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Abstract

E-commerce business helps in creating trade but it heavily relies on logistical
support in order to succeed. E-fulfillment, which is a commonly used term for a
segment of logistics in e-commerce, is one of the biggest challenges in this sector.
The main focus of research in this field is on optimizing the picking process, as this
is the most labor intensive part. However, in order to maximize the performance
of the e-fulfillment process as a whole, the focus should be on the distribution of
the workload throughout the entire network.

In this study, we propose an approach to release pick batches to the warehouse
of an e-fulfillment center, that takes into account the workload throughout the
entire process. This approach is based on methods from queueing theory and
involves some linear programming as well. In order to investigate whether the
proposed approach performs better than the current approach, a mathematical
model is formulated and for validation purposes a simulation model was created
as well. The performance of the current and the proposed approach are assessed
on the average throughput, sojourn time and work in progress. The results of
the simulation model show that, with a significance level of 1%, the proposed
approach performs significantly better than the current approach. However, the
formulated mathematical model turns out to capture the logic behind the processes
in the warehouse insu�ciently enough to accurately determine the performance
measures. Further research is required to adjust the mathematical model such
that the gap between the model and practice becomes smaller.

Keywords: queueing network, work in progress, throughput, sojourn time, pick
batch, batch releases
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Executive summary

This research addresses the workload allocation problem in one of the warehouses
of the online retailer bol.com. It is investigated how the allocation of the workload
in the warehouse can be done automatically. The workload in the warehouse
is controlled by the release of pick batches. By means of theoretical research,
an approach for batch releases and a mathematical model are formulated. In
addition, a simulation model is created for validation purposes. The performance
of the proposed approach is tested against the current batch release approach.

Problem formulation

Currently, the workload allocation is done manually at bol.com by the control
room. The people in the control room monitor the picking and packing areas and
release new pick batches to the system. They determine how many pick batches
are released and at what time. In order to help the control room in the decision-
making process, the company created WES. This tool is created to provide a pick
batch advice based on the number of operators and the work in progress levels at
the packing stations, among some additional information. However, problems of
this tool are that it can only be used for a part of the outbound process and that
the generated batch advice is frequently larger than the number of waiting orders.
There is clearly a need for better batching advice, which takes into consideration
the workload allocation throughout the entire outbound process in the warehouse.
The main research question is formulated as follows:

“How should the workload at the di↵erent work stations in the warehouse be al-
located such that the overall throughput is maximized and the operating costs are
minimized, while maintaining the order fulfillment score?”

Approach and methods

The outbound process in the warehouse is modelled as a multi-class open queueing
network of multi-server queues. The workload in the warehouse is controlled by
the release of pick batches to the system with a designated packing station, which
from a queueing theory perspective corresponds to the arrival rates. These are
thus the variables to be optimized. Essentially, the goal is to optimize the arrival
rate of the pick batches for each type of packing station such that the throughput
and utilization rate are maximized.
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Working backwards through the queuing network of the warehouse, the bottleneck
work center is found and the maximum aggregate arrival rate of pick batches
is determined for a given utilization rate. If the bottleneck is not the packing
center, it must be determined how the maximum aggregate arrival rate should be
distributed over the di↵erent types of packing stations. An LP is formulated to
make this decision.

Given the arrival rates, the expected number of pick batches in the system is
determined. If the expected number of pick batches in the system is higher than
the system capacity, above-described approach is repeated with a lower utilization
rate until the arrival rates have been found that do not exceed the system capacity.

A very important assumption here is that there are always enough orders available
to be released to the system for each type of packing station. This is achieved by
reassigning orders to di↵erent packing stations and releasing orders that do not
necessarily need to be shipped today but may also be shipped later during the
week. Another LP is formulated to take care of this.

The performance of the proposed approach is tested against the current batch
release approach by comparing the throughput, sojourn time, and work in progress
levels as determined by the mathematical model and simulation model. T-tests
are performed to validate the models and to determine whether the proposed
approach performs significantly better than the current approach.

Results

In order to validate the simulation model, its results are compared to historical
data of the company. Based on the results of the t-tests, the simulation model is
regarded as an acceptable representation of the actual process in the warehouse.
The mathematical model on the other hand, does not represent the actual process
accurately enough according to the results of the t-tests. Further research should
be done to diminish the gap between the model and reality.

Furthermore, the results show that the proposed approach for releasing pick
batches performs significantly better than the current approach. The proposed
approach results in lower and more constant work in progress levels such that
the available capacity can be used more e�ciently. Besides that, an increase in
throughput of approximately 17% during the peak period and approximately 6%
outside the peak period is expected with the proposed approach. As a result,
more customer orders can be processed by the end of the day or the number of
operators can be reduced. This also means that the company could reduce the in-
terventions that put a break on the incoming customer orders. Examples of these
interventions include shutting down particular shops and postponing the delivery
date. Consequently, more customer orders can be accepted and fulfilled.
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Limitations and recommendations

Both the simulation model and the mathematical model are a simplification of
reality. A limitation is therefore that the models do not fully capture the process
in the warehouse. Besides that, the models work with service time distributions
of pick batches and assume that each pick batch for a designated packing station
is of equal size, whereas in reality this varies a lot throughout the day and the
service times are highly dependent on the number of items in a pick batch. For
further research it is recommended to experiment with service time distributions
that are dependent on the number of items in a pick batch and to make the sizes
of the pick batches stochastic. In addition, it is recommended to research how the
discrepancies between the models and reality can be further reduced.

The company is recommended to start researching how the service time distribu-
tions can be determined more accurately. After that, the logic of the proposed
approach of releasing pick batches in a more timely and balanced manner can be
implemented. The next step is to incorporate the logic of reassigning orders to
di↵erent packing stations in order to automate this process as well.

At last, an idea for future research is to investigate how the same logic could be
applied to a warehouse in which pick batches are created and coordinated from
multiple picking areas. This is exactly what will happen in the Bol.com Fulfillment
Center 2, which is one of the newest warehouses of the company.
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Chapter 1

Introduction

All around the world e-commerce is expanding rapidly and has become an impor-
tant driving force for economic development [36]. In 2016, there were 1.66 billion
digital buyers who accounted for a global sales amount of 1.85 trillion US dollars.
It is expected that the number of buyers will increase to 2.14 billion people with
a projected revenue of 4.93 trillion US dollars in 2021 [32, 33].

E-commerce business helps in creating trade but it heavily relies on logistical
support in order to succeed. Before placing an order, customers not only evaluate
the product but also the delivery service. A high quality delivery service results
in a satisfied customer experience, which can boost retention and consequently
improve profits. It is all about getting the product to the customer at the right
place, time, and cost [15]. Therefore, logistics has become the competitive element
that could make the di↵erence for online retailers.

A commonly used term for a segment of the logistics in e-commerce is e-fulfillment,
which includes the picking, packing, and shipping of online customer orders [34].
A lot of research regarding e-fulfillment is focused on optimizing the order picking
process, as this is the most labor intensive part. This also holds for bol.com,
where multiple optimization projects have already been done in this field and
several employees are continuously looking for further improvement.

However, changes in one part of the process could have a significant impact on
another part. If for example the picking process has been improved and as a result
the picking speed has increased, this means that the arrival rate at the sorting and
packing centers also increases. The question is whether the sorting and packing
centers have enough capacity to handle this increased arrival rate or that this will
result in an enormous queue of items that are waiting to be sorted and packed. In
order to prevent this and to maximize the throughput of the entire network, the
workload allocation problem should be optimized simultaneously for the di↵erent
work centers.
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CHAPTER 1. INTRODUCTION 2

Currently, the workload allocation is done manually at bol.com. In this research
project, it is therefore investigated how the allocation of the workload at the dif-
ferent work centers in the warehouse can be automated in such a manner that
the overall throughput is maximized. In Chapter 2, background information is
provided about the company bol.com and the logistical process in the warehouse.
The problem statement is presented in Chapter 3. Next, a literature review is
given in Chapter 4. A model description can be found in Chapter 5, followed by
a mathematical formulation in Chapter 6. The solution approach and experimen-
tal set up are described in Chapter 7. The results are presented in Chapter 8.
Finally, the limitations and recommendations can be found in Chapter 9 and the
conclusions are presented in Chapter 10.



Chapter 2

Background information

The previous chapter provided a brief introduction to this research project. In
this chapter some background information is provided in order to obtain a better
understanding of the research environment. First, some background information
about the company bol.com, at which the research takes place, is given in Section
2.1. This is followed by an overview of the logistical process at bol.com in Section
2.2. The chapter closes with a deep dive into the outbound process of the bol.com
fulfillment center in Section 2.3.

2.1 Introduction to bol.com

In 1998 the German company Bertelsmann A.G. announced that they would start
a global electronic bookstore with the working title “Books OnLine”. One year
later, the company launched bol.com in the Netherlands, since bol.nl was already
taken by another company, that was not willing to sell the domain name. It
was the first online bookseller in the Netherlands with an assortment of 140,000
Dutch books. Soon after, the assortment was expanded with CD’s and later also
with movies and television series. In 2003 Weltbild, Holtzbrinck Networkx and
T-Online Venture Fund took over bol.com from Bertelsmann and started selling
games and software as well. After that, the assortment kept expanding and it still
is. From 2010, bol.com also started serving the Flemish part of Belgium. In the
same year, director Daniel Ropers visited Silicon Valley and came back with the
idea to become an open platform, such that third parties can sell their products
through bol.com as well. This idea became reality in 2011. The company changed
from an online retailer into an online retail platform. In 2012, the company was
taken over by Ahold, who merged with Delhaize in 2016 and is now known as
Ahold Delhaize. This merger created the opportunity for bol.com to expand to
the French part of Belgium as well. [30]

3



CHAPTER 2. BACKGROUND INFORMATION 4

Bol.com o↵ers over twenty million products from four di↵erent sources:

1. Bol.com products, which are purchased by bol.com from their suppliers,
stored in one of the warehouses and sent to the customers on order.

2. Plaza products, which are products from partners who use the bol.com web-
shop to sell their products but store and distribute the products themselves.

3. Verzenden via bol.com (Vvb) products, which are products from partners
who use the bol.com webshop to sell their products, store the products
themselves, and outsource the distribution of their products to bol.com. The
partner brings the ordered packages to a collection point and then bol.com
takes care of the distribution through their contracted transport carriers.

4. Logistics via bol.com (Lvb) products, which are products from partners who
use the bol.com webshop to sell their products and outsource the storage
and distribution of their products to bol.com. This process is similar to the
process of bol.com products, except for the fact that the Lvb partner remains
the product owner and decides how many items are sent to the warehouses
of bol.com.

Daily approximately 200,000 items are distributed from the warehouses to cus-
tomers in the Netherlands and Belgium. In this report an item is defined as a
single physical unit of an international article number (EAN). Right now, bol.com
operates from six di↵erent warehouses of which the bol.com fulfillment center
(BFC ) in Waalwijk is the largest and distributes 40%-50% of the total amount of
distributed items. This means that on average around 90,000 items are distributed
from BFC. In peak periods in the months November and December, this amount
can be 2.5 times as large. The design of the warehouse was based on the demand
during peak periods, which means that the stock capacity of BFC is 8.5 million
items. Currently, a second bol.com fulfillment center (BFC2) is being built next
to BFC. It is expected that BFC2 starts operating in April 2021.

2.2 Logistical process at bol.com

The logistical process at bol.com can be described as follows. The products of
bol.com suppliers and its Lvb partners arrive at the warehouse. The inbound
process starts, which includes the unloading, receiving and put away of all items.
Next, the items are kept in stock until they are needed to fulfill a customer order.
In that case, the outbound process starts, which includes picking and packing such
that the items are ready for transport. Finally, the items are distributed to the
customers. This step is outsourced to several transport carriers. If the customer is
unsatisfied with an item, it can be sent back with a transport carrier as well. There
is one warehouse that receives and processes the returned items, namely bol.com
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retour center (BRC ). Therefore the return flow is not part of each warehouse. In
Figure 2.1, a simplified overview is given of the logistical process.

Figure 2.1: Simplified overview of the logistical process

As mentioned before, bol.com has six di↵erent warehouses and a seventh is cur-
rently being built. The current warehouses are the following:

1. BFC is the most automated warehouse, which stores small to medium size
items that fit into totes. A tote is a blue bin used by an order picker to
temporarily store the items of a pick batch being collected during a pick
tour, and to transport items through the warehouse. Bol.com is the owner
of this warehouse but the operations are outsourced to Ingram Micro.

2. Centraal Broekhuis is a warehouse that is used by other companies than
bol.com as well. Most of the books, CDs and DVDs of bol.com are dis-
tributed from here.

3. Veerweg is the first warehouse that bol.com opened when they expanded
their assortment with other products than those stored at Centraal Broekhuis.
Small to large size items are stored here. Bol.com leases this building and,
similar to BFC, the operations are outsourced to Ingram Micro.

4. BFC XL stores the extra large products of bol.com, such as dish washers
and fridges.

5. Amsterdam Hub is a small distribution centre, which is used for same-day
deliveries.

6. BRC is the warehouse that processes all items returned by customers.

In this research project the focus is put on BFC. Therefore, the information in the
remainder of this report is only based on BFC and does not necessarily hold for
the other warehouses too.
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2.3 Outbound process BFC

The outbound process of BFC includes the batching, picking and packing of orders,
such that they are ready for delivery by the transport carriers. As bol.com has
multiple warehouses, it could be the case that a customer order must be fulfilled
from multiple warehouses. In this report an order is therefore defined as the
items of one customer order that are fulfilled from BFC. Besides that, bol.com
distinguishes between mono and multi orders. A mono order is an order consisting
of a single item. A multi order is an order consisting of more than one item. Quick
reminder, an item is defined as a single physical unit of an international article
number (EAN), so for example an order of two identical pens would be considered
a multi order.

The outbound process of mono orders consists of three steps: batching, picking
and packing. The outbound process of multi orders is similar but includes a
sorting operation before packing. Currently, the process is driven by the packing
operation. As di↵erent kinds of products require di↵erent kinds of packaging, BFC
has di↵erent types of packaging lines. For example, some items can be packed by
an automatic carton wrapper, whereas others require manual packing. These
di↵erent packaging lines are called outbound lines. An overview of the di↵erent
outbound lines of the mono and multi orders is given in Table 2.1.

Outbound line Name Description

101 Mono High Risk High valued items
102 Mono Manual Value Added

Service
Including giftwrap or wish-
card

103 Mono Manual Regular Requiring manual boxing
104 Mono Smartmailer Small mailbox items
105 Mono Cartonwrap Allowed to be mechanically

packed
106 Multi High Risk High valued items
107 Multi Manual Value Added

Service
Including giftwrap or wish-
card

108 Multi Manual Regular Requiring manual boxing
109 Multi Automatic Sorting Allowed to be mechanically

sorted and packed

Table 2.1: Overview of outbound lines

Each of the outbound lines has a specific number and name. The items are classi-
fied based on their weight, volume and characteristics such as flammability, sharp-
ness, or fragility. Given the classification of an item, it can then be assigned to
a specific outbound line. In some cases, items can be processed on multiple out-
bound lines. An item that is ordinarily assigned to outbound line 105, could also
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be transferred to outbound line 103 in case it gets too busy at outbound line 105
for example.

The control room is the department that is responsible for monitoring the out-
bound process. They need to make sure that the workload is spread over the
di↵erent outbound lines and that at the end of the day the fulfillment score has
been reached. The fulfillment score is defined as the percentage of orders delivered
in time at the assigned transport carrier. The main task of the control room, in
order to fulfil these responsibilities, is to determine how many orders should be
batched and released for picking. This decision is based on the capacity of the
outbound lines and presented in number of orders per outbound line. The control
room needs to make this decision several times per day. There is no fixed time
schedule for the release of new pick batches. It is up to the control room to keep
track of when the capacity of the outbound lines allows for a new release of orders,
and to determine how many new pick batches will then be released into the system
at what time.

2.3.1 Order batching decision making process

The control room bases their initial decision, on the order batching quantities
per outbound line, on the production plan. This production plan is based on
the demand forecasts and states the number of packages that must be produced
per outbound line per day. Based on this information and the capacity of the
di↵erent stations, it is determined how much should be produced per hour at each
outbound line. The order production quantity per hour is not requested to be
batched at once but the control room does this in several stages, which makes it
easier to intervene.

An intervention could be to switch the outbound line of a specific number of
orders if the designated outbound line is not able to process all its orders. This
happens frequently with outbound line 105 (mono carton wrap) as a lot of items
can be processed mechanically. In this case orders are reassigned to outbound
line 103 (mono manual regular). Similarly, items assigned to outbound line 109
(multi automatic sorting) could be reassigned to outbound line 108 (multi manual
regular). Besides that, it is possible to send mono orders to the multi order packing
lines but not the other way around. This is due to the sorting step that is required
for multi orders but not for mono orders.

Another intervention is the prioritization of orders from a specific priority group.
There are three priority groups, namely priority 3, priority 4 and priority 9. Pri-
ority 3 orders have to be picked as soon as possible in order to arrive in time at
the customer. Priority 4 orders can be picked straightaway but would still arrive
in time at the customer if they are picked at a later time. Priority 9 means that
the order may not be selected, so these orders will not be planned. The priority
is based on the outbound line, delivery date and cut-o↵ times of the transport
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carrier. The control room makes use of the option to prioritize orders if, for exam-
ple, it is near the cut-o↵ time of a transport carrier. The control room can only
request a specific number of orders that are all high in priority. It is not possible
to request for a specific order to be batched.

2.3.2 Warehouse Execution Service

To help the control room in the decision making process, the company created
WES, which stands for Warehouse Execution Service. This service aims to trans-
form data about the batches currently being processed in the outbound area of
BFC, such that a batch advice can be generated. The idea behind this service
is that the batch advice should eventually ensure a steady flow towards the pick-
ing and packing areas in order to eliminate operator standstill and thus maximize
e�ciency. Currently, this service is in the first iteration and includes the following:

1. A dashboard that functions as a control panel for the control room

2. Insight in bu↵er amounts at the picking and packing areas

3. A first version of the batch advice

4. Only the mono outbound lines

5. Connection with the service DES (Discrete Event Simulation), which pro-
vides a forecast of the future status of the system based on real time data

The dashboard includes an overview of picking and packing for each mono out-
bound line. An example of a picking overview is given in Figure 2.2.

Figure 2.2: WES picking overview of an outbound line

In the graph, the bars represent the amount of batches (left axis) and the dots
represent the amount of items (right axis) in the system. ATT stands for Average
Transportation Time in minutes and equals the average time to transport a tote
from picking to packing. BA stands for Batch Advice and is based on the data on
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the right hand side of the graph. CATF is the Current Average ToteFill, which
equals the number of items per tote. WIP is the Work in Progress in minutes,
which equals the total workload in the system for all operators together. APT is
the Average Processing Time in minutes, which equals the average time to pick
a pick batch. RATIO is the average processing rate, which equals the items per
hour per operator.

The control room has a similar overview for packing, as depicted in Figure 2.3.

Figure 2.3: WES packing overview of an outbound line

The red line in this figure equals the current time. Everything on the left side of
the red line shows the actual status in the past and everything on the right side
of the red line shows the forecasts generated by DES. In order to generate a batch
advice, the control room needs to fill out the fields in the manual input section of
the dashboard, which is depicted in Figure 2.4 on the next page.

The control room needs to fill in the time they want to cover with the new pick
batches, the number of picking operators, the number of packing operators per
outbound line, and how big the packing bu↵er should be per outbound line. Based
on this information and the real time data of the system, the upper and lower limit
of the batch advice is calculated as follows:

Upper Limit =
Manual input packing bu↵er in minutes

APT packing
⇥ packers+ packers

(2.1)

Lower Limit =
APT picking+ ATT

APT packing
⇥ packers+ packers (2.2)

The upper limit is the amount of batches needed in the bu↵er, in order to match
the bu↵er amount filled out by the control room in the manual input screen. The
lower limit is the minimum amount of batches needed in the bu↵er at any time.
If the amount of batches goes below this limit, it will result in idle time for the
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packing operators. The reason for this is that the orders in the packing bu↵er are
processed more quickly by the operator than new batches are delivered. The actual
batch advice, which equals the amount that should be batched at this moment to
fill the packing bu↵ers up to the upper limit is then calculated as follows:

Batch Advice = (Upper Limit� Current batches packing)⇥ CATF (2.3)

The current status of WES is that the current iteration works fine and is a sound
basis for future iterations. The control room uses the tool and experiments with
it but the lack of multi lines and a couple of other issues prevent the control room
from using the tool as their main batching tool. These issues include a missing link
with the production plan, exclusion of the stingray (bu↵er zone) and generated
batch advice that is larger than the number of waiting orders.

Figure 2.4: WES dashboard manual input

2.3.3 Creation of order batches

Once the control room has determined the amount of orders they want to be
released for each outbound line, they put these numbers in the warehouse man-
agement system called Reflex. Subsequently, Pacman, which is a microservice
implementation of the picking algorithm used by Reflex, is called upon and deter-
mines which orders will be batched and which zones in the warehouse are used for
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batching. A list of picks is then forwarded to the system Blinky, which optimizes
the walking routes of these picks and creates optimized pick batches. Based on the
information that Pacman receives from Blinky, it creates pick batches for Reflex.
These pick batches are then used by the operators in the warehouse to pick all the
items. In Figure 2.5 an overview is given of the information flow between these
systems.

Figure 2.5: Overview data flow for pick runs

The picking algorithm implemented by Pacman requires the following input: re-
quired number of orders per outbound line, required number of orders to be trans-
ferred from one outbound line to another, required prioritization, list of unfulfilled
orders, current stock levels and possible reservations. Based on this input a fil-
tered list of unfulfilled orders is created. Next, the orders need to be sorted. This
is done in the following order:

1. Outbound line

2. Priority (ascending)

3. Cut-o↵ time (ascending)

4. Delivery date (ascending)

5. Di�culty (descending)

Once the orders have been sorted, they are allocated to a picking zone in the
warehouse and pools can be created. A distinction is made between mono and
multi orders in the creation of pools.

For mono orders holds that after the order with the highest priority has been
selected, the picking zones in the warehouse are ranked based on availability and
the zone with the highest number of potential picks is chosen. Next, orders that
can be picked from the chosen zone are selected based on their priority in the
sorted list and assigned to the same pool until the maximum capacity of the
pool has been reached, which equals the maximum number of picks per zone. In
case no unfulfilled orders can be picked from the same zone anymore and the
maximum capacity has not been reached yet, the current pool is closed and a new
pool is created. The process is repeated until the number of requested orders per
outbound line by the control room is reached. The result is a list of pools per
outbound line, where each pool consists of orders that will all be picked from the
same zone in the warehouse.
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For multi orders holds that each multi pool has a maximum pool size, which
is a configurable number that determines the maximum amount of orders that
can be included in a pool and is determined by the capacity of the outbound
line. Similarly to the mono orders, the order with the highest priority is selected
first. It could be the case that the items from this order must be picked from
di↵erent zones in the warehouse. Subsequently, orders that can be picked from
the same zones as the order with the highest priority are added to the pool, until
the maximum pool size has been reached. In case the requested number of orders
by the control room has not been reached yet, it becomes possible to also select
orders that require a visit to an additional zone. This process is repeated until
the number of requested orders per outbound line by the control room is reached.
A pool of multi orders can thus contain items that are spread over multiple zones
in the warehouse. Therefore, the result in this case is a list of pools per outbound
line, where each pool consists of a list of zones with for each zone a list of picks.

Given the lists of picks per pool and zone, pick batches can be created. In the
creation of pick batches, the physical limits of a tote such as volume and weight
need to be respected. The picks are sorted and placed in totes on alphabetical
location. Each tote corresponds to a pick batch. These are not the optimal pick
batches, because those are created by Blinky. However, these simple pick batches
serve as a fallback in case no solution was found by Blinky, such that at least
a solution is provided to Reflex. Finally, the lists of picks per pool and zone
are communicated to Blinky, which creates pick batches by defining and solving a
vehicle routing problem with capacity constraints. Once a solution has been found,
Blinky returns a list of pick batches per pool and zone. The result of Blinky is
checked against the fallback solution and the result with the shortest distance is
sent back to Reflex.



Chapter 3

Problem formulation

The previous chapter provided some background information to obtain a better
understanding of the research environment and brought the problems in the cur-
rent situation to light. This chapter describes the problem that this research is
focused on. The problem statement is given in Section 3.1. This is followed by a
description of the goal in Section 3.2 and the scope in Section 3.3. The chapter
closes with a description of the research approach in Section 3.4.

3.1 Problem statement

Currently, the workload allocation is done manually at bol.com by the control
room. In order to help the control room in the decision making process, the
company created WES. However, this tool can only be used for the mono outbound
lines, because the multi outbound lines and the stingray (bu↵er zone) are excluded.
Besides that, there is a missing link with the production plan and the generated
batch advice is frequently larger than the number of waiting orders. Furthermore,
the calculation of the batchsize is only based on the packing centers and does
not take into account the work in progress at picking and on the conveyor belts.
Therefore, there is a need for better batching advice, which takes into consideration
the workload allocation throughout the entire process and includes all outbound
lines and the stingray.

3.2 Goal

The goal is to generate an automatic batch advice, which ensures that the workload
at the di↵erent work stations in the warehouse is allocated in such a manner that
the overall performance measures are optimized. From a bol.com perspective the

13
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objective is to maximize the production (or throughput) while minimizing costs.
Translating this objective to performance measures related to queueing theory,
this means that the throughput should be maximized and the station/operator
idle time should be minimized. In addition, the company’s ultimate performance
indicator, which is the order fulfillment score with a target of 99%, must remain.

3.3 Scope

Bol.com has six di↵erent warehouses but the scope of this project is limited to the
Bol.com Fulfillment Center (BFC). This is the largest warehouse and distributes
40%-50% of the total amount of distributed items. The process being examined
includes the following: receival of orders at the warehouse, order batching, picking,
packing, and the transferal of packed orders to third party transport carriers. The
transport and bu↵er locations between the di↵erent stations are included as well.
Besides that, the capacity of the transport carriers is within the scope of this
research project but the actual delivery from BFC to the customer is not within
the scope. In addition, the (re)assignment of orders to outbound lines and the
reallocation of operators on outbound lines is considered to be within the scope.

3.4 Research approach

The described process in the warehouse can be modelled as a multi-class open
queueing network of multi-server queues. In the past decades, quite some research
has been done into the application of networks of queues in computer, communi-
cation and production systems [35]. Besides that, a reasonable amount of research
on this topic can be found in relation to the manufacturing and health care sector.
Research about the application of queueing networks in e-fulfillment is however
limited. Therefore, the methods being used in aforementioned sectors is exam-
ined, to evaluate whether (elements of) these methods can be used as input for
this research project alongside the general theory behind queueing networks.

Once the process has been modelled as a multi-class open queueing network of
multi-server queues and the arrival and processing times of the di↵erent stations
have been retrieved through data analysis, it can be determined how the workload
should be allocated such that the overall performance measures are optimized.
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In order to achieve the goal as stated in Section 3.2, the following research ques-
tion needs to be answered:
“How should the workload at the di↵erent work stations in the ware-

house be allocated such that the overall throughput is maximized and

the operating costs are minimized, while maintaining the order fulfill-

ment score?”

This question will be answered following the subsequent sub questions:

1. What can be found in literature about modelling networks of queues?

2. What can be found in literature about solving workload allocation problems
in networks of queues?

3. How can the process in the warehouse be modelled as a network of queues?

4. Which methods from literature to solve the workload allocation problem are
applicable to the situation of bol.com?

5. How can it be determined which method provides the best results for bol.com?

An extensive literature research is performed to answer the first and second sub
questions, the summary of this research is given in Chapter 4. Based on the
information retrieved in the literature research, the process in the warehouse can be
modelled as a queueing network. The model is presented in Chapter 5 and answers
the third sub question. In Chapter 7, the solution approach and experimental
setup are described, which provides an answer to sub questions four and five.
Subsequently, the experimental results are presented in Chapter 8, followed by a
discussion in Chapter 9, and the conclusions in Chapter 10. These three chapters
together provide an answer to the main research question.



Chapter 4

Literature research

Queues help facilities and businesses to provide service in an organized manner.
As forming a queue is a social phenomenon, it would be favorable to regulate the
queue in such a way that is most beneficial for both the unit that waits and the
one that provides the service. The unit waiting for service, irrespective whether it
is human or otherwise, is identified as the “customer” and the unit providing the
service is known as the “server”. [25]

In queueing theory one analyses the mode by which a queue is formed and the
service is provided. This is done by building a mathematical model of which the
basic elements include the customer arrival process, service mechanism, system
capacity, and queueing discipline. D. G. Kendall introduced a shorthand notation
to characterize the arrival process, service times, number of servers, and capacity of
the system by symbols. It is a four-part code a/b/c/d. The first letter specifies the
inter-arrival time distribution and the second letter the service time distribution.
For instance, the letter M is used for a Poisson or exponential distribution and
refers to the “Markovian” or “Memory-less” property of this distribution, G stands
for general distributions, D for deterministic distributions, and Ek for the Erlang
distribution with scale parameter k. The third letter specifies the number of
servers and the fourth and final letter specifies the capacity of the system, which
includes the capacity of the queue and the customer in service. However, if the
capacity is regarded as infinity, the fourth letter is often omitted. [25, 1]

The focus of research on networks of queues is primarily on performance evaluation
and can be divided into three categories: exact analysis, approximation methods,
and simulation and related techniques. Exact results only exist for systems with
the following assumptions:

1. Poisson arrivals

2. Exponentially distributed and customer class independent service times

3. Customer class independent priority discipline

16
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In most practical situations however, these assumptions are too restrictive for a
good resemblance of reality. Therefore, researchers started to develop approxima-
tions to evaluate the performance measures. Besides that, discrete event Monte-
Carlo simulation became an alternative to evaluate large queueing networks with
a closer resemblance of reality. [9]

The structure of this chapter is as follows. In Section 4.1, the well known Jackson
Network for exact analysis is described. This is followed by descriptions of several
approximation methods for multi-class queueing models in sections 4.2 to 4.7. For
each method first the characteristics and assumptions of the queueing network are
described. This is followed by a description of how the performance measures such
as queue length, throughput, sojourn and/or waiting times can be calculated. The
chapter closes with a comparison of the discussed models in Section 4.8.

4.1 Jackson Network

A Jackson Network is a single-class open queueing network with M � 1 stations,
ci � 1 servers at station i, and exponentially distributed service times with param-
eter µi > 0. All stations have a first come first served (FCFS) policy. Customers
arrive from outside the network at station i according to a Poisson process with
intensity �i. The routing of customers in the network is Markovian, which is char-
acterized by an irreducible routing matrix P . This means that when a customer
is finished at station i he will either go to station j with probability Pij, or leave
the network with probability Pi0 = 1�

P
j 6=0 Pij. [41, 23, 19]

The arrival rate at station i consists of arrivals from outside the network as well
as arrivals from other stations inside the network, and can be determined with:

�i = �i +
MX

j=1

�jPji, i = 1, ..,M. (4.1)

The visit ratio’s of the stations are denoted by Vi, i = 1, ...,M . For open queueing
networks holds:

Vi =
�i

�
, i = 1, ...,M, (4.2)

where � =
P

i �i.

The stationary distribution has a product-form solution, we refer the interested
reader to [23, 19] for the proof. For a Jackson Network with M stations, each
having ci servers, the stationary distribution is given by:

⇡(n1, ..., nM) =
MY

i=1

fi(ni), (4.3)
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with

fi(ni) =
1

G(i)

(ci⇢i)ni

ni!
, ni < ci (4.4)

and

fi(ni) =
1

G(i)

ccii ⇢
ni
i

ci!
, ni � ci (4.5)

where ⇢i is the utilization of station i, determined by:

⇢i =
�i

ciµi
, ⇢i < 1, (4.6)

and the normalization constant G(i) is defined as:

G(i) =
ci�1X

n=0

(ci⇢i)n

n!
+

(ci⇢i)ci

ci!
(1� ⇢i)

�1. (4.7)

This product form solution only holds for stable networks, so when ⇢i < 1 for all
i. [41, 23, 19]

As the probability of having n customers at station i is independent of the state of
all other stations in the network (see equations 4.3 through 4.7), the performance
measures may be computed for each individual station separately and can then
be added up to obtain the measures for the whole network [41].

The throughput is defined as:

TH = � =
MX

i=1

�i. (4.8)

The expected number of customers at station i is:

ELi =
(ci⇢i)ci

ci!G(i)

⇢i
(1� ⇢i)2

+ ci⇢i. (4.9)

Adding up the expected number of customers at each station, the total number
of customers in the network is obtained:

EL =
MX

i=1

ELi. (4.10)

The expected time of a customer at station i can be obtained using Little’s law:

EWi =
ELi

�i
. (4.11)

Finally, using the visit ratio’s, the expected time in the system (sojourn time) of
a customer can be calculated with:

EW =
MX

i=1

ViEWi =
MX

i=1

Vi
ELi

�i
. (4.12)
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4.2 Complete reduction method

Complete reduction methods aim to provide a way to obtain performance mea-
sures for every single customer class on both a network and a station level by
reducing the multi-class network to a single-class network. There exist several
variations on this approach. For example, Conway and Georganas [14] proposed a
method for closed multi-class networks of FCFS queues, in which they transform
the network into a network of processor-sharing queues with a hierarchy of subsys-
tems associated with subsets of the classes. Another method, which is applicable
to open multi-class queueing networks instead, is proposed by Zijm [41].

The main idea is as follows. Consider a multi-class open queueing network with M
stations, R classes, general individual inter-arrival and service time distributions,
and routing matrices P (r). The complete reduction method consists of three steps
[41]:

1. Reducing the R-class open queueing network to a single-class open queueing
network by aggregating the classes.

2. Analyzing the single-class open queueing network.

3. Disaggregating to obtain the performance measures per class for the given
R-class open queueing network.

The first step reduces the (4M + M2)R + M input parameters to 5M + M2

parameters, which makes the algorithm computationally more e�cient. In order
to achieve this, the service times, arrival rates and the routing probabilities are
aggregated.

The aggregate first and second moment of the service times at the stations are
given by the weighted average of the service times of the individual job classes,
where the weights are based on the arrival rates. With this first and second
moment, the aggregate squared coe�cient of variation (SCV ) of the service time
can also be determined. Similarly, the aggregate routing matrix is given by the
weighted average of the routing matrix of the individual job classes, where the
weights are based on the arrival rates.

The aggregate arrival rate is simply a sum over the arrival rates of the di↵erent
classes. However, obtaining the aggregate SCV of the arrival process is a bit more
complicated. An approximation can be obtained by taking the superposition of
the R job flows, which is described by a set of linear equations. This approach is
thoroughly described by Albin [3] and Whitt [38], among others.

With the aggregated input, the performance measures of the aggregated job can
be approximated as in a single-class open queueing network. Finally, these results
are disaggregated in order to obtain the performance measures per class.
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4.3 Decomposition method

Decomposition methods aim to provide a way to deal with each station in a queue-
ing network in isolation by approximating the parameters of each station. This
is done by first computing the arrival rates exactly by means of the same tra�c
rate equations as for product-form networks (e.g. Jackson networks). Next, the
SCV of the arrival process for each station is computed with a set of approximate
formulas. If the service times are not exponentially distributed, the parameters
are approximated as well. Then, given the parameters of the arrival and service
time distributions, the SCV of the inter-departure times can be computed. Di↵er-
ent variations of this approach have been suggested, among others, by Bitran and
Tirupati [9], Whitt [39], Satyam et al. [29], Kim [20], and Caldentey [12]. Their
methods for open multi-class queueing networks are however restricted to systems
with only single-server nodes.

An alternative method for multi-class multi-server queueing networks was intro-
duced by Rabta et al. [28]. They proposed a hybrid solution of the classical
decomposition analysis and simulation techniques. The computation of the SCV
of the inter-departure times by means of approximate formulas is replaced by es-
timation through simulation based on a set of recursive equations in this case.
According to their research this results in better estimates of the performance
measures than the original decomposition algorithms. Besides that, it is faster
and easier to implement and leads to lower variance of the estimators than full
simulation.

4.4 Fluid models

A considerable amount of literature can be found about approximating the per-
formance measures of a queueing system by using a fluid flow model. However,
most of the research is focused on single queues or networks with single-server
stations and only one customer class. Models for multi-class systems have been
introduced by Bertsimas, Gamarnik, and Tsitsiklis [8] and Bertsimas, Gamarnik,
and Rikun [7], for example. However, these models only work with single-server
stations. Bassamboo et al. [6] and Whitt [37] both introduced a multi-class multi-
server model, which also includes customer abandonment. In these models, each
customer class has its own bu↵er (waiting queue) and only visits one station. The
methods are however not applicable to a network of queues and stations.

The basic idea is to model the information flow as a fluid flow and then describe
it by a system of ordinary di↵erential equations. An important note is that the
method described is deterministic. Therefore, e↵ects of random arrivals or varia-
tions in service times cannot be studied directly. The model is applicable to any
processing situation that can be described by a set of flow diagrams, which show
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the order of the processing steps. A flow diagram consists of boxes and links.
The boxes may represent work stations, computer system components or other
processing units. The links or arrows show how the information flows from one
box to another. It is possible to attach percentages to some of the links to create
di↵erent paths. Characteristics of the process that can be determined with this
technique include the throughput, waiting time, sojourn time, and utilization of
resources. These measures can be computed at a selected time interval.

4.5 BCMP theorem

BCMP stands for Baskett, Chandy, Muntz and Palacios who were the founders
of the theorem. They extended the work of Gordon and Newell, who focused on
product form solutions for single-class closed queueing networks, to multi-class
closed queueing networks. The networks satisfying the conditions for the BCMP
theorem are known as BCMP networks, which are multi-class closed queueing
networks with M � 1 stations, R � 1 classes, N (r) � 1 class r customers, and visit
ratio’s V (r)

i . Each station i has one of the following service disciplines: first come
first served (FCFS ), last come first served preemptive resume (LCFS ), processor
sharing (PS ), or ample server (AS ). The service times at station i have mean value

1/µ(r)
i � 0 for class-r customers. For stations with the FCFS service discipline,

the service times should be exponential and class-independent but for stations
with one of the other service disciplines, the service times may also be general and
class-dependent. The routing through the system is Markovian, characterized by
the irreducible routing matrix P (r) for class r. [23, 41, 5]

The BCMP theorem is only concerned with the number of customers per class in
the queue but does not consider the exact sequence of these customers. The state
space of this stochastic process is given by SBCMP = {(!n1, ...,

!
nM)|

PM
i=1 n

(r)
i =

N (r), r = 1, ..., R} in which
!
ni = (n(1)

i , ..., n(R)
i ) and n(r)

i denotes the number of class

r customers at station i. The vector
!
N = (N (1), ..., N (R)) gives the population of

the network. [23, 41]

The BCMP theorem then states the following [5]:

“The detailed Markov process, that describes the behavior of the BCMP network,
has a unique stationary distribution and the aggregated stationary probabilities ⇡(·)
for the aggregate states

!
n = (

!
n1, ...,

!
nM) are given by:

⇡(
!
n1, ...,

!
nM) =

1

G(
!
N)

MY

i=1

fi(
!
ni), (4.13)
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where the normalization constant equals

G(
!
N) =

X

!
n2SBCMP

MY

i=1

fi(
!
ni), (4.14)

and for each station i the function fi(
!
ni) is defined as
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(4.15)

where ni = |!ni|=
PR

r=1 n
(r)
i denotes the total number of customers at station i.”

In principle, the relevant performance measures such as the mean number of cus-
tomers and waiting time at a station can be determined from the stationary dis-
tribution by means of the normalization constant. As there are too many states
to calculate this within reasonable time, it is better to make use of the generalized
arrival theorem first presented by Lavenberg and Reiser [21]:

“Let C(
!
N) be a BCMP network with population

!
N . Denote by p((

!
n1, ...,

!
nM)|

!
N)

the equilibrium probability of C(
!
N), and by p(r)a ((

!
n1, ...,

!
nM)|

!
N) the equilibrium

probability that, at a class-r arrival instant at an arbitrary station, the state of

C(
!
N) is (

!
n1, ...,

!
nM). Then:

p(r)a ((
!
n1, ...,

!
nM)|

!
N) = p((

!
n1, ...,

!
nM)|

!
N � !

er),

where
!
er is the R-dimensional unit vector with 1 at position r.”

With the generalized arrival theorem, the performance measures (which are state
dependent) can then be calculated, in case all stations have a FCFS discipline,
with a multi-class marginal distribution analysis [41].

4.6 Workload controlled manufacturing systems

The workload controlled manufacturing system can be modelled as a closed queue-
ing network when we assume that there is always another customer waiting to
enter the network as soon as a customer leaves. Another assumption to be made
in this case is that the product form solution and generalized arrival theorem
are still valid in closed queueing networks with service times that have a general
distribution and are class-dependent. Under these assumptions, the performance
measures can be approximated with the approximate mean value analysis. [41]
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Several variants of the approximate mean value analysis have been introduced.
Zhang and Down [40] introduced a numerically stable mean value analysis for
single-class single-server product-form networks and extended it to multi-class
networks too. Other methods for multi-class single-server queueing networks were
introduced by Petriu and Woodside [27] and Eager and Sorin [17]. Methods for
multi-class multi-server queueing networks have been introduced, among others,
by Akyldiz and Bolch [2] and Zijm [41].

The approximate mean value analysis calculates the performance measures for
each possible state of the system. As a result the computational complexity is
of the order MNR

QR
r=1(N

(r) + 1), where M is the number of stations, R the
number of classes, N the maximum number of customers in the system, and
N (r) the maximum number of customers in the system of class r. However, the
complexity can be reduced by using the generalized arrival theorem and the vari-
able Qj(

!
n), which is the probability that all servers at station j are busy in state

!
n = (

!
n1, ...,

!
nM) and is only dependent on the marginal probabilities from the pre-

vious state of the system. Using this variable, the marginal probability of having
zero customers at a station in a certain state, which is normally calculated using
all marginal probabilities in that state, now only requires the marginal probabili-
ties pj(cj�1|!n�!

er), where
!
er is the R-dimensional unit vector with 1 at position r

and r = 1, ..., R. Consequently, the complexity is reduced to MRc⇤
QR

r=1(N
(r)+1)

where c⇤ = max{c1, ..., cM}, the maximum number of servers at a station.

4.7 PAC systems

PAC stands for Production Authorization Card. These cards are used in manu-
facturing systems and job shops to keep control over the number of jobs in the
system and thus put a limit on the work in progress. In relation to queueing
theory, such a system can be modeled as a closed or restricted open network.
The customers then arrive in an external queue and PACs are used to control the
release of customers to the system.

An extensive amount of research has been done in this field for single-class produc-
tion to order systems. Several methods have been introduced, among others, by
Buzacott and Shanthikumar [11], Siha [31], Avi-Itzhak and Heyman [4], Buitenhek
[10], and Dallery [16]. Buitenhek [10] also presented four approximation methods
for the analysis of multi-class production to order systems with universal PACs.
Besides that, Perros et al. [26] proposed a generalization of the method of Dallery
[16] for multi-class production to order systems with dedicated cards. They as-
sumed that a product form solution exists, which means that the service times of
each station are exponentially distributed and class-independent and the queue-
ing discipline is first come first served. Consecutively, Zijm [41] generalized the
method of Perros et al. [26] for multi-class queueing networks with stations that
have general class-dependent service times.
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The closed queueing network view of the production system with dedicated PACs
corresponds with a multi-class closed queueing network with M general service
stations and R synchronization stations, which each consist of an external queue
and a card pool. Each synchronization station is dedicated to one customer class
and should be numbered such that station M + r is the class-r synchronization
station. There are N (r) dedicated PACs available for customer class r. Class-r
customers arrive at their own external queue and may enter the network if there is
a class-r PAC available in the class-r card pool. As soon as a customer leaves the
system, the PAC is returned to the class-r card pool, where it is available for use
by the next customer in line. In this system the PACs are thus the main entities
in the system instead of the customers.

The following assumptions are made: class-r customers arrive according to a Pois-
son process, service times of class-r jobs have a general distribution, the service dis-
cipline is FCFS at each station, and class-r customers circulate inside the network
according to a Markovian routing matrix. The idea is to replace the synchroniza-
tion stations by load-dependent servers. The service rates of the load-dependent
servers should be such that the throughput of the PACs at station M + r equals
the class-r arrival rate.

This replacement is not trivial, because the throughput at a synchronization sta-
tion is dependent on all other synchronization stations, which makes it a fixed-
point problem. In order to solve this problem, Norton’s theorem can be used
[13]. In principle, the idea behind the theorem is to decompose a network with
M stations into an equivalent network with two stations. One station is identical
to the one in the original network and the other station replaces the rest of the
original network by a load-dependent exponential server. The following iterative
procedure can then be used to find the throughput of the synchronization stations:

1. Set the service rates for stations M + 1 to M +R to some initial value.

2. Repeat the following steps until convergence of the service rates:

(a) Solve the equivalent network of synchronization stations M + r with
an appropriate approximate mean value analysis, for all classes r =
1, ..., R. This yields the throughput of the synchronization stations.

(b) Reset the service rates.

Once the service rates of the synchronization station have been obtained, the same
approximate mean value analysis can be used to analyze the performance measures
of the complete closed queueing network with load-dependent synchronization
stations.
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4.8 Comparison of models

In this section all previously introduced models are compared. First, the main
characteristics of the models are examined, namely whether it is stochastic or
deterministic, open or closed, single- or multi-class, and single- or multi-server.
An overview of the main characteristics of the models is given in Table 4.1.

Model Type Form Class Server

Jackson Network Stochastic Open Single Multi
Complete reduction Stochastic Open Multi Multi
Decomposition Stochastic Open Multi Multi
Fluid Deterministic Open Single Multi
BCMP Stochastic Closed Multi Multi
Workload control Stochastic Closed Multi Multi
PAC Stochastic Closed Multi Multi

Table 4.1: Main characteristics of the queueing models

The output of deterministic models is fully determined by the parameter values
and the initial conditions. Stochastic models, on the other hand, allow for random
variables as input and therefore account for some inherent variation. In this case,
the same set of parameter values and initial conditions leads to an ensemble of
di↵erent outputs of the model. If one would like to take into account uncertainties
of the inputs with a deterministic model, Monte Carlo simulation could be applied
but this is computationally ine�cient. As the BFC outbound process contains a
significant amount of variation, the process is best described by a stochastic model.

Open queueing networks receive customers from an external source and after pro-
cessing the customers leave the network to an external destination. Closed queue-
ing networks have a fixed population in the network that moves between the
queues and never leaves the system. If it can be assumed that there is always
a new customer waiting to enter the network as soon as a customer leaves the
network, an open queueing network could also be modelled as a closed queueing
network without sacrificing too much accuracy. Depending on the structure of the
network, it is sometimes easier to analyse the closed form of the network because
of the finite set of equations. [25] In principle, the BFC outbound process is an
open queueing network. However, it could also be modelled as a closed queue-
ing network, because there are generally more than enough orders waiting to be
processed.

Multi-class queueing networks allow for di↵erent customer classes with di↵erent
routing matrices and service time distributions. Single-class queueing networks
assume that every customer entering the system has the same routing matrix and
service time distributions. The BFC outbound process is a multi-class queuing
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network. For some stations the service time distributions are class independent
but this does not hold for all of them. Besides that, each class has a di↵erent
route through the system.

Since all models allow for multi-server stations, there is no need to compare the
models on this matter. Besides the previously discussed characteristics, we are also
interested in the arrival and service time distributions supported by the models
and whether the performance measures are state dependent or not. An overview
is given in Table 4.2. An important note here is that if a model supports general
distributions, this means that the model can also be used with Poisson arrivals
and exponentially distributed service times.

Model Arrival dis-

tribution

Service time

distribution

State depen-

dence

Jackson Network Poisson Exponential No
Complete reduction General General No
Decomposition General General No
Fluid Constant Constant No
BCMP n.a. Exponential Yes
Workload control n.a. General Yes
PAC Poisson General Yes

Table 4.2: Arrivals, service times and state dependence of the queueing models

An advantage of Poisson arrivals and exponentially distributed service times is
that they have the ”Markovian” or ”Memoryless” property. The implication of
this property is that if the service is ongoing at time t, the remaining service time
has the same distribution as the service time itself, regardless of the start of the
service time. This property makes it easier to calculate the performance measures
than of models with generally distributed arrivals and service times. [25]

Furthermore, the models provide either state dependent or state independent per-
formance measures. The state independent performance measures show the per-
formance of the system in its steady-state (assuming that there is one). As the
BFC outbound process starts and ends with an empty system and the number of
operators changes between the day and the evening shift, one could argue that
it would be better to use a state dependent model. However, if the focus is put
on the time in between these moments for which the goal is to maintain a steady
processing flow, a state independent model could be used as well.

Based on the comparison of the di↵erent characteristics of the models in this
section and the fact that the arrival and service time distributions of the BFC
outbound process are not Poisson or exponential, it can be concluded that if the
preference is given to a state dependent model, the workload control model is the
best candidate for further analysis.
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One could however argue that it is not necessary to use a workload controlled
model since the stingray, which functions as a bu↵er area in the outbound process,
has a much higher capacity than is ever used. On the other hand, the reason that
the maximum capacity of the stingray is never reached, is most likely due to the
regulated release of workload to the system by the control room. In theory, it
could be possible to exceed the capacity of the stingray if the input is no longer
regulated. A significant problem of this model is however the combination of its
high computational complexity and the enormous state space of the BFC outbound
process. This combination results in unreasonable long computation times and
makes the model unsuitable for this research project. The same holds for the
other state dependent models.

Looking at the state independent models, the best candidates are the complete
reduction method and the decomposition method. As described in Section 4.3,
most decomposition methods are restricted to systems with single-server stations.
An alternative is provided by Rabta et al. [28], which is a hybrid solution that
also involves estimation of the inter-departure times through simulation. Since a
simulation model is also used for validating the performance of the mathematical
model, it is preferred to work with a model that does not require input or output
from the simulation model itself. Therefore, the complete reduction method forms
the basis for the remainder of this research.



Chapter 5

BFC outbound process as a

network of queues

In the previous chapter several queueing network models have been introduced.
This chapter focuses on describing the BFC outbound process as a network of
queues. The outbound process consists of multiple steps, where each step can be
seen as a di↵erent processing station. The full process can therefore be represented
by a network that consists of a collection of nodes connected by a set of paths.
Each node in the network represents a work center that consists of a number of
work stations that perform a certain step in the outbound process. In Figure 5.1
this network is depicted.

Figure 5.1: Outbound process as a network of services

The directional arrows between the nodes show the sequencing of the services. All
items (customers) arrive at the batching process and leave the system at PostNL,
which makes this an open network. Not all items go through the same process,
therefore they can be assigned to di↵erent classes with di↵erent arrival times and
routes through the network. The classes correspond to the designated outbound
lines of the items. Each node can be modelled as a small queueing system and

28
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the outbound process as a whole can be modelled as a multi-class open queueing
network with multi-server queues.

As the limiting factor of the process is the number of totes in the system, we look
at the network from a tote perspective. This means that one unit in the queueing
network equals one tote and that the service times are expressed in the processing
time of a tote. More information on an order or item level might be provided as
well for a better understanding of the processes at the work centers.

The remainder of this chapter is structured as follows. In sections 5.1 to 5.5,
we first zoom in at the di↵erent nodes of the network. After that, Section 5.6
describes how the transportation between the nodes should be taken into account.
The chapter closes in Section 5.7 by presenting the queueing network as a whole.

5.1 Batching process

The batching process can be seen as the generator of tote arrivals. The input of the
batching process is a list of orders with order items that the control rooms wants
to be batched at a certain time and the output is a list of order items grouped
in pick batches. These pick batches are sent to the virtual queue of the picking
process, where they wait until a picking operator becomes available to collect all
items of the pick batch in a tote assigned to that pick batch. Therefore, it can be
said that the batching process regulates the arrival rate of totes to the system.

5.2 Picking

Once the orders have been batched, they enter the picking process of which the
queueing model is depicted in Figure 5.2.

Figure 5.2: Picking process
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Order picking takes place in two pick towers that each consist of four di↵erent
floors. As order pickers generally do not change between pick towers or floors, this
is modelled as eight multi-server queues. There are no external arrivals, so the
arrival rate is fully dependent on the output of the batching step. There might
still be pick batches in the queue from the previous order batching request of the
control room once the new pick batch requests arrive. The capacity of the queue
can be regarded as infinity, because the pick batches are virtually waiting in a
database with more than enough capacity.

The current logic used for sequencing the pick batches is as follows. Each pick
batch receives a weight, which is based on the cut-o↵ time and the location of the
pick batch. It holds that the lower the cut-o↵ time and the closer the location of
the pick batch to the order picker, the higher the weight. The pick batch with
the highest weight is selected first. If there are more pick batches with the same
weight, the pick batch is selected that has been waiting in the queue the longest.

Recently, research has been done at BFC to improve the sequencing of pick batches.
The new logic determines the sequence based on the cut-o↵ times, steady workflow
and pool completion of multi-orders [18]. The main idea behind this logic is that
the workload is distributed more evenly over the outbound lines and that the pool
completion time is reduced. This new logic has not been implemented yet but is
scheduled to be implemented in the first half of 2021.

The number of servers equals the number of order pickers that have been scheduled
according to the production plan. This number may di↵er per day but also per
shift during the day. The service time starts when an empty tote is taken to collect
all items of the pick batch and ends when the full tote is put on the conveyor belt
for transport to the stingray or the outbound lines.

5.3 Stingray

After a pick batch has been collected in a tote, this tote is sent either directly to
the right outbound line, or to the stingray, where the tote needs to wait until it
can be sent to the right outbound line. A tote is sent to the stingray for example
if it needs to wait for another tote that contains the items to complete a multi
order, such that the totes can be sent to the outbound line at the same time for
sorting and packing. In Figure 5.3 the queueing model of the stingray is depicted.

Figure 5.3: Stingray

The arrival rate at the stingray is dependent on the picking process as well as
the capacity at the sorting and packing centers. Mono orders do not have to wait
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on other totes for order completion and can therefore skip the stingray if there is
enough capacity at their designated outbound line. Multi orders on the other hand
might have to wait on other totes for order completion. Besides that, totes can be
sent to the stingray for temporary storage in case there is not enough capacity at
the designated outbound line at that time.

The storage capacity of the stingray equals 4400 totes, which has hardly ever been
reached and one could therefore decide to model it as infinite capacity. The queue
discipline is as follows. For mono orders holds that as soon as capacity becomes
available at an outbound line, a tote is sent to the outbound line to fill up the free
capacity according to the priority rules (lowest cut o↵ time, longest waiting time
in stingray). For multi orders, this is a bit more complex. A distinction is made
between the manual sorting center and the automatic sorter.

The following holds for the manual sorting center. As soon as capacity becomes
available, it is checked whether there are still totes remaining in the stingray from
a multi order pool of which other totes are already waiting at the center. If this is
the case, the next tote of the pool is released. If all totes from the previous multi
order pool have been released, the next multi order pool, that may be released
according to the priority release rules (lowest cut-o↵ time, longest waiting time in
stingray), is selected and the first tote from this pool is released.

The automatic sorter has a north and south induct island. The islands both have
a hold point from where totes are released to the bu↵ers of the infeed workstations.
Once all totes of a pool have passed the hold point, a new pool is pulled from the
stingray to the hold point. The workload between the stingray and the hold points
is controlled by the parameter MaxBatchRelease. When this threshold is met, no
more pools are sent from the stingray to the holdpoints of the induct islands until
the last tote of one of the outstanding pools passes the holdpoint at one of the two
induct islands. The parameter thus regulates the workload between the stingray
and the hold points and not the amount of pools that are currently on the sorter
itself.

Summarized, the stingray has two functions. It serves as an extended bu↵er of
the sorting and packing centers and as a synchronization station for pools of pick
batches. The pool completion time could be regarded as the service time of the
stingray.

5.4 Outbound lines

In the outbound lines a distinction is made between the mono and multi outbound
lines. The mono outbound lines consist of outbound lines 101 to 105. A tote
arriving at the queue of a mono outbound line either came from the stingray or
directly from the picking area. The arrival rate is therefore dependent on the
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output of these two centers. The multi outbound lines consist of outbound lines
106 to 109. All totes arriving at the queue of a multi outbound line came from
the stingray. The arrival rate is therefore only dependent on the output of the
stingray.

For all mono and multi outbound lines holds that the service time of a tote starts
when the tote is taken from the queue and ends when the tote is put empty on
the exit loop of the conveyor belt. Besides that, the queue discipline for the totes
is first come first served but the items in the tote are randomly chosen by the
sorting or packing server. In sections 5.4.1 to 5.4.5 it is briefly described how the
di↵erent outbound lines can be modelled as queueing networks.

5.4.1 Outbound lines 101-103

Outbound lines 101 to 103 are located at the same spot in the warehouse and are
regarded as one work center. Each packing station has one or two servers who are
able to pack orders from all three outbound lines. In Figure 5.4 the corresponding
queueing system is depicted.

Figure 5.4: Outbound lines 101-103

Each packing station has room for two totes in the queue next to one tote being
processed. In total there are 40 stations available but these are not all occupied
all day nor every day. The real time capacity is dependent on the production plan
and can change between shifts during the day as well.

5.4.2 Outbound line 104

Outbound line 104 consists of one machine, called the smartmailer. The process
is as follows. A tote is taken from the waiting queue. All items from the tote are
scanned one by one and carefully placed on the right spot on the conveyor belt
of the machine. Subsequently, the machine puts the item in an envelope. The
queueing system can therefore be modelled as depicted in Figure 5.5.

Figure 5.5: Outbound line 104
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The smartmailer has a capacity of thirteen totes in the queue in addition to one
tote being processed.

5.4.3 Outbound line 105

Outbound line 105 consists of three stations. The machines used at these stations
are called carton wrappers. The process, which is similar for each station, is as
follows. A tote is taken from the waiting queue. All items from the tote are
scanned one by one and carefully placed on the right spot on the conveyor belt of
the carton wrapper. Once an item is scanned, the machine simultaneously cuts
the right amount of carton to wrap the item in. The piece of carton and the
item encounter each other in another part of the machine, where the carton is
then automatically folded around the item. The corresponding queueing system
is depicted in Figure 5.6.

Figure 5.6: Outbound line 105

Each station has a capacity of eight totes in the queue in addition to one tote
being processed. However, not all stations are operating all the time.

5.4.4 Outbound lines 106-108

Outbound lines 106-108 are located at the same spot in the warehouse and are
considered one work center. There are ten stations in total and each station can
process orders from all three outbound lines. At each station there is one sorting
server and three packing servers. The sorting server gets a tote from the queue
and puts the items in so called pigeon holes, which are storage locations for sorted
orders. Once a sorted order is complete, one of the available packing servers
retrieves the items from the pigeon hole and starts packing. The corresponding
queueing system is depicted in Figure 5.7.
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Figure 5.7: Outbound lines 106-108

Each sorting station has a capacity of five totes in the queue in addition to one
tote being processed. However, not all stations are operating all the time. The
capacity of the queue of each set of packing stations equals 69 orders.

5.4.5 Outbound line 109

Once the totes of a pool are released by the stingray, they arrive at the hold point
of one of the induct islands. When an infeed station pushes o↵ an emptied tote,
a new tote is pulled from the hold point to the bu↵er of the infeed workstation.
Each infeed workstation has an operator who takes an item from the tote, scans
it and puts it on the conveyor belt of the automatic sorter. When an item is
scanned, it is assigned to a certain chute to which the automatic sorter releases
the item. In the chute the item needs to wait till all items of the multi order are
collected, before the packing process is initiated. Packing is done manually by the
packing servers. The packing servers receive a sign when one of the chutes in their
area contains a complete multi order that is ready to be packed. In Figure 5.8 the
corresponding queueing system is depicted.

Each induct island has one hold point with a capacity of nine totes, followed
by eight infeed stations which each have a capacity of three totes in the queue in
addition to one tote being processed. However, not all infeed stations are operating
all the time.

The chutes at the packing stations each have their own green light that is turned
on by the automatic sorter once the sorted multi order in the chute is complete.
Generally, one packing server is responsible for five chutes. The queue discipline
at the packing station is as follows. Once the packing server has finished an order
it looks for a green light. If there is no green light, the packing server has to wait
until the next multi order is completed in one of the chutes. If there is only one
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green light, the order from the chute with the green light is taken. If multiple
chutes have received a green light in the time the packing server was working on
the previous order, the packing server simply takes the order from the chute with
the first green light he or she saw.

Figure 5.8: Outbound line 109

5.5 PostNL

The conveyor belts of the packing stations of the di↵erent outbound lines of
bol.com are connected to conveyor belts that transfer the packages to the PostNL
distribution center located on the ground floor of BFC. There is a limit on the
number of packages (output) that can be sent from BFC to PostNL, such that the
capacity of the sorting machine of PostNL is not exceeded. The maximum output
expressed in packages per hour for the di↵erent outbound lines is given in Table
5.1.

Outbound line(s) Maximum output per hour in packages

101-103 4400
104 1000
105 2200

106-108 4400
109 4400

Table 5.1: Maximum output of the outbound lines in packages per hour

In the analysis, the units of interest are the totes. The maximum output in Table
5.1 is expressed in packages instead of totes. In order to be able to take into
account the maximum output, this measure should be converted to a maximum
number of totes to be processed per hour at each outbound line. This is done
by determining the average number of orders per tote, assuming that each order
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equals one package. For mono orders this equals the average number of items
per tote since each item equals an order. For multi orders this is a bit more
complicated since the items of an order are usually spread over multiple totes.
Therefore, for multi orders this measure is estimated by taking the average over
all pools of the division of the number of orders per pool and the number of totes
used per pool. The maximum output of the outbound lines can then be expressed
in totes per hour by dividing the maximum output per hour in packages by the
average number of orders per tote.

5.6 Transportation time

In the previous sections the individual stations are discussed. However, the trans-
portation of totes between work centers has not been included yet. An overview of
the flow through the warehouse is provided in Appendix A. Transportation takes
place in the following ways:

1. From the picking area to the stingray

2. From the picking area to the sorting and packing centers (through a bypass
at the stingray)

3. From the stingray to the sorting and packing centers

Under optimal circumstances, the conveyor belts are able to process 1473 totes
per hour. Generally, this capacity is enough for the transport of totes from the
picking area to the stingray and subsequently the sorting and packing stations.
Sometimes, problems arise at the end of the day when large amounts of empty
totes need to be returned, which then potentially block the way on the conveyor
belts between the stingray and the sorting and packing stations. In the initial
analysis this blocking problem is left out of scope.

The transportation through the system can be modelled as two stations. The first
station is for the transportation between the picking area and the stingray, where
the expected transportation time is independent of the customer class. The second
station is for the transportation between the stingray and the sorting and packing
centers, where the expected transportation time is dependent on the designated
outbound line and thus the customer class.

5.7 Complete queueing network

Combining all the queueing systems of the individual nodes results in the queueing
network depicted in Figure 5.9.
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Figure 5.9: Queueing network outbound process BFC



Chapter 6

Mathematical model

In the previous chapter, the BFC outbound process is described as a network of
queues. Chapter 4 describes a number of queueing network models that could be
used to analyse the queueing network of the BFC outbound process and concludes
in Section 4.8 that the complete reduction model is the best candidate for further
analysis. In order to be able to analyse the queueing network of the BFC out-
bound process, including the unconventional characteristics of the stingray, some
adjustments and assumptions must be made. In Section 6.1 these assumptions
and model adjustments are presented. Section 6.2 describes the complete reduc-
tion algorithm as introduced by Zijm [41]. The chapter closes in Section 6.3 with
a description of how the stingray logic is incorporated.

6.1 Assumptions and adjustments

In order to be able to analyse the queueing network of the BFC outbound process,
several assumptions and adjustments are made.

First of all, there is no data available on the exact number of picking operators per
picking area. Besides that, pick batches are released for a designated outbound line
but not to a specific picking area as this is determined at a later stage by the micro
service Pacman (see Section 2.3.3). Therefore, it is assumed that picking operators
as well as pick batches are distributed evenly over the eight picking areas. In order
to achieve this, the pick batches are created round-robin for the di↵erent picking
areas. Additionally, it is assumed that picking operators are identical, do not get
tired, and do not move between picking areas. In practice it may happen that a
picking operator moves from one area to another, but in principle they remain in
one area. Besides that, it occurs in practice that some picking areas receive more
pick batches than others with an imbalance in workload as a result. However,
some initiatives are set up to ensure a more even distribution of workload over the
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picking areas in order to prevent these imbalances.

In addition, the waiting capacity of the picking areas is assumed to be infinite
as the pick batches are waiting in a virtual queue. Besides that, the company
is currently working on the implementation of the new sequencing logic for pick
batches, which is thoroughly described in [18]. Therefore, in this research project
the new logic is used instead of the current logic.

Furthermore, transportation times are assumed to be deterministic but di↵erent
for each outbound line. In practice it may occur that a tote makes an additional
round on the packing loop (see the mechanical overview of BFC in Appendix A).
This is however prevented as much as possible by the strict release rules of the
stingray and is regarded a rare occasion. Besides that, other errors may occur
which could result in a standstill of the conveyor belts. This is considered a rare
event as well but still makes this a strong assumption. In order to prevent the
results to be a↵ected by these events, as those are not of further interest in this
initial analysis, the assumption is made.

Regarding the sorting and packing centers, it is assumed that operators are iden-
tical for similar work stations, do not get tired, and do not switch between work
centers and stations. Besides that, it is assumed that the multi packing stations
have enough capacity to process whatever is processed by the sorting stations. In
practice this is also how the company makes the personnel planning. The number
of operators at the multi packing stations is aligned with the number of operators
at the sorting stations.

Finally, it is desired in the company that one hour of workload is present in the
system before the sorting and packing centers are activated. The reason for this
is to prevent idle times and this is achieved by starting the picking shift one hour
earlier than the sorting and packing shift. At the end of the day, the picking
operators leave one hour earlier than the sorting and packing operators. The
system is emptied at the end of the day with a so called “sweep run”.

6.2 Complete reduction algorithm

The complete reduction algorithm for multi-class open queueing networks as intro-
duced by Zijm [41] is as follows. Consider a multi-class open queueing network with
M stations, R classes, general individual inter-arrival and service time distribu-
tions characterized by �(r)

0j with squared coe�cient of variation (SCV) (C(r)
0j )

2, and

ES(r)
j with SCV (C(r)

sj )
2 respectively, and routing matrices P (r)

ij , with i, j = 1, ...,M
and r = 1, ..., R for all parameters.
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The complete reduction method consists of three steps:

1. Reducing the R-class open queueing network to a single-class open queueing
network by aggregating the classes.

2. Analyzing the single-class open queueing network.

3. Disaggregating to obtain the performance measures per class for the given
R-class open queueing network.

Step 1: Reduction

The aggregate first and second moment of the service time at station j, denoted
by ESj and E(Sj)2 respectively, are given by the weighted average of the service
times of the individual classes:

ESj =
1

�j

RX

r=1

�(r)
j ES(r)

j , j = 1, ...,M, (6.1)

E(Sj)
2 =

1

�j

RX

r=1

�(r)
j E(S(r)

j )2, j = 1, ...,M, (6.2)

where �(r)
j is the arrival rate of class r customers at station j:

�(r)
j = �(r)

0j +
MX

i=1

�(r)
i P (r)

ij , r = 1, ..., R, (6.3)

and �j =
PR

r=1 �
(r)
j is the aggregate arrival rate of customers at station j.

The aggregate SCV of the service time can then be determined with:

C2
sj =

1

�j(ESj)2

RX

r=1

�(r)
j

⇣
ES(r)

j

⌘2 ⇣
(C(r)

sj )
2 + 1

⌘
� 1, j = 1, ..,M. (6.4)

The aggregate arrival rate of customers outside the network to station j is given
by �0j =

PR
r=1 �

(r)
0j . The proportion of the arrival flow of station j originating

from station i is given by:

Qij =
�ij

�j
, i = 0, ..,M, j = 1, ..,M. (6.5)

The aggregate routing matrix, which contains the routing probabilities of the
aggregate flow, is given by:

Pij =
1

�i

RX

r=1

�(r)
i P (r)

ij , i, j = 1, ...,M. (6.6)
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The aggregate SCV of the arrival process can then be approximated by the fol-
lowing set of linear equations:

C2
aj = aj +

MX

i=1

C2
aibij, j = 1, ...,M, (6.7)

where aj and bij are constants depending on the input data:

aj = 1 + wj

"
(Q0jC

2
0j � 1) +

MX

i=1

Qij[(1� Pij) + Pij⇢
2
ixi]

#
, (6.8)

bij = wjPijQij(1� ⇢2i ), (6.9)

for which the values of the parameters ⇢i, vj, wj, and xi are given by:

⇢i =
�iESi

ci
, (6.10)

vj =

"
MX

i=0

Q2
ij

#�1

, (6.11)

wj = [1 + 4(1� ⇢j)
2(vj � 1)]�1, (6.12)

xi = 1 + c�0.5
i (max[C2

si, 0.2]� 1), (6.13)

and ci denotes the number of servers at station i.

Step 2: Analysis

Let � =
PM

i=1 �0i and Vi = �i
� , the total arrival rate from outside the network

and the visit ratios of the stations respectively. The expected waiting time in the
queue at workstation i is calculated by:

EWQi =
C2

ai + C2
si

2

⇢
(
p

2(ci+1)�1)

i

ci(1� ⇢i)
ESi, ⇢i < 1. (6.14)

The total expected time at workstation i then equals:

EWi = EWQi + ESi, (6.15)

and the overall expected time in the system is determined by:

EW =
MX

i=1

ViEWi. (6.16)

Given Little’s formula ELi = �iEWi, which provides the number of customers at
workstation i, and EL =

PM
i=1 ELi, the number of customers in the entire system

is given by:

EL =
MX

i=1

�iEWi =
MX

i=1

�ViEWi = �EW. (6.17)
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Step 3: Disaggregation

The mean number of customers in the queue of station j is given by:

ELQj = ELj � cj⇢j. (6.18)

The time spent in the queue of station j is equal for each class, such that:

EL(r)
Qj =

�(r)
j

�j
ELQj. (6.19)

The mean number of class r customers in service at station j is given by
cj⇢

(r)
j = �(r)

j ES(r)
j , and therefore:

EL(r)
j = EL(r)

Qj + ⇢(r)j =
�(r)
j

�j
ELQj + �(r)

j ES(r)
j . (6.20)

However, if the service times are equal for all classes at the station, then a simpler
expression can be used:

EL(r)
j =

�(r)
j

�j
ELj. (6.21)

The total number of customers in the entire system of a certain class is simply
found by adding up the number of customers of that class per station:

EL(r) =
RX

r=1

EL(r)
j . (6.22)

The expected time in the system for customers of class r can be found by:

EW (r) =
MX

j=1

V (r)
j EW (r)

j =
MX

j=1

V (r)
j

EL(r)
j

�(r)
j

, (6.23)

where V (r)
j = �(r)

j /�(r) and �(r) =
P

j �
(r)
0j .

6.3 Incorporating the stingray logic

In the complete reduction method, the first and second moment of the service
time of a station are used in the calculations of the performance measures. As
described in Section 5.3, the stingray serves as a queue for totes of all outbound
lines as well as a checkpoint where totes from multi outbound lines need to wait
for pool completion. The latter functionality can be seen as the service of the
stingray, which can be modelled in several ways. The most conventional option is
to fit a distribution to historical data and use this as the service time.

An alternative is to model the pool completion process in a similar fashion as
batch formation is modelled in queueing theory, where a batch equals a complete
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pool of totes. The arrival rate of a complete pool �P is dependent on the arrival
rate of the totes �T of that pool. A pool of size N is ready when the N th tote
arrives, which means that if all pools are of equal size a new pool arrives at every
N th tote. The mean inter-arrival time equals [41]:

E(AP ) =
1

�P
, (6.24)

where the arrival rate of pools is given by:

�P =
�T

N
. (6.25)

The pool completion time is dependent on the inter-arrival time of the totes in
the pool. The N th tote does not have to wait before the pool is complete. The
N � 1th tote has to wait until the N th tote arrives, which takes on average 1

�T
.

The arrivals of totes are independent and identically distributed. Given Aj, the
inter-arrival time between tote i�1 and tote i, the SCV of the pool arrival process
can be determined by [41]:

C2
P = �2

PVar

 
NX

i=1

Ai

!
(6.26)

=
�2
T

N2
N VarA1 (6.27)

=
C2

T

N
, (6.28)

where C2
T is the SCV of the arrivals of totes.

Since the pool size is not a constant, some adjustments must be made. The
expected inter-arrival time of pools is given by:

E(AP ) =
E(N)

�T
. (6.29)

The variance of the inter-arrival times can be determined as follows:

Var(AP ) = Var

 
NX

i=1

Ai

!
. (6.30)

The SCV of the inter-arrival time of pools is then given by:

C2
P =

�2
T

E(N)2
Var(AP ) (6.31)

where, since the inter-arrival times of totes Ai are independent and identically
distributed, and N and Ai are independent:

Var(AP ) = E(N)Var(A1) + E(A1)
2Var(N). (6.32)
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With this method the arrival rate at the stingray is converted from tote arrivals to
pool arrivals. The service time of the stingray then equals zero. At the sorting and
packing centers, totes are processed one by one. To make these centers compatible
with the stingray, the arrival rate at these centers must be converted back to totes
or the service times need to be converted to pool service times. The first option
is a better resemblance of reality and therefore used in this research project.



Chapter 7

Approach and methods

The previous chapter described how the queueing network of the BFC outbound
process can be mathematically analysed. This chapter describes the approach
and methods used to find a solution to the core problem and to answer the main
research question. Section 7.1 describes the solution approach and is followed by
the experimental set-up in Section 7.2.

7.1 Solution approach

The main research question is: ”How should the workload at the di↵erent work
stations in the warehouse be allocated such that the overall throughput is maximized
and the operating costs are minimized, while maintaining the order fulfillment
score?”

The workload in the BFC outbound process is controlled by the release of pick
batches per outbound line, which from a queueing theory perspective corresponds
to the arrival rates. These are thus the variables to be optimized.

The key performance indicators in this research, based on the main research ques-
tion, are the throughput, operating costs and order fulfillment score. The through-
put can be calculated with the output of the mathematical model introduced in
Chapter 6 and the simulation model.

The order fulfillment score is obtained by converting the throughput expressed in
number of totes to the throughput expressed in the number of orders and dividing
this by the targeted number of orders on the production plan. The conversion
of the throughput is done in a similar fashion as the conversion of the maximum
output per hour in packages (orders) to the maximum output per hour in totes
at PostNL in Section 5.5. The production plan is a given. This means that the
throughput is the only variable for this measure, which must be maximized.
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As stated in Section 3.2 translating the objective to minimize operating costs to
queuing theory performance measures means that the station/operator idle time
should be minimized. This is achieved by maximizing the utilization rate ⇢, which
equals the fraction of time that the station/operator is working. However, to avoid
that the queue eventually grows to infinity, it is required that ⇢ < 1.

Essentially, this means that the goal is to optimize the arrival rate of the pick
batches per outbound line such that the throughput and utilization rate are max-
imized. This can be achieved by creating a steady state for which holds that:

1. The arrival rate of pick batches at each outbound line can not exceed the
capacity of the outbound line.

2. The aggregate arrival rate of pick batches can not exceed the capacity of the
bottleneck work center.

3. The expected number of pick batches (totes) in the system can not exceed
the capacity of the system.

Working backwards through the queueing network it can be determined what the
bottleneck work center is and therefore what the maximum aggregate arrival rate
of pick batches is. The maximum arrival rate of a station is determined as follows.
The utilization rate of a station is determined by ⇢ = �E(S)

c and in order to keep
the system stable ⇢ < 1. Given the number of servers c, expected service time
E(S), and utilization rate ⇢, the required arrival rate � can be determined. The
maximum arrival rate of a station is then determined by setting ⇢ = 0.99, and
by multiplying the outcome by the number of stations in the work center, the
maximum arrival rate of the work center is obtained.

If the bottleneck is not the sorting and packing center, a linear program (LP)
can be formulated in order to distribute the maximum aggregate arrival rate over
the di↵erent outbound lines according to some objective function. Then given
the arrival rates, the expected number of pick batches (totes) in the system and
corresponding throughput can be determined with the mathematical model de-
scribed in Chapter 6. If it turns out that the expected number of pick batches in
the system is higher than the maximum capacity, the previous steps are repeated
with a lower utilization rate. This is repeated until the right arrival rates have
been found that create a steady state in which the capacity of the system is not
exceeded.

A very important assumption that needs to be made for this approach to work, is
that there are always enough pick batches available to be released to the system.
Generally, only must-go orders, which are orders that need to be shipped today,
are released to the system and in that case it could happen that the order basket of
an outbound line becomes empty. However, if switching orders between outbound
lines is allowed and could-go orders, which are orders that could be shipped at
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a later time, may be released as well, the assumption is valid. Adjusting the
designated outbound line of orders is already done by the control room if the
number of orders for a certain outbound line is getting low whereas there are
plenty of orders for other outbound lines. Releasing could-go orders is also done
already but not on a large scale yet.

The solution approach can be summarized by the flowchart depicted in Figure 7.1.

Figure 7.1: Flowchart of the solution approach

The outcome of this approach is the arrival rate, better described as the release
rate, of pick batches for each designated outbound line. This holds on the assump-
tion that the control room makes sure that there are always enough pick batches
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available for every outbound line by changing the designated outbound line of
orders and enabling the release of orders that could be shipped at a later time.
However, this process could also be automated by using certain threshold rules
or formulating an LP to make the decision in certain time intervals according to
some objective function.

As the model introduced in Chapter 6 is based on several assumptions and thus
results in a simplified version of the BFC outbound process, a simulation model
is made as well. This simulation model is used to validate the mathematical
model on both a station and system level. The simulation model itself needs to
be validated as well. This is done with historical data from the company.

7.2 Experimental set-up

The experiments in this research project consist of three parts. First of all, experi-
ments are done in order to determine how well the mathematical model introduced
in Chapter 6 and the simulation model capture the BFC outbound process. Sec-
ond, experiments are done to determine whether the proposed approach of deter-
mining the release rate of pick batches performs better than the current approach.
At last, experiments are done to determine in what manner pick batches should
be released to the system.

As explained in the previous section, an LP can be formulated to distribute the
maximum aggregate arrival rate over the outbound lines in case the bottleneck is
not the sorting and packing center. This LP is presented in Section 7.2.1. Besides
that, an LP is formulated for changing the designated outbound lines of orders and
adding could-go orders to the order basket, which is presented in Section 7.2.2.
Finally, a more extensive explanation of the experiments is given in Section 7.2.3.

7.2.1 Distributing the maximum aggregate arrival rate over

outbound lines

In order to determine how the maximum aggregate arrival rate should be dis-
tributed over the di↵erent outbound lines, an LP is formulated. The following
notation is used:

Parameters

d designated outbound line(s)
�max
d maximum arrival rate of pick batches at outbound line(s) d

�max maximum aggregate arrival rate of pick batches
Wd weight assigned to outbound line(s) d
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Decision variables

�d rate of pick batches sent to outbound line(s) d

The LP model is formulated as follows:

minimize
DX

d=0

Wd ⇤ (�max
d � �d) (7.1)

subject to
�d  �max

d (7.2)

DX

d=0

�d  �max (7.3)

�d � 0 (7.4)

The objective function, Equation 7.1, makes sure that the di↵erence between the
maximum arrival rate and the actual rate of pick batches of the di↵erent outbound
lines is minimized. In addition, the objective function contains weights per out-
bound line, which could for example be based on the preference for or production
target of the di↵erent outbound lines. Based on preference, one could for example
favor the mechanical outbound lines over the manual outbound lines as these have
a higher processing rate. Similarly, one could favor outbound lines with higher
production targets. In the end it holds that the higher the weight, the smaller
the di↵erence between the maximum arrival rate and the actual rate of the pick
batches for that outbound line.

The first constraint, Equation 7.2, makes sure that the rate of pick batches sent to
each outbound line does not exceed the maximum arrival rate at that outbound
line. The second constraint, Equation 7.3, makes sure that the sum of the rate of
pick batches sent to the outbound lines does not exceed the maximum aggregate
arrival rate of pick batches. The last constraint, Equation 7.4, makes sure that
the rate of pick batches sent to each outbound line is non-negative.

If the maximum aggregate arrival rate of pick batches equals the sum of the
maximum arrival rate of pick batches at the outbound lines, the weights in the
objective function have no impact and the result will always be that the rate of
pick batches sent to the outbound lines equal the maximum arrival rate of pick
batches at the outbound lines. Right now, this also holds for the BFC, since the
bottleneck in the outbound process is the sorting and packing stations.

Future expansions of the sorting and packing stations could however result in a
di↵erent bottleneck station. Besides that, the logic depicted in Figure 7.1 could
also be applied to other warehouses, where the bottleneck station might be one of
the other stations in the outbound process. In these cases, it could be interesting
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to investigate the impact of di↵erent weights in the objective function on the
performance measures of the models.

7.2.2 Balancing order basket levels

Initially, orders are assigned to a certain outbound line. Some orders can be sent
to multiple outbound lines and therefore their designated outbound line may be
changed later in time. Currently, changing the designated outbound line of an
order is done before the pick batches are created. Theoretically, one could also
change the designated outbound line of a mono pick batch or a pool of multi
pick batches at an even later stage, for example in the stingray. In this research
project, the focus is put on changing the designated outbound line of orders before
the creation of pick batches and it is assumed that no more changes are made after
that. An overview of which orders can be sent to which outbound line is given in
Table 7.1.

Outbound
101-103

Outbound
104

Outbound
105

Outbound
106-108

Outbound
109

Orders 101-103 yes no no yes no
Orders 104 yes yes no yes no
Orders 105 yes no yes yes yes
Orders 106-108 no no no yes no
Order 109 no no no no yes

Table 7.1: Available order baskets for outbound lines

There are two reasons why changing the designated outbound line of orders could
be required:

1. The order basket of an outbound line is getting empty.

2. The order basket of an outbound line is too full and can not be emptied
before the end of the day.

In the first case, it should be determined where the additional orders should come
from. These could come from order baskets of other outbound lines or from
could-go orders. In the second case, it should be determined to which other order
basket(s) the excess orders should be sent to. Since the orders are assigned to a
specific outbound line not without reason, changing the outbound line of orders
should be limited as much as possible. The decision of changing orders between
outbound lines and where these orders should come from or should be sent to, can
be formulated as an LP.
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The following notation is used:

Parameters

d designated outbound line(s)
Od order basket of outbound line(s) d
Ld lower bound of the order basket of outbound line(s) d
Ud upper bound of the order basket of outbound line(s) d
Yd,p Boolean: 1 if orders may be sent from order basket d to order basket p,

and 0 otherwise
Ed the number of excess orders in the order basket of outbound line(s) d
Sd the number of orders short in the order basket of outbound line(s) d

Decision variables

Xd,p the number of orders sent from order basket d to order basket p
Zd the number of could-go orders added to the order basket of outbound

line(s) d

The problem can then be formulated as follows:

minimize
DX

d=0

 
Ed �

PX

p=0

Xd,p + Zd

!
(7.5)

subject to

Od +
PX

p=0

Xp,d + Zd  max(Od, Ud) (7.6)

Od �
PX

p=0

Xd,p � min(Od, Ld) (7.7)

PX

p=0

Xd,p  Ed (7.8)

PX

p=0

Xp,d + Zd � Sd (7.9)

Xd,p  Xd,pYd,p (7.10)

Xd,p � 0 (7.11)

Zd � 0 (7.12)

The objective function, Equation 7.5, tries to minimize the remaining number of
excess orders and the number of could-go orders added to the order baskets of
outbound line(s) with shortages. The number of excess orders equals the number
of orders on top of the upper bound of the order basket. The number of shortages
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equals the number of orders needed to reach the lower bound of the order basket.
The objective function minimizes the could-go orders, because the preference is to
fill up shortages in the orders baskets with must-go orders from other outbound
lines before adding could-go orders. One could also add weights to the objec-
tive function in order to favor adding could-go orders to the order basket of one
outbound line over another for example.

The first constraint, Equation 7.6, makes sure that orders are only added to the
order basket if there is room. This means that orders can only be added if the
current level of the order basket is lower than the upper bound of the order basket.
The second constraint, Equation 7.7, makes sure that orders can only be removed
from the order basket and thus added to another order basket if the current level
of the order basket is higher than the lower bound of the order basket.

The third constraint, Equation 7.8, makes sure that the number of orders that
is sent from outbound line d to other outbound lines does not exceed the excess
amount of orders in the order basket of outbound line(s) d. The fourth constraint,
Equation 7.9, makes sure that there are no shortages.

The fifth constraint, Equation 7.10, makes sure that orders are only sent from
outbound line(s) d to outbound line(s) p if this switch is allowed by the Boolean
Yd,p. The final constraints, Equation 7.11 and Equation 7.12 , make sure that the
number of orders switched between outbound lines and the number of could-go
orders added to the order basket are non negative.

The outcome of the LP is the number of orders that should be sent from the order
basket of one outbound line to the order basket of another outbound line and
how many could-go orders should be added to the di↵erent order baskets. This
is done to balance the order basket levels, such that the order baskets do not get
too empty and can therefore not release the required amount of orders to keep the
packing center of the designated outbound line busy. In that way, no processing
capacity is lost. Besides that, it minimizes the amount of excess orders such that
the order baskets do not get too full and can therefore not release all orders before
the end of the day. The purpose of this is to reduce the loss in order fulfillment.

This problem should be solved whenever the order basket level of an outbound line
falls below its lower bound. The lower and upper bound levels should be set by
the company. An example for a time related upper bound is the number of orders
that could still be fulfilled by the outbound line before the end of the day. In this
calculation one should also take into account the expected number of orders that
come in during the remainder of the day. An example for the lower bound is the
number of orders that are processed within a certain time interval plus a safety
margin. These are also the upper and lower bounds used in the experiments in
this research project.
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7.2.3 Experiments

As mentioned before, experiments are done with three di↵erent purposes:

1. Validation of the mathematical model and the simulation model

2. Comparison of the current and proposed approach of batch releases

3. Impact of di↵erent time intervals for batch releases

In these experiments, we make use of the paired t-test in order to determine the
statistical significance. The paired t-test is an analysis on two populations of which
the observations are collected in pairs. Each pair of observations is taken under
homogeneous conditions but there may be di↵erences in the conditions between the
pairs. The test is done on the di↵erences between each pair of observations. The
underlying assumption of the paired t-test is that the di↵erences are normally
distributed, which is a reasonable assumption in many cases. However, if the
underlying distribution is not normal, a moderate departure from normality will
have little e↵ect on the validity of the t-test. [24]

The following notation is used in the t-test:

µD mean of the di↵erences in observations
�0 hypothesized value
H0 null hypothesis
H1 alternative hypothesis
T0 test statistic
D sample average of the di↵erences in observations
SD sample standard deviation of the di↵erences in observations
n number of paired observations

t↵,n�1 t-value from the T-distribution
↵ level of significance

The t-test can be performed one-sided or two-sided, depending on the conclusion
to be drawn. If the objective is to make a claim that the di↵erences between
the pairs of observations are greater than or less than �0, a one-sided test is
appropriate. If the objective is to show that the di↵erences between the pairs of
observations are equal or unequal to �0, regardless of the direction, a two-sided
test should be used. [24]

The one-sided t-test consists of the following steps [24]:

1. Parameter of interest: µD

2. Null hypothesis: H0: µD = �0

3. Alternative hypothesis (select one):
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(a) H1: µD > �0

(b) H1: µD < �0

4. Test statistic:

T0 =
D ��0

SD/
p
n

5. Reject null hypothesis if:

(a) T0 > t↵,n�1 (if H1: µD > �0 )

(b) T0 < �t↵,n�1 (if H1: µD < �0 )

The two-sided t-test is done as follows [24]:

1. Parameter of interest: µD

2. Null hypothesis: H0: µD = �0

3. Alternative hypothesis: H1: µD 6=�0

4. Test statistic:

T0 =
D ��0

SD/
p
n

(7.13)

5. Reject null hypothesis if: T0 > t↵/2,n�1 or T0 < �t↵/2,n�1

Below, it is explained for each of the three types of experiments how these are
performed and which t-test is applied.

Validation of models

According to Law [22], validation is defined as the process of determining whether
a (simulation) model is an accurate representation of the system, for the particular
objectives of the study. The ultimate test of a model’s validity is to proof that
its output data closely resemble the output data that would have been expected
from the actual system. This is done by developing a model of the actual system
and comparing its output data with the historical data from the actual system.

Above described procedure is performed for validating the simulation model. The
current pick batch release approach is incorporated by releasing exactly the same
amount of pick batches at exactly the same time to the simulation model as was
done by the control room during that day. The simulation model is then validated
by simulating days in the past and comparing its performance to the historical
data of those days. The comparison is done by performing a paired t-test on
the average throughput, sojourn time, and WIP, with twelve days in the peak
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period and twelve days outside the peak period. In this case, a two-sided test is
chosen, because the objective is to determine whether the output of the simulation
model is close enough to the historical data. Therefore, the null hypothesis is that
the mean of the di↵erences in observations is equal to zero and the alternative
hypothesis is that the mean of the di↵erences in observations is unequal to zero.

The mathematical model introduced in Chapter 6, is designed to determine the
performance measures of a system in its steady state. As in the current approach,
the arrival rates change continuously such that the steady state of the system is
never reached, the mathematical model can not be used to determine the perfor-
mance measures. As a consequence, the mathematical model can not be validated
with above described procedure.

Among others, Law [22] suggests using another model developed for the same
system and for a similar purpose, that has already been validated, in this case.
An informal comparison can then be made between the two models to validate
the output of the new model. In this research project, this approach is used by
validating the mathematical model based on a comparison of its output to the
output of the simulation model that incorporates the proposed approach. Again,
a comparison is done by performing a two-sided t-test on the average throughput,
sojourn time, and WIP, with the same twelve days in the peak period and outside
the peak period. The two-sided test is chosen, because the objective is to determine
whether the output of the mathematical model is close enough to the output of the
simulation model in which the proposed approach has already been incorporated.
It should be noted that this approach is only legitimate if the simulation model is
considered an accurate enough representation of reality.

Comparison of approaches

Once the mathematical model and simulation model have been validated, these
models can be used to compare the current and proposed approach of batch re-
leases. This is done by comparing the output of the simulation model with the
current approach to the output of the simulation model with the proposed ap-
proach and the mathematical model which only works with the proposed approach.
These two comparisons are done by performing a paired t-test again on the aver-
age throughput, sojourn time, and WIP, with the same twelve days in the peak
period and outside the peak period, as were used in the validation process. In this
case however, one-sided tests are used, because the objective is to show that the
proposed approach performs better than the current approach. The definition of
better here, is a higher average throughput, lower average sojourn time and lower
average WIP.

Besides a comparison of the average performance of the two approaches, several
analyses are also done on the performance of the two batch release approaches over
time. The simulation model is used to obtain the data for the two approaches.
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This data includes the number of items released to the system, WIP levels, and
number of items processed during the day.

Impact of time intervals

Currently, the release of pick batches takes place in time intervals. These time
intervals are not of equal size but as explained in Section 2.3, the control room
decides how many pick batches are released into the system and at what time.
The proposed approach on the other hand, determines the required arrival rate of
pick batches per outbound line at the beginning of each work shift and maintains
this rate throughout the entire shift. However, it still must be decided which time
interval should be used for these rates. Therefore, experiments are performed with
di↵erent time intervals.

Instead of releasing pick batches in time intervals, one could also make this a
continuous process by introducing production authorization cards (PACs). The
question remains however, how many PACs are required in that case. As explained
in Section 4.8, the state space is too large to use the conventional algorithms for
calculating the required number of PACs. If the mathematical model introduced
in Chapter 6 is regarded a good representation of practice, one could, as an alter-
native, experiment with setting the number of PACs equal to the expected number
of pick batches in the system’s steady state as determined by the model.



Chapter 8

Results

The previous chapter described the solution approach and experimental set-up.
This chapter presents the results of the experiments. Section 8.1 shows the results
of the validation of the mathematical model and simulation model. Section 8.2
compares the results of the current approach to the proposed approach of batch
releases. Finally, Section 8.3 shows the results of the experiments with di↵erent
time intervals for the batch releases.

8.1 Model validation

Model validation is done for both the simulation model and the mathematical
model. In Section 8.1.1 the results of the validation of the simulation model are
presented. This is followed by the results of the validation of the mathematical
model in Section 8.1.2.

8.1.1 Validation simulation model

Validation is done separately for the days in the peak period and the days outside
the peak period. As explained in Section 7.2.3, in order to validate the simulation
model, the output of the simulation model with the current approach of releasing
pick batches is compared to the historical data. In Table 8.1 an overview is given
of the average throughput, expressed in the average number of totes processed per
hour, average sojourn time in seconds, and average WIP expressed in number of
totes, of twelve days during the peak period. This is followed by a similar overview
of twelve days outside the peak period in Table 8.2.

57
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Data source Throughput Sojourn time WIP

Historical data 560 4684 734
Simulation model 565 3769 769

Table 8.1: Sample average of the simulation model and historical data of the days
during the peak period

Data source Throughput Sojourn time WIP

Historical data 355 4673 455
Simulation model 312 4690 470

Table 8.2: Sample average of the simulation model and historical data of the days
outside the peak period

The results in Table 8.1 and Table 8.2 show that Little’s Law does not hold for
the results of the simulation model. This can be explained by the fact that the
simulation starts with an empty system and ends with a system that is not empty
yet. The reason for this is that the simulation model ends exactly at the end of
the work schedule of the operators, whereas in practice some overtime might be
required to finish the final batches.

In Table 8.3 an overview of the 99% confidence intervals of the performance mea-
sures of the days in the peak is given, followed by a similar overview of the days
outside the peak in Table 8.4.

Data source Throughput Sojourn time WIP

Historical data (501, 619) (4087, 5281) (589, 880)
Simulation model (504, 625) (3352, 4186) (625, 912)

Table 8.3: Confidence intervals of the simulation model and historical data of the
days during the peak period

Data source Throughput Sojourn time WIP

Historical data (311, 398) (3669, 5677) (368, 541)
Simulation model (261, 363) (3460, 5920) (372, 569)

Table 8.4: Confidence intervals of the simulation model and historical data of the
days outside the peak period

The results in Table 8.3 and Table 8.4 show that the confidence intervals of the
performance measures are large for both the historical data and the simulation
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model. This could be explained by the varying number of operators between the
days both within and outside the peak period. Between some days the di↵erence in
the number of operators is big, with a higher variance in the performance measures
and thus a larger confidence interval as a result.

In addition, the results in Table 8.3 show only a small overlap in the confidence
intervals of the sojourn time. There seems to be a significant di↵erence for this
measure between the historical data and the simulation model. On the other hand,
the confidence intervals of the other performance measures show a lot of overlap
between the historical data and the simulation model. For the days outside the
peak, presented in Table 8.4, the confidence intervals of all performance measures
overlap a lot for the historical data and the simulation model. Whether the di↵er-
ences in the performance measures between the historical data and the simulation
model are significant, is determined by the results of the t-tests.

In Table 8.5 and Table 8.6, the results of the t-tests are given for the days in the
peak period and the days outside the peak period respectively. The t-tests are
performed for a significance level of 1%, since the simulation model should be an
accurate representation of reality as possible.

Result Throughput Sojourn time WIP

Test statistic 0.52 -5.60 0.77
T-value (↵ = 0.01) 3.11 -3.11 3.11
Significant no yes no

Table 8.5: t-tests of the simulation model and historical data of the days during
the peak period

Result Throughput Sojourn time WIP

Test statistic -2.13 0.04 0.39
T-value (↵ = 0.01) -3.11 3.11 3.11
Significant no no no

Table 8.6: t-tests of the simulation model and historical data of the days outside
the peak period

The results in Table 8.6 show that the di↵erences between the simulation model
and the historical data are insignificant for all performance measures with a 1%
significance level. The results in Table 8.5 show a significant di↵erence between
the simulation model and the historical data for the sojourn time with a 1%
significance level, whereas the di↵erence in the throughput and WIP is regarded
insignificant.
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The di↵erence in the sojourn time could be explained by the fact that the simu-
lation model does not take into account breaks of the operators or interruptions
caused by operators from the evening shift replacing the operators from the day
shift. In practice it could happen that an operator started working on sorting
or packing the items in the tote before his or her break, put the process on hold
during the break, and resumed the process after the break. Besides that, it could
happen that operators change in the middle of processing a tote and the new op-
erator requires some start up time. In the simulation model this is not possible
since breaks are not included and operators change instantly without loss of time.
Since the same holds for the simulation model used for the days outside the peak
period, one would expect a similar e↵ect on the sojourn time there but that is not
the case.

Another explanation for the di↵erences in the sojourn time could be the di↵erences
in the service times. In practice, the service times depend on the number of items
in the pick batch and this number varies throughout the day. The simulation
model makes use of service time distributions and generates a random variate
each time a pick batch requires service at a work station. These service time
distributions are fitted over all service times of that day. It is then assumed in
the simulation model that each pick batch contains the same amount of items and
follows this distribution. As a consequence, two pick batches that have entered
the process at the same time in reality as in the simulation model end up with
completely di↵erent service and waiting times. Furthermore, the functionality of
the stingray in the simulation model is a simplification of reality. Therefore, the
sequence of the release of totes and pools of totes to the outbound lines could be
slightly di↵erent, which results in di↵erent service and waiting times of the pick
batches as well.

As the number of pick batches that go through the system during the peak period
is much larger than outside the peak period, the total impact of the di↵erences
in the service and waiting times is much larger than outside the peak period. In
addition, an explanation for the di↵erences in impact between the peak period
and non peak period could be that the service time distributions fit better for the
days outside the peak period than the days during the peak period.

Based on the results presented in Table 8.1 to Table 8.6, the simulation model is
regarded as an acceptable representation of the BFC outbound process. Still, one
should take into account the di↵erences between the simulation model and the
actual process and their impact on the results in further experiments. This holds
especially for the sojourn time of the simulation model for the days in the peak
period, where a significant di↵erence was observed.
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8.1.2 Validation mathematical model

Similarly to the simulation model, validation of the mathematical model is done
separately for the days in the peak period and the days outside the peak period.
As explained in Section 7.2.3, in order to validate the mathematical model, the
output of the model is compared to the output of the simulation model with the
proposed batch release approach. In Table 8.7 an overview is given of the average
throughput, expressed in the average number of totes processed per hour, average
sojourn time in seconds, and average WIP expressed in number of totes, of the
twelve days during the peak period. This is followed by a similar overview of the
twelve days outside the peak period in Table 8.8.

Data source Throughput Sojourn time WIP

Simulation model 754 3263 673
Mathematical model 856 4674 1112

Table 8.7: Sample average of the simulation model and mathematical model of
the days during the peak period

Data source Throughput Sojourn time WIP

Simulation model 376 2705 244
Mathematical model 355 8952 884

Table 8.8: Sample average of the simulation model and mathematical model of
the days outside the peak period

Table 8.7 and Table 8.8 show some di↵erences in the performance measures, es-
pecially for the sojourn time and WIP, between the simulation model and the
mathematical model. To obtain a better impression of the di↵erences in the per-
formance measures of these models, the 99% confidence intervals are presented in
Table 8.9 and Table 8.10 for the days during the peak period and outside the peak
period respectively.

Data source Throughput Sojourn time WIP

Simulation model (604, 904) (2995, 3531) (442, 905)
Mathematical model (692, 1021) (3021, 6327) (888, 1336)

Table 8.9: Confidence intervals of the simulation model and mathematical model
of the days during the peak period
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Data source Throughput Sojourn time WIP

Simulation model (317, 434) (2504, 2907) (194, 293)
Mathematical model (282, 429) (5352, 12551) (603, 1165)

Table 8.10: Confidence intervals of the simulation model and mathematical model
of the days outside the peak period

The results in Table 8.9 and Table 8.10 show that the confidence intervals of
the performance measures are large, especially for the mathematical model. As
explained before in Section 8.1.1, this could be explained by the highly varying
number of operators between the days with a high variance in the performance
measures and thus a larger confidence interval as a result.

T-tests are performed in order to determine whether the di↵erences in the perfor-
mance measures, that already become apparent when looking at the confidence
intervals, between the simulation model and the mathematical model are signifi-
cant. The results of these t-tests are presented in Table 8.11 and Table 8.12 for
the days during the peak period and outside the peak period respectively.

Result Throughput Sojourn time WIP

Test statistic 6.09 2.53 4.06
T-value (↵ = 0.01) 3.11 3.11 3.11
Significant yes no yes

Table 8.11: t-tests of the simulation model and mathematical model of the days
in the peak period

Result Throughput Sojourn time WIP

Test statistic -3.48 5.61 7.81
T-value (↵ = 0.01) -3.11 3.11 3.11
Significant yes yes yes

Table 8.12: t-tests of the simulation model and mathematical model of the days
outside the peak period

The results in Table 8.11 and Table 8.12 show a significant di↵erence between the
results of the mathematical model and the results of the simulation model with the
proposed approach for all performance measures with a significance level of 1%,
except for the sojourn time in the peak period. The di↵erence in the sojourn time
in the peak period is however regarded significant for a significance level of 5%,
which has a T-value of 2.20. It can thus be concluded that the simulation model
and the mathematical model provide significantly di↵erent results for the proposed
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approach. This could be explained by the di↵erences between the models. Both
models contain a simplified version of the stingray, each in a di↵erent way. Besides
that, the mathematical model does not take into consideration the bu↵er areas of
the individual work stations, whereas these are included in the simulation model.
Furthermore, the di↵erence could be explained by the fact that the mathematical
model determines the performance for the steady state but the results of the
simulation model also include the beginning and the end of the day, which are
phases in which the system is not in its steady state.

Taking a closer look at the performance of the individual stations in the simulation
model as well as the mathematical model, it seems that the mathematical model
underestimates the pool completion time and suggests much higher waiting times
at the sorting and packing stations. In Table 8.13 and Table 8.14, the confidence
intervals of the pool completion time and waiting time for the sorting and packing
stations are presented.

Data source Pool completion time Waiting time

Simulation model (229, 319) (509, 624)
Mathematical model (29, 52) (1361, 2104)

Table 8.13: Confidence intervals of the simulation model and mathematical model
of the pool completion time and waiting time of the days in the peak period

Data source Pool completion time Waiting time

Simulation model (134, 176) (365, 552)
Mathematical model (41, 125) (1069, 3862)

Table 8.14: Confidence intervals of the simulation model and mathematical model
of the pool completion time and waiting time of the days outside the peak period

For both the peak period and the non peak period holds that there is no overlap
in the confidence intervals of the pool completion time and the waiting time for
the sorting and packing stations of the simulation model and the mathematical
model. The significance of the di↵erences in the results is demonstrated by the
results of the t-tests presented in Table 8.15 and Table 8.16.

Result Pool completion time Waiting time

Test statistic -13.52 9.11
T-value (↵ = 0.01) -3.11 3.11
Significant yes yes

Table 8.15: t-tests of the simulation model and mathematical model of the pool
completion time and waiting time of the days in the peak period
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Result Pool completion time Waiting time

Test statistic -6.00 4.53
T-value (↵ = 0.01) -3.11 3.11
Significant yes yes

Table 8.16: t-tests of the simulation model and mathematical model of the pool
completion time and waiting time of the days outside the peak period

From the results in Table 8.15 and Table 8.16 it can be concluded that there
is a significant di↵erence between the simulation model and the mathematical
model regarding the pool completion time and the waiting time at the sorting and
packing stations. The simulation model incorporates the logic of the stingray to
only release totes or pools of totes to the sorting and packing stations if there
is room in the bu↵ers. Until that time, the totes and pools of totes need to
wait in the stingray. The mathematical model on the other hand only waits for
pool completion and then sends the totes immediately to their next station. This
di↵erence between the models could explain why the expected waiting times at
the sorting and packing stations are higher for the mathematical model than the
simulation model. However, the observed di↵erence is very large and there should
not be a significant di↵erence between the pool completion times of the models.

Based on the results presented in this section, the mathematical model is not
regarded as a good representation of the process in practice at this stage. Im-
provements must be made to the model to obtain a more accurate estimation
of the pool completion time and the waiting times at the sorting and packing
stations.

8.2 Current approach versus proposed approach

In order to determine whether the proposed approach of releasing pick batches to
the system performs better than the current approach, several analyses are done.
Since the mathematical model is not regarded as a good representation of the
actual process, the comparison is done by only comparing the results of the sim-
ulation model with the current batch release approach and the simulation model
with the proposed batch release approach. In Section 8.2.1 the average results,
confidence intervals and corresponding t-tests are presented. Section 8.2.2 presents
the results of a number of analyses of the performance of the two approaches over
time.
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8.2.1 Average results and t-tests

Similar to the validation process, the comparison of the current and proposed ap-
proach is done separately for the days during the peak period and the days outside
the peak period. In Table 8.17 an overview is given of the average throughput,
sojourn time and WIP of the twelve days during the peak period. This is followed
by an overview of the confidence intervals of the performance measures in Table
8.18.

Data source Throughput Sojourn time WIP

Simulation (current) 565 3769 769
Simulation (proposed) 754 3263 673

Table 8.17: Sample average of the simulation model with both approaches of the
days in the peak period

Data source Throughput Sojourn time WIP

Simulation (current) (504, 625) (3352, 4186) (625, 912)
Simulation (proposed) (604, 904) (2995, 3531) (442, 905)

Table 8.18: Confidence intervals of the simulation model with both approaches of
the days in the peak period

Based on the results in Table 8.17 and Table 8.18, it seems that the throughput
is significantly higher and the sojourn time significantly lower for the proposed
approach. There seems to be a di↵erence between the two approaches in the
average WIP but the confidence intervals show a considerable overlap. In Table
8.19 the results of the t-tests are presented in order to determine whether these
di↵erences are significant or not.

Result Throughput Sojourn time WIP

Test statistic 5.11 -2.85 -0.95
T-value (↵ = 0.01) 2.72 -2.72 -2.72
Significant yes yes no

Table 8.19: t-tests of the simulation model with both approaches of the days in
the peak period

The results in Table 8.19 show a significant di↵erence between the results of the
simulation with the current and the proposed approach for the throughput and
sojourn time with a 1% significance level, whereas the di↵erences in the WIP are
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regarded insignificant. From these results it can thus be concluded that the pro-
posed approach of releasing pick batches results in a higher average throughput
of approximately 33%. One should however take into consideration that the sim-
ulation model does not take into account breaks of the operators or interruptions
caused by operators from the evening shift replacing the operators from the day
shift. The control room already accounts for these e↵ects in their approach of
releasing pick batches. Each operator has three breaks that add up to one hour
in total. There are two shifts during the day, which means that there are two
hours during the day that an operator is not working. A production day equals
16.5 to 17 hours, depending on whether it is the peak period or not. This means
that the breaks add up to approximately 12% of the production time. In practice,
the increase in throughput is therefore somewhat lower than the simulation model
suggests. Based on this information, the increase in the average throughput is
expected to be approximately 17%.

A similar overview of the average performance of the current and proposed ap-
proach of the days outside the peak period is given in Table 8.20, followed by an
overview of the confidence intervals of the performance measures in Table 8.21.

Data source Throughput Sojourn time WIP

Simulation (current) 312 4690 470
Simulation (proposed) 376 2705 244

Table 8.20: Sample average of the simulation model with both approaches of the
days outside the peak period

Data source Throughput Sojourn time WIP

Simulation (current) (261, 363) (3460, 5920) (372, 569)
Simulation (proposed) (317, 434) (2504, 2907) (194, 293)

Table 8.21: Confidence intervals of the simulation model with both approaches of
the days outside the peak period

The results in Table 8.20 and Table 8.21 indicate a substantially higher through-
put, lower sojourn time and lower WIP. In Table 8.22 the results of the t-tests are
presented in order to confirm whether these di↵erences are significant or not.



CHAPTER 8. RESULTS 67

Result Throughput Sojourn time WIP

Test statistic 5.68 -5.33 -7.53
T-value (↵ = 0.01) 2.72 -2.72 -2.72
Significant yes yes yes

Table 8.22: t-tests of the simulation model with both approaches of the days
outside the peak period

The results in Table 8.22 show a significant di↵erence between the results of the
simulation model with the current and proposed approach for all performance mea-
sures with a significance level of 1%. From these results it can thus be concluded
that the proposed approach of releasing pick batches results in a higher through-
put, shorter sojourn times, and lower WIP levels for days outside the peak period.
The increase in average throughput is approximately 21%. Again, one should take
into consideration that the simulation model does not take into account breaks of
the operators and interruptions during the switch of operators between the day
and evening work shifts. Taking this into account, a better approximation is an
expected increase in the average throughput of approximately 6%.

8.2.2 Results over time

Besides a comparison on the average performance measures, the performance of
the current and proposed approach is also analyzed over time by the simulation
model. In Figure 8.1, the cumulative arrival of must go items, which are items
that must be shipped today, are depicted together with the cumulative number of
items that are released to the system with the current and proposed approach for
a day in the peak period and a day outside the peak period. The figures of the
other days during the peak period and outside the peak show comparable results
and can be found in Appendix B.

(a) Non peak period (b) Peak period

Figure 8.1: Must go items arrived and items released over time
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In the non peak period, it can be seen that the number of items released to the
system are fairly similar in the beginning for the current and proposed approach.
In the middle of the production day, a significant increase in the release rate is
observed for both the current and the proposed approach. This increase in the
release rate is due to the increase of operators from the day shift to the evening
shift. For the current approach this takes place one hour earlier than the proposed
approach. The reason for this is that with the current approach a bu↵er with
workload of approximately one hour is created for the stations that are opened in
the evening shift. This bu↵er is not created in the proposed approach.

In the peak period, it can be seen that the number of items released to the system
exceeds the number of must go items that have arrived in the second half of the
production day. This means that not only must go items but also could go items,
which are items that may also be shipped the next day instead of today, were
released to the system. In the beginning of the day, the release rate is a bit higher
with the current approach but soon the release rate of the proposed approach
overtakes the current approach. At the end of the day a significant amount of
additional items is released with the proposed approach in comparison to the
current approach.

In Figure 8.2, the work in progress during the day, expressed in the number of
totes in the system, is depicted of the current and the proposed approach for a day
in the peak period, as well as a day outside the peak period. The figures of the
other days during the peak period and outside the peak show comparable results
and can be found in Appendix C.

(a) Non peak period (b) Peak period

Figure 8.2: Work in progress over time

For both the peak and non peak period holds that the WIP levels are relatively
stable for the proposed approach and fluctuate a lot for the current approach. In
the non peak period, an increase in the WIP level can be seen at the middle of the
production day, which is the moment that the day shift is replaced by the evening
shift. In the same time period, a huge increase in the WIP level with the current
approach is observed. This can be explained by the bu↵er that is created one
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hour in advance of the switch between the day and evening work shifts. During
that hour, the release rate of items to the system is already increased whereas
the number of operators remains the same. As a result the rate in is much larger
than the rate out, such that the WIP level is increased. In the peak period, the
di↵erence between the number of operators in the day shift does not di↵er that
much from the number of operators in the evening shift, therefore the impact is
much lower there. Other factors that cause the fluctuations in the WIP levels are
the fluctuations in the release of items to the system and the stochastic service
times.

Another observation here, is that at the end of the day the WIP levels are still
fairly high for the current approach. This means that the system is not empty
yet and still some time is required to process the pick batches that are still in the
system. This could be explained by the fact that the simulation model starts and
stops exactly at the times that the operators are hired for, whereas in practice a
little overtime might be required to finish the final batches.

In Figure 8.3, the cumulative number of items processed is depicted of the current
and proposed approach for a day in the peak period and a day outside the peak
period. The figures of the other days during and outside the peak period show
comparable results and can be found in Appendix D.

(a) Non peak period (b) Peak period

Figure 8.3: Items processed over time

For both the peak and non peak period holds that in the end more items are
processed with the proposed approach than the current approach. The di↵erence
is larger in the peak period than the non peak period. In the non peak period, the
number of items processed with the current and proposed approach run almost
parallel in the beginning but near the end of the day, the processing of items
with the proposed approach continues steadily whereas the processing of items
with the current approach attenuates. In the peak period the proposed approach
outperforms the current approach right from the start of the day. The di↵erence
between the non peak period and peak period can be explained by the number
of operators working. In the non peak period the number of operators is much
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lower, especially in the mornings, and a lower amount of operators results in less
additional processed items.

8.3 Batch release time intervals

The proposed approach provides a batch release rate for each outbound line. The
question is however which time interval should be used for these rates. Therefore,
experiments have been done for several time intervals in order to assess the impact.
The results for the days in the peak period are presented in Table 8.23 and those
for the days outside the peak period can be found in Table 8.24.

Time interval Throughput Sojourn time WIP

10 minutes 739 3285 712
12.5 minutes 800 3053 655
15 minutes 754 3263 673
17.5 minutes 795 3186 654
20 minutes 798 3206 639
22.5 minutes 795 3419 689
25 minutes 797 3512 693

Table 8.23: Average performance per time interval of days in the peak period

Time interval Throughput Sojourn time WIP

10 minutes 374 2563 242
12.5 minutes 207 3355 506
15 minutes 376 2705 244
17.5 minutes 201 3692 180
20 minutes 201 3793 185
22.5 minutes 200 3932 188
25 minutes 201 4131 199

Table 8.24: Average performance per time interval of days outside the peak period

The main reason for the di↵erences in the results between the time intervals is
caused by how well the batch release rates, which are based on the processing
times of the sorting and packing stations, can be converted to that time interval.
For example for the days in the peak period, the longest average packing time is
approximately 12.5 minutes. In order to be able to release one pick batch to this
station in every time interval, the time interval should be equal to or larger than
12.5 minutes. Similarly, the shortest average packing time for days in the peak
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period is approximately 2.5 minutes. In that case, the time interval should ideally
equal or be a multiple of 2.5 minutes.

As new orders come in all the time and the items in the warehouse are distributed
randomly, it is preferred to release pick batches to the system at the latest time
possible. The reasoning behind this is that more productive pick batches can be
created if there are more items to choose from. By releasing the pick batches at
the latest time possible, it is prevented that pick batches, that have been sent
to the system already but have not been processed yet, could have been more
productive if the items of later incoming orders were considered as well.

The best time interval is therefore the shortest time interval in which the rates
(or multiple of the rates) of the di↵erent outbound lines fit best. These rates are
highly dependent on the service time distributions of the outbound lines so these
must be as accurate as possible.



Chapter 9

Discussion

The previous chapter presented the results of the experiments performed with the
mathematical model and simulation model. In this chapter the limitations of the
models are discussed in Section 9.1, followed by the recommendations in Section
9.2.

9.1 Limitations

One obvious limitation of the mathematical model is the simplification of the
functionality of the stingray. As a result, the mathematical model underestimates
the pool completion time and suggests higher waiting times at the sorting and
packing stations. Another limitation of the mathematical model is that it does
not account for the bu↵er areas of the individual work stations. As a consequence
the model allows for longer queues at the individual sorting and packing stations,
whereas in practice these pick batches would be waiting in the stingray until a
spot becomes available in the queue of the next station.

Similarly to the mathematical model, a limitation of the simulation model is the
simplification of the functionality of the stingray. The release sequencing of totes
and pools of totes to the outbound lines in the simulation model does not fully
correspond to the sequencing in practice. In practice some additional rules apply.
As a result, totes or pools of totes might be waiting longer in the simulation model
than they would have in practice and vice versa.

Furthermore, a limitation for both models is that in practice the service times are
dependent on the number of items and for picking also on the distances, whereas
the models assume that each pick batch for a designated outbound line is of equal
size and uses a distribution fitted on the service times of all pick batches sent to
that designated outbound line during the day.
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9.2 Recommendations

Regarding the mathematical model, it is recommended to improve the incorpora-
tion of the stingray logic in the complete reduction method. One might be able
to reduce the underestimation of the pool completion time by improving the es-
timation of the inter-arrival times of pick batches that belong to the same pool.
Besides that, a solution may be found to take into account the bu↵er space of the
sorting and packing stations.

With respect to the simulation model, it is recommended to formulate service
times that are dependent on the number of items in the pick batch and make the
size of the pick batches stochastic. The next level would be to make a connection
with Pacman, such that the pick batches are created in the same manner as they
would be in practice. In addition, it is recommended to improve the functionality
of the stingray by trying to incorporate the full logic that is used in practice.
Furthermore, the validation of the simulation model could be improved by per-
forming the same analysis for the current approach using the actual pool sizes and
the actual processing times at each station of the individual totes.

In relation to the LP introduced for distributing the arrival rate of pick batches
over the outbound lines, it is recommended to examine the impact of the weights
in the objective function in case the sorting and packing stations are no longer the
bottleneck.

Ultimately, it is recommended that the release of pick batches is done in a more
timely manner and in such quantities that the system is balanced. It is recom-
mended that the overall release rate of pick batches is slightly lower than the
processing rate of the bottleneck and the release rate of pick batches for each
outbound line is slightly lower than the processing rate of that outbound line. In
addition, it is recommended that the time interval of the batch releases equals the
shortest time interval in which the rates or multiple of the rates of the di↵erent
outbound lines fit best. Moreover, it is recommended to research how the process-
ing rates of the outbound lines can be determined as accurately as possible, since
these are highly dependent on the number of items in a pick batch which could
vary a lot throughout the day.

The company is recommended to start researching how the processing rates of the
outbound lines can be determined accurately. After that, the logic of the proposed
approach of releasing pick batches in a more timely and balanced manner can be
implemented. Next, the company could incorporate the logic of balancing the
order basket levels in order to automate this process as well.

At last, an idea for future research is to investigate how the same logic could
be applied to a warehouse in which pick batches are created in and coordinated
from multiple areas. This is exactly what will happen in BFC2, which is the new
warehouse of the company.



Chapter 10

Conclusion

The main research question of this research project is: ”How should the workload
at the di↵erent work stations in the warehouse be allocated such that the overall
throughput is maximized and the operating costs are minimized, while maintaining
the order fulfillment score?”

By means of theoretical research, an approach for pick batch releases and a math-
ematical model were formulated. In addition, a simulation model was created
for validation purposes and to be able to better compare the performance of the
current and proposed approach for pick batch releases.

Based on the results of the experiments in this research project, it can be concluded
that the mathematical model does not represent the reality accurately enough.
This is mainly caused by the discrepancies of the stingray. Therefore, future
research should focus on how the model can be adjusted such that the gap between
the functionality of the stingray in the model and in practice becomes smaller.

Furthermore, it can be concluded from the results of the experiments that the
proposed approach for releasing pick batches to the system performs significantly
better than the current approach. A big advantage of the proposed approach is
the more constant WIP levels, which means that the risk of peaks in the WIP
levels is lower. Therefore, less capacity needs to be reserved for the outbound
process and can be used more e�ciently for other processes in the warehouse.

Moreover, the proposed approach results in significantly higher throughput rates.
The increase in throughput is expected to be approximately 17% during the peak
period and approximately 6% outside the peak period. As a result, more customers
orders can be processed by the end of the day or the number of operators can be
reduced. During the peak period, the company often puts a break on the incoming
customer orders by shutting down particular shops or postponing the delivery
date. The increase in the throughput can reduce these kind of interventions.
Consequently, more customer orders can be accepted and fulfilled.
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