ROBOTICS
MECHATRONICS

EVALUATION OF A FEATURE-BASED DESIGN
METHOD FOR RAPID DEVELOPMENT OF
HARDWARE IN CYBER-PHYSICAL SYSTEMS

W. (Wouter) Horlings

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
T.G. Broenink, MSc

dr. ir. G.M. Bonnema

March, 2021

018RaM2021

Robotics and Mechatronics
EEMCS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

UNIVERSITY | TECHMED UNIVERSITY | DIGITAL SOCIETY
OF TWENTE. | CENTRE ~ OF TWENTE. | INSTITUTE

Summary

Testing is an incredibly important part of the design process. Before
a quality product is put into production, it has gone through extensive
testing procedures. Likewise, new design methods have to be tested
before they can be used in a design project.

The Rapid Iterative Design Method (RIDM) is a proposed feature-based
design method for rapid development of Cyber-Physical Systems (CPS).
Using RIDM the system is divided into a set of features. Each feature
represents a part of the system functionality. By implementing and
testing one feature at the time it provides a structured method to deal
with the complexity of CPS.

This thesis evaluates if the RIDM is a suitable design method for the
hardware-side of CPS. For the evaluation, a system is designed using
the RIDM as a case study. Prior to the case study, some adaptations
are made in order to use the design method for hardware. These adap-
tations add steps to create the set of features for a given design prob-
lem.

The RIDM focusses more on how to implement the features and less
on how to define the features. However, the case study showed that
the method of defining features is crucially important to the outcome of
the design process. Another important finding is that a feature cannot
be described with functionality alone. To be able to implement and test
a feature, it must describe requirements and components as well.

Overall, the RIDM shows real potential to improve the design process of
CPS. The approach to determine the order in which features are imple-
mented greatly reduces the impact of design failures. Unfortunately,
most of the RIDM is currently hindered due to a lack of tooling.

The main findings in this thesis suggest that the RIDM must incorpo-
rate a holistic design process. This design process describes all devel-
opment steps needed to get from a problem description, via the set of
features, to a finalized product. Furthermore, tooling to organize and
test the development is required to utilize all advantages the RIDM pro-
vides.

Contents

1.1
12
13
1.4

2.1
2.2

2.3

3.1

3.2

3.3

41

4.2

5.1

52

5.3

Introduction

Context of this Thesis
Research Objective
Approach
Structure

Starting Point

Systems Engineering
Rapid Iterative Design Method
2.21 Rapid DevelopmentCycle.
2.2.2 Variable-Detail Approach
2.2.3 Preparation steps
Combination

Design Plan

Preliminary Phase
3.1.1 Problem Description
3.1.2 SystemRequirements.
3.1.3 Initial Design
3.1.4 Feature Definition
3.1.5 Test protocol
Development Cycle

3.2.1 Feature Selection
3.2.2 Rapid Development
3.2.3 Variable-Detail Approach
Summary of Design Plan

Case Study: Method

Evaluation Protocol
4.1.1 Questionnaire
4.1.2 Model validation
Subject of Design

Case Study: Execution

Preparation Phase
5.1.1 Problem Description
5.1.2 Requirements
5.1.3 Initial Design

5.1.4 Feature Definition
515 TestProtocol.
First Development Cycle
5.2.1 Feature Selection
5.2.2 Rapid Development of the End-Effector
Second Development Cycle
5.3.1 Feature Selection
5.3.2 Rapid Developmentfor SCARA
5.3.3 Variable-Detail Approach

5.3.4 Conclusion of Development

5.4 System Design Validation

5.41 Mechanical Construction
5.4.2 Control of the selective compliance articulated

robotarm (SCARA)

55 Result

6 Case Study: Evaluation
6.1 Timelnvestment
6.2 One-man developmentteam
6.3 Switching ModellingLanguage
6.4 Reflection.
6.4.1 Preparationphase
6.4.2 Developmentphase
6.4.3 Continuation of this Case Study

7 Design Method Evaluation
7.1 System Complexity
7.2 ElementsofaFeature
7.3 Model and Design Relation
7.3.1 Model properties
7.3.2 DesignParameters
7.3.3 Structured designand models
7.4 PreparationPhase
7.5 Rapid lterative Design Method
7.5.1 FeatureSelection
7.5.2 Variable-Detail Approach

8 Conclusion
81 CaseStudy
8.2 Rapid Iterative Design Method
8.3 Recommendations.

A Test Specifications
B System Requirements

Bibliography

Contents

Chapter 1

Introduction

1.1 Context of this Thesis

Cyber-Physical Systems (CPS) contain systems that control and mon-
itor their included physical system parts (Rajkumar et al., 2010). This
physical system is often a system of mechanical components which
are deeply intertwined with the software components. Automobiles,
robots, medical devices and even the smart grid are examples of CPS.
The complexity of CPS has gone from an embedded system that im-
proved the fuel consumption of a car engine to a fully autonomous
vehicle. Although the complexity opens up more design possibilities,
improved efficiency, and better safety, it has downsides as well.

Major downsides with the increasing complexity are the increasing de-
veloping cost and the decreasing reliability. Broenink and Broenink
(2019) introduced a new design method for CPS that aims to deal with
the downsides of the complexity. Throughout this thesis, the term
Rapid lIterative Design Method, abbreviated to RIDM, is used to refer
to the design method by Broenink and Broenink (2019).

The RIDM adopts a design technique called rapid development that
splits the development process into small individual steps, where each
of these steps are implemented and tested separately. Testing each
individual step creates feedback on a short interval, finding errors in
the design as early as possible. When a test reveals an error in the
design, the worst case scenario is that all resources invested since the
error was made are lost. Errors are unavoidable, but detecting them as
early as possible reduce the amount of lost resources.

As part of the research, Broenink and Broenink performed a small case
study. In this case study, they have designed a controller, and im-
plemented the controller in software for a physical off-the-shelf sys-
tem. Developing CPS incorporates the computational software side
and the physical dynamic side. However, the case study by Broenink
and Broenink only covers the software side of a CPS. For this design
method to be suitable for a complete design of CPS it must apply to
the physical part of the system as well.

1.2 Research Objective

Broenink and Broenink (2019) present a case study in their paper, de-
veloping a software based control system following the RIDM. About
the result of that case study they state that "this [case study] does not

mean that the same techniques cannot be applied to the physical part
of the system.” In this thesis, | research whether the RIDM applies to
the physical part of a CPS, to come to a design method that apply on
both the physical and cyber (software) part of a CPS.

The paper makes no attempt to offer a comprehensive design method
to be used out of the box. The RIDM does not provide information
about bringing a system into being, it does not address problem defi-
nition, requirements or initial design steps. Another weakness is that
the RIDM gives no explanation of how the design steps are executed,
only specifying that they are used. The design method would have
been more useful if the authors had made a complete design method
available to accompany their paper. To assess the RIDM as a design
method for CPS, | set the following research objectives:

+ Extend the RIDM with a preliminary design phase, focussing on
the physical part of CPS.

+ Refine the RIDM to make the design steps more explicit with im-
proved instructions.

+ Develop and perform a case study that tests and evaluates the
RIDM as a design method for the physical part of CPS.

Evaluation of the RIDM as a design method is done with the results of
the case study as the following objectives:

+ Assess the influence that applying the RIDM has on the design
process for CPS.

+ Describe which adaptations are required for both the RIDM and
the design method to establish a competent design process for
CPs.

1.3 Approach

The goal of this thesis is to evaluate the RIDM, in the form of a case
study. The case study consists of a design process, developing a CPS
according to the RIDM. Based on the results of the design process, the
RIDM is evaluated. However, there are a couple of steps required prior
to the start of the case study.

The first step is to produce a concrete design plan based on the design
method. The concrete design plan improves the evaluation of the de-
sign techniques. The design method is presented in an abstract form
which leaves room for interpretation. This abstract form hampers the
evaluation process, as the ambiguity of the design method makes it dif-
ficult to point out flaws in the design method. Therefore, | assess the
design method and add detail to make a more concrete design plan.
Because the RIDM focusses on rapid development principles and mod-
elling techniques, it does not cover the design steps outside of that fo-
cus. These steps, like problem definition and system requirements, are
a crucial part of the design process and are added to create the con-
crete design plan. The added steps are based on the steps from the
Systems Engineering (SE) approach (Blanchard and Fabrycky, 2014).

With a design plan to use in the case study there are two steps of prepa-
ration left. The first step is to develop an evaluation protocol to en-
sure complete and consistent feedback during the case study. The
evaluation protocol consists of a list of questions that are evaluated
for each design step. The protocols contains questions about the de-
sign method itself, thus evaluating the instruction of each design step.

Chapter 1. Introduction

2

RIDM Systems Engineering

~N 7

Evaluation Protocol Design Plan Subject of Design

T~

Case Study

Other questions are about the design process, covering the execution
of the instructions. The other step is to provide the subject of design
to develop in the case study, essentially defining a problem that has to
be solved. How all these components combine into the case study is
shown in Figure 1.1.

Normally, the design process focusses on delivering the end product
in the most effective manner. However, the goal of this research is to
use the design process to evaluate the design method, not to develop
a product. A possible pitfall is that during the design process the de-
veloper finds a simple solution, such that the design techniques to deal
with the increased complexity are left untouched. Therefore, it is im-
portant to guarantee a minimum level of complexity. Instead of defin-
ing a problem that is very complex, | decided to require a minimum
complexity to the solution. This makes the design process complex
enough, without requiring an excessive amount of development time
or compromising the quality of the evaluation.

Together with some other practical requirements, the best subject of
design found is "Writing a tweet on a whiteboard”. The subject of de-
sign is interesting because it has multiple design solutions that are
complex but not unpractical. Furthermore, it has some interesting dy-
namics, requires a control law, and can easily be constructed into a
prototype.

With a subject of design that requires a solution in the form of an object
that incorporates both physical and cyber parts to develop; a design
plan which describes how to develop this solution; and a protocol to
evaluate the design plan and the development of the solution; the case
study is executed. From the results of the case study | propose multiple
improvements to the design method, not only for the physical part of
CPS but also the cyber part.

1.4 Structure

The thesis is structured as follows: The first two chapters introduce
the design methods. Chapter 2 gives a background of the RIDM and SE
approach and how this is combined into the design plan. The design
plan is presented in detail in Chapter 3, where each step is explained.

The next three chapters cover the case study: Chapter 4 explains the
method of the case study, the subject of design and the evaluation pro-
tocol. Chapter 5 documents the execution of the case study, showing
the development during the design process. All the questions and ob-
servations that were administered by following the evaluation protocol
during the case study are analysed in Chapter 6.

The last two chapters reflect on the design plan that is evaluated in
this research. Chapter 7 uses the evaluation results of the case study
to reflect on the design plan in this thesis. And finally, the research is
concluded in Chapter 8.

Chapter 1. Introduction 3

Figure 1.1: The case study is consists
of something to be designed (subject of
design), how to design that something
(design plan), and how to evaluate the
design process. The design plan itself
is a combination of the RIDM and SE.

Chapter 2

Starting Point

The goal of the design plan is to develop a CPS. Due to the nature of
CPS, it involves a multi-domain design approach. Therefore, the sub-
ject of SE is relevant to this approach. Furthermore, the RIDM is dis-
cussed in more detail in this chapter.

The RIDM does not initiate from the problem description step. As this
step is required a design from scratch, the RIDM is combined with the
approach from SE establish the required design steps.

2.1 Systems Engineering

Blanchard and Fabrycky (2014) describe SE in their book as: "an inter-
disciplinary approach and means to enable the realization of success-
ful systems.” Their book extensively covers multiple design methods
and design steps in detail. For this thesis, their approach on Bringing a
Systems into Being and Preliminary System Design are especially rele-
vant. SE is a complete field of engineering on its own and only the top
of the iceberg is used in this thesis.

2.2 Rapid lterative Design Method

The RIDM by Broenink and Broenink (2019) describes a methodology
using two core components for the implementation: the rapid develop-
ment cycle and the variable-detail approach. The design method also
describes the preparation steps that are required prior to this imple-
mentation. In short, the preparation prepares a list of features. These
features are implemented one by one with in the rapid development cy-
cle using the variable-detail approach. The following sections discus
each of these three design steps.

2.2.1 Rapid Development Cycle

The goal of the rapid development cycle is sequential implementation
of the features in a system. Each iteration of the rapid development
incorporates the following steps:

1. Create an initial design and corresponding tests for the next fea-
ture.

2. Implement and test that feature.

The first step is to create an initial design and tests that are used to ver-
ify the requirements of the current feature. During the second step, the
initial design is developed into a detailed design of the feature. This de-
tailed design of the feature is develop with the variable-detail approach,
in which the level of detail is stepwise incremented. When the second
step is completed, the implemented feature contains all the required
details and passes all the tests as defined in the first step. From this
point the rapid development cycle is repeated for the next feature, or,
when no features are left, finish the development.

2.2.2 Variable-Detail Approach

The variable-detail approach starts with a low-detailed model and in-
creases the detail discretely over multiple iterations. The low-detailed
model is for example a single transfer function of the system. In the
following iteration, the detail of the model is increased by adding, for
example, non-linearity, non-continuity or parasitic elements.

The tests, as specified in the first step of the rapid development cy-
cle, are performed after each addition of detail. If the tests show that
the added detail is not conform the requirements, the added detail is
reviewed or redesigned. When the added detail passes the tests, the
process is repeated to add more detail. The variable-detail approach
is finished when all the tests are passed and all the detail is added.

2.2.3 Preparation steps

Although the RIDM does not specify the complete steps for the prepa-
ration, it does state some requirements. The rapid development cycle
requires a list of features that can be implemented and tested individ-
ually. These features are gained by partitioning the functionality of the
system.

For each feature it is required to specify the feature requirements and
the corresponding test protocol. The feature requirements are based
on the system requirements and the tests are used to validate that the
feature meets its requirements. About the order of implementation, the
RIDM states that critical features must be implemented first, as these
features have an increased chance of invalidating the complete design.
Would such a feature fail, the investment loss is limited, because the
development is still in an early stage.

Following the feature separation step is the system test protocol. The
goal of this step is to describe how the requirements of the system are
tested. These tests can cover a single feature or multiple features.

2.3 Combination

To create a complete design plan, design approaches from both SE and
the RIDM are combined. The RIDM requires an initial design that is then
split into features. To meet this requirement, a linear set of steps from
problem description to initial designis used from SE. These three steps
are shown at the top of Figure 2.1 in the Systems Engineering group.
The steps show some similarity with the first steps of a V or Waterfall
model.

The requirements and initial design are used in the four steps of RIDM
continue the design process. These four steps are grouped at the bot-
tom of Figure 2.1.

Chapter 2. Starting Point 5

Problem Description | Systems Engineering

Requirements

i

Initial Design

.
-

. Rapid Iterative
Feature Definition Design Method
Test Protocol
Feature Selection

Variable-detail
Approach
Rapid Development '——/
.

J L

Figure 2.1: Combined design plan,
where the first three steps are based
on the SE-approach and the other
four steps are taken from the RIDM
(Broenink and Broenink, 2019)

Chapter 3

Design Plan

The goal of this chapter is to define a concrete design plan that is used
in the case study. All of the steps in the design plan must be specific
such that each of these steps can be evaluated after the case study
is finished. The previous chapter introduced how two design methods
are combined to form the basis of the design plan.

The design plan consists of two parts: The first part is the Prelimi-
nary System Design and contains the linear set of steps from problem
description to feature definition. The second part is the Development
Cycle, which contains the features selection, variable-detail approach
and rapid development cycle.

3.1 Preliminary Phase

The goal of the preliminary design phase is to create a set of features
for the design solution. Although these design steps in SE play a cru-
cial roll in the success of the development, they are, however, very ex-
haustive. A major part of this complete design process is the required
documentation to ensure agreement about the design between the dif-
ferent stakeholders. Resulting in a process that can take months or
even years, which is not feasible for this thesis.

In this thesis, this design plan is only used for evaluation and has only
one stakeholder, the author. This allows for a simple implementation
of the SE approach, as it not possible to create a false start due to
misunderstanding, saving valuable time.

The first three steps of the preliminary phase are based on the SE ap-
proach by Blanchard and Fabrycky (2014). As the evaluation of SE is
not in the scope of this thesis, this chapter only covers the minimal
description of the design steps in SE. These three steps deliver re-
quirements and an initial design. The last two steps define the set of
features and tests based on these deliverables.

3.1.1 Problem Description

Before any design process can start, the "problem” has to be described.
In other words, why is the function of the system needed? This is de-
scribed in a statement of the problem. In this statement of the problem
it is important to describe "what” has to be solved, not directly "how”.
Blanchard and Fabrycky (2014) also note that "defining the problem is
often the most difficult part of the process”. It is important to ensure

good communication and understanding between the different stake-
holders. Otherwise, it is possible that the designed product is not up to
the customers expectations. It furthermore involves defining the sub-
jects like what are the primary and secondary functions? When must
this be accomplished? What is not a function? For this thesis, however,
the problem definition is limited to a short statement of the problem,
covering some required functions with corresponding requirements.

3.1.2 System Requirements

The system requirements are derived from the problem definition, and
describe the characteristics of the system. As these characteristics
form the foundation of the system, the requirements must be defined
without any ambiguity, vagueness or complexity. The requirements
are written according to the Easy Approach to Requirements Syntax
(EARS) (Mavin et al., 2009). EARS was chosen for this design method
due to its simplicity, which fits the scope of this thesis. Later in the
design, these requirements are distributed over the subsystems. Any
issues, like ambiguity, in the requirements, propagate through these
subsystems. This might lead to a redesign of multiple sub-systems
when these requirements have to be updated.

3.1.3 Initial Design

In the initial design step, the "what has to be solved”, is expanded with
a solution on "how it is solved”. To find the best solution it is impor-
tant to explore the different solutions and design space. Often, there
are many possible alternatives but they must be narrowed down to the
solutions that fit within the schedule and available resources. The best
alternative is materialized in a design document together with the sys-
tem requirements. This design document is used in the next phase of
the design.

3.1.4 Feature Definition

During the feature definition step, the initial design is split into features
as preparation for the rapid development cycle and the variable-detail
approach. The RIDM does not provide a particular approach to define
the features of the design. But, the goal is to have features that can be
implemented and tested individually. The approach in this design plan
aims to provide a more guided and structured way to split the features.

The approach to define features in this design plan is based on the sep-
aration of levels principle (RobMoSys 2017). This principle defines dif-
ferent levels of abstraction. This starts from the top with the mission,
for example, serving coffee. Followed by less abstract levels such as: a
task to fill the coffee mug; a skill to hold that mug; and a service allows
the hand to open or close.

The different levels allow the features to be split multiple times in a
structured way. Take the coffee serving example, to fill the coffee mug,
it is not sufficient to only hold the mug. The system also has to pour
coffee into the mug, and maybe add sugar or milk. This results in a
hierarchical tree of functions as shown in Figure 3.1. Each of the levels
have a many-to-many relation with each other.

With this approach, features are defined top-down and are implemented
bottom-up. Thus a skill is defined as one or more services. When all the

Chapter 3. Design Plan 7

Mission

Task

Skill

Service
1
1
1
U

\
Component

Figure 3.1: Hierachical structure of
functions and components. Each arrow
represents a many-to-many relation.

services are implemented, they are combined into a skill. The advan-
tage of this is that the skill defines a milestone to combine the relevant
services. Orlooking at the example: the system must at least be able to
grab, stir, and pour before it can fill a mug with coffee, milk and sugar.

Another advantages is that multiple skills can have a service in com-
mon. This would be the case if our system also needs to serve tea.
The system can already hold a mug and only needs the ability to add a
teabag. Even though there is no exact level of abstraction required for
each of the features, it does create a structure for the developer. In the
end, the developer must rely on its engineering judgement to chose the
optimal division between features.

The bottom level of the hierarchy is a special case as it describes hard-
ware instead of functions. The components are used to execute the
functionality of the system with. For example, having a mobile robot
arm near a coffee machine does meet the hardware requirements, it
does not have any functionality if that is not yet implemented. This
also creates a clear division for the developer as the functions cannot
be mixed with the hardware.

3.1.5 Test protocol

During the rapid development cycle and the variable-detail approach,
the system is tested constantly. This is to make sure that the design
still performs as expected. The tests are based on the requirements.
Each requirements must be covered with at least one test. The tests
consist of a description which specifies how to perform the test and
what the result of the test must of must not be. Together with the de-
scription, there is a list of required features to perform the test and a
list of requirements that are met if the test passes.

3.2 Development Cycle

The development cycle consists of three steps, which are repeated for
each individual feature. These three steps form the core of the RIDM.
This starts with selecting the feature that is to be implemented, which
then is implemented with the rapid development and variable-detail ap-
proach.

3.2.1 Feature Selection

The goal of this section is to improve the features selection criteria
of the RIDM The RIDM states that critical features, those with a high
Change of Failure (COF), must be implemented first. If a critical feature
fails, it is at the start of the design process, thereby invalidating only
a portion of the design process. Features that are (time) expensive to
implement, must be implemented as late as possible. These expensive
features have a high Cost of Change and placing them at the end of the
development avoids making changes to the features.

The Change of Failure and Cost of Change are a good starting point
for selection criteria. However, this creates an interesting situation for
features with both a high change of failure and a high cost of change.
The rest of this section provides a structured approach for feature se-
lection.

An example that shows the importance of the order of features is the
development of a car. To have a critical damped suspension in a car,

Chapter 3. Design Plan

8

the weight distribution of the car must be known. If the suspension of
the car is designed before all the features that determine the weight
distribution, it is likely that the suspension design is not up to require-
ments. Resulting in a redesign of the suspension feature and thus in-
creasing the overall development cost. This example is caused by the
dependency between different features.

To determine the order of implementation of features, a dependency
graph and a comparison table is made. The dependency graph and
the comparison table for a theoretic system is shown in Figure 3.2 and
Table 3.1 respectively. In general the dependency of the features is in-
herited from the hierarchical structure that is made in the feature defi-
nition step.

The comparison table has a dependees column, that describes the
number of features that are depending on that specific feature, and are
derived from the dependency graph. The tests column describes the
number of tests that are covered by implementing this feature. These
tests are defined during the initial design and the feature definition, the
number represents the amount of tests that pass afterimplementation
of the feature.

The COF per time score is calculated by dividing the COF score with
the time score. The COF score indicates the likeliness of unforeseen
difficulties during the implementation of the feature. The time score is
an estimation about the required time for implementation. This time
score is strongly connected with the Cost of change, but for readability
| chose to refer to time instead. Due to the limited scope of this thesis,
it is not possible to give a good metric for determining COF and time.
Nevertheless, it is strongly advised that the developer defines some
metric that fits his project best.

It seems logic to always implement the feature with the highest COF,
but it is possible that the combined COF of multiple features is higher
for the similar time investment. This is visible in Table 3.1: In a time
span of 6 days it is possible to implement feature E or features A, C, and
D. The COF for E is 45 % which is significantly less than the combined
65 %' of A, C and D.

With a completed comparison table, the order of implementation for
the features is determined by the following rules:

1. Features that are dependencies of others must be implemented
first.

2. Features that complete more system test than other features when

implemented have priority.

3. Features with the higher COF per time score than other features
have priority.

The rules are applied in order. If one rule reduces the set to a single
feature, the rest of the rules are skipped. The third rule is a sorting rule,

Dependees Tests COF Time COF overtime

Feat. A 2 (B, C) 2 15% 3days 5
Feat. B 0 3 40% b5 days 8
Feat. C 1 (E) 5 25% 2days 12.5
Feat. D 0 4 15% 1lday 15
Feat. E 0 4 45% 6days 7.5

Chapter 3. Design Plan 9

(Feature A) (Feature DJ

(Feature B) (Feature CJ

Feature E

Figure 3.2: Dependency graph for fea-
tures.

1 This is not a valid approach to calcu-
late the combined chance, but suffices
for the goal of this example.

Table 3.1: Comparison of features with
their corresponding COF and time. The
last column is the COF value divided by
the planned number of days.

and the feature that fits best is implemented. In case of a draw or in
special cases the developer decides what feature to implement next.

Looking at an example of 5 features: As shown in Figure 3.2, features
B and C depend on feature A; feature D does not have any dependency
connections; and feature E is dependent on C. Together with the infor-
mation in Table 3.1, the order of implementation is:

Feature A: has two features that are dependent on this feature, more
than any other.

Feature C: has one feature that is dependent on this feature, most de-
pendees after A is implemented.

Feature D: has the same number of tests as E, but D has a significant
higher COF per time score than E

Feature E: has the most number of tests.
Feature B: only one left to be implemented.

Note that this example assumes that nothing changes. In case of a fea-
ture not being feasible during the implementation, the design has to be
reviewed. This also means that the dependency graph and comparison
table change, possibly resulting in a different order of implementation.

3.2.2 Rapid Development

Each iteration of this rapid development cycle implements one com-
plete feature. The feature that is implemented is selected in the prior
feature selection step. The goal of this step is to lay the foundation
for the development of the feature. This foundation consists of a ba-
sic model, a set of detail elements and a list of tests. The set of detail
elements is a collection of design aspects that are added to increase
the detail during the next design step. These detail elements can rep-
resent behavior, parasitic elements, or components. How these detail
elements are implemented and what the basic model consists of is
based on the initial design of the selected feature.

The initial design of the feature is similar to the system-wide approach
in Section 3.1.3. It consists of a design space exploration, but with
more detail, which is possible as the feature is significantly smaller
than the complete system. From the design space exploration, the
developer selects the optimal design choice for the current feature.
For this design choice, a design document is made that illustrates the
rough shape and dynamics of the implementation.

The basic model and the detail elements are based on an initial de-
sign of the feature. The basic model consists of only the most basic
elements of the design. As the basic elements that make the basic
model differ strongly per system, there is not a specific approach. In
general, the basic elements should only represent dominant and es-
sential behavior of the system. A good starting point for the dominant
behavior is to identify the interesting energy states of the system. The
energy states of interest can include the energy states that are domi-
nant, but also the states that are chosen by the developer. These last
states could represent the output states or status that have to be mea-
sured. In the end, the developer decides which states are required and
implements them in the basic model. All the elements that are part of
the initial design but are not part of the basic model are classified as
the detail elements.

Chapter 3. Design Plan

10

Lets take a motorized double inverted pendulum for example, which
consists of two arms with motorized joints. Both pendulum arms are
dominant energy states. The electrical motors have also internal states,
but store significantly less energy than the pendulum arms. An basic
model would in this case only consists of the arms, possibly even with-
out any dynamic behavior. The dynamic behavior, motor characteris-
tics, resistance, or gravitational force are examples of detail elements
to be added to increase the detail.

3.2.3 Variable-Detail Approach

With the variable-detail approach the basic model is developed into a
refined model of the feature. This is done by adding the detail elements
over the course of multiple iterations. Each iteration produces a new
model with more detail than the previous. The newly added detail is
evaluated by performing the tests that were defined during the rapid
development cycle. Not all tests are expected to succeed from the

Start:

Failed Test

Passed yes Expected to no
Before? fail?
[
yes
.
Continue . .
Expected to no ’

P ass? —>| add next W'f“ pass7|n
pass? detail | Yes uture:
~—————
yes () no

Review
Design
~—————

start, as not all details are implemented. For example, if the internal
resistance of a electric motor is not yet implemented in the model, the
motor can draw unlimited current, and this would exceed the maximum
current draw of the system. The decision flowchart in Figure 3.3 deter-
mines whether the design must be reviewed or can continue on a failed
test. The decisions are made with the following questions:

Passed Before? The current test of the current design failed, but was
there a previous detail level where it passed?

Expected to fail? Does the test fail as a direct result from the added
detail and was that intentional?

Expected to pass? Should the added detail to the model result in a
pass of the test?

Chapter 3. Design Plan 11

Figure 3.3: Decision flowchart to fol-
low for failed tests on each detail level.
Decision tree starts at the top left rect-
angle. Depending on the questions, the
next step of action is to continue with

the design or review the design.

Will pass in future? Isthere an element to be implemented that results
in a pass of the test?

In the case that the implementation of a detail element fails multiple
times, the developer has to investigate if implementing the feature is
still feasible. This could result in a redesign of the feature or system.
When and how this decision has to be made differs per situation and is
outside the scope of this thesis. The developer must evaluate if there
are feasible alternatives left for this element, feature or system, and
apply these alternatives if possible.

When all detail elements are implemented; all tests pass; and the basic
model has evolved into a refined model of the feature, the design cycle
moves back to the feature selection. In the case that this is the last
feature to implement, this concludes the development.

3.3 Summary of Design Plan

The steps from SE and the RIDM are combined to create the design
plan as shown in Figure 3.4. The first five steps of the design pro-
cess form the preparation phase: problem description, requirements,
initial design, feature definition, and test protocol. The initial design
step creates a holistic design based on the prior problem description
and requirements step. The last step of the preparation is the feature
definition, where the initial design is split into different features. The re-
sulting initial design and its features together form the design proposal
for the development steps. The last step of the preparation phase is
the test protocol step, where the tests are defined to monitor the design
process and validate that the system meets the requirements. The de-
velopment cycle consists of the feature selection, rapid development,
and variable-detail steps. These three steps are applied to each feature
in the system individually.

With each iteration of the development cycle a new feature is added to
the complete system. All the tests of the individual features are per-
formed in the complete system as well. This ensures that the one fea-
ture does not break a another feature. The design is finished when all
the features are implemented, tested and combined.

In the optimal situation the preparation phase is only performed once
at the start of the design, and the development cycle is performed for
each feature. However, if features prove to be infeasible, some steps
have to be revisited.

Chapter 3. Design Plan 12

Preparation Phase

(Problem Description J

l

(

Requirements

)

l

(

Initial Design

)

(Feature Definition)

(

Test Protocol

)

(Feature Selection)‘”\

Variable-detail
Approach

(Rapid Development F/

Development Cycle

Figure 3.4: Combined design plan,
based on the SE and RIDM approach.

Chapter 4

Case Study: Method

The goal of this case study is to evaluate the design plan as presented
in the previous chapter. The evaluation is done by developing a system
according to the design plan. In general, the method of the case study
follows all the steps of the design plan. Additionally, an evaluation pro-
tocol ensures that the development is evaluated consistently. The last
important thing is a subject of design that is developed as the case
study. The next sections present the evaluation protocol and explains
the choice for subject of design.

4.1 Evaluation Protocol

The evaluation protocol ensures that the different steps, decisions and
changes of the design are consistently evaluated. This protocol con-
tains a questionnaire and model validation. The full questionnaire is
administered during each step in the design plan. It covers questions
about the design process as well as the design plan. The model vali-
dation is performed at the end of the development. This validation is
done by creating a physical prototype of the design and comparing the
operation with the designed model.

4.1.1 Questionnaire

The questionnaire consists of two sets of questions. The first set of
questions is shown in Table 4.1. This set consists of pairs of ques-
tions and focusses specifically on the execution of the design step.
Each pair embodies a theme, with one question answered before, and
the other question answered after the execution of the design step.
The goal of these pairs is to compare the expected and resulting out-
come of the design step. The second set of questions focusses on the
described method of the design step. These questions are shown in
Table 4.2.

To answer and record the questions consistently, there is a template
document with these questions. The document with the answers is
stored in version control and is automatically typeset into a PDF docu-
ment.

4.1.2 Model validation

The design plan focusses on the modelling of the system. It is, how-
ever, not given that passing all the tests does also results in a work-

13

Chapter 4. Case Study: Method

Table 4.1: Table with questions to evaluate the steps. With corresponding questions

ordered in pre and post step columns.

Prestep
Questions prior to the execution of the step to
set a baseline.

Poststep

Questions after the execution of the step to
check if the implementation met the expecta-
tions. In hind-sight, what should have been exe-
cuted differently?

What was the previous step?
Does this influence this step? Is this a review?

What is the next step?
Moving forward or is a review required of previ-
ous step(s)?

Describe the plan of action.
What is the next step going to be? How is it go-
ing to be executed?

Explain any deviations from the plan of action.
What changed during the execution, what devi-
ations where taken and why?

What is the method of testing?
What is the protocol to review the result of this
step?

How did you test/validate the step?
How was the evaluation done? Did it reveal
something new?

What is the expected workload?

How many hours are required for the execution
of the step? Also give a range in your uncer-
tainty.

Was the workload different than expected?
How much time was invested in the step? Why
was it different than expected?

What is the expected result of the step?
At the end of the step, what is the expected re-
sult?

Is the result as expected?
Does the result match the description made pre-
step? Why does it not match?

What is the expected feasibility?

What are the problems you expect during imple-
mentation? Why?

Was the expected feasibility of the implemen-
tation accurate?

Even if the implementation succeeded, the fea-
sibility does not have to be 100%. Give an esti-
mate for the feasibility now that the implemen-
tation is finished. Explain the difference with the
pre-step feasibility.

Table 4.2: Table with questions to evaluate the design method itself

Is this method a suitable approach for the hard-
ware design?

Are there aspects in the hardware design that is
not covered by the method? Or is the method
not suited at all for hardware? Why not? How to
do it different?

Does the method contain counter-intuitive
steps?

Are there steps that feel not optimal? Is it ap-
pealing to execute the step different? Is it just
getting used to? Or really inefficient?

What is the feasibility of this step in the method
itself?

Not the execution of the step, but the step itself.
Are those steps realistic? How can the method
be improved? Why?

14

ing design. If the tests are incomplete or complications in the design
are overlooked, the design process is worthless. Because the design
method would be unreliable.

Therefore, the model is validated with a physical prototype of the de-
sign. This shows whether the model is correct and whether all assump-
tions about the system are correct. The prototype does not only show
where the design process went wrong, it can also be used to improve
the design plan to prevent these modeling problems.

4.2 Subject of Design

The choice in subject of design has a strong influence on the effective-
ness of the evaluation of the design plan. To ensure the best subject of
design a list of requirements is composed. Based on this list the best
subject of design | could come up with is a "Tweet on a whiteboard
writer”, which is referred to as system. Other subjects were consid-
ered, but did not meet the desired requirements.

The most important requirement is that, while developing the system,
the different aspects of the design plan are used. Taking into account
that there is a limited time budget and that the system must fit within
the scope of the thesis, the set of possible subjects of design is slim.
The time budget is set to 10 weeks of development and the system
must have a dynamic system that is actuated via a software controller.
The tweet on a whiteboard fits within these requirement as it can have
interesting dynamics and has multiple features. Although it is possible
that the system is seen as a wall plotter with basic XY-movement, there

are alternative implementations that achieve more complex movement.

This provides the required complexity and allows for different levels of
detail. The XY-movement is the basic feature and detail is added in the
form of other features. More detailed features are, for example:

1. Lifting/lowering the marker from/on the board
2. Erasing: End effector manipulation

3. Changing color: Switching Marker

4. Speed improvement

Similar to the XY-movement, these features have multiple implemen-
tations that add complexity to the system. This gives the possibility
during the case study to go with a more or less complex design, allow-
ing to fit the case study in the time budget without compromising the
quality of evaluation.

Although a finished product is not required, a partial prototype is part
of the testing and validation procedure. As the design method focuses
on the physical component, a mechanical prototype is important. The
prototype would originally been constructed with the rapid prototyping
facilities at the university. However, the COVID-19 pandemic forced the
university to close, and me to work from home. This limited the rapid
prototyping to DIY-tools and a 3D-printer. It is expected that this set of
tools is sufficient to construct a prototype of the tweet on a whiteboard
system.

Other options that were also considered but did not meet the require-
ments. One of these options was a 3D calibration system for a position
measurement system. This idea was rejected because the complexity
originated from the required accuracy instead of the dynamics. In other
words, choosing interesting dynamics would degrade the accuracy of

Chapter 4. Case Study: Method

15

Chapter 4. Case Study: Method 16

the system. A peg-in-hole problem, was also considered as a system.
But that is mainly a complex sensing and control problem, and not dy-
namically interesting.

Chapter 5

Case Study: Execution

This chapter presents the execution of the case study. Where the goal
of the case study is to evaluate the design plan as presented in Chap-
ter 3. To achieve this goal, | develop a system according to the design
plan and document this design process. As described in Section 4.2,
the subject of design is a "Tweet on a Whiteboard Writer”. Document-
ing the process is done by following the evaluation protocol as de-
scribed in Section 4.1. To start the case study unbiased, during the
preparation | did perform as little preliminary research as possible on
the design options of the whiteboard writer.

The chapter begins with the section about the preparation phase, which
contains the five steps from problem description to test protocol step
as shown in Figure 3.4. This is followed by two completed develop-
ment cycles in the later two sections. Both of these sections cover
the feature selection, variable-detail approach and rapid development
steps as shown in Figure 3.4. Each design step is described in a sep-
arate section. Herein, the result of each design step is presented and
concluded with an evaluation section at the end. This evaluation sec-
tion discusses the pairs of questions that were answered according to
the evaluation protocol (Table 4.1). The questions regarding the design
method itself are discussed in Chapter 7.

5.1 Preparation Phase

The preparation phase contains four design steps. It begins with a
problem description. The problem description is used to create alist of
system requirements. Based on the requirements, a number of design
solutions proposed and eventually one of these solutions is chosen as
initial design. Splitting the initial design into features is done in the
feature definition step.

5.1.1 Problem Description

The problem description describes the need for a solution or system.
In this case, | want a robot that can write a tweet on a whiteboard.
A specific requirement is that the system must be complex enough,
such that the specific aspects of the design method are used. These
specific aspects are the ones that deal with complexity and are subject
to the evaluation. The system must meet the following requirements:

+ Write a twitter message, or tweet, on a whiteboard.

17

« Remove the tweet from the whiteboard.
+ Write the tweet within three minutes on the board.
+ The text must be readable across a meeting room.

*+ The solution must contain interesting dynamics.

Evaluation

The problem description is very brief, which is not a complete surprise.
As most of the work for the problem description was already done by
choosing the subject of design. However, it was not expected to be
this minimal. Perhaps the most serious disadvantage is the absence of
stakeholders. Normally, a good problem definition focusses on getting
the stakeholders on the same line (Shafaat and Kenley, 2015). How-
ever, this case study does only have one stakeholder, the author, de-
feating the purpose of getting everyone on the same line. Creating a
more elaborate problem description would not improve the evaluation
of the design process, but it does cost valuable time.

5.1.2 Requirements

The next step is to create requirements based on the problem descrip-
tion. The goal is to write and erase a tweet on the whiteboard. Orig-
inally a tweet had a character limit of 140, but this was doubled to
280(Rosen, 2017). However, the decision is made to keep the limit at
140, as it does not improve the case study but can increase the con-
struction cost. The text is limited to fifty characters per line, with a
total of three lines. For the readability, the distance to a whiteboard in
a meeting room is taken as four meters. The operating speed must al-
low the tweet to be written within three minutes. Therefore, the goal is
to write one character per second. The last requirement is that the dy-
namics of the system must be sophisticated. Meaning that a solution
with complex or non-trivial behavior is preferred. Using EARS to define
these requirements gives:

System Requirements:

1. The Writer must be able to write at least fifty characters
per line.

2. The Writer must be able to write at least three lines of text.

3. The Writer must plot characters with a size that is read-
able from 4 meters for a person with good eyesight.

4. The Writer must plot in a regular used font with corre-
sponding character spacing.

5. When a new tweet is send to the Writer, the Writer must
wipe the existing tweet and write down the new tweet.

6. If the Writer is not wiping or writing then the Writer must
not obstruct the view of the whiteboard.

7. While writing, the Writer must have a writing speed of at
least one character per second.

8. The dynamics of the Writer must be complex/sophisticat-

Chapter 5. Case Study: Execution

18

[ed/interesting.]

Some other requirements that are related to the operation of the sys-
tem are:

System Requirements:

9. If the Writer is tasked to wipe the tweet, the Writer must
wipe the tweet within sixty seconds

10. When a reset-signal is send to the Writer, the Writer must
recalibrate its position on the board.

11. When a wipe-signal is send to the Writer, the Writer must
wipe the board clean.

12. The Writer must not damage itself.

\. J

Additionally there are some restrictions on construction. As the rapid
prototyping facilities at the university are closed due to the Covid-19
pandemic, the available tooling in reduced to my personal tools:

System Requirements:

« The Writer shall not exceed a total cost in materials and/or
tools of €200.

+ The Writer shall be constructed with simple tools in the
following list:
- Screwdrivers (Hex/Inbus, Torx, Philips, etc)
- Drill
- Screwtaps
- Jigsaw
- Wrenches
— Soldering iron
— Various Pliers
— PLA 3D printer

\.

Evaluation

The requirements step was performed without problems. Defining the
requirements for the problem description did not present any difficulty.
Due to the simplicity of the problem description, there were no contra-
dictory requirements, which would complicate the requirements step.
Furthermore, a single stakeholder takes away any negotiation between
stakeholders. Where the stakeholders are a combination of engineers
on the design team and/or the project client.

Although the requirements itself are not difficult to define, ensuring
that they are complete is difficult. Discussion between team members
and stakeholders helps to spot any ambiguity or problems with the va-
lidity. EARS was very useful in this case as it gives a strong template
to help avoid ambiguity.

5.1.3 Initial Design

The initial design started with a design space exploration. The goal
was to collect possible solutions and ideas for the implementation.

Chapter 5. Case Study: Execution

19

The exploration resulted in a lot of whiteboard writing robots ideas.
These robots are sorted in four different configurations. Each config-
uration explained in the following sections. From the possible config-
urations, the one that fits the requirements best, is made into an initial
design.

Cable-Driven

The cable-driven robot is suspended with multiple cables. The end-
effector that contains the marker is moved along a board by changing
the length of the cables. The cable-based positioning system results
in an end-effector with a large range and high velocities. A basic setup
is shown in Figure 5.1. This given setup contains two cables that are
motorized. The big advantage of this system is that it scales well, as

the cables can have almost any length.
©

()

X,y

Although it is possible to achieve high velocities, this system is limited
by the gravitational acceleration. In case of vertical acceleration, the
maximum downward acceleration or upward deceleration is limited by
9.81ms™2. The horizontal acceleration depends on the relative angle
of the suspending cable. The closer the end-effector is below the cable
pulley, the lower the pure horizontal acceleration becomes. Figure 5.2
illustrates the horizontal acceleration for different angles.

A possible solution to this is to add one or two additional wires to the
system. These can pull on the system to ‘assist’ the gravitational force.
Depending on the implementation, the extra cables make the system
over-constrained. Nevertheless, the extra cables allow for higher ac-
celeration limits in vertical and horizontal direction.

Cartesian-coordinate robot

This configuration is a very common design for plotters and shown in
Figure 5.3. This setup is also known as a gantry robot or linear robot.
It normally consists of two sliders, which behave as a prismatic joint.
Because each slider covers a single X or Y axis, the control and dy-
namics of this system are rather simple. The biggest challenge is in
the construction of the system, especially when the size of the system
is increased. The larger system requires longer sliders, which are ex-
pensive. Another difficulty is the actuation of both horizontal sliders,
if these sliders do not operate synchronous the vertical slider would
slant and likely jam.

Chapter 5. Case Study: Execution 20

Figure 5.1: Planar view of cable-driven
robot. This setup contains two motor-
ized pulleys in both top corners. From
these two cables a mass is suspended
at position z, y. By changing the length
of the cables, the mass is moved over
along the whole board.

a

Figure 5.2: lllustrating the limit for pure
horizontal acceleration q, for different
angles to compensate for gravitational
acceleration g. The red arrow repre-
sents the acceleration as a result of
the pulling force of the cable, which is
vectorized in a vertical acceleration that
compensates g and a vertical accelera-
tion a.

Polar-coordinate robot

This robot is a combination of a prismatic and a revolute joint. Where
the revolute joint can rotate the prismatic joint as shown in Figure 5.4.
With this it can reach any point within a radius from the rotational joint.
This is a little more complex design than the Cartesian robot.

Y.
AN

This robot has multiple disadvantages. The range of the robot is de-
fined by the length of the prismatic joint. Thus when the operating
range is doubled, the robot size has to be doubled or even more than
that. Furthermore, when the arm of the robot is retracted, it protrudes
on the other side. Therefore, the complete radius around the revolute
joint cannot have any obstacles. Figure 5.5 gives an impression of the
required area. Even with this area, the arm cannot reach the complete
board. This makes the required space of the setup very inefficient. An-
other disadvantage is that a long arm increases the moment of inertia
and the gravitational torque on the joint quadratically. Furthermore, the
long arm introduces stiffness problems and it amplifies any inaccuracy
in the joint.

SCARA

The selective compliance articulated robot arm (SCARA) robot is a con-
figuration with two linkages that are connected via rotational joints. It

Chapter 5. Case Study: Execution 21

Figure 5.3: This Cartesian plotter con-
sists of two horizontal sliders to provide
the z-movement and one vertical slider
to provide the y-movement.

Figure 5.4: A combination of a revolute
joint and a prismatic joint, creating a
polar-coordinate robot.

Y

5> |

Figure 5.5: The diagonal lined section
shows the part of the protruding area
that is used by the arm.

compares to a human arm drawing on a table as shown in Figure 5.6.
Similar to the polar robot it can reach all points within a radius from the
base of the robot. But the SCARA does not protrude like the polar arm
(Figure 5.5). Depending on the configuration of the arm, it is possible
to keep the arm completely within the area of operation. A downside is
that the mass of the additional joint and extra arm length increase the
moment of inertia and gravitational torque similar to the polar robot.
This makes the SCARA configuration convenient for small working ar-
eas as that keeps the forces manageable. Additionally, as the arms of
the SCARA have a fixed length, it is possible to create a counter bal-
ance. This can be used to remove any gravitational torque from the
system. It would however increase the moment of inertia even further.
For current requirements, the working area is too large for any practical
application of the SCARA.

Combining

Afifth option is to combine two of the discussed configurations, wherein

the best properties of two configurations are used. The most inter-
esting combination is the cable bot together with the SCARA. In this
combination, the SCARA is small, only able to write a couple of char-
acters. The smaller size of the SCARA makes it quick. To write full
sentences the SCARA is placed on a carriage that is suspended by
the cable bot. An example of this cable driven carriage (CDC) with the
mounted SCARA is shown in Figure 5.7.

©

()

This increases the complexity of the dynamics of the system, by hav-
ing four degrees of freedom. Furthermore, the movement of the SCARA

Chapter 5. Case Study: Execution 22

Figure 5.6: Schematic example of a
SCARA, consisting of two rotation link-
ages. This setup can be compared to a
human arm, where the gray base above
the whiteboard represents the shoul-
der and the connections between both
linkages the elbow.

Figure 5.7: Combined system that inte-
grates the cable bot together with the
SCARA. The SCARA in red is mounted
on the CDC.

Chapter 5. Case Study: Execution 23

also causes movement of the CDC. Shrinking the SCARA also decreases
the challenges regarding construction, as long and unstable arms are
out of the picture.

Choice of system

The previous sections have shown four different configurations. These
configurations are compared in Table 5.1. Each of the systems are
scored on range, speed, cost, obstruction, effective area, and the in-
teresting dynamics:

Range
The range scores the system on the practical dimension of the
system, larger is better. The cable, cartesian, and combined con-
figuration scale very well, the cables or slider rails can be made
longer without real difficulty. The SCARA or polar configuration
run into problems with the arm lengths, as forces scale quadrat-
ically with their length.

Speed
Except for the cable bot, all configurations score sufficient on
speed. The cable bot can reach high velocities, but the accelera-
tionis limited, depending on the configuration, to the gravitational
acceleration.

Cost
For the cost, all systems fit within the €200 budget, except for the
Cartesian setup. All systems require DC or stepper motors, but
the cartesian setup also requires linear sliders which are expen-
sive, especially for longer distances.

Obstruction

The obstruction score depends on the capability of the system to
move away from the text on the board, such that the system does
not obstruct the written tweet. All systems except for the cable
and combined configuration can move themself outside of the
working area. It is possible that the wires of the cable or com-
bined configuration obstruct the view. However, the wires are
expected to be thin enough to not block any text.

Scalability

For the scalability, the cable bot and the combined system score
high. The cables make it possible to easily change the oper-
ating range of the system, only requiring reconfiguration. The
cartesian system scales poor because the length of the sliders
is fixed, and longer sliders are expensive. For the polar system
and SCARA, the forces on the joints scale quadratically with the
length of the arms. However, the SCARA can be build with counter
balance making it scale less worse than the Polar system.

Effective Area
With the effective area, the system is scored on the area it re-
quires to operated versus the writable area. The polar configura-
tion has a low score due to the protruding arm.

Interesting Dynamics
The last metric, scores the system on the complexity of the dy-
namics. This is a more subjective metric, but also a very impor-
tant one. In the problem description, the complexity of the dy-
namics was determined as one of the core requirements. The
cartesian configuration is trivial, both sliders operate completely
separate from each other and the position coordinates can be

mapped one to one with the sliders. The combined configura-
tion excels for this metric, as it has 4 degrees of freedom and the
SCARA movement can cause the carriage to swing.

Cable bot Cartesian Polar SCARA Combined

Range ++ + —— - ++
Speed - + + ++ +
Cost ++ - + + +
Obstruction = I I F =
Scalability ++ — —— - +
Effective

Atea ++ + - + ++
Interesting

dynamics o B + t
Total +5 -1 —4 +4 +8

The comparison in Table 5.1 shows that the combined configuration
as preferred. Which is not surprising as it combines the advantages of
both the cable bot and SCARA. Although those systems have a good
score of their own, they have disadvantages. The cable bot has low
acceleration and no challenging dynamics. The main difficulty for the
SCARA is being able to build it large enough.

The combined configurations, complement each other. The range of
the CDC allows for a small SCARA. The small size of the SCARA makes
it quick. This compensates for the low acceleration of the cable bot
and removes the need for a SCARA with long arms. Therefore, the
choice of configuration is the combined system of the SCARA and CDC.

Evaluation

This was the first step that felt really productive in the design process.
It created a enormous amount of information and insight of the design.
In hind sight, it would have been useful to have this information during
the requirements step. However, as the requirements step are mainly
on the "what” to solve, and specifically not on "how” to solve it, this
information was avoided on purpose during the requirements step.

This step did result in an initial design that is used in the next steps.
However, | noticed that none of the previous steps have a clear start
or end. For the problem description and the requirements steps the
question is when all required information is collected. In the initial de-
sign it is always possible continue researching design options to come
up with an even better design. Especially with complex system, it is
unrealistic to create complete requirements before making design de-
cisions. Resulting in the question: at what point do we have enough
information and must we move to the next design step? This is also
known as the requirement versus design paradox (Fitzgerald, Larsen,
and Verhoef, 2014).

5.1.4 Feature Definition

This step divides the requirements and initial design into features. These

features are implemented one by one during the development cycle,
later in the process. As described in Section 3.1.4, the functionality of
the system is split over four different levels of abstraction. The result
of this split is shown Figure 5.8.

Chapter 5. Case Study: Execution 24

Table 5.1: Table with comparison of

the four proposed configurations and a
combined configuration of the cable bot
and the SCARA.

Chapter 5. Case Study: Execution

. Draw a tweet
Mission

on a board
Task Writing Wiping
X Write char . . Move to
Skill at position wwd Wiper Position
Service Move Marker Move Wiper Switch Tools Lift Marker More Carriage
on Board on Board ok - - :
~< 1 e \ 7 |
~ I - \ 7
AN ! 7 ’ \\ // ¢
A s L 4
Component SCARA End-eff Cable driven
p nd-effector Carriage

Figure 5.8: Hierarchical tree of different functions and components.

Evaluation

The mission and task features are easy to define. The skill and service
features become a bit more vague, often features fit in both categories.
Sometimes it is difficult to split a skill into a service, as they are already
very specific. Additionally, | attempted to keep the feature tree a bit
compact, to keep in scope with this thesis.

The components also use a similar approach as the functions, result-
ing in a hierarchical structure of sub-components, where the SCARA
would have motors and electronics as sub-components.

5.1.5 Test Protocol

The last step of the preparation phase is to implement a test protocol.
The tests are designed to validate if the system meets its requirements.

While defining the tests, it became clear that part of the requirements
was not sufficiently defined. The current requirements apply to the
complete system and is not updated for the design choices made in the
initial design. If the tests are made based on the current requirements,
they can only be performed when the complete design is implemented.
To create tests that apply to specific features or compoments, the re-
quirements had to be updated. This update adds order of operations
and additional requirements, which are explained in the following two
sections. The third section explains how the tests are formed based
on the up-to-date requirements.

Defining the Order of Operation

There are two modes of operation: writing and erasing. In these situ-
ations, the end-effector holds a writing or erasing tool respectively. By
defining the order of operation for each mode, specific requirements
are assigned to the SCARA and the CDC.

The current design uses the SCARA to write characters on the board at
a static position. When these characters are written the CDC moves to
the next position:

25

Order of operation: Writing

Precondition: Board marker as tool in end-effector.
1. Move CDC to position of characters.
2. Write three characters with the SCARA.
3. Repeat step 1 and 2 untill the Tweet is on the board.
4. Move CDC away from the text on the board.

\. J

The second order of operation is about the erasing. Removing text
from the board is done by the following steps:

Order of operation: Erasing

Precondition: Board eraser as tool in end-effector.
1. Move CDC to position of characters.
2. Clear the area in reach of the SCARA.
3. Repeat step 1and 2 till the Tweet is removed from on the
board.

\. J

A possible third order of operation is tool switching using the end-
effector. At this point, the design of the end-effector is not definitive
enough to determine an order of operation. Additionally, not having an
order of operation for the end-effector did not hinder the definition of
tests.

Improving Requirements

The defined order of operations add more requirements to the system.
Two of the new requirements specify the operational behavior of the
SCARA and CDC, based on the order specified above. To ensure that
the overall system can still write one character per second, the SCARA
and CDC must both complete their task in three seconds. Therefore,
two seconds are assigned to the SCARA to write three characters and
the CDC gets one second to move the SCARA to the new position.

A fifth requirement is added because it was overlooked during the pre-
vious steps. The five system requirements are in addition to those in
Section 5.1.2:

System Requirements:

13. While writing, the SCARA must have a writing speed of at
least 1.5 characters per second.

14. When the CDC is at a static position, the SCARA must be
able to write at least three characters at that position.

15. When the SCARA finished writing at their current position,
the CDC shall move the SCARA to it's next position where
it can write the subsequent characters.

16. When the SCARA has to be moved to a new position, the
CDC shall perform this movement within one second.

17. When the system changes from writing to erasing or vice-
versa, the SCARA and End-effector should change the tool
within ten seconds.

J

These additional requirements take into account that the current de-
sign consists of a SCARA, end-effector and CDC. Where each of these
components has a different role and thus a different responsibility in
the system.

Chapter 5. Case Study: Execution 26

Setting up the tests

Based on the updated requirements, a set of test cases is created. In
total there are five small and five large test cases. The smalltests cover
a single compoment or feature and the large tests combine multiple
features. Each test specifies for which requirements they apply and
include a description that explains the test. The smaller test cases
also indicate on which feature or component they apply. All ten tests
are included in Appendix A. The following is a small and a large test
case from these ten.

One of the small tests focusses on the speed and range requirements
of the SCARA:

System Test 1: Small rectangle

During this test, a rectangle will be drawn on the whiteboard us-
ing the SCARA. This rectangle is 50 mm high and 70 mm wide,
such that three characters fit within the rectangle. To test the
speed requirements, the rectangle should be drawn within one
second.

Features: SCARA

Requirements: 3,7,11,13,14

Results: The test passes when:
+ Rectangle height is at least 50 mm
+ Rectangle width is at least 70 mm
« Completion time is less than 1s

\.

\.

Repeatability is tested in one of the large system wide tests:

System Test 6: Repeatability

This tests if the Writer can draw repeatedly on the same po-
sition, for different approach angles, on the board. The system
will start with drawing multiple 60 mm squares on the boardin a
random location. To test the repeatability, a circle with a 55 mm
diameter must be drawn inside of the square. This should be
done with twenty squares in an area of at least 1000 mm x
300 mm. The drawing order of each square must be different
from the drawing order of circles, this ensures that the Cable
bot makes a different approach path.

Features: SCARA, Cable Bot
Requirements: 3, 4,9, 11, (12)
Results: The test passes when:
+ Each square has a circle drawn inside.
« The squares and circles are within 5mm of their
given dimensions.
+ Allthe circles are completely within their correspond-
ing square.

\.

Evaluation

This step was completed without many difficulties. Eventhough this
step included an unexpected revision of the earlier requirements and
definition of order of operations. Indicating that | overlooked details
while defining the requirements in Section 5.1.2. According to the de-
sign plan as described in Chapter 3, | have to go back and review those

Chapter 5. Case Study: Execution

27

requirements. Followed by reviewing all steps after the requirements.
However, this complete review is not practical and extremely time con-
suming. The point here is, looking at the evaluations of this and previ-
ous steps, that chosen design strategy is not feasible, especially as a
novice designer. In Chapter 6 | evaluate this with more detail.

During the analysis, | expected more specific tests. Each test can then
be used as a milestone during the development of the system. Every
time detail is added, an additional test passes. Or a test fails, notifying
that something went wrong and has to be investigated. Creating such
specific tests relies on the details in the design of the system. The
current design is basic and these details are added during the feature
implementation. Nevertheless, this step resulted in a set of tests that
cover all requirements and features that are specified in this prepara-
tion phase. When all the tests pass, the system should meet all the
requirements.

5.2 First Development Cycle

With the preparation phase completed, the development cycle is next.
This consists of three steps: Feature selection, Rapid Development
and Variable-detail Approach. The current section explains the first
development cycle during the design. For this first cycle of the design
process, | design the end-effector. However, not long after the start
of the development process, the implementation of the end-effector
proved to be too complex. This led to the decision to abort the imple-
mention of the end-effector. Eventhough no progress was made in the
design, this attempted implementation did provide valuable insight in
the desing process.

5.2.1 Feature Selection

For each feature in the system the dependees, tests and COF/time fac-
tor is determined, as explained in Section 3.2.1. These values are com-
bined into Table 5.2.

Feature Dependees Tests COF Time COF/Time
SCARA - 3 40% 10days 4
End-effector SCARA 2 60% 8days 7.5
CcDC — 2 30% 10days 3

The SCARA depends on the end-effector, as explained in the initial de-
sign. However, for the CDC no dependency was defined even though
it has to lift the other two components. This is mainly because the
torque and range requirements of the SCARA depend on the implemen-
tation of the end-effector. Especially the required range depends on the
method of grabbing and releasing tools. For the CDC it only changes
the mass that has to be lifted. Upgrading the motor torque is a minor
parametric change and the dependency is therefore deemed insignifi-
cant.

The testing number is directly the number of tests that apply to that
feature. The COF and time values are not determined with a specific
protocol, but with simple engineering judgement. The estimated COF is
high for the end-effector due to the collision dynamics of the operation.
It has to grab something and that is difficult to model. Furthermore, it
was not known if that design would work. The SCARA has the most

Chapter 5. Case Study: Execution 28

Table 5.2: Overview of the different
features and their dependencies, num-
ber of tests that are covered and the
COF/time factor. The COF/time factor
is calculate as COF divided by time.

moving parts, but no difficult dynamics and has therefore an estimated
COF of medium. For the CDC there was no real COF and got therefore
a low COF indication.

Based on Table 5.2, the end-effector is implemented first. The end-
effector has the most dependees, and is therefore chosen above the
other two.

Evaluation

This first step of the detail design phase did go well. Although COF and
time assessment is always depend on some engineering judgment,
this human factor introduces uncertainty in the assessment. How-
ever, an improved approach for the COF assessment can drastically
reduce this human factor. Within a design team a form of planning
poker (Grenning, 2002) could be a good option.

5.2.2 Rapid Development of the End-Effector

This section explains the process of the development of the end-effector.

The first step is to create an initial design of the model. In subsequent
steps, detail is added to this model.

The previous section explained the relative high COF assessment for
the end-effector. Which was not exaggerated as the implementation
proved to be troublesome. Eventually, the implementation was unfea-
sible and was therefore cut short. Nonetheless did it result in useful
evaluation points on the design method. The process of this step is
explained in the following sections.

Initial design

The end-effector is mounted on the SCARA and acts as an interface
for the tooling. The SCARA and end-effector combined are able to grab
and release the write and erase tooling. There are multiple approaches
to handle the tooling. However, there is a trade-off to be made with
the SCARA feature, the heavier the end-effector is, the more force the
SCARA must deliver. And because the goal is to make the SCARA light
and quick, this end-effector must be light-weight as well.

The best options in this case is a simple spring-loaded clamp. To re-
lease the tool, the clamp is forced open, pushing it against the holder.
As the end-effector is connected to the SCARA, the SCARA is respon-
sible for the pushing force. Because the actuation force of the SCARA
is used, it removes the need for an additional servo in the end-effector.
Resulting in a simpler and lighter design.

The initial design of the clamp and the operation is shown in Figure 5.9.
Although this design requires the SCARA to deliver more force. The
relative low mass of the end-effector also keeps the moment of inertia
small. Therefore, the current design reduces the impact on the accel-
eration of the SCARA.

Behavior Modelling

The next step is to implement this design with the corresponding be-
havior in a dynamic model. The challenge in this case is the modelling
of the contact dynamics. Based on some experience in modelling with

Chapter 5. Case Study: Execution

29

1. Marker is clamped in
springloaded end-effector.
|

o | o

2. End-effector is positioned
on the holder.

Chapter 5. Case Study: Execution

3. End-effector is moved
down, forcing the upper
clamp open.

4. End-effector continues
down, leaving the marker in
the holder.

5. The longer arm allows the
end-effector to move side-
ways.

6. Return to begin position,
now without marker.

S

Figure 5.9: Operation of the end-effector. The clamp is forced open against the holder
to release the marker. Instead of releasing, the marker is grabbed by reversing the
order of executing for these steps.

collisions, | decided to use the 20-sim 3D mechanics editor. Unfor-
tunately, there is little tooling available and there are no debugging op-
tions if the model does not behave as expected. The marker kept falling
trough the gripper or flew away.

With the small amount of progress made in two days the implementa-
tion was not promising. A system freeze caused the model to corrupt,
where the complete configuration of the shapes and their collisions
was lost. Based on the loss of work and the low feasibility of the im-
plementation, the decision was made to remove the end-effector from
the design.

With the end-effector removed, the SCARA gets a direct connection
with the marker. Lifting and lowering the marker is included in the
SCARA feature as well. Unfortunately, this means that switching to
the eraser is not longer possible as functionality.

Evaluation

The lost progress of the model is unfortunate, but the implementation
did not go as expected anyway. It was probably for the best as it forced
an evaluation of the design and avoided a tunnel vision while trying
to get it to work. However, it did show the value of the COF per time
analysis. This early failure resulted in changes for other components.
But as none of the other components are implemented yet, no work is
lost.

5.3 Second Development Cycle

As the previous development cycle was aborted prematurely, the devel-
opment cycle is repeated for the next feature. Starting with a feature
selection process. Followed by the rapid development.

30

5.3.1 Feature Selection

The implementation of the end-effector proved to be unfeasible and
was therefore removed from the design. This means that only two fea-
tures are left. Table 5.3 shows an updated feature comparison. Com-
pared with the previous feature selection in Table 5.2, the number of
tests for the SCARA decreased and the COF/Time increased. This is
because System Test 5 relied on both the SCARA and the End-effector
which is no longer applicable. Based on the feature comparison, the
next component to implement is the SCARA.

Feature Dependees Tests COF Time COF/Time

SCARA - 2 50% 12days 4.2
CcDhC - 2 30% 10 days 3
Evaluation

The feature selection for the second cycle is an updated selection pro-
cess of the first cycle (Section 5.2.1). This resulted in a quick and ef-
fortless feature selection process, as most of the work was already
done.

5.3.2 Rapid Development for SCARA

The goal is to present a functional model of the SCARA. The require-
ments state that it must be able to write three characters within two
seconds. And to pass System Test 1 it must draw a 50 mm by 70 mm
rectangle within one second. The basic design principle is based on
the initial design as shown in Figure 5.7. For the lowest detail level of
the design, | decided on a kinematics model. The model is very sim-
ple as it does not implement any physics. However, the model enables
me to tinker with the design parameters, such as the lengths of the
linkages and joint angles. In the following steps, the level of detail is
gradually increased to arrive at an elaborate model. Planning all the
different steps in advance is difficult as design decisions still need to
be made. Nonetheless, | can describe at least the following levels of
detail for the model:

1. Basic kinematics model: forward and inverse kinematics, no phys-
ical behavior.

2. Basic physics model: ideal 2D physics, ideal joints and rigid bod-
ies with mass and inertia.

3. Basic motor behavior: joint actuation with non-ideal DC motor.
4. Basic control law: path planning.

After these steps the optimal order of implementation for the levels of
detail becomes vague. However, the following elements are required
to make an elaborate model:

+ Improved motor model
+ 3D physics model

When the first design decisions are made, the succeeding levels of de-
tail for these and other elements are laid out.

Chapter 5. Case Study: Execution 31

Table 5.3: Comparison of the two re-
maining features in the design process.
This table is an updated version of Ta-
ble 5.2.

Evaluation

The current steps in the rapid development are difficult to perform.
There is, unsurprisingly, lack of a clear vision of the end-product, which
makes an explicit description of every level of detail not realistic. How-
ever, it was still possible to describe steps for the initial levels of detail
in the design.

The remaining elements, that are essential to the design, take shape in
a later stage of the development. Apart from this small deviation, the
deliverables of this step are a good start of this development cycle.

5.3.3 \Variable-Detail Approach

The following steps is to increase the level of detail of the model. The
initial model together with the set of steps in the detail level is inherited
from the previous design step. To start, | implement the basic model
and implement the different levels of detail. Based on the model af-
ter those steps, it is possible to make more detailed design decisions.
The decisions make it possible to plan the subsequent levels of detail.
Implementing these details results in a competent model.

Basic Design Implementation

The development starts with the basic model shownin Figure 5.10. The
model consists of the forward and inverse kinematics of the design.
With this kinematics model it was easy to find a suitable configuration
of the SCARA. | tested if the SCARA reaches the required operating
area, to satisfy system requirement 14. The operating area is a couple
of centimeters away from the base of the SCARA. This is to avoid the
singularity point that lies at the base of the SCARA. Resulting in the
arms being longer than strictly necessary but it reduces the operating
range for the angles of the joints, allowing for simpler construction.

At this point, there are already multiple design decisions made about
the position of the operating area and the arm lengths. As second
detail iteration the basic physics of the model are implemented. The
model is in the form of a double pendulum, with two actuated joints.
The ideal motors in the joints give the SCARA unlimited acceleration.
Replacing the ideal motors with a DC-motor gives an indication about
the torque required for operation. Implementing a simple PID-controller
allows the SCARA to follow the rectangular path as described in Sys-
tem Test 1. The simulation allowed me to determine the minimum re-
quirements of the motors. The motors must be able to deliver at least
0.2 N'm of torque and reach an angular velocity of at least 12rads™.

Detailed design decisions

The basic model gave some valuable insight about the dynamic behav-
ior of the system. However, the current configuration is very simple but
requires a motor in the joint. In Figure 5.11, this setup is shown as con-
figuration 1. The disadvantage is that a motorized joint is heavy, which
has to be accelerated with the rest of the arm.

Other configurations in Figure 5.11 move the motor to a static posi-
tion. Configuration 2 is a double arm setup, but has a limited operating
range, caused by a singularity region in the system when both arms
at the top are in line with each other. Configuration 3 also has such
a singularity, but due to the extended top arm this point of singular-
ity is located outside of the operating range. However, this configu-

Chapter 5. Case Study: Execution

32

Figure 5.10: Basic kinematics of the
SCARA. The arm consists of two link-
ages a and b; two joints « and 3; and
a point mass m which represents the
end-effector/tool.

ration requires one axis with two motorized joints on it. Even though
this is possible, it does increase the complexity of the construction. By
adding an extra linkage, the actuation is split as shown in configuration
4. Configuration 4 is the preferred option for the SCARA.

The current implementation with DC-motors require a feedback con-
troller that compensates for external forces. Such feedback control
requires a position sensor for each motor. A simpler solution is to use
stepper motors instead. The advantage of a stepper motor is that it
is designed to maintain a specific angle. The stepper motors make it
possible to use a feedforward controller. This removes the need for a
position sensor.

The stepper motors are havier than the DC-motors However, as the new
configuration places the motors on the CDC, the additional mass is
benificial. The rapid movement of the SCARA creates a reaction force
onthe CDC. With a heavier CDC, the reaction force results in less move-
ment of the CDC

Unfortunately, the stepper motors are more expensive than simple DC-
motors. Nonetheless, the extra costs are easily compensated as it
saves development time due to the simplified control law, and the re-
moved need for extra angle sensors used in feedback control.

Dueto the aborted implementation of the end-effector, the SCARA must
also lift the marker of the board. With the fourth configuration (Fig-
ure 5.11), it is possible to add an extra joint in the linkage. As the marker
only needs to be moved a couple of millimeters from the board, a sim-
ple hobby servo suffices.

Advanced Detail Implementation

The design decisions made in the previous sections, make it possible
to plan the next steps of adding detail. The following steps are an ad-
dition to the steps as described in Section 5.3.2:

5. Advanced motor behavior: Stepper motor behavior.
6. Advanced physics model: Updating physics model to 3D physics.

7. Advanced marker lifting: Marker lifting behavior, servo lifts marker
of the board.

Chapter 5. Case Study: Execution 33

Figure 5.11: Four different SCARA con-
figurations. The colored circles mark
which of the joints are actuated. Config-
uration 3 has two independently actu-
ated joints on the same position.

Chapter 5. Case Study: Execution 34

Starting by replacing the DC-motor with a stepper motor model, which
is based on a model by Karadeniz, Alkayyali, and Szemes (2018). The
controller is updated as well, to accommodate for the behavior of the
steppers. The next step is to implement a dynamic model of configura-
tion 4 in Figure 5.11. The dynamics of the SCARA are based on a serial
link structure (Stramigioli and Bruyninckx, 2001). This serial link struc-
ture makes it easy to add and extend joints, bodies and mass points
to the system. Therefore, the last detail, the marker lifting, was added
without any difficulty. The servo is connected via a linkage with the
marker such that it rotates away from the board.

Component Design

At this point the development has reached a detailed design together
with a dynamic model representing that design. The dynamic model
is a useful tool to test and evaluate the system behavior. However, it
does not include the shapes of the components and can therefore not
be used to evaluate clearance or collision between components.

By implementing the design using CAD software, it is possible to in-
spect for collisions. Furthermore, this model is then also used to print
the custom parts. For the mechanical part | used OpenSCAD as CAD
software, based on prior experience with the software. With this it
was possible to implement all the custom components as well as the
commercial off-the-shelf (COTS)-components. To inspect how the com-
ponents moved, the inverse kinematics model is implemented in the
CAD drawing as well. The inverse kinematics made it possible to insert
cartesian coordinates, resulting in a dynamic CAD design. Using dif-
ferent orientations of the end-effector allowed me to inspect the clear-
ance between the different components.

Following the rectangular path as defined in System Test 1 revealed
that collisions occurred between parts. These collisions were resolved
by adding an indentation in one linkage and moving another linkage.
These changes are shown in Figure 5.12 The complete setup with the
custom parts and the COTS-components, such as stepper motors, servo
and marker, is shown in Figure 5.13.

Figure 5.12: CAD of the SCARA config-
uration, with the end-effector oriented
in the lower left corner of the operat-
ing area. The configuration has been
adapted at the two circled points, to re-
solve collisions in this orientation. An
indentation was made to ensure that
the arm can make the required angle.
The bottom linkage was located above
the joints as depicted in the fourth
configuration in Figure 5.11. This was
moved to below the actuated joints as it
did collide with the end-effector.

Evaluation

The complete development was rather smooth. However, this was not
without deviating from the original design plan. It was not feasible to
define all different levels of detail before the start of the development.
Prior to the design, it was possible to plan 4 levels of detail. After im-
plementing these levels of detail, the design decisions taken made it
possible to define additional levels of detail.

In total there are seven predefined levels of detail in the design, mean-
ing that there must also be seven test cycles. However, | noticed that
testing occurred more often than seven times. During the design, run-
ning the simulation of the dynamics is easy. Resulting in extremely
short feedback loops, sometimes even minutes. For example, chang-
ing the arm lengths and evaluate the new behavior. Did it improve? Is
this as expected?

These small intermediate tests were often implicitly created and are
not the tests as specified in the test protocol (). Nonetheless, they
provide insight that is valuable for the design process. The interesting
question here is whether these small tests should be part of the design
process and what it would add to the design process.

5.3.4 Conclusion of Development

At this point, the development of the SCARA is completed. Accord-
ing to the design plan, the next step for the development is the imple-
mentation of the CDC feature. However, the evaluation of the devel-
opment until this point resulted in enough information to draw conclu-
sions about the design plan. | expect that executing this development a
third time is not beneficial to the case study, given the additional effort.
Time is better spent on the realization of a prototype and evaluating the
current design method. Therefore, the next section goes into the con-
struction of the prototype instead of the development of the CDC.

Chapter 5. Case Study: Execution 35

Figure 5.13: Rendered 3D model of the
SCARA, including steppers, marker and
servo.

5.4 System Design Validation

To validate the dynamical and mechanical models, | have build a proto-
type of the current design. For the mechanical design, the CAD model
is used to print the custom parts. Other components, such as steppers,
microcontroller, screws and miscellaneous electronics, are ordered.
To test the dynamics, the steppers and servo have to be actuated. To
achieve this actuation a control law has been written in software.

5.4.1 Mechanical Construction

With the 3D printed parts the SCARA was easy to construct. To connect
the bodies on the joints, a bolt with washers is used. Although this is
clearly not the ideal technique to build joints, it sufficed and was by far
the easiest option.

During assembly | noticed that the bolts of a joint and those that hold
the stepper motor in place collided. This was possible because the
bolts were not included in the CAD-model. In hindsight this should have
been included. Fortunately there was enough clearance to mount the
SCARA slightly further on the axle. Resulting in an operating SCARA
without having to redesign the mechanics.

5.4.2 Control of the SCARA

Although the focus of the design plan was specifically not the soft-
ware, it still forms an important part of the development. To run the
software, | chose for a STM32 microcontroller (MCU), which is a pow-
erful processor with sufficient 10 available. The servo motor is directly
connected to the 10 of the MCU while the stepper motor is connected
via a stepper driver board', see Figure 5.14. RIOT-OS was chosen as
an operating system due to prior experience and available support. To
write characters on the board the following tasks are implemented in
software:

« Software driver for the stepper controller
+ Software driver for servo motor

+ Inverse Kinematics Function

+ Control/Path planning

The task of the software driver is to handle the communication to the
hardware stepper drivers. At initialisation of the software, the hard-
ware stepper driver is configured over hardware. When a new set-
point is set in the software driver, the time between each step is calcu-
lated. The software driver creates a time-out event with a callback that
sends a step signal to the hardware stepper driver. The use of time-
out events make it possible to run multiple stepper drivers in software
asynchronous.

The set-point for the software driver is calculated by interpolating the
path between the current position and the desired position. This inter-
polation is necessary to draw a straight line between two points with
the SCARA, as a linear movement of the angle would create curved
paths. Because the software stepper driver counts the steps send to
the stepper motor, which gives the current position of the SCARA. The
calculation and update of the next set-pointis done with a fixed interval.
To calculate the angles that are needed for the set-points a lookup table
is used, which replaces expensive trigonometric calculation needed for

Chapter 5. Case Study: Execution 36

T1C with H-bridges to power the stepper
motor.

Micro Controller
H
Servo Motor ardwarg
Stepper Driver

Stepper Motor

Figure 5.14: Hardware connections.
The servo motor connected to an 10-
output. The stepper controller con-
nected via UART and I0-pins. The step-
per controller provides the correct cur-
rent for the stepper motors.

inverse kinematics. An advantage of this approach is that it can cope
with missed or late event callbacks for the software stepper driver.

The path planning is responsible for the desired position. This can be
a rectangle or a set of three characters. The font for the characters
is made by Hudson (2015) and consists of a header file with an array
of coordinates for each character. When the current position of the
SCARA is within range of the desired position, the desired position is
updated with the next coordinate of the character.

There are two special elements in the array of coordinates: up and
down. These specify whether the marker should be lifted from or low-
ered on the board. In the transition period of lifting or lowering, there
is a short builtin wait for the stepper movement, to avoid unwanted
drawing. When the marker is lifted, the interpolation is disabled and
the stepper drivers move directly to the position where the next line
starts.

For the lifting of the marker the servo on the arm is used. The angle
of the servo motor is controlled by the pulse length of a square wave.
The software servo driver switches the pulse length when it is ordered
to lift or lower the marker. The code for the servo driver is a provide
module in RIOT-0S.

In summary, the path planning uses the coordinates of the characters
to determine the next desired position and the state of the marker.
When a line must be drawn the marker is lowered and the path to the
end of the line is interpolated. The position from the interpolation is

then converted to angles using the look-up table. The angles are pushed

to the software stepper driver, which are used to calculate the interval
between steps. The data path for drawing a line is shown in Figure 5.15.

5.5 Result

In the end, the development produced eight models with increasing
levels of detail and one prototype. The different levels of detail and
how they are modelled are shown in Figure 5.16.

As the CDC was not finished, a small stand was build to test the SCARA.
The assembled SCARA prototype on the stand is shown in Figure 5.17.
This prototype is able to execute the small rectangle as described in
System Test 1, and thus passes the test. In addition, it was possible to
write three characters. Therefore, passing System Test 4.

Chapter 5. Case Study: Execution 37

(Path planning J

XY

(Interpolation J

XY

Inverse Kinematics
/Lookup Table

¢,

(Stepper driver J

Figure 5.15: Simplified data flow in the
software. The path planning generates
a vector to the next set point. The in-
terpolation reduces the length of this
vector. With the inverse kinematics the
required stepper motor angles are gen-
erated. These angles are set as new set
point for the stepper driver.

[Kinematics (Basic Model)}

¥
¥ N
(Ideal Physics J

v

(DC-motor behavior)

P

2D Dynamics

Control loop J

V

Stepper Motor
behavior

.L
¥

[J
(3D Physics]
()]

v

Marker Llftlng

3D Dynamics

-

[CAD Drawing (Component design J]

Figure 5.16: Levels of detail of the de-
sign are shown on the right, starting
with the least detail at the top and most
detail at the bottom. Through out the
development different types of models
are used, these are shown on the left.

Chapter 5. Case Study: Execution 38

Figure 5.17: Assembled prototype of the SCARA. The SCARA passed System Test 1
drawing the perimeter and passed System Test 4 with the characters 123.

Chapter 6

Case Study: Evaluation

The previous chapter described the development and implementation
process of the Whiteboard Writer. This chapter focusses on the eval-
uation of the development during the case study. The design method
itself is evaluated in the next chapter. However, some of the topics
discussed in this chapter have a strong overlap with those in the next
chapter.

The first section is about the time spend on the development. Followed
by a section about the role of stake holders and one about the use of
modelling languages during a development. The last section is a more
personal reflection about the case study.

6.1 Time Investment

Prior to each step in the development, | made an estimation on the
workload of that particular step. In Figure 6.1 the planned and spend
time on each step are plotted next to each other. In addition to the
steps, time was also spend on the hardware construction and software
development.

The initial approach for the feature definition did not result in a statis-
factory set of features. Therefore, the approach for the feature defini-
tion was reformulated. Before new approach was formulated, multiple
attempts were made to get a representative set of features. The time
spend on performing the feature definition is not representative as for-
mulating the new approach and creating the set of features were per-
formed in parallel. The real execution time is estimated to be around 3
to 5 days (' in Figure 6.1).

Furthermore, there is a significant time difference both development
cycles. Prior to the first development cycle | was not confident about
the feasibility of the end-effector implementation. Based on that, | de-
cided to spend about three days on the basic model of the end-effector
to collect more information. This let me to the conclusion that the end-
effector was too time-consuming for this case study. Therefore, first
development cycle was cut short (2 in Figure 6.1)

For the second cycle, | also planned three days to create the basic
model. This time, the basic model was finished within a couple of
hours. Based on this successful implementation and prior experience,
| planned an additional two weeks of development time for this cycle.

To validate the design and model of the SCARA, | build a prototype.
This consisted of building the hardware and writing software. Acquir-

39

Problem Description | ’ = Time Spend = Time Planned

Specifications -
Initial Design -
Feature Definition |

Test Protocol

Development Cycle 1

Development Cycle 2

Hardware Construction

] ‘ EHMHJ

Software Development -| | |

|
10 15 20
Days

(=)
-

ing and assembling the hardware took about two days. This was mainly
due to CoViD-19 restrictions which made part ordering and printing
more challenging. Without these restrictions | think it would be a day
of work.

The time required to get the software to a viable state was four weeks.
Even though the focus was not on the software, this timespan of four
weeks was too significant to ignore. Especially when the software is
compared to the developed models. As explained in the previous sec-
tion, | build a total of eight models. Each of these models includes doc-
umentation and an evaluation of the design process. The software, on
the other hand, is in a bare minimum state; | skipped documentation
and evaluation; and the code quality relatively low. Still, the software
was more time consuming than the hardware modeling and develop-
ment.

6.2 One-man development team

The case study was performed by me as a single developer. Against
all expectations, this one-man development team made the prepara-
tion phase more difficult instead of easier. The goal of the problem
description and the requirements step is to get the stakeholders on the
same line (Shafaat and Kenley, 2015). This involves creating agreed-
upon requirements for the system, but with only one stakeholder, this
agreement is implicit. Moreover, it undermines the incentive of the
problem description and requirements step. Part of this is that there is
no penalty for future reviews of the requirements, as | already agreed.

Furthermore, specific details and decisions were often made subcon-
sciously, while | was commuting, waiting in line, or even showering.
Making structured documentation of these decisions at a later point
in time without missing any of them is impossible. The social interac-
tion within a design team stimulates this documenting process as it
improves the recall and interpretation of information. It also improves
the judgement and selection of design alternatives (Lamb and Rhodes,
2008).

Chapter 6. Case Study: Evaluation 40

Figure 6.1: Overview of the planned
and spend number of days for each
step during the case study. Some of the
values in this do not represent the time
requirements of this design method:

1 During the feature definition the de-
sign method was reviewed. 13 days
were spend on this review and execu-
tion, obfuscating the actual execution
time. The execution time is an esti-
mated 3 to 5 days.

2 The first cycle was cut short due to its
complexity.

Chapter 6. Case Study: Evaluation 41

6.3 Switching Modelling Language

The initial idea of the development was to start with a basic model and
extend that model by adding more detail. Meaning that one design and
one model would develop in parallel with each other. However, the de-
velopment of the SCARA resulted in four major model versions. The
basic model started with a kinematics model. To take the physics of
the design into account, a 2D dynamics model was created. Multiple
steps of detail into the development, the 2D model was not adequate
anymore. Therefore, the design was remodeled with 3D physics. Al-
though this 3D physics model was able to implement the dynamic be-
havior, the modeling language was not suitable to design the shape of
the mechanical components. Resulting in a fourth model which repre-
sents the mechanical component design, in the form of a CAD drawing.

There are a couple of problems with this approach. Implementing the
same model with two different modelling approaches, makes both mod-
els incompatible with each other. This removes the possibility to switch
back to a lower detail implementation. Additionally, it creates the pos-
sibility to transfer parameters incorrectly from one model to another.
Such a switch is also labor intensive as the complete model has to be
build from scratch again. Furthermore, there is the possibility that this
new model has been for nothing, as the planned detail proves to be
unfeasible. The point is, a future iteration of the design method must
minimize these type of model switches to reduce the chance of imple-
mentation errors.

6.4 Reflection

In the following section, | reflect on my own impact on the develop-
ment. The preparation and development phase are discussed sepa-
rately.

6.4.1 Preparation phase

During the preparation phase often | had difficulty with getting the re-
quired information. The information was often not specific enough or
it was overlooked. Even though attempting to be thorough, require-
ments were never really specific. As explained in the previous section,
the lack of stake-holders is one of the reasons for information not be-
ing specific.

Information that was overlooked created a situation where | needed in-
formation that should have been the result of a previous step, which
was not the case. In most situations it was possible to continue with
the execution of the step. However, during the test protocol step (Sec-
tion 5.1.5) it was not possible to continue. Resulting in additional re-
quirements added to the design, before continuing with the design pro-
cess.

One of the main causes that attributes to the information shortage is
that | am a novice designer/developer. The experience that | have is
from a graduate course and two extracurricular projects. Being inex-
perienced does definitely not aid the design process. Needless to say,
more experience would improve the information situation. However,
it does not solve the problem. Further improvements for the design
method are required to improve the information process during devel-
opment.

6.4.2 Development phase

For the development phase | have significantly more experience com-
pared to the preparation phase. Creating models is something that | re-
ally enjoy and this improves the process significantly. Even though the
development phase went smoother than the preparation phase, there
is still room for improvement. Originally | attempted to create separate
sub-models for each component. These sub-models can then be com-
bined into larger models. For example, the SCARA and the CDC both
include two stepper motors. When | add detail to the stepper motor
model, the SCARA and the CDC would then be updated as well. How-
ever, each sub-model has to be updated manually. In total four times
in case of the stepper motor, which makes this workflow very labor
intensive.

A workflow that enables easy combination and interchange of sub-
models is beneficial with this design method. It makes it easy to eval-
uate the latest changes, by comparing them with previous versions. In
addition, it makes it possible to lower the detail on some models dur-
ing the development. The lower detail of the sub-models can improve
the simulation speed significantly. And during the final test use the full
detail to ensure that every thing is performing as expected.

6.4.3 Continuation of this Case Study

At the point that the SCARA was implemented, | gathered so much new
information that some of the design choices felt obsolete. In this case
study, the prototype is used to validate the design. However, the cur-
rent prototype contains so much information that it would improve the
requirements and initial design significantly.

Following the current design plan, the next step would be to develop
the CDC. In theory, if | would continue the case study, my proposal is
to consider the current design as an actual prototype and revisit the
preparation phase. However, it is very important to note that this de-
cision relies on the fact that the prototype is already created. In other
words, the work is already done and resulted in useful information for
a next design iteration.

In case of a different system, | doubt that creating a prototype, followed
by a full repeat of the design method is an efficient approach. There-
fore, the choice to revisit the preparation phase must not be consid-
ered as an improved design method but as an argument to improve
the preparation phase itself. However, | think that an improved prepa-
ration phase must be shorter and incorporate a prototype.

Chapter 6. Case Study: Evaluation

42

Chapter 7

Design Method Evaluation

This chapter evaluates the design method as described in Chapter 3.
The first section is about the system complexity of CPS. The sec-
ond section evaluates the elements of a feature. The third section
discusses the difference between model and design. The preparation
phase and the RIDM are discussed in the last two sections.

7.1 System Complexity

Section 6.1 explains the time resources required for the development of
the software in the system. Even though the focus was creating a hard-
ware focussed solution for the "Tweet on a whiteboard”, the complexity
of the software required for this system was underestimated. Royce
(1970) also acknowledges this difference in complexity for soft and
hardware. He expects 50 pages of software documentation for each
page of hardware documentation in projects with comparable budget.

Although the focus was on complex hardware solution, this solution
was only possible with the use of software. The interaction between
the SCARA and CDC is only possible with software that can switch
states. Furthermore, the path planning that writes characters on the
board is completely dependent on software as well. Sheard (1998) dis-
cusses that pure-hardware solution are relatively simple in their prob-
lem space perspective. However, the hardware solution is often com-
plex in the solution space perspective And indeed, during the initial
design in the case study, the choice was made for the most complex
hardware solution. Even though the hardware is more complex, with-
out software, the SCARA and CDC have no functionality.

Another point on system complexity is prototyping. Because hardware
tends to be relatively simple, building a hardware prototype such as
the SCARA is cheap and quick. An initial hardware prototype is easily
constructed with COTS readily available. Because the hardware trans-
fers power the interfacing between components is trivial. For example,
linear actuation can be achieved with a rack and pinion construction,
linear motor, gear and chain link, or a connecting rod. This might not
be part of the final product, but it is useful to investigate the feasibility
of the project.

Furthermore, the changes are also easily made to hardware. It is possi-
ble to weld or glue on new parts or remove them with the angle grinder.
Adding components to software is tedious and can lead to unwanted
behavior. However, this is difficult to test because the software is more

43

Chapter 7. Design Method Evaluation

complex. Moreover, unwanted behavior of the hardware is discover-
able, and when it breaks it is often destructive. The software can run
for multiple days before crashing, as a result of integer, stack or buffer
overflows for example.

As long as the development is still in progress, one hardware prototype
is more malleable than the software in terms of resources. However,
when the designed system is put into production, changing multiple
hardware systems becomes economically unviable. A design method
for CPS must acknowledge that the inherent complexity of software
comes with a high cost of change and a high chance of failure. Addi-
tionally, the design method must use the hardware prototype low cost
of change to its advantage.

7.2 Elements of a Feature

The design plan as described in Chapter 3 improves the feature defini-
tion by adding more structure. The goal of this extra structure was to
make a design from scratch possible. A distinction was made between
functional features and component features. The functional features
are obtained by splitting the functionality of the system, which are then
organized in a hierarchical tree. The hardware, which provides a plat-
form for the functionality, is split into component features. These com-
ponent features form the bottom layer of the hierarchical tree.

Still, the current approach does not provide sufficient structure to de-
fine the features of the system effectively. The evaluation of the fea-
ture definition (Section 5.1.4) points out that it does not provide any
structure for components. It is currently not possible to define sub-
components for components. Furthermore, making connections be-
tween a task or mission and a (sub-)component would make the hier-
archical structure unclear.

Another point is that the current approach creates a set of require-
ments and a set of features. The original plan was to distribute the re-
quirements along the features. However, this was more complex than
expected and ended up in the background.

A more suitable approach for the definition of features is a SE process
that is known as functional decomposition. Kordon et al. (2007) de-
scribes this process as a method for structured decomposition of the
functionality of a system. Instead of one hierarchical structure that
contains functions and components, the process results in three sep-
arate hierarchical structures. Each of these structures describe the el-
ements and sub-elements for functionality, physical components and
system requirements separately. Between the elements in these struc-
tures are connections created that describe the relationships. These
relationships describe the link between functions, components and the
rationale for requirements.

Elements of a Feature
s N

(Component)

Specifies
Performs

(Requirement) (Function)

Specifies

-

Figure 7.1: Relations and elements
within a feature. (Kordon et al., 2007)

44

Chapter 7. Design Method Evaluation

Using the structure provided by functional decomposition has a couple
of advantages. The current design plan as described in this thesis,
considers the feature as a component or a function. As explained in
the previous section, the hardware gets its function from the software.
Implementing an individual function or component does not deliver a
testable feature.

With this new approach, a feature can be formed by grouping the el-
ements that are connected via the defined relationships (Figure 7.1).
This feature describes a function that is performed by a component.
Furthermore, the requirement specifies both the function and compo-
nent, and the requirement defines the test of the feature.

Contrary to the design plan in this thesis, the SE process decomposes
the functionality of the system over multiple iterations. This is a sig-
nificant improvement compared to the current approach, in which all
requirements were determined before any features was defined. The
feature definition during the case study, showed that specific require-
ments were overlooked. Later, while defining the test protocol, it be-
came clear that no order of operation was specified.

Functional decomposition, or a similar SE process, would not only im-
prove the feature definition step, but the preparation phase as a whole.
Future implementations of the RIDM must consider such a process, as
it provides a structured method to develop a solution for a problem.
Whereby the solution is split in to a elaborate set of features.

7.3 Model and Design Relation

The RIDM as well as the design method in this study do not make an ex-
plicit distinction between the model and the design. This implicitly re-
sulted in a model that represents the complete design. Over the course
of the development the complexity of the design increased, resulting
in more complex modelling as well. The model used in the case study
was first implemented as a kinematics model, and as the design be-
came more complex it was represented with 2D and 3D physics, and a
CAD drawing.

There are two issues with this approach: first, that the approach does
not comply with the general model properties; second, the parameters
of the design are represented by multiple models.

7.3.1 Model properties

According to Stachowiak (1973), three general properties apply for a
model: first is that the model is always representative to its original;
second, the model must only include attributes of its original that are
relevant to the respective developer or user; and third, the model must
be pragmatic to the original, meaning that models are an adaptation of
the original with respect to a specific purpose.

The first property applies to the model because the model represents
the full design, and is therefore always representative. However, be-
cause the model represents the full design, it violates the second and
the third property. The models used in the case study include all at-
tributes of the design and it lacks a specific purpose.

Consequently, the models become overly complex. Especially for larger
designs the model complexity drastically decreases simulation speed
for dynamic systems. But it also complicates finding bugs in the model.

45

Chapter 7. Design Method Evaluation 46

7.3.2 Design Parameters

The design of the SCARA is currently represented by two types of mod-
els: adynamics model and a CAD drawing. Both these modelling types
have different purposes and represent different aspects and parame-
ters of the design. However, both models share parameters of the de-
sign as well.

For the SCARA design, the dynamics represent mostly the motor and
controller behavoir. The CAD drawing represents the shape of the com-
ponents. But the kinematics play an important role for both models. A
direct result from this is that it increases the cost of change. When
the design changes, the changes must be applied for both models, in-
creasing the amount of work.

This distribution of design parameters has more disadvantages, as
copying the parameters between different models is error-prone and
labor-intensive. The case study in this thesis is small, but did already in-
volve 8 different models spread over 4 different modelling approaches.
For larger design projects, it is almost given that copying of parame-
ters would result in problems with the design process. Having design
parameters distributed across different models is, without any doubt,
undesired.

7.3.3 Structured design and models

To solve these problems, the design method must have a strategy for
organizing the design and the corresponding models. This consist of
a centralized design, which is validated with the use of models. Impor-
tant is that every model inherits from the design.

The three general properties must apply to every model made. Instead
of creating a model of the complete design, only small parts of the
design are modelled.

Additionally, a method to organize all design parameters reduces the
cost of change. The goal is that all the models automatically use the
design parameters from a centralized location. Any changes to the
design are made at that centralized location, each model can than be
tested automatically with the updated parameters. This eliminates
copying of parameters and allows for automated testing. It removes

the human factor and produces direct feedback about the design change.

7.4 Preparation Phase

Initially adding a preparation phase to the RIDM was not within the
scope of the thesis. Causing me to underestimate the role that the
preparation phase had for the RIDM. In hindsight it is clear that the
preparation phase is crucial for the design process, and thus also for
the evaluation of RIDM. The linear set of steps were chosen as it was
trivial to put those in front of the RIDM. However, the linear set of steps
proved to be inapt for the development of complex CPS.

Without a concrete approach’ to get from a problem to a functional de-
sign with features, the RIDM is unsuitable for the development of CPS.
Describing such an approach is far outside of the scope of this the-
sis. Nonetheless, several SE processes offer a possible solution, such
as functional decomposition, state analysis (Ingham et al., 2005) or
spiral model (Boehm, 1988). Furthermore, the advantages of modern

T Here, | specifically use the term ap-
proach because preparation phase im-
plies that it must be a phase prior to the
RIDM.

Chapter 7. Design Method Evaluation 47

techniques of rapid prototyping should also be considered to aid the
design process.

A possible candidate for the approach is to use a spiral model as ba-
sis and apply the techniques of RIDM, rapid prototyping and functional
decomposition in that basis. Another option is to extend the develop-
ment cycle of RIDM with functional decomposition and rapid prototyp-
ing. Further research is required to determine the optimal approach for
the RIDM. This research should use data and experience from existing
design projects. Above all, the design of such an approach needs di-
rect involvement of experienced systems engineers.

7.5 Rapid Iterative Design Method

This chapter began by a breakdown of the elements of a feature, ar-
gued the importance of distinction between design and model, and ex-
plained the need for an integrated preparation phase. The common-
ality between these three issues is that they all stem from the rapid
development cycle, which was introduced in Section 2.2.1 as part of
the RIDM. It is apparent that the current implementation of the rapid
development cycle is not suited for the design of a cyber-physical sys-
tem. Further studies, which take these issues into account, should be
undertaken.

Even though, these issues have a large impact on the overall perfor-
mance, they must not overshadow the rest of the design method. The
feature selection step and variable-detail approach did show a posi-
tive contribution to the design method. The following sections discuss
their performance and what potential impact an improved rapid devel-
opment cycle introduces.

7.5.1 Feature Selection

The goal of the rapid development is to process a list of features into a
competent model. In this case, the list of features was produced in the
preparation phase. The features are then, one by one, implemented
according to the variable-detail approach. To determine the order of
feature implementation, | specified a feature selection protocol, which
is explained in Section 3.2.1. Based on this case study, the feature se-
lection is a suitable addition to the design method. Especially for the
failed feature implementation as described in Section 5.2.2. Would the
SCARA have been implemented first, a failure in the end-effector might
result in a required redesign of the SCARA feature. However, with only
two uses during this case study, caution must be applied.

Of the criteria used in the selection, the COF-time factor and the de-
pendees are, in my opinion, most relevant. The dependees is a hard
criterium: if there are any features that it depends on, but not yet im-
plemented, it cannot be selected. Otherwise the feature would be im-
plemented before the required information is available. As explainedin
Section 5.2.2, the feature selection approach aims to clear the largest
amount COF in the smallest amount of time possible. However, be-
tween the dependees and the COF-time factor, there is a criterium for
the number of tests, which could hinder this approach. The current ap-
proach would result in the situation where a feature with lots of easy-
to-pass tests, is implemented before a features with less, but more dif-
ficult tests. It is then possible to spend a lot of time on something that
is very likely to pass anyway.

Chapter 7. Design Method Evaluation

This does not alter the fact that to complete the design all tests have
to pass. That all test have to pass is also the reason for this criterium
in the first place: give priority to the feature that passes the most tests
on completion. Even though it is difficult to draw concrete conclusions
about the feature selection, a recommendation is to use the number of
tests and the change of failure for each test as a metric to calculate
the COF-time value. In addition, other metrics and approaches that
can improve the COF-time calculation are: number of dependees, the
number of tests of those dependees, and planning poker. Further work
is required to establish which metrics are most suitable to calculate
the COF values.

7.5.2 Variable-Detail Approach

The variable-detail approach is a very practical development tool. A
note of caution is due here since the variable-detail approach has not
been used to its full potential. The goal was to add detail to a feature
in strictly defined steps. Between each step the tests are applied to
the updated model. Based on the test, the development continues or
the model is rolled back to an earlier version. In addition, the models,
independent of the level of detail, can be reused in other models.

However, multiple difficulties were encountered during the case study
that hindered the variable-detail approach. As was mentioned in Sec-
tion 6.4.2, the lack of good version control made it difficult to work with
multiple versions of a model. This made it difficult to switch or revert
to other levels of detail. However, the greatest difficulty is due to the
model representing the design, as discussed in Section 7.3. Because
the design contains a high level of detail and the model is a full repre-
sentation of the design, it is difficult to make a simple implementation
or to switch back. This strong relation between the model and the de-
sign, also caused the complete model to be switched to a different
representation.

Even though the variable-detail approach did not perform as planned,
| expect this approach to be a very strong part of the design method,
given that a solution is found to the problems described above.

48

Chapter 8

Conclusion

8.1 Case Study

Extend the RIDM with a preliminary design phase, focussing on the phys-
ical part of CPS.

To get from a given problem or idea, to an initial design that can be
used by the RIDM, a linear set of steps was added. This set consists of
a problem definition, requirements and initial design step. These steps
are based on the SE-approach.

Refine the RIDM to make the design steps more explicit with improved
instructions.

To perform a reproducible evaluation of the RIDM, the method of the
different design steps were defined more explicit. The RIDM specifies
the development cycle and the variable-detail approach with sufficient
detail, making them ready to use. How to define features and tests for
the development cycle, were not as clearly defined. In this thesis, two
steps were added to the design method: one with a method to define
the set of features and one that is used to specify the test protocol.
Two design steps were added in this thesis that describe a method to
define the set of features and create a test protocol. Furthermore, a
feature selection step was added to aid with the development.

Develop and perform a case study that tests and evaluates the RIDM as
a design method for the physical part of CPS.

The case study consisted of the development of a Tweet on a White-
board writer. This development is performed according to the design
plan, that was the result of the first two research objectives. The tweet
on a whiteboard writer was chosen as subject of design based on a set
of requirements. The goal of these requirements is to find a subject of
design that evaluates most aspects of the RIDM when implemented.

A list of questions was formed to monitor the progress of the case
study. The questions are answered before and after each step of the
design process. The list was created to ensure a consistent documen-
tation of the expected outcome and the actual outcome of each step.
Both the expected and actual outcome are used to evaluate the design
step.

8.2 Rapid Iterative Design Method

Assess the influence that applying the RIDM has on the design process
for CPS.

49

Chapter 8. Conclusion 50

The core of the RIDM consists of the development cycle and the variable-
detail approach. Both of these methods have specific influence on the
design process.

The development cycle introduces a feature-based approach to the de-
velopment process. With the development cycle the system is imple-
mented feature by feature. This requires the development team to split
the functionality of the system into features. It forces the developers
to go through the design in a structured manner. Furthermore, to deter-
mine in what order the features are implemented, the developers must
establish the cost of change and chance of failure-metric for each fea-
ture.

Based on the chance of failure and cost of change metrics, the features
are ordered with the aim to reduce the impact of a design failure. Even
though the case study only applied the feature selection twice, it proved
itself useful by selecting the end-effector feature first. By prioritizing
the end-effector, its failure had only a minor impact on the design.

During each iteration of the development cycle, the selected feature is
implemented according to the variable-detail approach. However, the
ability to assess the influence of the variable-detail approach is limited
by the absence of tooling for model organization and testing. Without
tooling that is compatible with version control, it is difficult to switch
between model versions, undo design changes, or run automated test-
ing. Furthermore, as the development did not distinct between design
and model, the models used often contained more detail than strictly
necessary. Both these limitations resulted in models that would sur-
pass the minimal required level of detail; therefore, it is not possible
to assess whether the minimum required level of detail can be estab-
lished with passing all the tests. Nevertheless, the variable-detail ap-
proach introduces a step wise addition of detail that enforces a struc-
tured method similar to the development cycle.

It is unfortunate that the development cycle did not include a struc-
tured method to define the features nor their order of implementation.
The performance of the variable-detail approach is currently hindered
by the absence of tooling. Consequently, this limits the accuracy of
the assessment on the actual influence of the RIDM. Notwithstanding
these limitations, the results of the case study suggest that the struc-
tured approach of RIDM reduces the impact of design failures and re-
duces the development cost for CPS design.

Describe which adaptations are required for both the RIDM and the de-
sign method to establish a competent design process for CPS.

The RIDM required adaptations before it could be evaluated. The adap-
tations made in this thesis showed variable degrees of success during
the case study. To create a competent design process, some adapta-
tions must be improved and some new ones must be added.

The produced result by the development cycle depends strongly on the
provided features to implement. To ensure a consistent result for the
design of CPS, RIDM must incorporate a design process to define these
features. Moreover, the features must not only describe functionality,
but each feature must also include a physical component and a re-
quirement. These three elements together make it that features can
be implemented and tested individually.

The design process must describe a complete method from problem
description till the set of features. In this design process, the solution
to the problem is established in the form of the functionality of the
system. The design process determines what components perform

that functionality, and puts requirements on the components and the
functionality. All design decisions made during this process shape the
final product. Therefore, the design process to determine the features
is urgently important in the ability of RIDM to successfully develop CPS
from scratch.

The variable-detail approach requires adaptations to fully utilize the
advantages that the short cycle and testing provide. Therefore, the
models must be separated from the design. This requires a central-
ized design including a database for all design parameters. Models
are no longer required to represent the complete design, allowing for
more specific models. Moreover, the models can conform to the gen-
eral model properties. Because the models are more specific, more of
them are required to cover all aspects of the design.

To manage the increased number of models a form of version control
is needed. The version control makes it possible to organize, and if
necessary to combine and integrate, different models. Furthermore,
it makes it possible to revert design changes and switch to different
model versions.

The final adaptation is the ability for automated testing. Automated
testing provides a major advantage on top of the previous adaptations.
As the models inherit their parameters directly from the centralized de-
sign database, every design change propagates to all models. With au-
tomated testing, all model are simulated after a design change. This
highlights any unwanted behavior caused by the design change. As
the models are made more specific, a failed simulation of a model au-
tomatically pin points the area where the problem occurs.

Implementing and evaluating the adaptations as described above are
required to determine if these adaptations are sufficient. The next sec-
tion describes recommendations that must be considered before im-
plementing these adaptations.

8.3 Recommendations

Before any of the adaptations are applied to the RIDM, further research
on the exact format of these adaptations is recommended. The recom-
mended steps taken in further research are:

+ Make the application area and purpose of the RIDM specific: To
design a good design method, the design process must start with
a clear problem description. Currently, the RIDM does provide a
design method, but does not state clear requirements such as:

- Type of CPS: mainly hardware, software or control?

- Design focus: improve reliability, real-time guarantee, reduce
complexity, shorten development-time?

- Internal or external use: is the client directly involved?

— Development team: number of developers from what back-
ground?

These requirements improve the focus of further research. This
focus could also help to attract and involve other organizations.
Above all, it prevents the RIDM of becoming a "master of none”.

* Explore existing design projects that share the application area
and purpose: To avoid inventing the wheel or or provide a so-
lution none wants, it is recommended to explore existing design

Chapter 8. Conclusion

51

project. Involve projects from companies and universities, suc-
cessful and unsuccessful. Evaluate all the projects with at least
the following questions:

— What type of design paradigm or model is being applied?

— Where is the complexity in the project and how is it dealt
with?

- How are the metrics of cost of change and chance of failure
defined?

— How are the design and models connected?

— Which design tools are used by the design team? Why are
they used?

- Are there common design problems between the different
projects?

— How is the client involved in the development process?

- What considerations are made to chose between modelling
or hardware prototyping?

* Hypothesize the improvements provided by RIDM for existing de-
sign projects, and vice versa: Based on the evaluation of the de-
sign projects:

- How could the RIDM improve those existing design projects?

- Whatlessons can be drawn from the existing design projects?

Depending on what the results and conclusions of the recommended
research topics are, a strategy has to be created to further develop the
RIDM. Currently, there are two likely scenarios:

+ Make the RIDM part of an existing design model, such that the
advantages are integrated with existing design models.

+ Develop the RIDM into a complete design method, such thatit can
be used for the development of the complete product life-cycle.

Independent of what strategy is chosen, it is recommended to:
+ Implement the adaptations as described in this thesis.

+ Perform the adaptations and improvements of the RIDM with a
multi-disciplinary design team.

+ Evaluate the RIDM with projects that are within the application
area of the RIDM.

The recommendations result in a more focussed development of the
RIDM. But these recommendations are only the top of the iceberg of
what is required to develop RIDM as a complete design method for CPS
Expected is that a full development of the RIDM takes multiple years
and many developers and researchers to complete.

The RIDM does bring some techniques that show potential. These
techniques could improve existing design methods. Based on this the-
sis, the following research topics are recommended:

+ A technique or protocol for to organize the parameters of a de-
sign, such that the parameters can be used in modelling: Can the
current modelling tools be adapted to read parameters from a
database and can design tools be adapted to write parameters
to a database?

Chapter 8. Conclusion

52

Chapter 8. Conclusion 53

* Tooling for modelling software, to allow for unit testing: Software
development applies unit testing, where behavior of each func-
tion is tested separately. In modelling this would allow every sub-

model to be tested separately.

Appendix A

Test Specifications

System Test 1: Small rectangle

During this test, a rectangle will be drawn on the whiteboard us-
ing the SCARA. This rectangle is 50 mm high and 70 mm wide,
such that three characters fit within the rectangle. To test the
speed requirements, the rectangle should be drawn within one
second.

Features: SCARA

Requirements: 3,7,11,13,14

Results: The test passes when:
+ Rectangle height is at least 50 mm
+ Rectangle width is at least 70 mm
+ Completion time is less than 1s

System Test 2: Perimeter

The Cable bot must move along the outer edges of the text area.
This area consists of three lines of text with fifty characters
each. Resulting in a perimeter of 1000 mm wide and 250 mm
high. This proves that reach of the system is sufficient to write
the text. Furthermore, the Cable bot should move outside of the
perimeter as well. Moving outside of the text area is to prove
that Cable bot has a position where it does not obstruct the writ-
ten text.

Features: Cable Bot

Requirements: 1, 2, 6, 11, (12)

Results: The test passes when:
+ The Cable bot moved along the edge of the text area.
+ The Cable bot moved outside of the text area.

\.

54

System Test 3: Cable Bot Speed

The Cable bot must be able to move a distance of 80 mm in
horizontal direction within a second. At the start and the end of
the movement the speed of the Cable bot must be zero. This is
to ensure that the SCARA can then write three characters at the
given position.

Features: Cable Bot
Requirements: 7,9, (12), 14,15, 16
Results: The test passes when:
+ At the start and end of the test, the Cable bot does
not move relative to the board.
+ During the test, the Cable bot has moved 80 mm
within 1s.

r
\

System Test 4: Triple Chars

The SCARA together with the end-effector must write 3 charac-
ters without moving the Cable bot. This extends on the small
rectangle of System Test 1 but the end-effector must now be
able to lift the marker of the board. The three characters should
be written on the board within two seconds.

Features: SCARA, End-Effector
Requirements: 3, 4, (12),13,14
Results: The test passes when:
« The SCARA wrote three characters on the white-
board within 2 s.
« The Cable bot did not move more than 10 mm.

System Test 5: Tool Change

| \

The system has to switch in some way between the marker and
awiper, or a different color. For this test the system must switch
a tool within 10 seconds.

Features: SCARA, End-Effector
Requirements: (5), (12), 17
Results: The test passes when:
« A tool is released from the end-effector and stored
for later use.
« A different tool is attached to the end-effector.
+ The tool switch is completed within 10 s.

\.

Appendix A. Test Specifications 55

System Test 6: Repeatability

This tests if the Writer can draw repeatedly on the same po-
sition, for different approach angles, on the board. The system
will start with drawing multiple 60 mm squares on the boardin a
random location. To test the repeatability, a circle with a 55 mm
diameter must be drawn inside of the square. This should be
done with twenty squares in an area of at least 1000 mm x
300 mm. The drawing order of each square must be different
from the drawing order of circles, this ensures that the Cable
bot makes a different approach path.

.

Features: SCARA, Cable Bot
Requirements: 3,4, 9,11, (12)
Results: The test passes when:
+ Each square has a circle drawn inside.
+ The squares and circles are within 5mm of their
given dimensions.
« Allthe circles are completely within their correspond-
ing square.

J

The system must draw a grid on the drawing range (1000 mm x
300 mm), with the horizontal and vertical lines spaces 100 mm
from each other. The distance between two horizontal or two
vertical lines cannot be smaller than 90 mm or larger than
110 mm. The lines are not allowed to deviate more than 10 mm
in a line section of 300 mm.

System Test 7: Linearity

Features: SCARA, End-Effector, Cable Bot
Requirements: 1, 2, 3, (12)
Results: The test passes when:
+ All lines are drawn, 11 vertical and 4 horizontal lines.
« All lines in parallel separated from their neighbor by
atleast 90 mm and atmost 110 mm.
+ Each line does not deviate more than 10 mm.

J

System Test 8: Writing

To test the complete writing abilities the following text must be
written on the board:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG!°?e, .-
0123456789101112131415161718192021222324252627282
the quick brown fox jumps over the lazy dog!?@, .-
This is a full 150 character area. It must be readable and write
all the characters correctly. It must be completed withing 150
seconds. Which is 2 minutes and 30 seconds.

Features: SCARA, End-Effector, Cable Bot
Requirements: 1,2, 3, 4, (5), 6,7,12,13, 14,15, 16
Results: The test passes when:
« The text as described is readable from a atleast 4 m
distance.
« Thetext is writen on a clean whiteboard within 150 s.

Appendix A. Test Specifications 56

System Test 9: Wiping

The complete board must be cleared of any marking within 60
seconds. This is without the change of tool.

Features: SCARA, End-Effector, Cable Bot
Requirements: (5), 10,11, 12
Results: The test passes when:

+ The system cleaned the board within 60 s.

System Test 10: Complexity

The last test is that the design has to be complex enough. This
has to be evaluated by the developer of the system.

Features: SCARA, End-Effector, Cable Bot
Requirements: 8
Results: The test passes when:
+ The developer can motivate that the system is com-
plex enough to evaluate the case study.

Appendix A. Test Specifications 57

Appendix B

System Requirements

This appendix gives an overview of all the system requirements for the
Whiteboard Writer that defined during the Case Study. Table B.1 gives
an overview over which test correlates to which requirements.

&
/8 §/o/&/& ®
/&) /S /F/3/5/> &
C/$/ &/ S/ /S/ 5/ 8/ /L&
& /5/ 8/ 8)5/8/L/E/5 /S
E/)S5/&/F/E)8/&/5 /S /&/©
S/~ NS)R
1 [J e | o
2 [] o | o
310 [) ® o o
4 ° ° °
5 O O | O
6 [J [J
710 [J o
8 []
9 [J o
10 [)
11 [] {] e | o
120 |O]O|]O|]O |0 |0 |@®@|@
13| ® [] o
14 | ® e (o o
15 [o
16 [] [J
17 []

System Requirements:

1. The Writer must be able to write at least fifty characters
per line.

2. The Writer must be able to write at least three lines of text.

3. The Writer must plot characters with a size that is read-
able from 4 meters for a person with good eyesight.

4. The Writer must plot in a regular used font with corre-
sponding character spacing.

5. When a new tweet is send to the Writer, the Writer must
wipe the existing tweet and write down the new tweet.

58

Table B.1: Correlation between system
requirements and tests. A closed dot
indicates a singular relation. An open
dot represents a spread relation. In
other words, to meet a requirement
atleast one test with a closed dot must
pass or all tests with an open dot must
pass.

10.

1.

12.
13.

14.

15.

16.

17.

. If the Writer is not wiping or writing then the Writer must

not obstruct the view of the whiteboard.

. While writing, the Writer must have a writing speed of at

least one character per second.

. The dynamics of the Writer must be complex/sophisticat-

ed/interesting.

. If the Writer is tasked to wipe the tweet, the Writer must

wipe the tweet within sixty seconds

When a reset-signal is send to the Writer, the Writer must
recalibrate its position on the board.

When a wipe-signal is send to the Writer, the Writer must
wipe the board clean.

The Writer must not damage itself.

While writing, the SCARA must have a writing speed of at
least 1.5 characters per second.

When the CDC is at a static position, the SCARA must be
able to write at least three characters at that position.

When the SCARA finished writing at their current position,
the CDC shall move the SCARA to it's next position where
it can write the subsequent characters.

When the SCARA has to be moved to a new position, the
CDC shall perform this movement within one second.

When the system changes from writing to erasing or vice-
versa, the SCARA and End-effector should change the tool
within ten seconds.

Appendix B. System Requirements 59

60

Bibliography

Blanchard, Benjamin S and W. J Fabrycky (2014). Systems engineer-
ing and analysis. I1SBN: 978-1-292-03839-1. URL: http : / / search .
ebscohost . com/ login . aspx ?direct =true& scope=site&db=
nlebk&db=nlabk&AN=1418193 (visited on 10/19/2020).

Boehm, B. W. (May 1988). “A spiral model of software development
and enhancement”. In: Computer 21.5, pp. 61-72. 1SSN: 1558-0814.
DOI: 10.1109/2.59.

Broenink, T. G. and J. F. Broenink (June 11, 2019). “Rapid development
of embedded control software using variable-detail modelling and
model-to-code transformation”. In: Communications of the ECMS: Pro-
ceedings of the 33rd International ECMS Conference on Modelling
and SimulationECMS 2079. 33rd International ECMS Conference on
Modelling and Simulation 2019, pp. 151-157. URL: https://research.
utwente.nl/en/publications/rapid-development-of-embedded-
control-software-using-variable-det (visited on 11/12/2019).

Fitzgerald, John, Peter Gorm Larsen, and Marcel Verhoef, eds. (2014).
Collaborative Design for Embedded Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN: 978-3-642-54117-9. DOI: 10 . 1007 /978-3~-
642-54118-6. URL: http://link. springer.com/10.1007/978-3~
642-54118-6 (visited on 09/03/2020).

Grenning, James (2002). Planning Poker or How to avoid analysis paral-
ysis while release planning. URL: https://wingman-sw.com/articles/
planning-poker (visited on 03/22/2021).

Hudson, Trammell (2015). Asteroids font. Asteroids font. URL: https:
//trmm.net/Asteroids_font/ (visited on 01/25/2021).

Ingham, M. et al. (2005). “Engineering Complex Embedded Systems
with State Analysis and the Mission Data System”. In: J. Aerosp. Com-
put. Inf. Commun. DOI: 10.2514/1.15265.

Karadeniz, Ahmet, Malek Alkayyali, and Péter Szemes (Apr. 6, 2018).
“Modelling and Simulation of Stepper Motor For Position Control Us-
ing LabVIEW”. In: Recent Innovations in Mechatronics 5. D0I: 10. 17667/
riim.2018.1/7.

Kordon, Mark et al. (Mar. 2007). “Model-Based Engineering Design Pi-
lots at JPL". In: 2007 IEEE Aerospace Conference. 2007 |IEEE Aerospace
Conference, pp. 1-20. DOI: 10.1109/AER0. 2007 .353021.

Lamb, Caroline T. and Donna H. Rhodes (2008). “2.2.1 Collaborative
Systems Thinking Research: Exploring systems thinking within teams”.
In: INCOSE International Symposium 18.1, pp. 222-233. ISSN: 2334-
5837. DOI: 10. 1002/ j . 2334-5837 . 2008 . tb00802 . x. URL: http:
//onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.
2008.tb00802.x (visited on 09/23/2020).

Mavin, Alistair et al. (Aug. 2009). “Easy Approach to Requirements Syn-
tax (EARS)". In: 2009 17th IEEE International Requirements Engineer-
ing Conference. 2009 17th IEEE International Requirements Engineer-
ing Conference, pp. 317-322. DOI: 10.1109/RE.2009.9.

Rajkumar, Ragunathan (Raj) et al. (2010). “Cyber-Physical Systems: The
next Computing Revolution”. In: Proceedings of the 47th Design Au-

http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1418193
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1418193
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1418193
https://doi.org/10.1109/2.59
https://research.utwente.nl/en/publications/rapid-development-of-embedded-control-software-using-variable-det
https://research.utwente.nl/en/publications/rapid-development-of-embedded-control-software-using-variable-det
https://research.utwente.nl/en/publications/rapid-development-of-embedded-control-software-using-variable-det
https://doi.org/10.1007/978-3-642-54118-6
https://doi.org/10.1007/978-3-642-54118-6
http://link.springer.com/10.1007/978-3-642-54118-6
http://link.springer.com/10.1007/978-3-642-54118-6
https://wingman-sw.com/articles/planning-poker
https://wingman-sw.com/articles/planning-poker
https://trmm.net/Asteroids_font/
https://trmm.net/Asteroids_font/
https://doi.org/10.2514/1.15265
https://doi.org/10.17667/riim.2018.1/7
https://doi.org/10.17667/riim.2018.1/7
https://doi.org/10.1109/AERO.2007.353021
https://doi.org/10.1002/j.2334-5837.2008.tb00802.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2008.tb00802.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2008.tb00802.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2008.tb00802.x
https://doi.org/10.1109/RE.2009.9

tomation Conference. DAC "10. New York, NY, USA: Association for
Computing Machinery, pp. 731-736. I1SBN: 978-1-4503-0002-5. Dol:
10.1145/1837274 . 1837461. URL: https://doi-org. ezproxy2.
utwente.nl/10.1145/1837274.1837461.

RobMoSys (May 5, 2017). RobMoSys. URL: https : / / robmosys . eu/
approach/ (visited on 01/21/2021).

Rosen, Aliza (Nov. 7,2017). Tweeting Made Easier. Tweeting Made Eas-
ier. URL: https://blog. twitter.com/official/en_us/topics/
product/2017/tweetingmadeeasier.html.

Royce, Dr Winston W (Aug. 1970). “MANAGING THE DEVELOPMENT
OF LARGE SOFTWARE SYSTEMS". In: IEEE WESCON, pp. 1-9.

Shafaat, Ali and C. Robert Kenley (2015). “Exploring the Role of Design
in Systems Engineering”. In: INCOSE International Symposium 25.1,
pp. 357-370. I1SSN: 2334-5837. DOI: 10.1002/ j .2334-5837.2015.
00068 . x. URL: http://onlinelibrary.wiley.com/doi/abs/10.
1002/j.2334-5837.2015.00068.x (visited on 09/23/2020).

Sheard, Sarah A. (1998). “7.18. Systems Engineering for Software and
Hardware Systems: Point-Counterpoint”. In: INCOSE International Sym-
posium 8.1, pp. 928-936. I1SSN: 2334-5837. DOI: 10. 1002/ j . 2334~
5837.1998.tb00131.x. URL: http://onlinelibrary.wiley. com/
doi/abs/10.1002/j .2334-5837 . 1998 . tb00131 . x (visited on
09/09/2020).

Stachowiak, Herbert (1973). Allgemeine Modelltheorie. Wien: Springer.
494 pp. I1SBN: 978-3-211-81106-1 978-0-387-81106-2.

Stramigioli, S. and H. Bruyninckx (May 2001). “Geometry of dynamic
and higher-order kinematic screws”. In: Proceedings 2001 ICRA. IEEE

International Conference on Robotics and Automation (Cat. No.01CH37164).

Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164). Vol. 4, 3344-3349 vol.4. pol:
10.1109/R0OB0OT.2001.933134.

Appendix B. Bibliography 61

https://doi.org/10.1145/1837274.1837461
https://doi-org.ezproxy2.utwente.nl/10.1145/1837274.1837461
https://doi-org.ezproxy2.utwente.nl/10.1145/1837274.1837461
https://robmosys.eu/approach/
https://robmosys.eu/approach/
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://doi.org/10.1002/j.2334-5837.2015.00068.x
https://doi.org/10.1002/j.2334-5837.2015.00068.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2015.00068.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2015.00068.x
https://doi.org/10.1002/j.2334-5837.1998.tb00131.x
https://doi.org/10.1002/j.2334-5837.1998.tb00131.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.1998.tb00131.x
http://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.1998.tb00131.x
https://doi.org/10.1109/ROBOT.2001.933134

	Introduction
	Context of this Thesis
	Research Objective
	Approach
	Structure

	Starting Point
	Systems Engineering
	Rapid Iterative Design Method
	Rapid Development Cycle
	Variable-Detail Approach
	Preparation steps

	Combination

	Design Plan
	Preliminary Phase
	Problem Description
	System Requirements
	Initial Design
	Feature Definition
	Test protocol

	Development Cycle
	Feature Selection
	Rapid Development
	Variable-Detail Approach

	Summary of Design Plan

	Case Study: Method
	Evaluation Protocol
	Questionnaire
	Model validation

	Subject of Design

	Case Study: Execution
	Preparation Phase
	Problem Description
	Requirements
	Initial Design
	Feature Definition
	Test Protocol

	First Development Cycle
	Feature Selection
	Rapid Development of the End-Effector

	Second Development Cycle
	Feature Selection
	Rapid Development for SCARA
	Variable-Detail Approach
	Conclusion of Development

	System Design Validation
	Mechanical Construction
	Control of the scara

	Result

	Case Study: Evaluation
	Time Investment
	One-man development team
	Switching Modelling Language
	Reflection
	Preparation phase
	Development phase
	Continuation of this Case Study

	Design Method Evaluation
	System Complexity
	Elements of a Feature
	Model and Design Relation
	Model properties
	Design Parameters
	Structured design and models

	Preparation Phase
	Rapid Iterative Design Method
	Feature Selection
	Variable-Detail Approach

	Conclusion
	Case Study
	Rapid Iterative Design Method
	Recommendations

	Test Specifications
	System Requirements
	Bibliography

