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Abstract In this paper, a method to analyze flexible multibody systems is presented, based on 
the floating frame formulation and applied to the Afterburner. In this formulation a 
floating frame is fixed to the rigid body center of mass. The rigid body motions, which 
make the system highly nonlinear, are described by constraint equations in a global 
frame. While the flexible deformations are described in the local floating frame by a 
linear combination of mode shapes multiplied with flexible coordinates. Linear finite 
element models are made and reduced to the interface points using the Craig-
Bampton method, resulting in a small amount of mode shapes. At the interface points 
are revolute joints positioned, which include large three-dimensional rotations. To 
overcome singularity problems a solution procedure is described using an update of 
the rotation matrices. The results of this model are validated using simulations. 
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1. INTRODUCTION 

 
The design of fairground attractions encounters multiple challenges. Over the last decades, the designs have 
become higher, faster and more extreme than ever before. In addition, fairground attractions must be 
transportable, preferably fit on a single trailer and installation time should be as short as possible. 
Manufacturers of fairground attractions are looking for ways to reduce the weights of their attractions in 
order to reduce transportation costs. Within this industry there is a trend towards lightweight designs on 
one hand and a trend towards more extreme fairground attractions on the other. Therefore, the study of the 
dynamic behavior becomes more important to increase the reliability and safety of the lightweight 
attractions and to prolong lifetime.    
 
Traditionally, the deformations and internal stresses of critical components are studied using a linear finite 
element model, in which load cases are applied in a quasi-static fashion. These load cases are obtained from 
rigid multibody dynamics simulations. To improve the prediction of the attraction’s elastic deformations 
and stresses, the industry has an increased interest to use flexible multibody dynamics methods.  
 
In this work, a flexible multibody dynamics analysis of the Afterburner is presented using the floating frame 
of reference formulation [1]. The most important contribution of this paper is in providing an overview and 
practical application of how various, well-developed and well-documented, methods can be combined to 
form a solution strategy for high-nonlinear dynamic problems, including large rotations.  
 
The Afterburner was chosen in particular after a fatal accident in 2017 [2]. Although this accident had a 
different cause, it got our attention and we became curious about its dynamic behavior. 
 
The outline of this paper is as follows: in Section 2, background information is given about the applied 
method, using literature and a schematic overview of the working procedure, followed by general 
information about the Afterburner. In Section 3, the theory of flexible dynamics using the floating frame 
formulation is briefly explained, first for a single body and continued for multibody systems. An outline of 
the terms in the constrained equations of motion is given and a solution procedure is described. Section 4 
gives an overview of the Afterburner parts, how they are modeled and relevant characteristics. In Section 
5, the rigid kinematics and kinetics simulation results are shown, as well as the flexible kinematics. Followed 
by the dynamic calculation of the equivalent stresses in the clapper of the Afterburner.  
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2.  METHODOLOGY 

 

2.1 THEORETICAL BACKGROUND 

 
To model three dimensional rigid multibody systems, the augmented formulation can be used to describe 
the kinematics and kinetics. A body´s kinematics can be described by the motion of a set of coordinate 
frames, rigidly attached to a point on the body. At the interface points of the bodies, connections are made 
to other bodies or the ground using joints. These connections are made in the form of constraint equations, 
defining the position and orientation of the interface points with respect to the body’s floating frame, which 
are explained in textbooks such as [1, 3, 4]. The equations of motion (EoM) can be compiled, which is a 
system of differential algebraic equations (DAEs) that can be solved, given a set of initial conditions for the 
generalized coordinates (𝐪0, �̇�0). The set of equations contain the degrees of freedom (DOF), which are the 
position and orientation of the rigidly attached coordinate frames of the bodies and the time derivatives. 
Lagrange multipliers (𝛌) are used to enforce the constraints, since an analytical solution might not be found. 
The total number of unknowns is typically high and due to the large rigid body rotations between different 
bodies, this problem is of a geometrical nonlinear nature. Explicit numerical integration methods like 
Runge-Kutta and Adams-Bashforth Predictor are explained and applied in [4] as well as the Adams-Moulton 
Corrector which is an implicit method. Additionally, a Newton-Raphson method can be added to improve 
the solutions of the positions and to ensure that all constraint equations are satisfied.  
 
Modeling joints can become challenging if large three-dimensional rotations are included. All methods using 
three parameters for the parameterization of three angles, suffer from singularities in the velocity 
transformation and are therefore not suitable for large rotations [5]. Schemes are developed to overcome 
this problem using different formulas in different quadrants of a circle [4], with the downside of 
discontinuity in the constraint equations. Using quaternions, three large rotations can be described using 
four parameters, but they have the drawback of giving a redundancy of description.  
 
The rigid body motions are nonlinear, but the flexible behavior is small and therefore it can be assumed to 
be linear. In this case the Floating Frame of Reference (FFR) formulation is the preferred formulation to 
describe flexibility [6]. The augmented formulation can be extended for the flexible system using a floating 
frame describing the large rigid body motions of a body with respect to the inertia frame using the 
constraint equations, this is described in [1, 7]. The linear theory of elasticity is used to describe the flexible 
behavior locally, satisfying Hooke´s law and approximating the strains with the linear Cauchy strain tensor 
[7, 8]. The local generalized coordinates (𝐪) are written as a linear combination of a small number of mode 
shapes multiplied with the flexible coordinates (𝛈), which describe the behavior of the modes in time [9]. 
The mass (𝐌) and stiffness (𝐊) matrices can be used from a body’s linear finite element model. This model 
typically contains a large number of degrees of freedom, which results in an unbeneficial large system of 
equations to solve. However, the required number of degrees of freedom to describe the flexible behavior 
is much less, because the lower natural frequencies and corresponding modes tend to dominate the global 
dynamic behavior [10].   
 
Because the local model is described linear, the number of flexible coordinates can be reduced using well-
developed linear model order reduction (MOR) techniques like the Craig-Bampton method [11, 12]. Its 
simplicity and computational stability make it a highly regarded reduction method. The local reference 
frame is placed in the center of mass for better accuracy. To overcome singularity problems with rigid body 
motion contained in the Craig-Bampton reduction basis, a second reduction technique is applied using the 
natural modes of the system. The natural modes (𝛙𝑖) are obtained by solving a body’s Eigenvalue problem 
for free vibrations: (𝐊 − 𝛚𝑖

2𝐌)𝛙𝑖 = 𝟎, in which 𝛚𝑖  are the corresponding natural frequencies. This second 
reduction step diagonalize the mass and stiffness matrix and is also used by the multibody dynamics 
simulation software MSC Adams [13, 14].  
 
The final flexible constrained equations of motion grow with the number of flexible coordinates. The flexible 
dynamics equations are also differential algebraic equations which are ‘stiff’, the system Eigenfrequencies 
are distributed over a broad frequency range which make them hard to solve. Implicit numerical integration 
schemes are most popular for solving these equations, like the generalized-alpha method and the Newmark-
beta method [15]. A practical application of the generalized-alpha method can be found in [16]. Although 
they are harder to implement, they benefit from unconditional stability properties whereas explicit schemes 
are only stable for sufficiently small timesteps. 
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2.2 WORKING PROCEDURE 

 
The benefit of the augmented formulation is the ability to extend the calculations stepwise, each step 
increasing the difficulty and the possibility to verify for human errors. The first step is the rigid kinematics 
of the system, define the set of constraint equations and eventually calculate the constraint moments. The 
next step is the rigid kinetics, where driving moments are used to calculate the rigid body motions and the 
constraint forces and moments. This calculation is made to validate the model and in practice this is how 
the system is driven. The last step is the extension to the flexible kinematics, where the constraint equations 
must be rewritten slightly to calculate the constraint forces, moments and deformations at the same time. 
Figure 1 shows an overview of the working procedure, with blue arrows referencing to the steps for the 
rigid calculations and the orange arrows referencing to the additional steps for the flexible calculations.  

 
Figure 1: Working scheme 

 

2.3 THE AFTERBURNER 
 
The method described in this paper will be evaluated using the Afterburner. Figure 2 shows a model of the 
Afterburner, which consist of two main bodies: the clapper and hub. The fixed framework is out of scope for 
this study. The clapper is made from a twelve-sided tube, with a length of approximately 8 meters and a 
weight of ~1200 kg. The hub consists of a driving drum with six gondolas attached to it, each gondola 
contains four seats. The diameter of the hub is approximately 6 meters and has a weight of ~5000 kg (24 
persons included). 
 
The clapper swings harmonically with a period of 8 seconds and a maximum angle of ±120 degrees, while 
the hub continuously rotates at a constant speed of 15 rpm [17]. From the manufacturer additional 
drawings were retrieved to recreate a more accurate model. 

 
Figure 2: Model of the Afterburner 

 
Figure 3: Schematic representation of the 

Afterburner 

A body is an assembly of multiple parts which have a bonded contact, by using models of bodies fewer 
generalized coordinates are required to describe the rigid body motion and the flexible deformations. The 
two bodies of the Afterburner results in twelve degrees of freedom in three-dimensional space. Allowing 
two motions (swinging and rotation) indicates that it’s a 2-DOF system. Figure 3 shows a schematic 
representation of the fairground attraction with the two bodies and the global and local Cartesian 
coordinate systems. The global coordinate system is placed in point 0, where the clapper is fixed to the 
ground with a revolute joint allowing for the swinging motion of the system around the 𝑌0-axis. The local 
coordinate systems are rigidly attached in the center of mass of both bodies, respectively point 1 and 2 
indicated with the dimensions. In point 𝐴 the hub is attached to the clapper with a revolute joint, allowing 
for the rotation of the hub around the clapper, the local 𝑍1-axis. 
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3. THE FLEXIBLE MODEL 

 

3.1 SINGLE FLEXIBLE BODY 

 
Figure 4 shows an arbitrary flexible body, with a global frame 𝑃𝑖 , a local floating frame 𝑃𝑗  which is fixed to 

the body and one interface point 𝑃𝑘 . The blue dotted body is the rigid body, whereas the blue solid body is 

the flexible deformed body. The position vector 𝐪𝑗
𝑖,𝑖  defines the position of 𝑃𝑗  (lower index 𝑗) relative to 𝑃𝑖  

(second upper index 𝑖) and its components are expressed in the coordinate system 𝑃𝑖  (first upper index 𝑖). 

The rotation matrix  𝑗
𝑖  defines the orientation of coordinate system 𝑃𝑖  (upper index 𝑖) relative to coordinate 

system 𝑃𝑗  (lower index 𝑗 ). This rotation matrix also defines a coordinate transformation of a vector 

expressed in coordinate system 𝑗 into one in coordinate system 𝑖. 

 
Figure 4: Position of an arbitrary point 𝑷𝒌 on a deformed body 

 

The rigid body motion is described globally in frame 𝑃𝑖 , using the position vector 𝐫𝑗
𝑖,𝑖  for the position of the 

floating frame and the rotation matrix  𝑗
𝑖  for the orientation of this frame. The flexible behavior is described 

locally in frame 𝑃𝑗 , where the position vector 𝐫𝑘
𝑗,𝑗

 is defined using a superposition of the position of 𝑃𝑘  on 

the undeformed body (𝐱𝑘
𝑗,𝑗

) and the linear elastic displacement field (𝐮𝑘
𝑗,𝑗

): 

 𝐫𝑘
𝑗,𝑗

= 𝐱𝑘
𝑗,𝑗

+ 𝐮𝑘
𝑗,𝑗

 (1) 

The local linear elastic displacement field is generally described by a linear combination of a set of 𝑁 
deformation shapes 𝛙𝑚 multiplied with the corresponding time dependent flexible coordinate 𝜂𝑚:  

 𝐮𝑘
𝑗,𝑗

= ∑ 𝛙𝑚(𝑥𝑘
𝑗,𝑗
)

𝑁

𝑚=1

𝜂𝑚 = 𝚿𝑘𝛈𝑘 (2) 

In which all deformation shapes are combined in one matrix 𝚿, which forms a total set of deformation 
shapes. Describing the rigid body motion and the flexible behavior together in the global frame can be done 
using the rotation matrix: 

 𝐫𝑘
𝑖,𝑖 = 𝐫𝑗

𝑖,𝑖 +  𝑗
𝑖  (𝐱𝑘

𝑗,𝑗
+ 𝐮𝑘

𝑗,𝑗
) (3) 

 
The rotation matrix is an orthogonal matrix of the proper kind, which means that its transpose equals its 

inverse ( 𝑗
𝑖−1

=  𝑗
𝑖𝑇 =  𝑖

𝑗
) and its determinant equals one ( 𝑗

𝑖 𝑖
𝑗
= 𝟏), where 𝟏 is the (3 × 3) unity matrix. 

From these properties, it follows that the time derivatives of the rotation matrix can be expressed as: 

  ̇𝑗
𝑖 = �̃�𝑗

𝑖,𝑖 𝑗
𝑖   ̈𝑗

𝑖 = �̃�𝑗
𝑖,𝑖 𝑗

𝑖 + �̃�𝑗
𝑖,𝑖�̃�𝑗

𝑖,𝑖 𝑗
𝑖  (4) 

In which vector 𝛚𝑗
𝑖,𝑖 is the angular velocity vector and 𝛂𝑗

𝑖,𝑖 is the angular acceleration vector of frame 𝑃𝑗  with 

respect to 𝑃𝑖  and its components expressed in frame 𝑃𝑖 . Whereas the tilde operator denotes the skew 
symmetric matrix constructed from a (3 × 1) vector as shown: 

 𝐚 =  {

𝑎1
𝑎2

𝑎3

} �̃� =  [

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] (5) 

 

Differentiating equation (3) with respect to time gives the velocity of point 𝐫𝑘
𝑖,𝑖 , and a second time derivative 

gives the acceleration: 

 
�̇�𝑘
𝑖,𝑖 = �̇�𝑗

𝑖,𝑖 +  ̇𝑗
𝑖  (𝐱𝑘

𝑗,𝑗
+𝚿𝑘𝛈𝑘) +  𝑗

𝑖  (𝚿𝑘�̇�𝑘) 

�̈�𝑘
𝑖,𝑖 = �̈�𝑗

𝑖,𝑖 +  ̈𝑗
𝑖  (𝐱𝑘

𝑗,𝑗
+𝚿𝑘𝛈𝑘) + 2 ̇𝑗

𝑖  (𝚿𝑘�̇�𝑘) +  𝑗
𝑖  (𝚿𝑘�̈�𝑘) 

(6) 

𝐫𝑗
𝑖,𝑖

𝑃𝑖

𝑃𝑗

 𝑗
𝑖

𝑃𝑘

𝐱𝑘
𝑗,𝑗

𝐮𝑘
𝑗,𝑗

𝐫𝑘
𝑖,𝑖
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3.2 FLEXIBLE MULTIBODY SYSTEM 

 
Figure 5 shows a flexible multibody system, consisting of two arbitrary bodies with fixed local frames 𝑃𝑗  

and 𝑃𝑙 . They are connected with a revolute joint in 𝑃𝑘 , where 𝑃𝑘  is an interface point on both the bodies. As 
done before, the position of point 𝑃𝑘  can also be described using local frame 𝑃𝑙: 

 𝐫𝑘
𝑖,𝑖 = 𝐫𝑙

𝑖,𝑖 +  𝑙
𝑖  (𝐱𝑘

𝑙,𝑙 + 𝐮𝑘
𝑙,𝑙) (7) 

Typically, three position constraints are formulated for a joint at interface point 𝑃𝑘  by equating equations 
(3) and (7). This can be done on the position level, but also on the velocity level when taken the first time 
derivative of these equations, see equation (6). The result must be rewritten to end up with constraint 
equations in the global coordinate frame 𝑃𝑖 , as shown in Appendix A. 

 
Figure 5: Flexible multibody system with revolute joint in point 𝑷𝒌 

The orientation of coordinate 𝑃𝑙  is defined globally by  𝑙
𝑖 , it can also be defined relative to the orientation 

of frame 𝑃𝑗: 

  𝑙
𝑖 =  𝑗

𝑖 𝑙
𝑗
 (8) 

For the angular velocities a similar relation holds as for the positions. This relationship also dependents on 
the flexible coordinates, if the angular velocities are calculated at interface point 𝑃𝑘:  

 𝛚𝑘
𝑖,𝑖 = 𝛚𝑗

𝑖,𝑖 +  𝑗
𝑖(𝛚𝑘

𝑗,𝑗
+𝚿𝑘�̇�𝑘) (9) 

This equation can be rewritten in terms of the local angular velocity vector 𝛚𝑘
𝑗,𝑗

, from which two angular 

velocities can be equated to zero. The sixth constraint equation is in general a driving constraint to prescribe 
the angular velocity. All constraint equations are ensembled in vector 𝚽. 
 

3.3 EQUATION OF MOTION 

 
For each flexible body in a multibody system, the standard equations of motion expressed in the global 
frame can be written as: 

  𝑗
𝑖𝐌𝑗 𝑖

𝑗
�̈� +  𝑗

𝑖𝐂𝑗 𝑖
𝑗
�̇� + 𝐊𝑗𝐪 = 𝐐A + 𝐐C (10) 

In which 𝐌𝑗  and 𝐊𝑗  are respectively the local mass and stiffness matrices, 𝐂𝑗  is known as the velocity 
dependent matrix (or matrix of fictitious forces) containing Coriolis and gyroscopic effects. Vector 𝐪 is a set 
of generalized coordinates, corresponding to the position and orientation of the floating frame expressed in 
global frame 𝑖 , including the flexible coordinates (𝛈) which are described locally. 𝐐A  is the vector of 
externally applied forces and 𝐐C is the vector of constraint forces. The derivation of this equation, based on 
the principle of virtual work, can be found in multibody dynamics textbooks [1].  
      
The standard equation can be partitioned such that the rigid (r) and flexible (f) parts become visible: 

 

[ ] [
𝐌  𝐌 f

𝐌f 𝐌ff
] [ ]𝑇 {

�̈� 

�̈�
} + [ ] [

𝐂  𝐂 f

𝐂f 𝐂ff
] [ ]𝑇 {

�̇� 

�̇�
} + [

𝟎 𝟎
𝟎 𝐊ff

] {
𝐪 

𝛈 }

= {
(𝐐A) 
(𝐐A)f

} + {
(𝐐C) 
(𝐐C)f

} 
(11) 

In which �̈�  is the absolute coordinate vector of the floating frame and   is the rotation matrix, transforming 
the locally defined matrices into global matrices. This rotation matrix is diagonal, consisting of two rotation 
matrices for the rigid part and a unity matrix for the flexible part. The full derivation of the matrices 𝐌 and 
𝐂, based on the principle of virtual work by inertia forces, can be found in [7]. Because this floating frame is 
in the center of mass, the rigid matrices 𝐌   and 𝐂   are diagonal and known as: 

 𝐌  = [
𝐦 𝟎
𝟎 𝐈

] 𝐂  = [
𝟎 𝟎
𝟎 �̃�𝐈

] (12) 

𝐫𝑗
𝑖,𝑖

𝑃𝑖

𝑃𝑗

 𝑗
𝑖

𝑃𝑘𝐫𝑙
𝑖,𝑖

𝑃𝑙
 𝑙
𝑖

𝐫𝑘
𝑙,𝑙

𝐫𝑘
𝑗,𝑗
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In which 𝐦 is the mass of the body and 𝐈 the moments of inertia, these are both (3 × 3) diagonal matrices. 
For the kinematics the rigid part of the applied force vector only contains gravity terms, for the kinetics this 
vector also contains the driving forces. The constraint force vector can be calculated at once for both the 
rigid and the flexible part, using the Jacobian and the Lagrange multipliers. The Jacobian is the first 
derivative of the constraint vector (𝚽) with respect to the generalized coordinates (𝐪), for clarity the 
distinction is made between the rigid and flexible part:    

 𝐐C = [𝚽𝑞r
𝚽𝜂]𝑇{𝛌} (13) 

The flexible matrices 𝐌ff and 𝐊ff are directly obtained from the linear finite element model of the body, on 
which the model order reduction methods are applied. Matrices 𝐂ff , 𝐂 f  and 𝐂f  represent the coupling 
between the rigid and flexible motions due to gyroscopic effects, 𝐂ff also contains damping terms. (𝐐A)f 
represents the generalized forces acting on the elastic deformation shapes 𝚿. The derivation of this vector, 
based on the principle of virtual work by external forces, can be found in [7]. For point forces holds that 
they can be included directly by multiplying them with the value of the deformation shapes at the interface 
point where they apply, for body forces an integral must be solved.  
 
𝐌 f and 𝐌f  are coupling terms between the rigid and flexible mass matrices. The terms can be calculated 
separately, but a more practical way is using the Craig-Bampton reduced mass and stiffness matrix of the 
body’s finite element model (respectively 𝐌CB and 𝐊CB), the deformation shapes (𝚿fl x) and the rigid mode 
shapes (𝚿 ig). The rigid mode shapes are defined as in equation (14), with N as the number of interface 

points. By pre- and post-multiplication of the mode shapes, the finite element mass and stiffness matrices 
become the locally defined mass and stiffness matrices in the floating frame of reference, see (15) and  (16). 
This is possible since the Craig-Bampton modes are able to describe rigid motions.         

 𝚿 ig = 

[
 
 
 
 [𝟏 −�̃�1

𝑗.𝑗

𝟎 𝟏
]

⋮

[𝟏 −�̃�𝑁
𝑗.𝑗

𝟎 𝟏
]
]
 
 
 
 

 (14) 

 

 𝐌FFR
local = [

𝚿 ig

𝚿fl x
]
𝑇

𝐌CB [
𝚿 ig

𝚿fl x
] (15) 

 𝐊FFR
local = [

𝚿 ig

𝚿fl x
]
𝑇

𝐊CB [
𝚿 ig

𝚿fl x
] (16) 

 

 
The equations of motion in (11) cannot be solved on its own, because there are more generalized 
coordinates and Lagrange multipliers to solve for than there are equations. By expanding the system of 
equations with the acceleration equation, this problem is solved. The acceleration equation pops up from 
the total set of constraint equations, denoted in (17). Differentiated with respect to time once, gives the 
velocity equation, shown in (18). The second time derivative gives the acceleration equation, given in (19). 

  𝚽 = 𝟎 (17) 

                                                                 𝚽𝑞�̇� = 𝛎     𝛎 ≡ −𝚽𝑡 (18) 

                                                                 𝚽𝑞�̈� = 𝛄     𝛄 ≡ −[𝚽𝑞�̇�]𝑞�̇� − 2𝚽𝑞𝑡�̇� − 𝚽𝑡𝑡 (19) 

Combining and rewriting equations (11) and (19), gives the constrained equation of motion: 

 [
𝐌 𝚽𝑞

𝑇

𝚽𝑞 𝟎
] {

�̈�
𝛌
} = {

𝐐A − 𝐂�̇� − 𝐊𝐪
𝛄

}  (20) 

 

3.4 SOLUTION PROCEDURE 

  
From the theory above, twelve constraint equations can be composed which describe the system of the 
Afterburner. From a kinematic point of view, the two degrees of freedom results in an equal amount of 
driving constraint equations.   
 
At the initial position the positions and velocities of the generalized coordinates are known (𝐪0 and �̇�0). 
Equation (20) can then be solved for the acceleration (�̈�) and the Lagrange multipliers (𝛌). Using the 
principle of virtual work, the relation between the Lagrange multipliers and the constraint forces can be 
found, this derivation is added in Appendix B. The Adams-Bashforth predictor and Adams-Moulton 
corrector methods are applied to calculate the velocities of the generalized coordinates at the next time 
step. The method is a linear multistep method, despite the Adams-Moulton corrector method is an implicit 
numerical integration scheme, the predictor-corrector method is zero-stable. This means that the time step 
should be sufficiently small in order to be stable, depending on the highest natural frequency of the system. 
It is not required to solve for the positions of the generalized coordinates, since they are not part of the 
Jacobian. 
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The standard definitions of the rotation matrix make use of sine and cosine functions, which suffer from 
singularity problems using large rotations. Therefore, we chose to not parametrize the rotation matrices. It 
is known that in initial position, when all angles are zero, the rotation matrices are equal to the identity-
matrix. For the next time step the rotation matrices must be updated using a Taylor series expansion. The 
first- and second-time derivatives of the rotation matrices can be found in equation (4), which are used to 
approximate the next rotation matrix second order accurate using the polynomial: 

  |𝑡=𝑖+1 =  |𝑡=𝑖 +  ̇|
𝑡=𝑖

Δ +
1

2
 ̈|

𝑡=𝑖
Δ 2 (21) 

 
When solving equation (20) for the kinetics, the driving constraint equations are removed and two driving 
forces will be introduced in the applied force vector. With two equations less, two less Lagrange multipliers 
are calculated since there are equally less constraint forces.    
 

4. MODDELING 

 
Model data of the clapper and hub in the constrained equation of motion is obtained from a finite element 
model. Because we assume that the flexible deformations in the model remain small, the model can be linear 
and there is no need for updating each timestep. The mesh is made sufficiently small in order to converge 
the natural frequencies. The added interface points are part of the finite element mass and stiffness 
matrices, which are reduced using the Craig-Bampton method. The rigid body motions contained in the 
Craig-Bampton reduction basis are eliminated by taking the natural frequencies of the reduced system. The 
interface points are placed where parts connect to each other or to the ground. For the clapper, interface 
points are also located at the gondolas, close to the position of where the fracture occurs in 2017.  
 

4.1 THE CLAPPER 

 
Figure 6 and Figure 7 show the finite element mesh made for the clapper with the positions of the interface 
points and to which surface they rigidly connect. Six deformation modes are encountered in this model, 
varying from ~41 Hz up to ~222 Hz, which are: first and second bend modes in 𝑋1 and 𝑌1 direction, torsion 
mode and axial mode. In between are inner modes which are eliminated by the Craig-Bampton method from 
the reduction basis. They can be calculated by solving the Eigenvalue problem with the interface nodes 
constrained in each direction. Simulations in Adams showed that these modes do not play a significant role 
in the flexible calculations of the Afterburner. Further details are given in Appendix C. 

 
Figure 6: Finite element mesh of the clapper 

 
Figure 7: Positions of remote points of the clapper 

 

4.2 THE HUB 

 
Figure 8 and Figure 9 show the mesh made for the hub with the positions of the seven interface points and 
to which surface they rigidly connect. The natural modes are various combinations of deformations of 
gondola arms. The flexible model contains nine deformation modes, the first five modes are sideways bend 
modes (~6 Hz) followed by four vertical bend modes (~9 Hz). Further details are given in Appendix D.  

 
Figure 8: Finite element mesh 

 
Figure 9: Positions of remote points  
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5. RESULTS 

 
For validation purposes, the presented method in this work is verified with a practical application to the 
Afterburner. First the solutions of the rigid kinematics and kinetics are shown, followed by the flexible 
kinematics. The results are compared with simulations in MSC Adams, which also uses a floating frame of 
reference formulation. As last the results are shown of the dynamic stress analysis at the clapper.  
 

5.1 RIGID KINEMATICS 
 
For the kinematics, rigid body motion is prescribed by global angle  ( ) and local angle  ( ), which are 
shown in Figure 3. The simulation duration is 35 seconds in which the system starts up using a sigmoid 
curve, which is especially important for the flexible calculations. The angles are prescribed using: 

   ( ) =
2𝜋

3
sin(

𝜋

4
 ) (22) 

  ( ) =
𝜋

2
  (23) 

Figure 10 and Figure 11 give the constraint moments in point 0 and 𝐴, Appendix F gives additional graphs. 

 
Figure 10: Components of global moment 𝐓𝟎

𝟎  
 

Figure 11: Components of local moment 𝐓𝑨
𝟏 

The results from our calculations and the simulations in Adams are equivalent. The error in the calculations 
is time-step dependent, in this case a timestep of 0.01 seconds is used. In 𝐓0

0 the 𝑋0 and 𝑍0-direction show 
the constraint moments of the gyroscopic effect, just as the 𝑋1-direction in 𝐓𝐴

1. It also proves that the applied 
solution method is valid. Although the update of the rotation matrix results in an error for its orthogonality 
conditions, this error is dependent on the time-step to the power four and therefore remains neglectable 
small. 
 

5.2 RIGID KINETICS 

 
For the kinetics the fast Fourier transform is used to identify the driving moments 𝐓0

0 in global 𝑌0-direction 
and 𝐓𝐴

1 in local 𝑍1-direction, details of this transformation are given in Appendix G. The constraint moments 
in the direction of the applied moments are equal to zero, therefore the applied moments are also shown in 
Figure 12 and Figure 13.  

 
Figure 12: Components of global moment 𝐓𝟎

𝟎  
 

Figure 13: Components of local moment 𝐓𝑨
𝟏 

Although the applied moments in this calculation are not exactly the same as the constraint moments 
calculated in the kinematics, the results from our calculations and Adams are again equivalent using the 
same time-step as in the kinematics.  
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5.3 FLEXIBLE KINEMATICS 

 
For the flexible calculations it is most convenient to start up the simulation from rest. Steady state is 
important for all transient analyses, while the flexible coordinates can cause unwanted vibrations in the 
system. Where the axial mode of the clapper can be approximated in a quasi-static fashion, other modes are 
harder to determine on beforehand. Therefore, viscous proportional damping is added, which is naturally 
present, to dissipate energy from the system. Figure 14 shows this effect, where the underdamped system 
is initially not in steady state and damping ensures the absence of unwanted vibrations. 

 
Figure 14: Flexible coordinates of the hub (𝛈𝟐) 

 
Figure 15: Position of an interface point on a gondola 

Figure 15 shows the position of an interface point attached to one of the gondolas, where it is shown that 
our calculation results equal the simulation results of Adams. A small time-step of 5 × 10−7 is used for the 
numerical time integration scheme in order to remain stable, the error builds up in time but for this 
simulation it remains less than 4% for the positions. This validates the solution procedure used.  

 
Figure 16: Components of global moment 𝐓𝟎

𝟎 
 

Figure 17: Components of global moment 𝐓𝑨
𝟎 

Figure 16 and Figure 17 show the calculated constraint moments in point 0 and 𝐴, where the differences in 
amplitude of the 𝑌0-direction are clearly visible in both plots. The main reason for this is a somewhat more 
flexible model in our calculations, which results in larger deformations. Important are the shapes of the 
functions which are equivalent for all directions.  

 
Figure 18: Schematic representation of the  

deformed Afterburner 
 

Figure 19: Components of local moment 𝐓𝑨
𝑨 

Figure 18 shows a local coordinate frame A which is fixed to the flexible body of the clapper, this frame is 
used to express the constraint moments in Figure 19. Here it is visible that in the 𝑍𝐴-direction an error 
occurs between our calculations and simulations in Adams. A torsion profile develops, with damping we 
made sure this is not due to the torsion mode of the clapper and we are sure that there is no imbalance in 
the system. The rotation matrices (𝑅1

0, 𝑅2
0 and 𝑅𝐴

0) look correct and are orthogonal through time. 
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The systematic approach with intermediate results should prevent errors in the mathematical model. The 
position results of the interface points and the global moments proved that no errors are made in the 
solution procedure and thus only in the post-processing phase. Additional plots are added in Appendix H. 
 

5.4 DYNAMIC STRESS ANALYSES 
 
After calculating the flexible behavior of the Afterburner dynamically through time, also the stresses in the 
bodies can be calculated in a dynamic fashion. In Adams this is done using so called stress modes, which are 
derivatives of the deformation modes. Another method is using our results in a finite element package and 
applying the deformations to the interface coordinates. Appendix I gives additional explanation and results.   

 
Figure 20: Von-Mises stress distribution 

in the clapper using Adams 
 

Figure 21: Von-Mises stress distribution in the clapper using Ansys 

Figure 20 and Figure 21 show both methods applied to the clapper of the Afterburner and showing 
equivalent results of a maximum Von-Misses stress of  ~187 MPa using Adams and ~178 MPa using Ansys. 
Furthermore, the region where the maximum equivalent stress occurs is equal, just as the stress 
distribution through the clapper. Figure 22 shows the Von-Mises stress as a function of time in the node 
where the maximum stress occurs. Clearly visible is the peak stress in the startup procedure and in the 
remaining multiple peaks with relatively small differences. Overall, the periodic motion looks similar.  

 
Figure 22: Von-Mises stress in a node through time 

 

6. CONCLUSIONS 

 
The most important assumption for this research is that deformations within the bodies remain small, in 
the results this is confirmed for the Afterburner. It is important to validate this assumption, because 
otherwise the linear theory of elasticity does not hold and stress stiffening effects play an important role.  
 
The combination of the floating frame formulation and the Craig-Bampton reduction method results in a 
stable method to describe flexibility with a small number of flexible coordinates. Where the mass and 
stiffness matrices of each flexible body can be obtained from a linear finite element mesh.  
 
Although the constraint moments are not calculated entirely correct in the post-processing phase, it is 
shown that the solution procedure described in this work can solve for the deformations with an acceptable 
error. There are differences between the calculated stresses using Adams and Ansys, but overall can be 
concluded that the results are equivalent. The method to describe large angles for revolute joints, using local 
coordinate frames and constraint equations defined on the velocity level, has proven to work. Also, the 
update of the rotation matrix has proven to work, where orthogonality conditions remain correct 
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7. RECOMMENDATIONS 

 
As shown in the results, the flexible behavior in our calculations is larger than the flexible behavior in 
Adams. To validate both models, it is required to perform measurements on an actual Afterburner. 
Therefore, in Appendix J a measurement plan is added which shows what needs to be measured, what the 
results will be and how these results can validate both models.  
 
It is known that the flexible related matrices in the squared velocity matrix (𝐂ff, 𝐂 f and 𝐂f ) are neglected, 
since they are time consuming to calculate and contain only higher order terms. It is generally known that 
this assumption is valid for systems with small deformations and low-speed angular velocities. Adams does 
not neglect these terms but approximate them using derivatives of the mass matrix [13]. In order to make 
this model more general applicable, it is interesting to look for a method to approximate these terms as well.       
 
The constraint forces and moments are calculated in this work using the Lagrange multipliers. Jurnan 
Schilder proposed a new theory for creating superelements in his thesis [7], using absolute interface 
coordinates. In this way, it is possible to eliminate the Lagrange multipliers from the constrained equations 
of motion. Especially modeling the hub would be an interesting case using this theory, since this body has 
more than two interface points.  
 
It is shown that the equivalent stresses can be calculated using the finite element models of the clapper with 
small differences. It would also be interesting to use the same procedure to validate the stresses occurring 
in the hub. As an improvement the Von-Mises stress can plotted as a function of time using an average of 
multiple nodes in the same region.   
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APPENDIX A: REWRITING THE CONSTRAINT EQUATIONS 

 
In here the expression of the constraint equations for the Afterburner are worked out, using the theory of 
flexible multibody systems. In Figure 23 a schematic representation of the Afterburner is shown.  

 
Figure 23: Schematic representation of the Afterburner 

First the position constraint equations of body 1 with respect to point 0 and body 1 and 2 with respect to 
point 𝐴 are defined and rewritten: 

 
𝐫1
0,0 +  1

0𝐫0
1,1 = 𝟎 

𝐫1
0,0 +  1

0(𝐱0
1,1 +𝚿1

t,0𝛈1) = 𝟎 
(A.1)  

 

 

𝐫1
0,0 + 1

0𝐫𝐴
1,1 = 𝐫2

0,0 +  2
0𝐫𝐴

2,2 

𝐫1
0,0 +  1

0(𝐱𝐴
1,1 +𝚿1

t,𝐴𝛈1) = 𝐫2
0,0 +  2

0(𝐱𝐴
2,2 +𝚿2

t,𝐴𝛈2) 

𝐫1
0,0 +  1

0(𝐱𝐴
1,1 +𝚿1

t,𝐴𝛈1) − 𝐫2
0,0 −  2

0(𝐱𝐴
2,2 +𝚿2

t,𝐴𝛈2) = 𝟎 

(A.2)  

In 𝚿, the deformation modes are arranged in columns and in the rows are the degrees of freedom of the 
interface points. The lower index refers to the relevant body, the fist upper index refers to the translational 
or rotational coordinates (t or r) and the second index refers to the relevant interface point. 𝛈𝑖  refers to the 
flexible coordinates of corresponding body 𝑖. The rigid lengths are defined as: 

 𝐱0
1,1 = {

0
0
𝐿1

} 𝐱𝐴
1,1 = {

0
0

−𝐿2

} 𝐱𝐴
2,2 = {

0
0
𝑑1𝑧

} (A.3) 

 
The position constraints can be differentiated to time and rewritten to end up with the velocity equations: 

 

�̇�1
0,0 +  ̇1

0(𝐱0
1,1 +𝚿1

t,0𝛈1) +  1
0𝚿1

t,0�̇�1 = 𝟎 

�̇�1
0,0 + �̃�1

0,0𝑅1
0(𝐱0

1,1 +𝚿1
t,0𝛈1) +  1

0𝚿1
t,0�̇�1 = 𝟎 

�̇�1
0,0 +  1

0�̃�1
1,0(𝐱0

1,1 +𝚿1
t,0𝛈1) +  1

0𝚿1
t,0�̇�1 = 𝟎 

�̇�1
0,0 −  1

0(𝐱0
1,1 +𝚿1

t,0𝛈1)
̃ 𝛚1

1,0 + 1
0𝚿1

t,0�̇�1 = 𝟎 

�̇�1
0,0 −  1

0(𝐱0
1,1 +𝚿1

t,0𝛈1)
̃  0

1𝛚1
0,0 +  1

0𝚿1
t,0�̇�1 = {

0
0
0
}  

(A.4)  

 

 

�̇�1
0,0 +  ̇1

0(𝐱𝐴
1,1 +𝚿1

t,𝐴𝛈1) +  1
0𝚿1

t,𝐴�̇�1 − �̇�2
0,0 −  ̇2

0(𝐱𝐴
2,2 +𝚿2

t,𝐴𝛈2) −  2
0𝚿2

t,𝐴�̇�2 = 𝟎 

�̇�1
0,0 −  1

0(𝐱𝐴
1,1 +𝚿1

t,𝐴𝛈1) 0
1𝛚1

0,0 +  1
0𝚿1

t,𝐴�̇�1 − �̇�2
0,0

+ 2
0(𝐱𝐴

2,2 +𝚿2
t,𝐴𝛈2) 0

2𝜔2
0,0 −  2

0𝚿2
t,𝐴�̇�2 = {

0
0
0
}

 
(A.5)  
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For the orientation of body 1 the same formulations do not hold, since rotations cannot be expressed as 
proper vectors. Instead of using the angles, the variation of the orientation can be used in which 𝛿𝛑 
assembles the variation of the (3×1) vector with the angles: 

 𝛿𝛑1
0,0 +  1

0(𝚿1
 ,0𝛿𝛈1) = {

0
 ( )
0

} (A.6)  

The variations of the orientation can be transferred to the angular velocity by differentiating with respect 
to time, which give similar results: 

 𝛚1
0,0 +  1

0𝚿1
 ,0�̇�1 = {

0
 ̇( )
0

}  (A.7)  

Note that this constraint equations contain one driving constraint for the swinging motion of the clapper.  
The last constraint equations are for the orientation of body 2 with respect to body 1, which also contain 
one driving constraint for the rotation of the hub. Therefore, two local coordinate frames are needed: frame 
𝐴 which is located at point 𝐴 (see Figure 23) and attached to flexible body 1 and frame 𝐴∗  which is also 
located at point 𝐴 but attached to flexible body 2. The motion is around the local 𝑍-axis of these frames, 
which are collinear. First the angular velocities are defined of point 𝐴 with respect to body 1 and 2:    

 
𝛚𝐴

0,0 = 𝛚1
0,0 + 1

0𝛚𝐴
1,1 

𝛚𝐴
0,0 = 𝛚1

0,0 +  1
0𝚿1

 ,A�̇�1 

𝛚𝐴∗
0,0 = 𝛚2

0,0 +  2
0𝛚𝐴∗

2,2 

𝛚𝐴∗
0,0 = 𝛚2

0,0 + 2
0𝚿2

 ,A�̇�2 
(A.8)  

Next the constraint equations can be defined: 

  0
𝐴(𝛚𝐴

0,0 −𝛚𝐴∗
0,0) = {

0
0

 ̇( )
} (A.9)  

In this equation a new rotation matrix is used from frame 0 to frame 𝐴, which is defined as: 

 

 𝐴
0 =  1

0 𝐴
1  

 𝐴
0 =  1

0(𝟏 + �̃�𝐴
1,1) 

 𝐴
0 =  1

0 (𝟏 + (𝚿1
 ,A𝛈1
̃ )) 

(A.10)  

The final constraint equation is written as: 

  0
𝐴𝛚1

0,0 +  0
𝐴 1

0𝚿1
 ,A�̇�1 −  0

𝐴𝛚2
0,0 −  0

𝐴 2
0𝚿2

 ,A�̇�2 = {
0
0

 ̇( )
}  (A.11)  

 
All boxed equations above are constraint equations on the velocity level, which can be combined and 
rewritten in matrix-vector notation to end up with the velocity equation (𝚽𝑞�̇� = −𝚽𝑡): 

[
 
 
 
 
 𝟏 − 1

0(𝐱0
1,1 +𝚿1

t,0𝛈1)
̃  0

1 𝟎 𝟎  1
0𝚿1

t,0 𝟎

𝟎 𝟏 𝟎 𝟎  1
0𝚿1

 ,0 𝟎

𝟏 − 1
0 (𝐱𝐴

1,1 +𝚿1
t,A𝛈1

̃ )𝑅0
1 −𝟏  2

0 (𝐱𝐴
2,2 +𝚿2

t,A𝛈2
̃ ) 0

2  1
0𝚿1

t,A − 2
0𝚿2

t,A

0  0
𝐴 𝟎 − 0

𝐴  0
𝐴 1

0𝚿1
 ,A − 0

𝐴 2
0𝚿2

 ,A
]
 
 
 
 
 

{
  
 

  
 
�̇�1
0,0

𝛚1
0,0

�̇�2
0,0

𝛚2
0,0

�̇�1

�̇�2 }
  
 

  
 

=

{
 
 
 
 
 

 
 
 
 
 

0
0
0
0

 ̇( )
0
0
0
0
0
0

 ̇( )}
 
 
 
 
 

 
 
 
 
 

 

(A.12) 
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For solving the problem, the velocity equation is not needed. But the Jacobian is needed, since this term is 
part of the constrained equations of motion. Differentiating the equation (A.12) once again with respect to 
time, will give the acceleration equations (𝚽q�̈� = 𝛄), from which the �̈�  terms and the 𝛄  terms can be 

recognized. The last term is most important, since this is also part of the constrained equations of motion. 
For clarity the 𝛄 term is shown below. 

𝛄 =

{
 
 

 
 − ̇1

0(𝐱0
1,1 +𝚿1

t,0𝛈1)
̃  0

1𝛚1
0,0 −  1

0(𝚿1
t,0�̇�1)
̃  0

1𝛚1
0,0 − 1

0(𝐱0
1,1 +𝚿1

t,0𝛈1)
̃  ̇0

1𝛚1
0,0 +  ̇1

0𝚿1
t,0�̇�1

 ̇1
0𝚿1

 ,0�̇�1

− ̇1
0 (𝐱𝐴

1,1 +𝚿1
t,A𝛈1

̃ ) 0
1𝛚1

0,0 − 1
0 (𝚿1

t,A𝛈1
̃ ) 0

1𝛚1
0,0 − 1

0 (𝐱𝐴
1,1 +𝚿1

t,A𝛈1
̃ ) ̇0

1𝛚1
0,0 +  ̇2

0 (𝐱𝐴
2,2 +𝚿2

t,A𝛈2
̃ ) 0
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0 (𝚿2
t,A�̇�2
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0 (𝐱𝐴
2,2 +𝚿2

t,A𝛈2
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2𝛚2
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t,A�̇�1 −  ̇2

0𝚿2
t,A�̇�2

 ̇0
𝐴𝛚1
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𝐴𝛚2
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𝐴 1

0𝚿1
 ,A�̇�1 +  0

𝐴 ̇1
0𝚿1

 ,A�̇�1 −  ̇0
𝐴 2
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 ,A�̇�2 − 0

𝐴 ̇2
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+
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0
0
0
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 ̈( )
0
0
0
0
0
0

 ̈( )}
 
 
 
 
 

 
 
 
 
 

 

(A.13) 
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APPENDIX B: DERIVATION OF THE FORCE AND MOMENT EXPRESSIONS 

 
In here the expression of the constraint forces and moments are worked out, based on the principle of 
virtual work by constraint forces. This is done in a practical way using the Afterburner as example, for elastic 
body 1 at point 𝐴, see Figure 24. In the equations the orange color denotes flexible terms.  

 
Figure 24: Schematic representation of the Afterburner 

 
The equation of motion is for clarity written down below, for only body 1:  

 𝐌1�̈�1
0,0 +𝚽𝑞𝐴

𝑇 𝛌𝐴 = 𝐐𝐴,1 − 𝐂1�̇�1
0,0 −𝐊1𝐪1

0,0 (B.1)  

𝐪1
0,0 Are the generalized coordinates of body 1 expressed in global frame 0, which contain the position of 

the body fixed floating frame (𝐫1
0,0 ), the orientation of this frame (𝛑1

0,0 ) and the flexible coordinates 
corresponding to body 1  (𝛈1). The constraint equations in 𝚽  and subsequently the Jacobian (𝚽q ), are 

divided into 𝚽0 which are the first six rows related to point 0 and 𝚽A which are the last six rows related to 
point 𝐴. The same division is made for the Lagrange multipliers.   
 
The equation of motion is pre-multiplied with the transpose of the virtual displacements of the generalized 
coordinates: 

 (𝛿𝐪1
0,0)

𝑇
(𝐌1�̈�1

0,0 + 𝐂1�̇�1
0,0 +𝐊1𝐪1

0,0 +𝚽𝑞𝐴
𝑇 𝛌𝐴 − 𝐐𝐴,1) = 𝟎 (B.2) 

In which the virtual work due to the constraint forces is only the term with the Lagrange multipliers, since 
all other components are the forces itself. The constraint forces are in opposite direction and therefore a 
minus sign arises. Written in matrix-vector notation the columns of the Jacobian can be divided into a 
translational part (𝚽qAt ans

), a rotational part (𝚽qA ot
) and a flexible part (𝚽qAfl x

) of body 1 at point 𝐴: 

  𝛿𝐖const = −(𝛿𝐪1
0,0)

𝑇
𝚽𝑞𝐴

𝑇 𝛌𝐴 = −[𝛿𝐫1
0,0𝑇 𝛿𝛑1

0,0𝑇 𝛿𝛈1
𝑇]

[
 
 
 
 
𝚽q

T
At ans

𝚽q
T
A ot

𝚽q
T
Afl x ]

 
 
 
 

𝛌𝐴 (B.3) 

          𝛿𝐖const = −𝛿𝐫1
0,0𝑇𝜱q

T
At ans

𝛌𝐴 − 𝛿𝛑1
0,0𝑇𝚽q

T
A ot

𝛌𝐴 − 𝛿𝛈1
𝑇𝚽q

T
Afl x

𝛌𝐴   (B.4) 

Note that 𝛈1 does not describe a virtual displacement, but since the deformation modes are substituted in 
the constraint equations this multiplication does describe a virtual displacement. 
  
Another way to express the virtual work by constraint forces is the general formula: 

 𝛿𝐖const = 𝛿𝐫𝐴
0,0𝑇𝐅𝐴

0 + 𝛿𝛑𝐴
0,0𝑇𝐌𝐴

0 (B.5) 

In which 𝐅𝐴
0 and 𝐌𝐴

0 are respectively the constraint forces and moments in point 1 expressed in global frame 
0. In this equation the virtual displacements can be rewritten: 

 
𝐫𝐴
0,0 = 𝐫1

0,0 +  1
0𝐫𝐴

1,1 

𝛿𝐫𝐴
0,0 = 𝛿𝐫1

0,0 + 𝛿�̃�1
0,0 1

0𝐫𝐴
1,1 + 1

0𝛿𝐫𝐴
1,1 

𝛿𝛑𝐴
0,0 = 𝛿𝛑1

0,0 +  1
0𝛿𝛑𝐴

1,1 
(B.6) 

 
 𝐫𝐴

1,1 = 𝐱𝐴
1,1 + 𝐮𝐴

1,1 = 𝐱𝐴
1,1 +𝚿1

t,A𝛈1 

𝛿𝐫𝐴
1,1 = 𝚿1

t,A𝛿𝛈1 

𝛿𝛑𝐴
1,1 = 𝚿1

 ,A𝛿𝛈1 
(B.7) 

 

A

X1

Z0

X0

Y0

Z2

X2

Y2

0

1

2

Z1

 ( )

d1z

L2

L1

 ( )

 1
0

 2
0
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Substituting these relations in equation (B.5) and rewriting gives: 

 
𝛿𝐖const = (𝛿𝐫1

0,0𝑇)𝐅𝐴
0 + (𝐫𝐴

1,1𝑇 0
1𝛿�̃�1

0,0𝑇)𝐅𝐴
0 + (𝛿𝛈1

𝑇𝚿1
t,A 0

1)𝐅𝐴
0

+ (𝛿𝛑1
0,0𝑇)𝐌𝐴

0 + (𝛿𝛈1
𝑇𝚿1

t,A 0
1)𝐌𝐴

0 
(B.8) 

 𝛿𝐖const = (𝛿𝐫1
0,0𝑇)𝐅𝐴

0 + (𝛿𝛑1
0,0𝑇) ( 1

0�̃�𝐴
1,1 0

1𝐅𝐴
0 +𝐌𝐴

0)

+ (𝛿𝛈1
𝑇)(𝚿1

t,A 0
1𝐅𝐴

0 +𝚿1
t,A 0

1𝐌𝐴
0)

 (B.9) 

Equations (B.4) and (B.9) can be equalized to form one new equation, in which both sides the virtual 
displacements appear. To satisfy this relation, the virtual terms should be equal and in this way the system 
can be solved for the constraint forces and the constraint moments: 

 𝐅𝐴
0 = −𝚽q

T
At ans

𝛌𝐴  (B.10) 

 
  1

0�̃�𝐴
1,1 0

1𝐅𝐴
0 +𝐌𝐴

0 = −𝚽q
T
A ot

𝛌𝐴 

𝐌𝐴
0 = (−𝚽q

T
A ot

+  1
0�̃�𝐴

1,1 0
1𝚽q

T
At ans

)𝛌𝐴 

𝐌𝐴
0 = (−𝚽q

T
A ot

+ 1
0(𝐱𝐴

1,1 +𝚿1
t,A𝛈1)

̃  0
1𝚽q

T
At ans

)𝛌𝐴  

(B.11) 

 
The parts which remain in the equations, don’t add new information but must be equal to zero. Similar 
derivations can be made for the forces and moments from body 1 to point 0 and from body 2 to point 𝐴.  
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APPENDIX C: FINITE ELEMENT MODEL OF THE CLAPPER  

 
In here the details of the finite element model of the clapper in Ansys are given. The mesh is made using 
quadratic tetrahedral elements, which have three degrees of freedom per node (𝑋, 𝑌, 𝑍) and ten nodes per 
element. Figure 25 shows the mesh, in which 24546 elements are used and 49194 nodes. Figure 26 shows 
the positions of two remote points (𝐴 and 𝐵) and to which surface they connect marked in red, which form 
a rigid connection. These remote points have each six degrees of freedom, three translations and three 
rotations.    

 
Figure 25: Finite element mesh 

 
Figure 26: Positions of remote points 

 
This is a bending dominated problem, since the mode shapes contain bend modes. Quadratic elements will 
yield in general better results than linear elements, due to the extra mid-side nodes extra shape functions. 
Therefore, a coarser mesh can be made, also with the curved surfaces of the clapper since the mid-side 
nodes can mimic curved edges for the element. Care must be taken to avoid distorted elements in the mesh 
(an aspect-ratio close to 1 is preferred), since they decrease the accuracy of the simulation.     
 
When the mass and stiffness matrices are constructed in Matlab, these are diagonal band matrices which 
are sparse matrices with nonzero terms on a diagonal band. Figure 27 and Figure 28 shows the nonzero 
terms in the matrices, with the dimensions 143889×143889 which is equal to the degrees of freedom of the 
finite element mesh. In the bottom rows/columns are the remote points located. 

 
Figure 27: Nonzero terms of the stiffness matrix 

 
Figure 28: Nonzero terms of the mass matrix 

 
The Eigenfrequencies can be calculated by solving the Eigenvalue problem, which are equal to the 
Eigenfrequencies calculated by Ansys in the modal analysis. From which the first six frequencies are 
approximately zero, these are the rigid body modes. In all figures below are the natural modes shown, with 
in the caption which Eigenfrequency it is, the frequency and what kind of mode it concerned.  
 
Important to note is that there are multiple internal modes between these free boundary modes. For 
example, the axial mode is only the 32th Eigenfrequency.  
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Figure 29: Eigenfrequency 7 –  41.161 Hz - First bend 

mode in 𝒙-direction 

 
Figure 30: Eigenfrequency 8 –  41.258 Hz - First bend 

mode in 𝒚-direction 

 
Figure 31: Eigenfrequency 13 –  114.85 Hz - Second 

bend mode in 𝒙-direction 

 
Figure 32: Eigenfrequency 14 –  115.58 Hz - Second 

bend mode in 𝒚-direction 

 
Figure 33: Eigenfrequency 15 –  126.95 Hz –  Torsion 

mode 

 
Figure 34: Eigenfrequency 30 –  212.3 Hz - Third 

bend mode in 𝒙-direction 

 
Figure 35: Eigenfrequency 31 –  214.2 Hz - Third 

bend mode in 𝒚-direction 

 
Figure 36: Eigenfrequency 32 –  221.8 Hz –  Axial 

mode 
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APPENDIX D: FINITE ELEMENT MODEL OF THE HUB  

 
In here the details of the finite element model of the hub in Ansys are given. For this complex geometry a 
finer mesh is needed, in order to decrease the degrees of freedom, linear tetrahedral elements are used. 
They have three degrees of freedom per node (𝑋, 𝑌, 𝑍) and four nodes per element. The natural frequencies 
in the hub are typically lower, due to a lower stiffness. Also, the differences between natural frequencies are 
smaller, therefore these can be calculated faster. Figure 37 shows the mesh, in which 140296 elements are 
used and 46162 nodes. Figure 38 shows the positions of seven remote points and to which surface they 
connect marked in red, which form a rigid connection. These remote points have each six degrees of 
freedom, three translations and three rotations. The remote point in the middle (𝐴) is an interface point to 
which the clapper is attached, the other six remote points (𝐵-𝐺) are located at the end of the gondola arm.  

 
Figure 37: Finite element mesh 

 
Figure 38: Positions of remote points 

 
Although the quadratic elements yield in general better results than linear elements, in this case linear 
elements are applied. For the arbitrary shape of the hub, a finer mesh is needed to overcome distorted 
elements. In Ansys the linear elements have extra shape functions and will therefore yield an accurate 
solution in a reasonable amount of computational time [18]. Therefore, a finer mesh with linear elements 
will give more accurate results than a coarser quadratic mesh.   
 
When the mass and stiffness matrices are constructed in Matlab, they are diagonal band matrices which are 
sparse matrices with nonzero terms on a diagonal band. Figure 39 and Figure 40 shows the nonzero terms 
in the matrices, with the dimensions 125580×125580 which is equal to the degrees of freedom of the finite 
element mesh. In the bottom rows/columns are the remote points located. 

 
Figure 39: Nonzero terms of the stiffness matrix 

 
Figure 40: Nonzero terms of the mass matrix 

 
The Eigenfrequencies can be calculated by solving the Eigenvalue problem, which are equal to the 
Eigenfrequencies calculated by Ansys in the modal analysis. From which the first six frequencies are almost 
zero, these are the rigid body modes. In all figures below are the first nine modes shown, with in the caption 
which Eigenfrequency it is and the frequency itself.  
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Of these modes the first five modes (mode 7-11) are sideways bend modes followed by four vertical bend 
modes (mode 12-15), both with different combinations between gondola arms. The next two set of modes 
are a combination of torsion modes with sideways bending (mode 16-21 and approximately 14-16 Hz) and 
a combination of torsion modes with vertical bending (mode 22-27 and approximately 21-24 Hz). These 
sets of modes have approximately the same Eigenfrequencies. 
 
 

 
Figure 41: Eigenfrequency 7 –   

5.689 Hz  

 
Figure 42: Eigenfrequency 8 –   

5.710 Hz  

 
Figure 43: Eigenfrequency 9 –   

5.723 Hz  

 
Figure 44: Eigenfrequency 10 –   

6.634 Hz 

 
Figure 45: Eigenfrequency 11 –   

6.647 Hz 

 
Figure 46: Eigenfrequency 12 –   

8.281 Hz 

 
Figure 47: Eigenfrequency 13 –   

8.290 Hz 

 
Figure 48: Eigenfrequency 14 –   

8.339 Hz 

 
Figure 49: Eigenfrequency 15 –   

9.574 Hz 
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APPENDIX E: ANSYS MESH TO MATLAB MATRICES 

 
Here the process is explained how to gain a detailed mass and stiffness-matrix in Matlab from a finite 
element mesh in Ansys. This process can be applied to arbitrary geometry. In the first section it is explained 
how to gain the mass and stiffness-matrix from Ansys to a text file and in the second section it is explained 
how this text file can be imported into Matlab. 
 
It is important to note that there must be nodes on the places of the interface points. If for example the 
interface coordinate must be in the center of a hole, then a remote point can be used to create an extra node. 
 
For this instructions Matlab R2018b and Ansys 19.2 (Workbench) are used. The geometry is drawn in 
SolidWorks and saved as STEP-file.  
 

ANSYS MESH TO MASS AND STIFFNESS-MATRIX 
 
In a modal analysis an arbitrary geometry is imported on which no constraints are applied. Remote points 
can be added if necessary and a mesh can be made.  
 
In the Solution tab, APDL commands can be inserted and in this the following code can be added: 
 

 FINISH 

/AUX2 

file,file,full, 

hbmat,HBStiff,txt,,ascii,stiff,yes,yes     

hbmat,HBMass,txt,,ascii,mass,yes,yes          

 

 

*SMAT,MatK,D,IMPORT,HBMAT,HBStiff.txt,ASCII     

*print, MatK, matk.txt                 

*export, MatK, mmf, matkMMF.txt              

 

*SMAT,MatM,D,IMPORT,HBMAT,HBMass.txt,ASCII    

*print, MatM, matm.txt                        

*export, MatM, mmf, matmMMF.txt               

 

FINISH 

 

 

 

! Generate HBmat stiffness file 

! Generate HBmat mass file 

 

 

! Import HBmat stiffness file 

! Exports stiffness to text file 

! Exports stiffness as MMF format 

 

! Import HBmat mass file 

! Exports mass to text file 

! Exports mass as MMF format 

 

 
All mass and stiffness information are read from the file.full file which Ansys creates while solving the modal 
analysis. Important is that all calculations are calculated with one core of the computer, otherwise multiple 
file.full files will be created and then this script doesn't work.  
 
The script uses the HBmat file type, because this also gives the nodal vector with all degrees of freedom. 
Ansys changes the ordering of nodes to solve the modal calculations more efficiently. This file stores the 
results in a way which is not efficient for Matlab. Therefore, the generated files of HBmat are once again 
imported and eventually exported as MMF-format, which is more efficient for Matlab. 
 
The final output are text files which are saved in a map which can be found in Workbench (dp0/SYS/MECH). 
The first text file is "HBMass.mapping" which is the mapping file, this contains the position of all nodes and 
degrees of freedom of the nodes in the rows/columns of the mass and stiffness-matrix. "HBStiff.mapping" is 
identical. The second file is "matmMMF.txt" which contains the information of the mass-matrix. The first 
rows in this file contains information about the size of the matrix. Then the matrix itself is shown in the 
form: row-number, column-number, value of this cell. The last file is "matkMMF.txt" which is in the same 
form but then with the information of the stiffness-matrix.      
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TEXT-FILES TO MATLAB 

 
The next step is to import the data into Matlab, when this must be done several times it could be useful to 
write a script for this process, but it can also be done by hand.   
 
The data can be imported into Matlab using Import Data in the Home tab. The file (matkMMF or matmMMF) 
can be selected and now only the first three columns from row nine till the bottom must be selected. This 
must be done for both the mass and stiffness data. The results are two matrices in Matlab containing: in 
column one the row-number, in column two the column-number and in column three the value.  
 
To convert this into the final mass and stiffness-matrices the following code is used: 
 

 k_mat = sparse(matkMMF(:,1), matkMMF(:,2), matkMMF(:,3)) ;     

k_mat = k_mat + k_mat' - diag(diag(k_mat))               ; 

  

m_mat = sparse(matmMMF(:,1), matmMMF(:,2), matmMMF(:,3)) ; 

m_mat = m_mat + m_mat' - diag(diag(m_mat))               ; 

 
The result is the mass-matrix "m_mat" and stiffness-matrix "k_mat". Because these matrices are in general 
largebig (thousands of rows/columns), they are created as sparse matrix. Numeric matrices can give errors 
with RAM memory when trying to create this size of matrices.  
 
With the first rule of the code only the diagonal and the lower half of the stiffness-matrix is filled. Therefore, 
a second line adds the transpose to it, to fill the entire matrix. The diagonal is now doubled so only the 
diagonal must be taken of the resulting matrix. The same process holds for the mass-matrix. 
 
Matlab can calculate very efficiently using sparse matrices. Note that commands for sparse matrices will 
become slightly different, as an example for calculating the free boundary modes of the model: 
 

 [V,D] = eigs(k_mat, m_mat, N, 'smallestabs') ; 

 
This only calculates the 𝑁  smallest solutions of the Eigenvalue-problem. Otherwise all (thousands) 
solutions will be calculated, which take lots of additional time. Or the smallest solutions are not calculated, 
which are most interesting in general.  
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APPENDIX F: RESULTS OF RIGID KINEMATICS 

 

GENERALIZED COORDINATES OF THE CLAPPER 

 

 
Figure 50: Components of position vector 𝐫𝟏

𝟎,𝟎  
 

Figure 51: Components of orientation vector 𝛑𝟏
𝟎,𝟎 

 
Figure 52: Components of velocity vector �̇�𝟏

𝟎,𝟎 
 

Figure 53: Components of angular velocity vector 𝛚𝟏
𝟎,𝟎 

 
Figure 54: Components of acceleration vector �̈�𝟏

𝟎,𝟎 
 

Figure 55: Components of angular accel. vector 𝛂𝟏
𝟎,𝟎 
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GENERALIZED COORDINATES OF THE HUB 

 

 
Figure 56: Components of position vector 𝐫𝟐

𝟎,𝟎  
 

Figure 57: Components of orientation vector 𝛑𝟐
𝟏,𝟏 

 
Figure 58: Components of velocity vector �̇�𝟐

𝟎,𝟎 
 

Figure 59: Components of angular velocity vector 𝛚𝟐
𝟎,𝟎 

 
Figure 60: Components of acceleration vector �̈�𝟐

𝟎,𝟎 
 

Figure 61: Components of angular accel. vector 𝛂𝟐
𝟎,𝟎 

 

CONSTRAINT FORCES IN JOINT 0 AND 𝐴  

 

 
Figure 62: Components of global force vector 𝐅𝟎

𝟎  
 

Figure 63: Components of global force vector 𝐅𝑨
𝟎 
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APPENDIX G: RIGID KINEMATICS FOURIER TRANSFORMATION  

 
In here the fast Fourier transformation of the rigid kinematics is explained, which is used to identify the 
constraint moments and will serve as input for the rigid kinetics.  
 

TORQUE FOR SWINGING THE CLAPPER 

 
Figure 64 shows the amplitude spectrum of torque 𝐓0

0 in 𝑌0-direction, in here the lowest frequencies have 
the highest amplitude. Therefore, the first 20 frequencies (0 - 0.55 Hz) are included in the new signal, in 
order to describe the kinematic calculated signal with enough detail. The result is shown in Figure 65.  

 
Figure 64: Amplitude spectrum 

 
Figure 65: Fourier transform versus kinematic 

signal 

 

TORQUE FOR ROTATING THE HUB 
 
Figure 66 shows the amplitude spectrum of torque 𝐓𝐴

1 in local 𝑍1-direction, with one clear peak. Although 
one peak, the first 10 frequencies (0 - 0.26 Hz) are included in the new signal, in order to describe the 
kinematic calculated signal with enough detail. The result is shown in Figure 67.  

 
Figure 66: Amplitude spectrum 

 
Figure 67: Fourier transform versus kinematic 

signal 
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APPENDIX H: RESULTS OF FLEXIBLE KINEMATICS 

 
It should be noted that the angles in Adams are measured on the joints, therefore these are the local 
deformed angles. In our calculations we measure the angles of the floating frames, which are slightly 
different.   
 

GENERALIZED COORDINATES OF THE CLAPPER 
 

 
Figure 68: Components of position vector 𝐫𝟏

𝟎,𝟎  
 

Figure 69: Components of orientation vector 𝛑𝟏
𝟎,𝟎 

 
Figure 70: Components of velocity vector �̇�𝟏

𝟎,𝟎 
 

Figure 71: Components of angular velocity vector 𝛚𝟏
𝟎,𝟎 

 
Figure 72: Components of acceleration vector �̈�𝟏

𝟎,𝟎 
 

Figure 73: Components of angular accel. vector 𝛂𝟏
𝟎,𝟎 
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GENERALIZED COORDINATES OF THE HUB 

 

 
Figure 74: Components of position vector 𝐫𝟐

𝟎,𝟎  
 

Figure 75: Components of orientation vector 𝛑𝟐
𝟏,𝟏 

 
Figure 76: Components of velocity vector �̇�𝟐

𝟎,𝟎 
 

Figure 77: Components of angular velocity vector 𝛚𝟐
𝟎,𝟎 

 
Figure 78: Components of acceleration vector �̈�𝟐

𝟎,𝟎 
 

Figure 79: Components of angular accel. vector 𝛂𝟐
𝟎,𝟎 

 

CONSTRAINT FORCES IN JOINT 0 AND 𝐴  

 

 
Figure 80: Components of global force vector 𝐅𝟎

𝟎  
 

Figure 81: Components of global force vector 𝐅𝑨
𝟎 
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FLEXIBLE COORDINATES OF CLAPPER AND HUB IN CALCULATIONS 

 

 
Figure 82: Flexible coordinates of clapper 𝛈𝟏  

 
Figure 83: Flexible coordinates of hub 𝛈𝟐 

 
Figure 84: Flexible coordinates of clapper �̇�𝟏 

 
Figure 85: Flexible coordinates of hub �̇�𝟐 

 
Figure 86: Flexible coordinates of clapper �̈�𝟏 

 
Figure 87: Flexible coordinates of hub �̈�𝟐 
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FLEXIBLE COORDINATES OF CLAPPER AND HUB IN ADAMS 

 
The modes in Adams are normalized to the mass, while the modes in our calculation are normalized to one. 
Therefore, they the amplitudes are not equal, but the shapes are equivalent.  

 
Figure 88: Flexible coordinates of clapper 

 
Figure 89: Flexible coordinates of hub 

 

DIFFERENCES OF GENERALIZED COORDINATES BETWEEN RIGID AND FLEXIBLE POSITIONS  
 
Because the angles in Adams are measured on the joints (the deformed angle), there is no error in here. 

 
Figure 90: Difference in position vector 𝐫𝟏

𝟎,𝟎  
 

Figure 91: Difference in orientation vector 𝛑𝟏
𝟎,𝟎 

 
Figure 92: Difference in position vector 𝐫𝟐

𝟎,𝟎 
 

Figure 93: Difference in orientation vector 𝛑𝟐
𝟎,𝟎 
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POSITIONS OF INTERFACE POINTS 

 
In here, interface point 𝐴 is positioned at the bottom of the clapper, points 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 correspond 
to the interface points attached to the six gondolas in the hub. 

 
Figure 94: Position of interface point 𝑨 (𝐫𝑨

𝟎,𝟎)  
 

Figure 95: Position of interface point 𝑩 (𝐫𝑩
𝟎,𝟎) 

 
Figure 96: Position of interface point 𝑪 (𝐫𝑪

𝟎,𝟎) 
 

Figure 97: Position of interface point 𝑫 (𝐫𝑫
𝟎,𝟎) 

 
Figure 98: Position of interface point 𝑬 (𝐫𝑬

𝟎,𝟎)   
 

Figure 99: Position of interface point 𝑭 (𝐫𝑭
𝟎,𝟎) 

 
Figure 100: Position of interface point 𝑮 (𝐫𝑮

𝟎,𝟎) 
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DIFFERENCES OF INTERFACE POINTS BETWEEN RIGID AND FLEXIBLE POSITIONS  

 
In here, interface point 𝐴 is positioned at the bottom of the clapper, points 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 correspond 
to the interface points attached to the six gondolas in the hub. To really see the errors made in the two 

bodies, the errors made in the generalized coordinates of the hub (𝐫2
0,0) are subtracted from the global 

calculated errors in the interface points of the hub.  

 
Figure 101: Difference in position of 𝑨 (𝐫𝑨

𝟎,𝟎)  
 

Figure 102: Difference in position of 𝑩 (𝐫𝑩
𝟎,𝟐) 

 
Figure 103: Difference in position of 𝑪 (𝐫𝑪

𝟎,𝟐) 
 

Figure 104: Difference in position of 𝑫 (𝐫𝑫
𝟎,𝟐) 

 
Figure 105: Difference in position of 𝑬 (𝐫𝑬

𝟎,𝟐)   
 

Figure 106: Difference in position of 𝑭 (𝐫𝑭
𝟎,𝟐) 

 
Figure 107: Difference in position of 𝑮 (𝐫𝑮

𝟎,𝟐) 
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APPENDIX I: RESULTS OF TRANSIENT DYNAMIC SIMULATIONS OF THE 
CLAPPER 

 
In here, the results are given of transient dynamic simulations to calculate the stresses in the clapper. This 
is done using two methods, which are explained in the subchapters below.   
 

DYNAMIC SIMULATIONS OF THE CLAPPER USING ADAMS 

 
In Adams, the stresses are calculated using stress modes which are derivatives of the deformation modes. 
This method is equal to calculating the deformations, multiplying the stress modes with the same flexible 
coordinates as for the deformations resulting in the stresses. Figure 108 and Figure 109 show the calculated 
equivalent stress in the clapper according to Von-Mises, based on the strain energy stored per unit volume. 
Only one timestep is shown, in which the maximum stress of ~187 MPa occurs. This maximum stress is a 
peak-stress in a small region around the tip of a reinforcement rib. Also important is the stress distribution 
through the clapper. 

 
Figure 108: Von-Mises stress distribution in the 

clapper from Adams 

 
Figure 109: Close-up of the Von-Mises stress 

distribution in the clapper from Adams 

 
The results are obtained using a dynamic simulation and a Newmark-beta integration scheme. A timestep 
size of 0.01 seconds is used over a period of 35 seconds. This timestep size showed to result in an accurate 
solution. The mesh is made using quadratic tetrahedral elements with 10 nodes per element and three 
degrees of freedom per element (𝑋, 𝑌 and 𝑍 translation). A fine mesh is used to increase the accuracy, due 
to the higher number of degrees of freedom and the lower aspect-ratio for all elements (less distorted 
elements). The quadratic elements are used to avoid shear-locking, because the quadratic shape functions 
can describe bending (quadratic shape upon deformation). Using mesh refinement, it is ensured that the 
result is converged and therefore mesh independent. 
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DYNAMIC SIMULATIONS OF THE CLAPPER USING ANSYS 

 
In Ansys, the stresses can be calculated in a dynamic fashion by applying the calculated deformations to the 
two remote points (see Figure 26). The deformations can be calculated by multiplying the deformation 
modes with the flexible coordinates in time, resulting in 12 deformations. In Figure 110 this is shown, where 
the arrows represent the calculated translational deformations and rotational deformations.   

 
Figure 110: Von-Mises stress distribution in the clapper from Ansys 

 
Although the transient analysis is linear, it costs significant more computational time than the quasi-static 
analysis due to the smaller timesteps taken. Results of the Von-Mises equivalent stresses are shown in 
Figure 111 and Figure 112. One timestep is shown, in which the maximum equivalent stress occurs which 
is approximately the same timestep as Adams. The maximum stress is calculated to be ~178 MPa which is 
equivalent to the simulation in Adams, the region where it occurs is also comparable. Also, the stress 
distribution through the clapper is equivalent with Adams.  

 
Figure 111: Von-Mises stress distribution in the clapper from Ansys 

 
Figure 112: Close-up of the Von-Mises stress distribution in the clapper from Ansys 

 
The results are obtained in a transient structural analysis, with an iterative solver named the 
preconditioned conjugate gradient solution. Variable time stepping is used with a minimum time step of 
0.001 and a maximum time step of 0.1 seconds. The timestep size showed to result in an accurate solution. 
The mesh is made using quadratic tetrahedral elements with 10 nodes per element and three degrees of 
freedom per element (𝑋, 𝑌 and 𝑍 translation). A fine mesh is used to increase the accuracy, due to the higher 
number of degrees of freedom and the lower aspect-ratio for all elements (less distorted elements). The 
quadratic elements are used to avoid shear-locking, because the quadratic shape functions can describe 
bending (quadratic shape upon deformation). Using mesh refinement, it is ensured that the result is 
converged and therefore mesh independent. 
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COMPARISON OF ADAMS VSANALY ANSYS 

 
A probe can be used to measure the Von-Mises stress in a node throughout the simulation. This is done in 
Ansys and Adams for the node at the tip of a reinforcement rib, where the maximum equivalent stress 
occurs. Figure 113 shows the result, where the maximum Von-Mises stress is clearly visible around 9 
seconds which are almost equivalent. In the remaining of the simulation are multiple peaks visible, where 
a difference is between Ansys and Adams. Overall, the periodic motion through time looks similar. 

 
Figure 113: Von-Mises stress in node through time 

 
This is the result of measuring the Von-Mises stress in one node throughout the simulation, which gives an 
indication of the equivalent stress progression through time. It can be improved by measuring the mean 
value of the Von-Mises stress of multiple nodes in a region, in this way peak stresses are avoided.  
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APPENDIX J: MEASUREMENT PLAN  

 
In here, a measurement plan is given which can be used to validate the results. It is composed of different 
measurements, with each a different purpose. Describing what is measured, why it is measured, how it is 
measured and where. Lastly it describes what the results will be and how these results can be interpreted.  
 

MEASURING THE ACCELERATIONS 
 
The accelerations can be measured with an accelerometer in order to validate the calculated accelerations, 
velocities and positions of the system. From the acceleration measurements, the velocity and eventually the 
position can be estimated. Important is that the acceleration is measured with a high measurement 
frequency in order to make an adequate estimation. Noise-reduction techniques can be applied if necessary, 
for example using a weighted average of the last couple readings for calculating the velocity. Another way 
to reduce noise is by taking multiple sensor readings at each time step and use the median value of these.   
 
Most beneficial would be to measure the accelerations at the position of the floating frame, since these 
coordinates are part of the generalized coordinates which are already solved. However, at this position no 
material is present to fix the accelerometer, so more practical would be to measure the accelerations at the 
given points in Figure 114. In here the acceleration of the clapper is measured at the bottom of the clapper, 
here it is possible to carry out multiple measurements at the same time. In the figure are acceleration 
measurements carried out on all gondolas, but only one gondola should be sufficient. Important to know is 
the orientation of the gondola in its initial position, this has influence on the eventual measurement results. 

 
Figure 114: Acceleration measurement positions  

The results of this measurement will be the accelerations over time in 𝑋𝑖 , 𝑌𝑖  and 𝑍𝑖 -direction in a local 
coordinate frame 𝑖 . With the calculation model presented in this work, the acceleration, velocity and 
position of this measurement point can be calculated in the corresponding local coordinate frame.   
 

MEASURING THE STRAINS 

 
Strain is measured using strain gauges at specific points on the Afterburner parts. There are different types 
of strain gauges for different applications. For the Afterburner, most interesting is to measure the bending 
strain, since the axial strain will be lower. Because the strain quantities are normally small (millistrain), it 
is most accurate to place the gauges in the areas where most deformations occur. Strain gauges are sensitive 
for errors by the mounting method and the surface to which they are mounted to.     
 
The measured data consists of a resistance over time, where a gauge factor can be used to calculate the 
strain in each direction. To fully known the strain and afterwards the stresses in a point, it is required to 
measure the strain in three directions at least. With Hooke’s law and the requirement that stresses on the 
free surface are equal to zero, all nine components of the stress tensor can be calculated. From the strains, 
the stresses can be calculated using the stress-strain relations, which then can be converted into an 
equivalent stress in one point. This quantity can be compared with calculated results in a finite element 
package or using Adams. 
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