train <- TestingDATA[ model, ] 

test <- TestingDATA[ -model, ] 

 

# TRAIN THE MODEL 

training <- lm(Confirmed_infected~AverageTests+Besmettelijk_9, data = train) 

summary(training) # 

 

# DETERMINE MSE 

testing <- predict(training, newdata = test) 

MSE <- mean((testing - test$Confirmed_infected)^2) 

MSE #  

 

## VALIDATION (Section 4.3.3)  --------------------------------------- 

## MAKE TESTING AND TRAINING DATASET 

# Datasets for reproduction rate 

set.seed(1234) 

modelR <- createDataPartition(R2DATA$R_calculated, p=0.8, list=FALSE) 

trainR <- R2DATA[ modelR, ] 

testR <- R2DATA[ -modelR, ] 

 

# TRAINED MODELS FOR VALIDATION 

# Linear model trained 

trainingR <- lm(R_calculated ~ R1week + R2week + Temp_ave + At_home_average + Traveling_average +  

                  Schools + Events + Facemasks + Catering, data = trainR) 

summary(trainingR) # 

 

# Interaction model trained 

trainingR <- lm(R_calculated ~ Rel_hum + Temp_ave + Wind_speed + At_home_average +  

                  Traveling_average + Schools + Catering + Events + Facemasks +  

                  At_home_average:Traveling_average + At_home_average:Events +  

                  Traveling_average:Events + Traveling_average:Schools + Traveling_average:Catering +  

                  At_home_average:Facemasks + Traveling_average:Facemasks +  

                  At_home_average:Traveling_average:Events + At_home_average:Traveling_average:Facemasks, 

data = trainR) 

summary(trainingR) # 

 

# Polynomial model trained 

trainingR <- lm(R_calculated ~ Wind_speed + At_home_average + Traveling_average +  

                  Schools + Events + I(Temp_ave^2) + I(Temp_ave^3) + I(Temp_ave^4) +  

                  I(Wind_speed^2) + I(Wind_speed^3) + I(Wind_speed^4) + I(At_home_average^2) +  

                  I(At_home_average^3) + I(At_home_average^4) + I(Traveling_average^2) +  

                  I(Traveling_average^3) + I(Traveling_average^4) + I(Schools^2) +  

                  I(Schools^3) + I(Schools^4) + I(Catering^2) + I(Catering^3) +  

                  I(Events^3) + I(Facemasks^3), data = trainR) 

summary(trainingR) # 

 

# MSE Reproduction rate 

testingR <- predict(trainingR, newdata = testR) 

MSER <- mean((testingR - testR$R_calculated)^2) 

MSER # 
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# BOOTSTRAP OPTIMISM CALCULATIONS ----------------------------------- 

rsq <- function(x,y) cor(x,y)^2 

 

# OUTCOME MODEL R2  

my_boot <- function(data,index){ 

  bootdata <- data[index,] 

  f <- lm(R_calculated ~  R1week + R2week + Temp_ave + At_home_average + Traveling_average +  

            Schools + Events + Facemasks + Catering 

          , data=bootdata) 

  p <- predict(f, newdata = data) 

  p_orig <- predict(f,newdata = bootdata) 

  MSE <- mean((p - data$R_calculated)^2) 

  MSEorig <- mean((p_orig - bootdata$R_calculated)^2) 

  Optimism_MSE <- MSE - MSEorig 

  r2 <- rsq(p,data$R_calculated) 

  r2_orig <- rsq(p_orig,bootdata$R_calculated) 

  r2correction <- r2 - r2_orig 

  return(c(Optimism_MSE, MSE, MSEorig,r2,r2_orig,r2correction))} 

 

set.seed(2020) 

result <- boot(data = R2DATA, my_boot, R=500) 

meanOptimism <- mean(result$t[,1]) 

plot(result, index = 1) 

histogram(result$t[,2])  ## histogram AUC bootstrap model 

histogram(result$t[,3])  ## histogram AUC bootstrap model op originele data 

 

colnames(result$t) <- c("MSE optimism", "MSE", "MSE orig","r2","r2 orig","r2 correction") 

head(result$t) 

colMeans(result$t) #  

 

## VALIDATION (Section 4.3.5)  --------------------------------------- 

# FULL MODELS  

# Model for deaths 

full_linear <- lm(Deaths_infected~ Temp_ave + At_home_average + Traveling_average +  

                    Schools + Events + Facemasks + Catering,  

                  data = deathsDATA) 

summary(full_linear) # 

 

# Model for hospitalizations 

full_linear <- lm(Hospitalized_infected~ Temp_ave + At_home_average + Traveling_average +  

                    Schools + Events + Facemasks + Catering,  

                  data = hospiDATA) 

summary(full_linear) # 

 

## TRAINED MODELS   

# DEATHS 

# Make training and test dataset 

set.seed(1234) 

modelD <- createDataPartition(deathsDATA$Deaths_infected, p=0.8, list=FALSE) 

trainD <- deathsDATA[ modelD, ] 

testD <- deathsDATA[ -modelD, ] 

 

# Linear model trained for deaths  

trainingD <- lm(Deaths_infected ~ Temp_ave + At_home_average + Traveling_average +  

                  Schools + Events + Facemasks + Catering, data = trainD) 

summary(trainingD) # 

 

# MSE for deaths  

testingD <- predict(trainingD, newdata = testD) 

MSED <- mean((testingD - testD$Deaths_infected)^2) 

MSED # 
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# HOSPITALIZATIONS 

# Make training and test dataset 

set.seed(1234) 

modelH <- createDataPartition(hospiDATA$Hospitalized_infected, p=0.8, list=FALSE) 

trainH <- hospiDATA[ modelH, ] 

testH <- hospiDATA[ -modelH, ] 

 

# Linear model hospitalizations trained 

trainingH <- lm(Hospitalized_infected ~ Temp_ave + At_home_average + Traveling_average +  

                  Schools + Events + Facemasks + Catering, data = trainH) 

summary(trainingH) # 

 

# MSE hospitalizations 

testingH <- predict(trainingH, newdata = testH) 

MSEH <- mean((testingH - testH$Hospitalized_infected)^2) 

MSEH # 

 

# BOOTSTRAP OPTIMISM CALCULATIONS ----------------------------------- 

(same approach as previous page) 

 

 

 


