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Abstract

In this paper, we develop a mathematical model that attempts to describe con-
stellations. We present a random graph model that generates links between two stars
based on their brightness and the angular distance between them, weighed against the
brightness of and distance to other stars. We use the model to determine whether
there is a mathematical mechanism behind constellations. If a suitable mathematical
mechanism is found, it could help quantify the performance of the human mind on
visualising structures. We measure the performance of the model based on the overlap
between links in the constellation and links generated by the model. We find that on
average slightly less than half of the links overlap. We also find that adjusting the
attenuation function that determines the influence of the angular distance between the
stars on the probability that a link is generated does not affect the results. Generally,
the model performs slightly better for smaller constellations. We conclude from the
results that the specific model presented with the way we implemented it does not
imply that there is a mathematical mechanism behind constellations. We suggest that
the model could be improved by increasing the influence of the interference factor, or
requiring the generated links to form a connected component. Additionally, the model
can also be applied to all visible stars in a bounded area.

Keywords: constellation, random graph, signal to interference ratio graph model,
angular distance, attenuation

1 Introduction

Constellations have long been an object of interest within astronomy. The origins of
constellations are generally unknown, but many of the well known constellations in western
culture are originally Greek. Constellations are simply imaginary patterns in a group of
visible stars, that are used to represent for instance animals or mythological beasts, as can
be recognised from the given names of some constellations. Nowadays, the International
Astronomical Union (IAU) has a list of 88 recognised constellations[9]. When talking about
constellations, we usually mean one or multiple of the 88 constellations as compiled by the
IAU. As constellations consist of a set of stars with a set of imaginary links between them,
someone with basic knowledge of graph theory can quickly see that constellations can also
be interpreted as graphs.

Previously, from the perspective of psychology, research has been done to inspect the
patterns that people recognized in different point constellations.[3] These point constella-
tions in fact corresponded to certain actual constellations. The goal of their research was
however not to gain more insight into how constellations are formed, but instead to gain
more insight into the performance of the human mind on the task of pattern recognition.
However, constellations are essentially creations of the human imagination, which implies
that looking for the logic behind the structure of constellations is indirectly also a research
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into the human mind, just with a different approach. Through searching for literature we
suspect there is not much precedent in looking for a mathematical mechanism behind the
structure of constellations.

The content of this thesis is exactly that, as we research whether there is a mathemat-
ical mechanism behind constellations, by using a probabilistic mathematical model that
generates random graphs. To be able to answer whether there is or is not a mathematical
mechanism behind constellations, we have to answer some smaller questions first. Con-
sidering that constellations are originally based on stars as observed from the earth, how
do we calculate the perceived distance between two stars as observed from earth? Conse-
quently, how do we define probabilities that stars are connected based on their brightness
and the perceived distance between them? And finally, once we have constructed a model
that generates links based on those probabilities, how do we quantify the performance of
this model on describing constellations?

In order to answer these questions we first introduce the concept of random graphs,
which combines concepts of graph theory and probability theory. We then proceed by intro-
ducing an existing model, called the Signal to Interference Ratio Graph (STIRG) model,
that is used in the context of wireless networks[2]. This model generates links between
nodes in the plane if their signal strength is large enough compared to the interference
from the signals of other nodes. We explain why the STIRG model can be used as a basis
to construct a suitable random graph model for application on constellations, and how
we adjust it to use the angular distance between stars, as it correlates closely with the
perceived distance, and the brightness of stars. We make further adjustments to the model
to calculate probabilities that any two stars in a set of stars are connected, such that it
generates links between stars based on those probabilities. Furthermore, we explain how
we control the expected size of the graph consisting of the generated links. By implement-
ing the random graph model we created in Python, we generate results regarding all 88
constellations of the IAU based on the overlap between the links of the existing constella-
tions and those generated by the model, and explain why the model we constructed does
not perform well on the task of generating structures resembling constellations. At the
end, we conclude based on these observations whether the model we constructed implies
that there is a mathematical mechanism behind constellations, and we discuss possibilities
for future research.

2 Random Graphs

Random graphs are essentially the result of combining concepts from the fields of graph
theory and probability theory, as the name suggests. The term random graph is used
generally, as random graphs can for example have randomness in the edges, when for
instance each possible edge on a set of vertices appears independently of each other with
a certain probability p, as in Erdős-Rényi random graphs[5]. Another, less prominent
example is where the vertices of a graph appear at positions in the plane according to
some stochastic process and whether vertices are connected by an edge or not is determined
by some condition[1]. Applications of random graphs include a wide variety of modelling
exercises, like in this paper. Another possible application is in the field of social sciences, for
instance when representing human acquaintances in a graph, as that graph shares certain
properties with Erdős-Rényi random graphs[6].

As we aim to construct a model that we can apply to sets of stars which have a fixed
position, our model will be a random graph model where the randomness is present in
the edges, with every possible edge having a certain probability that it is present assigned
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to it. The existing model that we introduce in the next section, upon which we base our
random graph model, instead places edges in a deterministic manner.

3 Adjusted Signal to Interference Ratio Graph Model

To be able to model constellations as a random graph based on properties of stars, we
identify three key factors for determining the likelihood that two stars are connected. First
of all, we assume that the perceived distance between two stars influences the probability,
namely that the further away two stars are from each other, the lower the probability that
the two stars are connected in a constellation is. The second assumption we make is that
brighter stars have a higher probability to be used in the formation of a constellation.
Finally, we assume that two stars are less likely to be connected if there are other visible
stars situated in between or surrounding them. To that extent, neighbouring stars will
also be taken into account when determining whether two stars are connected.

3.1 Input variables

Based on the key factors identified, our model requires as input the positional coordinates
of a set of stars, as well as their brightness. If we imagine the starry sky as a hollow sphere
centered around the earth with the inside of the sphere being an image with all the stars,
what we would observe when looking up at night does not really change. This allows us to
represent the position of stars on that sphere in a way similar to how we do with places on
earth by latitude and longitude. This coordinate system is the system most often used to
describe the positions of stars, and uses declination and right ascension corresponding to
latitude and longitude respectively. The so-called celestial equator lies above the equator of
the earth, implying that points on the celestial equator have a declination of 0 degrees, while
the north and south celestial poles have a declination of 90 and -90 degrees respectively.
Right ascension is measured from the spot the sun arrives at on the first day of spring,
the vernal equinox, and is usually measured in hours. For our model, we instead use
the right ascension in degrees, which means it is 0 degrees at the vernal equinox, and
increases the further east around the earth we go, up to 360 degrees when returning to
the vernal equinox. A more detailed explanation about celestial coordinates is available
on the internet[7]. The measure that we will use for the perceived distance between two
stars is the angular distance based on the celestial coordinates, as the angular distance is
approximately the distance between two stars that we observe when looking up at the stars.
We will denote the declination and right ascension of a star i as δi and αi respectively.
Additionally, we denote the brightness of a star i by Pi, with Pi being larger the brighter
a star is.

3.2 Signal to Interference Ratio Graph Model

An existing model that incorporates all three of the key components identified is the Signal
to Interference Ratio Graph (STIRG) model[2], which is originally used in the context of
wireless networks. The STIRG model operates on the basis that a node i can transmit
data to a node j if the signal that j receives is strong enough, compared to interference
from other signals and background noise. This condition is presented as

PiL(xi − xj)

N0 + γ
∑

k 6=i,j PkL(xk − xj)
≥ β. (1)
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Similarly, the condition that determines whether a node j can transmit to a node i is

PjL(xj − xi)

N0 + γ
∑

k 6=i,j PkL(xk − xi)
≥ β. (2)

To simplify, they say that nodes i and j are directly connected only if both conditions
are satisfied. The power of the signal transmitted from node i to node j is PiL(xi − xj).
Here, Pi represents the emitting power of a node i, and xi and xj represent the positions
of nodes i and j in the plane. L(·) is the so-called attenuation function. Attenuation
generally stands for a reduction in strength of a signal of some sort, so the purpose of the
attenuation function here is to reduce the strength of the transmitted signal the larger the
distance between the nodes in question is. Furthermore, N0 is the power of the thermal
background noise, and γ is a weight factor for how much different simultaneous signals
interfere with each other. The threshold for the signal to interference ratio necessary for
transmission is given by β. In the original model, the attenuation function is defined as
L(x) = l(||x||) where they note that for l(t) = t−2 no connection is possible for any γ > 0.
Therefore the most common attenuation function used is l(t) = t−a, with a ranging from
3 to 6, with possible variations where the function is bounded.

In order to translate the model to suit the context of stars and constellations, we have
instead defined Pi as the brightness of a star as mentioned previously. Also, the attenuation
function is now based on the position vectors xi = (αi, δi) and xj = (αj , δj). We define the
attenuation function to be L(xi − xj) = l(||xi − xj||) with the norm equaling the angular
distance, so

||xi − xj|| = arccos(sin(δi) sin(δj) + cos(δi) cos(δj) cos(∆α)), (3)

where ∆α = αi − αj [4]. Furthermore, we similarly define l(t) = t−a such that depending
on the choice of a we can determine the degree to which the signal is weakened based on
the angular distance between two stars. The limitation that no connection is possible for
any γ > 0 when we use a = 2 becomes irrelevant in our adjusted model, as we will define
probabilities for edges instead of setting a threshold. Lastly, the parameters N0, γ and β
have lost their original meaning in the context of wireless networks, so we instead use them
in the adjusted model to control the size of the generated graphs.

3.3 The Adjusted Model

The STIRG model was originally applied to a random scattering of nodes, and as noted,
for our purposes the set of nodes always remains the same, as the stars each have a set
position and brightness. Thus, if we would base which nodes are connected only on the
conditions in equations 1 and 2, we would have one resulting graph for each set of stars
used as input. In order to use the STIRG model to study constellations, we adjust it to
be a probabilistic model, with probabilities based on the computed signal to interference
ratios determining which stars are connected and which stars are not. We first define

p̃ij :=

(
PiL(xi − xj)

N0 + γ
∑

k 6=i,j PkL(xk − xj)

)(
PjL(xj − xi)

N0 + γ
∑

k 6=i,j PkL(xk − xi)

)
(4)

as a variable to base the probability that two stars i and j are connected, pij , on. Naturally,
we must define pij in such a way that 0 ≤ pij ≤ 1 for all pairs of nodes i and j. Additionally,
we use the free variables N0 and γ to control the size of the generated graphs. Note that
β is ignored, as it is originally used as a threshold and is thus omitted from the definition
of p̃ij in equation 4.

4



The average degree of the existing constellations d can be simply computed from the
the number of edges e and the number of nodes n as d = 2e

n . Similarly, the expected degree
of the constellations we want to generate can be computed as

E[D] =
2

n

∑
i,j

pij . (5)

In order to ensure that the generated and original constellations have a similar number of
edges, we then define pij in such a way that E[D] = d. We note that p̃ij already satisfies
0 ≤ p̃ij , as all quantities in Equation 4 are positive. Simply defining pij = min(p̃ij , 1)
immediately satisfies 0 ≤ pij ≤ 1, but in order to satisfy Equation 5 we still need to find
suitable values of N0 and γ. To do so, we first define p̃ij,1 as equaling p̃ij with N0 = 1 and
γ = 1, so

p̃ij,1 :=

(
PiL(xi − xj)

1 +
∑

k 6=i,j PkL(xk − xj)

)(
PjL(xj − xi)

1 +
∑

k 6=i,j PkL(xk − xi)

)
(6)

and set N0 = γ = C, such that we now have that p̃ij =
p̃ij,1
C . This results in

E[D] =
2

n

∑
i,j

pij =
2

n

∑
i,j

min(p̃ij , 1) =
2

n

∑
i,j

min
( p̃ij,1
C

, 1
)

(7)

which, if we now equate the right-hand side of Equation 7 to d such that E[D] = d, can
then be rewritten as

f(C) :=
2

nd

∑
i,j

min(p̃ij,1, C) = C (8)

by multiplying both sides by C
d . The remaining issue is then to find a value of C such

that f(C) = C. In other words, we need to find the fixed point of f(C), if it exists.
Finding the fixed point of a function can be achieved in multiple ways, the easiest achieved
through fixed point iteration. Fixed point iteration is done by setting an initial point x0
and iterating with

xn+1 = f(xn), n = 0, 1, 2, . . . (9)

resulting in the sequence x0, x1, x2, . . . which hopefully converges. If the sequence converges
to a point x, that point satisfies f(x) = x and thus is a fixed point of the function.
Additionally, in order to increase the rate of convergence from linear to quadratic, Aitken’s
∆2 process can be applied. Aitken’s ∆2 process defines a new sequence with terms

yn =
xnxn+1 − x2n+1

xn − 2xn+1 + xn+2
, n = 0, 1, 2, . . . (10)

where it is proven in its application on the sequence generated by fixed point iteration that
the sequence {yn}n∈N0 converges to the fixed point x faster than the sequence {xn}n∈N0 .
The application of Aitken’s ∆2 process to fixed point iteration is called Steffensen’s method,
of which an existing implementation in Python is available which significantly speeds up
the computation time for the model. Based on experimentation, the sequence generated
by Steffensen’s method always converges for our model when using initial point C0 =
1. Through finding a suitable value for C, we have achieved the definition of suitable
connection probabilities pij for our random graph model based on the STIRG model.
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4 Comparing Constellations and the Adjusted STIRG Model

Now that our model is defined, we need to consider what input data we use before we can
determine our results.

4.1 Data

As input for our model we use star data provided by the SIMBAD astronomical database[10].
The data provides the right ascension and declination in degrees, which we have denoted by
αi and δi respectively for a star i. The data also provides the apparent magnitude, denoted
by mi for star i, to determine the brightness of the stars. A lower apparent magnitude
represents a brighter star. The relation between the apparent magnitude and brightness
of a star Pi, is given by Pi = ( 1

2.512)mi , considering that a difference of 5 magnitudes is a
difference in brightness of a factor 100 and 2.5125 ≈ 100[8].

4.2 Model Performance

Now that we are able to find connection probabilities for a given set of stars, we can
generate sets of links between stars of existing constellations through an implementation
of the model in Python and compare those generated links to the links that are part
of the actual constellation. We compare our adjusted STIRG model to each of the 88
constellations as recognised by the IAU.

In order to measure the performance of the adjusted STIRG model on generating links
that exist in the constellations, we compute the average overlap between the generated
links and the links in the constellations over multiple sets of generated links. This is done
by computing both the proportion of links generated using the model that exist in the
constellation, as well as the proportion of links of the constellation that are generated
using the model. By denoting the number of links that are both generated (g) and in
the constellation (c) by lg,c, the number of links that are generated (g) but not in the
constellation (n) by lg,n and the number of links that are generated (g) by lg, we observe
that

E[lg,c] + E[lg,n] = E[lg] =
nE[D]

2
=
nd

2
(11)

from Equation 5, where we note that E[lg] =
∑

i,j pij , and the construction of the model
with E[D] = d. Similarly, by denoting the number of links that are not generated (n) but
in the constellation (c) by ln,c and the number of links in the constellation (c) by lc, we
have that

E[lg,c] + E[ln,c] = E[lc] = lc =
nd

2
(12)

as a property of the constellation. From Equations 11 and 12 we see that E[lg,n] = E[ln,c]
and thus should be able to observe that lg,n ≈ ln,c.

For every constellation, we generate links by using the model a multitude of times
and average the proportions over the different simulations to retrieve a representative
quantity for each constellation. The resulting average proportions over 25 simulations
are plotted against each other in Figure 1. This confirms that lg,n ≈ ln,c, which is why
from here onward we denote by the proportion of overlap of a constellation the average
between the proportion of constellation links that are links generated by the model and
the proportion of links generated by the model that are constellation links. Figure 1
additionally shows us that for the majority of the constellations, the proportion of overlap is
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(a) Attenuation function l(t) = t−1 (b) Attenuation function l(t) = t−2

Figure 1: The average proportion of overlap between existing constellation links
and links generated by the adjusted STIRG model over 25 simulations per constel-
lation

(a) Attenuation function l(t) = t−1 (b) Attenuation function l(t) = t−2

Figure 2: The Gemini constellation compared to links generated by the adjusted
STIRG model

between approximately 0.2 and 0.5, which means that for the majority of constellations, at
least half of the generated links are not present in the constellation. It should be noted that
the constellations corresponding to a proportion of overlap of 0 are constellations consisting
of a single star, and thus no links. The constellations corresponding to a proportion
of overlap of 1 are constellations with two stars, and thus a single link that receives a
probability of 1 according to the model.

From comparison of Figures 1a and 1b we observe that the influence of adjusting the
degree a of the attenuation function L(·) = l(|| · ||) with l(t) = t−a on the general perfor-
mance of the model is small. Averaging the proportion of overlap over all constellations
results in an average proportion of overlap of 0.411 and 0.448 for a = 1 and a = 2 re-
spectively. In order to illustrate the effect of adjusting the attenuation function, plots of
the Gemini constellation and the model results with differing attenuation functions are
shown in Figure 2. The figure shows the constellations links in red, and the generated
links in grey. We generated links of the constellation 25 times and for each link counted
how often it was present. The thickness of the grey lines correspond to how often the links
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were present. Through comparing Figure 2a and 2b the effect of the attenuation function
becomes clearer.

We observe that links that have a relatively low probability in the model when using
attenuation function l(t) = t−a with a = 1, which correspond to the links that were only
generated a few times out of 25 as seen in Figure 2a, also have an even lower probability
of being generated when using a = 2, considering those links are barely existent at all in
Figure 2b. At the same time, links that are often chosen when using a = 1 are chosen
almost every single time in the model with a = 2. This is most likely because of the
difference in angular distance between stars i and j compared to the angular distance
between the other stars in the constellation and star i and j. Noting that in the definition
of p̃ij,1 in Equation 6 we find L(xi − xj) in the numerator, and L(xk − xj) and L(xk − xi)
for all k 6= i, j in the denominator, the difference in angular distance converts to a smaller
effect of attenuation in the numerator compared to the denominator. This results in higher
value of p̃ij,1 and thus a high connection probability pij . When increasing a, the effect of
attenuation for the larger angular distances in the denominator becomes even stronger
compared to the angular distance in the numerator, which means p̃ij,1 and thus pij also
increase compared to when we use a smaller value of a. Connection probabilities that
are small with a = 1 decreasing further when increasing a can be explained in a similar
manner. The small and large connection probabilities with a = 1 becoming smaller and
larger respectively when increasing a is exactly the effect that we observe in Figure 2.
As noted before, the general performance of the model does not change significantly from
adjusting the attenuation function, which is why from now on we will solely look at results
where attenuation function l(t) = t−2 is used.

(a) The Corona Borealis constellation (b) The Lynx constellation

Figure 3: The Corona Borealis and Lynx constellations compared to links gener-
ated by the adjusted STIRG model using attenuation function l(t) = t−2

To gain further insight into the performance of the model, we also look at the Corona
Borealis and Lynx constellations as shown in Figure 3. Both constellations are relatively
small compared to the Gemini constellation, but differ in structure. The links in the
Corona Borealis constellation all have a similar length, and the stars are only connected
to the stars that are closest to them, so the model manages to generate correct links more
often than not. Though the Lynx constellation also has a relatively simple structure, the
model performs worse as the links in the constellation have varying lengths and there is
a cluster of stars at the bottom of the constellation. The model mostly generates links
between stars in the cluster, as the length between any pair of stars in the cluster is rather
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Figure 4: The number of stars in a constellation compared to the proportion
of overlap between the constellation and model results with attenuation function
l(t) = t−2

small, leading to the longer links in the constellation often being left out in the model.
As the links between stars that are not in the same cluster are usually not generated by
the model, the set of links generated rarely form a connected graph, while constellations
always consist of a single, connected component. This is similar to what we see with the
Gemini constellation in Figure 2b. Generally, the model often generates more links between
stars that are clustered together than between stars that are not in a cluster and further
apart from each other, which is expected from the construction of the model as it generally
assigns a higher probability to those links.

Smaller constellations usually have less separate clusters of stars, simply because there
are less stars in the constellation. For that reason, the model should theoretically per-
form better on smaller constellations. In Figure 4 we see that the proportion of overlap,
which is the average of the proportion of constellation links that are model links and vice
versa, is higher for some of the smaller constellations. This suggests that for some smaller
constellation the model does perform better compared to larger constellations. However,
applying the model to a constellation consisting of only a few stars does not guarantee
that the generated graphs are similar to the constellation.

5 Conclusion

In this paper, we have adjusted the Signal to Interference Ratio Graph model to a random
graph model that we use to generate links between stars that we know are part of the
same constellation. The model computes probabilities that two stars in a constellation
are connected based on the brightness of the stars and the angular distance between them
weighed against the brightness of and distance to other stars in the constellation. We use
the angular distance as a measure for the perceived distance between stars when observed
from earth and determine the influence of the angular distance between the stars on the
generated probabilities with an attenuation function, which is a type of function that
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strengthens or weakens the influence of its input argument on the result of the entire
equation. Considering the aim of this paper is to determine whether the random graph
model we constructed implies that there is a mathematical mechanism behind the structure
of constellations, we proceeded by defining a measure for the performance of the model
on constructing constellations based on star data. The measure produced for this is the
overlap between links of the original constellation and the links generated by the model.
Using an implementation of the model in Python we generated links 25 times for each
of the 88 constellations listed by the International Astronomical Union, which resulted in
an average overlap per constellation of 0.411 and 0.448 when using attenuation functions
l(t) = t−1 and l(t) = t−2 respectively, with a large spread in overlap regardless of the
attenuation function used as seen in Figure 1. On average, the model performs slightly
better for smaller constellations as seen in Figure 4. From these results we conclude that
the model does not perform good enough to imply that there is a mathematical mechanism
behind constellations.

6 Discussion

In this paper, we have applied our model to different sets of stars that we know are part of
an existing constellation. Visual examples of links generated by the model show that the
model often generates too many links between stars that are clustered together, whereas
links between those star clusters are often missing. This influences the performance of
the model significantly, as constellations always consist of a single connected component.
Therefore the model could still be improved by, for example, increasing the interference
factor of stars in the neighbourhood. Concretely, this means that we suggest increasing
the value of γ compared to N0, as we currently set them equal to each other. This makes
it less likely that a link is present if there are many other stars nearby, thus reducing the
likelihood that the model generates densely connected clusters of stars. Another way to
solve the issue that the model we presented generates too many links between stars that are
clustered together and too few links between stars not in the same cluster, is by noting that
this issue often causes graphs generated by the model to not be connected. Considering
that we already apply our model to sets of stars of which we have the prior knowledge
that they are part of a constellation and noting that constellations always consist of one
connected component, the model might be improved by setting the requirement that the
generated links must form a connected graph.

Another possible way to study constellations using our model, or a further adjusted
version of it, is to apply it to all stars visible to the naked eye in an area where we know a
constellation exists. The IAU has defined the 88 constellations in terms of an area in which
they lie, in total spanning the entirety of the sky, which makes it an option for defining the
areas on which to separately apply the model. In that case, conclusions might be drawn
about constellation without using the prior knowledge of exactly which stars belong to
which constellation. What should still be taken into account is that the computation time
for the model scales quadratically in the number of stars used as input, which is the reason
we refrained from applying our model to all visible stars in a certain area.

Also, the relevance of the brightness of the stars when applying the model to a set of
stars that we know are part of a constellation is debatable, considering that the brightest
stars in a constellation do not necessarily have a higher degree than other stars in the
constellation, as illustrated by for instance the star Polaris in the Ursa Minor constellation.
It can thus be argued that the brightness of the stars can be left out when applying the
model to a set of stars that are known to form a constellation. The brightness of stars is
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mostly relevant in identifying which stars are actually part of a constellation, as those stars
are usually brighter than other stars around them, which means it is a necessary inclusion
in the model if it would be applied to all visible stars in a certain area.

If a model that performs well in generating constellations is successfully created, it
could be interesting to connect it to the field of psychology, in order to find out if and
how the model and its results could provide support in quantifying how the human mind
functions in terms of visualising structures.
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A Python code

A.1 Implemented methods

Here we show all methods that we have implemented in Python, including the implemen-
tation of the model.
import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t
import random
import csv
from s c ipy import opt imize

# Imports from Doina Bucur ’ s work
from get_star_metadata import read_star_metadata , compute_magnitude
from g e t_con s t e l l a t i o n s import read_culture

# Function copied from Doina Bucur ’ s f i t . py
def get_a l l_star s ( ) :

raw_df = read_star_metadata ( )

# keep the columns MAIN_ID ( index ) , RA_d, DEC_d
df = pd . concat ( [ raw_df [ ’RA_d’ ] , raw_df [ ’DEC_d’ ] , ] , a x i s =1)

# add magnitude Magn column computed out o f 3 bands (FLUX_B FLUX_V FLUX_R)
df [ ’Magn ’ ] = raw_df . apply ( compute_magnitude , ax i s=1)

return raw_df , df

# Ca l cu l a t e s and re turns the c en t r a l ang l e ( in degrees ) between two s t a r s
def centra l_ang le ( star1 , s t a r2 ) :

de l1 = s ta r1 [ ’DEC_d’ ]
de l2 = s ta r2 [ ’DEC_d’ ]
d_alf = s ta r1 [ ’RA_d’ ] − s t a r 2 [ ’RA_d’ ]
ang le = np . a r c co s (np . s i n (np . rad ians ( de l1 ) ) ∗ np . s i n (np . rad ians ( de l2 ) )

+ np . cos (np . rad ians ( de l1 ) ) ∗ np . cos (np . rad ians ( de l2 ) )
∗ np . cos (np . rad ians ( d_alf ) ) )

return np . rad2deg ( ang le )

# computes the connect ion p r o b a b i l i t i e s based on the s i g n a l to i n t e r f e r e n c e
# ra t i o f o r any s e t o f two s tar s , and re turns a s e t o f l i n k s based on
# those connect ion p r o b a b i l i t i e s
def calculate_SINR_links ( df , nr_of_stars , avg_degree , attenuation_degree ,

N_0=1.0 , gamma=1.0) :
# ca l c u l a t e connect ion power Pi∗L( xi−x j ) f o r a l l p a i r s o f s t a r s i , j
# and save i t to connection_powers [ i ] [ j ]
connection_powers = np . z e ro s ( ( df . shape [ 0 ] , d f . shape [ 0 ] ) )
for i in range ( df . shape [ 0 ] ) :

for j in range ( df . shape [ 0 ] ) :
s t a r 1 = df . i l o c [ i ]
s t a r 2 = df . i l o c [ j ]
i f i != j :

connection_powers [ i ] [ j ] = (1 / 2 . 512 ) ∗∗ s t a r 1 [ ’Magn ’ ] ∗ \
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(1 / centra l_ang le ( star1 , s t a r 2 )∗∗ attenuat ion_degree )

# compute the s i g n a l to i n t e r f e r e n c e r a t i o s o f s t a r i to s t a r j
# and s t a r j to i , wi th the ( d e f a u l t ) va l u e s o f N_0 and gamma,
# and mu l t i p l i e s them to r e t r i e v e ~p_{ i j ,1}
prob_ti lde = np . z e r o s ( ( len ( connection_powers ) , len ( connection_powers ) ) )
inter f e rence_powers_i = np . z e r o s ( ( len ( connection_powers ) ,

len ( connection_powers ) ) )
inter fe rence_powers_j = np . z e ro s ( ( len ( connection_powers ) ,

len ( connection_powers ) ) )
for i in range ( len ( connection_powers ) ) :

for j in range ( i + 1 , len ( connection_powers [ 0 ] ) ) :
# compute the sum of a l l o ther connect ion powers t ha t i n t e r f e r e wi th
# the connect ion from i to j and j to i r e s p e c t i v e l y
for k in range ( len ( connection_powers ) ) :

i f ( k != i ) & (k != j ) :
inter f e rence_powers_i [ i ] [ j ] += connection_powers [ k ] [ j ]
inter fe rence_powers_j [ i ] [ j ] += connection_powers [ k ] [ i ]

SINR_i = connection_powers [ i ] [ j ] / (N_0 + gamma ∗
in ter f e rence_powers_i [ i ] [ j ] )

SINR_j = connection_powers [ j ] [ i ] / (N_0 + gamma ∗
inter fe rence_powers_j [ i ] [ j ] )

prob_ti lde [ i ] [ j ] = SINR_i ∗ SINR_j

# de f i n e the func t i on o f which we f i nd the f i x e d po in t :
# 2/nd \sum min(~p_{ i j ,1} , C)
def fp i_func (x ) :

va lue = 0
for i in range ( len ( prob_ti lde ) ) :

for prob_ij in prob_ti lde [ i ] :
va lue += min( prob_ij , x )

return 2 ∗ value / ( nr_of_stars ∗ avg_degree )

# f ind the f i x e d point , wi th i n i t i a l va lue 1 us ing S t e f f en s en ’ s method
f i x edpo i n t = opt imize . f ixed_point ( fpi_func , 1)

# ca l c u l a t e the f i n a l p r o b a b i l i t i e s p_ij = min(~p_{ i j ,1} / C, 1)
# and genera te l i n k s based on those p r o b a b i l i t i e s
prob_f ina l = np . z e ro s ( ( len ( connection_powers ) , len ( connection_powers ) ) )
l i n k s = [ ]
for i in range ( len ( prob_ti lde ) ) :

for j in range ( len ( prob_ti lde [ i ] ) ) :
prob_f ina l [ i ] [ j ] = min( prob_ti lde [ i ] [ j ] / f i x edpo in t , 1)
rand = random . random ( )
i f rand <= prob_f ina l [ i ] [ j ] :

l i n k s . append ( df . index [ i ] )
l i n k s . append ( df . index [ j ] )

return l i n k s

# Plo t s a l l s t a r s o f g i ven dataframe in the northern hemisphere
# Optiona l arguments f o r format t ing , and f o r f i l t e r i n g on a more s p e c i f i c area
def plot_stars_N ( df , ax , fo rmatt ing=’b . ’ , min_RA=0, max_RA=360 ,

min_DEC=0, max_DEC=90):
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# F i l t e r the area based on func t i on arguments
d f_f i l t e r ed_area = df [ ( df [ ’RA_d’ ] >= min_RA) & ( df [ ’RA_d’ ] <= max_RA) &

( df [ ’DEC_d’ ] >= min_DEC) & ( df [ ’DEC_d’ ] <= max_DEC) ]
# Plot each s tar , wi th b r i g h t e r s t a r s ( having a lower magnitude )
# appearing l a r g e r
for row in d f_f i l t e r ed_area . i t e r r ows ( ) :

ax . p l o t (np . rad ians ( row [ 1 ] [ ’RA_d’ ] ) , row [ 1 ] [ ’DEC_d’ ] , formatt ing ,
markers i ze=12 − ( row [ 1 ] [ ’Magn ’ ] ∗ 1 . 2 ) )

# Plo t s a l l the connec t ions between s t a r s g iven by the l i n k s argument
# Requires a l l s t a r s in the l i s t l i n k s to be in the prov ided dataframe d f
# Optiona l argument f o r fo rmat t ing
def plot_conste l lat ion_N ( df , ax , l i nk s , fo rmatt ing=’k− ’ , a lpha =1.0) :

# Stops i f l i n k s has uneven l eng th , as s t a r s shou ld be g iven in pa i r s
i f not len ( l i n k s ) % 2 == 0 :

print ( ’Uneven␣number␣ o f ␣ s t a r s ␣ in ␣ c o n s t e l l a t i o n ␣ l i n k s ’ )
return

# For every two s t a r s prov ided by l i n k s , p l o t a l i n e between them
for i in range (0 , len ( l i n k s ) , 2 ) :

s t a r s = df . l o c [ [ l i n k s [ i ] , l i n k s [ i + 1 ] ] , : ]
ax . p l o t (np . rad ians ( s t a r s [ ’RA_d’ ] ) , s t a r s [ ’DEC_d’ ] , formatt ing ,

alpha , l i n ew id th =0.7)

# Prepare the po la r p l o t in which to p l o t the s t a r s and c o n s t e l l a t i o n s
def prep_polar_plot ( ) :

ax = p l t . subplot (1 , 1 , 1 , p r o j e c t i o n=’ po la r ’ )
ax . s e t_theta_di rec t ion (−1)
ax . set_theta_zero_locat ion ( ’N ’ )
ax . set_ylim ( [ 0 , 9 0 ] )
ax . g r id (b=bool , which=’major ’ , ax i s=’ both ’ , c o l o r=’ 0 .90 ’ )
return ax

# return the l i s t o f s t a r s g i ven a l i s t o f c o n s t e l l a t i o n l i n k s
def s ta r s_f rom_cons te l l a t i on ( l i n k s ) :

return l i s t ( set ( l i n k s ) )

# compute and re turn the propor t ion o f c o n s t e l l a t i o n l i n k s t ha t are a l s o
# l i n k s generated by the model as w e l l as the propor t ion o f l i n k s
# generated by the model t h a t are a l s o c o n s t e l l a t i o n l i n k s
# from a l i s t o f c o n s t e l l a t i o n l i n k s and a l i s t o f genera ted l i n k s
def ca l cu l a t e_ove r l ap ( c on s t e l l a t i o n_ l i nk s , SINR_links ) :

n r_cons t e l l a t i on_ l ink s = len ( c o n s t e l l a t i o n_ l i n k s ) / 2
nr_SINR_links = len ( SINR_links ) / 2
nr_over lap_links = 0
for i in range (0 , len ( c o n s t e l l a t i o n_ l i n k s ) , 2 ) :

for j in range ( i , len ( SINR_links ) , 2 ) :
i f ( ( ( c o n s t e l l a t i o n_ l i n k s [ i ] == SINR_links [ j ] ) &

( c on s t e l l a t i o n_ l i n k s [ i + 1 ] == SINR_links [ j + 1 ] ) ) |
( ( c o n s t e l l a t i o n_ l i n k s [ i ] == SINR_links [ j + 1 ] ) &
( c on s t e l l a t i o n_ l i n k s [ i + 1 ] == SINR_links [ j ] ) ) ) :

nr_over lap_links += 1
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proportion_const_to_SINR = nr_over lap_links / n r_cons t e l l a t i on_ l ink s
i f nr_SINR_links == 0 :

proportion_SINR_to_const = 0
else :

proportion_SINR_to_const = nr_over lap_links / nr_SINR_links

return proportion_const_to_SINR , proportion_SINR_to_const

A.2 Example code for generating results

Here we list two code examples using the implemented methods shown above. An example
for generating the results and representing them in plots as used for Figures 1 and 4 is
provided first:
# puts a l l r e l e v an t s t a r data in dataframe d f
raw_df , df = get_a l l_star s ( )

# s e l e c t a c u l t u r e
cu l t u r e = ’IAU ’

# read the c o n s t e l l a t i o n s data
c o n s t e l l a t i o n s = read_culture ( ’ data/ ’ + cu l tu r e + ’ . txt ’ )

# prov ide the degree ’ a ’ o f the a t t enua t i on func t i on l ( t ) = t^(−a )
# to be used
attenuat ion_degree = 1

with open( ’ over lap_values . csv ’ , ’w ’ , newl ine=’ ’ ) as c s v f i l e :
w r i t e r = csv . wr i t e r ( c s v f i l e , d e l im i t e r=’ , ’ ,

quotechar=’ " ’ )
wr i t e r . writerow ( [ ’ Con s t e l l a t i on ’ , ’Number␣ o f ␣ s t a r s ’ ,

’ Average␣ over lap ␣ const ␣ to ␣SINR ’ ,
’ Average␣ over lap ␣SINR␣ to ␣ const ’ ] )

n r_s ta r s_ l i s t = [ ]
over lap_results_x = [ ]
over lap_results_y = [ ]
ove r l ap_re su l t s = [ ]
overal l_avg_over lap = 0
# for each c on s t e l l a t i o n , genera te l i n k s a number o f t imes
# and compute the average ove r l ap
for c o n s t e l l a t i o n in c o n s t e l l a t i o n s . keys ( ) :

# setup a dataframe conta in ing the s t a r s o f the c o n s t e l l a t i o n
c on s t e l l a t i o n_ l i n k s = c o n s t e l l a t i o n s [ c o n s t e l l a t i o n ]
s t a r s_ l i s t = sta r s_f rom_cons te l l a t i on ( c o n s t e l l a t i o n s [ c o n s t e l l a t i o n ] )
d f_con s t e l l a t i on = df . l o c [ s t a r s_ l i s t , : ]

# determine the average degree and number o f s t a r s
# of the c o n s t e l l a t i o n
average_degree = len ( c o n s t e l l a t i o n_ l i n k s ) / len ( s t a r s_ l i s t )
number_of_stars = len ( s t a r s_ l i s t )
n r_s ta r s_ l i s t . append ( number_of_stars )

# se t the number o f i t e r a t i o n s over which to average
#the over l ap per c o n s t e l l a t i o n
nr_ i t e r a t i on s = 25
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total_const_to_SINR = 0
total_SINR_to_const = 0

# genera te l i n k s and compute the ove r l ap between the
# generated and c o n s t e l l a t i o n l i n k s
for i in range ( n r_ i t e r a t i on s ) :

SINR_links_conste l lat ion = \
calculate_SINR_links ( d f_cons t e l l a t i on , number_of_stars ,

average_degree , attenuat ion_degree )
over lap = ca l cu l a t e_ove r l ap ( c on s t e l l a t i o n_ l i nk s ,

SINR_l inks_conste l lat ion )
total_const_to_SINR += over lap [ 0 ]
total_SINR_to_const += over lap [ 1 ]

# compute the averages
avg_const_to_SINR = total_const_to_SINR/ nr_ i t e r a t i on s
avg_SINR_to_const = total_SINR_to_const/ n r_ i t e r a t i on s
avg_overlap = (avg_const_to_SINR + avg_SINR_to_const )/2
print ( c o n s t e l l a t i o n )
print ( ( avg_const_to_SINR , avg_SINR_to_const ) )
over lap_results_x . append ( avg_const_to_SINR)
over lap_results_y . append ( avg_SINR_to_const )
ove r l ap_re su l t s . append ( avg_overlap )
overal l_avg_over lap += avg_overlap

# wr i t e the r e s u l t s to the csv f i l e
wr i t e r . writerow ( [ c o n s t e l l a t i o n , number_of_stars ,

avg_const_to_SINR , avg_SINR_to_const ] )
overal l_avg_over lap = overal l_avg_over lap / len ( c o n s t e l l a t i o n s . keys ( ) )

print ( over lap_results_x , over lap_results_y )
print ( ’ o v e r a l l ␣ average ␣ over lap ␣=␣ ’ + str ( overal l_avg_over lap ) )

# p l o t the propor t i ons o f ove r l ap aga in s t each o ther
ax = p l t . subplot (1 , 1 , 1)
ax . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ’ k ’ , l i n ew id th =0.6 , alpha =0.7 ,

trans form=ax . transAxes )
ax . p l o t ( over lap_results_x , over lap_results_y , ’ . ’ )
ax . set_xlim ( [ −0 .02 , 1 . 0 2 ] )
ax . set_ylim ( [ −0 .02 , 1 . 0 2 ] )
ax . s e t_x labe l ( ’ Proport ion ␣ o f ␣ c o n s t e l l a t i o n ␣ l i n k s ␣ that ␣ are ␣model␣ l i n k s ’ )
ax . s e t_y labe l ( ’ Proport ion ␣ o f ␣model␣ l i n k s ␣ that ␣ are ␣ c o n s t e l l a t i o n ␣ l i n k s ’ )
ax . g r id (b=bool , which=’major ’ , ax i s=’ both ’ , c o l o r=’ 0 .90 ’ )

p l t . show ( )

# p l o t the nr o f s t a r s to the average propor t ion o f ove r l ap
ax = p l t . subplot (1 , 1 , 1)
ax . p l o t ( nr_star s_l i s t , ove r l ap_resu l t s , ’ . ’ )
ax . s e t_x labe l ( ’Number␣ o f ␣ s t a r s ␣ in ␣ c o n s t e l l a t i o n ’ )
ax . s e t_y labe l ( ’ Proport ion ␣ o f ␣ over lap ␣ averaged ’ )
ax . g r id (b=bool , which=’major ’ , ax i s=’ both ’ , c o l o r=’ 0 .90 ’ )

p l t . show ( )
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An example for generating the polar plots as seen in Figures 2 and 3, as used specifically
to plot the Corona Borealis constellation as seen in Figure 3a is also provided:

# puts a l l r e l e v an t s t a r data in dataframe d f
raw_df , df = get_a l l_star s ( )

# s e l e c t a c u l t u r e and c o n s t e l l a t i o n
cu l t u r e = ’IAU ’
conste l lat ion_name = ’Corona␣ Bo r e a l i s ’

# read the c o n s t e l l a t i o n s l i n k s and put a l l s t a r s o f the c o n s t e l l a t i o n
# in a dataframe
c o n s t e l l a t i o n s = read_culture ( ’ data/ ’ + cu l tu r e + ’ . txt ’ )
c o n s t e l l a t i o n_ l i n k s = c o n s t e l l a t i o n s [ conste l lat ion_name ]
s t a r s_ l i s t = sta r s_f rom_cons te l l a t i on ( c o n s t e l l a t i o n s [ conste l lat ion_name ] )
d f_con s t e l l a t i on = df . l o c [ s t a r s_ l i s t , : ]

average_degree = len ( c o n s t e l l a t i o n_ l i n k s ) / len ( s t a r s_ l i s t )
number_of_stars = len ( s t a r s_ l i s t )

# prov ide the degree ’ a ’ o f the a t t enua t i on func t i on l ( t ) = t^(−a ) to be used
attenuat ion_degree = 1

# Code f o r genera t ing c o n s t e l l a t i o n s + model r e s u l t s
# Plo t s e t t i n g s :
main_plot = prep_polar_plot ( )
main_plot . set_ylim ( [ 2 0 , 9 0 ] )
main_plot . set_thetamin (225)
main_plot . set_thetamax (255)
main_plot . t ex t (np . deg2rad (240) , 15 , ’ Right␣Ascension ␣ ( ) ’ ,

r o t a t i on=−240−180, ha=’ cente r ’ , va=’ cente r ’ )
main_plot . t ex t (np . deg2rad (215) , 55 , ’ Dec l i na t i on ␣ ( ) ’ ,

r o t a t i on =45, ha=’ cente r ’ , va=’ cente r ’ )
main_plot . s e t_ t i t l e ( ’ Corona␣ Bo r e a l i s ␣ c on s t e l l a t i o n , ␣ a t tenuat ion ␣ degree ␣1 ’ )
p l t . gca ( ) . inver t_yax i s ( )

# genera te l i n k s f o r the c o n s t e l l a t i o n a c e r t a i n number o f times ,
# and f o r every p o s s i b l e l i n k , count how o f t en i t i s genera ted
nr_ i t e r a t i on s = 25
occurrences_of_l inks = np . z e r o s ( ( len ( s t a r s_ l i s t ) , len ( s t a r s_ l i s t ) ) )
for i in range ( n r_ i t e r a t i on s ) :

SINR_l inks_conste l lat ion = \
calculate_SINR_links ( d f_cons t e l l a t i on , number_of_stars ,

average_degree , attenuat ion_degree )
for j in range (0 , len ( SINR_links_conste l lat ion ) , 2 ) :

for k in range ( len ( s t a r s_ l i s t ) ) :
i f SINR_l inks_conste l lat ion [ j ] == s t a r s_ l i s t [ k ] :

l = s t a r s_ l i s t . index ( SINR_links_conste l lat ion [ j +1])
occurrences_of_l inks [ k ] [ l ] += 1

# p l o t the generated l i n k s wi th a t h i c kn e s s based on how o f t en they are genera ted
for i in range ( len ( occurrences_of_l inks ) ) :

for j in range ( i , len ( occurrences_of_l inks ) ) :
i f occurrences_of_l inks [ i ] [ j ] != 0 :

s t a r s = df . l o c [ [ s t a r s_ l i s t [ i ] , s t a r s_ l i s t [ j ] ] , : ]
main_plot . p l o t (np . rad ians ( s t a r s [ ’RA_d’ ] ) , s t a r s [ ’DEC_d’ ] , ’ darkgrey ’ ,
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l i n ew id th=3∗occurrences_of_l inks [ i ] [ j ] / n r_ i t e r a t i on s )

# p l o t the s t a r s and c o n s t e l l a t i o n
plot_conste l lat ion_N ( df , main_plot , c o n s t e l l a t i o n s [ conste l lat ion_name ] , ’ r− ’ , 0 . 2 )
plot_stars_N ( d f_cons t e l l a t i on , main_plot )

p l t . show ( )
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