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Summary

In aviation, often jet engines are used for propulsion. There are several types of jet engines, each designed
for a specific range of velocities of flight. For relatively low flight velocities (up to Mach 3), turbofans and
turbojets are used. Ramjets are used for propulsion at flight velocities from Mach 2 to 6, while scramjets
are used for flight velocities from Mach 5 and up. In scramjets, the flow is decelerated to a lower supersonic
Mach number through a converging channel in which the pressure increases. In the resulting high-pressure
high-temperature flow, fuel injection and combustion take place. Towards the exhaust nozzle, the flow
accelerates to high supersonic speed. As a result, the aircraft experiences forward thrust.

For the efficiency of the combustion process and minimisation of the length of the scramjet engine, it
is important that fuel is mixed rapidly with the air flow. For the mixing, fuel is transversely injected in
the supersonic crossflow. Tandem dual jet injection has been proven to be more efficient in mixing than
single jet injection. This is the motivation behind the present investigation of tandem dual jet injection
in supersonic crossflow. The research question is:

What is the behaviour of the jet shear layer in tandem dual jet injection?

In analysing transverse jet injection, a number of phenomena become apparent. In front of each
injection point, a bow shock forms. Downstream of the bow shock, the jet penetrates the supersonic
crossflow and mixes with the flow passing through the bow shock. The upper boundary of the mixing
area is determined by the (time-dependent) position of the jet upper shear layer at the upper side of the
jet plume. These phenomena are observed in several studies on injection in supersonic flow but, have not
been fully characterized yet for tandem dual jet injection. Therefore, for answering the research question,
the behaviour of the bow shocks, the behaviour of the jet upper shear layer and the behaviour of the jet
plume are investigated for different values of two parameters: the jet-to-crossflow momentum flux ratio
J and the dimensionless distance between the jet orifices S. The Mach number of the crossflow is fixed
at Mc = 1.55.

For investigation of tandem dual jet injection, experiments have been performed in the supersonic
wind tunnel facility at the University of Twente. The air is injected at sonic speed into the supersonic
crossflow (Mc = 1.55) of air. This has been performed for several combinations of J and S. The jet ori-
fices have a diameter of D1 = 1 mm and D2 = 2 mm for the upstream and downstream jet, respectively,
resulting in an equivalent diameter of Dt = 2.23 mm. In the experiments, the flow was visualized by the
Schlieren technique. Using a semi-automatic algorithm, quantitative analyses have been achieved of the
obtained images.

The experiments for dual jet injection showed that the bow shocks that appear in front of the two
jets have an oscillatory behaviour, induced by large-scale structures. At Mc = 1.55, the two bow shocks
merge at a certain time-averaged position (ξ = x/Dt, η = y/Dt), described by:

ξ(J, S) = 0.114J−1.864S4.229 (1)

η(J, S) = 1.924J−0.572S1.827 (2)

These relations are valid for at least 2.8 ≤ J ≤ 4.8, 3.59 ≤ S ≤ 5.38 and Mc = 1.55, with an upper
limit of η = 19.3, due to the height of the wind tunnel in which the experiments were carried out. The
position of the merger point did not appear to have an effect on the penetration of the jet shear layer
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The behaviour of the jet upper shear layer as observed in the experiments endorses results in literature
at comparable conditions. The time-dependent location of the jet upper shear layer that appears to
be periodic is observed, which indicates the possibility of the presence of a Kelvin-Helmholtz type of
instability in the shear layer. The penetration of the jet upper shear layer into the supersonic crossflow
depends on J and S. At constant S, penetration increases with increasing J . Furthermore, at constant
J , penetration shows to have a maximum for a certain value of S: Soptimal = 4.732J0.288. The location of
the jet upper shear layer can be described by a fit without shift (y/Dt = c1(x/Dt − c3)c2) and a fit with
shift (y/Dt = c1 ((x/Dt − c3)c2 + c4)). Because of better performance, the fit with shift is recommended.
Similarity analysis shows that the location of the jet upper shear layer y/Dt can be described by the
following function of x/Dt, J and S:

y

Dt

(
x

Dt
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)
= 0.432J0.461

(
2 + exp

(
−1

2

(
S − 4.732J0.288

6.103J−0.521

)2
))((

x

Dt
+ 0.68

)0.333

+ 0.80

)
(3)

This function is based on results for J ∈ [2.8, 3.8], S ∈ [0 : 9.87], Mc = 1.55 and validated for J = 4.8
with S = [0, 5.38] and Mc = 1.55. The coefficient of determination R2 = 0.739 is thought to be acceptable.

The mixing of the jet with the supersonic crossflow is dominated by the penetration of the jet upper
shear layer, specifically a measure of the mixing is the bandwidth of the jet upper shear layer. Tandem
dual jet injection achieves an enhanced mixing compared to single jet injection. This is also clear from
an enlargement of the jet plume for tandem dual jet injection compared to single jet injection.

In conclusion, the jet shear layer in tandem dual jet injection has an oscillatory, supposedly periodic
behaviour with a certain bandwidth. Its penetration into the supersonic crossflow and mixing with that
crossflow is enhanced for tandem dual jet injection compared to single jet injection. At constant J , the
penetration depth has an optimum for a specific value of S, while at constant S, penetration increases
with increasing J .



Nomenclature

Symbol Unit Description

A [m2] Cross-sectional area of a flow
a [m/s] Speed of sound
a [m] Horizontal dimension of an eddy
a [m] Part of the light source slit that is not blocked by a knife
b [m] Vertical dimension of an eddy
b [m] Width of a light source slit
b1, b2, ... [-] Constant
C [-] Contrast of a Schlieren image
Cp [-] Pressure coefficient
Cps [-] Pressure coefficient at the sonic point
CD [-] Drag coefficient
c [m/s] Local light speed
c0 [m/s] Light speed in a vacuum
c1, c2, ... [-] Constant
cp [J/kgK] Specific heat at constant pressure
cv [J/kgK] Specific heat at constant volume
D [m] Diameter of a circular shape
D1, D2 [m] Diameter of the upstream and downstream jet orifices, respectively
Dt [m] Total or equivalent diameter
d1, d2, ... [-] Constant
~ex, ~ey, ~ez [-] Unit vector
e1, e2, ... [-] Constant
f [N/m3] Volume forces on a fluid
f [m] Focal point of a lens
fj [Hz] Preferred mode frequency
g [m/s2] Gravity constant
H [J/kg] Enthalpy, H = E + p

ρ

h [J/kg] Specific enthalpy
h [m] Height of a light source slit
J [-] Jet-to-crossflow momentum flux ratio
k [W/mK] Conductivity of a fluid
k [1/m] Wave number
k1, k2, ... [-] Constant
L [m] Characteristic length scale
M [-] Mach number, ua
M [g/mol] Molecular mass
ṁ [kg/s] Mass flow
n [-] Refraction index
~n [-] Normal vector
p [N/m2] Pressure

Table 1: Nomenclature of parameters
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peb [N/m2] Effective back pressure

Q̇ [W/m3] Heat source
q [W/m2] Heat conduction
R [J/kgK] Specific gas constant
R [m] Radius
R2 [-] Coefficient of determination

Re [-] Reynolds number, ρUL
µ

rj,c [-] Velocity ratio of velocity j over velocity c
S [-] Dimensionless dual distance between two jet orifices
Spivot [-] Pivoting value of S whether the bow shocks merge or remain spatially separated
St [-] Strouhal number
s [J/kgK] Specific entropy
s [m] Distance along the jet axis
s̄ [-] Scaled distance along the jet axis
sj,c [-] Density ratio of density j over density c
T [K] Temperature
T [s] Period of time
Te [s] Exposure time of a photosensitive sensor
Tp [s] Pulse width or pulse time of a pulsed light source
t [s] Time
~t [-] Tangent vector
U [m/s] Velocity of a flow
u [m/s] (Local) velocity of a flow
x [m] Spatial coordinate
y [m] Spatial coordinate
y [m] Penetration depth
Y [-] Mass fraction
z [m] Spatial coordinate
α [°] Angle of jet incidence
β [°] Angle of the shock inclination w.r.t. the solid surface

β [-] 1−M2

γ [-] Ratio of specific heats, cp/cv
δ [m] Thickness of a shock wave
δ [m] Boundary layer thickness
δ [m] Jet shear layer thickness
δBW [m] Bandwidth of the jet upper shear layer
δMD [°] Mach disk rotation
δplume [m] Jet plume height
δs [-] Shock detachment distance or stand-off distance
ε [-] Schlieren refraction angle
ζ [m] Vertical displacement of a disturbance
η [-] Pressure ratio
η [-] Coordinate y/Dt of the merger point of the bow shocks
ηm [-] Mixing efficiency
θ [°] Angle of the flow inclination downstream of the shock w.r.t. the solid surface
θs [°] Inclination angle of the surface sonic point
κ [m3/kg] Gladstone-Dale coefficient
λ [m] Wavelength
λ [-] Eigenvalue of a partial differential equation
µ [Pa s] Dynamic viscosity
µ [°] Mach-angle
ν [rad] Prandtl-Meyer function

Table 1: Nomenclature of parameters



ix

ξ [1/m]
√
k2β2 +

(
2M2

U

)
kω − ω2M2

U2

ξ [-] Coordinate x/Dt of the merger point of the bow shocks
ρ [kg/m3] Density of a fluid
ρpix [pixels/m] Pixel density of an image
τ [N/m2] Shear stress within a fluid
Φ [m2/s] Velocity potential
φ [m2/s] Infinitesimal velocity potential
ω [rad/s] Frequency

Table 1: Nomenclature of parameters

Subscript Description

avg Average value
conv Concerning a convective flow
d In a discontinuity (of a shock)
e Concerning passage exit conditions
i Imaginary part of a parameter
i Index
j Concerning a jet flow
j Index
MD Concerning the Mach disk
n Normal component of a vector
r Real part of a parameter
t Tangential component of a vector
0 Concerning a total physical quantity
0 Initial value
1 Upstream of a shock wave
1 The first of two parallel flows
2 Downstream of a shock wave
2 The second of two parallel flows
3 Downstream of a reflected shock
∞ Ambient region conditions

Table 2: Nomenclature of subscripts

Superscript Description

∗ At a throat

Table 3: Nomenclature of superscripts
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Chapter 1

Introduction

Flying has always been the fascination of mankind. The first aircraft did not fly at high speed, but as a
result of increased power of propulsion systems, the flight speed increased accordingly. The flight speed
was at the start of the aviation era subsonic (from the Latin sub (under) and sonus (sound): slower than
sound). However, interest in high-speed flight was rapidly growing. Flight speed increased over the years
from high subsonic towards supersonic speeds (from the Latin super (above) and sonus (sound): faster
than sound). The threshold of the era of supersonic aviation was the fifth Volta Conference in Rome,
in 1935, titled ”High Velocities in Aviation”. In this by-inventation-only conference, prominent fluid
dynamicists such as Ludwig Prandtl, Albert Betz, Theodor von Kármán, Geoffrey Ingram Taylor and
Jakob Ackeret were present [1]. Also present was Adolf Busemann, who had developed the first practical
supersonic windtunnel for aerodynamic testing [2]. During the conference, he presented his advanced
and in hindsight high-impact paper, called ”Aerodynamischer Auftrieb bei Überschallgeschwindigkeit”
(English: Aerodynamic Forces at Supersonic Speeds), in which he introduced the concept of the swept
wing that offers potency to reduce the large drag which is experienced when flying supersonic. Therefore,
it was possible to fly at larger speed before a large drag increase would be encountered [1]. From this
moment on, the era of supersonic aviation has commenced.

By the end of World War II, supersonic flight became more a more dominant study of aerodynamics.
The development continued with supersonic aircrafts such as the airliner Concorde and the reconnais-
sance aircraft Lockheed SR-71 (Blackbird) [2]. Although nowadays civil aviation concerns subsonic flight
due to the large fuel consumption and sonic-boom nuisance of supersonic aviation [3], military aircrafts
are capable of flying at supersonic speeds. An example is the Joint Strike Fighter (JSF) program that re-
sulted in the F-35 Lightning II [4]. Therefore, supersonic flight is certainly a focus of aeronautical studies.

The terms subsonic and supersonic are both related to the speed of sound a. Sound propagates at
a certain speed dependent on the medium in which it propagates, as well as on the temperature. For
example, the speed of sound in air, at a temperature of 288 K, is 340 m/s. The velocity of an aircraft
or a flow u relative to the speed of sound is expressed in terms of a dimensionless number, which is the
Mach number M [5]:

M ≡ u

a
(1.1)

Therefore, aircrafts that fly slower than the speed of sound fly subsonic (M < 1) and those that fly
faster than the speed of sound fly supersonic (M > 1). A regime in which both subsonic and supersonic
speed is involved, is called transonic (0.8 < M < 1.2). In addition, a velocity equal to the speed of sound
is called sonic speed (M = 1). Furthermore, really high velocities, M > 5, are called hypersonic [6].

When operating at speeds above the speed of sound, pressure disturbances cannot propagate in up-
stream direction through the flow field, because pressure disturbances move at the speed of sound. As
a result, flow features such as shock waves and the so-called sonic-boom appear when increasing at the
flight speed from subsonic to supersonic. Therefore, analysis of the flows at supersonic and transonic
speeds involves more flow features than flows at subsonic speeds [5].

To achieve sustained supersonic flight velocities, propulsion systems are needed, appropriate for high
speed. These systems produce thrust by expelling a jet of high speed flow, so that by Newton’s third law
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2 CHAPTER 1. INTRODUCTION

a force results in the direction of flight. Propulsion at high flight speeds can be achieved by jet engines, or
rocket engines. In aviation, jet engines are mostly used. Jet engines need oxygen for combustion of fuel.
That is why these air-breathing engines are limited to certain altitudes, because at too high altitude, the
oxygen content of air is too low for efficient combustion [3].

Jet engines for supersonic propulsion have an approximately universal lay-out: Supersonic flow is
decelerated to a lower Mach number through a converging channel in which the pressure and temperature
increase. In the resulting high-pressure, high-temperature flow, (gaseous) fuel injection and combustion
take place. The resulting high-pressure high-temperature flow moves through the exhaust nozzle in which
the flow accelerates to high supersonic speed and is ejected in downstream direction. As a result, the
aircraft experiences forward thrust.

There are a number of types of jet engines, each having their own advantages and disadvantages
related to the flight speed. Figure 1.1 shows three types of jet engines: the turbojet, the ramjet and the
scramjet.

Figure 1.1: Schematic of types of jet engines for supersonic flight. a) Turbojet with subsonic internal
flow. b) Ramjet with supersonic flow at inlet and outlet, but subsonic flow in the combustor. c) Scramjet
in which the flow is supersonic throughout the whole engine [7].

Turbojets can be employed at relatively low supersonic speeds (M < 3), but are the most efficient at
subsonic speeds. Turbojets use a compressor for compression of the incoming air. Supersonic flow input
would damage the turbomachinery blades. Therefore, the compressor inlet is limited to a relatively low
subsonic flow (around M = 0.3). However, due to the rotation of the blades, at the tip of the largest
blades, flow velocities close to supersonic speed are obtained, despite the incoming flow of M = 0.3.
That is why supersonic freestream flow is firstly slowed down to low subsonic speeds before entering the
compressor [7]. The compressor is driven by a turbine downstream of the combustor. If the incoming
supersonic flow has a too high velocity, then the increase of temperature and pressure may be too large
for an efficient combustion process. In that case, a ramjet is a better option for propulsion.

Ramjets are employed in the range 2 < M < 6. These engines do not use a compressor with rotating
parts such as a turbojet, but compress the incoming air by the so-called ram effect. That is why higher
supersonic speeds are needed for operation. In the inlet, air is decelerated in the converging channel to
sonic speed M = 1 at the throat, i.e. the narrowest cross-section. Subsequently, the channel expands. As
a result, the flow speed within the engine is decreased to subsonic speed in the combustor. After ignition
of the fuel-air mixture, the air speed increases again to supersonic speed in the diverging exhaust channel.
For flight speeds towards M = 5, it is discouraged to use ramjets, because the deceleration of the flow to
subsonic speed would result in a too large temperature rise and low efficiency of combustion. Therefore,
at hypersonic flight speeds, scramjets are employed [8].

Scramjets (supersonic combustion ramjet) are employed at hypersonic flight speeds (M > 5), up to



3

about M = 12. Similar to the ramjet, flow is decelerated in the converging inlet, but now not to sonic
speed but to a low supersonic Mach number by the ram effect. In contrast to the ramjet, the flow is
not decelerated to subsonic speed, but remains supersonic. Otherwise, the pressure and temperature rise
would possibly be too high for stable and efficient combustion. After combustion, the flow accelerates in a
diverging channel to higher supersonic Mach numbers. In the combustor, fuel is injected into a supersonic
crossflow. However, compared to fuel injection into a subsonic crossflow – as is the case for turbojets
and ramjets – when injecting gaseous fuel into a supersonic crossflow, more complex flow features occur [8].

The focus of the present study is on the flow features that have an effect on the efficiency of combustion
in a scramjet engine. For the efficiency of the combustion and minimisation of the length of the scramjet,
it is important that fuel is mixed rapidly with the air flow, while maintaining the momentum of the air
flow as much as possible. For the mixing, fuel is transversely injected into the supersonic crossflow. For
gaseous fuel injection, the configuration of the jet is important for the mixing process. Many studies have
been carried out into single jet injection into a supersonic crossflow. However, it appears that tandem
dual jet injection is more efficient in mixing than single jet injection [3]. That is the motivation behind
the present investigation of tandem dual jet injection in a supersonic crossflow.

Figure 1.2: Schematic of tandem dual jet injection into a supersonic crossflow, based on [9].

In analysing transverse injection of a sonic jet, a number of phenomena become apparent, see figure
1.2. In front of each injection point, a bow shock forms. Downstream of the bow shock, the jet penetrates
the crossflow and mixes with the predominantly supersonic flow that has passed through the bow shock.
The upper boundary of the mixing area is determined by the (time-dependent) position of the jet shear
layer that constitutes the upper side of the jet plume. These phenomena are observed in several studies
of injection in supersonic flow, but have not been fully characterized yet for tandem dual jet injection.

Therefore, in this research, the behaviour of the jet shear layer in tandem dual jet injection in a super-
sonic crossflow will be investigated in detail. Two governing parameters, the jet-to-crossflow momentum
flux ratio J (the proportion of the momentum of the jet as fraction of the momentum of the crossflow)
and the dual distance S (the dimensionless distance between the two jet orifices), are leading in this
investigation.



4 CHAPTER 1. INTRODUCTION

1.1 Research Goals

The research question for the present study is stated as follows:

What is the behaviour of the jet shear layer in tandem dual jet injection?

This research question is addressed through the following sub-questions:

1. What is the behaviour of the bow shocks that appear in front of each of the two jets? For which
conditions do the two bow shocks merge rather than remain spatially separated? In addition, if the
bow shocks merge, how is the position of the merger point of the bow shocks characterized? Does
the position of this merger point have an effect on the penetration of the jet shear layer?

2. What is the behaviour of the jet upper shear layer as a function of the jet-to-crossflow momentum
flux ratio J and the dimensionless dual distance S? What is an appropriate fit for describing the
time-averaged location of the jet shear layer? Is there an appropriate similarity type of scaling in
terms of S and J? What is the behaviour of the bandwidth in the location of the jet upper shear
layer?

3. How could the jet plume be characterized from quantifications for the location of the time-averaged
jet upper shear layer, the jet center line and the jet lower shear layer?

These research questions are considered, based on experimental research in the supersonic wind tunnel
facility at the University of Twente, in which the flow is visualized by Schlieren techniques. Before
addressing the research questions, a literature research has been performed.

Chapter 2 discourses the fundamentals of supersonic flow phenomena, with a focus on shock behaviour.
Chapter 3 elaborates on jet injection in still air and gives insight in the behaviour of the jet for the case a
crossflow is absent. The knowledge of chapter 2 and chapter 3 is combined in chapter 4. In this chapter,
an extensive description of various phenomena occurring in single jet injection into a supersonic crossflow
is presented. Focus is on the bow shock in front of the jet, the penetration of the jet into the crossflow
and the behaviour of the jet shear layer. The knowledge in chapter 4 of single jet injection is extended
to tandem dual jet injection in chapter 5. This chapter focuses on the behaviour of the bow shocks and
the behaviour of the penetration of the two jet into the crossflow. Subsequently, chapter 6 provides a
description of the Schlieren and imaging techniques as used in the experiments.

In chapter 7, the methodology of the study is detailed with respect to the wind tunnel, injection and
Schlieren set-up. Also, there is another focus on the analysis methodology as applied to the results of the
Schlieren images. Chapter 8 describes and analyses the results on the behaviour of the bow shocks and
the behaviour of the jet. Finally, conclusions are presented in chapter 9 and recommendations for future
research are provided in chapter 10.



Chapter 2

Supersonic Flow Phenomena

Supersonic flows have velocities above the speed of sound (M > 1) at every point in the flow. That is
why the speed of sound a is a key parameter in supersonic flows. The definition of the speed of sound is:

a2 =

(
∂p

∂ρ

)
S

(2.1)

In this expression, p is the pressure, ρ the density and S the entropy. For a calorically perfect gas,
the speed of sound can be expressed as:

a =
√
γRT (2.2)

In this expression, γ is the ratio of the specific heats, R is the specific gas constant and T is the
absolute temperature. As a result, the Mach number (equation 1.1) for a calorically perfect gas depends
on the gas composition, the temperature and the velocity.

The theory of isentropic flow is detailed in section 2.1. The flow phenomena that are seen in supersonic
flows are significantly different from those in subsonic flows, despite both are fully described by the
same system of equations, i.e. the Navier-Stokes equations, supplemented by thermodynamic relations.
Especially characteristic for a supersonic flow is the formation of shock waves, which are fronts at which
fluid is compressed. The different types of shock waves are detailed in section 2.2. Section 2.3 elaborates
on the flow through nozzles and diffusers. The theory of this chapter is applied to the flow through
supersonic wind tunnels in section 2.4.

2.1 Isentropic flows

The governing equations used in supersonic flows are the Navier-Stokes equations for compressible flow.
These consist of mass conservation, momentum conservation (Newton’s second law) and energy conser-
vation (first law of thermodynamics). These are given in the following non-conservation form [5]:

Dρ

Dt
+ ρ~∇ · ~u = 0

ρ
D~u

Dt
= ρ~f − ~∇p+ ~∇ · τ̄

ρ
DE

Dt
= ρ~f · ~u− ~∇ · (p~u) + ~∇ · (τ̄ · ~u) + Q̇− ~∇ · ~q

(2.3)

in which ~u is the velocity vector, p is the pressure, ρ is the density and E is the total energy E =
e+ 1

2 |~u|
2, with e the internal energy. For the viscous stress tensor τ̄ and the heat flux vector ~q, additional

constitutive relations are required.
In supersonic flows, the velocities are very high and therefore, the Reynolds numbers are very high

too. This makes that the viscous effects are mostly confined to thin regions, which effects can often
be neglected. Together with this assumption, heat conduction is neglected as well. The underlying
assumption is that flow separation does not occur. Applying these simplifications to the Navier-Stokes

5
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equations, results in the Euler equations for inviscid, non-heat-conducting flow. These are in conservation
form [5]:

∂U

∂t
+ ~∇ · ~F inv = J (2.4)

with

U =

 ρ
ρ~u
ρE

 ; ~F inv =

 ρ~u
ρ~u~u+ pĪ
ρ~uH

 ; J =

 0

ρ~f

ρ~f · ~u+ Q̇

 (2.5)

where the total enthalpy H = E + p
ρ . When not dealing with shock waves, a common assumption

for a supersonic flow is isentropicity. This means that the entropy is assumed to be constant (ds = 0)
and implies an adiabatic (q̇ = 0) and reversible process [6]. Furthermore, external forces are omitted
and a calorically perfect gas is assumed. The governing equations in such processes are stated by (in 1D
time-dependent cases) [5]:

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0

p = p(ρ)

(2.6)

Using these equations, the so-called the isentropic-flow relations are obtained [5]:

a2

a2
∞

=

[
1 +

γ − 1

2
M2
∞

(
1− u2

U2
∞

)]
p

p∞
=

[
1 +

γ − 1

2
M2
∞

(
1− u2

U2
∞

)] τ
γ−1

ρ

ρ∞
=

[
1 +

γ − 1

2
M2
∞

(
1− u2

U2
∞

)] 1
γ−1

T

T∞
=

[
1 +

γ − 1

2
M2
∞

(
1− u2

U2
∞

)]
(2.7)

In these relations, the reference (subscript ∞) and local (no subscript) values are used and related to
each other. In another form and making use of the stagnation condition (u = 0, p = p0, ρ = ρ0, T = T0

and a = a0), the following relations are derived from equation 2.6 [5]:

a2
0

a2
=

[
1 +

γ − 1

2
M2

]
p0

p
=

[
1 +

γ − 1

2
M2

] γ
γ−1

ρ0

ρ
=

[
1 +

γ − 1

2
M2

] 1
γ−1

T0

T
=

[
1 +

γ − 1

2
M2

]
(2.8)

Now, it is important to state some properties of the isentropic flow. In isentropic flow, the stagnation
quantities p0, ρ0, T0 and H0 are constant [5]. This does not hold for shock waves, which result in an
increase in entropy. On a streamline through a shock wave, upstream and downstream of a shock wave,
isentropicity of a flow is a valid assumption as long as a streamline does not pass through a boundary
layer. In the next section, shock waves are analysed and generation of entropy in a shock wave will
become clear.
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2.2 Shock waves

Shock waves are extremely thin regions within supersonic flows, across which flow properties change
strongly. Disturbances created at a certain point in the supersonic flow cannot move upstream. That
is an important reason for the presence of shock waves in supersonic flow and their absence in subsonic
flow. In a subsonic flow, disturbances created at some point can travel with the flow as well as against
the direction of the flow.

The transition of the flow properties across a shock wave can be approximated as being a discontinuous
change, i.e. a jump. Assume region 1 as the flow upstream of a stationary shock wave and region 2 as
the flow downstream of a shock wave. For these supersonic flows, it is characteristic that the Mach
number of the flow in region 1 (M1) is above 1 and that the Mach number of the flow in region 2 (M2)
is lower than M1 (in the case of compression). Consequently, the pressure, density, temperature and
entropy will increase across the shock wave, but the velocity component normal to the shock and total
pressure will decrease, so there is a total pressure loss. Furthermore, a shock wave is adiabatic, so the
total enthalpy will remain the same across the shock wave [6]. These observations can be derived from
the Rankine-Hugoniot relations [5].

The Rankine-Hugoniot relations are derived from the Euler equations, as given in equations 2.4 and
2.5. In the Euler equations, discontinuous or weak solutions are allowed. The Rankine-Hugoniot relations
are discontinuous solutions of these equations. There are a few assumptions for the flow through this
shock wave [6]:

• The flow is inviscid → τ̄ = 0

• The flow is non-heat conducting → ~q = ~0

Furthermore, it is important to realize that the flow cannot be assumed to be insentropic within a
shock wave, because within a shock wave, the entropy increases. The flow upstream and downstream of
the shock wave can be assumed to be isentropic separately along streamlines. After implementing the

assumptions and the jump in the Euler equations (
[
~F inv · ~nd

]
= 0), the following jump relations are

obtained as Rankine-Hugoniot relations [5]:

[ρ (~u− ~ud) · ~nd] = 0[
ρ[(~u− ~ud) · ~nd]2 + p

]
= 0

[ρ[(~u− ~ud) · ~nd]~ut] = ~0[
ρ

(
h+

1

2
|~u− ~ud|2

)
[(~u− ~ud) · ~nd]

]
= 0

(2.9)

In which ~u is the velocity of the flow and ~ud is the velocity of the discontinuity, i.e. shock wave.
Furthermore, it holds that the relative velocity ~u−~ud = un~nd+~ut, in which un is the normal component
of the relative velocity and ~ut is the component of the relative velocity in the tangential direction with
respect to the shock wave. When rewriting equation 2.9 in terms of quantities in region 1 and region 2,
the Rankine-Hugoniot relations for a shock discontinuity become [5]:

ρ1un1 = ρ2un2 with un ≡ (~u− ~ud) · ~nd
p1 + ρ1u

2
n1

= p2 + ρ2u
2
n2

ρ1un1
~ut1 = ρ2un2

~ut2 → ~ut1 = ~ut2

ρ1un1H0,1 = ρ2un2H0,2 with H0 = h+
1

2

(
u2
n + |~ut|2

) (2.10)

Now assume a compression shock wave, in which the relative velocity decreases in terms of a decrease
of the normal relative velocity un. This means that un1 > un2. As a result of that, the density will be
discontinuous too and will increase: ρ1 < ρ2.

When investigating these relations, it becomes clear that when the relative velocity changes (as is the
case for a compression shock wave), that then the velocity component tangential to the shock wave has
to remain the same. The same holds for the total enthalpy, which is defined as H0 ≡ h+ 1

2 (u2
n + |~ut|2).

For compression (un1 > un2), specific enthalpy will increase (h1 < h2). Furthermore, p1 < p2 because of
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the second relation in equation 2.10. Finally, the total pressure decreases as the flow passes through the
shock wave, which can be derived from the decrease of the Mach number.

The Rankine-Hugoniot relations also allow a solution for an expansion shock wave, such that the Mach
number increases as the flow passes through the shock wave. Consequently, the entropy will decrease,
while the total pressure will increase. However, due to violation of the second law of thermodynamics,
this is not a realistic physical case [5].

In the above approach, a discontinuous flow solution is taken for the shock wave. However, in reality,
the discontinuity is a really thin region with high gradients in the flow variables. The inviscid flow solution
steepening mechanism and the diffusive heat-conduction and viscous mechanisms will balance. The
thickness of the shock wave can be estimated from a dimension analysis of the Navier-Stokes equations.
In the Navier-Stokes equations, the term ρu2 + p and µdu

dx should be of the same order of magnitude.
From derivation, it appears that the thickness of the shock wave δ can be expressed as being of the
following order of magnitude [5]:

δ

L
=

µ

ρUL
=

1

Re
(2.11)

with L being a reference length. Knowing that most supersonic applications will involve Reynolds
numbers of order 106, then the thickness of the shock wave is rather small and the above approximation
of a discontinuous solution of the inviscid-flow equations for the shock wave is valid [5].

Three types of shock waves will be addressed in the following section: the normal shock, the oblique
shock and the bow shock.

2.2.1 Normal shock

Normal shocks often occur in nature. There are several cases in which normal shocks appear, such as part
of a bow shock wave in front of a body and within an overexpanded flow through a nozzle [6]. The jumps
in the physical quantities are described by the Rankine-Hugoniot relations as given in equation 2.10, but
with the condition that ~ut = ~0. This makes the third relation of equation 2.10 trivial. A schematic is
shown in figure 2.1.

Figure 2.1: Schematic of a normal shock wave.

Using the Rankine-Hugoniot relations, the following expressions for the relation between physical
quantities on the downstream side in terms of physical quantities on the upstream side of a shock wave
are determined, with M1 > 1. The ratios p2/p1 and ρ2/ρ1 can be determined directly from the Rankine-
Hugoniot relations. Other important ratios depend on these as follows [5]:
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M2
2

M2
1

=

(
p2

p1

)−1(
ρ2

ρ1

)−1

u2

u1
=

(
ρ2

ρ1

)−1

T2

T1
=

(
p2

p1

)(
ρ2

ρ1

)−1

h2

h1
=
e2

e1
=
T2

T1

p02

p01
=

(
p2

p1

)− 1
γ−1

(
ρ2

ρ1

) γ
γ−1

(2.12)

These relations above can be substituted by p2/p1 and ρ2/ρ1, resulting in the following ratios of
physical variables over a normal shock wave as a function of M1 and γ [5][6]:

M2 =

√
1 + γ−1

2 M2
1

γM2
1 −

γ−1
2

u2

u1
=

1 + γ−1
2 M2

1
γ+1

2 M2
1

p2

p1
= 1 +

2γ

γ + 1

(
M2

1 − 1
)

ρ2

ρ1
=

γ+1
2 M2

1

1 + γ−1
2 M2

1

T2

T1
=

(
1 +

2γ

γ + 1

(
M2

1 − 1
)) 1 + γ−1

2 M2
1

γ+1
2 M2

1

p02

p01
=

(
1

1 + 2γ
γ+1

(
M2

1 − 1
)) 1

γ−1
(

γ+1
2 M2

1

1 + γ−1
2 M2

1

) γ
γ−1

T0,2

T0,1
= 1 (Adiabatic)

(2.13)

The relations above show that for a normal shock wave, the flow decelerates from supersonic to
subsonic flow and the higher M1, the higher the ratio M1/M2 will be, thus the lower M2 will become.
For the other ratios, the same holds: the higher M1, the larger p2/p1, T2/T1 and ρ2/ρ1 and the smaller
p02/p01 will become. The latter implies that the stronger the shock wave, the higher the loss in total
pressure and the increase in entropy.

In the limit case of M1 →∞, some ratios have finite values:

M2 →
√
γ − 1

2γ
u2

u1
→ γ − 1

γ + 1
p2

p1
→∞

ρ2

ρ1
→ γ + 1

γ − 1

T2

T1
→∞

p02

p01
→ 0

(2.14)
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2.2.2 Oblique shock

Normal shock waves have stronger compressibility effects than oblique shock waves [5]. With respect
to the Rankine-Hugoniot relations, the difference between normal shocks and oblique shocks is that for
oblique shocks, ~ut 6= ~0. In figure 2.2, a schematic of the flow field with an oblique shock is shown. A
property of an oblique shock is that like every pressure wave, an oblique shock can be reflected within a
channel with a supersonic flow [10]. More about this phenomenon is described in section 4.3.2.

Figure 2.2: Schematic of a stationary oblique shock wave with the velocity components.

From the first and third relation of equation 2.10, it can be derived that ~ut1 = ~ut2 . Furthermore, two
angles are introduced: β is the angle of the shock inclination with respect to the free stream and θ is the
angle of the flow inclination with respect to the free stream. Note that now different components of the
Mach number will be used: Mn = un

a for the normal velocity and M = u
a for the total velocity. Using

geometrical relations, the following expressions for the Mach numbers are obtained:

M1 =
u1

a1

Mn1
= M1 sinβ

M2 =
u2

a2

Mn2 = M2 sin(β − θ)

(2.15)

Using the expressions above, the ratios for physical quantities over an oblique shock wave are:

M2 =
1

sin(β − θ)

√
1 + γ−1

2 M2
n1

γM2
n1
− γ−1

2

u2

u1
=

1 + γ−1
2 M2

n1

γ+1
2 M2

n1

p2

p1
= 1 +

2γ

γ + 1

(
M2
n1
− 1
)

ρ2

ρ1
=

γ+1
2 M2

n1

1 + γ−1
2 M2

n1

T2

T1
=

(
1 +

2γ

γ + 1

(
M2
n1
− 1
)) 1 + γ−1

2 M2
n1

γ+1
2 M2

n1

p02

p01
=

(
1

1 + 2γ
γ+1

(
M2
n1
− 1
)) 1

γ−1
(

γ+1
2 M2

n1

1 + γ−1
2 M2

n1

) γ
γ−1

T0,2

T0,1
= 1 (Adiabatic)

(2.16)
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The relations above are similar to the relations for the normal shock, with the difference that now
explicitly the normal component of the Mach number Mn1

is used instead of the Mach number M1 of the
flow. When using the condition of continuity of the flow, a relation between the angles β and θ and the
Mach number is obtained [5]:

tan θ =
M2

1 sin2 β − 1

tanβ
[
1 + 1

2 (γ + cos 2β)M2
1

] (2.17)

Equation 2.17 is the so-called β − θ −M-relation which gives a relation between the upstream Mach
number M1, the flow inclination θ and the shock inclination β. In figure 2.3, a plot of β − θ − M-
relations for different Mach numbers is shown. In the plot, curves are present that show that β is a
multivalued function of θ. So for a given θ and given M1, there are two possibilities for β using equation
2.17. The difference of the two values of β is situated in being on the one or the other side of the maximum
∂θ
∂β = 0, i.e. when the slope of the iso-Mach line is vertical.

Figure 2.3: β − θ −M-relation for several Mach numbers [5].

This maximum gives a value for the maximum permissible angle θ, which is always smaller than 45.58°
for air. For θ > θmax, the solution is more complex, because a straight oblique shock does not exist.
Instead of a straight oblique shock, the shock will be curved, with a normal part near the wall (strong
shock) and from there on a curve towards an oblique part (weak shock) of the shock with a certain β [5].

Following a curve of constant M in figure 2.3, there are two solutions for β with respect to θ. The
higher value of β is the so-called strong-shock solution for which β is closest to π/2, i.e. the normal
shock. The lower value of β is the so-called weak-shock solution. It appears that nature in general prefers
the weak-shock solution for which θ is closest to the Mach angle µ. In the strong-shock solution, the
flow becomes subsonic downstream of the shock wave and in the weak-shock solution, the flow remains
supersonic [5].

If there is a small flow inclination angle, θ ≈ 0, then either a strong-shock solution with β = 90° or
weak-shock solution with β = µ is possible. Here µ is the Mach-angle, which is defined as [5]:
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µ = arctan

 1√
M2

1 − 1

 for M1 > 1 (2.18)

This equation is obtained from the analysis of characteristics for the nonlinear isentropic flow model
of the Euler equations, for which the flow is assumed to be inviscid, non-heat-conducting and is not
subjected to external forces or external heat sources [5]. The same expression for µ can be derived from
equation 2.17, when applying θ = 0°, which makes β equal to µ.

µ = arcsin

(
1

M1

)
for M1 > 1 (2.19)

Finally, the limit for M1 →∞ is taken in equation 2.17, which results in, using l’Hôpital’s rule:

tan θ =
sin 2β

γ + cos 2β
(2.20)

Equating the derivative equal to 0 results in the relation cos 2β = − 1
γ for the maximum flow inclina-

tion. Using that γ = 1.4 for air, it will result in βθmax = 67.79° for θmax = 45.58°.

2.2.3 Bow shock

A bow shock is a wave that forms in front of a blunt body placed within a supersonic flow. This wave
is detached from the body, curved and has a portion normal to the flow. Therefore, the bow shock is a
combination of a normal shock and an oblique shock. If the body would be shaped such that the flow
inclination angle is less than θmax, then it is possible to have an oblique shock attached to the leading
edge of the body. This is for example the case for wedges and sharp cones. However, bodies are often
blunt, which means that the flow inclination angle is larger than 45.58°. An example of the bow shock
and the flow behaviour is given in figure 2.4 [6].

Figure 2.4: Schematic of the flow crossing a bow shock formed in front of a 2D blunt body [6].
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In the case of for example a cylinder normal to the flow, a bow shock forms upstream of the cylinder,
i.e. in front of the cylinder, which causes the flow to become partly subsonic. However, due to the shape
of the object, the flow will accelerate to supersonic again. The interface between supersonic flow upstream
and subsonic flow downstream of the bow shock is sketched by a dashed line, which is the sonic line [6].

The bow shock will be at a certain distance upstream from the body, which is called the shock
detachment distance or stand-off distance δs. δs is a dimensionless number, scaled to a characteristic
length. In the 1950s and 1960s, the problem of predicting this distance was a major focus of supersonic
aerodynamicists [6]. A theoretical approximation of the shock detachment distance has been developed
by Sinclair et al. [11]. Sinclair derived the following expression:

δs =
β2
s

θ2
s cosβs

·

√
2 + (γ − 1)M2

∞

2γM2
∞ − γ + 1

(2.21)

Figure 2.5: Schematic a bow shock formed in front of a cylinder [11].

In equation 2.21, the right term of the right-hand side is the Mach number downstream of the shock
wave, i.e. the first expression from equation 2.16. βs is the surface sonic angle, which is the angle between
the horizontal and the position on the cylinder where at the surface the flow is sonic (the dashed line).
θs is the inclination angle of the surface sonic point, which is about the same point as for βs, but now
with respect to the vertical. See figure 2.5. Both angles are in radians, thus: θs + βs = π

2 . Using the
Newtonian impact theory in the form of

Cps
Cp,max

= sin2 θs (2.22)

and the definition of the pressure coefficient

Cp =
2

γM2
∞

(
p

p∞
− 1

)
(2.23)

it is possible to construct a relation for the angles βs and θs. In this specific case of a cylinder, the
following expressions for Cp,max and Cps are applied, resulting in expressions for the angles [11].
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Cps =
2

γM2
∞

{(
γ + 1

2

)− γ
γ−1

[
(γ + 1)2M2

∞

4γM2
∞ − 2(γ − 1)

] γ
γ−1

[
1− γ + 2γM2

∞
γ + 1

]
− 1

}

Cp,max =
2

γM2
∞

{[
(γ + 1)2M2

∞

4γM2
∞ − 2(γ − 1)

] γ
γ−1

[
1− γ + 2γM2

∞
γ + 1

]
− 1

}

θs = arcsin

√
Cps

Cp,max

βs =
π

2
− arcsin

√
Cps

Cp,max

(2.24)

The method described above shows that the shock detachment distance depends on the location where
the subsonic flow downstream of the bow shock becomes a supersonic flow. The location of this sonic
line depends on the upstream Mach number M∞ and the type of fluid (γ). The results of this method
are in agreement with several experimental results, see [11].

When choosing γ = 1.4 and M∞ = 1.7, the angles and shock detachment distance become: βs = 0.905,
θs = 0.666 and δs = 1.91, respectively. Note that δs is a dimensionless distance, non-dimensionalized by
the radius of the cylinder. Thus in this case, the bow shock is at a distance of 1.91R from the cylinder.

2.2.4 Prandtl-Meyer Expansion Fan

Another type of wave, for the case of expanding flow, is the Prandtl-Meyer Expansion Fan. This is
a two-dimensional wave that consists of an infinite number of Mach waves (calculated by equation 2.19).
These waves are diverging from a sharp edge at a corner, see figure 2.6. It can be seen that the slope of
the waves in the expansion fan changes with small steps.

Figure 2.6: Schematic of the Prandtl-Meyer expansion fan.

In expansion of supersonic flows, the flow accelerates. Therefore, downstream of the expansion fan,
the Mach number (M2) is increased compared to the Mach number upstream (M1). The reason that
this flow solution contains an infinite number of Mach waves, is that expansion through a single shock
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wave would violate the second law of thermodynamics. Therefore, the flow through every Mach wave is
isentropic and so the whole expansion fan is an isentropic flow feature. As the expansion is isentropic, the
total temperature T0 and total pressure p0 are conserved and the isentropic-flow relations can be applied
[6].

In order to determine the Mach number of the flow downstream of the expansion, the Prandtl-Meyer
function is used [5]:

ν(M) =

∫ √
M2 − 1

1 + γ−1
2 M2

dM

M
=

√
γ + 1

γ − 1
arctan

√
γ − 1

γ + 1

(
M2 − 1

)
− arctan

√
M2 − 1 (2.25)

ν is in radians and is related to the turn angle θ [6]:

θ = ν(M2)− ν(M1) (2.26)

With this knowledge, it is clear that the Mach number downstream of the turn is determined by only
the ratio of the specific heats γ, the turn angle θ and the upstream Mach number M1.

There are some limiting cases. By convention, ν(M = 1) = 0, because this is the lower limit of
supersonic flow. The upper limit of the Prandtl-Meyer function is given by:

νmax =
π

2

(√
γ + 1

γ − 1
− 1

)
(2.27)

The maximum turn angle is therefore determined by the ratio of the specific heats γ. For air (γ = 1.4),
this is νmax = 2.27 rad = 130.45°.

The turn angle is not the only limit for increase of speed in isentropic flows. Another limit for the
speed of the gas is given by energy conservation [5]:

1

2
u2 + cpT = cpT0 = constant (2.28)

The kinetic energy for the gas is bounded by the total temperature. Therefore, the maximum speed to
be obtained during expansion, which is for the case for the static temperature approaching the absolute
minimum T = 0 K, is:

umax =
√

2cpT0 (2.29)

For this maximum speed, the Mach number approaches infinity, because the speed of sound approaches
zero. Note that this limiting case will never be achieved, as the gas at T = 0 K will be solidified. This
case is not realistic and the static temperature should stag above a certain limit. Therefore, when keeping
T variable, during expansion the maximum local Mach number for isentropic flows can be expressed as:

M =

√
2cp(T0 − T )

γRT
=

√
2

γ − 1

(
T0

T
− 1

)
(2.30)

Figure 2.7 shows equation 2.30 as a function of the ratio of the temperature and the total temperature
T/T0. With no expansion from still air (T/T0 = 1), the Mach number is of course 0. With expansion
from still air, the Mach number increases and the static temperature decreases.

2.3 Nozzles and Diffusers

In supersonic flows, convergence and divergence of the flow play an important role in the control of the
flow. These are applied in the design of nozzles and diffusers. In nozzles, the flow is accelerated and in
diffusers, the flow is decelerated. For the analysis of these flows, quasi-one-dimensional steady flow is
assumed [6]. Quasi-one-dimensional flow means that the flow is assumed uniform over the cross-section
in a channel. Furthermore, it should be noted that |dAdx | << 1 holds for the quasi-one-dimensional flow
assumption [5].

For implementation, the steady adiabatic 1D version of the Euler equations (equation 2.4) omitting
external forces is used. The flow is isentropic and hence barotropic (density is only a function of pressure).
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Figure 2.7: Maximum Mach number as a function of the temperature ratio T/T0 for γ = 1.4.

When using a control volume of a stream tube, relations derived from the continuity, momentum and
energy equation are obtained [5]:

1

A

dA

dx
+

1

u

du

dx
+

1

ρ

dρ

dx
= 0 continuity

dp

dx
+ ρu

du

dx
= 0 momentum conservation

dh

dx
+ u

du

dx
= 0 energy conservation

dp

dx
=

dp

dρ

dρ

dx
= a2 dρ

dx
isentropicity

⇒ 1

ρ

dρ

dx
+

M2

u

du

dx
= 0

(2.31)

in which M is the local Mach number. Combining the first and last equation of equation 2.31, the
area-velocity relation is obtained:

1

A

dA

dx
= (M2 − 1)

1

u

du

dx
(2.32)

The area-velocity relation can be visualized the best using converging and diverging ducts, see figure
2.8. The behaviour of the flow depends on the Mach number. If the flow is subsonic (M < 1), then
1
A

dA
dx ∝ −

1
u

du
dx , which means that when A increases, u decreases and the other way around. This is

according to intuition and the same for liquids [12]. However, for gases, a difference appears when the
flow is supersonic (M > 1). The dependence then becomes 1

A
dA
dx ∝

1
u

du
dx , i.e. when A increases, u increases

too and the other way around. As a result, other physical quantities will increase or decrease depending
on the case of a converging or diverging duct and the Mach number at inlet being subsonic or supersonic
[5][6].

There are some phenomena to note. First of all, take M = 0. In that case, algebra shows that
A(x)u(x) = constant, which is the implication of an incompressible flow (ρ is constant). Secondly, when
M = 1, it follows that dA

dx = 0, which means that A has an extremum. A minimum in A(x) is called a
throat and is required for the sonic condition M = 1. A throat does not always imply sonic flow [5]. If the
flow with dA

dx = 0 is not sonic (M 6= 1), equation 2.32 tells that du = 0, so the velocity has an extremum.
For the practical application of supersonic flows, a convergent-divergent channel is used, as visualized

in figure 2.9 for the De Laval nozzle. These channels are often used in wind tunnels (see section 2.4). The
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Figure 2.8: Converging and diverging ducts for subsonic and supersonic flows [6].

cross-sectional area of the throat determines the maximum mass flow, as for M = 1, the cross-sectional
area is minimal. The mass flow is expressed as the following using mass conservation for isentropic flows
[13]:

Figure 2.9: Schematic of isentropic expansion in a De Laval nozzle [5].

ṁ =
A(x)p0√

T0

√
γ

R
M(x)

(
1 +

γ − 1

2
M(x)2

)− γ+1
2(γ−1)

(2.33)

For M = 1, equation 2.33 reduces to equation 2.34, denoting A∗ as the cross-sectional area of the
throat.

ṁ =
A∗p0√
T0

√
γ

R

(
γ + 1

2

)− γ+1
2(γ−1)

(2.34)
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It follows that the mass flow through a convergent-divergent channel is determined by the total
pressure p0, total temperature T0, the type of gas (R and γ) and the cross-sectional area A∗ of the
throat.

Combining equation 2.33 and 2.34, the Mach-number-area relation is derived:

A(x)

A∗
=

1

M(x)

[(
2

γ + 1

)(
1 +

γ − 1

2
M(x)2

)] γ+1
2(γ−1)

(2.35)

Figure 2.10 shows a plot of equation 2.35. from which the principle of the choked flow is clearly shown.

Figure 2.10: Mach-number-area relation from equation 2.35 plotted for the Mach number versus the area
ratio A/A∗ with A∗ the area of the narrowest cross-section (throat) [5].

Convergent-divergent channels are used both for expansion and compression. In the first case, a
subsonic flow is accelerated to M = 1 in the throat and thereafter accelerates further supersonically. In
the second case, a supersonic flow is decelerated in the convergent part of the channel to M = 1 and
thereafter decelerates further subsonically. In conclusion, a convergent-divergent channel is an appropriate
configuration for converging a flow from subsonic to supersonic and the other way around [6].

2.4 Supersonic Wind Tunnels

For experimental investigation of supersonic flow, wind tunnels are used. A number of types that are
used, amongst others the closed circuit return wind tunnel, the air indraft wind tunnel and the blow-
down wind tunnel. The difference between these types is that the closed return wind tunnel and the air
indraft wind tunnel can be in operation continuously, whereas the blow-down wind tunnel needs a refill
of the upstream reservoir from time to time. Furthermore, in the closed return wind tunnel, the flow is
circulated, while in the other types, air flows through the wind tunnel once.

The configuration of the test section is the same for all types of wind tunnels. As an example, see
figure 2.11. It works according to the principle of a De Laval nozzle. The approaching air is initially
subsonic. Then, the flow is contracted in the nozzle throat, such that the flow is accelerated to sonic
speed. Downstream of the throat, the cross-section of the wind tunnel expands again, accelerating the
sonic flow to supersonic speeds. After expansion, the cross-sectional area remains constant for a certain
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Figure 2.11: Configuration of the test section of a supersonic wind tunnel [6].

distance. This part is the test section, in which objects can be put or fluids can be injected. The flow can
be investigated by many techniques, such as Schlieren (see chapter 6). Downstream of the test section,
the flow is choked again in the diffuser throat to sonic speed and thereafter decelerated further to subsonic
speed [6][14].

Using the isenstropic-flow relations from section 2.1, the velocity can be determined. However, another
possibility is the calculation of the Mach number using the so-called Mach lines. This is a line, visible in
a Schlieren image, which inclination corresponds to the Mach angle of equation 2.19. These Mach lines
are caused by disturbances such as small discontinuities at the wall of the wind tunnel. In figure 2.12, a
Mach line in a wind tunnel test section is made visible as a white line.

Figure 2.12: Mach line visualization in a Schlieren image from an experiment of De Maag [3] of single jet
injection into a supersonic crossflow of air. Conditions: J = 1.4 and Mc = 1.6.
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Chapter 3

Jet Injection in Still Air

Jet injection is the injection of a certain matter, often liquid or gas, in the form of a squirt. They are
applied in several practical applications, such as injection of fuel for combustion in scramjet engines,
oil-well blowouts, breaks in high-pressure systems, et cetera [15]. When considering jet injection, there
are several possibilities with respect to the geometrical and physical parameters. The injection can be
done for example using slots or circular orifices. Before elaborating more, the research is restricted to the
injection of gas with circular injection orifices.

Jets are injected from a certain reservoir, which is also called the plenum. An example is shown
in figure 3.1, where it is denoted as upstream reservoir. The parameters with subscript 0,j are for the
reservoir total quantities, the parameters with subscript e and an asterisk ∗ are for the conditions at the
orifice of the jet and the parameters for the space in which the jet is injected (ambient region) ∞. On
one side of the reservoir, gas is supplied and on the other side of the reservoir, the gas is ejected. Inside
the reservoir, the gas is almost quiescent and therefore, the total pressure can be measured [15].

The pressure is a rather important parameter for jet injection. It is especially important to know the
pressure of the reservoir of the jet with respect to the pressure in the space in which the jet is injected
(ambient pressure).

The parameters that characterize the jet are the Mach number of the jet at exit M∗e, the pressure at
exit p∗e, the orifice diameter D∗e and the jet exit pressure ratio p∗e/p∞ [16].

When using compressible gases, there are three fundamental steady-flow regimes to be distinguished
[15]:

1. adapted jets (p∗e = p∞)

2. nonadapted underexpanded jets (p∗e > p∞)

3. nonadapted overexpanded jets (p∗e < p∞)

The nonadapted flows only occur with M∗e at sonic or supersonic conditions, because then pressure
disturbances from the ambient region are not able to propagate into the channel in order to equalize p∞
and p∗e. Figure 3.1 shows a sketch of the pressure distribution for adapted as well as for underexpanded
flows. In this visualization, a converging nozzle is used, which accelerates the flow towards the ambient
region (see section 2.3 for details about the principles). While the flow accelerates in the nozzle, the
static pressure drops from p0,j to p∗e, before entering the ambient region [15].

The total pressure p0,j determines at which velocity the flow passes through the nozzle. By calculating

equation 2.8, it appear that p∗e/p0,j =
(
γ+1

2

) 1
γ−1 = 0.528 is required for having a sonic jet at the outlet

of the nozzle. p∗e should then be larger or equal to p∞. If p0,j is lower than required, then the jet from
the nozzle will be subsonic exit-adapted and if p∗e/p0,j = 0.528 and p∗e = p∞, the jet is sonic exit-adapted
(see figure 3.1). When the total pressure p0,j is higher than for the case of sonic exit-adapted jet, the
jet will still be sonic at the orifice, but having a higher pressure than p∞ (sonic exit-underexpanded, see
figure 3.1). For the further discussion, only underexpanded sonic jets are taken into account.

Considering an underexpanded sonic jet, the pressure at the outlet p∗e is higher than the ambient
region pressure p∞. The ambient pressure is to be achieved by the jet by an external expansion process.
Due to this process, pressure fluctuations along the center line of the jet will occur (see also figure 3.1).

21
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Figure 3.1: Pressure distribution inside a jet along the centerline from the reservoir to the ambient region.
The upstream reservoir is the jet plenum and the downstream reservoir is the ambient region [15].

In literature, there are mainly two types of underexpanded sonic jets with the pressure ratio p∗e/p∞
as determining factor. For the further use, this will be called the jet exit pressure ratio ηe,j :

ηe,j =
p∗e
p∞

(3.1)

If ηe,j is small, the jet is a slightly underexpanded sonic jet and if ηe,j is larger, the jet is a
highly underexpanded sonic jet. These two types of jets have their own characteristics, but the
point of transition between the two regimes is not clearly defined. Giskes [7] proposed to use the term
”highly” for jets featuring a so-called Mach disk – which is a normal shock – inside the jet and ”slightly”
for jets that do not feature a Mach disk, but only have an oblique shock structure. Ewan [16] approximates
this transition as ηe,j ≤ 2 for ”slightly” and ηe,j > 2 for ”highly”.

As there are many shock structures and large differences in physical quantities within the jet flow, the
density gradients are large too. This is beneficial for visualization of the jet flow by Schlieren techniques,
as these techniques visualize density gradients. For more about Schlieren techniques, see chapter 6.

In the following subsections, the two types of underexpanded jets are characterized. In both cases, a
uniform flow at the orifice is assumed [15].

3.1 Slightly underexpanded sonic jet

In the slightly underexpanded sonic jet, a number of phenomena are visible. Figure 3.2 shows that at the
orifice of the jet, a Prandtl-Meyer expansion fan occurs around the periphery of the orifice. Because of this
expansion, the flow accelerates and becomes supersonic. As a result, the pressure within the jet drops.
The expansion waves reflect from the boundary with constant pressure and will intersect, which forms an
intercepting shock. In the center of the jet, this intercepting shock is reflected (because of axisymmetry)
as an oblique shock. Downstream of the oblique shock, the pressure is higher than upstream of the shock,
which makes the jet flow to expand again at the point where the reflected oblique shock reaches the edge
to the jet flow. This process then repeats, such that a set of shock structures is visible [15].

At the edge of the jet flow, a jet mixing layer is visible (figure 3.2 and 3.3). This mixing layer develops,
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Figure 3.2: Near-field region of a slightly underexpanded sonic jet [15].

Figure 3.3: Near-field, transition and far-field regions of a slightly underexpanded sonic jet [15].

such that in the end the flow adjusts to the ambient conditions. The thickness of the jet mixing layer
grows with the distance from the passage exit and this viscous mixing layer contracts and weakens the
shock-cell pattern, as discussed above. Within the jet mixing layer, the velocity decreases from the inner
to the outer of the jet flow from supersonic to subsonic flow. Somewhere within the jet mixing layer in
the near-field of the jet flow, a sonic line is present. This sonic line will move toward the center of the
jet as the shock-cell pattern weakens. This is visible in the transition region (figure 3.3). When the jet
mixing layer sonic line reaches the center of the jet, the full jet has become subsonic and the jet mixing
layer spreads out. Then the shock structures also disappear. This subsonic jet flow region is the far-field
region. In the far-field region, the subsonic jet flow has a nearly constant static pressure, in contrast to
the near-field jet flow [15].

In summary, in the slightly underexpanded sonic jet, processes are present that can be divided in
three regions [15][17]:

• near-field: inviscid shock-cells dominate

• transition: viscous processes become more important and the supersonic part of the jet flow de-
creases until the sonic line passes the jet center line

• far-field: the jet flow is fully subsonic and is a mixing process at constant pressure
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3.2 Highly underexpanded sonic jet

As a result of a high pressure ratio ηe,j , the expansion of the jet will be stronger than for slightly
underexpanded sonic jets and so will the shocks within the jet flow. Figure 3.4 shows some characteristics
of the highly underexpanded jet. Expansion waves originate at the brim, which is the sharp edge of the
orifice (see also section 2.2.4). These expansion waves reflect at the flow boundary (or intercepting shock)
as compression waves. Coalescence of these compression waves results in the so-called barrel shock,
which surrounds the largest supersonic flow region. If ηe,j > 2, the barrel shock cumulates in a normal
shock and a reflected shock (figure 3.5), which results in a triple point. The normal shock is the so-called
Mach disk. Downstream of the Mach disk, the jet flow becomes subsonic. Provided ηe,j is sufficiently
large, there can be a succession of barrel and normal shocks [15][16]. An example Schlieren image is
shown in figure 3.6.

Figure 3.4: Characteristics and regions around the jet exit for a highly underexpanded jet [16].

Figure 3.5: Near-field region of a highly underexpanded sonic jet [15].

At the boundary of the jet flow, a jet mixing layer forms, which increases in thickness with distance.
Within this jet mixing layer, the sonic line is present. Furthermore, it appears that the flow behind the
Mach disk is subsonic, but the parallel flow behind the oblique reflected shock is still supersonic (see



3.2. HIGHLY UNDEREXPANDED SONIC JET 25

Figure 3.6: Schlieren image of a highly underexpanded jet with an underexpansion ratio η0,j = 5.47.

figure 3.5). Between these two regions, another mixing layer is formed, the so-called Mach disk mixing
layer. Due to the reflection of the reflected shock at the edge of the jet flow, an expansion fan is formed,
which causes the subsonic flow after the Mach disk to become supersonic again, through the Mach disk
mixing layer. Once the flow is supersonic, the processes as described before is repeated. Every step in
this repetition, the viscous effects in the jet mixing layer and the Mach disk mixing layer make the waves
weaker. In the end, a pattern as described for a slightly underexpanded sonic jet will be visible (see figure
3.3), until the full jet flow is subsonic and at constant pressure [15].

The location of the Mach disk scaled by the diameter of the jet is found to be insensitive to the
nozzle lip geometry, the absolute pressure level and the specific heats (γ) [16][18]. From experiments by
amongst others Crist et al. [18], it appears that the location of the Mach disk especially depends on the
underexpansion ratio, which is defined as:

η0,j =
p0,j

p∞
(3.2)

in which the ratio of the total pressure in the jet plenum and the static ambient pressure is used. The
relation for the location of the Mach disk is generally characterized by a power law relation in the form
of:

LMD

Dj
= c1η

c2
0,j (3.3)

Ashkenas and Sherman [19] proposed a relation for the location of the Mach disk for axisymmetric
continuous jets, based on several experimental results for the range 15 ≤ η0,j ≤ 17000:

LMD

Dj
= 0.67η

1
2
0,j (3.4)

Crist et al. [18] performed experiments of jet injection with the gases nitrogen, argon, helium, helium-
argon mixtures, carbondioxide, and Freon 22. They found out that the location of the Mach disk is
independent of γ and that is why the results of the different gases coincide. From these experiments,
they proposed a relation for the location of the Mach disk for 10 ≤ η0,j ≤ 300, 000:

LMD

Dj
= 0.645η

1
2
0,j (3.5)

In addition, Orescanin and Austin [20] did measurements for the location of the Mach disk in jet
injection of nitrogen and helium. They found an empirical relation for an infinite-reservoir jet for an
underexpansion ratio range of η0,j ≤ 15:

LMD

Dj
= 0.53η0.6

0,j (3.6)

In figure 3.7, equations 3.4 to 3.6 are plotted. Especially in the range 8 ≤ η0,j ≤ 12, the results of the
three correlations almost coincide.
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Figure 3.7: Location of the Mach disk LMD/Dj versus the underexpansion pressure ratio η0,j for three
relations from literature.

Comparison of several relations for the position of the Mach disk by Franquet et al. [21] results in the
general recommendation for the use of equation 3.5 from Crist et al. [18] for the location of the Mach
disk, as this equation is validated for a large range of η0,j . However, as the range of the application is
rather wide (10 ≤ η0,j ≤ 300, 000), one can propose to use equation 3.6 for lower underexpansion ratios
(η0,j < 10), as this equation is specifically developed to lower η0,j .



Chapter 4

Single Jet Injection into Supersonic
Crossflow

In chapter 1, it was described why jet injection into supersonic crossflow is important. Efficient mixing of
the jet with the crossflow is desired. In order to be able to analyze and then improve this, an understanding
is needed of jet injection into supersonic crossflow.

In chapter 2, the general physics of supersonic flows has been discussed and some important features
in these flows have been described. Thereafter, in chapter 3, jet injection in still air is considered. The
knowledge of these two chapters is combined in the present chapter. It is possible to have multiple
jets, which will be discussed in chapter 5, but for the sake of clarity and simplicity, only a single jet is
considered here.

First, a description of the flow structures of a jet in a supersonic crossflow is given. Some of these
structures are further explained in the subsequent sections, such as the penetration depth of the jet into
the supersonic crossflow and the behaviour of the jet shear layer.

4.1 Flow Structures in Single Jet Injection into Supersonic Cross-
flow

When considering an underexpanded sonic jet which injects transversely into a supersonic crossflow,
several structures are observed. These are shown in figure 4.1 and figure 4.2.

Figure 4.1: 2D schematic of flow features of underexpanded jet injection into a supersonic crossflow:
near-field in a vertical plane through the centerline axis of the jet [22].

27
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Figure 4.2: 3D schematic of time-averaged features of underexpanded jet injection into a supersonic
crossflow: near-field and far-field [22].

Below, flow structures are listed and described concisely. Some specific characteristics are discussed
in more detail in subsequent sections.

• Boundary layer and the flow separation zone

• Recirculation zones upstream and downstream of the jet orifice

• Horseshoe-vortex region starting in front of the jet

• Bow shock in front of the jet

• Barrel shock and Mach disk in the jet

• Jet boundary layer or jet shear layer at the upper side of the jet

• Large-scale structures in the jet shear layer

• Counter-rotating vortex pair in the far field region of the jet

The boundary layer near the wall of the supersonic crossflow is interrupted by the bow shock, created
because the jet flow is an obstacle to the crossflow. In front of the bow shock, the boundary layer separates
from the wall. This creates a flow separation region [22] and a separation shock above that region, which
is a lambda shock (named after the shape of the shock). A lambda shock is a small weak shock that
interacts with the stronger bow shock further downstream. The size of the separation zone and the size
of the lambda shock mainly depend on the conditions and momentum of the supersonic crossflow [23].
As a result of this shock-boundary-layer interaction, the pressure field is rather complex [24].

Upstream and downstream of the jet orifice, recirculation zones are created. Between the bow shock
and the jet, a small recirculation zone is present and downstream of the jet, a recirculation zone near
the wall is featured [25]. In the boundary layer, an adverse pressure gradient is present, which drives the
recirculation zone to be the start of the horseshoe-vortex region around the jet [7].

Within the structure of the underexpanded jet, a barrel shock is present, together with a Mach disk.
These phenomena are described in section 4.2. The jet generates a bow shock in the supersonic crossflow
[25]. Characteristics are discussed in section 4.3.

The transverse jet penetrates into the supersonic crossflow and the jet is increasingly inclined in
freestream direction. This penetration is characterized by the properties of the jet flow and the supersonic
crossflow, see section 4.4. Large-scale structures appear in the jet shear layer, at the interface of the jet
and the flow that has passed through the bow shock. These structures make the jet to mix with the
freestream that passed through the bow shock. The behaviour of the jet shear layer is discussed in section
4.5. Furthermore, the jet plume and mixing and bandwidth of the jet upper shear layer is discussed in
section 4.6. Further downstream, counter-rotating vortices are present in the jet flow, which in the plane
perpendicular to the freestream form a mushroom-shaped structure [26]. The jet and crossflow interaction
is explained in more detail in the following sections.
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4.2 Mach Disk and Barrel Shock in the Jet

In chapter 3, the phenomena of the barrel shock and Mach disk were investigated for a sonic jet in
quiescent air. For the current section, this knowledge is used and applied to the interaction of a jet with
a supersonic crossflow. In the following, the jet will behave as a highly underexpanded sonic jet.

Compared to the jet in quiescent air, the Mach disk is not parallel to the jet orifice. The jet is deflected
in to the direction of the crossflow. For that reason, the barrel shock is deflected and the Mach disk has
a rotation angle δMD < 90°. Figure 4.3 shows a schematic with the involved parameters. In addition,
in figure 4.4, the barrel shock and Mach disk are shown in Schlieren images. These phenomena are not
everywhere equally clear, because of the interaction phenomena of the jet with the crossflow. Figure 4.4
shows that the size of the barrel shock increases with the jet-to-crossflow momentum flux ratio J . This
jet-to-crossflow momentum flux ratio is the ratio of the momentum of the jet and the momentum of the
crossflow and is the relative strength of the jet compared to the crossflow. This is further explained in
section 4.4.

Figure 4.3: Schematic of the Mach disk and the barrel shock within the jet emanating in supersonic
crossflow.

Figure 4.4: Schlieren images of jet injection into supersonic crossflow for different values of J . a) J = 2.2,
b) J = 4.5, c) J = 9.0 and d) J = 14.0. The images reveal the barrel shock, Mach disk, lambda-shock
and the upper side jet shear layer [7].

The jet loses a substantial part of its momentum when passing through the Mach disk, which is a
normal shock. For that reason, the jet is quickly deflected into the direction of the crossflow downstream
of the Mach disk [27]. The internal structure of the jet is similar to that described in section 3.2 for jet
injection in still air, but then deflected [25].
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Not the full flow of the jet passes through the Mach disk, a part of the gas from the orifice moves
through oblique shocks in the mixing layer (as described in section 3.2). Furthermore, the barrel shock
and the Mach disk may not be as clear as for a jet in quiescent air, because of the interaction of the jet
with the crossflow [26]. More about the interaction with the bow shock is described in section 4.3 and
more about the interaction of the jet with the crossflow is described in sections 4.5 and 4.6.

The position of the Mach disk and its orientation can be described by empirical relations, such as
derived by Billig et al. [28] which they used for the verification of their model. The position of the center
of the Mach disk (xMD, yMD) and its orientation with respect to the vertical axis δMD are expressed as
[28]:

yMD

Dj
= M

1
4
j

(
p∗j
peb

) 1
2

(4.1)

xMD

yMD
= 1.25

(
1− e−Mc/Mj

)
(4.2)

δMD = arctan

(
0.5

yMD

xMD

)
(4.3)

These relations are valid for 1.0 ≤ Mj ≤ 2.2 and 1.9 ≤ Mc ≤ 4.5. In these equations, Dj is the
diameter of the jet orifice, p∗j is the static pressure at the jet orifice and peb is the effective back

pressure. In [28], the effective back pressure is equal to peb = 2
3pt,c, in which pt,c is the Pitot pressure

of the crossflow. In general, the effective back pressure is suggested to be in the form:

peb = c1p2 (4.4)

p2 is the static pressure behind a normal shock in a freestream [24] and c1 is a constant. Different
authors found different values for c1 [24][28][29]. Everett et al. [24] showed that the effective back pressure
is dependent on J , see figure 4.5. This conclusion was confirmed by experiments of Gruber and Goss [29].

Figure 4.5: Variation effective back pressure with J [24].

In conclusion, the barrel shock and Mach disk are phenomena that are visible in jet injection in both
quiescent air and supersonic crossflow, but the empirical relations for the location of the barrel shock and
Mach disk are different. In addition, the appearance of the Mach disk and barrel shock in supersonic
crossflow is less clear, because of the interaction phenomena of the jet with the crossflow.
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4.3 Bow Shock in Front of the Jet

The bow shock in front of the jet is generated by the obstruction of the freestream flow by the jet [25].
Near the jet orifice, the shock is almost normal to the freestream. Further from the wall, the shock turns
in streamwise direction, i.e. the shock becomes an oblique shock. Therefore, upon passing through the
shock, close to the wall, the supersonic freestream flow is decelerated to subsonic speed [22]. Further
away from the wall, where the shock is an oblique shock, the flow decelerates but stays supersonic.

4.3.1 Analysis of the Behaviour of a Flow through a Bow Shock

As an example of the effect of the bow shock, the following analysis of the bow shock in one of the
experiments of Giskes [7] for sonic single jet injection in a supersonic crossflow is considered. In this
experiment, air was used for both the crossflow and the jet, so γ = 1.4. The supersonic crossflow had a
velocity of M1 = 1.6.

Figure 4.6: Sonic jet injection into supersonic crossflow (M = 1.6) by Giskes [7]. The bow shock is
indicated as the superposed dashdotted curve.

In figure 4.6, the injection is shown at the left bottom of the image and the bow shock is shown as the
superposed dashdotted curve. Figure 4.7 shows an analysis of the streamlines passing through the bow
shock, when assuming no further disturbances (jet injection, reflection shocks) are present. This figure
is based on the calculations as described in the following.

The bow shock is geometrically analysed with respect to the shock inclination β, which corresponds to
the slope of the bow shock. If the bow shock is described as function x = f(y), then the shock inclination
is calculated by:

β(y) = arctan

((
df(y)

dy

)−1
)

(4.5)

It is clear that the inclination angle β is a function of y. Therefore, the other parameters, which
are all indirectly dependent on β, are a function of y. The flow inclination angle θ(y) is calculated by
equation 2.17. The results of the angles are shown in figure 4.8.

Upstream of the bow shock, the flow is assumed to be uniform at M1 = 1.6 and horizontally directed,
i.e. θ = 0, shown in figure 4.9. For the calculations of the oblique part of the shock, the Mach number
normal to the bow shock is needed. The normal component of the upstream flow field is calculated by
equation 2.15. With the oblique shock relations (equation 2.16), the Mach number and normal Mach
number downstream of the bow shock are calculated. The results for the Mach number and the normal
Mach numbers upstream and downstream of the bow shock are shown in figure 4.9 and figure 4.10,
respectively.

In figure 4.8 and figure 4.9, it can be seen that the bow shock is a partially strong (M2 < 1) and
a partially weaker shock (M2 > 1). The local maximum for θ(z) forms the division point between the
stronger and weaker part of the bow shock. This means that near the wall, the bow shock is strong
and at some distance away from the wall, the bow shock is weaker. This is as expected from figure 4.6,
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Figure 4.7: Change in direction of streamlines
at the bow shock.

Figure 4.8: Angles β and θ along the bow shock as a
function of y.

Figure 4.9: Mach number upstream and down-
stream of the bow shock along the bow shock as a
function of y.

Figure 4.10: Mach number normal to the bow
shock upstream and downstream of the bow shock
along the bow shock as a function of y.

because near the lower wall, the bow shock is nearly vertical, which means that this part behaves as a
normal shock. Near the upper wall, the bow shock reflects, which for the present conditions requires a
combination of the oblique shock and a short normal shock. More details about reflections are provided
in section 4.3.2. For this analysis, the reflection is not taken into consideration. The implication of the
stronger part of the bow shock, which is a higher decrease in velocity, can be seen in figure 4.9.

The jump in other physical properties over the bow shock are shown in figure 4.11 and figure 4.12.
The ratios of the temperature, density and pressure downstream and upstream of the bow shock are
shown in figure 4.11. All these parameters increase when passing the bow shock. As expected from the
relations for oblique and normal shocks, the normal part of the bow shock gives a larger increase of the
static pressure, static temperature and density over the bow shock than the oblique part of the bow
shock.

Figure 4.12 shows the variation of the ratio of the total pressure and its freestream value along the
bow shock. The decrease in total pressure is a measure for the loss due to the shock wave. Again, it is
clear that the total pressure loss is more severe for the normal shock part than for the oblique part of
the bow shock.

For comparison, all physical quantities are calculated for a normal shock in a flow of M1 = 1.6, such
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Figure 4.11: Ratio of downstream and freestream
values of static temperature, density and static
pressure along the bow shock as a function of y.
The dotted line is the value corresponding to a
normal shock.

Figure 4.12: Ratio of total pressure and freestream
value along the bow shock as a function of y. The
dotted line is the value for a normal shock.

that the quantities as sketched in figure 4.9 to 4.12 are put into perspective. For a normal shock, θ = 0,
the quantities are independent of y and have the following values:

M2 = 0.668

T2

T1
= 1.388

ρ2

ρ1
= 2.032

p2

p1
= 2.820

p02

p01
= 0.895

(4.6)

Comparing the quantities above in equation 4.6 with figures 4.9 to 4.12, it is clear that the maximum
quantities near the wall approach the quantities for the normal shock wave. Furthermore, it can be seen
that the loss through the bow shock is much lower than for a full normal shock, when comparing the
total pressure loss (p02p01

= 0.99 for the oblique part of the bow shock and p02
p01

= 0.895 for the normal part

of the bow shock).

In reality, the bow shock is a 3D shock surface. However, in this case study of the bow shock from an
experiment of Giskes [7], the bow shock positioned in the symmetry plane was used. When considering a
3D bow shock, there is a curvature of the bow shock in the third dimension. A flow at a certain distance
from the symmetry plane will have a smaller normal component of the velocity on the bow shock due to
the curvature compared to the 2D case. Due to this smaller normal component of the velocity, the shock
wave will be weaker and as a result, the total losses will be smaller when considering the bow shock in
3D.

4.3.2 Bow Shock Reflections

Figure 4.13 shows that the bow shock is reflected at the wall opposite to the orifice. These types of
reflection should be understood for the analysis of the flow field and the interaction of the jet with the
supersonic crossflow. For that purpose, two types of shock reflections are considered.

In figure 4.14, an oblique shock is considered, originating at a slope discontinuity at the lower wall.
This is called an incident shock wave. From the description of oblique shocks in section 2.2.2, it is known
that a shock wave is formed at an angle of β1 with respect to the incoming flow. The streamlines of
the freestream with M1 are deflected at an angle θ and the flow is decelerated to M2. However, the
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Figure 4.13: Schematic of jet injection into supersonic crossflow including bow shock reflection [25].

Figure 4.14: Reflection of a shock wave with regular behaviour [6].

flow should be tangent everywhere along the upper wall. For that reason, the flow in region 2 has to be
deflected, such that the flow becomes tangent to the upper wall. This is accomplished by nature by a
reflected shock wave, originating from point B, the point at which the incident shock hits the wall. The
strength of the reflected shock wave is weaker than the strength of the incident shock wave. As M1 > M2

and the deflection angle θ should be the same for both shocks, it requires the reflected shock to be weaker.
Therefore, the angle of the shock with the upper wall Φ is not equal to β1. The velocity in region 3, M3,
is again smaller and can be calculated from the knowledge of oblique shocks, such that every velocity and
angle can be determined from M1 and θ [6].

Another situation is given in figure 4.15. In this situation, M1 is only slightly larger than the minimum
Mach number that is required for having a straight, attached shock wave for a given deflection angle θ.
In this case, the oblique shock equations give a solution for a straight, attached incident shock wave. The
problem arises because of the Mach number decrease across the shock, such that M2 may be too low for
having a deflection θ through a reflected shock wave. In that case, the reflection as given in figure 4.14
is not possible. However, this is solved by nature, such that the situation of figure 4.15 appears. In this
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Figure 4.15: Mach reflection from the wall [6].

situation, the shock wave is curved near the upper wall, such that a partial normal shock, i.e. Mach stem,
appears. Through this normal shock, streamlines are allowed to remain parallel to the wall downstream
of the shock. At a certain distance from the wall, the oblique part of the incident shock is reflected. This
reflected shock starts at the normal shock and propagates downstream. This reflection is called a Mach
reflection. Calculations for this reflection are less straight-forward than for the case of figure 4.14, but
numerical methods can determine the properties [6].

4.3.3 Behaviour Bow Shock

Ben-Yakar and Hanson [26] observed that the bow shock is not stationary, but its position oscillates as a
result of the pulsating nature of the large-scale structures of the jet. This unsteady behaviour has been
observed by Papamoschou et al. [30] too. In this research, the wrinkled behaviour of the shock wave
was mentioned. Experiments by Giskes [7] and Lerink [31] confirm these observations. However, in the
experiments of VanLerberghe [27], the bow shock appeared to be steady. This discrepancy in observations
was not understood by VanLerberghe. It may be an unfortunate exception in the experiments and the
analysis.

In their experiments of sonic jet injection of air into a supersonic crossflow, Gruber et al. [32] observed
that the large-scale structures in the jet shear layer especially influence the near-wall behaviour of the
bow shock. In this region, the curvature changes are severe and positional fluctuations are observed.
However, the effects of the large-scale structures on the bow shock further away from the wall is weaker.

Experiments by Ben-Yakar and Hanson [26] give evidence of a strong dependency of the frequency
of the bow shock fluctuations and the large-scale structures. It would be of interest to determine the
correspondence of the fluctuation of the bow shock and the large-scale structures in the jet shear layer
and whether there is a common frequency.

Figure 4.16: Interaction bow shock and large-scale shear layer structure in transverse injection of air at
three moments in time [32].

In figure 4.16, the sonic jet injection of air into a supersonic crossflow is visualized with a planar laser-
based visualization technique. deff is the jet diameter. Several features are shown. The bow shock has a
standoff distance from the jet, which is on average 0.5Dj . In addition, the bow shock’s behaviour below
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the point of intersection with the lambda shock upstream from the bow shock is strongly influenced by
the large-scale structures formed in the jet shear layer. In the left-most image of figure 4.16, the normal
shock part of the bow shock is shown, together with a small lift of the bow shock from the wall. In the
middle image, the bow shock curves in upstream direction because of a large eddy at y/Dj ≈ 1. In the
right-most image, the bow shock is even lifted further from the wall than in the left-most image. This
lifting appears to be a periodic feature. It is caused by a relatively thick boundary layer upstream of the
orifice, which makes that the sonic line occurs further from the wall. Therefore, the boundary layer and
jet fluid mix subsonically upstream of the jet orifice [32].

Next to the large-scale structures in the jet shear layer, the origin of the fluctuations can also be the
result of the pressure fluctuations in the upstream boundary layer, the lambda shock in front of the bow
shock, the recirculation zone and the pressure fluctuations in the jet itself [7][22][23].

4.4 Penetration of the Jet into the Crossflow

The purpose of the jet is to mix the fluid from the jet with the supersonic crossflow. In real applications,
the jet fluid is a gaseous fuel. There are two important aspects of the sonic jet in the supersonic crossflow
that determine the mixing efficiency. One aspect is the penetration and the other aspect is the mixing of
the jet shear layer with the supersonic crossflow. The jet shear layer is elaborated on in section 4.5.

4.4.1 Investigation Parameters

For the penetration of the jet into the supersonic crossflow, several parameters are considered. These
are flow, fluid and geometrical properties: the Mach number M, the temperature T , the density ρ, the
pressure p, the specific heats cp and cv and the resulting ratio of specific heats γ = cp/cv, the viscosity
of the gases µ, the heat conductance k, the molar weight of the gas M and the jet orifice diameter Dj

[7]. A schematic overview is shown in figure 4.17.

Figure 4.17: Schematic of jet penetration into supersonic crossflow in the symmetry plane.

From experiments, it is known that the penetration of the jet is found to be controlled primarily by
the magnitude of the so-called jet-to-crossflow momentum flux ratio J [22][24][30][33], defined as:

J ≡
ρjU

2
j

ρcU2
c

(4.7)

Here, the subscripts j and c correspond to the jet and the crossflow, respectively. The jet and crossflow
are assumed to be ideal gases (p = ρRT , cp = cp(T ) and cv = cv(T )), which result in the possibility of
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rewriting equation 4.7:

J =
γjpjM

2
j

γcpcM
2
c

(4.8)

In this expression, the static pressure p is used. Some other ratios are defined in the following, which
are the velocity ratio rj,c, the density ratio sj,c [34] and the pressure ratio ηj,c:

rj,c ≡
Uj
Uc

(4.9)

sj,c ≡
ρj
ρc

(4.10)

ηj,c ≡
pj
pc

(4.11)

These variables make that J can be rewritten to:

J = r2
j,csj,c or J = ηj,c

γjM
2
j

γcM
2
c

(4.12)

For applications, it may be practical to use the stagnation or total pressure in the expression for
the jet-to-crossflow momentum flux ratio [35]. Using the isentropic-flow relations, the expression for J
becomes:

J =
γjp0,jM

2
j

[
1 + γc−1

2 M2
c

] γc
γc−1

γcp0,cM
2
c

[
1 +

γj−1
2 M2

j

] γj
γj−1

(4.13)

In chapter 3, a distinction was made between adapted (or pressure-matched) jets, nonadapted under-
expanded jets and nonadapted overexpanded jets. Especially the first two types were taken into account
in chapter 3. Papamoschou et al. [30] observed that the penetration of highly underexpanded jets is
about the same as for adapted or pressure-matched jets. In the following, mainly underexpanded jets
will be considered.

Parameter investigation of amongst others Papamoschou et al. [30], Schetz and Billig [36] and Portz et
al. [37] shows that the scaled penetration height y/Dj depends on the following dimensionless parameters:

y

Dj
= f

(
x

Dj
, J,

δ

Dj
,Mc,Mj , ηj,c, sj,c,

Mj

Mc
,

Rej
Rec

)
(4.14)

In general, the penetration increases rapidly with increasing distance x/Dj , up to a certain distance,
after which the penetration occurs more steadily [3].

It has been observed [23][25][30] that penetration strongly depends on the jet-to-crossflow momentum
flux ratio J and this is the most important parameter for the penetration y/Dj . The penetration increases
with increasing J [3][7][30][33]. As a result, the bow shock will be stronger for a larger J , i.e. a larger
part of the bow shock will be normal. See also section 4.3. As a consequence, the total pressure loss will
be larger for a larger value of J , which makes the process less efficient. So, the penetration increases with
increasing J and so does the total pressure loss. For that reason, when designing a process, there is a
balance between the desired J for transverse sonic jet injection into supersonic crossflow and the incurred
losses.

The boundary layer thickness – scaled by the jet orifice diameter Dj – near the jet orifice is considered.
According to experiments of hydrogen injection in supersonic crossflow of McClinton [38], an increase of
the ratio δ/Dj increases the penetration. This was for a range of 1.25 ≤ δ/Dj ≤ 6.25. In addition, a study
of Portz and Segal [37] showed that the effect of δ/Dj is significant for low supersonic Mach numbers.
However, this effect decreases with increasing crossflow Mach number. Portz and Segal [37] observed that
after J , δ/Dj has the strongest effect on the penetration. However, more recent experiments by Sun et
al. [33] question this conclusion to be true in general, because the range of J used by Portz and Segal
is rather small and for low values of J only. Therefore, the boundary layer thickness effect might not be
significant for large values of J . Interestingly, in addition, many other studies such as [30][36] did not
take the boundary layer thickness into account for the empirical relations they proposed. For example,
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Gruber et al. [39] did not include δ/Dj into account for the equation too, but made sure that δ/Dj was
equal to 1, such that it did not have an influence on the penetration equation when using a power-law
function.

Furthermore, an increase of the crossflow Mach number Mc has a modest effect on the penetration: it
results in an increased penetration. The reason is that when Mc increases, the local effective momentum
flux ratio Jeff increases too [37]:

Jeff =
γjpjM

2
j

γc,2pc,2M2
c,2

(4.15)

In this equation, the subscript c, 2 refers to the crossflow conditions downstream of the bow shock.
If Mc increases, the bow shock becomes stronger. For that reason, the dynamic pressure downstream of
the bow shock is smaller than upstream of the bow shock, which makes that locally Jeff > J . It is known
that an increase of J or Jeff increases penetration and therefore, an increase of Mc results in increased
penetration [37].

For considering constant J and Mj , ηj,c and Mc are directly coupled, which makes that ηj,c has
a small influence on y/Dj too. It appeared that sj,c and Mj did not have a noticeable effect on the
penetration [30]. However, the local behaviour can be altered by some parameters, although the overall
penetration does not change. The density ratio sj,c and velocity ratio rj,c have an influence on the
large-scale structures and the mixing behaviour of the jet [34].

Furthermore, Portz and Segal [37] observed a small dependence on the molecular weight ratioMj/Mc

of the fluids in the jet and in the crossflow. Many other studies do not take this into account, which has
to do with the small dependency and that Mj/Mc = 1 for many studies.

An even smaller effect on the penetration was observed by Portz and Segal [37] for the Reynolds
number ratio Rej/Rec. This effect was to the power 3 smaller compared with the molecular weight ratio.
As an illustration, the resulting penetration formula from Portz and Segal for Mc = 1.6 is shown with
terms clustered, such that the relative strength is observed [37]:

y
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J67.6
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Dj
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)32.9(
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(4.16)

In this overview, the Reynolds number ratio is clearly the least contributing to the penetration. For
that reason, in most studies, including [37], the effect of Rej/Rec was neglected.

In summary, the penetration of the jet y/Dj is determined by J and weakly by Mc; the other param-
eters have a negligible effect on the average penetration [30].

4.4.2 Analytical Derivations for Penetration of the Jet

Analytical derivations have been attempted for the description of a jet trajectory, for example by Schetz
and Billig [36]. In their analysis, Schetz and Billig balanced forces over an infinitesimal part ds of the
jet cross-section. For this analysis, gravity, average static pressure and drag force were considered. The
following differential equation was derived for the angle of jet incidence α as function of the scaled distance
along the jet axis s̄ ≡ s/Dj . The resulting differential equation is:

dα

ds̄
= −CD(α) sin2(α)

2.5π

1

J

(
ρ

ρc

)
(2.25 + 0.22s̄)3 (4.17)

CD(α) = 1.2 + (Mc sinα)
7/2

0 ≤ Mc sinα ≤ 1

CD(α) = 1.06 + 1.14 (Mc sinα)
−3

Mc sinα ≥ 1
(4.18)

In equation 4.17, the density ratio was assumed to be 1 and thereafter, a relation for the description
of y/Dj and x/Dj can be obtained. In this expression, J again appears to be an important parameter.
This corresponds with other observations, such as [30].

Although nice approaches were made, the physics appeared to be too complex for describing well by
analytical derivations. However, in research, many experiments have been performed for determining
properties and describing phenomena of jet injection into supersonic crossflow. In addition, many nu-
merical simulations have been carried out over the past years. With the knowledge of these experiments
and simulations, empirical relations for the jet penetration have been established.
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4.4.3 Empirical Relations for Penetration of the Jet

In several studies, empirical relations were proposed. A general form of most empirical relations is given
by Portz and Segal [37]:

y

Dj
= c1J

c2

(
x

Dj
+ c3

)c4 ( δ

Dj

)c5 (Mj

Mc

)c6
(4.19)

In this equation, coefficients c1 to c6 can be functions of variables, specifically of Mc. Furthermore, the
origin is in the center of the jet orifice. In the following, some experimental investigations are described,
together with the resulting empirical relation for the penetration of the jet. Circular orifices will be
considered. Note that different definitions of the penetration are possible: one can consider the location
of the geometrical or mass center of the jet plume, or the location of the upper boundary of the jet shear
layer (also called the jet upper shear layer). For example, Lee [9] used the following expression for the
calculation of the penetration distance estimated with the cross-sectional center of mass of the hydrogen
fuel in his numerical simulations:

yH2
(x) =

∫∫
yρH2dydz∫∫
ρH2dydz

(4.20)

The following experimental investigations may have different definitions of the penetration depth.

Gruber et al. (1995) [40] investigated mixing and penetration characteristics for sonic injection, when
considering circular transverse, circular oblique and elliptical transverse injectors. These experiments
were for a supersonic crossflow of Mc = 2 and the injectants were CO2 and helium. The experiments
were performed for J = 1, 2 and 3. The injection location was chosen to be at a point where the relative
boundary layer thickness was δ/Dj = 1. Planar Mie scattering was used for the study of the flow field.
For the penetration profile, Gruber et al. proposed the following empirical relation:

y

Dj
= 1.23J0.656

(
x

Dj

)0.344

(4.21)

In a later study, Gruber et al. (2000) [39] again investigated sonic transverse injection into supersonic
crossflow with elliptical and circular orifices. The injectants were air and helium in a crossflow of air of
Mc = 1.98. Again, the jet injection was at the point where the relative boundary layer thickness was
δ/Dj = 1. Planar Rayleigh/Mie scattering was used for the examination of the 3D flow field. The results
for air and helium as injectant were similar and the following relation was established for circular orifices.
The upper boundary of the jet shear layer was used for the definition of the penetration:

y

Dj
= 1.20J0.656

(
x

Dj
+ 0.5

)0.344

(4.22)

This relation is also supported in [41]. The equation is only used in regions near the injectors, because
otherwise, y/Dj would become improbably large with increasing x/Dj . Gruber et al. [41] found that the
results of air and helium collapsed when dividing y/Dj and x/Dj by J . The shift of 0.5 is for the shifting
of the penetration boundary to the upstream edge of the injection orifice.

In another research, McClinton [38] investigated the effect of the relative boundary layer thickness
for a sonic transverse jet of hydrogen in a supersonic crossflow of air of Mc = 4.05. All tests were run
with J ≈ 1. The boundary layer thickness to jet diameter ratio δ/Dj ranged from 1.25 to 6.50. This
quantity was not experimentally but theoretically determined, from a theoretical model by Pinckney [42].
The data of experiments of McClinton [38] were combined with data from Rogers [43], which carried
out experiments of hydrogen injection into a supersonic crossflow of air at Mc = 4.0, at constant δ/Dj ,
7 ≤ x/Dj ≤ 200 and 0.5 ≤ J ≤ 2.0. The combination gave the following empirical relation for the
penetration of the jet upper shear layer [38]:

y

Dj
= 4.20J0.30
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x

Dj

)0.143(
δ

Dj

)0.0574

(4.23)

Furthermore, Rothstein and Wantuck [44] investigated injection of a sonic underexpanded jet into
a supersonic crossflow. In this research, hydrogen was used as injectant and the supersonic crossflow
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was Mc = 1.5. This argon-oxygen crossflow had a high temperature (T = 1200 K). The jet-to-crossflow
momentum flux ratio J ranged from 5.9 to 38.6. The hydrogen penetration was measured using images,
which were made by planar laser-induced fluorescence (PLIF) with the OH-molecule as target molecule.
The resulting empirical relation for the upper boundary of the jet shear layer:

y

Dj
= 2.173J0.276

(
x

Dj

)0.281

(4.24)

Portz and Segal [37] did experiments with injection of helium, hydrogen and argon, which were
transversely injected into the supersonic flow of air. A Schlieren system was used for the visualization
of the penetration. Experiments at a stagnation temperature T0 of 1200 K and with a crossflow Mach
number Mc of 1.3 to 3.6 were performed. The boundary layer thickness was measured at several locations,
by measuring the stagnation pressure near the wall. For the experiments at Mc = 1.6, δ was 3.7 mm, so
that for different sizes of Dj 0.8 ≤ δ/Dj ≤ 3.7. Furthermore, the jet-to-crossflow momentum flux ratio
was 0.5 ≤ J ≤ 3.0. For these experiments, the following empirical relation for the jet upper shear layer
was determined:

y

Dj
= 1.36J0.568

(
x

Dj
− 1.5

)0.276(
δ

Dj

)0.221(Mj

Mc

)−0.0251

(4.25)

Comparing results of several experiments and relations from amongst others Schetz and Billig [36],
Rogers [43] and McClinton [38], Portz and Segal [37] came up to a general equation in the form of equation
4.19, where the coefficients were a function of Mc. One observation to do so, was that the coefficient c1
showed to have a strong correlation with Mc. The proposed relation is:

y

Dj
= (1.049Mc − 0.192)J−0.08Mc+0.615

(
x

Dj
− 2.34

Mc

)0.395Mc−0.823(
δ

Dj

)−0.067Mc+0.325(Mj

Mc

)−0.025

(4.26)
Experiments at Mc = 2.5 validated this equation. However, if one would use Mc = 1.6 for the relation,

c4 becomes negative:

y

Dj
= 1.486J0.487

(
x

Dj
− 1.4625

)−0.191(
δ

Dj

)0.219(Mj

Mc

)−0.025

(4.27)

As a result of that, the location of the jet upper shear layer is not in the form of a power-law function
with positive exponent anymore, but has an inversely proportional relation. As this behaviour is not
expected, one can argue that this general relation in equation 4.26 cannot be applied for Mc < 2.1.

Finally, Sun et al. [33] did experiments with sonic jet injection of nitrogen into a supersonic flow of
air at a stagnation temperature T0 of 300 K and a stagnation pressure p0 of 101325 Pa. The supersonic
crossflow had a velocity of Mc = 2.7. Nanoparticle-based planar laser scattering (NPLS) was used and
this recently-developed method is based on Rayleigh-Scattering. NPLS gave the possibility of measuring
the boundary layer thickness with PIV velocity profile data. The jet-to-crossflow momentum flux ratio
J ranged from 1.8 to 5.3. For the penetration of the jet, research was done into possible equations. The
equation of Portz and Segal [37] was investigated, but the correctness of this equation was questioned
for J > 3, because the experiments Portz and Segal investigated were not above a jet-to-crossflow
momentum flux ratio J of 3. In the end, from the data, an equation similar to Rothstein and Wantuck
[44] was obtained:

y

Dj
= 2.933J0.256

(
x

Dj

)0.161

(4.28)

In table 4.1, the coefficients corresponding to equation 4.19 for all empirical relations discussed are
given. In this overview, it is clear which parameters are more frequently used for empirical relations.

Figures 4.18, 4.19 and 4.20 show the relations as given in table 4.4 for J = 1.0, J = 2.0 and J = 3.0,
respectively (except for Portz and Segal (gen.)). These plots help in getting an insight in the agreement
or disagreement of the different empirical relations that are given in this section. In a later stadium, this
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c1 c2 c3 c4 c5 c6 Mc J
Gruber et al. [40] 1.23 0.656 0 0.344 0 0 2 1, 2 and 3
Gruber et al. [39][41] 1.20 0.656 0.5 0.344 0 0 1.98 2.9
McClinton [38] 4.20 0.30 0 0.143 0.0574 0 4.0 1
Rothstein and Wantuck [44] 2.173 0.276 0 0.281 0 0 1.5 5.9 - 38.6
Portz and Segal [37] 1.36 0.568 -1.5 0.276 0.221 -0.0251 1.6 0.5 - 3.0
Portz and Segal [37] (gen.) 1.486 0.487 -1.4625 -0.191 0.219 -0.025 1.6 0.5 - 3.0
Sun et al. [33] 2.933 0.256 0 0.161 0 0 2.7 1.8 - 5.3

Table 4.1: Coefficients for c1 to c6 in equation 4.19 from several studies.

knowledge can be used for determining an empirical relation for penetration of the jet upper shear layer
in the present research.

First of all, a general remark. The empirical relations are all determined for a fixed values of Mc. As
penetration depends on Mc, some empirical relations at a relatively high Mc – such as McClinton [38] –,
will structurally be off with respect to the others.

For J = 1.0 in figure 4.18, it appears that most relations do not correspond with each other. Gruber
et al. and Portz and Segal are close, the same holds for Sun et al. and Rothstein and Wantuck. However,
it is clear that there is little agreement in general.
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Figure 4.18: Empirical relations for the penetration for J = 1.0, δ/Dj = 1 and Mj/Mc = 1.

The graphs for J = 2.0 in figure 4.19 show more agreement. All empirical relations except McClinton’s
are within a height of 2Dj . Within this area, Portz and Segal’s relation appears to give the lowest
penetrations, whereas the relations of Sun et al. and Rothstein and Wantuck give the higher penetration.
The relation of Gruber et al. is in between these two groups of lines.

When neglecting again McClinton’s relation, it appears that the higher J , the better the agreement
between the relations. In figure 4.20, the empirical relations for J = 3.0 are shown, which show the best
agreement for the different empirical relations. Especially the relations of Gruber et al. and Rothstein
and Wantuck show an excellent agreement.
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Figure 4.19: Empirical relations for the penetration for J = 2.0, δ/Dj = 1 and Mj/Mc = 1.
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Figure 4.20: Empirical relations for the penetration for J = 3.0, δ/Dj = 1 and Mj/Mc = 1.

It may depend on the case which empirical relation is the most suitable. This could be verified using
experiments and examining which relation is the most suitable for the specific data set.



4.5. BEHAVIOUR OF THE JET SHEAR LAYER 43

4.5 Behaviour of the Jet Shear Layer

An important feature of sonic jet injection into supersonic crossflow, is the behaviour of the jet shear
layer. The jet shear layer is considered to be the fluid layer at the interface of the jet flow and the
crossflow. The upper side of the jet shear layer is also called the jet upper shear layer. Figure 4.1 shows
a schematic of the possible behaviour of the jet shear layer. In this jet shear layer, large-scale structures
are present. These structures were also observed in figure 4.16. In this section, the large-scale structures
will be analysed in more detail.

4.5.1 Large-Scale Coherent Structures in the Jet Shear Layer

The large-scale coherent structures have been studied for both subsonic and supersonic cases. Fric and
Roshko [45] performed experimental studies for transverse jet injection into subsonic flow. Some of the
phenomena that are visible in these analyses can also be observed in jet injection into supersonic flow
[22]. In figure 4.21, an example of jet injection into subsonic flow is given. Focus will be on the vortices in
the jet shear layer. It can be observed, that the roller structures become larger along the jet trajectory.
These structures are essential in the mixing of the jet with the crossflow [22]. Mixing properties of the
jet are elaborated in section 4.6.

Figure 4.21: Jet shear layer of transverse jet injection into subsonic crossflow (Uj/Uc = 4), visualized by
a smoke-filled jet [45].

Fric and Roshko argue that the found jet shear layer vortices are the result of the Kelvin-Helmholtz
instability (see section 4.5.2 for an analysis of the Kelvin-Helmholtz instability). The Kelvin-Helmholtz
instability being the origin of the vortices in the jet shear layer is also confirmed by numerical simulation
of jet injection into subsonic flow by Yuan et al. [46]. These numerical simulations achieved quantitative
agreement with experimental measurements. Yuan et al. observed that the vortices had a quasi-steady
structure that oscillated around a fixed location. The behaviour, however, was not fully predictable.

In jet injection into supersonic flow, similar features are observed. In many studies, such as [22][26][34][39],
large-scale eddies appear in measurements at the interface of the jet and the crossflow. The large-scale
eddies are especially evolving at the upstream edge of the jet orifices and propagate in the upper boundary
of the jet. The development of large-scale structures is strongly dependent on the Mach number [39].

Spreading of turbulent shear layers is also observed by Papamoschou and Roshko [47] for supersonic
free shear layers. In their experiments, two fluids were flowing parallel to each other, such that these
had an contact surface in common. The two flows had different velocities and could have different
compositions. A schematic overview of the two parallel flows is shown in figure 4.22. In this figure, δ is
the shear layer thickness and Uconv is the convective velocity.

The convective Mach number Mconv for the case that γ1 = γ2 and a1 = a2 is expressed as [47]:
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Figure 4.22: Schematic of shear layer between two parallel turbulent flows [48].

Mconv =
M1 + M2

2
(4.29)

The growth rate was measured by Schlieren photography. The following expression was derived for
the growth rate of the thickness of the shear layer, which holds for U1 ≥ U2 ⇒ r2,1 ≤ 1 [47]:

δ

x
=

(1− r2,1)(1 +
√
s2,1)

1 + r2,1
√
s2,1

(4.30)

This visual determined thickness depends on the velocity ratio r2,1 = U2/U1 and the density ratio
s2,1 = ρ2/ρ1. This relation shows agreement with experimental data.

In the case of equal density, ρ1 = ρ2, the relation for the growth rate reduces to:

δ

x
= 2 · 1− r2,1

1 + r2,1
(4.31)

Ben-Yaker and Hanson [26] observed that for jet injection into supersonic crossflow, the jet shear layer
contains large-scale vortices. The eddies are formed as rollers periodically. This periodicity is found by
some authors [23][27], but not endorsed by every other author [33]. Quantitative results were obtained in
this study by high-speed imaging, by Schlieren images, which were taken with the possibility of having
an interframing time down to 10 ns. A Xenon flashlamp was used as a light source. In the experiments,
hydrogen was transversely injected at sonic speed into a nitrogen crossflow of Mc = 3.38, with Tc = 1290
K and pc = 32.4 kPa, whereas Tj = 246 K and pj = 490 kPa. As a result of that, the jet-to-crossflow
momentum flux ratio J was 1.4± 0.1 and the boundary layer thickness was δ = 0.75 mm near the orifice
with diameter Dj = 2.0 mm.

The progress of the large-scale structures was measured by a cross-correlation method using a Fast
Fourier Transform, based on the Schlieren images. In figure 4.23, Schlieren images are shown of a time
sequence with an interframing time increment of 1 µm and an exposure time of 100 ns.

Figure 4.23 shows the convection of eddies and rollers. Ben-Yakar and Hanson [26] attribute these
rollers to the Kelvin-Helmholtz instability (see section 4.5.2). The eddies start near the orifice of the jet
and travel transversely, until around x/Dj = 8, where the eddies are convected in the same direction as
the freestream [22]. The formation frequency of the eddies in the hydrogen appeared to be 568 kHz on
average and being in the range between 513 and 663 kHz [26]. The frequency of this formation is related
to the so-called preferred mode frequency fj [49], which is characteristic for the large-scale eddies. Scaled
with the jet velocity Uj and jet diameter Dj , the preferred mode Strouhal number equals:

St =
fjDj

Uj
(4.32)

Many researchers confirmed this preferred mode and the Strouhal number varies in a broad range:
0.24 ≤ St ≤ 0.64. However, higher values above 1 are obtained too [49].

A schematic of the eddies is shown in figure 4.24. In this figure, the jet upper shear layer is shown.
λ is the spacing between the cores of the eddies and can be seen as the wavelength. a and b are the
dimensions of an eddy [26].
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Figure 4.23: Schlieren images of sonic injection of hydrogen into a supersonic nitrogen crossflow, obtained
by a high-speed-framing camera. Mc = 3.38, Tc = 1290 K, pc = 32.4 kPa and J = 1.4± 0.1 [26].
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Figure 4.24: Schematic of the geometry of eddies in the jet shear layer [26].

Figure 4.25: Eddy spacing and dimensions for the eddies in figure 4.23 [26].

Further investigation of the parameters in the experiments in figure 4.23 is considered in figure 4.25.
This figure shows the eddy spacing versus x/Dj . As the eddies appear periodically, the eddy spacing can
be seen as a measure of the wavelength λ. The outlying points are at the gap between eddy 2 and 3 (see
figure 4.23), these are significantly different because of a secondary effect [26].

The size of the large-scale structures increases with x/Dj . It varies between 0.5Dj and 1.75Dj .
With increasing x/Dj , the eddies become elongated (b increases). The gap between the eddies λ slightly
increases, but not much [26].

Ben-Yakar et al. [22] observed that the convection characteristics of the large-scale eddies depend on
the injection fluid. In hydrogen large-scale structures propagated with a velocity closer to the freestream
velocity than the large-scale structures in ethylene. According to Ben-Yakar et al, this is due to the
different jet exit velocity, which is a result of different values for the speed of sound in hydrogen and in
ethylene.

Rana et al. [23] arrived at the same conclusion as Ben-Yakar et al. [22], that the unsteady behaviour
of the jet shear layer and the large-scale eddies mainly originate from the Kelvin-Helmholtz instabilities
in that region. These structures appear specifically at the jet upper shear layer, which gives a good reason
for Kelvin-Helmholtz instabilities being involved.

For that reason, in the next section, the Kelvin-Helmholtz instability is analysed for a simplified case,
which can give insight into the working principles in a jet shear layer.

4.5.2 Kelvin-Helmholtz Instability of Jet Shear Layer

The Kelvin-Helmholtz instability is an instability that is commonly found in nature. It is sometimes
found for example in clouds (figure 4.26) and occurs at the interface of two or more flows of different
velocity.

The basic solution scheme of the Kelvin-Helmholtz instability is based on [50] and here extended with
gravity and the effect of compressible flow. Surface tension will not be considered.
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Figure 4.26: Kelvin-Helmholtz instability made visible by clouds [51].

4.5.2.1 Physics of Kelvin-Helmholtz Instability

The two-dimensional flow of two fluids is considered, which flows have a parallel velocity and share an
interface. The upper fluid, fluid 1, occupies the space for which z > 0 and the lower fluid, fluid 2, occupies
the space for which z < 0. Both fluids have a different density (ρ1 and ρ2), velocity in x-direction (U1

and U2) and pressure (p1 and p2). At the interface, there is a disturbance with a vertical displacement
of z = ζ(x, t). In addition, there is gravity in negative z-direction. A sketch is shown in figure 4.27.

Figure 4.27: Schematic of two parallel flows in contact through an interface.

Bernoulli equation for the Kelvin-Helmholtz Instability

The problem is formulated by using the Bernoulli equation for inviscid, barotropic and irrotational flow
subjected to a conservative force field [5]:

∂Φ

∂t
+

1

2
|~u|2 +

∫
dp

ρ
+ F = constant everywhere (4.33)

Applying gravity as only conservative external force results in:

~f = −~∇F ⇒ −g = −dF

dz
⇒ F = gz + C (4.34)

Furthermore, for a barotropic flow of a calorically perfect gas (i.e. p = cργ), the integral can be
evaluated as:
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∫
dp

ρ
= c1/γp1−1/γ 1

1− 1/γ
=

γ

γ − 1

p

ρ
(4.35)

Φ(x, z, t) is a velocity potential with the following definition:

~u(x, z, t) = ~∇Φ (4.36)

For fluid 1, the velocity potential is Φ1(x, z, t) and for fluid 2, the velocity potential is Φ2(x, z, t). For
the sake of generality, the following steps are for a general Φ(x, z, t). When substituting the relations in
equation 4.33, Bernoulli’s equation becomes:

∂Φ

∂t
+

1

2
|~∇Φ|2 +

γ

γ − 1

p

ρ
+ gz = C (4.37)

4.5.2.2 Kinematic and Dynamic Conditions for the Kelvin-Helmholtz Instability

The interface between the two fluids is considered (see figure 4.27). For an contact interface with velocity
Ud between two fluids, an interface that is a stream surface, equation 2.10 yields:

un1
= 0 and un2

= 0 with un = (~u− ~ud) · ~nd
p1 = p2

~ut1 = ~ut2

h1 = h2

(4.38)

The contact surface is described by the isocontour G = 0, where G is expressed as:

G = z − ζ(x, t) (4.39)

~∇G is a vector perpendicular to isocontour G = 0 in the direction of increasing G. Therefore, the
unit normal vector and unit tangential vector on the contact surface are:

~nd =
~∇G
|~∇G|

~td =
~ey × ~∇G
|~∇G|

(4.40)

which results in

~nd =
− ∂ζ
∂x~ex + ~ez√(
∂ζ
∂x

)2

+ 1

~td =
~ex + ∂ζ

∂x~ez√(
∂ζ
∂x

)2

+ 1

(4.41)

From un = (~u− ~ud) · ~nd = 0 at G = 0, it follows that

~ud · ~nd = ~u · ~nd (4.42)

The kinemetic condition is that the contact surface moves with the flow. Therefore, the total derivative
of G is zero:

DG

Dt
= 0 ⇒ ∂G

∂t
+ ~ud · ~∇G = 0 ⇒ ∂G

∂t
+ ~u · ~∇G = 0 at G = 0 (4.43)

With substitution of the velocity potential, the following kinematic condition is imposed:

∂G

∂t
+∇Φ · ∇G = 0 at G = 0 (4.44)
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which upon substitution of G = z − ζ(x, t) becomes:

∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
=
∂Φ

∂z
at z = ζ(x, t) (4.45)

Equations 4.37 to 4.45 hold for both Φ1 and Φ2. So for the upper fluid (z > 0), the kinematic condition
reads:

∂ζ

∂t
+
∂Φ1

∂x

∂ζ

∂x
=
∂Φ1

∂z
at z = ζ(x, t)+ (4.46)

and for the lower fluid (z < 0), the kinematic condition is:

∂ζ

∂t
+
∂Φ2

∂x

∂ζ

∂x
=
∂Φ2

∂z
at z = ζ(x, t)− (4.47)

A seemed condition at the contact surface is the dynamic condition. For the dynamic condition,
p1 = p2 at z = ζ(x, t). Substitution into equation 4.37 for both fluids results in the following dynamic
condition:

ρ1
γ1 − 1

γ1

(
∂Φ1

∂t
+
|~∇Φ1|2

2
+ gζ − C1

)
= ρ2

γ2 − 1

γ2

(
∂Φ2

∂t
+
|~∇Φ2|2

2
+ gζ − C2

)
at z = ζ(x, t)

(4.48)
If for both flows the same fluid is assumed, γ1 = γ and γ2 = γ will hold. Since p1 = p2 at the interface,

it follows from the barotropic assumption that ρ1 = ρ2. Therefore, the dynamic condition reduces to:

∂Φ1

∂t
+
|~∇Φ1|2

2
− C1 =

∂Φ2

∂t
+
|~∇Φ2|2

2
− C2 at z = ζ(x, t) (4.49)

Furthermore, the following holds far away from the interface:

~∇Φ1 → U1 ~ex at z →∞
~∇Φ2 → U2 ~ex at z → −∞

(4.50)

4.5.2.3 Linearization

Now, the problem will be limited to infinitesimal disturbances with respect to the flow of two parallel
uniform streams separated by a straight interface. It is assumed that the interface displacement is
infinitesimal compared to other length scales. The velocity potential in the upper and that in the lower
half-plane are expressed as

Φ1(x, z, t) = U1x+ φ1(x, z, t) and

Φ2(x, z, t) = U2x+ φ2(x, z, t),
(4.51)

respectively. Here φ1 and φ2 are infinitesimal compared to U1x and U2x. By substitution of the velocity
potentials, expressions for the kinematic and dynamic conditions are obtained in terms of φ1 and φ2.
Because of linearization, the higher-order terms of ζ and φ will be neglected. This yields

∂ζ

∂t
+

(
U1 +

∂φ1

∂x

)
∂ζ

∂x
=
∂φ1

∂z
at z = 0+ ⇒

∂ζ

∂t
+ U1

∂ζ

∂x
=
∂φ1

∂z
+ h.o.t. at z = 0+

(4.52)

and similarly:

∂ζ

∂t
+

(
U2 +

∂φ2

∂x

)
∂ζ

∂x
=
∂φ2

∂z
at z = 0− ⇒

∂ζ

∂t
+ U2

∂ζ

∂x
=
∂φ2

∂z
+ h.o.t. at z = 0−

(4.53)
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For the dynamic condition, the constants are still to be eliminated. These constants are obtained by
using Bernoulli’s equation. The expression for the constant for undisturbed flow (z →∞ for flow 1 and
z → −∞ for flow 2) becomes:

C1 =
1

2
U2

1

C2 =
1

2
U2

2

(4.54)

Substitution of these constants and the velocity potential, while knowing that the main flow is undis-
turbed, results in the following dynamic condition:

∂φ1

∂t
+U1

∂φ1

∂x
+

1

2

(
∂φ1

∂x

)2

+
1

2

(
∂φ1

∂z

)2

=
∂φ2

∂t
+U2

∂φ2

∂x
+

1

2

(
∂φ2

∂x

)2

+
1

2

(
∂φ2

∂z

)2

at z = 0 (4.55)

∂φ1

∂t
+ U1

∂φ1

∂x
+ h.o.t. =

∂φ2

∂t
+ U2

∂φ2

∂x
+ h.o.t. at z = 0 (4.56)

Neglecting the higher order terms results in the following dynamic condition:(
∂φ1

∂t
+ U1

∂φ1

∂x

)
z=0+

=

(
∂φ2

∂t
+ U2

∂φ2

∂x

)
z=0−

(4.57)

4.5.2.4 Normal Mode Analysis for Incompressible Flow

A sinusoidal disturbance of the interface is assumed in the form of

ζ(x, t) = ζ0e
i(kx−ωt) (4.58)

In this expression, k is the wave number and is restricted to real positive numbers, as k corresponds
to an actual wavelength in physical space through [52]:

λ =
2π

k
(4.59)

Further, ζ0 is a real-valued constant and ω is the frequency of the temporal shape of the interface.
This frequency may be a complex number in the form of [52]:

ω = ωr + iωi (4.60)

If the imaginary part of ω is positive, then eωit grows exponentially in time. That is why a positive
ωi results in instability [52].

By convention, the real part (ωr) of the final solution for ω is the representation of physical quantities.
Therefore, the period of the waves can be determined by [52]:

T =
2π

ωr
(4.61)

Combining the terms result in the Strouhal number, which expresses the nondimensional frequency:

St =
ω

ak
(4.62)

In this equation, St is the Strouhal number and a is the speed of sound. St can be a complex number,
just like ω.

For an incompressible flow, the velocity potential has to satisfy the Laplace equation in two space
dimensions:

∇2φi = 0, i = 1, 2 (4.63)

The chosen expressions for φ1 and φ2 that satisfy this Laplace equation are [52]:
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φ1(x, z, t) = φ̄1(z)ei(kx−ωt)

φ2(x, z, t) = φ̄2(z)ei(kx−ωt)
(4.64)

In this equation, φ̄i(z) is still an unknown function. By substituting equation 4.63, the following
ordinary differential equation, which restricts φ̄i(z), is obtained:

d2φ̄i
dz2

= k2φ̄i (4.65)

with general solution:

φ̄j(z) = C1,je
kz + C2,je

−kz (4.66)

This differential equation has to be satisfied for φ̄j(z). Accompanied with this second-order ordinary
differential equation, two boundary conditions have to be satisfied, obtained by substituting φ1 into
equation 4.52 and utilizing that equation 4.50 holds [52]:

φ̄1 → 0 as z →∞
dφ̄1

dz
= iζ0(kU1 − ω) at z = 0+

(4.67)

Similarly for φ2:

φ̄2 → 0 as z → −∞
dφ̄2

dz
= iζ0(kU2 − ω) at z = 0−

(4.68)

Imposing the conditions of equation 4.67 and 4.68 then results in:

φ̄1(z) = − iζ0
k

(kU1 − ω)e−kz

φ̄2(z) =
iζ0
k

(kU2 − ω)ekz
(4.69)

Now, the full expressions for φ1 and φ2 are known:

φ1(x, z, t) = − iζ0
k

(kU1 − ω)e−kz+i(kx−ωt)

φ2(x, z, t) =
iζ0
k

(kU2 − ω)ekz+i(kx−ωt)
(4.70)

These expressions are substituted in equation 4.57, which results in:

(kU1 − ω)2 = −(kU2 − ω)2 (4.71)

Rearranging and solving for ω results in:

ω =
k

2
(U1 + U2)± ik

2
|U1 − U2| (4.72)

The layer is instable if the imaginary part of ω is positive and this holds if:

U1 6= U2 (4.73)

So for every case of two parallel flows with different velocities, the layer will become instable and
appear as a Kelvin-Helmholtz instability, irrespective of the value of k. Time rate of growth depends
linearly on |U1−U2| and linearly on k = 2π/λ. Thus the smaller λ, the faster the growth of the instability.
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4.5.2.5 Normal Mode Analysis for Compressible Flow

In case of a compressible flow, the normal mode analysis becomes more complex. As the Bernoulli
equation for compressible barotropic flow was used for two fluids with the same composition, this gave
the same dynamic condition as for an incompressible flow. However, the velocity potential has to fulfill
another condition than ∇2φi = 0 and this is the linearized unsteady Prandtl-Glauert equation [53]:

(1−M2
i )
∂2φi
∂x2

+
∂2φi
∂z2

−
(

2M2
i

Ui

)
∂2φi
∂x∂t

−

(
M2
j

U2
i

)
∂2φi
∂t2

= 0 for i = 1, 2 (4.74)

or rewritten with β2
i = 1−M2

i :

β2
i

∂2φi
∂x2

+
∂2φi
∂z2

−
(

2M2
i

Ui

)
∂2φi
∂x∂t

−
(

M2
i

U2
i

)
∂2φi
∂t2

= 0 (4.75)

The speed of sound used for both Mach numbers is equal, because the temperature in both regions is
equal, which is a result of the equal pressure, density and ratio of specific heats.

The same general expressions for ζ(x, t) and φi(x, z, t) are used as in equations 4.58 and 4.64, from
which φ̄i(z) still has to be determined. The resulting linear second-order ordinary differential equation
is obtained similar as for the incompressible case:

d2φ̄i
dz2

=

(
k2β2

i +

(
2M2

i

Uj

)
kω − ω2M2

i

U2
i

)
φ̄i ⇒ (4.76)

d2φ̄i
dz2

= k2

(
1−

(
Ui
ai
− ω

kai

)2
)
φ̄i (4.77)

or when contracting the term in front of φ̄i(z) as ξ2
i :

d2φ̄i
dz2

= ξ2
i φ̄i (4.78)

with the boundary conditions as given in equation 4.67 and 4.68. The expressions for φ̄i result in,
when solving equation 4.78:

φ̄1(z) = − iζ0
ξ1

(kU1 − ω)e−ξ1z

φ̄2(z) =
iζ0
ξ2

(kU2 − ω)eξ2z
(4.79)

with

ξ1 =

√
k2β2

1 +

(
2M2

1

U1

)
kω − ω2M2

1

U2
1

= k

√
1−

(
U1

a1
− ω

ka1

)2

ξ2 =

√
k2β2

2 +

(
2M2

2

U2

)
kω − ω2M2

2

U2
2

= k

√
1−

(
U2

a2
− ω

ka2

)2
(4.80)

The full equations for φ1 and φ2 are:

φ1(x, z, t) = − iζ0
ξ1

(kU1 − ω)e−ξ1z+i(kx−ωt)

φ2(x, z, t) =
iζ0
ξ2

(kU2 − ω)eξ2z+i(kx−ωt)
(4.81)

The full equations for φ1, φ2 and ζ are substituted into the dynamic condition given in equation 4.57.
This results into:

ω2 − 2U1kω + U2
1 k

2

ξ1(ω)
= −ω

2 − 2U2kω + U2
2 k

2

ξ2(ω)
at z = 0 (4.82)
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or

(ω − U1k)2

k

√
1−

(
U1

a1
− ω

ka1

)2
= − (ω − U2k)2

k

√
1−

(
U2

a2
− ω

ka2

)2
at z = 0 (4.83)

When rewriting this equation with respect to the speed of sound, which for region 1 is equal to that
for region 2: (

U1

a −
ω
ak

)2√
1−

(
U1

a −
ω
ak

)2 +

(
U2

a −
ω
ak

)2√
1−

(
U2

a −
ω
ak

)2 = 0 at z = 0 (4.84)

or simplified:

(M1 − St)
2√

1− (M1 − St)
2

+
(M2 − St)

2√
1− (M2 − St)

2
= 0 at z = 0 (4.85)

St is a complex number and k is a positive real number. Solving this expression for ω explicitly, results
in the following expression:

St =
1

2
(M1 + M2)± i

√√
1 + (M1 −M2)2 −

(
1 +

1

4
(M1 −M2)2

)
(4.86)

or, rewritten with the introduction of a new term ∆M = M1 −M2:

St =
1

2
(M1 + M2)± i

√√
1 + ∆M2 −

(
1 +

1

4
∆M2

)
(4.87)

Comparing this solution to the solution for the incompressible case, the real parts of the Strouhal
number are the same. Therefore, the same holds for the real part of the frequency. The imaginary part
of the solution for the Strouhal number is different for the compressible case compared to that for the
incompressible case. Thereby, in contrast to the incompressible case, the compressible case is not always
unstable for M1 6= M2. In figure 4.28, the two expressions for the imaginary part of the Strouhal number
are shown.

Investigating figure 4.28 shows that the expression for incompressible flow is a linear approximation
of the case of compressible flow around ∆M = 0. Thereby, it is shown that the compressible case is not
always instable (i.e. =(St) > 0) for ∆M 6= 0. If ∆M > 2

√
2 ≈ 2.83, the contact surface will be stable and

for 0 < ∆M < 2
√

2, the contact surface will be unstable. The maximal instability is found at ∆M =
√

3,
for which =(St) = 0.5.

Recapitulation of the definition of the Strouhal number shows that ωi ∝ ka · =(St). This means that
the division between stability and instability only depends on ∆M and not on k. However, the larger k,
the larger the imaginary part of the frequency ωi will be, which makes the instability more severe. This
means that the smaller the wave length λ, the more unstable the behaviour of the contact surface.

4.5.2.6 Extension for Fluids with Different Composition

The derivation thus far has been carried out for the case of two fluids that have the same composition.
However, if the one fluid is for example air and the other fluid is hydrogen, some parameters cannot be
equalized. The specific heats cv and cp can be different and then the same holds for the ratio of the
specific heats γ and the specific gas constant R. As a result of that, the density ρ and speed of sound a
also do not have to be equal for both fluids.

In that case, ρ and γ remain included in the dynamic condition and this results in the following
equation as an equivalent of equation 4.84:

ρ1
γ1 − 1

γ1

(
U1 − ω

k

)2√
1−

(
U1

a1
− ω

a1k

)2
+ ρ2

γ2 − 1

γ2

(
U2 − ω

k

)2√
1−

(
U2

a2
− ω

a2k

)2
= 0 at z = 0 (4.88)

This equation cannot be solved analytically, but a numerical solution can be obtained for ω.
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Figure 4.28: Imaginary part of the Strouhal number versus the difference in Mach number ∆M.

4.5.2.7 Application

This above findings on of the Kelvin-Helmholtz instability can be applied to unstable jet shear layers and
has the possibility of predicting and analyzing this behaviour. The analysis gives an expression for the
physical frequency:

ωr =
ka

2
(M1 + M2) (4.89)

or

fr =
a

2λ
(M1 + M2) (4.90)

which is the average of the two Mach numbers of the parallel flows, multiplied with the wave number
k and the speed of sound a. For the application in supersonic flows, the compressible solution will be the
appropriate solution.

However, the assumptions have to be taken into account and be weighed for their validity.

The most important assumption that might limit the use of the results is the assumption of hav-
ing a two-dimensional parallel flow with semi-infinite regions, separated by a planar contact surface.
Furthermore, the derivation is restricted to compressible, barotropic flows.

In jet injected crossflows, at a certain moment, the two flows will be parallel, with different velocities,
which is comparable with the derivation. Furthermore, the compressibility effects of supersonic flows are
taken into account in the derivation.

A difference comes up, because at the beginning, the jet flow is a cylindrical flow in another flow.
Therefore, the effects are multidimensional and the far-field boundary conditions might not hold, because
of the relatively small diameter of the jet flow. In addition, in the beginning, the jet flow is perpendicular
to the crossflow and it is not bent directly into a parallel flow. Therefore, instability effects may already
be present before having the conditions as assumed for the derivation in the present study.

However, it is worth analyzing the correspondence of the actual jet shear layer behaviour with the
results of the derivation, because of the advantages this correspondence would have. Experimental images
may be brought back to one period, such that the time-dependent behaviour of the fast large-scale
structures can be investigated.
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4.5.3 Analysis of Kelvin-Helmholtz Instabilities in Experiments

For the validation of the derivation of section 4.5.2, the best option would be to use an experiment from
literature in which the behaviour of the large-scale eddies is documented. Ben-Yakar et al. [22] described
the evolution of eddies in the jet shear layer over time, in which their experiments were exceptionally
detailed compared to others. In the following analysis of the Kelvin-Helmholtz instability, the experiment
of ethylene injection (Dj = 2 mm) into a nitrogen supersonic crossflow is taken.

For a couple of reasons, it is difficult to apply the equations from the derivation of section 4.5.2 to
this experiment of Ben-Yakar et al. [22]. In the derivation, it was assumed that the fluids had the same
composition, which is now not the case. However, the properties of ethylene and nitrogen have the same
order of magnitude, which makes that the derived Kelvin-Helmholtz instability could give a result in the
correct order of magnitude. For the different composition, the ratio of the specific heats γ, the specific
gas constant R and the molecular mass M are the determining factors, which should be compared. For
an ideal gas, R = Ru/M, with Ru as the universal gas constant, which would give the same specific gas
constant for ethylene and nitrogen. However, because of non-ideal effects in the flows, R is picked from
literature.

Another difficulty arises when investigating the effect of the temperature. The crossflow has a temper-
ature of 1290 K and the injectant a temperature of 263 K. For the Kelvin-Helmholtz instability, barotropic
flow was assumed, which makes that ρj = ρc (because of pj = pc) at the interface (for comparable fluids).
When the specific gas constant R is in the same order of magnitude, then the temperature at the interface
will be the same too. This temperature will probably be closer to Tc than to Tj , because of the larger
amount of hot nitrogen compared to cold ethylene. The temperature at the interface will be somewhere
in between these two values. A rough estimation is 1000 K. This determines the speed of sound, which
makes the temperature rather important.

In the following table, the parameters of the injectant and the crossflow are summarized:

Parameter Ethylene C2H4 (injectant) Nitrogen N2 (crossflow)

Static temperature T 263 K 1290 K
Velocity U 315 m/s 2360 m/s
Mach number M 1 3.38
Static pressure p 550 kPa 32.4 kPa
Density ρ 7.02 kg/m3 0.0846 kg/m3

Molecular mass M 28 g/mol 28 g/mol
Specific gas constant R 296 J/kgK 286 J/kgK
Ratio of specific heats γ 1.27 1.4

Table 4.2: Parameters for the ethylene injectant and the nitrogen crossflow [22].

When comparing the last three parameters, they are in the same range of order of magnitude, which
is an advantage for the comparability.

Another limitation is already mentioned in section 4.5.2.7, which is the orientation of the jet with
respect to the crossflow. In the beginning, the jet is transversely oriented. Subsequently, the jet turns in
the direction of the crossflow, which gives the situation of two parallel flows as analysed in section 4.5.2.
For that reason, the frequencies and wavelengths are measured at a distance from the jet orifice, at the
location where the jet and the crossflow appear to be more parallel.

Figure 4.29 shows Schlieren images of the ethylene injection into the nitrogen crossflow. The evolution
of eddies is marked. In figure 4.30, the space-time trajectories of these eddies is tracked. From this figure,
the following relevant parameters can be deduced. The wave length λ between the eddies is estimated
as λ = 3.5Dj = 7.0 mm. The frequency of the shedding of the eddies is estimated as fr = 200 kHz, or
ωr = 1.256 · 106 rad/s.

Equation 4.90 for the real frequency fr obtained for the Kelvin-Helmholtz instability is rewritten to
the following expression and values are substituted:

fr =

√
γj,cRj,cT

2λ
(Mj + Mc) =

√
1.33 · 291 · 1000

2 · 7.0 · 10−3
(1 + 3.38) = 195 kHz (4.91)
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Figure 4.29: Schlieren images of sonic injection of ethylene into a supersonic nitrogen crossflow, obtained
by a high-speed-framing camera (∆t = 1.5 µs). Mc = 3.38, Tc = 1290 K, pc = 32.4 kPa and J = 1.4±0.1
[22].



4.6. JET PLUME HEIGHT AND BANDWIDTH OF JET UPPER SHEAR LAYER 57

Figure 4.30: Space-time trajectories of the large-scale eddies of ethylene in the jet shear layer [22].

This calculated frequency of the large-scale structures is in the same order of magnitude as the
frequency estimated from figure 4.30. Therefore, this gives an argument in favour of the validity of the
derivation of the Kelvin-Helmholtz instability. Furthermore, it indicates that the large-scale structures
are indeed largely the result of the Kelvin-Helmholtz instability.

4.6 Jet Plume Height and Bandwidth of Jet Upper Shear Layer

In the preceding sections, the jet shear layer and the penetration of the jet into the supersonic crossflow
were analysed. The purpose of this jet injection is eventually having an adequate mixing of the jet and
the supersonic crossflow. In applications, the jet fluid is fuel and the mixture with the crossflow of air
should give a specific composition for efficient combustion. For that purpose, the thickness of the jet
shear layer, i.e. the bandwidth of the jet upper shear layer mixing with the crossflow is important to
analyze.

Figure 4.31 shows a Schlieren image of jet injection into a supersonic crossflow, in which the upper
and lower boundaries of the jet plume – the height of the jet in vertical direction for a certain value
of x – are marked with a black line. This front forms the contact surface between the crossflow and the
jet. In the lower image, the data of a number of Schlieren images is processed and the colours show the
variation of the boundaries of the jet plume. The higher the value of the colour in the colour scale, the
more fixed the position of the jet shear layer had been found. The spreading of the location of the jet
shear layer is found in most researches, which take this into account [22][33].

It depends on the definition of the penetration of the jet how the jet plume height can be defined.
The jet plume height can be the distance from the jet center line – the line describing the center of
the jet plume as function of x – to the jet upper shear layer in y-direction. Another option is omitting
the jet center line and defining the jet plume height as the distance in y-direction between the upper
and the lower boundary of the mixing area at a certain position x. Relations for this jet plume can
be established. In section 4.5.2, an expression for the disturbance of the interface ζ(x, t) is derived, in
which the disturbance height depends on the initial condition ζ0 and the imaginary part of the frequency
ωi. In turn, ωi depends on the Mach number difference ∆M, the speed of sound a and the wave number k.

The spreading of the jet upper shear layer is shown in figure 4.32. This spreading is called the
bandwidth. The dots correspond with the position of the jet shear layer in the eight Schlieren images
from [22]. It is clear that oscillatory structures are present, but in addition, from the near-field of the
jet orifice onwards, the bandwidth steadily increases in streamwise direction. This bandwidth can be
described largely by the Kelvin-Helmholtz instability, see section 4.6.1.

The mixing regions as described for the jet injection in still air (chapter 3) play an important role in the
overall mixing of the jet with the crossflow. Thereby, the eddies and the instabilities in the jet shear layer
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Figure 4.31: Schlieren image and processed view of helium injection into a supersonic crossflow of Mc = 2
[54].

Figure 4.32: Transverse penetration data of ethylene jet injection. The dots are the position of the
visually observable upper edge of the jet, when using eight Schlieren images (Mc = 3.38, J = 1.4± 0.1).
Rothstein & Wantuck’s correlation is found to be the best for this experiment [22].

play an important role in the mixing. Especially the large-scale structures contribute significantly to the
near-field mixing of the jet with the supersonic crossflow [27]. Small-scale turbulence also contributes to
the mixing process [40]. Regions with high turbulent kinetic energy exist in the jet shear layer, specifically
near the Mach disk. This leads to enhanced mixing [26].

It was already observed that penetration of the jet increases with increasing the ratio of jet-to-crossflow
momentum flux J . In addition, the jet plume height increases too with increasing J [27]. In section 4.4,
it was already mentioned that the penetration depends on J and not on the ratios within J , which are
the density ratio s and the velocity ratio r. However, different combinations of s and r having the same
J will result in different mixing. r has an influence on the Kelvin-Helmholtz instability (section 4.5.2),
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because here the velocity difference is the driving mechanism for the instability. The influence of varying
the ratio r and the ratio s is still subject of research [34].

It is important to consider the efficiency of mixing. For his numerical simulations of hydrogen injection
into a supersonic crossflow of air, Lee [9] used the following definition for the mixing efficiency ηm:

ηm(x) =

∮ ∫
YH2

ρu dydz∮ ∫
Y rH2

ρu dydz
(4.92)

Y rH2
=


YH2 , YH2 ≤ Y stoic

H2(
1−YH2

1−Y stoic
H2

)
Y stoic

H2
, YH2 > Y stoic

H2

(4.93)

YH2
is the mass fraction of H2 in a hydrogen-air mixture and Y stoic

H2
is the stoichiometric mass fraction

for a hydrogen-air mixture. Mixing efficiency increases in general with x/Dj . Penetration increases with
J , but mixing becomes slower, which affects the mixing efficiency [9]. In many studies, the boundaries of
the mixing region are not quantified, but it may be possible to determine these boundaries. In the next
section, the same experiment as in section 4.5.3 is analysed, but now for the bandwidth of the jet upper
shear layer.

4.6.1 Validation of the Kelvin-Helmholtz instability with respect to Band-
width of the Jet Upper Shear Layer

The experiments by Ben-Yakar et al. [22] of ethylene injection into a nitrogen supersonic crossflow are
used for the validation of the Kelvin-Helmholtz instability with respect to the bandwidth of the jet upper
shear layer. The parameters and figures needed have been presented in section 4.5.3. Therefore, these
will not be repeated here.

The disturbance equation is given as equation 4.58. When applying this equation to jet injection, the
equation becomes the following, substituting ω = ωr + iωi:

ζ(x, t) = ζ0e
i(kx−ωrt)eωit (4.94)

For the bandwidth of the jet upper shear layer, the location of the envelope of the oscillating jet upper
shear layer will be investigated. Therefore, the in-between oscillatory behaviour of the jet shear layer
is neglected. For that purpose, the term ei(kx−ωrt) is neglected, as this is a combination of a sine and
cosine. For the position of the envelope of the jet upper shear layer, ei(kx−ωrt) will be taken equal to 1.

In the equation for ζ(x, t), the terms ζ0 and ωi have to be determined. First, ωi will be calculated.
From section 4.5.2, it follows that for the case of a compressible flow, ωi is expressed as:

ωi =
2πa

λ

√√
1 + ∆M2 −

(
1 +

1

4
∆M2

)
(4.95)

With the findings from section 4.5.3, together with ∆M = 3.38 − 1 = 2.38, ωi = 227106 rad/s is
found. From figure 4.28, it can be seen that the jet shear layer is unstable at this value for ∆M, which
indicates that Kelvin-Helmholtz instability phenomena arise.

Figure 4.32 is used for the validation. It is difficult to determine an appropriate reference line for
the validation of the Kelvin-Helmholtz instability in the jet upper shear layer, because the jet initially
penetrates in vertical direction, before it turns into the direction of the crossflow, where a parallel flow con-
figuration is obtained. This parallel flow configuration is needed for application of the Kelvin-Helmholtz
instability as derived in section 4.5.2. For good comparison, it is chosen to use a shift added to function
of the jet upper shear layer. The shift is chosen to be 0.75Dj from the jet upper shear layer, such that
at x/Dt = 2, the reference line and the data points of the upper boundary coincide. x/Dt = 2 is chosen,
because at that point, the jet is turned sufficiently in the direction of the crossflow.

From figure 4.32, the bandwidth is determined by taking the position of the upper boundary of the
area with dots, subtracting the penetration as described by Rothstein & Wantuck (equation 4.24) and
0.75Dj distance from the penetration added. In figure 4.33, the envelope of the jet upper shear layer is
marked by red dots.
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Figure 4.33: Transverse penetration of ethylene jet injection (Mc = 3.38, J = 1.4 ± 0.1) [22]. The red
dots are markers for the upper boundary of the jet upper shear layer.

The reference line is calculated by taking equation 4.24 and adding 0.75Dj in the normal direction to
equation 4.24:

y

Dj
= 2.173J0.276

(
x

Dj

)0.281

d (y/Dj)

d (x/Dj)
= 0.612J0.276

(
x

Dj

)−0.719

~n(x) =
1√(

d(y/Dj)
d(x/Dj)

)2

+ 1

(
d(y/Dj)
d(x/Dj)

1

)

(
y

Dj

)
jet

= 2.173J0.276

(
x

Dj
+ 0.75nx(x)

)0.281

+ 0.75ny(x)

(4.96)

In figure 4.34, the envelope of the jet upper shear layer as determined from figure 4.33 is shown,
together with penetration of the jet upper shear layer and the reference line of the jet upper shear layer
for x/Dt > 2. The y/Dt of the reference line will be subtracted from the data points of the envelope of
the jet upper shear layer for the analysis of the bandwidth of the jet upper shear layer.

In the next step, equation 4.94 is rewritten in terms of x instead of t. This is done by using that the
propagation of the large-scale structures is according to the convective Mach number Mconv = 3.38+1

2 =
2.19. In this manner, x and t in the relation for the instability can be coupled:

t =
x

aMconv
(4.97)

Then substitution into equation 4.94 yields:

ζ

Dj
(x) =

ζ0
Dj

e
ωiDj
aMconv

(
x
Dj

)
(4.98)

ζ0/Dj is determined by substitution of a known value for the bandwidth of the jet upper shear layer.
At x/Dj = 9.0, the distance between the envelope of the jet upper shear layer and the reference line is
ζ/Dj = 2.7. From these coordinates, it is derived that ζ0/Dj = 0.135.

Substitution of all found values into equation 4.98 results in the following expression for the bandwidth
of the jet upper shear layer:
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Figure 4.34: Transverse penetration of ethylene jet injection from figure 4.33 (Mc = 3.38, J = 1.4± 0.1).
The origin is positioned at the upstream side of the jet orifice. The envelope of the jet upper shear layer
is denoted by ∗, the penetration of the jet upper shear layer is denoted by the solid line and the reference
line is denoted by the dashed line.

ζ

Dj
(x) = 0.135e

0.333
(
x
Dj

)
(4.99)

This equation plotted in figure 4.35, together with the data points of the envelope of the jet upper
shear layer from figure 4.33 minus the reference line.

From figure 4.35, it can be seen that the results of the analysis of the Kelvin-Helmholtz instability fairly
approximates the bandwidth of the jet upper shear layer. However, clearly, as there are uncertainties,
which are mentioned in sections 4.5.2.7 and 4.5.3. In addition, there are more phenomena than the Kelvin-
Helmholtz instability that contribute to the jet plume height (see section 4.1). However, the analysis of
the Kelvin-Helmholtz instability provides a reasonable approximation for the macroscopic behaviour of
the bandwidth of the jet upper shear layer.



62 CHAPTER 4. SINGLE JET INJECTION INTO SUPERSONIC CROSSFLOW

Figure 4.35: The upper boundary of the envelope of the jet upper shear layer minus the reference line
(Mc = 3.38, J = 1.4 ± 0.1). The domain for x/Dt > 2 is used for an appropriate application of the
Kelvin-Helmholtz instability. The red dots in figure 4.33 minus the reference line are marked as ∗ and
the approximation by the Kelvin-Helmholtz instability (equation 4.99) is the black line.



Chapter 5

Dual Jet Injection into Supersonic
Crossflow

In chapter 4, single jet injection into a supersonic crossflow has been investigated. The observed features
were described in detail. In the present study, the focus is on tandem dual jet injection into a supersonic
crossflow. Therefore, the knowledge of single jet injection is used as a building block for dual jet injection.
When the term dual jet injection is used, then a tandem configuration for dual jet injection is intended.

Figure 5.1 shows a schematic with features in tandem dual jet injection. Comparing figure 5.1 with
figure 4.2 for single jet injection, similar features are observed, but also with some important differences.
In figure 5.1, two jets are present and therefore, two bow shocks, one in front of each jet, are observed.
Furthermore, it appears that the cascaded configuration has an influence on the penetration. Therefore,
in the present chapter, these phenomena are investigated.

Figure 5.1: Schematic of tandem dual jet injection [9].

The focus is on the behaviour of the two bow shocks that appear upstream of each of the two jet
orifices, as well as on the penetration of the rear, stronger, jet into the crossflow. These phenomena for
dual jet injection are compared with features occurring in single jet injection. The question is whether
dual jet injection improves the penetration of the jet compared to that in single jet injection, as well as
as the dependence of the penetration on parameters of the flow.

The experimental and numerical studies into dual jet injection into a supersonic crossflow of De Maag
[3][35], Landsberg [55] and Lee [9] are investigated. As an overview, the flow conditions for these studies
are shown in table 5.1.

In the studies, a total diameter Dt is defined, which is used for appropriate scaling of variables [35][55]:
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Conditions De Maag [3][35] Landsberg [55] Lee [9] Present study

Mc 1.6 2.623 - 5.272 2 1.55
pc [kPa] 23.3± 2 44.24 - 99.48 146.6 25.66± 1
Tc [K] 194± 10 786.9 - 1143 1081 197± 3
uc [m/s] 461± 10 1453 - 3483 1318 436.3± 10
Mj 1 1 1 1
Injection orientation 90° 45° 90° 90°
Injectant Air Hydrogen Hydrogen Air
Dt [mm] 2.23 2.01 3.18 2.23
D1 [mm] 1 0.9 2.247 1
D2 [mm] 2 1.8 2.247 2
J 1, 1.4, 2 1 1, 2 2.8, 3.8, 4.8
S 0 - 12 0 - 10 0 - 14 0 - 10

Table 5.1: Conditions for several studies into dual jet injection into a supersonic crossflow.

Dt ≡
√
D2

1 +D2
2 (5.1)

D1 is the diameter of the jet orifice upstream and D2 is that of the jet orifice downstream. Another
important parameter is S, which is the distance between the center lines of the two orifices – the dimen-
sionless dual distance. The absolute distance between the two center lines of the orifices, ∆x, is scaled
with Dt:

S =
∆x

Dt
(5.2)

In section 5.1, the behaviour of the two bow shocks in front of the jets is considered and in section
5.2, the penetration of the two jets into the supersonic crossflow.

5.1 Bow Shocks in Front of the Two Jets

In section 4.3, the behaviour of the bow shock in front of a single jet was observed and detailed. The
same behaviour is observed in simulations and experiments for tandem dual jet injection, but in that
case, a bow shock appears in front of each jet. Therefore, two bow shocks are present (see figure 5.1).

A single jet induces a strong bow shock – i.e. a bow shock with a large normal part –, which will
cause blockage effects in the crossflow. Downstream of the bow shock, the momentum of the crossflow is
lower, which allows the jet to penetrate more easily into the crossflow [55]. This phenomenon is utilised
in tandem dual jet injection, in order to improve the penetration (see section 5.2).

In the experiments of De Maag, the bow shocks are clearly present in the Schlieren images (figure
5.2). The downstream bow shock is stronger than the upstream bow shock. At a certain position, the
two bow shocks merge. It is observed, that this behaviour is different for different values of J , S and Mc

[3]. In the following, it is investigated on which parameters the behaviour of the two bow shocks depends.

First of all, the Mach number of the crossflow is an important parameter for the behaviour of the two
bow shocks. The inclination of the oblique part of the bow shock is determined by Mc, as described in
section 4.3. However, the downstream bow shock does not always have the same slope of its oblique part
as the upstream shock, as observed in experiments of De Maag [3]. This is due to the slowing down of
the crossflow by the upstream bow shock, which makes that the slope of the downstream bow shock is
larger than the slope of the upstream bow shock.

The crossflow downstream of the upstream bow shock recovers after a certain distance, which makes
that the two bow shocks behave identically for equally sized jets, such as in Lee’s study [9] for large S
(see figure 5.3). If S is large enough, the two jets behave as two independent single jets, because of the
disappearance of the effect of the presence of the quasi-stagnant region that is present right downstream
of a bow shock [55]. However, when decreasing S, the two bow shocks interact. Due to the smaller local
crossflow Mach number right downstream of the upstream bow shock, the slope of the downstream bow
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Figure 5.2: Schlieren image of dual injection of air into a supersonic air crossflow by De Maag [3]. The
crossflow is from left to right and injection is at the bottom wall at x/Dt = −3.6 and x/Dt = 0. The bow
shock in front of each of the two jets is recognizable by the two dark curves starting around x/Dt = −3.6
and x/Dt = 0, respectively. Conditions: J = 2, S = 3.6, Mc = 1.6, pc = 24 kPa and Tc = 194 K.

shock is larger, i.e. the smaller S becomes, the steeper the downstream bow shock becomes. At a certain
point, S becomes small enough for the two bow shocks to merge [3]. That is why the dual distance S is
important for the behaviour of the bow shocks.

It is observed in studies (e.g. [3][9]), that a higher J gives a larger penetration of the jet into the
crossflow, which is also the case for single jet injection. As a result, the normal part of the bow shock is
larger for larger J and therefore, the part of the bow shock near the jet orifice is stronger. This means
that the flow downstream of the bow shock is slowed down to subsonic speed. The stronger a part of the
bow shock, the lower the flow speed downstream of the bow shock.

Assuming J equal for both orifices, it can be observed that the larger the jet orifice, the larger the
mass flow, the larger the perturbation and therefore, the stronger the bow shock [9][55]. In numerical
simulations by Landsberg [55], the mass flow of the downstream jet was four times the mass flow of the
upstream jet, but nevertheless, the strength of the bow shocks is comparable. This is in contrast with
the results of the numerical simulations by Lee [9], in which equally sized jet orifices were used, because
in Lee’s results, the bow shock in front of the upstream jet is stronger. Concluding, the diameter of the
jet orifice has an effect on the strength of the bow shock and the larger the diameter of the orifice, the
stronger the bow shock.

Summarizing, the strength of the bow shocks depends on the crossflow Mach number Mc, the dual
distance S, the jet-to-crossflow momentum flux ratio J , and the mass flow of each jet – which for equal
conditions can be characterized by the ratio of the two orifice diameters [55].

Under certain conditions, the two bow shocks merge. The point at which the two shocks merge is
called the merger point of the bow shocks. De Maag [3] suggests that whether or not the bow shocks
merge or remain spatially separated has an influence on the penetration of the jet. Therefore, it is
necessary to investigate the merger point as a function of the relevant parameters, which will be pursued
in the present study.
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Figure 5.3: Contour plots of the pressure field near the jet orifices in numerical simulations by Lee [9].
The darker the region, the higher the pressure (maximum pressure is 6.7pc). Conditions are: Mc = 2,
pc = 146.6 kPa, Tc = 1081 K, D1 = 2.2468 mm, D2 = 2.2468 mm. For the simulations left, J = 1 and for
the simulations right, J = 2. Model S is single jet injection and Model DN corresponds with S = 2N .

5.2 Penetration of Two Jets into Crossflow

The penetration of a single jet into a supersonic crossflow is detailed in section 4.4. The behaviour and
mathematical description of tandem dual jet injection into a supersonic crossflow is comparable with
single jet injection, but it is more complicated because of the interaction between the two jets. The
governing parameter of dual jet injection, in addition to those for single jet injection, is the dual distance
S. In addition, in section 4.4, it was investigated that J has the largest effect on the penetration for
single jet injection, and – although not often quantified – also the crossflow Mach number Mc. Therefore,
in this section, the influence of S, J and Mc on the penetration is investigated.

Landsberg [55] investigated dual jet injection of hydrogen into a supersonic crossflow of air numerically,
from which the conditions are shown in table 5.1. In figure 5.4, the penetration of the jet in terms of the
hydrogen center of mass is shown for several values of S and for two values for Mc (2.623 and 5.272), both
for J = 1. From the figure, it becomes clear that two jets, i.e. dual jet injection, increases the transversal
penetration compared to single jet injection for the same equivalent diameter Dt. This phenomenon is
caused by the blockage effect of the upstream jet, which causes the value of the local J to increase. As a
result, the downstream jet penetrates deeper into the crossflow [55].

In the top subfigure of figure 5.4, it is shown that the dual distance S has an optimum value with
respect to distance of penetration for that conditions. For S = 4, the largest penetration is provided
and for larger and smaller values of S, the penetration is smaller. In the bottom subfigure of figure 5.4,
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Figure 5.4: Results from numerical simulations of dual jet injection of hydrogen into a supersonic crossflow
of air by Landsberg [55]. Presented is the penetration height of the hydrogen center of mass hH2

/Dt versus
x/Dt. Conditions in top figure (M6): Mc = 2.623, pc = 99.48 kPa, uc = 1453 m/s and Tc = 786.9 K.
Conditions in bottom figure (M12): Mc = 5.272, pc = 44.24 kPa, uc = 3483 m/s and Tc = 1143 K.
Conditions for both figures: D1 = 0.9 mm, D2 = 1.8 mm, J = 1 and S ∈ [0 : 10]. The downstream orifice
is located at x/Dt = 50.

the penetration increases for every S up to S = 10. The only difference between the top figure and the
bottom figure is the Mach number of the crossflow. Landsberg elaborates that the quasi-stagnant region
downstream of the leading jet creates the conditions under which the rear jet can penetrate deeper. At
a certain position downstream of the leading jet, the flow is reattached and is supersonic again, which
means that the quasi-stagnant region is bounded between the leading jet and the reattachment point.
The optimal penetration is obtained in that quasi-stagnant region. If the rear jet is located downstream
of reattachment, penetration is decreased. In the top subfigure of figure 5.4 for Mc = 2.623, it can be
observed that this reattachment occurs for S > 4, but this point is not observed in the bottom subfigure.
Landsberg suggests that the reattachment location in the bottom subfigure with Mc = 5.272 is delayed,
such that the maximum penetration is obtained for larger S. This is caused by the stronger bow shock
as a result of the higher Mach number of the crossflow [55].

Another observation is that the far-field penetration for Mc = 2.623 is in general higher than for
Mc = 5.272, whereas for the near-field penetration, it is the other way around. Landsberg explains
that this is caused by vertical momentum losses induced by the stronger barrel shock for the case of
Mc = 5.272, compared to the case of Mc = 2.623. This is a result of the larger underexpansion of the
fuel. In the end, absolute penetration decreases with increasing crossflow Mach number.

Lee [9] also investigated dual jet injection of hydrogen into a supersonic crossflow of air numerically.
In his research, Mc = 2 and J = 1.0 and 2.0 were used, together with dual distances of S ∈ [0 : 14]. For
further conditions, see table 5.1. Figure 5.5 shows the transversal penetration of the hydrogen center of
mass zH2/Dt of tandem dual jet injection for single jet and dual jet injection for four values of S, and
both for J = 1.0 and J = 2.0.
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Figure 5.5: Results from numerical simulations of dual jet injection of hydrogen into a supersonic crossflow
of air by Lee [9], corresponding to figure 5.3. Presented are penetration heights of the hydrogen center
of mass zH2/Dt versus x/Dt. Conditions are: Mc = 2, pc = 146.6 kPa, Tc = 1081 K, D1 = 2.247 mm,
D2 = 2.247 mm, J = 1 and 2 and S ∈ [0 : 14]. Model S is single jet injection and Model DN corresponds
with S = 2N . The upstream orifice is located at x/Dt = −N and the downstream orifice is located at
x/Dt = N .

From figure 5.5, it can be seen that similar to the investigation in section 4.4, penetration increases
with increasing J . Furthermore, Lee [9] explains that there is a strong relationship between the pene-
tration and S, which was also observed by Landsberg [55]. Similar to the results of Landsberg [55], the
penetration for dual jet injection is larger than for single jet injection. The optimal value for S for max-
imum penetration is around S = 6 (D3) for J = 1.0 and around S = 8 (D4) for J = 2.0. Based on these
findings, Lee suggests that for every J , there will be a different optimal value of S for maximal penetration.

De Maag [3][35] investigated tandem dual air jet injection into a supersonic crossflow of air in an
experimental set-up. The wind tunnel inlet was at ambient conditions and the crossflow Mach number
was Mc = 1.6. Jet injection was investigated for J = 1.0, 1.4 and 2.0 and for S ∈ [0 : 11]. The further
conditions are provided in table 5.1.

The penetration of the jet upper shear layer from the rear jet was investigated by Schlieren images,
which were captured at a frequency of 1000 frames per second. This is not fast enough for investigating
the propagation of structures, because that would require a 1000 times faster rate of capturing. Therefore,
time-averaged penetration of the jet upper shear layer was found by manual determination of the position
of the jet upper shear layer from graphical results. This was a rather labour-intensive work, therefore,
the number of Schlieren images that was used for determining the data of the location of the jet upper
shear layer was limited to four. De Maag used the following fit for the time-averaged location of the
upper shear layer [35]:

y

Dt
= a

(
x

Dt
− c
)b

(5.3)

For some specific dual distances S, a fit with similarity coordinates involving J was obtained, such as
for S = 4.5 (see figure 5.6 and figure 5.7):

y

J0.65Dt
= 2.8

(
x

J1.5Dt
+ 0.42

)0.18

(5.4)

Figure 5.7 shows that the data for the different values of J collapse well in a band around the location
given by equation 5.4. Therefore, scaling of the fit for the jet upper shear layer by a power-law function
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Figure 5.6: Schlieren image for tandem dual jet injection of air in a Mc = 1.6 supersonic crossflow of air.
D1 = 1 mm, D2 = 2 mm, J = 1.0 and S = 4.5. Left: Schlieren image. Right: Corresponding data set
for the jet upper shear layer from the main orifice, employing four consecutive frames with ∆t = 1 ms.
The corresponding fit is included [35].

Figure 5.7: Results from experiments of tandem dual jet injection of air in a supersonic crossflow of air
by De Maag [35], for the conditions J ∈ [1, 1.4, 2], S = 4.5 and Mc = 1.6. Presented are the data of the
location of the jet upper shear layer and the fit of equation 5.4 in terms of similarity coordinates.

of J appears to be appropriate to use.

De Maag showed in his results that around x/Dt = 5, there is a dip in the penetration for some
conditions. This dip was also found in some results from Landsberg [55] and Lee [9]. De Maag demon-
strated that splitting of the domain and using a separate fit for each domain would improve the fit of the
location of the upper shear layer significantly. Nevertheless, the fit as proposed previously is applied to
all conditions, but with the notion that splitting the domain or sophisticating the fit would improve the
result.

Furthermore, De Maag calculated the average penetration of the jet upper shear layer as described
by the fit. For every fit, he calculated the average penetration yavg/Dt for the domain 0.5 ≤ x/Dt ≤ 15
in the following manner:
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Figure 5.8: Results from experiments by De Maag [35]. Average penetration height versus dual distance
S ∈ [1.8 : 11], calculated from equation 5.5, using the fits of the data obtained from Schlieren images
for tandem sonic jet injection in a Mc = 1.6 supersonic air stream, which was based on data for 0.5 ≤
x/Dt ≤ 15. D1 = 1 mm, D2 = 2 mm. J = 1, 1.4 and 2.

In equation 5.5, the coefficients a, b and c correspond to the coefficients in the fit given in equation
5.3. The result of the values for yavg/Dt are shown in figure 5.8.

De Maag excluded the results for S = 4.5 in his further analysis, because the results were not in line
with the expectation based on the results for all other values of S, which may be due to the injection
block for S = 4.5 having a different plenum compared to the plenum of the other injection blocks. When
disregarding the results for S = 4.5 in figure 5.8, the maximum penetration for each J is investigated. For
J = 1.0, the maximum yavg/Dt was found around S = 1.8, with a percentage increase compared to single
jet injection of 18%. For J = 1.4, the maximum yavg/Dt is the clearest and was found at S = 5.4, with
a percentage increase of 32%. Finally, for J = 2.0, the maximum yavg/Dt was found to be somewhere
between S = 7.2 and S = 8.9, with a percentage increase of 34%. As shown in the results of Lee [9], the
penetration increases for increasing J and the optimal value for S at which the maximum penetration is
obtained, also increases with increasing J .

In the three studies that were considered in the present study, only De Maag [35] showed a derivation
of relations by finding fits (equation 5.3). For some values of S, these fits were scaled in terms of J , but
an appropriate scaling for S was not found. Having an insight in the scaling of S would be advantageous
and give a more precise insight into the optimal S for maximum penetration. Therefore in the present
study, the scaling in terms of S of the penetration of the jet upper shear layer will be a focus point.



Chapter 6

Schlieren and Imaging Techniques

The supersonic flow phenomena that are detailed in the preceding chapters have to be made visible
during experiments. A proven method for visualization of fluid structures, is the use of Schlieren
(English: streaks) techniques. The first scientist that used an optical method for Schlieren was Robert
Hooke (1635-1703) and it has been advanced until the present time [56]. In this chapter, the basics of
Schlieren techniques and the capture of images of the visualisation are investigated.

6.1 Schlieren Techniques

Schlieren techniques are used for visualization of generally invisible, transparent, flow structures, by
visualization of the density gradients in the flow. These density gradients show the flow behaviour
qualitatively [56].

The speed of light in vacuum is well-known as c0 = 3.8 · 108 m/s, but in a medium, light can be
slowed down by interaction with the matter. For a homogeneous medium, light propagates uniformly
through the medium and can be uniformly slowed down by interaction with the matter to the speed c.
However, if a medium is inhomogeneous, then light can be nonuniformly slowed down by interaction with
the matter, such that the light speed c becomes position dependent. A measure for this feature is the
refractive index n [56]:

n =
c0
c

(6.1)

The effect of refraction of the light is used to visualize the density gradients. For gases, such as air –
used in the present study –, the following equation can be applied [56]:

n− 1 = κρ (6.2)

This equation is the relationship between the gas density ρ and the refraction index n, in which κ
is the so-called Gladstone-Dale coefficient. This coefficient depends on the medium, the conditions
of the surroundings and the illumination [56]. For air at standard conditions (T = 288 K), κ is around
2.33 · 10−4 m3/kg [3].

The refractive index n depends on temperature, gas density, gas composition and the wavelength of
illumination, shown by equation 6.2. As an illustration, when light from a Sodium-D spectral line passes
air at 273 K and 1 bar environmental pressure, the refractive index is n = 1.000292. This illustrates the
small numbers that are worked with for (n − 1). As a result, an increase of the density by some orders
of magnitude, will hardly increase n [56].

Figure 6.1 shows the effect of the refraction of light through an inhomogeneous medium. The Schlieren
object has a density gradient in y-direction and as a result, the light is refracted at the Schlieren refraction
angle ε. This angle is small and therefore approximately equal to ∂y/∂z. Figure 6.2 visualizes the
refraction of a light ray, for which n2 < n1, such that the upper ray travels faster with velocity c2 = c0/n2

than the lower ray with velocity c1 = c0/n1 [7].
After a mathematical derivation, for which the reader is referred to Giskes [7], the following differential

equations for ~x = (x = x(t), y = y(t), z = t)T are obtained [7]:

71
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Figure 6.1: Reflection of light rays passing a Schlieren object with a density gradient in y-direction [7].

Figure 6.2: Schematic of a finite volume with a density gradient in y-direction, in which refraction of
light occurs at an angle ∆ε [7].

d2~x

dt2
=

d~ε

dt
=

κ

1 + κρ
~∇ρ ≈ κ~∇ρ (6.3)

These differential equations show that the change in the deflection of the light rays is governed by the
components of the density gradients of the medium.

Up to now, the basic principles of Schlieren techniques have been described. For visualization of
the flow using this technique, an optical set-up is needed. Figure 6.3 shows a schematic configuration
of a Schlieren set-up. From a point light source, light rays are converged to parallel rays by Lens 1.
Subsequently, the rays pass a Schlieren object, which can be an air flow with a density gradient. As a
result of the density gradient in the Schlieren object, rays are refracted at an angle ε. The subsequent Lens
2 converges the rays such that the unrefracted rays would converge into a focal point. After converging,
the rays diverge again and are projected on a screen or on a chip in a camera. As a result of the refraction
of the rays in the Schlieren object, these rays will not converge into the focal point and will therefore
show a distortion in the projection, i.e. a Schliere. However, this streak is not clearly projected. In order
to improve the projection, a knife is used [56].
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Figure 6.3: Schematic of a Schlieren set-up after [7].

A knife is placed near the focal point of the unrefracted light rays. The knife-edge intercepts the rays
that do not pass through the focal point, i.e. these light rays are not projected. As a result, shadows are
shown in the projection, which represent the density gradients as a result of flow structures [56].

The knife-edge can have different configurations. A horizontally oriented knife-edge blocks rays from
vertical density gradients, such that these structures are more emphasized in the projection. The horizon-
tal density gradients are emphasized using a vertical knife-edge. A combination of both – a circular cutoff
by a knife – emphasizes the density gradients in both directions equally. Figure 6.4 shows an example of
the use of different configurations of the knife [56].

Figure 6.4: Schlieren images of a turbulent flame with different knife-edge configurations. a) Circular
cutoff by a knife. b) Vertically oriented knife-edge. c) Horizontally oriented knife-edge [56].

In the following, a horizontally oriented knife is used. The knife-edge is placed at the focal point of
the light rays. Figure 6.5 shows a schematic of the effect of the knife. On the left, the half of the light
source slit is blocked by the knife. This represents the unrefracted light that passes through the focal
point. On the right, a representation of a refracted light source slit is shown. Due to the density gradient,
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the light rays are refracted upwards. As a result, relatively less light is cut off for the Schlieren structures
compared to the original image. Therefore, the Schlieren structures as projected are lighter than the
overall image. On the other hand, a density gradient can also refract light rays downwards resulting in
more light rays being cut off by the knife than in case of the unrefracted light rays. In that case, the
Schlieren structures as projected are darker than the overall image.

Figure 6.5: Schematic of the technique of the cutoff by the knife-edge at the focal point. Left: The knife
blocks a part of the light source slit for the case that no Schlieren refraction is present. Right: The knife
blocks a part of the light source slit, which is smaller than left due to Schlieren refraction [7].

In figure 6.5, b and h are the width and height of the light source slit, respectively. a is the part of h
that is not blocked by the knife and ∆a is the part of h for a Schlieren object that is not blocked by the
knife subtracted by a. Two quantities are important to define. The cutoff ratio is equal to the ratio a/h
and the contrast C is equal to the ratio ∆a/a [3]. The latter is the difference between the illumination
of the Schlieren objects and the unrefracted illumination, as fraction of the unrefracted illumination.
Refraction by the density gradients results in the fixed quantity ∆a = εyf2, in which f2 is the focal point
of Lens 2. Therefore, only the quantity a can adjust the cutoff and the contrast, and this is done by
moving the knife-edge [56].

In literature, a cutoff ratio of 50% is recommended, but deviation from this percentage could empha-
size other elements of the Schlieren object. The cutoff determines the contrast in the image and also
the illumination by the light source. It is important, that the illumination is strong enough, because
otherwise, the image would become too dark. On the other hand, the cutoff should not be too small,
because that would affect the contrast. Therefore, a delicate optimum for the cutoff has to be determined
[56]. This is often accomplished in a trial-and-error process [3].

In the present section, the parts of figure 6.3 between the light source and the camera were investigated.
The Schlieren images are captured by a camera, which use also depends on the light source. In the next
section, the imaging techniques with respect to the light source and the camera are detailed.

6.2 Imaging Techniques

The projections as achieved by Schlieren techniques have to be captured, such that the results can
be analysed. For that purpose, an appropriate camera is needed. Nowadays, digital cameras with an
appropriate lens are used. In the Schlieren set-up, light rays propagating towards the camera pass a lens,
an aperture, a shutter and will then meet a photosensitive chip with sensors that capture a photograph.
Electronics and software control the camera, its attributes and the saving of the photographs [7]. Figure
6.6 shows a schematic of the camera configuration.

For taking a photograph, the shutter has to be open so that the photosensitive chip is illuminated.
Subsequently, when the shutter is closed, illumination of the photosensitive chip stops and the photograph
is saved. Then, the shutter opens again and the photosensitive chip is illuminated again. In successive
photographing, the frame rate of the camera is important. This is expressed in frames per second (fps).
Every inter-photo frame time exist of a period in which the shutter is open and a period in which the
shutter is closed, see also figure 6.7. In standard cameras, the time that the shutter is open is equal to
the exposure time Te, during which the photosensitive chip is exposed to light [7].
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Figure 6.6: Schematic of a digital camera with a light ray propagating into the camera, based on [7].

Figure 6.7: Continuous illumination of the photosensitive chip as function of time, including the shutter
control [7].

When photographing stationary structures, the exposure time is not a large problem. However,
in the case of fastly propagating structures, the exposure time becomes more important, because the
projections intercepted by the photosensitive chip will possibly not be unambiguous when dealing with
moving structures. Imagine flow structures moving at Mach number M, propagating in one direction. It
can be calculated how many pixels an element of the flow has travelled during the exposure time Te [3]:

pixels travelled

exposure
= aMTeρpix (6.4)

In equation 6.4, a is the speed of sound in m/s and ρpix is the pixel density in pixels/m. If the number
of pixels travelled during exposure time is less than 1, then the photograph is focused well and does not
have blurs due to motion. Therefore, the exposure time Te has to be small enough [3].

The exposure time depends on the frame rate, and the larger the frame rate, the smaller the exposure
time. Therefore, the frame rate has to be increased in order to obtain images without blurs due to
motion. However, for flow structures in high-speed wind tunnels, the frame rate has to be large, tending
to 1 million fps. Most cameras do not achieve this speed combined with high-quality images [7].

A solution is in the use of the light source. The light source was up to now a continuously illuminating
object. However, if the illumination is pulsed, then the time that the photosensitive chip is exposed to the
light can be reduced. The time that the shutter is open is then still too long for continuous illumination,
but if the time of the illumination itself is reduced, then the problem with the exposure time is solved
[7]. The exposure time is then equal to the pulse width Tp of the pulsed illumination [3]. This principle
is shown in figure 6.8.

Giskes [7] used a LED with a pulse width of Tp = 130 ns. De Maag [3] improved the light source
by using a Vertical-Cavity-Surface-Emitting-Laser (VCSEL) that had a pulse width of Tp = 100 ns and
which pulse width could be reduced to Tp = 10 ns. Therefore, the quality of the images has been im-
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Figure 6.8: Pulsed illumination of the photosensitive chip as function of time, including the shutter
control [7].

proved, because of the absence of motion blurs [3]. With this technique, a camera with a limited frame
rate can capture high-quality images without motion blurs.

The Schlieren and imaging techniques as described in this chapter are used in the present study and
discussed further in the methodology in chapter 7.



Chapter 7

Methodology

In the preceeding chapters, flow phenomena in supersonic flows (chapter 2), jet behaviour in still air
(chapter 3), single jet injection into supersonic crossflow (chapter 4), tandem dual jet injection into
supersonic crossflow (chapter 5), and the Schlieren techniques (chapter 6) have been described extensively.
In the present chapter, the method for addressing the research questions from section 1.1 is described.

The wind tunnel set-up for injection and Schlieren are described. Thereafter, the analysis methods
are described for the analysis of the behaviour of bow shocks and the behaviour of jets. For the latter, a
semi-automatic algorithm is programmed, which will be described in detail.

7.1 Wind Tunnel Set-up

The experiments have been carried out in the supersonic wind tunnel facility, which is located at the
University of Twente and operated by the Engineering Fluid Dynamics group. This air indraft wind
tunnel is run by a 96 kW Kaeser Omega pump [3], which generates a sub-atmospheric pressure at the
downstream part of the wind tunnel, such that air is drawn from the inlet through the wind tunnel. A
picture of the wind tunnel is shown in figure 7.1.

Figure 7.1: Supersonic wind tunnel and Schlieren set-up at the University of Twente [3].

The gray lower wall provides the nozzle-diverging profile, which is adjustable by adjustment bolts.
The air is drawn through a throat, at which sonic speed is reached. Downstream of the throat, the
diverging cross-sectional area of the gray lower wall makes the flow in the wind tunnel to accelerate
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further to supersonic speeds. At the test section, the rectangular cross-section of the wind tunnel has a
width of 45 mm and a height of 47.9 ± 0.5 mm. A schematic overview of the wind tunnel is shown in
figure 7.2. In reality, the flow is from right to left and the injection is at the top, but for the sake of
convention, the resulting measurement images are mirror-imaged, such that the flow is depicted from left
to right and the injection is at the bottom.

Figure 7.2: Schematic of the supersonic wind tunnel at the University of Twente [57].
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Figure 7.3: Total temperature at the inlet of the wind tunnel versus time, tracked with a resolution of 1
K.

Disadvantageous for this wind tunnel is, that the inlet of the wind tunnel is in the same room as
the pump. This pump generates a significant amount of heat, which increases the temperature in the
machine chamber in time despite the air conditioning that is present. The total temperature in the flow
in the wind tunnel is determined by measuring the temperature at the inlet. If this total temperature
increases during the experiment, then the static temperature in the wind tunnel also increases, which
has an effect on other parameters. Therefore, the total temperature at the inlet should remain constant.
During the experiments, the total temperature was monitored and it appeared that the temperature is
approximately constant for the first 30 seconds, which is long enough for a measurement. Figure 7.3
shows a graph of the temperature at the inlet over time, measured by a thermocouple, which tracked
the temperature with a resolution of 1 K. It can be seen that the temperature decreases somewhat at
the start, which is due to the colder air from the air conditioning that is drawn to the inlet. However,
within a margin of 1 K, the total temperature remains the same during each of the measurements. The
conditions in the test section of the wind tunnel are shown in table 7.1.
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T0,c 292± 2 K
p0,c 101.325± 1 kPa
Mc 1.55± 0.02
ac 281.5± 2.5 m/s
uc 436.3± 10 m/s
Tc 197± 3 K
pc 25.66± 1 kPa
γc 1.4

Table 7.1: Conditions in test section for injection into supersonic crossflow. The first three parameters
are experimentally measured and the other parameters are derived from relevant relations for a calorically
perfect gas.

7.2 Set-up Injection Block

For addressing the research questions, sonic injection into supersonic crossflow experiments are carried
out. For that purpose, compressed air is injected into the supersonic crossflow via orifices in an injection
block. Compressed air is supplied via rubber hoses that are airtightly connected to G1/4 gas connections.
Within the whole injection block, everything is airtight by seal o-rings, such that the total pressure of
the outcoming jet can be measured precisely.

As is dealt with tandem dual tandem injection, several configuration parameters have to be chosen.
The diameters of the two orifices are D1 (upstream) and D2 (downstream). Based on mass conservation,
an equivalent diameter Dt is defined for appropriate scaling and enabling comparison with literature:

Dt ≡
√
D2

1 +D2
2 (7.1)

The distance between the two center lines of the orifices S, the dimensionless dual distance, is ∆x,
scaled with Dt:

S =
∆x

Dt
(7.2)

Schlieren images are used for visualization of the flow, in order to get an insight in the behaviour
of the jet and the bow shocks due to the injection. For the jet, it is the purpose to visualize both the
behaviour of the full jet and the behaviour of the jet upper shear layer and the jet lower shear layer
(lower side of the jet plume). Furthermore, it is investigated at which conditions the bow shock in the
front of the upstream jet and the one in front of the downstream jet merge or remain spatially separated
and whether there is a correlation with the behaviour of the jet.

In the present study, the results for penetration are compared with the results of De Maag [3][35],
Landsberg [55] and Lee [9]. De Maag [3][35] investigated the jet upper shear layer for dual jet injection
with dual distances S = 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.9 and 11 and orifice diameters D1 = 1 mm and
D2 = 2 mm, that make together an equivalent diameter of Dt =

√
5 ≈ 2.24. In his research, De Maag

used jet-to-crossflow momentum flux ratios J = 1, 1.4 and 2.

De Maag showed in his results [35], that an interesting range of S is around S = 5, because within
this range, maximum average penetration is obtained for both J = 1 and J = 1.4. The maximum for
J = 2 is less clear because of outlying points that pollute the data. It appeared that the injection blocks
of S = 4.5 and S = 6.3 were different from the other injection blocks, which may have caused outlying
points. As the dual distance S around S = 5 appeared to be the most interesting, the focus of the present
research will be on dual distances concentrated around S = 5.

The brass injection block for the present study exists of two parts: a base and a top-piece block, see
figure 7.4. The base is used in all measurements, but different top-piece blocks are used, for the varying
distance between the two orifices. The base and top-piece block are bolt-connected. For preventing
leakage of compressed air, a seal o-ring is placed between the two parts in the plena. Figure 7.4 presents
the injection block. In figure 7.5, a schematic of the injection block is shown. The technical drawings are
shown in appendix A.
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Figure 7.4: Picture of the total injection block.

Figure 7.5: Schematic of the injection block.

For the variation of S, 11 top-piece blocks are used. The interior of these blocks are identical, the only
difference is the position of the channels to the orifices. This is done for warranting a good comparison
between the blocks and to prevent having outlying measurement data, such as De Maag [35] shows in his
research for a top-piece block that was manufactured differently.

The orifices of the top-piece block have a sharp edge, such that the underexpanded jets have a pure
expansion fan. Because of the underexpansion, the Mach number at the exit of the orifice is precisely
Mj = 1. Furthermore, the surface of the block that is in contact with the crossflow, has a surface
roughness of Ra = 0.4 µm and a flatness tolerance that is minimized.

In table 7.2, the different values for S for the 10 dual jet top-piece blocks are shown. The diameters
of the upstream and downstream jet orifices are D1 = 1 mm and D2 = 2 mm, respectively. In addition,
a top-piece block with a single orifice is used for the comparison of results for a single jet with results for
dual jet injection. This single jet top-piece block has an orifice diameter equal to the equivalent diameter:
D1 = Dt = 2.23 mm.

S [-] 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87
∆x [mm] 8 9 10 11 12 13 14 16 19 22

Table 7.2: Top-piece blocks: dual distances S.

For the experiments, the jet-to-crossflow momentum flux ratio J is chosen to be J = 2.8 and J = 3.8.
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In addition, some experiments at J = 4.8 are performed. These conditions are chosen, such that data
can be added to the data of De Maag, which together gives a good overview of the penetration of dual jet
injection for lower values of J ([35]) and higher values of J (present study). The value of J is calculated
employing equation 4.13. In order to tune the value of J , the parameters in this equation for J have
to be adjusted. However, the Mach number is fixed due to the fixed configuration of the wind tunnel
as well as for reasons of comparability. Also, the pressure of the air inlet of the wind tunnel is hard to
increase, because it is the ambient pressure. Therefore, the adjustment of the value for J is reached by
an adjustment in the total pressure in the plena of the injection block. The total pressure is measured
by a GE Druck DPI 104 pressure sensor.

In addition, the atmospheric pressure is obtained from a nearby weather station and the total tem-
perature of the air is measured using a thermocouple. The parameters related to the jets are summarized
in table 7.3.

T0,j 292± 2 K
p0,j 330, 443± 5 kPa
Mj 1
J 2.8, 3.8
aj 312.7± 1.5 m/s
uj 312.7± 1.5 m/s
Tj 243± 2 K
pj 53.5± 1 kPa
γj 1.4

Table 7.3: Parameters of the jet for injection into supersonic crossflow. The first three parameters are
measured. The other parameters have been derived from relevant relations for a calorically perfect gas.

7.3 Schlieren Set-up

The flow structures in the flow within the wind tunnel are made visible using a Schlieren system. An
overview photograph is shown is figure 7.1 and a schematic overview is shown in figure 7.6. The light source
that is used, is a Vertical-Cavity-Surface-Emitting-Laser (VCSEL) from Tyson Technology, manufactured
by the Optical Sciences group at the University of Twente. The VCSEL has a wavelength λ = 808 nm
and a power of P = 4.5 W, emitted from a laser surface of 1.19× 1.19 mm. Furthermore, the pulse time
Tp is 100 ns. In figure 7.7, an image of the light source is shown and in figure 7.8, a peak power beam
profile of the light source is shown. For more information about the light source, the reader is referred
to [3].

Figure 7.6: Schematic overview of the Schlieren set-up.

The pulsed light is converged through lens 1 with a focal point f = 0.5 m and then travels in a parallel
light beam through the wind tunnel. Subsequently, lens 2 converges the light beam with a focal point
f = 1.0 m and the light beam is partly cut off by a horizontally oriented knife edge. The light beam ends
in the Phantom V611 camera. Attached to the camera is the Nikon TC-20 E AF-S Teleconverter II and
on that teleconverter, the Nikkor AF-S 200 mm f2.0 ED VR. This set-up was also used by De Maag [3].
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Figure 7.7: Picture of the VCSEL light source used in the experiments.

Figure 7.8: Peak power beam profile of the VCSEL light source [3].

During measurements, the room is dark, such that the only light that is captured by the camera is
the light beam from the VCSEL. The VCSEL is connected to a pulse generator that has frequency of 1.0
kHz, such that 1000 frames per second can be captured. This frame rate is not large enough for capturing
time series that could show structures in the flow propagating in time, because that would need a time
step, not of 1 ms, but one in the order of magnitude of 1 µs [22]. The exposure time of the camera is
large: 990 µs. Thus, the light beam with a pulse width Tp of 100 ns is easily captured, as between the
frames, a time step of 1 ms is set.
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7.4 Analysis of the Experiments

The frames recorded by the camera are captured by the software Panthom Camera Control® (PCC)
version 3.4 from Phantom™. From this array of frames, images are extracted (as an example, figure
7.9). These images are mirror-imaged, such that the crossflow is from left to right and the injection
is at the bottom of the picture, by convention. Subsequently, after binarization a Hough transform
is used for detecting the upper and lower wall of the wind tunnel, using MATLAB R2020a® (figure
7.10). By rotation of the image, a possible tilt is corrected and subsequently, the image is cropped in
vertical direction using the detection of the upper and lower wall. In horizontal direction, it is manually
determined to what limits the image is cropped. The result of the editing of the image in figure 7.9 is
shown in figure 7.11. The determined mirroring, rotation and cropping is applied to all images of the
same measurement, in order to be consistent. This step can be justified, as the camera and wind tunnel
do not move and therefore, the wind tunnel position is for all images of the same measurement session
identical.

Figure 7.9: Original Schlieren image, directly obtained from the PCC software (J = 3.8, S = 4.93 and
Mc = 1.55). The flow is from right to left, the jets are at the top of the picture.

Figure 7.10: Mirroring of figure 7.9 and indication of the upper and lower wind tunnel walls using a Hough
transform. The red lines are the upper and lower wall as detected (J = 3.8, S = 4.93 and Mc = 1.55).
The flow is from left to right, the jets are at the bottom of the picture.
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Figure 7.11: Corrected Schlieren image from figure 7.9 after mirroring, rotation and cropping (J = 3.8,
S = 4.93 and Mc = 1.55). The flow is from left to right, the jets are at the bottom of the picture.

Up to this point, the processed images are used as starting point for all analysis steps.

7.4.1 Behaviour Bow Shock

For dual jet injection, the behaviour of the bow shock is investigated from the Schlieren images, in order
to analyse whether or not the two bow shocks merge. Also determined is the dependency on J and S.
Whether the bow shocks merge or remain spatially separated may have an influence on the penetration
of the jet.

The downstream bow shock fluctuates significantly, because of the large-scale structures of the down-
stream jet. That is why the merger point of the two bow shocks fluctuates too. In order to get a good
view of the point of merging, 20 images are used for determining the merger point.

The data acquisition procedure is as follows:

1. The height of the wind tunnel is used for obtaining a conversion factor from pixels to mm.

2. The downstream jet orifice exit center is selected and set as the origin of the coordinate system.

3. For every image, the merger point of the bow shocks is determined manually.

The result of the determination of the merger point for one case is shown in figure 7.12. The fluctuation
is visible (blue asterisks) and therefore, a mean value is indicated by a red asterisk. The resulting data
sets for all experiments will be analysed in section 8.1.

7.4.2 Behaviour Jet

For analysis of the behaviour of the jet in the crossflow, several steps are taken. The purpose is to
have a largely automated analysis algorithm that can handle a significant number of images for each
measurement. De Maag [35] showed an excellent study into the jet upper shear layer, but his method
of using only 4 images for the analysis could be more robust, by using more images. However, in that
study, the images are all processed manually, which was rather labour intensive. That is why in the
present study, it is purposed to create a less labour intensive processing of the images. Then one is able
to increase the number of images per measurement to process easily and render the analysis more robust.

Lerink [31] suggests to make an automatic algorithm using MATLAB’s Image Processing Toolbox for
detection of the jet upper shear layer. In his study, Lerink shows a method of image processing that could
be a building block for an automatic algorithm that detects the jet. Furthermore, Lerink recommendates
to make a binary mask that covers non-relevant parts of the images such that the relevant flow features
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Figure 7.12: Analysis of the bow shocks merger point for 20 images. The blue asterisks indicate the
merger point for the individual images and the red asterisk indicates the mean position of the merger
point (J = 3.8, S = 4.93 and Mc = 1.55).

are emphasized, in this case the jet upper shear layer. This selection of images could then be subjected
to the image processing proposed above. In the present research, the recommendation of automation and
emphasizing relevant parts of an image for processing is followed.

Furthermore, Kouchi et al. [54] propose a method of detection of the full jet. However, this method
cannot be fully applied, because in contrast to Kouchi et al., the present study does not produce images
at small time steps. Still, the method they propose can partly be used and will be applied for the
determination of the window (section 7.4.2.1).

In the present study, the following procedure is used for determining the jet behaviour:

• Determination window (section 7.4.2.1)

– Identification of the orifices and the approximate height of the boundary layer.

– Identification of the shock waves and areas that may pollute the image processing data.

– Determination of the window (a binary mask) in which the jet is captured from the original
image, using 5 images.

• Jet determination (section 7.4.2.2)

– Processing of 20 images for the identification of the jet structures.

– Per image individually determination of the jet upper shear layer and the jet lower shear layer,
followed by correction of this data.

• Analysis results (section 7.4.2.3)

– Identification of flow structures.
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– Find fits for:

∗ Jet upper shear layer.

∗ Jet center line.

∗ Jet lower shear layer.

– Determine the average penetration of the jet upper shear layer into the crossflow.

– Possible generalizations of the individual measurements by a study of scaling.

The procedure is programmed in MATLAB R2020a® and all three parts are saved individually after
processing, such that the process can be redone or optimized in parts.

7.4.2.1 Determination Window

The purpose of the determination of the window is to select a part of the original image that contains
the jet and neglects most of the disturbing elements in the image.

As an input, the process requires a number of Schlieren images (5 in the present study) and the height
of the wind tunnel. The output is a binary mask that is used as window, the position of the orifices,
the boundary layer height, the position of the shocks and the conversion factor from position in pixels to
position in mm. The procedure is as following:

1. The orifices are identified by manual clicking. Using this data, the preparation for the window
determination is performed. A selection from the original image is extracted for further processing,
which is bounded in vertical direction by the middle of the image and the bottom of the image,
and bounded in horizontal direction by the right side of the image and 80 pixels to the left of the
upstream orifice. This frame is used for the further analysis of the jet behaviour.

2. The approximate height of the boundary layer is clicked. The boundary layer would give a sig-
nificant amount of noise in the determination of the jet and therefore, a binary mask is applied
to the boundary layer downstream of the orifices. This is achieved by utilising an approximating
asymptotic function, below which the image is masked. The function is defined as:

y(x) = b

(
1 +

1
b

3000 (xorifice + 40− x)− 1

)
(7.3)

In this equation, y(x) is the vertical position in pixels, x is the horizontal position in pixels, b is the
boundary layer height in pixels and xorifice is the x-position of the downstream orifice in pixels.
The function has a root at x = xorifice + 40 and approaches b for large x. By this means, the
boundary layer is masked without affecting the jet.

3. The purpose of the next step is to detect which areas in the image are the most deviating in time,
because one of these areas is the jet plume. 5 images are subsequently processed in the following
standardization method [54]:

(a) A possible linear gradient of the intensity in the image is corrected. A linear plane (f(x, y) =
c1x + c2y + c3) is used as fit for the intensity plot of the image and subsequently, the linear
plane is subtracted from the original image. Figure 7.13 is the original image and figure 7.14
is the corrected result.

(b) The function imfilter with convolution settings is used with a window size of 10×10 for
generation of a blurred version of the image, which is in the next step subtracted from the
image. In this manner, the stationary elements in the image (light reflection of the lens, partly
shock waves) are filtered out.

(c) Points with outlying intensity values are filtered out.

(d) Local contrast is increased by the function localconstrast, using an edge threshold of 0.3
and a strong enhancement.
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Figure 7.13: Color image of the light intensity of
the original Schlieren image (J = 3.8, S = 4.93
and Mc = 1.55).

Figure 7.14: Color image of the light intensity
of the with linear plane corrected Schlieren image
(J = 3.8, S = 4.93 and Mc = 1.55).

(e) The mean intensity µ of the image is calculated and subtracted from the image, such that the
resulting image has a mean of 0. Subsequently, the standard deviation σ of the intensity of the
image is calculated. The image intensity values are divided by σ, in order to get a standardized
imaged (µ = 0 and σ = 1) [54]. Figure 7.15 shows a result.

Figure 7.15: Standardized intensity image, with µ = 0 and σ = 1 (J = 3.8, S = 4.93 and Mc = 1.55).

4. The next step in the procedure of the window determination is finding the most deviating areas in
the images. One standardized image is used as a reference. The reference image is subtracted from
all other images and remaining are 4 difference images, which emphasize the moving structures (i.e.
the boundary layer and the jet plume).

The Sobel filter is used for detecting the jet region [54]. The threshold that is needed for this filter
varies per part of the image. Therefore, the images are cut in horizontal direction into 4 parts,
making it possible having a larger threshold around the jet orifice than further downstream. The
result of the filter is a binary image for all four parts of the images, and these parts are put together
to one image. This is done for all 4 difference images and these binary images are added together
and subsequently binarized again. The intermediate result is a binary image in which the moving
structures in the image are recognizable (figure 7.16).

5. The granular structures in the image are turned into a solid area by using a sequence of dilatation,
hole-filling and erosion. The solid area is aimed to overlap the full jet structures, such that it can be
used as the upper boundary of the binary mask for further analysis. Some structures (bow shock,
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Figure 7.16: Binary image of jet injection, combined from four binarized difference images (J = 3.8,
S = 4.93 and Mc = 1.55).

recompression shock, etc.) can pollute this solid area. For that purpose, shocks can be selected
in the image. These white parts are accordingly erased. Figure 7.17 shows the result of shock
selection.

Figure 7.17: Visualization of the selection of shock waves for having a correct window determination.
The selected parts are marked in red and numbered (J = 3.8, S = 4.93 and Mc = 1.55).
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After having erased the shock patterns in the binary image, the dilatation–hole-filling–erosion steps
are repeated. From the resulting binary image, the largest area is selected (figure 7.18).

Figure 7.18: Selection of the largest area (yellow), from which the upper boundary is used for the fit of
equation 7.5 (J = 3.8, S = 4.93 and Mc = 1.55).

6. The upper y-coordinates of the largest area are selected and a function is fitted, which becomes the
upper boundary of the window for the jet determination. The initial function is a power function:

g(x) = c1(x+ c3)c2 + c4 (7.4)

The function above is corrected with a linear or constant term added, depending on the relative
largest positive peak (xpeak, ypeak − g(x)) that towers the highest above the function g(x):

f(x) =

{
c1(x+ c3)c2 + c4 + (ypeak − g(xpeak)) x+25

xpeak+25 x ≤ xpeak
c1(x+ c3)c2 + c4 + (ypeak − g(xpeak)) x > xpeak

(7.5)

The resulting window (binary mask) is shown in figure 7.19 and is used in the whole further analysis
of the behaviour of the jet.

Figure 7.19: Schlieren image overlaid by the final determined window (binary mask), which is used for
further analysis of the behaviour of the jet (J = 3.8, S = 4.93 and Mc = 1.55).
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7.4.2.2 Jet Determination

The purpose of the jet determination processing is to detect the jet structures within the determined
window.

As an input, the process requires a number of Schlieren images (20 in the present study), the de-
termined window (binary mask), and the position of the shocks (see figure 7.17). The output for every
Schlieren image is 3 sets of coordinates: Coordinates of the full jet structures, the jet upper shear layer,
and the jet lower shear layer.

The following procedure is applied to every Schlieren image individually, for which the binary mask
is always applied:

1. Local contrast is increased by the function localcontrast, using an edge threshold of 0.3 and a
strong enhancement.

2. The image is divided into 5 parts – because of the variation of the light intensity and dominance of
the jet structures, such that the jet determination is optimal –, and every part is processed in the
following manner (see figure 7.20) [31]:

Figure 7.20: Intermediate steps for the jet determination for J = 3.8, S = 4.93 and Mc = 1.55. The
processing steps here shown are for one partial window. a) Contrast change using imadjust. b) Grayscale
histogram corrections using histeq and adapthiseq. c) Binarization using imbinarize. d) Morpholog-
ical filtering using bwmorph.

(a) Firstly, the function imadjust changes the contrast of the image part, with automatic contrast
limits and the value for the shape of the curve describing the relationship of input and output
values of 1.5 (figure 7.20a).

(b) Next, the grayscale Schlieren image is transformed by the function histeq, such that the
histogram of the output grayscale image has approximately a uniformly distributed shape.

(c) Subsequently, the function adapthiseq is used for enhancing the local contrast, such that
amplification of noise is avoided. The number of tiles setting divides the image in 8×16 parts
and a contrast enhancement limit of 0.4± 0.05 is used (figure 7.20b).

(d) In the next step, the image is binarized using the function imbinarize, for which a locally
adaptive image threshold is used. A sensitivity of 0.36± 0.04 is applied (figure 7.20c).

(e) For the filtering of noisy 1’s in the binary image, the function bwmorph is used. Majority is
applied – the majority in a 3-by-3 area has to be 1, then all become 1, otherwise, every pixel
is 0 –, such that the dominant structures in the binary image remain as spots (figure 7.20d).

The steps above are applied to all 5 parts of the image separately. Subsequently the 5 parts are
put together. This compound binary image is used for the further processing.
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3. The binary image is transformed into a set of coordinates of all pixels with a value of 1. Previously
determined shock waves are erased from the set of coordinates.

4. The coordinates are taken together as spots using the function bwboundaries. If the center of a spot
is within 10 pixels from the window boundary, then this spot is erased from the set of coordinates,
because it is plausible that this spot is an undesired side-effect of the processing steps.

5. The set of coordinates of the remaining spots is the final result of this process and represent the
plume of the jet (see figure 7.21).

Figure 7.21: Jet plume determination for one image (J = 3.8, S = 4.93 and Mc = 1.55).

From this set of coordinates, the upper and lower boundary of the plume for every x-coordinate
are determined and stored as sets of coordinates. As it is possible that the upper boundary of the
plume determined in this manner is fanciful, this set of coordinates is corrected by filtering points
that are far away from of the moving median or moving average. The same is done for the lower
boundary of the plume. An example of the result of the filtering is shown in figure 7.22.

Figure 7.22: Jet upper shear layer (blue) and jet lower shear layer (red) determined after correction for
one image (J = 3.8, S = 4.93 and Mc = 1.55).

The sets of coordinates of all 20 Schlieren images are stored and are used for the analysis of the results.
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7.4.2.3 Results Analysis

In this step, the data sets obtained in the previous steps are combined and functions are found for the
description of the jet upper shear layer, the jet lower shear layer and the jet center line.

In figure 7.23, the jet behaviour is visualized by an iso-incidence plot. The incidence is indicated by
the colour. From these colours, it becomes clear which structures within the jet plume are often detected
at that certain position by the jet determination for different Schlieren images. For example, around the
jet orifice, the incidence is high, because of largely stationary structures, such as the barrel shock.

Figure 7.23: Iso-incidence plot for the jet analysis, together with a fit for the jet upper shear layer (up),
the jet center line (mid) and the jet lower shear layer (down) (J = 3.8, S = 4.93 and Mc = 1.55).

In section 4.4, several functions for describing the jet were proposed and analysed. In general, power-
law functions are used for both the jet upper shear layer and the jet center line. For the jet upper shear
layer, the same fit as Gruber et al. [39] and De Maag [3] is used:

y

Dt
= c1

(
x

Dt
− c3

)c2
(7.6)

This fit will be denoted as the fit without shift for the jet upper shear layer. In order to investigate
whether the penetration depth could be described better by adding a constant term, the following fit is
used for the same data of the jet upper shear layer:
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Dt
= c1
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Dt
− c3

)c2
+ c4

)
(7.7)

This fit will be denoted as the fit with shift for the jet upper shear layer. For the two fits, the data
of the jet upper shear layer for −1.0 < x/Dt < 15 is used.

For the jet center line, another fit is used, for the range 0 < x/Dt < 15. The center of the plume
starts at the center of the downstream orifice, which is the origin of the coordinate system. Therefore,
the following fit is used:

y

Dt
= d1

(
x

Dt

)d2
(7.8)

Furthermore, a fit for the jet lower shear layer is sought. In the first place, the jet moves upwards and
thereafter, the plume spreads out. As a consequence, a function that would fit the jet lower shear layer,
is a challenge. An appropriate approximation for the range 0.5 < x/Dt < 15 is the following rational
function:
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(7.9)

The fits are found using a least-squares algorithm. For checking the quality of the fits, the coefficient
of determination, R2, is used:

R2 = 1−
∑
i(f(xi)− yi)2∑
i(ȳ − yi)2

(7.10)

The variable ȳ is the mean of the data, calculated by ȳ = 1
n

∑n
i=1 yi, f(x) is the fit and (xi, yi) are

the data.

One characterization of a jet injection experiment is the penetration. De Maag’s definition [35] for
the average penetration will be used in the present study:

yavg
Dt
≡ 1

xup/Dt − xdown/Dt

∫ xup/Dt

xdown/Dt

y (x/Dt)

Dt
d

(
x

Dt

)
(7.11)

The range 0.5 ≤ x/Dt ≤ 15 is chosen (xup/Dt = 15 and xdown/Dt = 0.5). The lower boundary is
chosen to be x/Dt = 0.5 because at that point, the jet is bulged out enough for a good description by the
chosen fit. The upper boundary is chosen to be x/Dt = 15 because for larger distance, reflected shocks
will intersect the jet plume, which makes that the structures are harder to be identified. Furthermore,
the range is large enough for determining the average penetration.

From the analysis described above, relations can be generalized in terms of scalings of J and S. An
approach to match the empirical equations to the general equations will be detailed in section 8.2.2.2.
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Chapter 8

Results and Discussion

In this chapter, the results of the experiments described in chapter 7 are analysed and discussed. In
section 8.1, the results of the behaviour of the bow shocks are described and discussed, and in section
8.2, the results of the behaviour of the jet are described and discussed.

8.1 Results Behaviour Bow Shocks

This section describes the observations and results of the behaviour of the two bow shocks that form in
dual jet injection. In section 8.1.1, some observed features are described and compared with literature.
Subsequently in section 8.1.2, the analysis of the merger point of the two bow shocks is given. Finally,
concluding remarks are provided in section 8.1.3.

8.1.1 Observations

In the experiments with dual jet injection, two bow shocks are formed, one in front of each of the two
jets. These two bow shocks, as described in section 4.3, have a nearly normal part near the jet orifice
and an oblique part further from the orifice away from the wall. Near the upper wall, the oblique part
of the bow shock turns again into a normal shock, the so-called Mach stem, due to the phenomenon of
shock reflection. The features as described are shown in figure 8.1.

In section 4.3.3, the behaviour of the bow shock with respect to its position – whether this shock
wave oscillates or not – was analysed. Most studies (e.g. [7][26]) found that the bow shock position is not
stationary. Gruber et al. [32] showed that the large-scale structures within the jet upper shear layer cause
the pulsating character of the oscillation of the bow shock. These studies were for single jet injection.
In the present study, a similar behaviour has also been observed for dual jet injection. In figure 8.2,
the bow shocks near the orifices are shown for a number of random moments in time. It is found, that
the upstream bow shock oscillates only within a small bandwidth. However, the downstream bow shock
moves more intensively due to the large-scale structures in the jet upper shear layer of the downstream
jet. It is thought, that the large-scale structures are more dominant in the jet downstream than in the
jet upstream because the mass ratio ṁdownstream/ṁupstream = 4/1 implies that the jet downstream is
more intense.

The position of the upstream bow shock is more volatile because of the interaction with the bound-
ary layer upstream of the orifice and feedback through the subsonic flow region. The position of the
downstream bow shock fluctuates because of the interaction with the main jet.

Time-averaged, the downstream bow shock has a larger normal shock part than the upstream bow
shock, which is due to the larger orifice diameter i.e. larger mass flow. In addition, the downstream bow
shock has a larger normal part because of the more prominent bulging of the underexpanded jet. Near
the upstream jet, the flow is slowed down, which gives the downstream jet the space to bulge out more.

Starting from dual jet injection with D1 = 1 mm and D2 = 2 mm with the total pressure p0,j that
is the same for both jets, it is observed that the position of the bow shock is dependent on the Mach
number of the crossflow Mc, the jet-to-crossflow momentum flux ratio J and to a smaller extent on the
dual jet distance S. A larger crossflow Mach number results in a smaller inclination of the oblique part of

95
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Figure 8.1: Features of dual jet injection into a supersonic crossflow (J = 3.8, S = 4.48 and Mc = 1.55)
shown in original Schlieren image.

Figure 8.2: Cutout of the original Schlieren images for visualizing the bow shocks at five random moments
in time. Especially the downstream bow shock fluctuates in position and so does the merger point of the
two bow shocks. (J = 3.8, S = 3.59 and Mc = 1.55).
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Figure 8.3: Original Schlieren images of the full wind tunnel height showing bow shocks for two different
J ’s. The bow shocks merge earlier for larger J . a) Experiment for J = 2.8, S = 3.59 and Mc = 1.55. b)
Experiment for J = 3.8, S = 3.59 and Mc = 1.55.

Figure 8.4: Original Schlieren images of the full wind tunnel height showing bow shocks for four different
values of S. The bow shocks merge earlier for smaller S. a) Experiment for J = 3.8, S = 3.59 and
Mc = 1.55. b) Experiment for J = 3.8, S = 4.48 and Mc = 1.55. c) Experiment for J = 3.8, S = 5.38
and Mc = 1.55. d) Experiment for J = 3.8, S = 9.87 and Mc = 1.55.
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the bow shock and a stronger effect of the normal part of the bow shock. S gives a large contribution to
the effect, whether or not the two bow shocks merge or remain spatially separated. A larger J results in
a more extensive bulging of the jet and therefore a larger normal part of the bow shock. For comparison,
Schlieren images of the bow shocks for several experiments at the same S but different J are shown in
figure 8.3 and Schlieren images of the bow shocks for several experiments at the same J but different S
are shown in figure 8.4.

8.1.2 Merger Point of the Bow Shocks

A further feature observed in the Schlieren images of the bow shocks, is that the two bow shocks merge
at some point which depends on the specific combination of S and J . The point at which this occurs is
called the merger point (ξ, η) = (x/Dt, y/Dt). As observed in figure 8.3 and figure 8.4, the position of
this merger point is dependent on both J and S, and presumably, this merger point position also depends
on Mc, because the bow shock position does depend on Mc.

It is observed, that for larger J , the merger point is closer to the jet orifice, and that for larger S,
the merger point is further away from the jet orifice. Above a certain value of S, the bow shocks do
not merge, i.e. remain spatially separated at least within the height of the wind tunnel. This value is
dependent on J .

All experiments are performed for Mc = 1.55± 0.02, and the correlation between the position of the
merger point and J and S is investigated.

Because of the fluctuating character of especially the downstream bow shock, the position of the
merger point is not stationary. For getting an average value, the data of 20 Schlieren images is used for
obtaining the data. In figure 8.5, all data sets for the position of the merger point are shown for J = 2.8
and J = 3.8. For one value of S, a measurement for J = 4.8 added to the data sets. Remarkably, for
every experiment, the merger point is located on the upstream bow shock (see also figure 7.12).

Figure 8.5: Position of merger point for several values of J and S, Mc = 1.55.
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For investigating the correlation between the position of the merger point and J and S, separate
equations are sought for the horizontal coordinate ξ and the vertical coordinate η.

In figure 8.6, the values of ξ and η are plotted against S. Included in this figure is the mean value
of ξ and of η as the red dot. In figure 8.7, figure 8.6 is transformed by taking the logarithmic values. In
the logarithmic plots, the results for constant J show a linear relation between log(ξ) and log(S), and
between log(η) and log(S). As a result of that, the functions for describing ξ = ξ(J, S) and η = η(J, S)
are in the following form:

ξ(J, S) = f1(J) · Sc1

η(J, S) = f2(J) · Sc2 (8.1)

The functions f1 and f2 are a function of J . There are not many different J ’s, which makes deriving
a general function not very accurate. However, it is attempted to find an expression for f1(J) and f2(J),
using the data for J = 2.8, J = 3.8 and J = 4.8. In figure 8.8, the logarithmic values of the scaled
positions ξ and η are plotted against the logarithmic values of J , with ξ and η are scaled by S4.229 and
S1.827, respectively. These power coefficients are derived from the fits in figure 8.7. Figure 8.8 reveals a
linear relation between the logarithm of the scaled position and the logarithm of J . As a result, it has
been concluded that a power-law fit for J may is appropriate. Therefore, the general fits for the position
ξ and η are:

ξ(J, S) = c1J
c2Sc3

η(J, S) = c4J
c5Sc6 (8.2)

The two functions of J and S are fitted separately using the least-squares method. All data sets
available are used; not only the mean positions. This results in the following equations:

ξ(J, S) = 0.114J−1.864S4.229

η(J, S) = 1.924J−0.572S1.827
(8.3)

The fit for ξ has an R2 value of 0.952 and the fit for η has an R2 value of 0.962. These values are
both very acceptable. The equation is valid for 2.8 ≤ J ≤ 4.8, 3.59 ≤ S ≤ 5.38, Mc = 1.55 and a upper
bound η ≤ 19.3 (height of the wind tunnel minus the height of the boundary layer). It has to be noted
that because of the small number of data and the small range because of the fixed values of S and the
wind tunnel height, the equations found may not be valid for J and S exceeding the ranges. In figure
8.9, all positions of the merger point of the bow shocks, scaled by power functions of J and S, are given.
It appears that for most of the measurements, the scaling is appropriate, as the mean values are almost
all inside the black circle with radius 0.05. There is one relative outlier, which is the measurement for
(J = 3.8, S = 3.59). For this measurement, the point the nearest to the jet orifice is obtained. It may be
that as a result of other effects, the fit is not appropriate near ξ = 0.

Further research could confirm the findings and investigate meticulously to what extent bow shocks
remain spatially separated or merge and at which point they merge.

8.1.3 Concluding Remarks Behaviour Bow Shock

From the relations found in equation 8.3, some practical concluding remarks can be given. The wind
tunnel has a height of 21.4Dt, which makes that the relations are limited applicable. In the preceding
section, it was mentioned that ηmax = 19.3 because of the wind tunnel height and the boundary layer.
If this maximum is set, then a relation for S depending on J can be derived from equation 8.3, which
expresses the maximum value for S for a certain J for which the bow shocks merge. Above this limiting
value of S, the bow shocks remain spatially separated. This pivoting value for S, Spivot, is expressed as:

Spivot = 3.53J0.313 (8.4)

In the next sections on the results of the behaviour of the jet, it is investigated whether Spivot has an
effect on the behaviour of the jet.
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Figure 8.6: Position of the merger point for several values of J and S and Mc = 1.55, together with fits
for equation 8.1.

Figure 8.7: Logarithm of position of the merger point for a number of values of J and S and Mc = 1.55,
together with fits for equation 8.1.
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Figure 8.8: Position of the merger point scaled by a power of S for a number of values of J , Mc = 1.55.
Included are fits from equation 8.2.

Figure 8.9: Position of the merger point scaled by powers of J and S according to equation 8.3 at
Mc = 1.55. The crosses are scaled values of all measurements and the red dots are the scaled mean values
per combination (J, S). The larger black circle is centered at (0.114, 1.924) and has radius 0.05.
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8.2 Results Behaviour Jet

The results of the behaviour of the jet are investigated, which is the focus point in the present study.
Several phenomena are analysed, quantified, and subsequently discussed. In section 8.2.1, Schlieren
images of the results together with graphic results are given. Subsequently, in section 8.2.2 to 8.2.5, the
behaviour of the jet is discussed, quantified by relations for the position of the jet upper shear layer and
jet lower shear layer as well as the jet center line. Using these equations, the penetration of the jet into
the crossflow is quantified. All these results are investigated for a certain range of S for J = 2.8, J = 3.8
and J = 4.8. This leads to identifying relations for the behaviour of the jet depending on J and on S.
The focus is on the jet-to-crossflow momentum ratios J = 2.8 and J = 3.8.

In section 8.2.2, the results for the jet upper shear layer are elaborated on. Sections 8.2.3 and 8.2.4
present the results of the analysis for the jet center line and jet lower shear layer, respectively. Finally,
concluding remarks on the behaviour of the jet are given in section 8.2.5.

8.2.1 Visual Results for Behaviour Jet

In this section, Schlieren images are presented from the experiments described in chapter 7. From every
experiment, one out of the 20 images taken is extracted and shown in figure 8.10 to 8.12. The results for
J = 2.8 are shown in figure 8.10 and the results for J = 3.8 are shown in figure 8.11. Two experiments
for J = 4.8, which have dual distances S = 0 and S = 5.38, respectively, are shown in figure 8.12. In the
center of each Schlieren image, light reflection due to the reflection of the lens appears. In addition, some
contamination is present in the images (dust particles and fingerprint). However, these irregularities do
not affect the results.

In chapter 5, several studies were considered on a parameter study of the behaviour of especially the
rear jet. In the present section, it is investigated whether the results show similar behaviour to that found
in literature.

In the Schlieren images, the horizontal domain extends approximately from −9 ≤ x/Dt ≤ 20, which
is similar to the images taken by De Maag [3][35], taken in the same facilities. The results of Lee [9] and
especially Landsberg [55] consider a larger domain, −10 ≤ x/Dt ≤ 35 and −10 ≤ x/Dt ≤ 50, respectively.
Therefore, in their studies, the behaviour of the jet further downstream has more focus. In the present
study, the focus is on the near-field behaviour of the injection.

A qualitative analysis of the results in figures 8.10 to 8.12 shows that, similar to described in section 5.2,
dual jet injection (S > 0) features a stronger penetration than single jet injection (S = 0). Furthermore,
at constant J , the variation of penetration with S has a maximum at a certain value of S. This is in
line with the expectations [9]. Whether the value of S at which the maximum penetration is obtained
increases with increasing J – as observed in the study of De Maag [35] – is not clear from this qualitative
analysis and is investigated in the quantitative analysis in the present section.

Another parameter that had an effect on the behaviour of the jet is the jet-to-crossflow momentum
ratio J . In line with literature, penetration increases with increasing J , which is seen in results for con-
stant S, with increasing from J = 2.8, 3.8 and 4.8.

In section 4.5.2, the Kelvin-Helmholtz instability for the jet upper shear layer was analysed. In the
present experimental study, the focus is not on this phenomenon, which would require a more detailed
study. However, when investigating the behaviour of the jet qualitatively, it is observed in many Schlieren
images, that roller structures in the jet upper shear layer are present. As an example, figure 8.10a shows
a possibly periodic behaviour of the jet upper shear layer as expected from the derivation in section 4.5.2.
This behaviour is not observed equally clear in all Schlieren images. A further experimental in-depth
study into this phenomenon is recommended (see chapter 10).

Figures 8.13 to 8.16 are so-called iso-incidence plots, based on 20 Schlieren images in which the jet
plume is determined for the domain −1 ≤ x/Dt ≤ 15 (for the procedure, see section 7.4.2.2). The closer
the colour is towards dark red, the larger the incidence in the plot. As a result, the more stationary,
more dominant and frequently occurring structures in the jet can be recognized by their colour. Most
figures show the barrel shock clearly, with a large value of the incidence, indicating that the barrel shock
is largely a stationary structure.
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Figure 8.10: Results of jet injection into a supersonic (Mc = 1.55) crossflow for J = 2.8 at eleven values
of S. The frame extends from x/Dt = −9 to x/Dt = 20 in horizontal direction.
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Figure 8.10: Results of jet injection into a supersonic (Mc = 1.55) crossflow for J = 2.8 at eleven values
of S. The frame extends from x/Dt = −9 to x/Dt = 20 in horizontal direction. (Continued)

Figure 8.11: Results of jet injection into a supersonic (Mc = 1.55) crossflow for J = 3.8 at eleven values
of S. The frame extends from x/Dt = −9 to x/Dt = 20 in horizontal direction.
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Figure 8.11: Results of jet injection into a supersonic (Mc = 1.55) crossflow for J = 3.8 at eleven values
of S. The frame extends from x/Dt = −9 to x/Dt = 20 in horizontal direction. (Continued)
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Figure 8.12: Results of jet injection into a supersonic (Mc = 1.55) crossflow for J = 4.8 at two values of
S. The frame extends from x/Dt = −9 to x/Dt = 20 in horizontal direction.

Figure 8.13: Iso-incidence plot for jet plume, based on 20 Schlieren images (J = 2.8, S = 5.83 and
Mc = 1.55). Cut-out for −7 ≤ x/Dt ≤ 15 from an enhanced Schlieren image. The jet plume is shown for
−1 ≤ x/Dt ≤ 15.

Figure 8.14: Iso-incidence plot for jet plume, based on 20 Schlieren images (J = 3.8, S = 5.83 and
Mc = 1.55). Cut-out for −7 ≤ x/Dt ≤ 15 from an enhanced Schlieren image. The jet plume is shown for
−1 ≤ x/Dt ≤ 15.
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Figure 8.15: Iso-incidence plot for jet plume, based on 20 Schlieren images (J = 2.8, S = 4.04 and
Mc = 1.55). Cut-out for −8 ≤ x/Dt ≤ 15 from an enhanced Schlieren image. The jet plume is shown for
−1 ≤ x/Dt ≤ 15.

Figure 8.16: Iso-incidence plot for jet plume, based on 20 Schlieren images (J = 3.8, S = 4.04 and
Mc = 1.55). Cut-out for −8 ≤ x/Dt ≤ 15 from an enhanced Schlieren image. The jet plume is shown for
−1 ≤ x/Dt ≤ 15.

Figure 8.13 and figure 8.14 have the same dual distance S, but a different value of J . The same holds
for figure 8.15 and figure 8.16. The effect of J on the jet is found in these figures: The general behaviour
of the jet for different values of J appears to be similar, but for larger values of J , the size of the barrel
shock increases and the jet penetrates deeper into the crossflow.

Two characteristic cases for the behaviour of the jet are shown in figure 8.13 and figure 8.16, respec-
tively. In figure 8.13, the jet plume height increases steadily with increasing x/Dt, but in figure 8.16, the
jet plume height for increasing x/Dt has a less steady behaviour. In both figures, but especially in figure
8.16, the jet upper shear layer shows a dip in the penetration in the neighbourhood of the location of the
recompression shock. This dip was also observed by De Maag [35].

The general time-averaged characteristics of the jet upper shear layer and its penetration can be de-
scribed by equation 7.6 (fit without shift) or equation 7.7 (fit with shift), but a more accurate description
could be provided by splitting the domain [35] or using an even more sophisticated fit.
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For finding the expressions for the location of the jet upper shear layer, jet center line and the jet
lower shear layer, three different data sets are used (see section 7.4.2.3). In figure 8.17, the data sets
for the plume (blue), the jet upper shear layer (green) and the jet lower shear layer (yellow) are shown,
together with the corresponding fits. This figure shows how the data points for the jet upper shear layer
and jet lower shear layer and the corresponding fits are positioned in the jet. Note that in figure 8.17,
the fit without shift is used for the jet upper shear layer.

Figure 8.17: Jet plume (blue) with the data from 20 Schlieren images for the jet upper shear layer (green)
and the jet lower shear layer (yellow). Note the stretching of the vertical axis. Included are fits for the jet
center line (black), the jet upper shear layer (red solid) and the jet lower shear layer (red dash-dotted).
J = 2.8, S = 5.83 and Mc = 1.55, see also figure 8.13.

It is observed that the jet upper shear layer has a variation in the bandwidth of the data around the
fit. Near the jet orifice, the bandwidth is smaller than further downstream. For an investigation of the
bandwidth of the jet upper shear layer, see section 8.2.2.3.

The far outliers for especially the jet lower shear layer are due to uncertainties in the acquisition of
the data. In fact, the jet lower shear layer is not a normal shear layer such as the jet upper shear layer,
but a combination of the two shear layers at the lower side of the jet, which feature a cross-section of
the mushroom-shaped counter rotating vortex pair (see figure 5.1). That is the reason that it is harder
to determine the lower side of the plume accurately and the reason behind the occurrence of outliers.

Summarizing, the general behaviour of the jet is in line with the observations in literature (chapter 4
and 5). The next sections detail the quantitative results of the jet upper shear layer, jet center line and
jet lower shear layer.
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8.2.2 Results for the Jet Upper Shear Layer

From the results shown in figures 8.10 to 8.12, it is clear that the jet has an initial bulging in upstream
direction that causes a larger penetration height, i.e. the downstream jet penetrates deeper into the
crossflow with decreasing slope. This is seen for all combinations of J and S considered. As elaborated
in section 4.4, power functions are appropriate functions for describing the jet upper shear layer. This
type of fits are used in the following.

In section 8.2.1, visual results of the jet behaviour have been presented and the behaviour of the jet
was discussed qualitatively. In this section for the jet upper shear layer, fits for its position are found in
section 8.2.2.1. Generalizations for S and J , and discussion are found in section 8.2.2.2. Subsequently,
the bandwidth of the jet upper shear layer is investigated in section 8.2.2.3. Some concluding remarks
are provided in section 8.2.2.4.

8.2.2.1 Quantification of the Location of the Jet Upper Shear Layer

An adequate penetration of the jet upper shear layer is important for a good mixing of the jet and the
supersonic crossflow. Therefore, it is important to determine the penetration. For that purpose, least-
squares fits of the location of the jet upper shear layer are found. The same procedure is performed for
the fit without shift and for the fit with shift. For the fit without shift (equation 7.6), table 8.1 shows
the values of the coefficients corresponding to J = 2.8 and J = 3.8, both for a number of values of S,
together with the coefficient of determination (R2) and the average penetration yavg/Dt, as calculated
by equation 7.11.

J S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

2.8

c1 2.602 3.303 3.854 3.642 3.805 3.362 3.128 3.764 3.533 3.919 3.357
c2 0.229 0.228 0.167 0.216 0.189 0.252 0.279 0.203 0.244 0.164 0.215
c3 -0.555 -0.871 -0.538 -0.506 -0.508 -0.853 -0.950 -0.533 -0.505 -0.500 -0.180
R2 0.75 0.81 0.74 0.83 0.77 0.74 0.84 0.78 0.80 0.71 0.72
yavg
Dt

4.10 5.26 5.35 5.58 5.52 5.62 5.56 5.63 5.73 5.41 5.08

3.8

c1 2.887 3.670 4.092 4.231 4.247 4.374 3.708 3.682 4.863 4.403 3.965
c2 0.224 0.207 0.168 0.184 0.194 0.173 0.257 0.272 0.148 0.194 0.184
c3 -0.758 -0.509 -0.543 -0.577 -0.612 -0.645 -1.168 -0.887 -0.433 -0.606 -0.499
R2 0.72 0.76 0.74 0.71 0.81 0.76 0.80 0.79 0.69 0.76 0.74
yavg
Dt

4.54 5.52 5.71 6.10 6.24 6.17 6.34 6.42 6.49 6.48 5.70

Table 8.1: Parameters of the fit for y/Dt = c1 (x/Dt − c3)
c2 , with J = 2.8 and J = 3.8 and S ∈ [0 : 9.87].

Data for the range −1.0 ≤ x/Dt ≤ 15 is used. The average penetration yavg/Dt is calculated by equation
7.11.

Table 8.1 shows that the found fits are acceptable when looking at the coefficient of determination
(R2). It is investigated, whether the location of the jet upper shear layer can be described better by
adding a constant term to the fit – the fit with shift. This shift makes that the power function is able to
describe the bulging out behaviour of the jet better (equation 7.7). The results of a least-squares fit with
shift are given in table 8.2 for J = 2.8 and J = 3.8, both for 11 values of S.

Comparing the results for J = 2.8 and J = 3.8 for both fits, shown in table 8.1 and table 8.2,
respectively, some similarities and some differences become apparent. The average penetration yavg/Dt

is approximately the same for both fits at equal conditions. The differences are mostly within a margin
of 0.02. Graphical results of the average penetration for all conditions, calculated by the fits in table
8.1 and table 8.2, are shown in figure 8.18 and figure 8.19, respectively. These figures show the average
penetration for the fits of equation 7.6 and equation 7.7, respectively. For additional information, the
average penetration for J = 4.8 combined with S = 0 and S = 5.38 is included in both figures.

Both figure 8.18 and figure 8.19 give an indication of the way how the average penetration depends
on S and J . In De Maag’s study [35], it was found that for a constant J , the average penetration had a
maximum for a certain value of S, see figure 5.8. Due to the resolution in S, the precise maximum is hard
to find, but the trend is clear. All found penetration depths for dual jet injection exceed that for single
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Figure 8.18: Average penetration yavg/Dt versus dual distance S calculated using y/Dt =
c1 (x/Dt − c3)

c2 , for J ∈ [2.8, 3.8, 4.8] and Mc = 1.55.

Figure 8.19: Average penetration yavg/Dt versus dual distance S calculated using y/Dt =
c1 ((x/Dt − c3)

c2 + c4), for J ∈ [2.8, 3.8, 4.8] and Mc = 1.55.
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J S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

2.8

c1 1.475 1.948 1.833 2.162 1.869 2.734 1.615 1.494 1.631 1.359 2.660
c2 0.354 0.320 0.330 0.360 0.346 0.281 0.409 0.399 0.431 0.395 0.265
c3 -0.696 -0.681 -0.744 -0.819 -0.631 -0.645 -0.618 -0.332 -0.639 -0.489 -0.288
c4 0.721 0.787 0.961 0.508 0.951 0.294 1.143 1.555 1.073 1.736 0.229
R2 0.76 0.80 0.76 0.85 0.77 0.74 0.84 0.79 0.81 0.71 0.71
yavg
Dt

4.09 5.26 5.35 5.61 5.53 5.62 5.55 5.62 5.68 5.37 5.07

3.8

c1 1.881 1.431 1.399 2.875 2.196 2.330 1.218 2.402 2.285 1.983 1.049
c2 0.309 0.419 0.398 0.259 0.333 0.292 0.472 0.345 0.312 0.360 0.520
c3 -0.765 -0.776 -0.564 -0.711 -0.642 -0.646 -0.245 -0.536 -0.757 -0.528 -0.625
c4 0.534 1.490 1.842 0.434 0.872 0.849 2.644 0.676 0.953 1.209 2.463
R2 0.72 0.78 0.76 0.70 0.81 0.76 0.79 0.79 0.72 0.76 0.77
yavg
Dt

4.54 5.52 5.70 6.10 6.23 6.17 6.33 6.42 6.49 6.48 5.64

Table 8.2: Parameters of the fit for y/Dt = c1 ((x/Dt − c3)
c2 + c4), with J = 2.8 and J = 3.8 and

S ∈ [0 : 9.87]. Data for the range −1.0 ≤ x/Dt ≤ 15 is used. The average penetration yavg/Dt is
calculated by equation 7.11.

jet injection (S = 0). Somewhere in the range of S = 5 to S = 7, the maximum penetration is obtained.
This is also observed in figure 8.18 and figure 8.19, but it appears that the maximum penetration is at a
larger S for larger J .

Several differences are observed when comparing the fit results. It appears that, in general, the fits
with shift have an approximately equal (margin of 0.01) or better coefficient of determination compared
to the fits without shift. 5 out of 22 fits have a significantly better value of R2 for the fit with shift.

Due to the extra degree of freedom c4 in equation 7.7, the function is in all fits shifted in y-direction.
That is why in general the values of c2 are larger and the values for c1 are lower for the fit with shift,
compared to the fit without shift.

The differences between the two fits are made clear in figure 8.20 and figure 8.21. The two fits are
shown in blue (fit without shift) and red (fit with shift). In figure 8.20, the two fits are coinciding almost
everywhere. This behaviour is not a coincidence, it is recognizable for many other conditions.

However, in figure 8.21, the two fits do not fully coincide, i.e. the red fit has a larger slope in the
function than the blue fit. Judging by the coefficient of determination, the red fit (fit with shift) has a
better representation of the location of the jet upper shear layer.

Over the whole, both fits do almost coincide, though the fit with shift has a better representation.

In section 8.1, the results for the behaviour of the bow shocks in front of the two jets was analysed.
As a result of the analysis, the question was raised whether there is a correlation between the merger
point of the two bow shocks on the one hand, and penetration and the behaviour of the jet on the other
hand. No clear change in behaviour of the jet is observed around the pivoting point whether the two
bow shocks merge or remain spatially separated, despite the focus on the dual distances of the injection
blocks around S = 5 in this study – corresponding to the pivoting value of S for which the bow shocks
merge or not (for J = 2.8, Spivot = 4.87, and for J = 3.8, Spivot = 5.36). The merger point of the
bow shocks is for the analysed conditions at significant higher values of y/Dt than penetration of the jet
occurs. As a result, direct influence of the merger point is less likely. The largest increase of penetration
with increasing S is observed up to Spivot, but it is premature that this has a correlation with the merger
point of the two bow shocks.

In the next section, a similarity analysis is performed for the fits of the location of the jet upper shear
layer with respect to S. For the two fits, the same procedure is executed subsequently. Subsequently, the
two scaled fits are compared and it is concluded, which fit is the preferred one. Finally, it is attempted
to find a generalized expression of the location of the jet upper shear layer as function of x/Dt, S and J .
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Figure 8.20: Two different fits for the location of the jet upper shear layer. The jet upper shear layer for
every Schlieren image individually is marked with its own colour. The jet center line is drawn in black.
(J = 2.8, S = 5.83 and Mc = 1.55).

Figure 8.21: Two different fits for the location of the jet upper shear layer. The jet upper shear layer for
every Schlieren image individually is marked with its own colour. The jet center line is drawn in black.
(J = 3.8, S = 4.04 and Mc = 1.55).
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8.2.2.2 Scaling of the Location of the Jet Upper Shear Layer

Scaling of y/Dt = c1(x/Dt − c3)c2

It is attempted to find similarities between the fits for a constant J , in order to find a single relation for
the penetration y/Dt for different S. The fit without shift: y/Dt = c1(x/Dt − c3)c2 (equation 7.6) is
considered first. Then the same procedure is followed for the fit with shift: y/Dt = c1 ((x/Dt − c3)c2 + c4)
(equation 7.7). The idea is to fix coefficients that are similar for all values of S and keep variables that
change with S free. When analysing the results in the tables of coefficients, in general, c2 and c3 are
approximately in the same range for all fits of the same type and for the same J . Furthermore, c1 appears
to be a function of S.

For both J = 2.8 and J = 3.8, appropriate values for the coefficients of the fit of equation 7.6 that
appear to be independent of S are chosen, based on the coefficients from table 8.1 and a trial-and-error
process. When having fixed these coefficients, the least-squares method is executed again for finding the
most appropriate fit. It is demanded that the coefficient of determination R2 does not drop too much.
A maximum drop of 0.05 is set, such that the fits still have a coefficient of determination in the range of
0.65 ≤ R2 ≤ 0.85.

The following coefficients are chosen to be constant:

J 2.8 3.8

c2 0.20 0.19
c3 -0.55 -0.78

Table 8.3: Fixed coefficients for y/Dt = c1 (x/Dt − c3)
c2 , based on the results of table 8.1.

When applying the fixed coefficients of table 8.3 and recalculating the least-squares fit for the two
values of J , the coefficients, dependent on S, are shown in table 8.4, together with the coefficient of
determination and the average penetration.

J S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

2.8
c1 2.761 3.530 3.602 3.745 3.722 3.781 3.772 3.787 3.862 3.636 3.388
R2 0.73 0.81 0.74 0.81 0.77 0.73 0.82 0.77 0.75 0.71 0.67
yavg
Dt

4.10 5.25 5.35 5.57 5.53 5.62 5.61 5.63 5.74 5.40 5.03

3.8
c1 3.100 3.774 3.894 4.158 4.252 4.210 4.320 4.331 4.431 4.410 3.871
R2 0.69 0.74 0.74 0.70 0.80 0.76 0.76 0.72 0.72 0.75 0.73
yavg
Dt

4.55 5.53 5.71 6.10 6.24 6.18 6.34 6.35 6.50 6.47 5.68

Table 8.4: Parameters of the fit for y/Dt = c1 (x/Dt − c3)
c2 , with J = 2.8 and J = 3.8 and S ∈ [0 : 9.87].

Data for the range −1.0 ≤ x/Dt ≤ 15 is used and the coefficients from table 8.3 are applied. The average
penetration yavg/Dt is calculated by equation 7.11.

When comparing the results in table 8.1 with those in table 8.4, some interesting differences and
similarities appear. The average penetration determined for the fits are all very similar (within a margin
of 0.05), except for one condition (J = 3.8 and S = 6.28), which has a larger difference. A graphical
representation of this data is shown in figure 8.22.

The coefficients of determination for the fits in table 8.4 are lower or equal to the coefficients of deter-
mination for the fits in table 8.1. This was as expected, because in table 8.1, the best fit for that specific
data set was sought, whereas in this section, a generalized solution is sought. However, the coefficients of
determination are mostly within the range of a maximum drop of 0.05, which is assumed to be acceptable.
In addition, all values of R2 are still within the range of 0.67 ≤ R2 ≤ 0.82.

A generalization for y/Dt = c1 (x/Dt − c3)
c2 is sought. The behaviour of the penetration as a function

of S, in terms of c1, appears to have a lower limit for S = 0 (single jet injection), and with increasing
S, a maximum is found. The same correlation is found in the values of the average penetration, both in
the present study and in [35]. The following generalized fit is found to describe the penetration of the jet
upper shear layer as a function of S:
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Figure 8.22: Average penetration yavg/Dt versus dual distance S calculated for y/Dt = c1 (x/Dt − c3)
c2 ,

for J ∈ [2.8, 3.8] and Mc = 1.55. The adjusted coefficients from table 8.3 and table 8.4 are used.

y

Dt
= c1(S)

(
x

Dt
− c3

)c2
(8.5)

Or, using similarity coordinates:

y

Dtc1(S)
=

(
x

Dt
− c3

)c2
(8.6)

In equation 8.5, coefficient c1(S) is expressed as:

c1(S) = k1 + k4 exp

(
−1

2

(
S − k2

k3

)2
)

(8.7)

Equation 8.7 contains a Gaussian distribution function. This function is chosen, because the average
penetration as a function of S shows a similar behaviour. This was also observed in the results of De
Maag [35].

In the expression for c1, the new coefficients k1 to k4 are used. k2 is equal to the value of S for which
the maximum penetration occurs. k3 is the so-called standard deviation of the Gaussian distribution
function and k1 and k4 are amplification factors to be determined. The resulting function for c1 is
therefore a Gaussian distribution function with an asymptotic limit of k1, and a maximum at S = k2 of
c1 = k1 + k4. The full equation then becomes:

y

Dt
=

(
k4 exp

(
−1

2

(
S − k2

k3

)2
)

+ k1

)(
x

Dt
− c3

)c2
(8.8)

The data sets for the location of the jet upper shear layer for every S at constant J are used for
determining the coefficients k1, k2, k3 and k4; the other coefficients are initially fixed.

The least-squares method is applied to the data set of the data points for all values of S of the location
of the jet upper shear layer, once for J = 2.8 and once for J = 3.8. A least-squares method provides a
fit for y/Dt as a function of x/Dt and S. The following function is found as optimal fit for the data for
J = 2.8:

y

Dt
=

(
1.137 exp

(
−1

2

(
S − 6.366

3.191

)2
)

+ 2.761

)(
x

Dt
+ 0.55

)0.20

(8.9)

The function y/(Dtc1(S)), in which y/Dt is divided by c1 in order to obtain similarity coordinates –
similar to equation 8.6 –, has a coefficient of determination of 0.739, which is acceptable and in the same
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range as the values of R2 for the individual fits. It is logical that the value of R2 for the generalized
equation is lower than the mean of the values of R2 of the individual fits, because a compromise has to
be found for 11 conditions of S and the generalized fit cannot be as good as the individual fits. However,
the result is still acceptable and provides insight into possibilities for scaling by S.

For J = 3.8, a similar expression is found:

y

Dt
=

(
1.432 exp

(
−1

2

(
S − 6.952

2.893

)2
)

+ 3.100

)(
x

Dt
+ 0.78

)0.19

(8.10)

Also for this function for y/(Dtc1(S)), an acceptable coefficient of determination of 0.715 is obtained,
which is also in the range of the values of R2 obtained for the individual fits.

As an overview, figure 8.23 shows the behaviour of c1(S) and table 8.5 shows the coefficients for the
fit for J = 2.8 and J = 3.8.

Figure 8.23: Plot of the expressions for c1(S), found for J = 2.8 and J = 3.8, as shown in equation 8.9
and equation 8.10, respectively.

J 2.8 3.8

c2 0.20 0.19
c3 -0.55 -0.78
k1 2.761 3.100
k2 6.366 6.952
k3 3.191 2.893
k4 1.137 1.432
R2 0.739 0.715

Table 8.5: Coefficients for the fit of data for the location of the jet upper shear layer: y/Dt =(
k4 exp

(
− 1

2 ((S − k2)/k3)
2
)

+ k1

)
(x/Dt − c3)

c2 , see equation 8.9 and equation 8.10.

The quality of the scaling is further investigated as following. Figure 8.25 and figure 8.27 show scalings
of the fits, using the coefficients from table 8.3 and table 8.4. The fits are scaled by c1(S) (equation 8.7
with the coefficients from table 8.5). Figure 8.25 and figure 8.27 show that the similarity analysis of the
fits is appropriate.

Further investigation is done by a similarity analysis of the data sets for the location of the jet upper
shear layer. Figure 8.24 and figure 8.26 show the points in the jet upper shear layer for all measurements
for J = 2.8 and J = 3.8, respectively, scaled by c1(S). For both values of J , a reasonable cloud of data
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points is obtained around the scaled fit.

Figure 8.24: Location of the jet upper shear layer
(blue) and the generalized fit (black), both scaled
by c1(S) for J = 2.8, S ∈ [0 : 9.87], Mc = 1.55.
The data stem from 20 Schlieren images per (J, S)
combination.

Figure 8.25: Fits for the location of the jet upper
shear layer from table 8.3 and table 8.5 (red), and
the generalized fit (black), both scaled by c1(S) for
J = 2.8, S ∈ [0 : 9.87], Mc = 1.55.

Figure 8.26: Location of the jet upper shear layer
(blue) and the generalized fit (black), both scaled
by c1(S) for J = 3.8, S ∈ [0 : 9.87], Mc = 1.55.
The data stem from 20 Schlieren images per (J, S)
combination.

Figure 8.27: Fits for the location of the jet upper
shear layer from table 8.3 and table 8.5 (red), and
the generalized fit (black), both scaled by c1(S) for
J = 3.8, S ∈ [0 : 9.87], Mc = 1.55.

The scaling of the y-coordinate with
(
k4 exp

(
− 1

2 ((S − k2)/k3)
2
)

+ k1

)
appears to be appropriate for

the values of S that are measured. A theoretical investigation is performed in the following for validation
of the results. Imagine the two tandem jet orifices (D1 = 1 mm and D2 = 2 mm) with a total diameter
of Dt = 2.23 mm. If the dual distance S = 0, then the two orifices are combined to one orifice with
diameter Dt. This was elaborated before.

When increasing S, the downstream jet will at first be positioned in the so-called quasi-stagnant zone
(see section 5.1), and will subsequently be in the zone of reattaching supersonic flow. The larger S, the
more time the flow has to recover to supersonic conditions. When imagining S → ∞, the crossflow in
front of the downstream jet has the same conditions as the crossflow in front of the upstream jet [9].



8.2. RESULTS BEHAVIOUR JET 117

In that case, the two jets behave as two independent jets that have no influence on each other. The
penetration of the main jet is then equal to that of single jet injection with an orifice diameter of 2
mm. This diameter is smaller than Dt and consequently, the penetration for S → ∞ is smaller than
the penetration for S = 0. As a result, c1 has to be equal to k1 for S → ∞. This condition was not
investigated, but it should be done in order to describe the behaviour of the location of the jet upper
shear layer for the full domain of 0 ≤ S ≤ ∞ correctly.

Still some questions remain, such as: How large is the difference between the penetration for S = 0
and for S →∞? What is the behaviour of the penetration depth for S > 10 and for what value of S do
the two jets behave as two jets that do not affect each other? Moreover, is it actually possible to combine
the results of the location of the jet upper shear layer for single jet injection and dual jet injection,
or is this behaviour fundamentally different, such that these conditions should be treated separately?
When having more knowledge about this behaviour for especially S > 10, a more robust proposal for
a scaling can be formulated for the full domain. However, for the domain 0 ≤ S ≤ 10, the scaling by(
k4 exp

(
− 1

2 ((S − k2)/k3)
2
)

+ k1

)
appeared to be very appropriate.

In the next section, the same scaling process is performed for y/Dt = c1 ((x/Dt − c3)c2 + c4) and
subsequently, the results of both scalings are compared.

Scaling of y/Dt = c1 ((x/Dt − c3)c2 + c4)

The same procedure as for the fit without shift is applied to the fit with shift. Again, similarities between
coefficients for different values of S at constant J are sought. After a trial-and-error process, c2, c3 and
c4 are found to be in the same range for all values of S at a constant J . For both J = 2.8 and J = 3.8,
the values for these coefficients are fixed, requiring that the coefficient of determination does not decrease
too much. The same norms as for the fit without shift are used, which means that a maximum drop of
0.05 for the coefficient of determination is allowed and the coefficients of determination have to be in the
range of 0.65 ≤ R2 ≤ 0.85.

The following coefficients are chosen to be constant:

J 2.8 3.8

c2 0.35 0.32
c3 -0.70 -0.68
c4 0.80 0.80

Table 8.6: Fixed coefficients for y/Dt = c1 ((x/Dt − c3)
c2 + c4), based on the results of table 8.2.

When applying the fixed coefficients of table 8.6 to the fit with shift and recalculating the least-squares
fit for both J = 2.8 and J = 3.8, the resulting coefficients dependent on S, together with the coefficients
of determination and the average penetration are listed in table 8.7.

J S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

2.8
c1 1.444 1.853 1.885 1.970 1.951 1.979 1.964 1.981 2.016 1.887 1.777
R2 0.75 0.80 0.75 0.84 0.76 0.73 0.84 0.79 0.78 0.70 0.67
yavg
Dt

4.10 5.26 5.35 5.59 5.53 5.61 5.57 5.62 5.72 5.35 5.04

3.8
c1 1.674 2.037 2.105 2.247 2.297 2.277 2.339 2.359 2.390 2.390 2.093
R2 0.71 0.77 0.76 0.69 0.81 0.75 0.78 0.75 0.72 0.76 0.76
yavg
Dt

4.54 5.52 5.71 6.09 6.23 6.17 6.34 6.40 6.48 6.48 5.68

Table 8.7: Parameters of the fit for y/Dt = c1 ((x/Dt − c3)
c2 + c4), with J = 2.8 and J = 3.8, for

S ∈ [0 : 9.87]. Data for the range −1.0 ≤ x/Dt ≤ 15 is used and the coefficients from table 8.6 are
applied. The average penetration yavg/Dt is calculated using equation 7.11.

Table 8.2 and table 8.7 are compared with each other. The average penetration as calculated shows
for both tables similar behaviour and the values deviate within the range of 0.04 from each other. In
figure 8.28, a graphical representation of the average penetration is shown.
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Figure 8.28: Average penetration yavg/Dt versus dual distance S calculated for y/Dt =
c1 ((x/Dt − c3)

c2 + c4), for J ∈ [2.8, 3.8] and Mc = 1.55. The adjusted coefficients from table 8.6 and
table 8.7 are used.

As expected, the coefficients of determination in table 8.7 are lower or equal compared to the values
in table 8.2. The largest drop is 0.04 (for J = 2.8, S = 9.87 and J = 3.8, S = 6.28), so all R2 values of
the fits are within the allowed range. No clear trends are observed in the degradation of the coefficients
of determination and all values of R2 are within the range 0.67 ≤ R2 ≤ 0.84.

The next step is to find a generalization for y/Dt = c1 ((x/Dt − c3)
c2 + c4), valid for all S. At constant

J , c2, c3 and c4 are fixed and only c1 is a function of S. The same function for c1 as used for the fit
without shift is applied to the fit with shift, resulting in:

y

Dt
=

(
k4 exp

(
−1

2

(
S − k2

k3

)2
)

+ k1

)((
x

Dt
− c3

)c2
+ c4

)
(8.11)

The function for c1(S) containing a Gaussian distribution function with coefficients k1 to k4 are
applied similar to the fit without shift: k2 is the value of S at which the penetration is maximal, k3 is
the standard deviation of the Gaussian distribution and k1 and k4 are amplification factors.

The full data sets for the jet upper shear layer for every S at constant J are used for the fit of equation
8.11, with c2, c3, c4 fixed and k1, k2, k3 and k4 to be determined. A least-squares method is used for the
fit of y/Dt as a function of x/Dt and S. The result for J = 2.8 is:

y
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0.598 exp
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−1

2

(
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)2
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)((
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Dt
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)
(8.12)

This scaled equation has an acceptable coefficient of determination of 0.744, which is in the same
range as values of R2 for the individual fits.

Similarly, for J = 3.8, the following expression is obtained:

y

Dt
=

(
0.781 exp

(
−1

2

(
S − 6.954

2.914

)2
)

+ 1.674

)((
x

Dt
+ 0.68

)0.32

+ 0.80

)
(8.13)

Also this generalized function has an acceptable coefficient of determination, which is equal to 0.733.
Again, this is in the same range of the values of R2 for the individual fits.

As an overview, the expressions of c1(S) for J = 2.8 and J = 3.8 are shown in figure 8.29 and the
coefficients and values of R2 of the generalized functions are shown in table 8.8.

Also for this generalized fit, the quality of the scaling is further investigated in figure 8.31 and figure
8.33. These figures show scalings of the functions from table 8.6 and table 8.7, with the functions divided
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Figure 8.29: Plot of the expressions for c1(S), found for J = 2.8 and J = 3.8, as shown in equation 8.12
and equation 8.13, respectively.

J 2.8 3.8

c2 0.35 0.32
c3 -0.70 -0.68
c4 0.80 0.80
k1 1.444 1.674
k2 6.370 6.954
k3 3.209 2.914
k4 0.598 0.781
R2 0.744 0.733

Table 8.8: Coefficients for y/Dt =
(
k4 exp

(
− 1

2 ((S − k2)/k3)
2
)

+ k1

)
((x/Dt − c3)

c2 + c4), from equation

8.12 and equation 8.13.

by c1(S), such that every fit should collapse on y/(Dtc1(S)) = (x − c3)c2 + c4. Figure 8.31 and figure
8.33 show that the scaling for both J = 2.8 and J = 3.8 turns out to be appropriate.

Furthermore, the data sets for the jet upper shear layer are scaled in a similar manner as the fits. As
a result, a reasonable cloud of points is obtained around the fit for S = 0 in both figure 8.30 and figure
8.32.

In the next section, the results for the fits with and without shift are compared.
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Figure 8.30: Location of the jet upper shear layer
(blue) and the generalized fit (black), both scaled
by c1(S) for J = 2.8, S ∈ [0 : 9.87], Mc = 1.55.
The data stem from 20 Schlieren images per (J, S)
combination.

Figure 8.31: Fits for the location of the jet upper
shear layer from table 8.6 and table 8.8 (red), and
the generalized fit (black), both scaled by c1(S) for
J = 2.8, S ∈ [0 : 9.87], Mc = 1.55.

Figure 8.32: Location of the jet upper shear layer
(blue) and the generalized fit (black), both scaled
by c1(S) for J = 3.8, S ∈ [0 : 9.87], Mc = 1.55.
The data stem from 20 Schlieren images per (J, S)
combination.

Figure 8.33: Fits for the location of the jet upper
shear layer from table 8.6 and table 8.8 (red), and
the generalized fit (black), both scaled by c1(S) for
J = 3.8, S ∈ [0 : 9.87], Mc = 1.55.

Comparison of the scalings

In the preceding sections, the fits for the location of the jet upper shear layer with and without shift
were investigated and scaled. In this study, a relevant question is whether the fit with shift improves the
description of the location of the jet upper shear layer significantly.

First of all, it should be realized that the fit with shift has an extra degree of freedom, that can give
a larger range for the values of the coefficients than would be the case for the fit without shift. Figure
8.20 shows that the appearance of both fits is similar, but having different coefficients. As a result, it is
important to consider that similarities between fits are less straight-forward without a thorough analysis
(compare table 8.2 with table 8.6). With respect to this, in case the two fits have equal quality, the fit
without shift would in general be more convenient.

When having a closer look at the coefficients c2, c3 and c4 of the fit without shift and the fit with
shift, it appears that the coefficients of the fit with shift do not change much with J . Therefore, the
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coefficients c2, c3 and c4 appear to be independent of J for the fit with shift. This does not hold for the
fit without shift, because in that case, c3 has larger changes with J . Therefore, a scaling for J could
possibly be obtained easier for the fit with shift than for the fit without shift.

Next, the results of the scalings are investigated. From table 8.5 and table 8.8, it can be seen that
certain coefficients have about the same values for both generalized fits. At constant J , the values for
k2 and k3 are (almost) equal for both fits. In addition, the coefficient c3 is for all fits in the range
−0.78 ≤ c3 ≤ −0.55. These three coefficients determine the position of x/Dt and S at which character-
istics of the penetration (maximum penetration, spreading of the penetration around maximum value,
origin) are obtained. Therefore, it is as expected that k2, k3 and c3 are in the same range. The other
coefficients (c2, c4, k1 and k4) are different for the two fits, but provide similar behaviour.

In figure 8.20 and figure 8.21, characteristic examples were shown for the two fits. From these figures,
it was concluded that sometimes the two fits collapse, and that sometimes the fit with shift provides a
better description of the location of the jet upper shear layer than the fit without shift. The same conclu-
sion follows from the coefficients of determination in the preceding sections, from which a summarizing
overview is given in table 8.9.

y/Dt = c1 (x/Dt − c3)
c2 y/Dt = c1 ((x/Dt − c3)

c2 + c4)

J = 2.8
Range before generalization 0.705 ≤ R2 ≤ 0.843 0.713 ≤ R2 ≤ 0.850
Range after generalization 0.669 ≤ R2 ≤ 0.815 0.674 ≤ R2 ≤ 0.837
R2
generalized for y/(Dtc1) 0.738 0.744

J = 3.8
Range before generalization 0.693 ≤ R2 ≤ 0.813 0.701 ≤ R2 ≤ 0.807
Range after generalization 0.693 ≤ R2 ≤ 0.800 0.692 ≤ R2 ≤ 0.807
R2
generalized for y/(Dtc1) 0.715 0.733

Table 8.9: Coefficients of determination for the fit without shift and the fit with shift, for both J = 2.8
and J = 3.8. The range of R2 for the individual fits and the value of R2 for the generalized fits are given.

The summary in table 8.9 shows that in general, the fit with shift has a better coefficient of deter-
mination for the ranges of all fits both before and after generalization. Furthermore, it appears that the
individual fits show on average a smaller drop in the R2 values for the fit with shift compared to the drop
of the values of R2 for the fit with shift (see tables 8.1 and 8.4, and tables 8.2 and 8.7). This shows that
the fit with shift has a more robust behaviour.

For further investigation, for every fit and every value of J , the values of y/Dt are divided by the
corresponding function. The result should be 1 for points on the curve, and a cloud around 1 is formed,
corresponding to the data points that are not on the curve. Figure 8.34 shows a box plot of this scaling
and gives an indication of the spreading of the cloud. Table 8.10 shows the corresponding characteristic
values. The data sets for both J = 2.8 and J = 3.8 contain around 60 · 103 data points.

J = 2.8 J = 3.8
Fit without shift Fit with shift Fit without shift Fit with shift

Minimum 0.465 0.453 0.371 0.388
Lower adjacent 0.656 0.665 0.682 0.691
25th percentile 0.907 0.912 0.917 0.922
Median 0.998 1.001 1.003 1.006
75th percentile 1.074 1.077 1.075 1.076
Upper adjacent 1.323 1.320 1.308 1.306
Maximum 1.691 1.438 1.357 1.340

Table 8.10: Numerical values of the box plot of figure 8.34.

A median close to 1 and the smallest box and whiskers are characteristics of the best scaling. All
fits have a median close to 1, with a margin of 0.06 maximally. It appears that the 75th percentile and
the upper adjacent are approximately equal for the fits for a specific J , but that the 25th percentile and
lower adjacent improve for the fit with shift compared to the fit without shift. In addition, at the upper
side in the case of J = 2.8, there are less outliers for the fit with shift than for the fit without shift.
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Figure 8.34: Boxplots of the scaling of the data by the generalized equation. The center of the jet upper
shear layer is scaled to 1. Dual distance S ∈ [0 : 9.87], J ∈ [2.8, 3.8] and Mc = 1.55 are used. A box with
the 25th and 75th percentile is used and whiskers covering ±2.7σ. The median is the red line inside the
box and the outliers are marked as a red +-sign.

Summarizing, the fits with shift achieve a better collapse of the cloud of points.

Taking everything into consideration, it is concluded that the fit with shift (equation 7.7) has a
significantly and consistently better performance than the fit without shift (equation 7.6). The advantages
outweigh the disadvantages. Therefore, it is recommended to use the fit with shift. However, with the
side note that parameter control is important in order to keep similarities between coefficients for fits
with different conditions in sight, which is important for similarity analyses.

The next section elaborates on a scaling in terms of J of the location of the jet upper shear layer.

Generalization of y/Dt = c1 ((x/Dt − c3)
c2 + c4) for x/Dt, J and S

The fit with shift appeared to have the best performance for describing the location of the jet upper shear
layer. Another advantage of this fit is that the coefficients c2, c3 and c4 for J = 2.8 and for J = 3.8,
although determined independently, are almost equal. Therefore, it is worthwhile investigating whether
a function could be found for y/Dt as function of x/Dt in which J is included as variable.

First, generic values for c2, c3 and c4 are determined. Starting from the coefficients in table 8.8, a
trial-and-error process was performed. Rounded numbers were preferred if appropriate. In the end, the
following equation was determined:

y

Dt
= c1(J, S)

((
x

Dt
+ 0.68

)0.333

+ 0.80

)
(8.14)

which means that c2 = 0.333, c3 = −0.68 and c4 = 0.80. c1 is a function of S – as shown in the
preceding sections – and appears to be a function of J as well. The equation for c1(J, S), based on the
preceding sections, is:

c1(J, S) = k1(J) + k4(J) exp

(
−1

2

(
S − k2(J)

k3(J)

)2
)

(8.15)

In the equation above, k1 to k4 may be a function of J . In the next step, the least-squares method
is applied for finding the coefficients k1 to k4 in c1(J, S) for J = 2.8 and for J = 3.8 separately. The
resulting equations for c1(J = 2.8, S) and c1(J = 3.8, S) are:

c1(J = 2.8, S) = 1.392 + 0.693 exp

(
−1

2

(
S − 6.365

3.569

)2
)

(8.16)
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c1(J = 3.8, S) = 1.598 + 0.801 exp

(
−1

2

(
S − 6.951

3.044

)2
)

(8.17)

The equation for y/(Dtc1(J = 2.8, S)) has a coefficient of determination of R2 = 0.743 and the equa-
tion for y/(Dtc1(J = 3.8, S)) has a coefficient of determination of R2 = 0.733. Both data sets consist
of results for S ∈ [0 : 9.87], Mc = 1.55 and the domain −0.5 ≤ x/Dt ≤ 15. These values for R2 are
a little lower or equal compared to previously determined values for R2 for equation 8.12 and equation
8.13, respectively. However, that is logical, because a compromise had to be found for the values of c2
and c3, which would hold for both values of J . Still, the values of R2 are quite acceptable.

Only for two values of J , results were obtained for a full range of eleven values of S, which renders
much uncertainty to an expression for the jet upper shear layer as a function of J . However, still an
attempt is made to formulate such an expression.

From literature and preceding results, it is likely that the coefficients k1 to k4 that depend on J are
in the form of power-functions. Therefore, it is attempted to come up with an expression for c1, in which
the coefficients are replaced by a power-function of J : ki = b2i−1J

b2i . Substitution results in:

c1(J, S) = b1J
b2 + b7J

b8 exp

(
−1

2

(
S − b3Jb4
b5Jb6

)2
)

(8.18)

Based on the coefficients of equation 8.16 and equation 8.17, the coefficients of equation 8.18 can be
calculated directly. The resulting function c1(J, S) then evolves as:

c1(J, S) = 0.874J0.452 + 0.425J0.474 exp

(
−1

2

(
S − 4.732J0.288

6.103J−0.521

)2
)

(8.19)

The terms expressing b1J
b2 and b7J

b8 appear to have a ratio that is approximately fixed, equal to 2.
Therefore, equation 8.19 is rewritten and simplified to:

c1(J, S) = 0.432J0.461

(
2 + exp

(
−1

2

(
S − 4.732J0.288

6.103J−0.521

)2
))

(8.20)

This is the final expression for c1(J, S). Substitution of c1(J, S) in the expression for y/Dt results in
a description of the location of the jet upper shear layer as a function of x/Dt, J and S:

y

Dt

(
x

Dt
; J, S

)
= 0.432J0.461

(
2 + exp

(
−1

2

(
S − 4.732J0.288

6.103J−0.521

)2
))((

x

Dt
+ 0.68

)0.333

+ 0.80

)
(8.21)

In the following, the quality of equation 8.21 is investigated and compared to the previously determined
functions for y/Dt for J = 2.8 (equation 8.16) and J = 3.8 (equation 8.17).

Figure 8.35 shows the data for J ∈ [2.8, 3.8], S ∈ [0 : 9.87] and Mc = 1.55, as y/(Dtc1(J, S)) plotted
versus x/Dt. In the same figure, equation 8.21 divided by c1(J, S) (equation 8.20) is plotted. Similar
to the results shown in figure 8.30 and figure 8.32, a cloud of points is obtained around the fit. The
coefficient of determination for this full data set is R2 = 0.739, which is approximately the mean of the
coefficients of determination for the individual fits of y/(Dtc1(J = 2.8, S)) and y/(Dtc1(J = 3.8, S))
(equation 8.16 and equation 8.17, respectively). Therefore, this generalized equation y/Dt(x/Dt, J, S) is
equally acceptable as the individual fits, for J ∈ [2.8, 3.8].

If equation 8.21 would also describe the location of the jet upper shear layer for other values of J
than J ∈ [2.8, 3.8], then it could be validated, whether the scaling in terms of J is appropriate for a wider
range of J . Fortunately, in addition to the experiments for J = 2.8 and J = 3.8, two experiments for
J = 4.8 have been performed (S = 0 and S = 5.38, respectively), which could validate further whether
the scaling is appropriate.

Figure 8.36 shows the location of the jet upper shear layer for J = 4.8 and S = 0 and figure 8.37
shows the location of the jet upper shear layer for J = 4.8 and S = 5.38. In the two figures, equation 8.21
is plotted with the corresponding combination of values for J and S. For the two conditions, it appears
that the function describes the location of the jet upper shear layer qualitatively well.
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Figure 8.35: Location of the jet upper shear layer (blue) and the generalized fit (black), both scaled by
c1(J, S) (equation 8.20) for J = [2.8, 3.8], S ∈ [0 : 9.87], Mc = 1.55. The data stem from 20 Schlieren
images per (J, S) combination.

Figure 8.36: Location of the jet upper shear layer
(blue) and the generalized fit (black), for J = 4.8,
S = 0, and Mc = 1.55. Data is from 20 Schlieren
images.

Figure 8.37: Location of the jet upper shear layer
(blue) and the generalized fit (black), for J = 4.8,
S = 5.38, and Mc = 1.55. Data is from 20
Schlieren images.

In addition, the quantitative quality of the fit is investigated. For the two values of S, the value for
c1 as used in the equation for y/Dt is determined, by calculating c1 using equation 8.20 and by taking
the least-squares fit of y/Dt = c1((x/Dt + 0.68)0.333 + 0.80). These results are shown in table 8.11.

Conditions
Based on least-squares Based on equation 8.21
c1 R2 c1(J, S) R2

J = 4.8
S = 0 1.804 0.680 1.800 0.680
S = 3.8 2.424 0.842 2.447 0.840

Table 8.11: Results for the analysis of the quality of equation 8.21 applied to the jet shear layer for the
conditions: J = 4.8, S ∈ [0, 5.38] and Mc = 1.55.
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It appears that the value of c1 in equation 8.21 closely approaches the value of c1 based on the least-
squares fit. In addition, the coefficients of determination are also almost equal for the two methods. The
value of R2 for J = 4.8 with S = 0 is rather low (R2 = 0.68). However, this is in line with the observed
results for single jet injection for other values of J . The value of R2 for J = 4.8 with S = 5.38 on the
other hand, is much higher and very acceptable (R2 = 0.84).

For further investigation, figure 8.28 combined with the results for J = 4.8 is displayed in figure 8.38.
This figure includes the average penetration for J = 2.8, J = 3.8 and J = 4.8 calculated employing
equation 8.21 and equation 7.11. This figure shows that the fit describes the average penetration of the
jet upper shear layer adequately.

Figure 8.38: Average penetration from figure 8.28, together with the results for J = 4.8 and the average
penetration as calculated from equation 8.21 and equation 7.11. The optimal value of S at constant J
for maximal penetration is Soptimal(J) = 4.732J0.288.

Concluding, equation 8.21 describes the location of the jet upper shear layer for J = 4.8 and
S ∈ [0, 5.38] very well. This is an indication that with equation 8.21, a relation is obtained that can
be applied to a wide range of parameters.

One characteristic of the penetration for dual jet injection is that an optimal value of S can be
obtained. In line with Lee’s [9] results, the optimal value for S in equation 8.21 increases with J . The
optimal value for S for maximal penetration at a certain value of J using the generalized function for
y/Dt is determined by b3J

b4:

Soptimal(J) = 4.732J0.288 (8.22)

Up to now, only J ∈ [2.8, 3.8, 4.8] was used for the application of equation 8.21. As an example, it
is investigated whether trends as found in literature can validate the behaviour of equation 8.21. The
study of De Maag [35] uses conditions that are the closest to the present study (Mc = 1.6) for a similar
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range for S, but then for J = [1, 1.4, 2]. Therefore, the generalized function cannot be applied entirely,
but the trends can be investigated. In the experiments of De Maag [35], the value of S for maximal
penetration is not very clear for J = 1 and J = 2 (when neglecting the results for S = 4.5, see section
5.2), but for J = 1.4, it is clear that the maximum in penetration is obtained around S = 5.4 (see figure
5.8). Equation 8.22 shows the maximum penetration to be at S(J = 1.4) = 5.21, which is in line with
the result from De Maag [35]. Further remarks are provided in section 8.2.2.4.

In the preceding sections, the cases for S approaching 0 and infinity with respect to the location
of the jet upper shear layer were discussed. These findings also apply to the generalized function
y/Dt(x/Dt; J, S) (equation 8.21). In addition, this function also shows the similarity behaviour as a
function of J that was observed in literature and in the preceding sections:

• Penetration increases with increasing J .

• The value of S for which the maximum penetration is obtained increases with increasing J .

• The relative spreading of the larger penetration as obtained for dual jet injection decreases with
increasing J .

The generalized function y/Dt(x/Dt; J, S) is appropriate for all experiments performed in the present
study. However, further validation of the fit in equation 8.21 and possibly tuning of specifically the
coefficients b1 to b6 might be advantageous, in order to investigate the validity of the function for other
conditions of J and S. For that purpose, in the domain of J , investigation of the location of the jet upper
shear layer for especially J < 2.8 and J > 3.8, and in the domain of S, investigation of the location of
the jet upper shear layer for S < 3.5 and S > 10 would give more insight into the validity of equation
8.21. Investigation of the effect of D1 and D2 – the diameters of the jet orifices – can be performed and
can validate the present study further.

8.2.2.3 Bandwidth of the Jet Upper Shear Layer

In the preceding sections, the penetration depth of the jet upper shear layer was researched thoroughly.
In the following, the bandwidth of the jet upper shear layer is explored.

The bandwidth of the jet upper shear layer is important, because it is a measure of the thickness of
this shear layer and therewith of its mixing behaviour, as described in sections 4.5 and 4.6. The larger
the bandwidth of the shear layer, the more volatile the shear layer is and the faster the mixing occurs.
Therefore, a large bandwidth is desired for better mixing of the flow as an addition to large penetration
depth.

Two characteristic cases are investigated in figure 8.39 and figure 8.40. In the top subfigure, the
location of the jet upper shear layer is shown geometrically and in the bottom subfigure, the fit with
shift is subtracted from the data of the location of the jet upper shear layer, such that the cloud of data
points is centered around the x/Dt-axis. In the subfigures, the full data set of the jet upper shear layer
for one condition is displayed as blue asterisks, and the upper and lower boundary for each value of x/Dt

is marked by red and yellow asterisks, respectively. The dotted line is the fit with shift for the location of
the jet upper shear layer. The upper and lower dashed lines are the medians of the data for δ/Dt > 0 and
for δ/Dt < 0, respectively, which show the core of the jet upper shear layer. Furthermore, the medians of
the data of the upper and lower boundary (red and yellow asterisks, respectively) are determined to be
the upper- or lower-side bandwidth (δBW,up/Dt and δBW,down/Dt, respectively). The difference between
δBW,up/Dt and δBW,down/Dt is the bandwidth δBW /Dt of the jet upper shear layer and this quantity is
the most important to specify.

Figure 8.39 shows a jet upper shear layer with a certain bandwidth that is approximately constant
over the full length. The one-sided medians are around |δ/Dt| = 0.4 and the one-sided boundary medians
are around |δ/Dt| = 0.75. It is observed that the bandwidth does not increase significantly with x/Dt.
On the other hand, figure 8.40 shows another phenomenon. Observing x/Dt ≥ 6, the bandwidth increases
with x/Dt and a constant value for the bandwidth is not appropriate as a characterization. A (linear)
dependency on x/Dt would give a better representation and this is in line with literature about a shear
layer for parallel flows (see section 4.5). However, this is out of scope of this exploration, and therefore,
only the simple determination of the bandwidth is applied.
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Figure 8.39: Data of the jet upper shear layer for J = 2.8, S = 5.83 and Mc = 1.55. Top figure: The
fit for the location of the jet upper shear layer for the corresponding condition is dotted. The one-sided
medians are determined by using only the data of the upper or lower regions and calculating the median
(dashed). The median of the points on the boundary gives a good indication of the (approximately
constant) one-sided bandwidth (solid). Bottom figure: Data and median values of the jet upper shear
layer are subtracted by the corresponding fit with shift.

Figure 8.40: Data of the jet upper shear layer for J = 2.8, S = 5.38 and Mc = 1.55. Top figure: The
fit for the location of the jet upper shear layer for the corresponding condition is dotted. The one-sided
medians are determined by using only the data of the upper or lower regions and calculating the median
(dashed). The median of the points on the boundary does not give a good indication of the one-sided
bandwidth (solid). Bottom figure: Data and median values of the jet upper shear layer are subtracted
by the corresponding fit with shift.
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Figure 8.41: The one-sided medians and one-sided boundary medians δ/Dt are shown as function of S
for J = 2.8 and J = 3.8 and Mc = 1.55. The results are obtained from data sets such as in figure 8.39.

Figure 8.42: The full bandwidth and jet upper shear layer core δ/Dt are shown as function of S for
J = 2.8 and J = 3.8 and Mc = 1.55. The difference between the upper and lower values in the two
subfigures from figure 8.41 is taken for finding the results in this plot.
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Figure 8.41 shows the results for the upper- and lower side of the bandwidth (δBW,up/Dt and
δBW,down/Dt) and the core of the jet upper shear layer and figure 8.42 shows the results for the bandwidth
δBW /Dt and core of the jet upper shear layer, which are combinations of the two subfigures of figure 8.41.
These results are for all conditions of J = 2.8 and J = 3.8, Mc = 1.55 and S ∈ [0 : 9.87]. As described
for figure 8.39 and figure 8.40, these results are not all appropriate for an accurate quantification of the
bandwidth, but it shows the effect of dual jet injection compared to single jet injection. The bandwidth
is over the whole range of S larger for dual jet injection than for single jet injection. This is an important
observation, because this means that the jet upper shear layer is more volatile, resulting in a better
mixing behaviour for dual jet injection than for single jet injection.

It is possible that the results have a small bias for the lower boundary median, because the correction
steps for the jet upper shear layer correct lower outlying data (see section 7.4.2.2). Therefore, the lower
boundary median may be a bit closer to 0 than the upper boundary median. However, the difference is
rather small and this does not affect the difference between the results for single jet injection and dual
jet injection, as for both the same procedure is applied.

Further research into the variability of the bandwidth δBW /Dt would contribute to more insight into
the mixing behaviour of the jet, in combination with the penetration.

8.2.2.4 Concluding Remarks on Behaviour Jet Upper Shear Layer

Concluding remarks on the penetration of the jet upper shear layer are given below.

• Behaviour of the jet upper shear layer as observed in the present study is comparable with the
results of De Maag [3][35], Lee [9] and Landsberg [55]. The jet upper shear layer shows a dip
around x/Dt = 5. Further downstream, the jet penetrates further into the crossflow. Furthermore,
time-dependent behaviour of the jet upper shear layer, that appears to be periodic, is observed,
which indicates the possibility of the presence of the Kelvin-Helmholtz instability in this shear layer.

• The penetration depth can be described by a fit without shift (y/Dt = c1(x/Dt − c3)c2) or a fit
with shift (y/Dt = c1((x/Dt − c3)c2 + c4)). The fit with shift provides a better description of the
penetration and it is recommended to use this expression. However, it should be noted that the
coefficients c1 through c4 can exhibit a larger variation, while also similarity is more difficult to
identify.

• Similarity analysis shows that the penetration at constant J can be scaled by the function c1(S) =

k4 exp

(
− 1

2

(
S−k2
k3

)2
)

+ k1, because c1 is the only coefficient that is clearly not only a function of

J , but also a function of S. Coefficients of determination (R2) for this scaling are in the same order
of magnitude as the R2 of the fits for individual combinations of J and S (around R2 = 0.74).

• Further similarity analysis shows that the location of the jet upper shear layer can be described by
the following function for y/Dt(x/Dt; J, S), valid for J ∈ [2.8, 3.8], S ∈ [0 : 9.87], Mc = 1.55:
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(8.23)

This equation is also validated for the conditions J = 4.8, S ∈ [0, 5.38], Mc = 1.55, and has a
coefficient of determination (R2 = 0.739), which is assessed to be acceptable.

• At a given S, average penetration increases with increasing J . Furthermore, penetration for tandem
dual jet injection is larger than for single jet injection. The dimensionless dual distance S has an
optimal value at which the penetration averaged over 0.5 ≤ x/Dt ≤ 15 is maximal. This optimal
value of S (which is equal to 4.732J0.288) increases with increasing J .

• The relation for the time-averaged location of the jet upper shear layer as described by equation
8.23, is also applied to J ∈ [1.0, 1.4, 2.0] for comparison with the results of De Maag [35]. Therefore,
figure 8.43 shows De Maag’s results of the average penetration of the jet upper shear layer together
with the average penetration as calculated from substituting equation 8.23 in equation 7.11.
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Figure 8.43: Average penetration (0.5 ≤ x/Dt ≤ 15) from results of De Maag [35], together with
average penetration as calculated from equation 8.23. The optimal value of S at constant J for maximal
penetration is based on Soptimal = 4.732J0.288. The result for S = 4.5 is discarded in De Maag’s analysis.

De Maag discarded the results in S = 4.5, because these deviate substantially from the trend
indicated by the results for the other values of S. This is possibly due to a different plenum in the
injection block, compared to the plena in the other injection blocks (see section 5.2). The generalized
fit, equation 8.23, describes some trends of the results of De Maag, such as the maximum average
penetration for J = 1.4 around S = 5.4. However, for some results such as the ones for larger values
of S, the generalized fit differs substantially in amplitude. This can have a number of reasons. First,
the extrapolation of the generalized fit from values of J ∈ [2.8, 3.8] to much smaller values of J can
cause the deviation. Also, the Mach number of the study of De Maag was somewhat higher than the
Mach number in the present study (Mc = 1.6 and Mc = 1.55, respectively). In addition, the method
of data acquisition of De Maag was different. In his study, the location of the jet upper shear layer
was determined manually from four Schlieren images, while in the present study, a semi-automatic
algorithm with larger data acquisition is applied to 20 Schlieren images. Furthermore, the focus of
the present study is on a range of 3.59 < S < 6.28. The location of the jet upper shear layer for this
range of S has a more dominant contribution to the generalized fit, whereas De Maag used a wider
range of values of S, up to S = 11, with less focus on possible maxima at lower values of S. These
differences might cause the differences between the generalized fit and the results of De Maag [35].

• The bandwidth of the jet upper shear layer is larger for dual jet injection than for single jet injection,
which indicates an enhancement of the mixing behaviour for dual jet injection compared to single
jet injection.
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8.2.3 Results for the Jet Center Line

In this exploration, the results for the jet center line are presented. Figure 8.17 shows the jet plume,
together with the different characteristics of the plume, amongst others the jet center line. The location
of the jet center line is determined from the least-squares fit of the data of the plume for 0 ≤ x/Dt ≤ 15
in the form:

y

Dt
= d1

(
x

Dt

)d2
(8.24)

For the conditions used in the analysis of the jet upper shear layer, the jet center line has been
determined. Table 8.12 shows the coefficients of the fit for the location of the jet center line for J = 2.8
and J = 3.8 and S ∈ [0 : 9.87].

S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

J = 2.8
d1 1.748 2.081 2.492 2.178 2.074 2.089 1.981 2.064 1.966 1.895 2.078
d2 0.299 0.345 0.263 0.329 0.363 0.348 0.386 0.354 0.382 0.370 0.322
yavg
Dt

3.09 4.03 4.10 4.08 4.17 4.07 4.17 4.07 4.10 3.86 3.84

J = 3.8
d1 1.908 2.215 2.395 2.487 2.434 2.344 2.263 2.410 2.527 2.195 1.945
d2 0.309 0.353 0.309 0.295 0.327 0.339 0.368 0.344 0.327 0.381 0.387
yavg
Dt

3.44 4.36 4.32 4.36 4.55 4.49 4.59 4.66 4.73 4.57 4.10

Table 8.12: Parameters of the fit for y/Dt = d1 (x/Dt)
d2 , with J = 2.8 and J = 3.8, S ∈ [0 : 9.87] and

Mc = 1.55. Data for the range 0 ≤ x/Dt ≤ 15 is used. The average penetration yavg/Dt is calculated
employing equation 7.11.

Figure 8.44: Average penetration of the jet center line, calculated from equation 7.11, for J ∈ [2.8, 3.8],
S ∈ [0 : 9.87] and Mc = 1.55.

For the jet center line, similar behaviour is observed as for the jet upper shear layer. In figure 8.44, it
is observed that penetration of the jet center line increases with increasing J . Investigation of figure 8.17
learns that the jet center line has a smaller offset than the jet upper shear layer, and a comparable slope.
Although the behaviour is similar, the differences between the jet center line for different values of S are
rather small. Figure 8.45 shows the jet center lines for J = 2.8 at five values of S. It appears that the jet
center line is the smallest for single jet injection – as expected. The jet center line for dual jet injection
is for all S significantly at a higher location than for single jet injection. At the same moment, the jet
center line for dual jet injection does not differ much for a large range of values of the dual distance S.
This is observed in figure 8.45 as well as in figure 8.44, which shows the average penetration for the jet
center line. In figure 8.44, especially for J = 3.8, a progression comparable with that for the jet upper
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Figure 8.45: Results for the fits for the jet center line for J = 2.8, Mc = 1.55 and some values of S
showing the behaviour of the jet center line as function of S.

shear layer is visible, but then with smaller differences. As a result of the smaller differences, inaccuracies
in the average penetration that can be about ±0.05 may dominate. Therefore, the progression with S is
not very clear for the jet center line and especially for J = 2.8.

Figure 8.44 shows that the jet center line penetration does not differ very much as function of S.
Therefore, the difference in location between the jet upper shear layer and the jet center line – the upper
part of the height of the plume – varies with S in the same manner as the jet upper shear layer. This
suggests that the spreading of the plume scales especially with the jet upper shear layer, because the
penetration of the jet upper shear layer has clear differences for different values of S.
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8.2.4 Results for the Jet Lower Shear Layer

The phenomenon that is in the present study called the jet lower shear layer, is in fact not a shear
layer similar to the jet upper shear layer. It is a combination of the two shear layers at the lower side of
the mushroom-shaped counter rotating vortex pair (see figure 5.1) of the jet plume. More precisely, the
jet lower shear layer as determined and used is the lower side of the jet plume, observed in the Schlieren
images.

In this section, it is attempted to characterize the jet lower shear layer. Data acquisition is performed
as described in section 7.4.2.2 and an example of the result of this acquisition is shown in figure 8.17.
The data feature more outliers compared to the data of the jet upper shear layer, which is caused by
more complex behaviour of the interacting vortex pair. Therefore, a fit of the jet lower shear layer is
presumably not a law of nature, but an adequate approximation.

Figure 8.17 shows that the jet lower shear layer has its origin around x/Dt = 1. In many conditions,
a certain distance downstream, a maximum is observed for the jet lower shear layer. Downstream of the
maximum, y/Dt decreases slightly. In section 7.4.2.3, a rational function was proposed to use for a fit:

y

Dt
=

e1

((
x
Dt

)
− e2

)
(
x
Dt

)2

+ e3

(
x
Dt

)
+ e4

(8.25)

This fit contains four coefficients, i.e. four degrees of freedom. Due to the quotient in the function,
the coefficients may be very large, because they compensate each other. The exorbitant values for
the coefficients are undesired, because a combination of simpler coefficients might give a similar result.
However, when the coefficients are determined to be large, then this is the result of the least-squares
fit, which is assumed to be the best fit. A more thorough analysis would provide more insight whether
there are similarities between fits, such as is performed for the jet upper shear layer. Table 8.13 shows
an overview of the coefficients for the fits of the jet lower shear layer.

J S 0 3.59 4.04 4.48 4.93 5.38 5.83 6.28 7.17 8.52 9.87

2.8

e1 1.46 · 106 121 200 153 194 136 90.4 133 128 91.4 8.68 · 103

e2 0.62 0.93 1.08 0.86 0.88 0.91 0.61 1.16 0.72 0.63 0.73
e3 4.39 · 105 12.3 37.9 24.6 30.9 21.8 3.29 19.7 13.6 7.72 2.18 · 103

e4 9.76 · 105 89.0 54.3 79.4 102 75.2 95.9 67.6 104 90.3 3.19 · 103

R2 0.78 0.85 0.82 0.77 0.82 0.76 0.82 0.81 0.79 0.76 0.75

3.8

e1 1.49 · 106 1130 1.35 · 106 293 3.33 · 106 537 165 216 183 543 83.8
e2 0.50 1.10 1.03 1.12 0.93 0.91 0.79 0.82 0.71 0.88 0.78
e3 4.02 · 105 218 3.31 · 105 66.6 7.86 · 105 107 21.1 35.6 26.1 100 3.97
e4 9.49 · 105 324 2.03 · 105 42.9 7.84 · 105 180 98.7 88.8 89.8 271 83.6
R2 0.80 0.84 0.78 0.77 0.73 0.75 0.81 0.72 0.76 0.84 0.79

Table 8.13: Parameters of the fit for y/Dt = e1 · ((x/Dt)− e2)/((x/Dt)
2

+ e3 · (x/Dt) + e4), with J = 2.8
and J = 3.8 and S ∈ [0 : 9.87] and Mc = 1.55. Data for the range 0.5 ≤ x/Dt ≤ 15 is used.

Table 8.13 shows that in most cases, the origin of the jet lower shear layer (x/Dt = c2) is found to
be in the range 0.5 ≤ x/Dt ≤ 1.2. Most coefficients are smaller than 1000, but some combinations of
exorbitant values appeared to be optimal. The values of e1, e3 and e4 compensate amplification, such
that these coefficients are mostly in the some order of magnitude. However, e1 appears to be the largest
coefficient in all cases and in 16 of the 22 cases, e1 is smaller than 1000, which is more acceptable.

The coefficients of determination R2 appear to be acceptable. All values of R2 are within the range
of 0.72 ≤ R2 ≤ 0.85, which indicates that the fits of the jet lower shear layer are good approximations of
the data. Therefore, the quantitative description of the location of the jet lower shear layer is acceptable.

In this exploration, it is especially the purpose to investigate the qualitative behaviour of the jet lower
shear layer as described by equation 8.25. Figure 8.46 shows the fits for J = 2.8 for a number of values of
S, for describing the location of the jet lower shear layer. The jet lower shear layer for single jet injection
(S = 0) appears to have the slowest progression. The progression of the jet lower shear layer is stronger
for dual jet injection.
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Figure 8.46: Results of the fits for the jet lower shear layer for J = 2.8, Mc = 1.55 and a number of values
of S that show the location of the jet center line as function of S.

Another observation is even more important. It appears that the jet lower shear layer, for most values
of S > 0, has a maximum around x/Dt = 10. From section 8.2.2 and section 8.2.3, it is known that
the jet upper shear layer and jet center line always increase with x/Dt. As a consequence, the jet plume
is clearly spreading vertically for dual jet injection, because the location of the jet lower shear layer
decreases for x/Dt > 10. For single jet injection, a maximum is not observed, implying that the vertical
spreading of the jet in downwards direction is smaller than for dual jet injection – even more when taking
the lower penetration of the jet upper shear layer for single jet injection into account. This behaviour for
the spreading is also observed in for example figure 8.13, figure 8.16 and figure 8.17. Combining these
figures results in an example for the quantification of the spreading of the plume δplume/Dt in figure
8.47. In this figure, the vertical spreading of the plume can be investigated for approximately x/Dt > 5,
because for x/Dt < 5, the jet is settling and turning to downstream direction and as a result, a simple
difference in y/Dt direction would distort the data for the spreading. Therefore, the data for the height
of the jet plume should be regarded for x/Dt > 5. It is observed that for x/Dt > 6.7, the jet plume
height δplume/Dt increases continuously with x/Dt. This shows the good mixing behaviour of the dual jet
injection for J = 2.8, S = 5.83 and Mc = 1.55. Especially for single jet injection, this vertical spreading
of the plume is smaller. Therefore, the mixing for dual jet injection is better than for single jet injection.
Further research might investigate approximate relations for the height of the jet plume as a function of
x/Dt, J and S.

Furthermore, it is observed, that the higher the value for S, the lower the location of the jet lower
shear layer becomes, while maintaining a similar behaviour for dual jet injection. As a result, the lower
side of the jet plume contributes to a larger vertical spreading, provided the penetration of the jet upper
shear layer does not compensate this contribution. However, the differences between the jet lower shear
layers for dual jet injection are rather small. The jet upper shear layer has a much larger contribution
to the vertical spreading i.e. the mixing of the jet with the crossflow. Therefore, for dual jet injection,
the jet upper shear layer will dominate the vertical spreading of the plume and therewith the mixing
behaviour.



8.2. RESULTS BEHAVIOUR JET 135

Figure 8.47: Vertical spreading of the jet plume δplume/Dt, determined by subtracting the fit of the
location of the jet lower shear layer from the data of the location of the jet upper shear layer and jet
lower shear layer. At x/Dt = 6.7, the minimum of the plume is observed, after which the plume spreads
out again. Up to x/Dt = 5, the jet is in its starting phase and for x/Dt > 5, the plume spreading is
represented well. Conditions are: J = 2.8, S = 5.83 and Mc = 1.55, corresponding with figure 8.13 and
figure 8.17.

8.2.5 Concluding Remarks on Behaviour Jet

In addition to the remarks presented in section 8.2.2.4, the following concluding remarks are given below.

• There is no clear correlation between the merger point of the bow shocks in front of the two jets and
the level of penetration of the main jet. For the range of values of S that the bow shocks merge,
penetration increases, but this continues for values of S for which the bow shocks remain spatially
separated, such that a correlation does not appear to exist.

• The plume of the jet has a larger vertical spreading i.e. better mixing behaviour for dual jet injection
than for single jet injection. In addition, the vertical spreading is especially characterized by the
jet upper shear layer for dual jet injection, because the jet center line and the jet lower shear layer
do not show much differences for different values of S.
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Chapter 9

Conclusions

This chapter provides the conclusions of the present study into the behaviour of the jet shear layer in
tandem jet injection based on Schlieren images. Per sub-question, the main conclusions are presented.

Behaviour of the bow shocks in front of the two jets

• The bow shocks that appear in front of the two jets show an oscillatory behaviour. Especially the
downstream bow shock shows relatively large fluctuations, induced by the large-scale structures that
appear in the downstream jet. The point at which the two bow shocks merge varies accordingly.

• At certain conditions, the bow shocks in front of the two jets merge. The time-averaged position
of this merger point is described by:

ξ(J, S) = 0.114J−1.864S4.229 (9.1)

η(J, S) = 1.924J−0.572S1.827 (9.2)

with Dt =
√
D2

1 +D2
2, ξ = x/Dt and η = y/Dt. This relation is valid for at least 2.8 ≤ J ≤ 4.8,

3.59 ≤ S ≤ 5.38 and Mc = 1.55. Due to the limited height of the wind tunnel, the analysis of
whether or not the two bow shocks will merge or remain spatially separated is limited to values of
η < 19.3. It has been found that the position of the merger point does not appear to have an effect
on the penetration of the jet shear layer.

Behaviour of the jet upper shear layer

• The jet upper shear layer penetrates into the crossflow, however, it features a dip around x/Dt = 5;
further downstream, the jet penetrates further into the supersonic crossflow. A time-dependent
behaviour of the jet upper shear layer is observed that appears to be periodic, which is an indication
of the possible presence of the Kelvin-Helmholtz type of instability in the shear layer.

• The penetration of the jet upper shear layer depends on the jet-to-crossflow momentum flux ratio
J and on the dimensionless dual distance S. At constant S, penetration increases with increasing
J . Penetration is larger for dual jet injection than for single jet injection. At constant J , S has an
optimal value at which penetration is maximal. This optimal value of S increases with increasing
J .

• For a specific condition, the time-averaged location of the jet upper shear layer can be described
by a fit without shift (y/Dt = c1(x/Dt − c3)c2) or a fit with shift (y/Dt = c1((x/Dt − c3)c2 + c4)).
From the comparison between the quality of these fits, it appeared that the fit with shift provides
the best performance and is the preferred one.

• In the expression for the fit, the coefficient c1 is the only coefficient that is clearly a function of
both S and J . Similarity analysis shows that the penetration depth at constant J can be scaled by

the fit c1(S) = k1 + k4 exp

(
− 1

2

(
S−k2
k3

)2
)

.
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• Based on data of the location of the jet upper shear layer for J ∈ [2.8, 3.8], S ∈ [0 : 9.87], Mc = 1.55,
and validated for J = 4.8 with S ∈ [0, 5.38] and Mc = 1.55, the generalized relation for the time-
averaged location of the jet upper shear layer is found to be:

y

Dt

(
x

Dt
; J, S

)
= 0.432J0.461

(
2 + exp

(
−1

2

(
S − 4.732J0.288

6.103J−0.521

)2
))((

x

Dt
+ 0.68

)0.333

+ 0.80

)
(9.3)

This fit has a coefficient of determination of R2 = 0.739 with respect to the data obtained from 20
Schlieren images per (J, S) combination.

• The bandwidth of the jet upper shear layer is larger for dual jet injection than for single jet injec-
tion, which indicates an enhancement of the mixing of the jet with the supersonic crossflow.

Behaviour of the jet plume

• The jet plume shows an increase in vertical spreading of the plume for approximately x/Dt > 7.
Tandem dual jet injection enlarges the jet plume, which is advantageous for mixing of the jet with
the crossflow. The penetration of the jet plume is dominated by the location of the jet upper shear
layer. The jet center line and jet lower shear layer do not show much variation for different values
of S > 0.

Therewith, the main research question has been addressed to sufficient extent. In conclusion, the research
carried out in the present thesis has shown that the jet shear layer in tandem dual jet injection has an
oscillatory, supposedly periodic behaviour with a certain bandwidth. Its penetration into the supersonic
crossflow and mixing with that crossflow is substantially enhanced for tandem dual jet injection compared
to single jet injection. At constant J , the penetration depth has an optimum for S. Furthermore,
penetration increases with increasing J .



Chapter 10

Recommendations

For further investigation of tandem dual jet injection into a supersonic crossflow, validation of the obtained
results and improvement of the techniques utilised, the following recommendations are presented.

• The generalized fit, equation 9.3, which describes the location of the jet upper shear layer as
function of x/Dt, J and S, is obtained from data at the conditions J ∈ [2.8, 3.8], S ∈ [0, 3.59 : 9.87],
Mc = 1.55. Although validated for two other conditions (J = 4.8 with S = 0 and S = 5.38,
respectively), it should be investigated whether equation 9.3 describes the location of the jet upper
shear layer for a larger range of J as well as S. Moreover, the numerical values of the coefficients
can be tuned using data from further experiments. It is especially recommended to investigate the
location of the jet upper shear layer for S < 3.59 and for S > 10 in order to validate the behaviour
of the scaling by S.

• The experiments performed in the present study for tandem dual jet injection into a supersonic
crossflow were performed at a crossflow Mach number of 1.55. Most other studies are also using a
fixed Mach number for their numerical or experimental investigations. Therefore, the quantitative
effect of Mc on the penetration of the jet has not been investigated for a specific tandem dual jet
configuration, whereas in section 4.4, it was found that the penetration is also a function of Mc.
Investigation of the quantitative effect of the Mach number of the crossflow would provide a better
insight into the penetration of the jet and could possibly give the opportunity to include Mc into
the similarity relation (equation 9.3) for the location of the jet upper shear layer in tandem dual
jet injection into a supersonic crossflow.

• In the jet upper shear layer, time-dependent behaviour that appeared to be periodic has been
observed. With the knowledge of section 4.5.2, this can be an indication of the presence of the
Kelvin-Helmholtz type of instability in the jet upper shear layer. Verification of this presence
would give the opportunity to integrate the mathematical and physical knowledge of the Kelvin-
Helmholtz instability into the description of the vertical spreading i.e. bandwidth of the jet upper
shear layer. For this verification and characterization of the Kelvin-Helmholtz instability in the
jet upper shear layer, it is needed to measure the roller frequency fr. This can be determined by
measuring the pressure fluctuations as function of time downstream of the rear jet, provided having
a pressure sensor with a sample frequency that is in the order of magnitude of 10 MHz.

• In the present research, conventional Schlieren techniques were used, which indirectly qualitatively
represent the density gradients of the flow. A relatively novel technique that has been developed
since 1998, the so-called Background-Oriented Schlieren (BOS), offers the possibility of quantifying
the density in the flow and is increasingly used for flow visualization [58]. Flow structures that
are presently difficult to analyze could be understood better using BOS. As a background for the
images, a screen with a random dot pattern is used. See the optical path in figure 10.1. A reference
image of the dot pattern with the air at rest is combined with an image of the dot pattern when
density gradients are present in the flow. As a result of the density gradients, the dot pattern is
distorted. Cross-correlation of the two images, similar to the technique used in Particle-Imaging
Velocimetry (PIV), provides a displacement field (figure 10.2). This field is used to calculate the
density from Poisson’s equation (figure 10.3) [59].
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Figure 10.1: Configuration of the Background-Oriented Schlieren Technique [58].

Figure 10.2: Average displacement field as deter-
mined by the cross-correlation of two images [59].

Figure 10.3: Resulting density field as calculated
from Poisson’s equation, using the displacement
field from figure 10.2 [59].
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Appendix A

Technical Drawings

This appendix presents the technical drawings for the parts of the injection blocks. The drawing package
is built-up as following:

1. Total injection block: an overview drawing of the base block and the top-piece block combined.

2. Injection block base: technical drawing of the injection base block.

3. Injection block top-piece: technical drawing with variable dimensions for ten top-piece blocks for
dual jet injection with different distance between two orifices.

4. Injection block top-piece: technical drawing of the top-piece block for single jet injection.

Note that a decimal comma is used for the dimensions in the drawings.
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