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Abstract—Facial marks can be used as a complement to
facial recognition systems, and have been used for this purpose
before. New advances in convolutional neural network (CNN)
architectures have enabled more accurate detection of facial
marks. In this paper state-of-the-art CNN models are trained
on the FRGCv2 dataset for the recognition and detection of
facial marks. The resulting systems are combined with a FaceNet
facial recognition system in order to improve facial recognition
performance. In particular, the improved ability to differentiate
between twins will be studied. Due to their similarities, twins are
exceptionally difficult for facial recognition systems to distinguish.
The Twins Days dataset is used in order to investigate the ability
of the combined system to differentiate between twins. This paper
demonstrates significant improvements in facial recognition and
twin differentiation performance when facial mark detection is
used.

Index Terms—Facial Marks, Facial Recognition, Twins, CNN

I. INTRODUCTION

State-of-the-art facial recognition systems (FRS), such as
FaceNet, manage to attain highly accurate results [1]. Never-
theless, the accuracy of such models decreases when posed
with a particularly difficult tasks. Discriminating between
twins is one such task, as FRS performance has been demon-
strated to decrease when tested on a population of twins, in
various previous works [2]-[5].

When humans are presented with the task of discriminating
between faces of identical twins they tend to make use of
subtle facial features, such as moles, scars and freckles [6].
Figure 1 shows a pair of identical twins with annotated
facial marks. The figure clearly shows that, whilst their facial
features may be difficult to distinguish, their facial mark
patterns differ vastly. Incorporating the detection of such
facial features into an FRS may increase the accuracy of
facial recognition. In particular, the benefits may be valuable
for facial recognition on twins.

This work will implement modern convolutional neural
networks (CNN) to recognize and detect facial marks. CNNs
are a type of neural network based on convolutional layers.
These convolutional layers pass images through a number
convolutional filters with trained weights, called kernels, in
order to extract key features from an image [7]. Figure 2
illustrates a single convolutional filter. The complexity of
CNN models differs vastly between architectures. Shallow
models can be implemented using only a few convolutional

Fig. 1. Identical twins with clearly distinguishable facial mark patterns
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Fig. 2. Illustration of a single convolutional filter. The kernel slides over the
tensor in order to extract a feature map. Taken from [7]

layers, whilst state-of-the-art architectures may incorporate
over one hundred layers.

In the context of this paper, recognition and detection of
facial marks refers to two distinct processes. Facial mark
recognition (FMR) refers to the ability of a system to de-
termine whether a small skin patch taken from a facial image
contains a facial mark. Facial mark detection (FMD) refers
to the ability of a systems to localize facial marks given a
full facial image. Detection will produce a list of coordinates
mapping detected facial marks on the image.

Using a dataset of facial images with annotated facial
marks, skin patches featuring facial marks are isolated [8].
Various FMR models are trained on those patches, and the
effectiveness of these models is compared.

Three different systems will be tried for the implementation



of FMD. One system will be an FMD implementation of
the previously mentioned FMR models. The other systems
implement state-of-the-art object detection architectures,
trained for facial mark detection. The effectiveness of the
different FMD systems will be compared.

The FMD systems will be implemented for facial recog-
nition by determining the similarity between detected facial
mark patterns. The FMD-based facial recognition will be
tested on subsets of the FRGCv2 dataset, and of the Twins
Days dataset [9]. The ability to discriminate between identities
using only FMD-based facial recognition will be analyzed.

Finally, the FMD systems will be integrated with a FaceNet
FRS, and the performance of fused facial recognition will
be tested on both datasets. In particular, the ability to
discriminate between the faces of twins will be analyzed,
since this is a task on which a standalone FRS performs poorly.

Concisely, this work will attempts to answer the following
research questions.

1) How effectively can skin patches featuring facial marks
be recognized using modern CNN architectures?

2) To what extend can facial marks be localized on a face
using object detection based on CNNs?

3) To what extend can facial mark detection based on
CNNSs be used to improve facial recognition?

The rest of the paper is organized as follows. Section II will
go over previous work related to the posed research questions.
Section III will identify and clarify the systems that will be
implemented for FMR, FMD, and facial recognition. Section
IV. will specify the experiments that will be executed and
further expands on the datasets used.

II. RELATED WORK

As discussed in the introduction, differentiating twins,
through biometric systems, has been a subject of interest in
previous research. Sun er al. [2] investigated the capabili-
ties of discriminating between identical twins using multiple
biometric systems, under which facial identification. Phillips
et al. [3] was the first to do in-depth research on facial
recognition on twins, introducing the Twins Days dataset.
Consequently, multiple studies have researched the application
of facial recognition systems on the Twins Days dataset, taking
into account a large number of covariates [4] [5]. These
studies have concluded that there is an increased difficulty
of differentiating identical twins, especially under non-ideal
conditions. Images from different days, under different lighting
conditions and of subjects wearing glasses pose such difficul-
ties. In their work, Biswas et al. [6] investigated the ability
of humans to discriminate between faces of identical twins.
In this work it has been shown that humans pay attention
to various biometric indicators, including moles, scars and
freckles, when differentiating identical twins.

Facial marks inhibit potential use as forensic evidence, and
the discriminatory power of facial marks has been analyzed
thoroughly [8]. Park and Jain have created a facial mark

detection system, making use of Laplacian of Gaussian (LoG)
blob detection [10]. Integrating this system into a facial recog-
nition system, Park and Jain have demonstrated to improve
facial recognition on a limited dataset. A more recent study
implementing facial mark detection with facial recognition has
shown the increased accuracy on a larger dataset as well [11].

The implementations described in [10] and [11] both make
use of the LoG method for blob detection. The LoG filter is
vulnerable to false positives, due to the non-uniform structure
of a face. In order to mitigate the false positives, the primary
facial features on the faces are masked. Masking may, how-
ever, mask potential facial marks as well, and manual masking
is labour intensive.

Current state-of-the-art object detection and image classi-
fication systems are dominated by convolutional neural net-
works (CNN). In [12] Shallow CNNs have been trained and
used for the recognition of facial marks. Zeinstra and Haasnoot
[12] design and train shallow CNNs to recognize facial marks
on patches from facial images. Facial marks can be recognized
with high accuracy using these models.

This work will further detail on facial mark recognition
using CNNs, and in particular broaden the scope to deeper
CNN architectures. In addition, it will focus on facial mark
detection and facial recognition. Facial recognition will be
analyzed using facial marks as a biometric modality on its
own, as well as fused with a facial recognition system.

III. METHODS

A. Recognition of facial marks
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Fig. 3. Pipeline for facial mark recognition. The model determines a
confidence value for each skin patch. Using a threshold, models are classified
as featuring a facial mark (True), or not (False)

Facial mark recognition (FMR) is the process of classifying
whether a skin patch does, or does not, contains a facial mark.
An FMR model will, given a skin patch, output a measure
of confidence, indicating whether the patch does or does not
feature a facial mark. FMR models will be trained and tested
on patches. These patches are images cropped from a facial
image. Figure 3 shows the process of FMR, Figure 5 and
Figure 6 show variations on a patch with a facial mark.

To determine the increase in FMR performance using
modern, complex, CNN architectures, first a baseline model
is established. This baseline model will be a shallow CNN
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Fig. 4. Architectures of a shallow CNN model (a) and a state-of-the-art CNN
model (b)

model. To demonstrate the contrast between the two different
models, Figure 4(a) shows the architecture of the shallow
baseline model, and Figure 4(b) shows the architecture of a
state-of-the-art CNN, Xception [13]. The shallow CNN will be
tested using both RGB as well as grayscale patches, examples
shown in Figure 6(a) and Figure 6(b) respectively.

With the shallow CNN model as a baseline, three different
modern CNN architectures are trained and tested for FMR:

1) MobileNetV2

2) ResNet50V2

3) Xception
ResNet50V2, Xception and MobileNetV2 are all state-of-the-
art CNNs for image classification [13]-[15]. MobileNetV2,
in particular, is chosen due to its focus on computational
efficiency. ResNet50V2 is chosen for its performance as well
as the fact that it can process images of down to 32 px in

size. Xception is chosen based on its superior performance
[13].

Next to the variety of models that is being tried, different
sizes of patches will be considered. Due to the considered
implementation of facial mark detection (FMD), which needs
to recognize regions of interest by scanning large patches,
and needs to recognize facial marks on small patches, a wide
range of sizes is considered. The sizes will range between 16
px and 128 px. Figure 5(a) through 5(d) shows facial mark
patches of various sizes.

When applying FMR models in an FMD system, facial
marks are not always located in the center of a skin patch. To
account for this, a subset of FMR models will be trained and

(a) 16 px (b) 32 px (c) 64 px (d) 128 px

Fig. 5. Patch featuring a facial mark in various sizes

(a) Default

(b) grayscale

(c) off-center (d) off-center

Fig. 6. Patch featuring a facial mark without augmentation (a), in grayscale
(b), and randomly off-center at 32 px (c) and 128 px (d)

tested with off-center facial mark patches. These off-center
facial marks are distributed randomly within a margin around
the center of the patch. Figure 6(c) and 6(d) show examples of
off-center facial mark patches at 32 px and 128 px respectively.

Since training modern CNN models requires tuning millions
of parameters, it can be computationally expensive and time
consuming. Furthermore, an extensive dataset is required to
fully train such models. To train models of existing architec-
tures more efficiently and with limited data, transfer learning
can be applied [16]. When applying transfer learning, the
parameters of models that have previously been trained on
a foreign dataset are transferred and used as a starting point
for a new model. To train the new model for its desired task,
the layers at the head (output) of the model are retrained on
the task-specific training dataset. After this, the model is fine-
tuned. During fine-tuning, the rest of the layers are retrained
as well, using a low learning rate as not to destroy the existing
network. To investigate the effectiveness of transfer learning
when training an FMR model, models are trained with and
without the use of transfer learning. The transferred parameters
used in these models have been trained on the ImageNet
database [17].

B. Detection of facial marks

Facial mark detection (FMD) is the process where, given
a facial image, the FMD system computes the locations of
the facial marks on that image. In this paper, two distinct
approaches are tried for implementing an FMD system.
Firstly, an implementation of an FMD system will be
designed based on the previously discussed facial mark
recognition (FMR) models. Secondly, two existing object
detection architectures will be trained and implemented for
the facial mark detection.

1) Using FMR models: Various approaches can be taken
to implement the FMR models for FMD. One of the most
trivial is a sliding window system. A window will scan over
the image using a fixed stride. Each window that is scanned



will be processed by the FMR model. The main downside to
this approach is the large number of sub-images that need
to be scanned. To illustrate, an image of size (800, 600),
scanned with a window of size (40, 40), using a stride of
20, will already yield 1131 sub-images to be scanned. At a
false positive rate of only 0.01 this will, on average, result in
11 false positives. This is a significant amount, considering
the FRGCv2 subset annotates an average of 5.4 facial marks
per image.

To reduce the amount of images that need to be scanned by
the FMR model, regions of interest (ROI) will first be detected,
by scanning with a larger window. The regions detected in the
ROI stage can subsequently be scanned by a model with a
smaller window, for finer detection. Multiple stages of ROI
scanning can be implemented to filter out more potential false
positives. Adding stages will, however, be potentially more
computationally expensive. An FMD system using three FMR
models, for three layers of detection, will be implemented.
Figure 7 shows the process of detection stage-by-stage.

(a) Stage 1

(b) Stage 2 (c) Stage 3

Fig. 7. Stages of sliding window facial mark detection. 128 px window (a),
32 px window (b), 16 px window (c)

Each stage in the sliding window system produces a feature
vector and a corresponding vector of confidences. Each
feature corresponds to the position of one window, scanned at
the stage, and each confidence being a measure of likelihood
that the window features a facial mark. For each stage, a
threshold is chosen, and the feature vector of each stage is
filtered by confidence. Filtering implies that each feature,
or window, with a confidence greater than the threshold, is
kept, while the other features are discarded. This results in
a feature vector of variable length where each feature has
a confidence greater than the threshold value. The output
of the system is the filtered feature vector of the last stage,
where each feature is represented by the center of the window.

2) Using object detection architectures: In addition to the
implementation based on the FMR models, existing state-of-
the-art CNN-based object detection models are trained and
tested. The facial mark annotations that have been used to
extract the skin patches can also be used to train object
detection systems. Instead of extracting patches, the models
will be trained on facial images where the facial marks have
been annotated by bounding boxes.

To compare performance, two different object detection

models will be implemented. EfficientDet is a highly efficient
object detection system, which is largely based on the Single
Shot Detector (SSD) [18], [19]. It is chosen for its fast
performance. The other system that will be implemented
uses the Faster R-CNN (FRCNN) architecture [20]. This
architecture is less efficient than the SSD architecture, but
may be more accurate.

Similarly to the sliding window approach, the EfficientDet
and FRCNN systems produce a feature vector, and a vector
of corresponding confidences. These features correspond to
bounding boxes around detected facial marks. A single thresh-
old is chosen and the feature vector is filtered by confidence.
From the filtered feature vector, the center of each bounding
box is determined, and a feature vector of box-centers is
constructed. The output of the systems is a variable length
feature vector, where each feature is the center of a bounding
box.

C. Facial recognition

Using the aforementioned FMD systems, facial mark
patterns can be extracted from facial images. A score can be
assigned to the similarity between the facial mark patterns
from a pair of facial images. The score is a measure of
confidence that the facial images correspond to the same
subject. Conventional facial recognition systems (FRS), such
as FaceNet, extract key facial features in order to identify a
subject. The FMD-based system and the FaceNet FRS can be
combined for improved facial recognition. Figure 8 shows the
pipeline for a combined implementation. The systems will
label a pair of faces as being from the same subject (True),
or being from different subjects (False).

1) Facial marks score: The feature vector from the FMD
system contains the location of the center of each detection. In
order to determine the similarity between a pair of facial mark
patterns, a score based on overlapping facial marks is calcu-
lated. To determine overlap, each facial mark is represented
by a circular region around the center of the detection. Two
facial marks are said to overlap if their regions overlap. In
other words, two facial marks overlap if the distance between
the marks is less than the diameter of the region. Each mark
can only be counted to overlap once. Consider p, the amount
of overlapping pairs. IV the sum of the amount of marks from
each image

N = N; + Ny

. then the overlap score s is defined as

2-p

§=—

N
If N = 0, then the score is defined as s = 1. This way
faces with no facial marks also have a positive correlation.
Using this method of scoring, s = 1 corresponds to a perfect

match, and s = 0 corresponds to a perfect mismatch.
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Facial recognition combining facial mark detection (FMD-based system) and facial feature extraction (FaceNet FRS). From the two facial mark

patterns, an overlap score, indicating similarity, is determined. From the FaceNet embeddings, the euclidean distance is calculated. The two scores are

normalized and fused

2) FaceNet distance: When using FaceNet for facial
recognition, all faces will be mapped to an embedding of 128
features. To determine the similarity between the faces, the
euclidean distance between two embeddings is calculated. A
lower distance corresponds to greater similarity.

3) Fusing the scores: To normalize a set of overlap scores
and distances, adaptive z-score normalization is applied to
each set [21]. Thereafter, the scores are fused using a weighted
sum. A set of normalized scores is defined as
X—p

o

7 =

Where X is the set of scores or distances, j is the mean of the
set and o is the standard deviation of the set. Consider a set
of overlap scores S and FaceNet distances D. If Zg denotes
the standard scores of S and Zp denotes the standard scores
of D, then the fused score S is defined as

Sc=Zs—a-Zp where a>0

Where « is a factor weighing the influences of the two sets.

Since the performance of the FaceNet FRS varies among
different sets of subjects (such as twin and non-twin popula-
tions), the weights to fuse the scores are chosen specific to
the set [22]. This implies that for a test set where FaceNet
performance is high, a greater value for « is chosen, such
that Zp has a greater weight. In cases where FaceNet is less
accurate « is lowered for better results. It is worth noting that
choosing a non-ideal value for o may result in an accuracy
of the combined system that is lower than the accuracy of a
standalone system.

IV. EXPERIMENTS

A. Datasets and preprocessing

For training both the facial mark recognition (FMR) and
facial mark detection (FMD) models, a subset of the FRGCv2

dataset with annotated facial marks is used [8]. This dataset
contains 12306 images of 568 different subjects. The dataset
was split up into training, testing and validation subsets. The
training set contains 7925 images of the first 279 subjects,
the validation set contains 1982 images of next 115 subjects
and the test set contains 2400 images of the last 174 subjects.
The Twins Days dataset is only used for testing, no models
are trained on this dataset. Only the images in the Twins
Days dataset with forward-facing subjects have been used.
The resulting Twins Days subset contains a total of 7422
images featuring 435 different subjects.

1) Preprocessing for FMR: Using the facial mark
annotations, patches with facial marks are extracted from
the FRGCv2 images. To train the FMR models, the models
need to be trained on patches that are positive (featuring
a facial mark), as well as negative (featuring no facial
mark). Patches featuring no facial marks must therefor be
extracted as well. To create a balanced dataset, the amount of
patches with facial marks must be similar to the amount of
patches without facial marks. Since, on average, an FRGCv2
image contains 5.4 annotated facial marks, 5 patches without
facial marks were sourced from each image. These patches
were selected by picking 5 semi-random locations on
each image, and extracting patches around each location.
The locations are picked such that the semi-random patches
do not overlap, and do not include any annotated facial marks.

2) Preprocessing for FMD: The images in the FRGCv2
dataset are transformed such that the right and left pupils
are mapped to fixed locations at (200, 250) and (400, 250)
respectively. The images are cropped to the size of (800, 600).
The images in the Twins Days subset are transformed using a
dlib face alignment implementation [23] and are also cropped
to size (800, 600).



The EfficientDet and FRCNN training processes implement
an additional number of random data augmentation methods.
For both object detection models the data augmentation meth-
ods used are as follows.

o Horizontal flip (over the width of the image)
o Adjusted hue

o Adjusted contrast

o Adjusted saturation

o Scaling (factor between 0.6 and 1.3)

These methods are implemented because the detection mod-
els train on a limited amount of data. The number of facial
images is less than the number of facial mark patches. If no
data augmentation is used, a model may overfit to the training
data, causing it to only be effective on the training subset.

B. Recognition of facial marks

Instances of the shallow CNN model are trained on RGB
and grayscale patches at 23, 32 and 64 px. Instances of the
modern CNN models are trained at 16, 32, 64 and 128 px,
varying the use of transfer learning and off-center facial
marks. Patches of 16 px will be up-scaled to 32 px using
bilinear interpolation, since 32 px is the minimum size
MobileNetV2 and ResNet50V2 can process.

ROC curves will be used in order to visualize and analyze
the trained FMR models. An ROC curve plots the true positive
rate (TPR) of a system, against the false positive rate (FPR).
On the ROC curve, the equal error rate (EER) can be found.
On this point the rate of false positives equals the rate of false
negatives, a lower EER indicates a better performing system.

C. Detection of facial marks

For the sliding window FMD implementation, FMR models
of the following three sizes are used:

o 128 px
o 32 pPX
e 16 pX

The stride of the models is 64, 16 and 8 px respectively.
The first two models are trained using off-center facial mark
patches. The third model is trained using centered facial mark
patches. The models implement the MobileNetV2 architecture.

For filtering the output feature vector of the EfficientDet and
FRCNN systems, a value of 0.05 is chosen. For the sliding
window system 0.15, 0.90 and 0.80 are chosen for the first,
second and final stage respectively. The threshold values were
chosen based on empirical results, the values resulted in a
satisfactory high amount of true positives, and an acceptable
amount of false positives on each system.

The sliding window, EfficientDet and FRCNN system will
each be used for facial mark detection on all facial images in
the FRGCv2 test subset and the Twins Days subset.

D. Facial recognition

For the FaceNet facial recognition system (FRS), two pre-
trained models based on the Inception-ResNetv1 architecture
are implemented [24]. One of those models is trained on
the CASIA-Webface dataset, and the other is trained on the
VGGFace2 dataset [25], [26]. Each models will be used to
determine the embeddings of the faces in the FRGCv2 test
subset and the Twins Days subset. The euclidean distance
between each embedding in a subset will be calculated.

Using the results from the FMD systems, the overlap score
of each pair of facial mark patterns in a subset will be
determined. The size of the regions representing the facial
marks is set to be 32 px.

From the embedding distances and overlap scores, the
fused scores will be calculated. For this calculation, a value
for weighing factor o« must be picked. Through empirical
observation, a factor of @ = 5 was deemed most effective,
and will be used.

To analyze the ability of the each system to differentiate
between twins, a separate set of embedding distances,
overlap scores and fused scores is constructed. In this set,
only the subjects from the Twins Days dataset with a twin
will be considered. This set will only compare facial pairs
corresponding to the same subject (matching pair) and
corresponding to a subject and the subject’s twin sibling
(non-matching pair). Since the FaceNet FRS performs poorly
on this task, another value for « is chosen. Through empirical
observation, a factor of @« = 1 is found to be effective, and
will be used.

V. RESULTS AND DISCUSSION
A. Recognition of facial marks

In Table I and Figure 9 the results on facial mark recognition
(FMR) performance using the shallow CNN model and mod-
ern CNN models are shown by their equal error rate (EER)
and ROC curves. Form the data it becomes clear that the
complex modern CNN models have a significantly lower EER
than the shallow CNN models. This behaviour was observed
to be consistent among patches of all sizes. Furthermore Table
I shows the difference between using grayscale and RGB
patches for shallow CNN models. No consistent difference in
performance was observed when comparing the RGB models
to grayscale models.

TABLE I. Comparing modern CNN and shallow CNN models for facial
mark recognition

Model EER

RGB | Grayscale
Shallow (23 px) 0.030 | 0.035
Shallow (32 px) 0.031 | 0.028
Shallow (64 px) 0.029 | 0.028
MobileNetV2 (32 px) | 0.019 | N/A
ResNet50V2 (32 px) 0.019 | N/A
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Fig. 9. Comparing modern CNN and shallow CNN models for facial mark
recognition

The effect of using transfer learning to train the modern
CNN models is plotted in Figure 10. No significant difference
in performance between the models is observed. However,
when training the models using transfer learning, the models
tended to converge to their best accuracy with less training
than the models that did not use transfer learning. Moreover,
the models that were trained using transfer learning more
consistently converged to their best accuracy. The models
trained from scratch were more likely to plateau at lower
accuracies.
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Fig. 10. Modern CNN models trained With transfer learning (solid) and
without transfer learning (dotted)

In Figure 11 the results of various FMR models tested on
patches with off-center marks are shown. Figure 11(a) and
Figure 11(b) show the results at a patch size of 32 px and 16
px respectively. In Figure 11(a) a significant difference can be
observed, the models trained with off-center marks perform
better than the models trained on centered marks. On the
contrary, in Figure 11(b), no significant difference is observed.

These results indicate that training using off-center facial
mark patches can be beneficial to a model, depending on the
patch size. For patches of at least 32 px, there is a visible
benefit. For smaller patch sizes there seems to be little benefit.
The difference in effect can be attributed to, firstly, the limited
space for randomization on a 16 px image. Secondly, the fact
that the annotations of the marks do not, in all cases, point to
the pixels at the center of the facial mark. On small patches
this results in inherent off-center mark locations.
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Fig. 11. Modern CNN model performance on off-center facial marks.
Models trained on off-center facial marks (solid) and models trained on
centered facial marks (dotted)

Figure 12 shows the performance of the modern CNN
models on a relatively large patch size. No significant dif-
ference in performance can be made out between the different
models. With this result in mind, the MobileNetV2 model can
be considered the best option for FMR as it has the most
lightweight architecture. This also indicates that there may
be potential for even more lightweight architectures to attain
similar performance.
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Fig. 12. Comparing modern CNN model performance for facial mark
recognition on larger patches

Conclusively, from the results on FMR models, it is clear
that the modern CNNs outperform the shallow CNN. It is
noted that the shallow model tested in this paper performed
poorer than the shallow model used in the work by Zeinstra



and Haasnoot, in which the best result was an EER of 0.279 for
23 px grayscale patches [12]. Nevertheless the modern CNN
models in this paper consistently outperform those results as
well, at an EER of under 0.020. FMR using modern CNN
architectures attains state-of-the-art accuracy.

B. Detection of facial marks

Figure 13 shows images from the FRGCv2 subset where
facial mark detection (FMD) has been performed on, by
the sliding window system. In 13(a) many facial marks are
detected, and in 13(b) few facial marks are detected. The
figure illustrates the ability of the system to detect facial mark
patterns that are trivially distinguishable and specific to the
subjects. Furthermore, figure 14 shows detections by each
individual FMD system. Although differences can be observed
among the systems, all systems generally agree on prominent
facial marks.

(a) Many detected marks (b) Few detected marks

Fig. 13. Facial images with annotated detected facial marks. Subject (a) has
many facial marks, subject (b) has fewer facial marks

(c) EfficientDet

(a) Sliding window (b) FRCNN

Fig. 14. Detected facial marks using different architectures

The difference between the three systems becomes apparent
when the detection time is taken into account. Table II
compares the average time each system takes to process one
face. The averages have been taken from the detection time
of each images in the FRGCv2 test subset. The models were
run on an Intel Core 17-7700HQ CPU. No GPU acceleration
has been implemented.

It should be noted that that the speed of FRCNN and
EfficientDet was observed to be relatively consistent, the
processing time per face did not vary by more than a tenth

of a second on any face. In contrast, the speed of the sliding
window system was more variable, due to the nature of the
3-stage detection. The detection time for the sliding window
model has been observed to vary between 1.0 and 2.5 seconds,
with the average time being 1.3 seconds.

TABLE II. Comparing speed of different facial mark detection architectures
Architecture Average time [s]
Sliding window | 1.3
FRCNN 1.8
EfficientDet 0.4

The FMD results on the FRGCv2 images are observed to
be more consistent and effective than the detections on the
Twins Days subset. This is in part because the FRGCv2 subset
contains images taken in more consistent lighting conditions
than the Twins Days images. To illustrate, Figure 15 shows
detections on the same subject from the Twins Days subset,
under different lighting conditions. It can be seen that the
difference in lighting affects the color of the face notably. This
complicates consistent detection of facial marks. Furthermore,
the FMD systems have been trained on FRGCv2 training
data, which benefits the FRGCv2 test subset. Nevertheless, the
systems still successfully detect most prominent facial marks
on the Twins Days subset.

il

Varying lighting conditions on the Twins Days dataset hinders facial
mark detection

d \

Fig. 15.

C. Facial recognition

1) Using facial marks: Table III shows the EERs for
FMD-based facial recognition, using only overlap scores of
detected facial mark patterns. The corresponding ROC curves
are plotted in Figure 16. Figure 16(a) shows the results on the
FRGCv2 test subset. Figure 16(b) shows the results for the
Twins Days subset. Finally, Figure 16(c) shows the results for
twin differentiation.

TABLEIII.  Facial recognition performance using only facial mark detection-
based overlap score

Facial mark EER
detection architecture . Twin
FRGCv2 | Twins Days Differentiation
Sliding window 0.059 0.175 0.203
FRCNN 0.066 0.182 0.223
EfficientDet 0.106 0.239 0.268
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Fig. 16. Facial recognition performance using only facial mark detection-based overlap scores

Figure 16 and Table III show that FMD-based facial
recognition performs significantly better on the FRGCv2
subset than on the Twins Days subset. This is consistent
with the conclusion drawn regarding FMD performance.
The performance on the Twins Days subset is similar to the
performance for twin differentiation. This suggests that twin
subjects can be distinguished by detected facial mark patterns
with the same effectiveness as non-twin subjects.

The results also indicate that the EfficientDet system
performs worse than the FRCNN and sliding window system.
This could indicate that the EfficientDet architecture is less
effective for FMD than the other architectures. However, it
could also be a consequence of suboptimal parameters for
the system, such as the feature vector threshold. Since the
systems have not been thoroughly optimized, no definitive
conclusion on this can be drawn.

Figure 16 shows that on all plots, and especially visible in
Figure 16(b) and 16(c), the ROC curves initially converge to a
true positive rate (TPR) value less than 1.0. After plateauing,
yet before reaching a false positive rate (FPR) of 1.0, the
curves linearly approach (1.0,1.0). The linear approach is an
interpolated line between the two final data points. To examine
why this behaviour is observed Figure 17 shows a histogram
visualizing the overlap scores for the Twins Days dataset.

The histogram shows that the bin containing a score of
0 contains a large number of matching and non-matching
pairs. These are instances where facial pairs do not have any
overlapping marks. In the case of matching pairs, this error
may be due to poor FMD performance, a change in pose,
changing lighting conditions, or misalignment of the faces.
When the threshold of the system reaches 0 on the ROC
curve, all pairs with score 0 will be labelled positive at once.
This is the cause for the remarkable ROC curves encountered
in Figure 16.
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Facial mark overlap score

Fig. 17. Facial mark overlap scores for matching and non-matching facial
pairs from Twins Days subset

2) Combining FMD and FaceNet: The effects of fusing
the FMD-based overlap scores with FaceNet’s embedding
distances are shown in Table IV, Table V and Table VI. In
these results model A denotes the FaceNet model trained on
the VGGFace2 dataset, and model B denotes the FaceNet
model trained on the CASIA-WebFace dataset.

TABLE IV. Effect of score fusion on facial recognition performance for
FRGCvV2 images

Facial mark detecton | EER

architecture Model A | Model B
Sliding window 0.0033 0.0014
FRCNN 0.0032 0.0012
EfficientDet 0.0038 0.0019
Without FMD 0.0065 0.0034

Results in Table IV show that on the FRGCv2 test subset,
the EER of facial recognition can be decreased by up to 58%,
in the case of the sliding window method. This is a remarkable
decrease, especially considering the low EER the standalone
FaceNet FRS already features. Although not as effective as the
other two FMD systems, the decrease in EER is still significant
when using the EfficientDet model, at 42% and 44% for model



A and model B respectively. These results do confirm the
ability to improve FRS performance using FMD-based facial
recognition.

TABLE V. Effect of score fusion on facial recognition performance for
Twins Days images

Facial mark detection | EER

architecture Model A | Model B
Sliding window 0.0093 0.0099
FRCNN 0.0093 0.0101
EfficientDet 0.0103 0.0111
Without FMD 0.0115 0.0123

The increase in facial recognition performance for the Twins
Days subset is more subtle, yet not insignificant. In this case
the EER is decreased by up to 19% using the sliding window
system. In the results where the faster EfficientDet system is
implemented, the EER for the Twins Days subsets decreased
by 10% for both FaceNet models. The decreased improvement
on the Twins Days dataset, relative to the FRGCv2 dataset, is
in line with the results in Figure 16.

TABLE VI. Effect of score fusion on facial recognition performance for
twin differentiation

Facial mark detection | EER

architecture Model A | Model B

Sliding window 0.196 0.193

FRCNN 0.196 0.194

EfficientDet 0.237 0.236

Without FMD 0.299 0.300

The increase in performance for twin differentiation can
be seen in Table VI and in Figure 18. In Figure 18 model B
has been used as FaceNet model. The baseline system, using
FaceNet as a standalone FRS, is labelled ”No FM”. In both
the table and the figure a significant increase in performance
is observed. As indicated in other works, the standalone FRS
struggles to distinguish twins [2]-[5]. Since the FMD-based
systems do not appear to suffer from this issue, score
fusion contributes a significant increase in performance.
The improved performance decreases the EER by 35% and
20% using the sliding window and EfficientDet system
respectively. This confirms that FMD-based facial recognition
can be used effectively for improved twin differentiation.

In all of the results on facial recognition, it has been ob-
served that combining the FaceNet FRS with the FMD-based
systems leads to improved facial recognition performance. The
sliding window and FRCNN systems consistently show greater
improvements than the EfficientDet system, and improvements
on the FRGCv2 subset is the most drastic. This is in line with
the difference in performance as seen in Figure 16. The results
give a clear indication that FMD-based facial recognition
performs as well on twins as it does on unrelated subjects.
Because of this, the FMD-based systems can significantly
improve twin differentiation performance.
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Fig. 18. Twin differentiation with, and without, score fusion. The No FM
curve uses a standalone FRS, the other curves combine the FRS with an
FMD-based system

VI. CONCLUSION

Using modern CNN architectures, the accuracy of facial
mark recognition has been further advanced. The more com-
plex CNNs outperform shallow CNNs when it comes to facial
mark recognition. Using MobileNetV2, an EER of 0.019 for
patches of 32 px was demonstrated.

Using a sliding window method, as well as other object
detection architectures, facial marks could consistently and
accurately be detected. Using these systems, the false positive
issue, which hindered Laplacian of Gaussian facial mark
detection, was successfully mitigated. Using CNNs for facial
mark detection appears to be the state-of-the-art approach.

This is confirmed by the performance of FMD-based facial
recognition, when combined with an existing facial recognition
system. The EER for facial recognition has been reduced by
up to 58% on the FRGCv2 test subset, and up to 19% on the
Twins Days subset.

An equally remarkable result is the improved performance
on twin differentiation. Facial recognition performance of
an FMD-based system was not affected by the similarity
between twin siblings. A decrease in EER of up to 35%
shows that an FMD-based system is an effective addition to
a facial recognition system, especially in the case of twin
differentiation.

VII. FUTURE WORK

In the implementation of the FMD-based facial recognition
systems, certain parameters have been decided upon through
empirical results. This paper has not looked into optimizing
said parameters, in order to optimize the performance of the
FMD systems. Such parameters include:

o Feature vector thresholds
o Facial mark pattern matching method
e Score fusion method



Further research into the optimization of these, and perhaps
other, parameters, will further improve facial recognition
through facial mark detection.

This paper has implemented facial mark detection on
high-resolution facial images, using general object detection
systems. Research into the feasibility of implementing facial
mark detection on low-resolution images, and using optimized
detection models, could result in faster and more widely
applicable facial mark detection.
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