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Management summary
This research is performed on behalf of the Actuarial department of Achmea N.V. located in Zeist.
Achmea is one of the largest insurance companies in the Netherlands, offering a wide range of
insurance products. Since January 2016, Solvency II guides as the leading framework for the pru-
dential supervision of insurance companies. One of the most important aspects of Solvency II is
the Solvency Capital Requirement (SCR). The SCR is the capital requirement that makes sure
that the insurance company can pay all obligations in the upcoming year with a probability of
99.5%.

As a result of the size of Achmea and the high variety of insurance products Achmea offers,
Achmea uses a partial internal model (PIM) in the aggregation of the reserve risk. In this PIM,
the aggregation of the risk capitals starts at the level of homogeneous risk groups (HRGs), a level
lower than Solvency II prescribes. As a result, Solvency II does not provide correlation matrices at
the level of HRGs and so, Achmea has to come up with these tables themselves. These correlation
tables are important, as the correlation parameter decides the amount of diversification benefit
that can be obtained, as it is not likely that all HRGs will reach the SCR at the 99.5% level at
the same time. The correlation matrices for the HRGs are currently determined by expert panels,
using a qualitative method.

In this research, it is investigated if it is possible to use a quantitative method to determine
the correlation parameter between the risk capitals of different HRGs. Specific attention will be
paid to the correlation bootstrap method and the implicit correlation method. Furthermore, the
performance of these methods is investigated when applied to HRGs with heterogeneous charac-
teristics, as this is currently unknown. The research question which will be answered during this
research is:

How accurate are the correlation bootstrap method and the implicit correlation method when es-
timating the correlation between reserving triangles and how sensitive are the correlation estimates
to data quality, outliers, and a violation of the assumptions of these methods?

The correlation bootstrap method and the implicit correlation method both use bootstrapping
techniques to create a distribution of the profit and loss at the end of the year. By bootstrapping
the reserve triangle of two HRGs and creating a vector with expected settled claims of the com-
bined portfolio of two HRGs, it is possible to derive the implied correlation coefficient by using
the standard formula. The difference between the correlation bootstrap method and the implicit
correlation method is the way the third vector with the expected settled claims for the upcoming
year for the aggregated portfolio is obtained.

In the correlation bootstrap method, the residuals are synchronously bootstrapped, to make
sure the dependencies between the residuals of the two HRGs are unchanged during the bootstrap-
ping process. This makes it possible to aggregate the best estimates of both portfolios creating a
third value representing the best estimate for the combined portfolio for a specific scenario. By
performing this process a sufficient number of times, a distribution of the best estimate for the
combined portfolio can be created. In the implicit correlation method, the triangles containing the
historical settlement data are added to each other. The two individual triangles and the combined
triangle are individually bootstrapped, creating three vectors of best estimates. The difference is
visualized in the following figures:



To investigate what characteristics of an HRG have an impact on the correlation estimates, a
dataset generator is developed. This dataset generator makes it possible to generate two trian-
gles by setting the initial claim amounts, the settlement period, the MAS parameter denoting the
variance within a development period, and drawing residuals with a dependency from a statisti-
cal distribution. These parameters are derived from real datasets except for the residuals, these
are drawn from the bivariate normal distribution. Before the parameters are derived from a real
data set, the data sets need to be corrected for inflation as well as for the portfolio developments.
The simulations are performed on incurred triangles as well as paid triangles. For both types of
triangles, annually-annually (AA) triangles and annually-quarterly (AQ) triangles are used in the
simulations.

By using 100.000 simulation runs per dataset, we could conclude that the correlation estimates
are stable with a maximum observed standard deviation of 0.014. In the robustness test, we found
that especially the correlation bootstrap method gives robust outcomes if one year of additional
data is added to the dataset. This implies, that the correlation estimates will not differ too much
from year to year, which is important for a potential implementation in practice. In the simula-
tions in which one parameter of the triangles was tested at a time, it became clear that the MAS
parameter creates the most deviations from the pre-set correlation for the correlation bootstrap
method. For the implicit correlation method, the MAS parameter and the residual set create the
most deviations from the pre-set correlation. The settlement period parameter and the initial claim
amounts do not substantially affect the correlation estimates. Furthermore, the deviations are big-
ger at the higher correlation levels and the deviations are bigger for the AQ-triangle compared to
the AA-triangle. We can also conclude that the outcomes for the paid triangles are significantly
better than the outcomes for the incurred triangles.

In the second part of the simulation study, we challenged the assumptions belonging to both
methods to see what the impact on the correlation estimates is. We can conclude that the correla-
tion bootstrap method deals significantly better with outliers compared to the implicit correlation
method. Notable is the impact one outlier has on the other residuals belonging to a develop-
ment period and the corresponding correlation. As a result, we conclude that outliers need to be
excluded from the dataset before the correlation bootstrap method and the implicit correlation
method can be used. From the tests with not normally distributed residual sets, we concluded
that the correlation estimates became slightly worse for both methods. This is in line with the
observation for the outliers, as more extreme residuals will occur in a not normally distributed
dataset. The last and probably most promising finding of this research is that it is possible to
obtain an accurate correlation estimate between triangles with a different tail length. The SCR is
mostly determined by the most recent accident years, as these years contain the most uncertainty.
We can conclude that if 80% of the uncertainty in the SCR of both triangles is covered, an accurate
correlation estimate can be derived.

We can conclude that the correlation bootstrap method consistently performed better compared
to the implicit correlation method. The correlation bootstrap method can be used if there is no
autocorrelation available in the triangles and there are no dependencies between the accident
years. The process error needs to be excluded when using the correlation bootstrap method, as
this reduces the available correlation between the residuals significantly.
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1 Introduction
This study is conducted as the final part of the Master Financial Engineering and Management of
the University of Twente. The study is performed at the Actuarial department of Achmea group,
which will be introduced in Section 1.1. The focus of this master thesis will be on the aggregation
of reserving capitals, which is an important aspect of Solvency II. In Section 1.2, an introduction
to Solvency II will be given, followed by an introduction to the research problem in Section 1.3. In
Section 1.4, the research questions are introduced and this section is finished with the outline of
the remainder of the thesis in Section 1.5.

1.1 Company description
Achmea N.V. is one of the largest insurance companies in the Netherlands and has a rich history
that dates to 1811. The company was founded in Friesland as cooperation to insure farmers against
the risk of a fire destroying the farm. The cooperation grew fast to are one of the biggest insurance
companies in the Netherlands today.

Over the years, many other insurance companies were acquired, of which Centraal Beheer,
Interpolis, De Friesland Zorgverzekeraar, FBTO, Zilveren Kruis, and Avéro are the best known
brands. Achmea employs approximately 13,800 employees and has an annual turnover of almost
€ 20 billion. Besides the insurance part of the company, it has a pension division as well.

The master thesis is carried out on behalf of the Actuarial department of Achmea Group.
The Actuarial department is responsible for the methodology in determining the best estimates,
the Risk Management department is responsible for the methodology of internal models used for
determining the capital requirements for market risk and underwriting riks. This study will focus
on non-life reserve risk on which this study will focus. In April 2020, a reorganisation took place,
in which some responsibilities shifted from the Actuarial department to the Risk Management
department and vice versa. This makes it possible to do a study into a risk management subject
while performing the study at the Actuarial department. The study took place from 31-08-2020
until 28-02-2021.

1.2 Introduction to Solvency II
Solvency I was introduced in 1973 as a first step to the harmonization of the supervision of insur-
ance companies in Europe. Solvency I set capital requirements for insurance companies, to ensure
they are able to settle all claims to a certain degree and create a more competitive landscape
within the European Union. However, the rules set in Solvency I were not capable of dealing with
the high variety of risk profiles in the insurance sector and were therefore not aligned with the
corresponding risks. As a result, it was decided that a new legislative framework was needed which
was more widely applicable, and was able to generate capital requirements based on the specific
markets a European insurance company finds itself in [Bafin, 2006a].

Since January 2016, Solvency II is the leading framework for the prudential supervision of
insurance companies. The Solvency II framework serves 4 purposes [Bafin, 2006b]:

1. Make sure an insurance company has enough money available to settle all claims;

2. Prevent policyholders, the ones who bought the insurance policy, from the bankruptcy of an
insurance company;

3. Having more insights into the financial position of the insurer and so giving the supervisor
the possibility to intervene earlier;

4. Improve the trustworthiness of the financial sector, in particular the insurance sector.

The Solvency II framework consists of three pillars: risk quantification, risk management and
transparency. These pillars are in line with the legislation of Basel III for the banking sector.

The first pillar, risk quantification, sets out qualitative and quantitative requirements for the
calculation of the technical provisions and the Solvency Capital Requirement (SCR) using either a
standard formula given by the European Insurance and Occupational Pensions Authority (EIOPA)
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or a partial internal model developed by the insurance company and approved by the Dutch Na-
tional Bank (DNB).

The technical provisions exist of two parts, the best estimate, and the risk margin. The technical
provisions are meant to quantify the amount another insurance company would have to pay for an
immediate transfer of its obligations. The relations between the best estimate, the risk margin,
the MCR and the SCR are visualised in Figure 1.

Figure 1: Pillar 1 Solvency Capital Requirements.

Solvency II requires the technical provisions to be a “best estimate” of the current liabilities re-
lating to insurance contracts and a risk margin. The best estimate consists of the best estimate
claim provisions which relate to events that have already occurred, and the best estimate premium
provision which relates to future claim events.

The SCR is the capital requirement to make sure that the insurance company can pay all obli-
gations in the upcoming year with a probability of 99.5%. The SCR incorporates main risks such
as non-life underwriting, life underwriting, health underwriting, market, credit, operational and
counterparty default risks, and must be determined and reported to the supervisor every quarter.
Each of these main risks consists of one or more sub risks. Non-life underwriting risk consists of
non-life catastrophe risk, lapse risk, premium risk and reserve risk. In this study, the focus will be
on the non-life reserve risk, which is the risk that the currently available reserves are insufficient
to cover their run-off over a one year time horizon [England et al., 2019].

To determine the Non-Life reserve risk, models are needed to have insights into the potential
development patterns of the individual components belonging to the Non-Life reserve risk. In
Section 1.3 these models are introduced.

1.3 Problem identification
The standard formula is not representative for the risk profile of Achmea due to the size of Achmea
and the high variety of products Achmea offers. Therefore, Achmea developed and uses a partial
internal model (PIM) to determine the SCR as well as most other large insurance companies in the
Netherlands. In a PIM certain risks are quantified by using a company’s own quantitative model
(an internal model) and the remaining risks are quantified by using the standard formula.

One of the risks for which Achmea developed an internal model is reserve risk. Reserve risk
is defined as the uncertainty about the amount and timing of the ultimate claim settlements in
relation to existing liabilities, the best estimate. Achmea determines reserve risk at the level of
homogeneous risk groups (HRG). Reserve Risk is determined by applying the bootstrap method,
which is used to quantify the distribution of the ultimate claims (explained in Section 2.5). The
total reserve risk is determined by the aggregation of the reserve risks at the level of HRG.
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If it is not likely that two HRGs will yield unexpected liabilities in the same year, a diversi-
fication benefit can be reached. This diversification benefit is already reached if the correlation
between the risk capitals of two HRGs is lower than 1. When the correlation is lower than 1,
the combined required risk capital is lower than the sum of the individual risk capitals. So, the
correlation parameter is important in aggregating risk capitals and determining the SCR.

Supervising parties like the DNB prefer a quantitative model in determining the correlation
matrix between the reserving triangles of different HRGs over qualitative methods. Especially
because quantitative methods give more exact insights into the methods used to come up with
a correlation estimate and make it easier to reproduce the obtained numbers. However, to use
quantitative models, enough representative data are needed to get reliable correlation estimates.
As a result of the use of partial internal models in determining the reserve risk, it is not possible
to use the standard two-level approach known in Solvency II [Filipović, 2009], as Solvency II does
not prescribe the correlation matrices at the level of the reserve risk of HRGs. As a result, Achmea
currently uses expert panels to determine the correlation estimates between reserve risks based on
qualitative methods.

In literature, numerous papers have been written about the way the correlation parameter can
be estimated between the variability in the reserving triangles of HRGs. However, these papers
are often only applicable to specific theoretical circumstances that do not include all deviations
seen in practice. Especially determining the correlation between reserving triangles of HRGs with
heterogeneous characteristics is a topic that has not been addressed a lot, whereas HRGs are often
mutually different in terms of settlement years, available historic data, variance, or distribution
channel.

In this study, the correlation bootstrap method and the implicit correlation method will be
investigated in depth. These two methods are chosen, as multiple papers are written about these
methods and these seem to work properly on HRGs with homogeneous characteristics [Brickman
et al., 1993] [Mack, 1993] [England & Verrall, 1999] [Kirschner et al., 2002]. Besides, the two
methods have a lot in common and both use bootstrapping techniques to come up with the final
correlation.

However, there is not enough knowledge about the quality and the robustness of the correlation
estimates when these methods are used to determine the correlation between the reserving trian-
gles of HRGs. Especially when aggregating HRGs with heterogeneous characteristics there are
assumptions that make it currently impossible to determine the correlation between these HRGs,
as the assumptions do not allow all heterogeneous characteristics.

As there is currently not enough insight into the accuracy, robustness and stability of the corre-
lation estimates between different reserving triangles of HRGs based on the correlation bootstrap
method and the implicit correlation method, additional research is required. To get more insights
into the performance of both methods, research questions are defined. This will be the topic of
Section 1.4.

1.4 Research objective
The objective of the study is to investigate if the correlation bootstrap method and the implicit cor-
relation method can be used to obtain appropriate correlation estimates between different HRGs.
To assess whether these methods can be used or not, we need to know how well both methods
are capable of estimating the correlation parameter in terms of accuracy, robustness and stability.
This is formulated in the following research question:

“How accurate are the correlation bootstrap method and the implicit correlation
method when estimating the correlation between reserving triangles and how sen-
sitive are the correlation estimates to data quality, outliers, and a violation of the
assumptions of these methods?”

The research question will be answered by 4 sub-questions:
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1. What is known in the literature about the correlation bootstrap method and the implicit
correlation method in determining the correlation parameter between reserving triangles?

2. How accurately are the methods able to derive the correlation from datasets of which the
correlation is known and what is the impact of outliers in the datasets for paid and incurred
triangles?

3. How accurately are the correlation estimates if the assumptions of the methods are chal-
lenged?

4. How well are the methods capable of determining the correlations between reserving triangles
with heterogeneous characteristics?

1.5 Thesis outline
In Section 2, we explain the main concepts needed to understand the process of obtaining the best
estimate and the SCR. Furthermore, all different kinds of triangles will be introduced as well. In
Section 3, we will investigate what is already known in the literature about deriving the correlation
parameter from the datasets of different HRGs, together with the assumptions belonging to these
methods and the role of the quality of the data. After we gathered the already known information
of the methods, we will explain the setup of the simulation study in Section 4. To perform the
simulations, we need clean datasets, which we will create by using a dataset generator. We will
discuss the method used to built the dataset generator and how the dataset generator can be used
in this study in Section 5. In Section 6, we will verify and validate the simulation models and
finally, in Section 7 we will analyse the results of the simulation study. The report finishes with
the conclusions, the recommendations, the limitations and the suggestions for future research in
Section 8.
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2 Best estimate reserve and reserve risk
The first section is dedicated to the best estimate. To obtain the best estimate, we need to acquire
more knowledge about the data types and the methods used to derive the best estimate from a
dataset. In the second section, we will explain the data types. With the knowledge about the
data types, it is possible to explain the Chain Ladder method in the third section. The fourth
section gives some insights into the history of bootstrapping techniques followed by an explanation
of the bootstrapping technique in Section 2.5. This section is finished with how we can derive the
best estimate and the profit and loss from the data sets. With the profit and loss, we are able to
determine the SCR which can be used to derive the correlation between different HRGs.

2.1 Best estimate
The best estimate (BE) consists of the best estimate claim provisions which relate to events that
have already occurred but have not been settled yet. In other words, it contains the expected re-
quired capital to fulfil all outstanding liabilities for an HRG. To obtain the BE, patterns available
in historical data of a specific HRG can be used to predict the future. To understand how the BE
is estimated, first the way historical data are ordered is addressed in Section 2.2. In Section 2.3,
the Chain Ladder method is explained to come from historical data to a projection for the future.

By applying the Chain Ladder method, only a projection can be made based on the historical
data available in the triangle. However, it is highly unlikely that the settlement pattern will be
exactly the same in the future as it has been in the past. By applying bootstrapping techniques,
we are able to obtain a distribution of potential future scenarios. This is the topic of Section 2.4.
Based on the outcomes of the bootstrapping process, it is possible to determine the BE.

2.2 Triangles
To model the development of the payment streams related to a HRG and to make projections of
the potential developments of these payment streams, run-off triangles are used. These triangles
give insights into the timing and amount of claims that are settled at a specific moment in time.
To understand the way the used triangles are built up, first some additional knowledge about the
claim handling process needs to be acquired.

Not all claims are settled in the same year as they occur, in many cases it takes some time
before the claim is received, judged and ultimately settled. Figure 2, visualizes a timeline of the
development of a claim. The period between the occurrence and the moment the claim is reported
to the insurance company is referred to as incurred but not reported (IBNR), in case a reported
claim requires more money than initially estimated, this is denoted as incurred but not enough
reported (IBNER). The period between the moment the claim is reported and the moment it is
settled is denoted as reported but not settled (RBNS). The time between the occurrence of the
claim and the ultimate settlement of the claim differs per HRG. In case of a car accident, the
ultimate settlement of the damage to the car will in most cases take less than four years, whereas
the ultimate settlement of physical damage may take more than a decade.

Figure 2: Development of a general insurance claim [Antonio & Plat, 2014].

To get insights into the development of claims relating to an accident year, run-off triangles are
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used. In a run-off triangle, the development periods are located in the columns and the accident
years in the rows. An accident year tracks claims paid and reserves on accidents occurring within
a particular year, regardless of when the claim occurred or when the policy was issued. The de-
velopment period indicates the period in which the payments are settled belonging to a certain
accident year. Triangles can have different structures and can contain different kinds of data, the
ones relevant for this research are the paid triangle and the incurred triangle. Furthermore, a dis-
tinction is made between annually-annually (AA) triangles and annually-quarterly (AQ) triangles.
In the next section, we will introduce the different kinds of triangles and explain their implications.

2.2.1 Paid triangles

The paid triangle is mostly used in literature and is as well the easiest triangle to model in a
simulation study. When denoting the incremental claims paid by accident year i and development
year j by Ii,j . Then the complete dataset can be described by:

{Ii,j | i, j ∈ N : 1 ≤ i ≤ n, 1 ≤ j ≤ n− i+ 1} (1)

Which can be represented in the following way:

Figure 3: Incremental payments triangle.

In many cases, the incremental paid claims triangle is rewritten as a cumulative paid claims triangle,
which is denoted by Ci,j , again i indicates the accident year and j the development year. The first
development year is not different from the first development year of the incremental paid claims
triangle. In the remainder of the triangle, the incremental claims belonging to a development
period are added to the cumulative payments in the previous development period:

Ci,1 = Ii,1, 1 ≤ i ≤ n, i ∈ N (2)

Ci,j = Ci,j−1 + Ii,j , 1 ≤ i ≤ n− j + 1, 2 ≤ j ≤ n, {i, j ∈ N} (3)
This results in a triangle comparable to the incremental paid claims triangle in which all Ii,j are
replaced by Ci,j . In numerical examples, this will make it easier to compare accident years to each
other.

2.2.2 Incurred triangles

The triangles described in the previous section represented paid triangles, i.e. the data in the
triangle are based on paid claims. Another type of run-off triangle is the incurred triangle. An
incurred triangle is the sum of two triangles, the paid triangle and the outstanding triangle as
visualized in Figure 4. The outstanding triangle can be defined as an estimate to cover the liability
over any reported and not settled claim [Norberg, 1993].

Figure 4: Incurred triangle.
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The paid triangle is not different from the cumulative triangle described in (2) and (3). In the out-
standing Oi,j triangle are all liabilities towards already reported but not settled claims. The sum
of the Cumulative paid claims triangle and the outstanding claims triangle results in the incurred
claims triangle Ri,j . So in Figure 4, R1,2 denotes the cumulative claims up to and including devel-
opment year 2 for accident year 1 added up with the outstanding claims seen from the year-end of
development year 2 for accident year 1.

In case the expectation and timing of all claims would be completely right, the incurred triangle
would contain a constant number in every development period. In practice, the expectation is
adjusted every period to incorporate IBN(E)R claims.

2.2.3 AA- and AQ-triangles

The example in Figure 3 represents an annually-annually triangle (AA-triangle). In the triangle,
the accident periods and the development periods are both determined on a yearly basis. A good
characteristic of the AA-triangle is that it is symmetric, which makes it easier to model in a sim-
ulation study.

Different from the AA-triangle is the annually-quarterly (AQ-) triangle. In an AQ-triangle, the
accident years are still annually as in the AA-triangle, but the development periods are based on
quarters. The complete set of incremental claims is then given by:

{Ii,j |i, j ∈ N : 1 ≤ i ≤ n , 1 ≤ j ≤ 4 (n− i+ 1)} (4)

This results in an incremental AQ-triangle:

Figure 5: Incurred triangle.

It is possible to create an AQ-triangle with the cumulative paid claims following the same proce-
dure as in (2) and (3), having the difference that the number of development periods is 4 times
as large compared to the AA-triangle. The advantage of an AQ-triangle over an AA-triangle is
that it is possible to model more precisely the development periods, as well as the possibility to
extract more residuals. This number of residuals will be important in the bootstrapping process
later on. In the remainder of the report, all formulas will be written in the form of an AA-triangle.
By adjusting the development periods j, it is possible to obtain the formulas for the AQ-triangle.

Now the types of triangles are known, the next step is to generate a development pattern from
the triangles which can be used to predict the claims that need to be settled for a HRG. To detect
this development pattern, we will use the Chain Ladder method.

2.3 The Chain Ladder method
The most popular method in determining the best estimate is the Chain Ladder method [Mack,
1993]. The advantage of the Chain Ladder method is that it is distribution-free, easy to apply
and holds only a limited number of constraints [Mack, 1993]. The Chain Ladder method can be
applied on paid as well as on incurred triangles [Liu & Verrall, 2010]. The Chain Ladder method
starts with determining the average development factor f̂j per development period, which can be
obtained by:

f̂j =

∑n−j+1
k=1 Ck,j∑n−j+1
k=1 Ck,j−1

2 ≤ j ≤ n j ∈ N (5)
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It is then possible to estimate the next period by multiplying the average development factor
corresponding with the last observation for an accident year:

Ĉi,n−i+2 = Ci,n−i+1 ∗ f̂n−i+2 2 ≤ i ≤ n i ∈ N (6)

Using the same steps, it is possible to forecast how an incurred triangle will develop in the upcoming
periods.

Figure 6: The Chain Ladder method.

In Figure 6, an example of the Chain Ladder method is given including the calculations. A more
extensive example can be found in Appendix A.

2.3.1 Model assumptions Chain Ladder method

The Chain Ladder method holds 4 constraints that are needed to let the method work properly
[Mack, 1993]:

1. The combination {Ci,j |1 ≤ j ≤ N} and {Ck,j |1 ≤ j ≤ N} needs to be independent when
i 6= k with i, k ∈ {1, . . . , N}, i.e. the accident years are independent.

2. The development factors f̂2, . . . , f̂N > 0, so that for every i ∈ {1, . . . , N} and j ∈ {2, . . . , N}:
E [Ci,j+1| Ci,2, . . . , Ci,j ] = E [Ci,j |Ci,j−1] = f̂jCi,j−1.

3. There exist a variance parameter σ2
2 , . . . , σ

2
J−1 > 0, so that for every i ∈ {1, . . . , N} and

j ∈ {2, . . . , N}, Var(Ci,j | Ci,j−1) = σ2
jCi,j−1.

4. The development factors f̂2, . . . , f̂N are uncorrelated, i.e. E
[
f̂2 ∗ · · · ∗ f̂N

]
= E

[
f̂2

]
∗ · · · ∗

E
[
f̂N

]
.

Constraint 1 and 4 need the most attention before the Chain Ladder technique is used in the
bootstrap method. Constraint 2 could only be a problem in the incremental paid triangle, as it
would imply that no new claims were settled during a development period. However, if there are
no claims settled, the variance is automatically zero. If the variance is zero, the residuals are
automatically zero, which are excluded in the bootstrapping process. So, Constraints 2 and 3 do
not form a problem in this study. Besides, the incremental data are transformed into cumulative
data, which prevents the development factor from being zero.

With the Chain Ladder method, it is possible to detect the development pattern in a dataset
and make a projection of the claims which still need to be settled. However, one projection will
not directly give a complete view of the expectation of the claims which still need to be settled. It
is for instance possible that more people reopen a case and get additional compensation as a result
of law changes or new evidence. This may have happened once in history but could happen more
often in the future. To incorporate these potential patterns based on historical data, we will use
bootstrapping techniques.
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2.4 History of bootstrapping techniques
Bootstrapping methods became popular in modeling reserve risk during the nineties when several
papers about the application of bootstrapping methods on insurance portfolios were published.
Most notable are the papers of Brickman et al. [1993], Mack [1993], England & Verrall [1999] and
Kirschner et al. [2002].

The bootstrap method has three main advantages according to Shapland & Leong [2010]. The
first advantage is the possibility to obtain a distribution of the possible claim amounts without
knowing the statistical distribution beforehand. Secondly, the bootstrap method uses all features
available in the data, the data is not modified or generalized to make it usable. Thirdly, the
bootstrap method deals perfectly with the skewness available in the data and as insurance loss
distributions are often skewed to the right, not having to correct for this makes modeling easier.

2.5 The bootstrap method
To get an impression of the distribution of the reserve risk, we use a bootstrapping technique which
is a Monte Carlo simulation approach [Robinson, 2014]. When using the bootstrapping technique,
the deviations from the expected development factor are determined and called residuals. These
residuals are randomly replaced in the triangle creating a new history, slightly changing the devel-
opment pattern and so changing the required capital. This process can be repeated many times to
create a distribution of potential scenarios.

To obtain the residuals, we need to undertake a couple of steps. In the remainder of this section,
the process is equal for the cumulative paid triangle as for the incurred triangle. In every formula
where Ci,j is mentioned for the cumulative paid triangle, Ri,j can be written for the incurred
triangle.

Besides the average development factors (5) the individual development factors (fi,j) need to
be calculated:

fi,j =
Ci,j
Ci,j−1

1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {i, j ∈ N} (7)

Based on the average development factor, the individual development factors and the cumulative
or incurred triangle, it is possible to determine the unscaled Pearson residuals (Ui,j)[Braun, 2004]:

Ui,j =
√
Ci,j−1

(
fi,j − f̂j

)
1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {i, j ∈ N} (8)

Now, it is possible to calculate Mack’s alpha squared (MAS) kj . The MAS parameter denotes
the variance between the individual development factors and the average development factor by
summing up the squared unscaled residuals of a column and dividing it by the number of residuals
in the column. The unbiased estimator of the MAS parameter is given by [Braun, 2004]:

kj =

∑n−j+1
i=1 U2

i,j

n− j
2 ≤ j ≤ n {j ∈ N} (9)

Finally, it is possible to derive the unscaled Pearson residuals ri,j and perform the bias adjustment
bj to allow for over-dispersion in the residuals in the sampling process [England & Verrall, 2002]:

ri,j = bj
Ui,j√
kj

with bj =

√
n− j + 1

n− j
1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {i, j ∈ N} (10)

After the residuals are determined, the residuals are shifted to make sure the average of the residuals
equals zero [Huergo et al., 2010]. This is done by determining the average of all the residuals of
a triangle and increasing or decreasing every residual with the same number to make sure the
average equals 0. The average of the residuals can be determined by:

r̄ =

∑n−1
i=1

∑n
j=2 ri,j∑n−1

i=1 i
(11)
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With the average known, it is possible to correct all residuals [Huergo et al., 2010]:

r∗i,j = ri,j − r̄ 1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {i, j ∈ N} (12)

In Figures 7 and 8, the steps of a standard bootstrap are visualized for the cumulative paid triangle.
In Figure 7, the steps are visualized to come from the initial triangle to the scaled residuals based
on the formulas explained.

Figure 7: Deriving residuals from a cumulative paid triangle.

In the triangle furthest to the right, the final residuals can be seen. In the following step, the
residuals are resampled. In the resampling process, the zero-residuals are excluded as these do
not reflect a deviation from the average development factor. To allow for a wide distribution of
potential situations, the resampling process is performed with replacement. This implies that it is
possible that a residual is placed multiple times in the newly created triangle and so reflects the
reality where it is possible that circumstances from the past could have happened more often.

To come from the resampled residuals to a new best estimate, some steps need to be undertaken.
Based on the resampled residuals r∗i,j the new individual development factors f∗i,j can be determined
[England, 2003]:

f∗i,j =
r∗i,j
√
kj√

Ci,j−1
+ f̂j 1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {j ∈ N} (13)

Now we know the new individual development factors, it is possible to calculate the new upper
triangle. This can be done by multiplying the cumulative paid claims from the original triangle
with the newly created individual development factors:

C∗i,1 = Ci,1 1 ≤ i ≤ n {i ∈ N} (14)

C∗i,j = Ci,j−1 ∗ f∗i,j 1 ≤ i ≤ n− 1 2 ≤ j ≤ n− i+ 1 {i, j ∈ N} (15)

Based on the individual development factors and the cumulative triangle, it is possible to determine
the new average development factors:

f̂∗j =

∑n−j+1
i=1 C∗i,j∑n−j+1
i=1 Ci,j−1

2 ≤ j ≤ n− i+ 1 {j ∈ N} (16)

In the same way, the lower triangle is calculated in (6) it is possible to calculate the required
capital to settle all claims in this scenario. By repeating this process many times, we can obtain a
distribution of potential settlement scenarios.

In Figure 8, the residuals from Figure 7 are resampled and based on these newly distributed
residuals a new history is created. In the figure furthest to the right, the lower triangle is created
based on the newly determined average development factors. The difference between the already
settled claims (in black) and the ultimate claims in the fourth development year (in red) indicates
the reserves that are needed to settle all claims for an accident year. The best estimate in this
situation is indicated in green.
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Figure 8: From residuals to required capital - Cumulative paid triangle.

In the case of an incurred triangle, the process of estimating the best estimate is slightly different.
In practice, the values estimated after the first development year are quite accurate and differ
only slightly. Especially further in the tail, the adjustments in the incurred claims for an accident
year are extremely stable. Remarkably, the residuals follow the same distribution as in the paid
triangle, making it possible to apply the same methodology as for the paid triangle.

The difference between bootstrapping the paid triangle and the incurred triangle lies in the
interpretation of the resulting lower triangle. In Figure 8, the expected outstanding claims can
easily be derived from the triangle. In case of the incurred triangle, the ultimate outcomes need
to be corrected for the already paid claims to know how much is expected to be outstanding. A
step by step example of the bootstrapping process is worked out in Appendix B.

To incorporate also situations that did not happen in the past but might happen in the fu-
ture, a process variance is added to the model in practice. This process variance follows a gamma
distribution and has a significant impact on the residuals. However, in obtaining the correlation
parameter, this additional (uncorrelated) error would lower the overall correlation between the
residuals as these would not reflect the real deviations which happened in the past. This is why it
is decided to let the process variance out of the bootstrapping process.

With the knowledge of the bootstrap method, we are now capable of getting a distribution of
the expected claims that need to be settled for a HRG. With these data, we can obtain the BE
and the profit and loss (P&L).

2.6 Determining the BE and P&L
The best estimate is differently determined for the cumulative paid triangle compared to the
incurred triangle. In the cumulative paid triangle, the best estimate can be determined by filling
the complete lower-triangle based on the average development factors and then subtracting the
already paid claims from the ultimately expected claims for every accident year.

BEPaid =

n∑
i=2

((Ci,n−i+1

n∏
j=n−i+1

f̂j)− Ci,n−i+1) (17)

To get the best estimate from the incurred triangle, the lower triangle of the incurred triangle
needs to be constructed. The settled claims need then to be subtracted from the ultimate claims
to obtain the best estimate.

BEIncurred =

n∑
i=2

((Ri,n−i+1

n∏
j=n−i+1

f̂j)− Ci,n−i+1) (18)

In both cases, the best estimate reflects the capital that needs to be present to cover the expected
claim settlements related to an HRG in a specific scenario. By creating 100.000 different scenarios
and so 100.000 best estimates, it is possible to determine the best estimate for an HRG as the av-
erage best estimate of the 100.000 situations. To cover the risk of ending up with more claims than
the expectation, additional capital needs to be in place. The additional capital which needs to be
available to cover 99.5% of the scenarios in the upcoming year will be determined based on the SCR.

Before we can determine the SCR, first the expected P&L for the upcoming year needs to be
determined for all the 100.000 outcomes of the BE. The process to obtain the P&L is slightly
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different for the cumulative paid triangle compared to the incurred triangle. The process to obtain
the P&L for the cumulative paid triangle is prescribed first, subsequently the differences for the
incurred triangle will be illustrated.

To obtain the P&L, the following formula needs to be used:

P&Lpaid = BEt − ¯Settlementst −BEt+1 1 ≤ t ≤ N − 1 t ∈ N (19)

In this formula BEt denotes the best estimate at time t, BEt+1 denotes the best estimate at
time t+1 and ¯Settlementst denotes the expected settlements between time t and t+1. In a world
without uncertainty, the P&L would always be zero as the expected settlements at time t minus
the settlements during year t would result in the best estimate at t+1. The best estimate at time
t can be obtained by using (17) and does not differ from the process described in Figure 7 and
Figure 8. To obtain the expected settlements during year t, the cumulative paid triangle can be
bootstrapped multiple times and every time the expected payments in the newly created diagonal
can be determined:

Expectedsettlementst =

n∑
i=2

((Ci,n−i+1 ∗ f̂n−i+1)− Ci,n−i+1) (20)

By taking the average of all newly created diagonals, it is possible to determine the expected
settlements during year t. The best estimate at time t+1 can be determined by adding one devel-
opment year to the initial triangle, determining new average development factors and then again
calculating the lower triangle with (6). The P&L is calculated over a period of a year, so in the
case of the AQ-triangle 4 diagonals need to be projected to determine the expected settled claims
in the upcoming year. The same holds for the best estimate at time t+1.

For the incurred triangle, the process of obtaining the P&L is slightly different. As the incurred
triangle on its own gives an indication of the expectation of the ultimately settled claims for an
accident year, the expectation becomes more accurate as more claims are settled. The difference
between the ultimately expected claims at time t = 0 and the ultimately expected claims at time
t = 1 is the adjustment in the expectation of the ultimately expected claims.

P&LIncurred =

N∑
i=1

(Ri,N,t=0) −
N∑
i=1

(Ri,N,t=1) (21)

For both the cumulative paid triangle and the incurred triangle holds that if the bootstrap tech-
nique is applied several times for a triangle, a vector of P&L is created. The values in this vector
can be ordered in descending order and the SCR at 99.5% can be found.

Figure 9 visualizes the distribution of the P&L. Most P&L center around the middle, however
some simulation results will have a much higher projected loss. The SCR is the P&L at the 99.5%
percentile.

Figure 9: Density plot of the P&L.
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2.7 Aggregating reserve capitals
In the previous section, we explained how the reserve capitals can be calculated for a single HRG.
In reality, an insurer has many HRGs that all represent a specific product group and even within
a specific product group there are often subgroups. To come to the total required capital for all
HRGs, it is not as simple as adding up all the individual capitals.

In most situations, it is not likely that HRGs will reach the 99.5% level in the same year. The
degree to which these events likely happen in the same year is captured in the correlation param-
eter, which reaches from −1 indicating a reverse dependency to 1 indicating a strong dependency.
When the correlation between two HRGs is lower than 1, a diversification benefit can be reached.

The standard formula proposed by Solvency II is:

SCRx,y =
√
SCR2

x + SCR2
y + 2ρx,ySCRxSCRy (22)

The ρx,y denotes the correlation between the reserve capitals of HRG x and HRG y at the 99.5% per-
centile. By rewriting (22), it is possible to derive the correlation between two HRGs by [Devineau
& Loisel, 2009]:

ρx,y =
SCR2

x,y − SCR
2
x − SCR

2
y

2 ∗ SCRx ∗ SCRy
(23)

In this section, we described how SCRx and SCRy are determined. However, there are multiple
ways to determine SCRx,y. This will be investigated in Section 3.

2.8 Summary
We will investigate two types of triangles, triangles containing paid data and triangles containing
incurred data. For both types, AA-triangles as well as AQ-triangles, are used. We will use
the Chain Ladder method to determine the development factors, which play a major role in the
bootstrapping process. Furthermore, we explained the bootstrapping process for a single HRG,
and an introduction to the aggregation of reserve capitals is given. In Section 3, we will investigate
how SCRx,y can be determined.
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3 Estimating the correlation parameter from historical datasets
Here, we present what is already known in the literature about estimating the correlation between
different HRGs. We start with an introduction to the concept of correlation. In the second section,
we will investigate what methods are already known in the literature to capture the correlation
between insurance triangles. Two methods will be chosen which will be investigated further.
These methods will be described and the implications of specific features found in the data will be
discussed.

3.1 Correlation
Correlation is defined as ‘a relation existing between phenomena or things or between mathematical
or statistical variables which tend to vary, be associated, or occur together in a way not expected by
chance alone’ [Akoglu, 2018]. To test the degree of correlation, the bestknown methods are Pear-
son’s product-moment correlation method, Spearman’s rank correlation method and Kendall’s Tau
correlation method, where Pearson’s method is widely used for normally distributed datasets and
Spearman’s and Kendall’s method are used for non-normally distributed datasets [Artusi et al.,
2002].

Pearson’s r method uses the statistical features found in the two datasets x and y, assuming
these are normally distributed. The Pearson correlation can then be determined by using [Havlicek
& Peterson, 1976]:

ρPearson =
Cov (x, y)

σxσy
(24)

In determining the correlation between the residuals of reserving triangles, rank methods like
Spearman’s and Kendall’s method perform considerably worse compared to Pearson’s r method,
especially for relatively small triangles [Huergo et al., 2010].

3.2 Determining the correlation between run-off triangles
In literature, different methods are known to derive the correlation between two lines of business
based on bootstrapping techniques [Taylor & McGuire, 2005]. In Brehm [2002] the basis of the
correlation bootstrap method is explained and compared to the outcomes of a rank-correlation
method. In 2002, Solvency I was still the leading framework, which did not pay attention to di-
versification benefits [Chandra Shekhar et al., 2008]. This makes that the research conducted back
then was not conducted with the purpose of being used in the capital aggregation process. An
important remark is that bootstrapping techniques only contain the correlation that is based on
situations that happened in the past, where especially those situations that did not happen in the
past but could happen in the future may have a lot of impact on the correlation estimate.

Braun [2004] describes how the correlation can be determined between two HRGs based on the
residuals in a development period. This results in a correlation parameter for every development
period. However, it is questionable how reliable the correlation estimates are for the development
periods with a limited number of accident years, in Section 3.5 this will be discussed further.

Kirschner et al. [2002] extended the work of Brehm. A rank-correlation approach was again
compared to the outcomes of a synchronous bootstrap methodology. The paper gives a more in-
depth explanation of both methods and provides several examples. In line with Brehm [2002], the
conclusion is that it is possible to obtain a correlation estimate with both methods which may not
differ too much from each other. The conclusion is that correlation estimates obtained by both
methods may support decision-makers and help to get a sense of direction. However, it is as well
stressed that a lot of knowledge is required to be able to judge the correlation estimates obtained
by bootstrapping techniques.

The increased capital requirements in combination with the increased attention for diversifica-
tion benefits in Solvency II made the correlation parameter become more important recently. The
papers of Brehm [2002] and Kirschner et al. [2002] give a good starting point to investigate further.
As Brehm [2002] already denoted, the correlation bootstrap method might give a better insight
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into the correlation estimates at a higher percentile. This method will be further investigated
combined with the implicit correlation method. The implicit correlation method is a combination
of the rank correlation method and the application of (23). The implicit correlation method is
not explicitly described in the literature but follows the same principles as the rank-correlation
method.

3.3 The correlation bootstrap method
The correlation bootstrap method or simultaneous bootstrap approach is the method in which
the bootstrapping process is simultaneously performed, to make sure the correlation between the
residuals of multiple triangles is not lost. If there is a correlation between two HRGs, the residuals
likely show to some degree a comparable pattern. If there are for instance more boat incidents in
a period than expected, it is also likely that there are more than expected boat incident-related
surgeries in that period. This will yield two positive residuals that are linked in the correlation
bootstrap method.

After all corresponding residuals are linked to each other, the residuals which are linked to a
0-residual are removed as well as all residuals which don’t have a matching residual. If the residual
table has the same length and all 0-residuals are removed, it is possible to perform the bootstrap-
ping process. In this process, the linked residuals are synchronously replaced in the reserving
triangles to create a new history of possible events.

Define Sk as the complete set of residuals (rki,j) belonging to HRG k, where rki,j will denote
the same moment in time for every k. Let’s introduce permutation matrix M, which represents
the changed position of the residuals during the bootstrapping process. So, the new order of the
residual set can be denoted as S∗k :

S∗k = MSk {k ∈ N} (25)

As we take the correlation into account during the bootstrapping process, it is now allowed to
add up the P&L of the two triangles, to come to a P&L for the combination of the two lines of
businesses. Denote the lower triangle of triangle A as Â, the lower triangle of triangle B as B̂ and
the combined lower triangle as ÂB:

ÂBi,j = Âi,j + B̂i,j 2 ≤ i ≤ n n− i+ 2 ≤ j ≤ n {i, j ∈ N} (26)

By repeating this process multiple times, three vectors with P&L are created: one for the first
triangle, one for the second triangle and a last one for the combined portfolio. These vectors
can be rearranged in descending order to find the scenario at the 99.5% percentile, indicating the
expected loss at the 99.5% percentile. As all parameters from (23) are now known, it is possible
to calculate the correlation.

In Figure 10, the correlation bootstrap method is visualized. Triangle A and triangle B represent
the run-off triangles of HRG A and HRG B. In red are the projected outcomes of the bootstrapping
technique. By simultaneously bootstrapping the residuals of triangle A and triangle B, it is allowed
to add up both lower triangles, generating the combined expectation in triangle C.

Figure 10: The correlation bootstrap method
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3.4 The implicit correlation method
In the implicit correlation method, the combined triangle of the two HRGs is constructed by adding
up the two triangles. Denote the upper triangle of triangle A as A, the upper triangle of triangle
B as B and the combination of triangle A and triangle B as AB.

ABi,j = Ai,j +Bi,j 1 ≤ i ≤ n, 1 ≤ j ≤ n− i+ 1, {i, j ∈ N} (27)

All three triangles can be independently bootstrapped as described in Chapter 2. This results
in an SCR for every bootstrapped triangle. We can then use these SCR estimates to derive the
correlation using (23).

As the bootstrapping process is not performed simultaneously, it is not needed to link the
residuals to each other and so it is only required to delete the 0-residuals from the individual
triangles. This reduces the number of residuals that are deleted, which would in practice mean
that more potential developments are taken into account in the bootstrapping process compared
to the correlation bootstrap method.

In Figure 11, the implicit correlation method is visualized. Triangle A and triangle B represent
the same triangles as in Figure 10. The difference between the two methods is the method used
to create the lower triangle of triangle C. In Figure 11, the correlation between the residuals is
captured in the simultaneous bootstrapping process, which makes it unnecessary to create the upper
triangle. In the implicit correlation method the residuals are not simultaneously bootstrapped and
to capture the correlation the upper triangles are added to each other. This is the upper triangle
of triangle C, by bootstrapping this upper triangle 100.000 times it is possible to construct a vector
with 100.000 P&L estimates. These can then be handled in the same way as the P&L vector of
triangle A and triangle B and makes it possible to determine the SCR for all three triangles. By
applying (23), we can then determine the correlation parameter.

Figure 11: The implicit correlation method

3.5 Model assumptions
To use the Chain Ladder method as well as the correlation bootstrap method and the implicit
correlation method, several assumptions need to be fulfilled. The assumptions for the Chain Ladder
method have already been discussed in Section 2.3.1. In this section, the assumptions belonging
to the correlation bootstrap method and the implicit correlation method will be discussed.

3.5.1 Model assumptions correlation bootstrap method and implicit correlation method

As in the correlation bootstrap method and the implicit method the residuals are extracted from
the triangles, the model assumptions regarding the residuals hold for both methods [Huergo et al.,
2010]:

1. There exist constants f̂j , σ̂j > 0 and random variables εi,j such that for all i ∈ 1, . . . , N and
j ∈ {2, . . . , N} we have: Ci,j = f̂jCi,j−1 + σj

√
Ci,j−1εi,j .

2. The residuals of triangle A and B, ε(a)i,j and ε
(a)
k,l are independent if i 6= k or j 6= l and

it holds E
[
ε
(a)
i,j

∣∣∣ BA0 ] = 0, V ar
(
ε
(a)
i,j

∣∣∣ BA0 ) = 1 and P
(
C

(a)
i,j > 0

∣∣∣ BA0 ) = 1 with BA0 =

{C(a)
1,1 ,. . . , C

(a)
N,1| a = 1, . . . , A} for all i ∈ 1, . . . , N, j ∈ {2, . . . , N} and a = 1, . . . , A. I.e. no

autocorrelation is allowed.
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3. The residuals are normally distributed, i.e. ε(a)i,j ∼ N (0, 1).

4. The N-dimensional random variables εi,j =
(
ε
(1)
i,j , . . . , ε

(A)
i,j

)T
have the correlation-matrices:

∑
j = Corr(εi,j

∣∣BA0 ) =


1 ρ

(1,2)
j · · · ρ

(1,A)
j

ρ
(2,1)
j 1 · · · ρ

(2,A)
j

...
...

. . .
...

ρ
(A,1)
j ρ

(A,2)
j · · · 1

, where ρ(a,b)j ∈ (−1, 1) for

a, b ∈ (1, . . . , A) and a 6= b. As V ar
(
ε
(a)
i,j

∣∣∣ BA0 ) = 1 holds, the correlation matrices are also
co-variance matrices of εi,j [Quarg & Mack, 2004].

Furthermore, to be able to use the found correlation in the standard formula, it is required that
the dependency between triangles can be fully captured by using a linear correlation coefficient
approach. This implies that there may not be tail-dependencies available between the residuals of
the used triangles [EIOPA, 2014].

Strictly speaking, resampling the residuals over the whole triangle is not in line with the Chain
Ladder method. The Chain Ladder method does not necessarily assume the development years to
be independent, this could imply that an extreme positive residual is followed by some negative
residuals or vice versa. Incorporating these possible dependencies in the model would only make it
possible to simultaneously bootstrap within the columns and only determine correlations between
the separate development years of the triangles as proposed by Braun [2004].

The method proposed by Braun [2004] has several disadvantages which makes it less suitable
for aggregating risk capitals. Pearson correlation estimates need at least 8 observations to generate
valid correlation estimates, this implies that the correlation estimates in the last 7 development
years are not reliable [Hulley et al., 2013]. As most triangles only have a limited number of devel-
opment years, this would mean that a significant part of the triangles does not generate reliable
correlation estimates.

When aggregating risk capitals, typically one correlation parameter is used to describe the cor-
relation between two triangles, making it possible to use the standard formula (23), so using the
prescribed method of Braun [2004] will lead to a lot of extra uncertainty in the correlation estimate.
For every disadvantage of the method proposed by Braun [2004], there are statistical procedures
known in literature to overcome the limitations such as extrapolating the residuals when there is
a low sample size. However, these techniques make the simultaneous bootstrapping process more
complicated and add extra uncertainty to the model.

Huergo et al. [2010] investigated the impact of the assumption that the correlation matrices are
the same for all development years. This implies that all residuals can be written to one vector,
without the need for an extrapolation method to compensate for low sample sizes. The outcome
of the research is that the differences in outcomes are neglectable, which justifies the simplifying
assumptions that all correlation matrices are the same for all development years j. To make sure
the finding of Huergo et al. [2010] holds for other datasets, the independence of the development
periods is added as a constraint in this research.

3.5.2 Individual model assumptions correlation bootstrap method

As residual pairs are simultaniously drawn between multiple triangles in the correlation boot-
strap method, both triangles must contain the same dimensions. Furthermore, it is important that
the distribution of the data in both triangles complies with the assumptions in the previous section.

3.6 Impact of the data quality on the correlation estimates
The data available in the triangles are hardly ever perfectly fit for its purpose, in many cases the
data is incomplete, there are booking errors, there are strange patterns in the tail or datasets
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reflect different periods [Busse et al., 2010]. It is not always possible to fix these issues, making it
necessary to find methods to deal with them. Thereby it is good to keep in mind that insurance
policies change over the years, making the loss pattern seen in one year not necessarily reflect the
loss pattern in another year. These changes may have an impact on the residuals found in the
dataset and so are good to keep in mind. Especially because outliers may have a significant impact
on the outcomes generated when bootstrapping [Peremans et al., 2017].

3.6.1 Correlation between datasets with outliers

Outliers in a dataset tend to have a lot of impact on the correlation estimate when parameterized
methods are used, such as Pearson’s method [Kim et al., 2015]. However, it depends on the nature
of the triangle what can be seen as an outlier. A triangle with a high MAS-parameter, like an
insurance policy insuring the policyholder against the risk of a storm destroying the house, will
have specific outliers due to the nature of the policy which cannot be left out of the model without
making the model less valid.

In literature, several researchers published articles about detecting and dealing with outliers.
Busse et al. [2010] propose to apply an algorithm that detects outliers caused by administrative
reasons based on the contribution of a specific period to the total (expected) claims of an accident
year. In Appendix D the method of Busse et al. [2010] is explained in depth.

After an outlier is detected, it still cannot automatically be deleted from the dataset. Only
after the nature of the outlier is completely known, it is possible to exclude an outlier if it is sure
the situation will not happen again in the future. Basically, as few as possible data should be
deleted to make the model robust and more reliable.

Another method to detect outliers is to critically evaluate the residuals. However, extreme
residuals may be invisible due to the masking effect [Peremans et al., 2017]. This effect occurs
if an extreme residual causes to shift the average development factor of a column, resulting in a
high deviation of the average for the whole column and so relatively high residuals in the whole
development period. On the other hand, a swamping effect may occur if all observations deviate
only a little bit and one regular observation deviates a bit more. As the impact of outliers may have
a significant impact when using bootstrapping techniques, Verdonck & Debruyne [2011] proposed
to weight the residuals and allocate lower weights to potential outliers. The method proposed by
Verdonck & Debruyne [2011] is explained in Appendix D.

In practice, software is used to detect outliers. The detected residuals are evaluated by an
expert panel to get insight into the nature of the outlier. If it is likely an outlier belonging to an
event will happen again in the future, this outlier will be included in the bootstrapping process.
If it is not likely that the specific situation will happen again, for instance, because there is an
administrative cause of the outlier, it is tried to only delete the part in the residual which is caused
by the administrative failure. If it is unlikely that an event will happen again within 200 years
or it is impossible to resolve the administrative failure to a correct estimate, a residual might be
excluded from the bootstrapping process.

3.7 Correlation between datasets with missing values
In case there are values missing or values excluded from the dataset, this does not cause a problem.
The divisor of the average development factor (2.5) needs to be adjusted to the number of resulting
values in the column, giving an accurate representation of the actual average development factor.
The residuals at the places in the triangle where there are missing values are zero and zero residuals
are left out when applying bootstrapping techniques [Huergo et al., 2010].

In the case of the correlation bootstrap method, the corresponding residuals in the other tri-
angle(s) need to be deleted as well. This will lower the number of residuals but makes sure the
correlation between the residuals is unchanged.

The good thing about both methods is that it is possible to fill the places where there are miss-
ing values with other residuals in the triangle. In this way, it is still possible to generate reliable
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claim estimates at the places where there is missing data on the basis of the development factor,
MAS parameter and a residual.

It is good to understand why data points are missing in a dataset, even though it does not
directly influence the method. The missing or excluded data points may have contained extreme
residuals which could have had a major impact on the claim reserves that should be held to cover
the risks of an HRG.

3.8 The tail of the reserving triangle
Different HRGs may have different settlement periods, a policy containing material claims may
settle most of the claims within 4 development years and only contain little volume for special
cases in the development years afterward. For immaterial claims, it may take decades before the
last payments are settled as many policies guarantee a payout till the retirement age. The HRGs
with a relatively short settlement period are referred to as short tail policies and the policies with
a long settlement period are referred to as long tail policies. A distinction can be made between
the correlation bootstrap method and the implicit method.

Before going into the implications of determining the correlation between long-tail and short-
tail policies, it is important to determine the length of the tail of a policy. The tail of a triangle is
often set after the first time the development factor is lower than a preset marker or after a certain
percentage of the expected ultimate claims are settled. The reason for not taking the complete tail,
is that the last development periods only contain little deviations. A little deviation in one accident
year without a development in the other accident years might result in extreme residuals that do
not reflect an extreme event. The other residuals for this development period will be constant and
deviate a little bit from 0, which will let them count in the bootstrapping process while they do not
represent a development. To deal with these tail developments, curve fitting techniques are often
used [England & Verrall, 2002]. However, smoothing techniques will not be used in this study, as
smoothing techniques could potentially change the correlation available between the residuals.

3.8.1 Implicit correlation method

In the implicit correlation method, two HRGs with different development patterns will not directly
cause a problem as the residuals in the three triangles are bootstrapped independently. However,
it is questionable to what extent the triangle containing the combination of both HRGs hold the
specific characteristics of the two individual triangles.

The problem that may occur when two triangles with a different tail are added to each other
in the implicit correlation method, is that the residuals belonging to the triangle with the long tail
will be unchanged. These unchanged residuals will also end up in the parts of the triangle in which
there is a potential correlation between the two triangles resulting in a less accurate SCR of the
combined triangle and so, a less accurate correlation estimate.

3.8.2 Correlation bootstrap method

Taylor & McGuire [2005] propose to simultaneously bootstrap the matching residuals and sepa-
rately bootstrap the residuals of the HRG with the long tail for the part of the triangle which
does not have a corresponding part in the short tail triangle when using the correlation bootstrap
method. This creates the possibility to obtain corresponding risk capitals, in which the correlation
between the triangles is available. However, this method cannot be used when deriving the corre-
lation between two policies with different tails.

Enlarging the tail of a short tail policy to the same dimensions as the long tail policy does not
work for the correlation bootstrap method, as zero residuals and the corresponding residuals are
deleted from the model. This would still imply that the observations in the tail of the long tail
policy are neglected and possibly creates a strange pattern in the not existing tail of the short tail
policy.
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Shortening the tail of the policy with a long tail seems like the only feasible solution. It is
then possible to aggregate all claims from the long tail policy which fall outside the model and
place them in the last development period. Not aggregating the values in the tail creates a loss of
potential extreme residuals but makes the corresponding residuals hold their original correlation.
Aggregating the values in the tail makes the settlements in the tail count but creates a column
with residuals that are potentially uncorrelated, affecting the overall correlation.

In the simulation study, the values in the tail are not aggregated, as it is likely that the
correlation estimate get worse when the residuals belonging to the aggregated development period
are added. We will investigate how much impact it has on the correlation estimate when a part of
the tail is neglected.

3.9 Summary
In this section, we explained the methods known in the literature to capture the correlation between
different HRGs. Furthermore, we discussed the implications of the specific features found in the
datasets on the performance of the implicit correlation method and the correlation bootstrap
method. We will investigate the implicit correlation method and correlation bootstrap method
further in the simulation study. The setup of the simulation study is the topic of Section 4.
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4 Simulation setup
Performing a simulation study requires a robust structure, clear guidelines and a precise process
description to be able to verify and reproduce the simulation results [Robinson, 2014]. In this sec-
tion, the simulation study outline will be discussed, including the relevance of the different parts
of the simulation study. This will give insights into the different phases of the simulation study.

The simulation study involves 5 phases, which are depicted in Figure 12 and form the backbone
of this section.

Figure 12: The phases of the simulation study.

In the first phase, we develop the required models. Before it is possible to simulate, the developed
models first need to be verified, validated and calibrated which we will do in Phase 2. In the third
phase, we will investigate the impact of a deviation of the individual parameters on the correlation
estimate. In the fourth phase, the individual parameters are combined, to see whether certain
combinations increase or decrease the individual effects. In the fifth phase, we will challenge the
assumptions of both models. We are going to use this process for paid as well as for the incurred
triangles of which both AA- and AQ-triangles will be tested.

4.1 Phase 1: Model development
Phase 1 contains two aspects, the development of the simulation model used to perform the simu-
lations with the correlation bootstrap method and the implicit correlation method, and the devel-
opment of the dataset generator.

4.1.1 Develop simulation model

To perform the simulations for the correlation bootstrap method and the implicit correlation
method, we will develop a simulation model in R. We chose this open-source programming platform
as it is the most used modeling software in the insurance sector. Many preprogrammed packages
are already available and a lot of support can be found on the internet. We will develop the models
based on the prescribed procedure in Sections 2.3 - 2.7, Section 3.3 and Section 3.4.

4.1.2 Develop dataset generator

Historical data can be used in the simulation study, however, these data are often polluted and
therefore do not fulfill all requirements discussed in Section 3.5.1. Besides, understanding what
the data are representing in a specific portfolio requires a lot of expert knowledge which makes it
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more likely mistakes are made when this data is interpreted by a non-expert. Data of a specific
portfolio may represent different information over the years due to policy changes, acquisitions and
model changes. Besides, the detection of outliers and the decision to include or exclude them is
also performed by expert panels. The creation of a clean dataset is a highly complex job, however,
the patterns available in the data can be used as a starting point for the creation of a valid dataset.

To be able to create datasets with specific characteristics, we will use a dataset generator to
obtain clean datasets that hold the preset characteristics. The creation of the dataset generator
will be discussed in Section 5. With this generator, it will be possible to create triangles based
on the variables: The MAS parameter, the settlement periods, the initial claim amounts and the
residuals. Besides, it will be possible to use this generator for triangles with a varying number of
development- and accident years as well as it is possible to use it for AA-, AQ-, paid and incurred
triangles. The dataset generator can be extended to create two triangles with a set correlation.
This makes it possible to use the datasets with a known dependency in the correlation bootstrap
method and the implicit correlation method and see how much the outcomes deviate from the
preset correlation. The produced datasets will be tested for their validity, this will be explained in
Section 6.2.

The relationship between the dataset generator and the simulation model is visualized in Figure
13.

Figure 13: Relationship between the models.

In Figure 13, the input parameters which are required to generate a triangle and the process that
needs to be fulfilled to obtain the correlation estimates is schematically visualized. In 4.3.1, we
will introduce the different input parameters.

4.2 Phase 2: Verification and validation of the simulation models
In the verification and validation phase, we will investigate whether the simulation models create
the expected output. Furthermore, we will investigate whether the created datasets comply with
the assumptions of Section 3.5.1, to make sure we use valid triangles in the simulations. We will
also investigate how many simulation runs are required per simulation and lastly, we will investi-
gate what the impact of different residual sets is on the correlation estimates.

The verification and validation of the simulation models we developed is one of the most im-
portant aspects of the simulation study [Robinson, 2014]. Programming mistakes are easily made
and preprogrammed packages may work slightly differently compared to the prescribed methods.
This makes it necessary to verify and validate the simulation models before we can perform the
simulations.
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4.2.1 Verification and validation of the dataset generator

For the verification and validation of the dataset generator, we will investigate how well the created
triangles contain the pre-set correlation. This can slightly differ from the pre-set correlation as
a result of the limited sample size and the adjustment of the residuals in the triangle generation
process. Furthermore, we will investigate whether the created triangles comply with the assump-
tions of both methods, to make sure the simulations are performed with clean triangles holding
the assumptions described in Section 3.5.1.

4.2.2 Verification and validation of the simulation model

For the verification and validation of the simulation model, the output of the different functions
is compared to the Excel sheet of England [2003]. This guarantees that we programmed all func-
tions correctly in R. Furthermore, we extended the model of England [2003] with the correlation
bootstrap method and the implicit correlation method. By comparing the correlation estimates of
the model in R and Excel, it is possible to mitigate the occurrence of programming errors.

4.2.3 Determine number of simulations

The required number of simulations is important, as a too low number of simulations can result in
inaccurate correlation estimates and a too high number of simulations will significantly increase the
run time, which decreases the number of situations that can be tested. To determine the number
of simulations required for stable outcomes, two datasets will be used. One dataset containing
an AQ-triangle and one containing an AA-triangle. For both types of triangles, the correlation
is determined based on 10.000, 20.000, 50.000 and 100.000 bootstrapped sets of triangles. This
process is repeated 100 times for every number of simulation runs. From the outcomes, the standard
deviation is determined which we can use to determine which standard deviation is acceptable.

4.2.4 Impact of different residual sets

The last part of Phase 2 is testing the impact of different residual sets. To be able to draw conclu-
sions based on the results of the simulations performed in Phase 3, it is important to understand
what impact different residual sets have on the correlation estimates. For both the AA- and the
AQ-triangle, 10 sets containing 2 triangles will be generated using the dataset generator. In these
datasets, the only parameter which is different for every dataset is the residual set. To these 10
datasets, we apply the correlation bootstrap method and the implicit method, resulting in 10 cor-
relation estimates for every method. If the impact of the residuals is known, we can start with
Phase 3.

4.3 Phase 3: Simulate individual parameters
After we tested what impact the different potential errors have on the correlation estimates, we
can start with testing the individual parameters. The three parameters used to create the datasets
are the settlement period, Mack’s alpha squared and the initial claim amounts. To see the impact
of these parameters, only one parameter is changed at a time. This makes it possible to derive the
impact one parameter has on the correlation estimates.

4.3.1 The parameters

The first parameter we will be testing is Mack’s alpha squared (MAS), the parameter which denotes
the variance between the individual development factors belonging to a development period (9).
The second parameter we are going to test is the settlement periods parameter, denoting the
vector with the average development factors (5). The third parameter we will test is the initial
claim amounts parameter, denoting the settled claims in the first development year.
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Table 1: Simulation study outline paid datasets

In Table 1, the outline for the simulations which we will perform in Phase 3 of the simulation
study is visualized. This matrix is used for all 4 types of triangles. In the most left column are
the correlation levels at which the triangles will be tested. The set of {−0.25, 0, 0.25, 0.5, 0.75}
is chosen as this is the range of correlations that are most often observed between the different
HRGs. Correlations lower than -0.25 hardly ever occur between HRGs, so this is chosen as the low-
est correlation that will be tested. As the correlation estimates currently are rounded to quarters,
measuring the correlation at these quarters gives insights into the performance of the methods at
the different quarters. It is not likely that the correlation between HRGs is higher than 0.75, so this
is taken as the upper-bound. The second column is the correlation that is available between the
randomly drawn residuals at a certain correlation level. Especially for the AA-triangles, the real
correlation between the residuals may be different from the preset correlation, making it important
to take this into account when analyzing the results. More about the deviations is explained in
Section 6.

In the remainder of Table 1, are the three situations which will be tested for every parameter.
For instance for the MAS, the situation “Long tail&Long tail” will be tested which denotes two
triangles with the same relatively high number of settlement periods. The “Long tail” MAS vector
is derived from a HRG that has a lot of settlement periods, a relatively stable initial claims and
so a relatively low MAS vector. The “Short tail” MAS vector is derived from a HRG that has a
relatively low number of settlement periods, relatively unstable initial claims and so a relatively
high MAS vector. The “Long tail&Long tail” simulation is only performed once, as the parame-
ters would be exactly the same when simulated for the settlement periods and the initial claims
vector. In Table 1, CBM denotes the correlation bootstrap method and ICM denotes the implicit
correlation method.

The simulations for both the incurred AA-triangle and the incurred AQ-triangle are performed
in the same manner as for the paid triangles. Different is that for the incurred triangles, the
parameters are derived from two incurred triangles instead of from the two paid triangles. For the
paid as well as for the incurred triangles, the same underlying HRGs are used. The parameter for
the “Long tail” MAS from the paid triangle will reflect the same claims as for the “Long tail” MAS
parameter of the incurred triangle. This makes sure that it is possible to compare the outcomes.

4.4 Phase 4: Simulate combined parameters
With the outcomes of the first part of the simulation study, it is possible to construct specific
situations in which parameter settings can be combined and look whether the deviations in the
correlation estimates are getting stronger or weaker. It is also possible to investigate whether cer-
tain parameters are more decisive than others. This gives a complete overview of the performance
of both methods within the assumptions belonging to the methods.

4.5 Phase 5: Challenge model assumptions
Phase 5 of the simulation study consists of two parts, firstly we will investigate what the impact
of outliers and different SCR-volumes is on the correlation estimates. Secondly, we will challenge
the assumptions belonging to both methods discussed in Section 3.5.1.

4.5.1 Impact outliers

Outliers may have a significant impact on the SCR and so potentially on the correlation estimates
as well [Verdonck et al., 2009]. To investigate how well both methods are able to come up with an
accurate correlation estimate, we will add outliers to the dataset. Besides the correlation estimates,
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we will also investigate what the impact of an outlier is on the other residuals. To have a good
insight into the performance of both methods, we will test a dataset containing one outlier and a
dataset containing several outliers.

4.5.2 Impact volume

The SCR of HRGs can differ significantly in volume. We will investigate if this causes a problem
for the correlation estimates obtained by both methods. Furthermore, we will investigate whether
the correlation estimates improve if complete triangles are scaled, to make sure the SCRs of two
triangles are approximately equal. By scaling the complete triangle, the residuals do not change
and so the available correlation will not be lost during the scaling process.

4.5.3 Challenge normality assumption

The residual sets of most HRGs are assumed to be normally distributed, however, this assumption
does not hold for all HRGs. It is interesting to know how well both methods are capable of
estimating the correlation in those cases. To resemble this situation, the residuals will be drawn
from a skewed distribution. With these outcomes, it is possible to assess how important the
normality assumption of the residuals is for both methods.

4.5.4 Different tail lengths

As already discussed in Section 3.8, two HRGs having a different tail length can cause problems
in both methods. We will investigate this by performing simulations in which one development
year is added at a time. This gives insights into the number of development periods it takes before
the correlation estimates become stable. If we can reach a stable correlation estimate at a certain
number of development periods which is lower than the total number of relevant development
periods, we can conclude that we can use one or both methods to derive an accurate correlation
estimate for HRGs with a different tail length.

4.5.5 Dependencies between accident years

If there are dependencies between accident years, they may be lost during the bootstrapping pro-
cess. This might have a significant impact on the SCR as certain dependencies may cause the
correlation between the risk capitals to be much higher or lower than the bootstrapping process
would suggest. As the bootstrap yields an unrealistic SCR, it is not possible to capture the corre-
lation using the implicit correlation method or the correlation bootstrap method.

Both methods could be applied and would yield comparable results as the ones in Phase 3
and Phase 4. However, this would mean that only the dependencies between the residuals of the
two triangles are taken into account and not the dependencies within a triangle. So, we will not
challenge this assumption, as it would definitely not result in an accurate correlation estimate.

4.5.6 Autocorrelation

Autocorrelation can occur in case there are, for instance, seasonal effects, which have an impact
on the development pattern. If the bootstrapping process is applied on a triangle containing auto-
correlation, it is possible that the residuals belonging to a certain season end up in another season
while this is not likely in practice. This may have a significant impact on the SCR and thus it is
not allowed to bootstrap triangles that contain autocorrelation. Autocorrelation is most likely to
occur in AQ-triangles, as the residuals in an AQ-triangle are determined on a quarterly basis.

Deriving the correlation parameter between two triangles containing autocorrelation will create
problems in both methods. As both triangles do not take the dependencies within the triangles into
account, it will be impossible to derive an accurate SCR and so an accurate correlation estimate.
So, the assumption that no autocorrelation may be available in the datasets will not be challenged.

All assumptions discussed in Section 3.5.1 have now been treated. We will investigate what
effect outliers have on the correlation estimates, what impact not normally distributed residuals
sets has on the correlation estimates, and how accurate both methods are capable of estimating the
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correlation parameter between triangles with a significantly different number of settlement periods.
The assumptions related to independent accident years and autocorrelation will not be challenged,
as the SCRs obtained during the bootstrapping process will not represent the real risk belonging
to the datasets if there are dependencies available.

4.6 Summary
In this section, an outline of the simulation study is provided. Figure 12 gives a schematic overview
of the phases of the simulation study. Furthermore, specific attention is given to the outline of
Phase 3, the testing process of the individual parameters. To perform these simulations, firstly
we need to develop and verify the dataset generator and the simulation model. These will be the
topics of Section 5 and Section 6.
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5 The dataset generator
To be able to simulate many scenarios and to draw general conclusions in the end, we developed a
dataset generator. With this generator, it will be possible to vary the settlement periods, the MAS
parameter, the initial claim amounts, and the correlation between the residuals of two datasets.
Based on these parameters it will be possible to construct two triangles containing the pre-set
characteristics which then can be used in the simulation study.

This section is structured in the same order as the steps that need to be taken to construct a new
triangle based on the input parameters. This starts with the creation of the correlated normally
distributed residuals, followed by adding the MAS parameter to create the unscaled residuals, in
the last step the development pattern and the first development year are added and used to create
the two triangles.

5.1 Creating correlated residuals
The dataset generator starts with the creation of the correlated residuals. To make the triangles
suitable to be used in the bootstrapping process, the residuals need to be normally distributed with
mean 0 and variance 1. To make sure the residuals of the two triangles share a preset correlation,
we draw the residuals from the bivariate normal distribution. By first creating a vector with
randomly drawn observations from the normal distribution (A), it is possible to create a second
vector (B) with the desired correlation [Kaas et al., 2008]:

B|A = a ∼ N
(
µB + ρ

σB
σA

(a− µA) , σ2
B

(
1− ρ2

))
(28)

In case more than two portfolios are compared at the same time, it is possible to use the multivariate
normal distribution. By applying the Cholesky decomposition on the covariance matrix, it is
possible to get multiple vectors with the desired correlation structure [Hull, 2018].

5.2 From correlated residuals to correlated triangles
The correlated residuals need to be simultaneously placed in the two upper triangles. This makes
sure the correlation between the residuals of the two triangles is maintained in the triangle genera-
tion process. In equations (7)-(12), we explained all steps to come from a triangle to the residuals.
Recursively solving these equations yields the following equation for deriving new triangles based
on the residuals:

Ci,j = Ci,j−1

( ri,j
bj
∗
√
kj√

Ci,j−1
+ f̂j

)
1 ≤ i ≤ n, 2 ≤ j ≤ n, {i, j ∈ N} (29)

In Equation (29), there are three unknown parameters, the cumulative claims in the previous
development period belonging to an accident year (Ci,j−1), the MAS parameter (kj) and the de-
velopment factor between two consecutive periods (f̂j). These three parameters seem strongly
related in practice, in many cases, a relatively high development factor corresponds with a rela-
tively high MAS parameter. Furthermore, the MAS parameter is related to the initial claim sizes.
To get an impression of these dependencies, it is possible to derive the three parameters from
historical datasets. More about these three parameters will be explained in Section 5.3.

An important constraint of Equation (29) is that Ci,j−1 needs to be positive. As soon as Ci,j−1
becomes negative for an accident year, it will not be possible to calculate

√
Ci,j−1 when deter-

mining Ci,j . This problem can be solved by taking (
√
|Ci,j−1|) instead of (

√
Ci,j−1). However, if

Ci,j−1 would be negative, it would be impossible for Ci,j to become positive. It is also not likely
in reality that the cumulative claims would become negative, as this would mean that the insurer
received money for the claims instead of settling claims.

In the dataset generator, it could occur that negative cumulative claims are obtained in case
there is relatively high MAS parameter, combined with a relatively low development factor, rela-
tively low initial claim amounts and an extreme negative residual. In the remainder of this section,
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we will explain the methods used to derive the parameters of (29) from real data. We will pay
specific attention to how it is possible to avoid Ci,j−1 to become negative.

5.3 Estimating the parameters
In this section, we will discuss how the parameters can be derived from a dataset containing his-
torical data. From Section 3.5.1 we know that it is not allowed to have dependencies between the
residuals of a triangle when applying bootstrapping techniques. To make sure these dependencies
are not available, the datasets first will be corrected for inflation and portfolio developments. From
the adjusted datasets, it is possible to derive the parameters, which will guide as a starting point
in the triangle generation process.

Before going into the used methods to correct the datasets, we need to determine which data
is representative for the current situation. Analysing the historical data, it becomes apparent that
the datasets containing incurred data are quite inaccurate before 2000, creating many deviations
and so significantly increasing the MAS parameter. As a result, we choose to only include the data
representing the period between 2000 and 2020 for all types of triangles. Furthermore, the AA-
triangles are generated from the available AQ-triangles, by taking the cumulative claims belonging
to the end of every year.

To make sure no dependencies exist between the residuals as a result of inflation, all claims
are represented in current money. By slightly changing the formula for continuously compound-
ing interest of Hull [2015], it is possible to set the historical claims in current money under the
assumptions that the claims are settled equally over the development period. In the following for-
mula, Cqi,j,z indicates the inflation-adjusted cumulative payments where qz denotes the inflation
corresponding to the diagonal z where Cqi,j,z finds itself in.

Cqi,j,z = Ci,j ∗ e
1
2xz ∗

I∏
k=z+1

(1 + qk) 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ z ≤ n {i, j ∈ N} (30)

With,
xz = ln (1 + qz) (31)

For the values of the inflation parameter, we used the consumer price index (CPI) [CBS, 2020]. It
is as well possible to take a more specific inflation parameter that better fits with the nature of the
HRG compared to the CPI. However, to assess whether another inflation parameter would better
fit with the HRG expert knowledge is required. So, the CPI is chosen as it gives a good indication
of the average inflation development across all HRGs.

Besides inflation, there can be other developments which create dependencies between the acci-
dent years of a triangle. This may involve portfolio growth, policy changes and/or different claim
behaviour, all potentially having a significant impact of the ultimate claims. To make sure that
these developments do not cause the accident years to be dependent on each other, the trend is
taken out of the triangles. This can be done by fitting a trendline through the data points which
minimizes the aggregated deviations between the trendline and the data points. Both a linear
as well as an exponential trendline can be constructed and the one with the highest explanatory
power (R

2
) is the one that we will use. Based on the trendline, it is possible to come up with index

numbers, which can be used to scale the historical data, to make them comply with the current
situation. For this correction, we use the cumulative claims at the end of the first development
year for both the AA- and the AQ-triangles. This makes sure, enough data are in the sample to
have insights into the portfolio developments.

From the triangles corrected for the inflation and the portfolio development, it is possible to
derive the initial claim amounts by taking the first development period. The MAS parameter can
be derived by using Equations (7) - (9). The settlement periods parameter can be derived by using
(5).
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5.4 Using the dataset generator in the simulation study
In the simulation study, we will create the triangles based on the input parameters discussed in this
section. However, to test the performance of the correlation bootstrap method and the implicit
correlation method on a wide range of triangles, it will not be possible to manually check every
created triangle. If a created triangle contains a negative cumulative payment, it will automatically
stop and continue with the next scenario.

To prevent the triangles from containing negative cumulative values, the combination of the
settlement periods parameter and the MAS parameter is important. It is most likely that negative
cumulative values occur in case of a low settlement periods parameter and a high MAS parame-
ter. In the case of the AQ-triangle, often a high MAS parameter is seen between the individual
development factors belonging to the first development period. This is not strange, if for instance
only in a couple of years there was a specific event in the first quarter, these years which contained
a specific event will have a significant other development pattern compared to the years in which
this specific event did not occur. It might as well occur that a specific event took place during the
last weeks of a quarter and most claims were not settled at the end of the quarter.

To lower the MAS parameter in the simulation model, the AQ-triangles will be generated based
on the cumulative claims at the end of the first development year. The same will happen for the
incurred triangle, as the MAS parameter in the first development periods is for the AQ-triangle
as well very high as a result of the same reason. The implication of starting the bootstrapping
process at the start of the second development year is that approximately 10% of the most relevant
residuals are deleted from the model. For the datasets created by the dataset generator, this is not
a problem as all residuals are normally distributed. In practice, if there is a high MAS parameter
in the first development periods, it is likely that there is autocorrelation available in the model. In
those cases, it might as well be necessary to start the bootstrapping process after the first year.

5.5 Output of the dataset generator
When creating a triangle based on randomly drawn residuals, it will be impossible to create a
triangle exactly containing the pre-set parameters. This can be compared to the result of a boot-
strap triangle as described in 13 - 16. The randomly placed residuals will create a slightly different
development pattern and slightly differently scale the MAS parameter. However, as long as the
real dataset does contain normally distributed residuals, the resulting parameters will not differ
too much from the preset parameter.

5.6 Summary
In this section, we explained the way the dataset generator is developed. Furthermore, we discussed
the way the data can be derived from a real dataset. Finally, we paid specific attention to the
way it can be made sure that the triangles do not contain negative values. To know whether the
outcomes of the dataset generator are in line with the constraints of the Chain Ladder method,
the implicit correlation method and the correlation bootstrap method, we will validate and verify
the generated datasets in Section 6.
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6 Model verification and validation
We describe the verification and validation process of the dataset generator and the simulation
model in this section. In the verification process, we will check if both models are rightly imple-
mented, i.e., do they perform the simulations as prescribed in the previous section. In the validation
process, we will investigate whether the output of the models is in line with the expected output
as prescribed in Robinson [2014].

The verification process is an important aspect of the simulation study, as it reduces the prob-
ability that coding errors are made and forces the researcher to overthink the methodology again.
The validation process gives insights into the accuracy and correctness of the simulation model,
which can be used to come up with an acceptable number of simulations. We will dedicate the
first part of this section to the verification of the data set generator. The second part will be
dedicated to the validation of the output of the dataset generator. In the third part, we will verify
the simulation model. In the fourth part, we will investigate how many times the triangles need
to be bootstrapped to have enough observations to derive a constant correlation estimate. In the
last section, we will analyse the impact of different residual sets.

6.1 Reproducibility
To make sure all simulations can be reproduced in exactly the same manner, it is possible to set
a fixed random seed in R and Excel. This makes sure that all randomly drawn values are drawn
in the same order. In the simulations in R and Excel, we use seed 1701. The type of seed that is
used in R is the default type, the Mersenne-Twister [Hechenleitner & Entacher, 2002]. The default
type of seed used in the Excel model is a linear congruential generator. Furthermore, the use of a
seed makes it easier to verify whether there are differences between the different simulation models
and trace back potential mistakes. The seeds of Excel and R pick random numbers in a different
order, this difference will become clear in the next section.

6.2 Validation of the dataset generator
We explained the formulas used to come from residuals to a triangle in Section 5 and these are
all derived from the formulas in Section 2. The goal of the dataset generator is to generate two
datasets with a set correlation between the residuals. To investigate whether the preset correla-
tion is also the correlation resulting from the residuals of the created datasets, we test for 10.000
datasets whether the preset correlation corresponds to the correlation obtained from the created
dataset.

In the process from residuals to a dataset, there are two occasions where the correlation between
the preset correlation and the final correlation may slightly differ. The first point is the moment
the residuals are drawn from the bivariate normal distribution. Due to the relatively low sample
size, the correlation in the sample may not exactly reflect the preset correlation. The second point
is the combination of residuals and the previous development period in (29). The formula would
work perfectly if the value in the previous development period is constant and the average of the
residuals for a development period is exactly 0, this is hardly ever the case. The combination of
previous development periods and randomly drawn residuals may slightly change the settlement
pattern, the MAS parameter and ultimately the residuals.

To know how much impact these deviations have on the preset correlation, 10.000 combinations
of triangles were constructed with a preset correlation of -0.5, 0, and 0.5. In this process, the
correlation is measured between the randomly drawn residuals from the bivariate distribution and
the residuals derived after the triangle generation process. In Table 2 are the outcomes of these
simulations.
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Table 2: Accuracy of the dataset generator.

The results of the accuracy-test are as expected, the AQ-triangles better reproduce the preset
correlation as these contain 4 times as many residuals as the AA-triangles. The standard deviation
in the results of the AA-triangles is quite high, especially when realizing that more than 30% of
the created AA-triangles will deviate even more than 1 standard deviation.

The standard deviations in Table 2 are also in line with the standard error for Pearson’s
correlation coefficient, which can be determined by Holland [2019]:

Stdevρ =

√
1− ρ2
n− 2

(32)

The AA-triangles contain 190 residuals, the AQ-triangles contain 820 residuals. By applying (32),
the results in Table 3 can be obtained.

Table 3: Expected standard error for Pearson’s correlation coefficient.

The results in Table 3 come close to the outcomes of in Table 2, so it can be concluded that
the standard deviation is within an acceptable range.

6.3 Validity of the created triangles
In Section 3, we explained the assumptions underlying the correlation bootstrap method and the
implicit correlation method. The triangles generated by the dataset generator need to fulfill these
requirements before we can use them in the simulations. To be able to derive the residuals, the
triangles need to fulfill the requirements for the Chain Ladder method. Constraints 2 and 3 of
Section 2.3.1 are easily met, as the MAS parameter and development factors need to be inserted
manually and are only adjusted slightly in the dataset generation process.

To test whether the accident years of a triangle are independent of each other, we performed
the Chi-Square test on the residuals as proposed by Bowerman [2016]. The Chi-Square test is
performed with P=0.05 on 10 incremental paid triangles with each 20 accident years. Of these
triangles, only the oldest 15 accident years are tested, as the last 5 accident years do not contain
enough observations. The 15 accident years are tested pairwise. We test H0 ’Accident year i is
independent of accident year j with P=0.05’ against H1 ’Accident year i is dependent of accident
year j with P=0.05’. In all cases, we could not reject the null hypothesis, which indicates that the
accident years are independent of each other. In practice, two accident years might be dependent
while being not, as these are randomly generated. In those cases it is best to generate another
random triangle, however, simulating with a triangle that has accidentally some dependencies will
hardly influence the results.

The same 10 triangles we used for the Chi-Square test are used to test if the development
factors are uncorrelated. For all triangles, the equation E

[
f̂2 ∗ · · · ∗ f̂N

]
= E

[
f̂2

]
∗ · · · ∗ E

[
f̂N

]
is met, indicating that there is no correlation between the development factors. So, the triangles
generated by the dataset generator fulfill the constraints of the Chain Ladder method.

In Section 3.5.1, the constraints for the correlation bootstrap method and the implicit method
are described. We will test these assumptions one by one.
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The first assumption is easily met, as the MAS-parameter and the settlement pattern are set
manually. Nevertheless, it is important to keep in mind that the variance and development factors
need to be unequal to zero. This will make sure the complete triangle can be used in the boot-
strapping process.

To test the second constraint, we performed the Durbin-Watson test to test for autocorrelation
[Bowerman, 2016]. For all 10 triangles, the first 15 accident years are used to perform the Durbin-
Watson test to make sure that there are enough residuals available. These 150 tests all yield a
test statistic between 1.5 and 2.5, which indicates that there is no autocorrelation in the triangles.
This is in line with expectations, as the residuals are randomly drawn from the normal distribution.

For the third constraint, we derived the residuals from the 10 generated datasets. The average
of the residuals is within +/- 0.05 from 0 and the variance is within +/- 0.05 from 1. As with
the correlation between the residuals, a higher number of residuals in the triangle improves the
deviations from the desired mean and variance.

To test whether the residuals are normally distributed, we used the Kolmogorov-Smirnov nor-
mality test and the Jarque-Bera test [Thadewald & Büning, 2007] [Bowerman, 2016]. In both tests,
we tested H0 ’The data follows a normal distribution with P=0.05’ against H1 ’The data does not
follow the normal distribution with P=0.05’. It is possible to reject H0 if the decision variable
resulting from the test is lower than 0.05.

For the Kolmongorov-Smirnov test, all the P-value are higher than 0.05 for all 10 triangles,
indicating that the residuals are normally distributed. By applying the Jarque-Bera test on the
same 10 triangles, the P-value is not in all cases higher than 0.05. This difference can be explained
by the nature of the tests, the Kolmonogorov-Smirnov test compares the residuals to a set of
randomly drawn numbers from the normal distribution. As the residuals derived from the triangle
are based on the same seed as the random draws from the normal distribution, this lowers the
difference between the two distributions, resulting in a higher test-statistic. Furthermore, the
Jarque-Bera test focuses on the skewness and kurtosis of the distribution of the residuals, both can
be present in the triangles if relative extreme residuals end up in the tail of the triangles. By only
including the development periods with at least 4 residuals, the tail behaviour is less present and
the Jarque-Bera test also yields P-values higher than 0.05 for all 10 triangles.

6.4 Verification of the simulation model
The verification process of the simulation model contains multiple steps. To start the verifica-
tion process, the code in R was first made more efficient, generalizing the functions and avoiding
unnecessary loops. To make sure all functions used were implemented correctly, we checked the
description of the functions again to avoid the risk of wrong interpretation of the functions. We
also compared the outcomes of the functions to the outcomes of the Excel sheet of England [2003]
in which Mack’s bootstrapping technique was already worked out.

As a final check, we rebuilt the simulation model developed in R by extending the Excel sheet
of England [2003] with the correlation bootstrap method and the implicit correlation method.
10 different datasets are created in the dataset generator and simulated in R and Excel. The
bootstrapping process will be performed in a slightly different order in both programs as a result
of the different seed that is used in R and Excel, but as the same triangles are used, this may not
have too much impact on the outcomes of the simulations. The bootstrapping process is repeated
100.000 times in both models. In Table 4 are the resulting correlation estimates of the 10 simulation
runs.
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Table 4: Correlation estimates Excel model vs outcomes R model.

For the correlation bootstrap method (CBM), it can be concluded that the difference between the
row containing the results from Excel and the rows containing the results from R are within an
acceptable range. Only in the case of the 10th dataset, a relatively high deviation can be seen.
However, this difference is likely the result of the different used seeds. For the implicit correlation
method, the 4th and the 10th dataset generated a relatively high difference. To make sure that this
difference is not created by a programming error, we bootstrapped both datasets as well using seed
1702 instead of 1701, this results for both datasets in a difference of 0.03. So, it can be concluded
that there are no significantly different outcomes between the model developed in R and the model
developed in Excel.

6.5 Calibration of the simulation model
To determine the number of simulations, we measured the standard deviation in the outcomes by
performing 100 times 10.000, 20.000, 50.000, and 100.000 simulation runs for the same dataset.
This process is performed for an AA-triangle and an AQ-triangle. In Table 5, the results of these
simulations can be found.

Table 5: Standard deviation at different number of simulations.

From Table 5, it becomes clear that the standard deviations decreases as the number of simu-
lation runs increases. Based on these results, we decide to use 100.000 simulation runs for every
simulation. A higher number of simulation runs is possible, but this increases the run-time of the
simulation model significantly, reducing the number of simulations that can be performed during
the available simulation time. It can be expected that 99.7% of the outcomes will be within 3
times the standard deviation of the mean as it is assumed the correlation estimates are normally
distributed, which would mean that the maximum deviation for the AA-triangle in the case of the
implicit correlation method would be 0.042. This will be taken into account when analysing the
results in Section 7.

6.6 The impact of different residual sets
The first parameter we will test is the impact different residual sets have on the correlation estimates
when keeping the other parameters equal. The parameters used for this test are of the dataset
described as “Long tail” in Section 4 at the correlation level of 0, as the deviation might be the
highest around this correlation level according to (32). In Tables 6 and 7 the outcomes of 10
pairs of triangles containing the “Long tail&Long tail” parameters are depicted to get an idea of
the deviations per residual set. In the first row of the tables are the correlation derived from
the residual set which was drawn from the bivariate distribution as explained in Section 5.1. So,
the first row of the tables contains the input correlation, the second and third line the output
correlation estimates after the methods are used.
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Table 6: Correlation estimates AA-paid triangles with different residuals.

Table 7: Correlation estimates AA-incurred triangles with different residuals.

As a result of the same used seed and the equal dimensions of the AA-triangles used in Tables 6
and 7, the correlations obtained from the residuals in the bivariate-row are equal. It also becomes
apparent that the differences between the bivariate row and the correlation bootstrap method
(CBM) row are relatively small in both tables. Only at the fourth simulation, there is a significant
difference between the correlation estimate in the bivariate-row and the CBM row.

The difference between the correlation estimates in the bivariate-row and the correlation ob-
tained by the implicit correlation method (ICM) are significantly bigger compared to the differences
in the case of the correlation bootstrap method. In almost all cases, the difference between the
correlation estimates in the bivariate row and the ICM row are higher for the incurred triangles
compared to the paid triangles. This difference can most likely be explained by the fact that the
MAS parameter is higher for the incurred triangles. A higher MAS parameter results in a higher
SCR and so potentially gives a less smooth tail, which could cause the relative high differences to
occur.

However, when analyzing the correlation estimate at different percentiles, it becomes clear that
this estimate is quite smooth for all tested percentiles as can be seen in Table 8. The values in
Table 8 are of the same run as the first run of the AA-incurred simulation run of Table 7. A
comparable smooth pattern can be seen at all the other simulation runs and this emphasizes that
the number of simulations is enough to get an accurate estimation at the 99.5% percentile.

Table 8: The correlation estimate at different percentiles.

The difference between the two methods may be explained by a different MAS parameter for
the combined triangle in the implicit correlation method compared to the correlation bootstrap
method, resulting in different P&L estimates and so in a significantly different correlation estimate.
We will investigate this further in Section 7.

Table 9: Correlation estimates AQ-paid triangles with different residuals.
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Table 10: Correlation estimates AQ-incurred triangles with different residuals.

In general, the observations for the AA-triangles hold also for the AQ-triangles as can be seen in
Table 9 and Table 10. Notable is that the differences are generally smaller, which can be explained
by the increased number of residuals used in these triangles. The impact of individual extreme
residuals on the P&L is smaller in these triangles, which creates a smoother tail pattern.

From the analysis of the residual sets, we can conclude that the residual sets may have a
significant impact on the correlation estimates obtained by the correlation bootstrap method and
the implicit correlation method. Especially for the AA-triangles, this observation needs to be taken
into account when analyzing the results in Section 7. To investigate the impact of the individual
parameters on the correlation estimates in Section 7, every table will start with the correlation
estimates obtained from the residuals of the datasets used, indicating the correlation estimate at
the base scenario. If the correlation estimate changes significantly, this will be the result of the
parameter change. If there is almost no deviation, we can conclude that a parameter has only a
little or no impact on the correlation estimates.

6.7 Summary
In this section, we performed the verification of both the dataset generator and the simulation
model. We can conclude that there are no significant differences between the outcomes of the
simulation model in Excel and the simulation model in R. Secondly, we investigated what the
accuracy of the dataset generator is. We can conclude that the obtained differences are in line
with the expected differences as a result of the limited sample size. To make sure the differences
which occur as a result of this limited sample size do not influence the analysis in Section 7, the
correlation estimates belonging to the residual sets will be available in the result tables. Thirdly,
we investigated whether the dataset generator creates datasets that fulfil the assumptions. This
is the case, so we can use the dataset generator to create datasets for the simulations. Fourthly,
we determined that the triangles will be bootstrapped 100.000 times before the SCR is calculated,
to make sure that there are enough observations in the tail. Lastly, we investigated the impact
of different residual sets. We concluded that the deviations from the intended correlation can be
quite high, especially for the implicit correlation method. To make sure the other parameters can
be analysed properly, every result table in Section 7 contains a base scenario. This makes sure
that it is possible to compare the differences in the simulation outcomes.
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7 Simulation results
In this section, we discuss the simulation results. We will follow the same order in this section
as the order in which the simulation study is performed. Firstly, we test the parameters one by
one. Secondly, we will investigate whether certain combinations of parameters create a higher
deviation from the preset correlation compared to their individual deviation. Thirdly, we challenge
the assumptions of the correlation bootstrap method and the implicit correlation. Finally, we
translate the outcomes to the reality and we discuss their implications.

7.1 The impact of the MAS parameter, the settlement periods and the
initial claim amounts

With the results of the impact of different residual sets known, it is possible to individually check
the impact of the other parameters which can be changed in the dataset generator. To get more
insights in the outcomes of the correlation bootstrap method and the implicit correlation method, a
grouping-method will be used. We will group the simulation results based on the difference between
the simulation result and the correlation derived of the residuals after they were drawn from the
bivariate normal distribution. Three groups are made, deviations smaller than 0.05, deviations
between 0.05 and 0.1, and deviations bigger than 0.1. In Table 11 an example table of the output
of the simulations is given. In Table 12, the deviations between the simulation output and the
correlation measured after the residuals are displayed, making it easier to analyse the simulation
outcomes. These two tables guide as a reading example to make sure the simulation outcomes are
interpreted correctly.

Table 11: Example correlation table. Table 12: Example result table.

In the most left column of Table 11 are the correlation levels, as described in Section 4. On
the right side of the correlation column, is the column containing the correlation estimates derived
from the residuals after they were drawn from the bivariate normal distribution with the corre-
lation from the most left column. From Section 6.4 we know that the deviation between these
first two columns can be quite high, so it is important to known this deviation when analyzing
the result. In the remainder of Table 11 are the correlation estimates for the correlation bootstrap
method (CBM) and the implicit correlation method (ICM) per tested situation. For example, if
Table 11 would represent the correlation estimates from varying the MAS parameter in the dataset
generator, the results below Long&Long would represent the outcomes of a simulation in which a
low MAS parameter was used for both triangles. So, the correlation estimate of -0.26 below CBM
of Long&Long represents the measured correlation from the simulation in which the residuals con-
tained a correlation of -0.3.

In Table 12, the difference between the correlation obtained from the triangle before it was
bootstrapped and the correlation obtained after the triangle was bootstrapped is displayed. Tak-
ing the same example of Table 11, the difference between -0.3 and -0.26 is 0.04, so this is the
number below CBM at the -0.25 correlation level in Table 12. If the difference is within -0.05 and
0.05 of the correlation derived from the residuals, we assume the correlation estimate is accurate
enough and does not get a color. If the difference is between -0.1 and -0.05 or 0.05 and 0.1, the
deviation gets a light orange color indicating a moderate difference. If the deviation is less than -0.1
or more than 0.1, the correlation estimate gets a dark orange color indicating a strong difference
from the correlation derived from the residuals.
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In the remainder of this section, the results will be presented in the form of Table 12, to make
it easier to interpret the results. We introduced the data used in the simulations briefly in Section
4, but this needs extra attention before the results can be explained correctly.

In Table 13, the parameters are compared. So in case of the MAS parameter of a paid triangle,
the triangle denoted as the “Long tail” triangle has a relatively low MAS parameter compared to
the triangle with a relatively “Short tail”. In case of the settlement pattern in the paid triangles,
the settlement pattern in the triangle with a “Long tail” has a relative stable settlement pattern
whereas the triangle with a “Short tail” has a more unstable settlement pattern. For the initial
claim amounts, the variance is measured between the accident years, in case of the triangle with a
“Long tail”, the variance is relatively low compared to the variance in the initial claim amounts of
the triangle with a “Short tail”.

Table 13: Data used in the simulation runs.

In the simulation performed with an AQ-paid triangle, the first three development periods
are excluded from the model, taking the cumulative claims at the end of the fourth quarter as
the starting point for the simulation. This is done to exclude the first 3 observations from the
MAS vector as these are relatively high and resemble the real world in a better way, in which the
first development year often needs to be excluded as a result of the possibility of seasonal effects,
creating autocorrelation. In Appendix E, the differences between the outcomes of the AQ-paid
triangle with and without the first development year can be analyzed. Furthermore, the outcomes
of Sections 7.1.1, 7.1.2 and 7.1.3 are visualized in a different order, making it easier to see the
development in a particular triangle. Lastly, Appendix E contains the outcomes as given in Table
11.

7.1.1 The MAS parameter

The first parameter we test, is the MAS parameter. In every simulation, the settlement periods
parameter and the initial claim amounts are taken from the dataset which corresponds to Long
tail&Long tail, as these input parameters have the lowest possibility to yield negative cumulative
claims. For every type of triangle, the first tested situation contains the MAS parameter of the
dataset containing a low MAS parameter, in the second simulation run the MAS parameter of the
dataset containing a high MAS parameter is taken and in the third simulation one triangle got the
low MAS parameter and the other the high MAS parameter. In Tables 14 – 17, the outcomes for
the simulations in which only the MAS parameter is changed are shown.

Table 14: AA paid – MAS parameter. Table 15: AQ paid - MAS parameter.

Table 16: AA incurred – MAS parameter. Table 17: AQ incurred - MAS parameter.
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Overall, we can conclude that the largest differences occur in the simulations in which a triangle
with a low MAS parameter and a triangle with a high MAS parameter are simulated based on the
number of (dark) orange coloured instances. In the simulations with AQ-triangles there are less
deviations compared to the AA-triangles, but if there is a deviation these seem to deviate more
compared to the deviations in the AA-triangles. Furthermore, the correlation bootstrap method
is performing substantially better compared to the implicit correlation method. Only in a lim-
ited number of cases, the implicit correlation method performs slightly better than the correlation
bootstrap method.

It is remarkable that the correlation estimates in the Long&Long column are not seen in the
other columns. This means that the impact of the residuals set is wiped out by the impact of the
MAS parameter.

Another way to look to the outcomes of the simulation is by looking to the difference between
the expected SCR and the obtained SCR of the simulation study. The expected SCR can be
determined based on the correlation coefficient in the bivariate column and the SCR of the two
individual triangles. By rewriting (23), we find the following equation.

SCRx,y =

√
(2ρSCRxSCRy + SCRx

2 + SCRy
2) (33)

By applying (33) on the results of Table 15, we can determine the expected SCR for every sim-
ulation. To be able to compare the differences between the expected SCR and the SCR of the
simulation study with each other, these are translated to percentages.

Table 18: AQ paid - MAS parameter. Table 19: Difference in the obtained SCR.

In Table 19 are the percentage differences between the expected SCR and the obtained SCRs of
the simulation study belonging to the results in Table 18. This gives some intuition into the impact
a wrong estimate has on the SCR. For all result tables in Section 7.1, the percentage difference
table can be found in Appendix E.

7.1.2 The settlement periods parameter

The same method as we used for the MAS parameter, is applied for the settlement periods param-
eter. So, all parameters are kept constant at the Long tail&Long tail level, whereas the settlement
pattern is varied per simulation run.

Table 20: AA paid – Settlement periods. Table 21: AQ paid – Settlement periods.

Table 22: AA incurred – Settlement periods. Table 23: AQ incurred – Settlement periods.
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Compared to the results of Section 7.1.1 the deviations for the development factors are quite
stable. Just looking to the orange color it becomes clear that the difference in settlement pattern
hardly changes the correlation estimates. The difference observed between the results in the CBM
columns and the ICM columns can be explained by the impact of the residual sets, which we
already investigated in Section 6.6.

7.1.3 The initial claim amounts parameter

The initial claim amounts have a lot of impact on the SCR, especially when the initial claim
amounts are characterized with a lot of variance. In Tables 24-27 are the outcomes of the simu-
lation runs in which we simulated the impact of the the initial claim amounts parameter. These
simulations are performed in the same way as for the MAS parameter and the settlement periods
parameter.

Table 24: AA-paid – Initial claim amounts. Table 25: AQ-paid – Initial claim amounts.

Table 26: AA incurred – Initial claim amounts. Table 27: AQ-incurred – Initial claim amounts.

The results in Tables 24 - 27 show a similar pattern as the results in Section 7.1.2. This indi-
cates that the initial claim amounts have almost no impact on the correlation estimates and the
differences can be attributed to the residual set as described in Section 6.6.

More remarkable are the outcomes in Table 27, where the Long tail&Short tail columns show
a deviation from the Long tail&Long tail and Short tail&Short tail columns. Especially for the
implicit correlation method, the outcomes are completely different compared to the other outcomes.
To get more insights in this specific outcome, the parameters for the log-normal distribution of the
initial claim amounts are derived in R from both datasets and three additional simulation runs are
performed at every correlation level. In Table 28 the outcomes of this simulation can be seen.

Table 28: Varying the initial claim amounts.

The results in Table 28 are worse compared to the results in Table 17. This can be attributed
to the MAS parameter which is not adjusted to the randomly drawn initial claim amounts. If there
is a relative low number of extreme observations in the initial claim amounts, the MAS parameter
which was meant for the relative bigger initial claim amounts will scale the residuals much more
than intended, creating bigger differences from the average development factor.

The outcomes from the simulations in which one parameter was changed in every simulation
run shows that the MAS parameter and the residual set have the most impact on the correlation
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estimates. Furthermore, we can conclude that if there is a higher MAS parameter, the more the
outcomes differ, especially when combined with a triangle with another distribution for the initial
claim amounts. The settlement pattern hardly has any impact on the outcomes of the simulations.
Lastly, we can conclude that the correlation bootstrap method performs substantially better than
the implicit correlation method in all circumstances.

7.2 Combined parameters
With the obtained knowledge of the individual impact of the different parameters, it is also inter-
esting to see whether certain combinations of parameters create more or less differences as in the
individual examples in Section 7.1.

The situations which we are going to simulate follow on the simulations performed in Section
7.1, now the parameters are changed in pairs to see whether some combinations create stronger or
weaker deviations. The situations are displayed in Table 29 and will be simulated for every type
of triangle.

Table 29: Other situations simulated.

The exact results of these simulations can be found in Appendix F. In general, it can be con-
cluded that the results for the individual parameters also hold for the combination of parameters.
In almost all cases, the results resemble the correlation estimates which were already visible in
Section 7.1. This underpins the results of Section 7.1 that most deviations are created when the
two triangles contain a different MAS parameter.

7.3 Impact volume of SCR
A complication of different MAS parameters is that it is likely that the SCR estimates are quite
different in terms of volume. For example, if the portfolio size of portfolio A is 10 times as big as
the size of portfolio B, it is likely that only the extreme outliers of portfolio B may have an impact
on the residuals of the combined portfolio. If the MAS parameter of the combined model increases
or decreases slightly compared to the MAS parameter in portfolio A, it is possible that the SCR
changes slightly having an extreme impact on the correlation estimate.

Before the simulations are performed, it is good to have a feeling by the impact a 1% difference
in the SCR of portfolio A, the SCR of portfolio B and the SCR of portfolio A+B have on the
correlation outcomes. In Table 30 the impact is showed in case there is a lot of difference between
SCR A and SCR B, in Table 31 the impact of a 1% difference is showed in case SCR A and SCR
B are of a comparable volume. The correlation in these tables is determined with (23).

Table 30: Impact of a 1% difference in SCR if SCR A is 10x bigger than to SCR B.
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Table 31: Impact of a 1% difference in SCR if SCR A and SCR b are equal.

As can be seen in Tables 30 and 31, the impact of an 1% change in the SCR has much more
impact on the correlation estimate in case there is a lot of difference in the volume of SCR A
and SCR B. Especially, when the SCR of portfolio A+B is changed, the impact on the correlation
estimate is significant. This same effect may occur when two portfolios are added and the MAS
parameter is slightly changed.

To test whether the correlation estimate becomes better if the SCRs are of a comparable size, the
simulations in which the MAS parameter was tested with the Short tail&Long tail MAS parameter
are tested again. But now, the triangle containing the lowest SCR is scaled by the factor:

Scaling factor =
SCRhighest
SCRlowest

(34)

This scaling is allowed, as it does not influence the residuals and so should still contain the preset
correlation.

Table 32: AA-paid correlation estimates. Table 33: AA-Incurred correlation estimates.

Table 34: AQ-paid correlation estimates. Table 35: AQ-Incurred correlation estimates.

In Tables 32-35 the correlation estimates before and after the scaling took place can be observed.
In case of the AQ-Paid triangle the correlation estimate were in most cases slightly better after
the scaling took place. In case of the AQ-incurred triangle, the scaling made the outcomes in most
cases worse than they were before the scaling. In case of the AA-triangles, the scaling improved the
outcomes of most of the incurred triangles, however, in case of the AA-paid triangles the outcomes
became worse.

7.4 Robustness of the models
To check how much the correlation estimates differ if another last development period is added, we
added four different diagonals to the triangles. The four diagonals are determined by bootstrap-
ping the triangle belonging to the 0-correlation level for the Long tailLong tail triangle from 7.1.1,
and creating a lower triangle. From this lower triangle, the first diagonal is added to the original
dataset for the AA-triangles, in case of the AQ-triangles four additional triangles are added. This
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will give insights in how robust the correlation estimates are when new data is added to the model.
The robustness of the models can be important in practice, as it is not desired to have a highly
fluctuating correlation parameter over time.

In Tables 36 - 39 the outcomes of the robustness tests can be seen.

Table 36: AA-paid robustness check. Table 37: AA-incurred robustness check.

Table 38: AQ-paid robustness check. Table 39: AQ-Incurred robustness check.

Looking to the results in Tables 36 - 39, a difference can be noted between the results of the
AA-triangles and the AQ-triangles. Based on these observations, it can be concluded that the
correlation bootstrap method creates relatively stable results for all four types of triangles. For
the implicit correlation method, the results are relatively stable for all triangles except for the
AQ-incurred triangle.

7.5 Outliers
To test the impact of outliers, we simulated three scenarios on all four types of triangles. In the
first scenario, a triangle is picked which was used in Section 7.1 in the Long&Long scenario at the
0.75 correlation level. This scenario will serve as the base scenario. In the second scenario, one
outlier is added which represents an increase of 3 times the initial value in one of the two triangles.
This will create two extreme residuals, namely the residual which lets the claims triple and the
up following residual which lets the claims decrease to the initial value. In the third scenario a
complete accident year of one dataset will be adjusted to create 10 extreme residuals. In Table
40 are the outcomes of the three scenarios for an AQ-paid triangle in which a specification to the
capitals is made.

Table 40: Impact of outliers on the correlation estimate.

To interpret the results of Table 40 correctly, it is good to understand the numbers in the first
scenario correctly. The values in the CBM and ICM column represent the correlation estimate
and not the deviations as in previous tables. The values in the SCR1, SCR2, SCR3 CBM and
SCR3 ICM give a percentual representation of the development of the SCR, taking scenario 1 as
the base scenario. In this base scenario, SCR1 and SCR2 are quite comparable in volume, SCR3
is approximately 1.8 times SCR1.

When we add an outlier in one triangle and not in the other, it is expected that the correlation
will go down between the two triangles. Taking this into account, the outcomes of the correlation
estimate for the correlation bootstrap method in scenario 2 and scenario 3 are not surprising. As
more extreme residuals are placed in scenario 3 than in scenario 2, it is expected that the correla-
tion is lower in scenario 3.
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In case of the implicit correlation method, the outcomes are more counterintuitive. Where in the
case of the correlation bootstrap method it did still hold that SCR3 ≤ SCR1 +SCR2, in scenario
3 of the implicit correlation method SCR3 > SCR1 + SCR2 is the case, creating an unrealistic
correlation estimate which is not between -1 and 1. The reason SCR3 is greater than 1 is in the
way SCR3 is determined. Where a relative extreme SCR3 can be seen as a conditional probability
of P (SCR2 = extreme|SCR1 = extreme) in the correlation bootstrap method, this conditional
probability is lost in the implicit correlation method as SCR3 is individually bootstrapped.

Table 41: Results of adding outliers to the dataset.

Based on the outcomes of the outlier test in Table 41, it can be concluded that the correlation
bootstrap method performs significantly better if outliers are present in the dataset compared to
the implicit correlation method. Furthermore, it becomes clear that the implicit method performs
better on the incurred triangles than the paid triangles. To get a better understanding of the
impact one outlier has on the rest of the residuals in a development year, a step by step description
is added in Appendix G. The impact on the correlation estimate is the highest if it occurs in the
first development years, as the most residuals are then affected by the outlier.

7.6 Challenging the assumptions
Now we know the performance of both methods within the assumptions underlying the bootstrap-
ping techniques, it is also interesting to see the impact on the correlation estimates when the
assumptions are violated. Firstly, we will challenge the normality assumption of the residuals.
Secondly, we will investigated how well it is possible to estimate the correlation if triangles with a
different tail length are used.

7.6.1 Normality

The outcomes for the outlier test can also be used as a violation of the normality assumption.
By adding extreme outliers to the dataset, the residuals may become skewed and the normality
assumption in which the kurtosis needs to be close to 0 is lost [Kaas et al., 2008]. To simulate
the impact of a violation of the normality assumption, we draw the residuals from the gamma
distribution. The residuals cannot directly be drawn from the gamma distribution as the gamma
distribution only yield positive outcomes. It is as well possible to use the lognormal distribution
and the student-t distribution to generate the residuals which contain a skewed distribution. The
gamma distribution is chosen as this distribution is used to model the simulation error in the
general bootstrapping process.

To generate the residuals, we first need a vector with values of the gamma distribution. To
create these, a scale parameter of 1 and a shape parameter of 0.5 are chosen, as this generates a
sample which is clearly skewed. Secondly, a vector with 0 and 1 values is drawn from the binomial
distribution. Lastly, the residual set is determined based on (37), which makes approximately half
of the residuals negative.

X ∼ Gamma(1, 0.5) (35)

Y ∼ Binomial(N, 0.5) (36)

Z ∼ X ∗ Y + (−1 +X) ∗ Y (37)

The correlation is measured at the same correlation levels as the situations in Section 7.1. To create
the correlated residuals from the gamma distribution, a copula approach is used [Hull, 2018].

The simulations in which we draw the residuals from the gamma distribution, contain the same
parameters as in the simulations in which the MAS parameter was investigated in section 7.1.1.
The result of these simulations can be found in Tables 42-45.

43



Table 42: AA paid using gamma distribution.
Table 43: AA incurred using gamma distribu-
tion.

Table 44: AQ paid using gamma distribution. Table 45: AQ incurred gamma distribution.

Overall, the deviations in Table 42-45 became a slightly worse compared to the outcomes of
Table 14-17. However, in most cases the correlation estimate hardly differs. This can be explained
by the same reason as already discussed in the previous section, as outliers will come out much
less extreme than they went into the triangle. This can be seen in Figures 14 and 15.

Figure 14: Residuals Gamma ∼ (1,0.5).

Figure 15: Residuals from triangle with Gamma residuals.
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The residuals in Figure 15 are less extreme compared to Figure 14. However, by performing the
Kolmongorov-Smirnov normality test on the residuals in Figure 15, it becomes apparent that the
residuals are far from normally distributed. This can be explained by the same phenomena that oc-
curred in the previous section about outliers. In Appendix G, this process is step by step explained.

In Table 42, four triangles contained a negative cumulative payment. As explained in Section
5, it is then not possible to complete the triangle and so use it in the simulation model. This is
why there is a ‘na’ in four situations. In Appendix H, the results of a comparable simulation in
which 5 scenarios are performed at the 0-correlation level can be found. These outcomes give more
insights in the impact of the different sets of residuals. Also when the residuals are chosen from the
gamma distribution, comparable deviations can be seen as in Section 6.6 where different residuals
sets containing the same correlation parameter are used.

7.6.2 Different tail lengths

In practice the tail lengths are hardly ever the same. With the tail length we mean the number
of development periods it takes before 99.5% of the claims are settled. Extending the tail of the
shortest triangle results in zero residuals, which will not work in the correlation bootstrap method.
To be able to compare the outcomes, we will investigate how important it is to take the complete
tail in the correlation estimating process into account. To mimic the situation, we will use a
dataset containing the parameters of the long triangle and a dataset containing the parameters
of the short triangle, the correlation between the datasets is estimated based on four till eighteen
years of development periods. We will perform this test on three AQ-paid triangles, one containing
similar parameters, one containing opposite parameters and one containing real data.

Figure 16: Similar parameters. Figure 17: Opposite parameters.

In Figure 16, in which similar parameters are used in the created triangles, the correlation
estimate is quite constant over the different number of development periods included. In Figure
17, the situation in which opposite parameters are used, it becomes clear that some time is needed
for the implicit correlation method to come to a steady state.

The fact that the first development periods have the most impact on the correlation estimates
is not surprising. The most uncertainty is in the development periods with a high MAS parameter
and these are mostly located in the first development periods. Looking to the SCR, approximately
70% of the uncertainty is located in the first four development years (i.e. 16 development periods in
the AQ-triangle), thereafter a relative high MAS parameter can mostly be dedicated to one event.
In case of the two investigated triangles, the portfolio with a long tail has 75% of the uncertainty
in the SCR located in the first four development years, the portfolio with a short tail has 65% of
the uncertainty located in the first four development years.
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Figure 18: Two real datasets.

By performing the simulation with two real datasets, it becomes apparent that the correlation
estimate is quite stable after the first seven years. At this point, approximately 80% of the uncer-
tainty is covered in both datasets. In line with what was already observed in Figure 16 and Figure
17, it is not necessary to include the complete tail to get an accurate correlation estimate. The
remarkable thing about this observation is, that it is possible to determine the correlation between
triangles with a long and a short tail. As it is expected that both triangles are uncorrelated, it can
again be concluded that the correlation bootstrap method comes closer to this expectation than
the implicit correlation method.

7.7 Implications implementation in practice
Except for the previous section, all simulations are performed with datasets generated by the
dataset generator. In practice, the datasets will hardly ever be perfectly normally distributed,
especially further in the tail. This is probably as well a reason for the correlation in Figure 18 to
decline after the 16th year. Taking the complete dataset containing 35 years of data and deriving
the residuals, the plots in Figure 19 and Figure 20 can be made.

Figure 19: Residuals long tail. Figure 20: Residuals short tail.

In Figure 19 and 20 are on the y-axis the values of the residuals, on the x-axis the residual
number. This number can be interpreted in the following way, the residuals belonging to the first
development factor are numbered 1 till 35, the second set of residuals belonging to the second
development factor have got the number 36 till 70 etcetera. As can be seen in Figure 19 and
Figure 20, the higher the residual number, the lesser the residuals seem normally distributed.

So to apply the correlation bootstrap method and the implicit correlation method, it is impor-
tant to take the number of development periods as short as possible to have as few as possible
non-normally distributed residuals in the dataset but at the same time have enough residuals to
determine an accurate correlation estimate.

Furthermore, in practice it will often not be possible to use the residuals of the first development
year in the AQ-triangles, as these may contain autocorrelation as a result of seasonal effects. As
already discussed earlier, this also improved the correlation estimates for the AQ-triangles as a
result of the lowered MAS parameter.
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7.8 Summary
The section started with an investigation into the parameters which have the most impact on
the correlation estimates when using both methods. For the correlation bootstrap method, the
MAS parameter has clearly the most impact on the outcomes. In case of the implicit correlation
method, the MAS and the residual set both have a substantial impact on the correlation estimates.

Secondly, we investigated whether scaling the triangles to get comparable SCR estimates does
improve the correlation estimates. This improved the correlation estimates in case of the AA-
incurred and the AQ-paid triangles but did worsen the correlation outcomes for the AA-paid and
AQ-incurred triangle, making it hard to say whether it really improves the outcomes.

Thirdly, we investigated how robust the methods are, i.e., how much the correlation changes
if an additional year is added. In case of the AA-triangles, both methods performed relatively
well. The correlation estimates over the different runs are close to each other. In the case of the
AQ-incurred triangle, the correlation bootstrap method performed substantially better than the
implicit correlation method. Two out of four observations had a deviation more than 0.05 from
the expected correlation estimate. The difference for the AQ-paid triangle are comparable to the
outcomes of the AA-triangles.

Fourthly, we investigated what the impact of outliers is on the correlation estimates. In this
test, the correlation bootstrap method performed significantly better compared to the implicit
correlation method.

Fifthly, we challenged the assumptions belonging to the used methods. The first assumptions
we challenged, is the impact not normally distributed residuals have on the correlation estimate.
The outcomes are a bit worse compared to the tests with normally distributed residuals, but overall
the patterns are quite comparable. Especially when taking into account that the MAS parameter
we used, is of a dataset having normally distributed residuals, making it possible that the out-
comes would further improve if an accurate MAS parameter were used. Secondly, we investigated
what the impact of different tail lengths is on the correlation estimates. We determined that an ac-
curate correlation estimate can be determined if 80% of the uncertainty is covered in both triangles.

Lastly, we discussed what needs to be taken into account when applying both methods in
practice including an analyses of two real datasets.
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8 Conclusion and recommendations
This section starts with answering the research questions proposed in Section 1. The section will
continue with a general conclusion followed by the scientific contribution of this research. Further-
more, we will discuss the limitations of this research. The section finishes with the recommendations
and proposals for future research.

8.1 Conclusions
In Section 1, the research question was formulated which would be answered by 4 sub-questions.
In this section, the sub-questions will be answered one by one, finishing with the research question.

Sub-question 1: What is known in the literature about the correlation bootstrap
method and the implicit correlation method in determining the correlation parame-
ter between reserving triangles?

In Section 2 and Section 3 the findings from the literature are described. There are plenty of
articles in which the correlation bootstrap method is described. However, the method is performed
slightly differently in every paper. Furthermore, most papers about the correlation bootstrap
method are written between 1990 and 2010, before Solvency II was introduced. The capital re-
quirements proposed by Solvency II are stricter compared to the regulations of Solvency I, making
the accuracy of the correlation estimate even more important nowadays.

The implicit correlation method is hardly described in the literature. The method uses some
aspects of the rank correlation method proposed by Brehm [2002] and was extended by Kirschner
et al. [2002], but is significantly different from the method used.

Underlying both methods investigated is the bootstrapping technique, on which numerous pa-
pers are written. This literature is used to investigate what assumptions need to be fulfilled to be
able to apply the bootstrapping techniques.

Sub-question 2: How accurate are the methods able to derive the correlation from
datasets of which the correlation is known and what is the impact of outliers in the
datasets for paid and incurred triangles?

To answer this sub-question, we developed a dataset generator. With the dataset generator,
it is possible to create a high variety of triangles based on the parameters: correlation between
residuals, the average development factors, the initial claim amounts and the MAS parameter.
This makes it possible to construct new triangles based on real data, of which it is known that the
residuals follow the intended distribution and make sure that it is possible to construct datasets
containing different correlation levels.

With the datasets we generated in the dataset generator, it was possible to measure the impact
of the individual parameters by changing one parameter at a time. In the case of the correlation
bootstrap method, the parameter with the most impact is the MAS parameter. In the case of the
implicit correlation method, the MAS parameter and the residual set have the most impact on the
correlation estimates.

When comparing two triangles that contain the same MAS parameter, the correlation esti-
mates are in almost all cases quite accurate, especially for the correlation bootstrap method. In
case two different MAS parameters are used, the correlation estimates differ substantially more.
In the AA-paid triangle, these deviations are the lowest followed by the AA-incurred triangle, the
AQ-paid triangle, and lastly the AQ-incurred triangle which performed substantially worse.

To make sure the MAS parameter is as low as possible, the datasets from which the parameters
are derived are corrected for inflation and the trend. Furthermore, the simulation error was not
included in the calculation of the SCR. This was excluded as the correlation between the residuals
might partly be lost when a gamma distribution is used to skew the outcomes. Lastly, the devel-
opments during the first development year are excluded for the AQ-triangles, as these contain a
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high MAS parameter and potentially autocorrelation in practice.

Table 46: Number of simulations in which the correlation estimate differs more than 0.1 from the
preset correlation.

Another way to look to the results, is by counting the number of instances in which the result-
ing correlation differed more than 0.1 from the preset correlation. In Table 46, these results can
be found. The results for the correlation bootstrap method are substantively better compared to
results of the implicit correlation method.

Sub-question 3: How accurate are the correlation estimates if the assumptions of the
methods are violated?

To test the importance of the assumptions belonging to the bootstrapping technique, tests are
performed with outliers in the dataset, gamma-distributed residuals, different tail lengths, and it
is discussed what the impact of autocorrelated residuals and dependent accident years would be
on the correlation estimates.

In the outlier test, the correlation bootstrap method performed significantly better compared
to the implicit correlation method. Whereas the correlation decreased as a result of the added
outliers in the correlation bootstrap method, the correlation increased significantly in the implicit
correlation method reaching correlation estimates bigger than 1.

In the test with gamma-distributed residual instead of normally distributed residuals, the out-
comes of the correlation bootstrap method are comparable to the outcomes of the simulations
with normally distributed residuals. In the case of the implicit correlation method, the results are
slightly worse compared to the outcomes of the simulations with the normally distributed residu-
als. Notable is the way extreme residuals are down-scaled as a result of the changing development
vector and increased MAS parameter. This makes sure the variance of the residuals stays close to
1 and the average of the residuals stays close to 0.

Table 47: Results of the tests in which the assumptions are violated.

In Table 47, an overview is given in which we see how well the methods performed to each
other. As in Table 46, the correlation bootstrap method performed equally good or better than
the implicit correlation method.

The impact of autocorrelation and dependent accident years are not simulated as it is logical
that these dependencies will vanish when a bootstrapping approach is used. This will lead to an
inaccurate SCR and so to an inaccurate correlation estimate. We can conclude that autocorrela-
tion and dependent accident years are not allowed in the triangles when performing the simulations.

Sub-question 4: How well are the methods capable of determining the correlations
between reserving triangles with heterogeneous characteristics?

As already discussed in Sub-question 2, the MAS parameter has the most impact on the de-
viations. However, the observations are often still quite close to the pre-set correlation, especially

49



for the correlation bootstrap method. The MAS parameter is also the parameter that will differ
the most between triangles with heterogeneous characteristics. The impact of the differences in
the size of the SCR is limited, so this does not form a problem for the obtained correlation estimates.

Specific attention was paid to the comparison of two triangles with different lengths of the
development pattern. It could be concluded that only 80% of the uncertainty needs to be covered
in both triangles to get an accurate correlation estimate. In case more development periods are
needed to fulfil this 80% requirement than there are valid development periods available in the
other triangle, a lower percentage can be taken but this correlation estimate is more uncertain.

The biggest concern in comparing triangles with heterogeneous characteristics is the number
of normally distributed residuals. Dependent on the settlement pattern, at some time the devel-
opments resemble one-time events, increasing the MAS parameter and shifting zero-residuals to
non-zero residuals while there is only one deviation. These non-zero residuals are not wanted in the
bootstrapping process as these do not represent actual developments. Especially for AA-triangles
with a short tail, it might be hard to collect enough normally distributed residuals to get an accu-
rate representation of the potential developments in the upcoming year.

“How accurate are the correlation bootstrap method and the implicit correlation
method when estimating the correlation between reserving triangles and how sen-
sitive are the correlation estimates to data quality, outliers, and a violation of the
assumptions of these methods?”

Based on the answers to the sub-questions, we can conclude that the correlation bootstrap
method performs substantially more accurate compared to the implicit correlation method. In
all circumstances, the correlation bootstrap method performed equally good or better than the
implicit correlation method. The correlation estimates are the most sensitive to differences in the
MAS parameter, to which almost all differences obtained in the tests with data quality, outliers
and violations of the methods assumptions can be related to.

8.1.1 Scientific contribution

The scientific contribution of this research is firstly that we performed one of the first studies into
the correlation estimate after the Solvency II regulations were installed. Other large insurance
companies will also encounter problems when trying to use a quantitative method to obtain the
correlation estimate between different HRGs. This research can be seen as the first step towards a
more quantitative approach capable of determining the correlation between different HRGs.

Secondly, this study contributes to the scientific body of knowledge as the implicit correlation
method and the correlation bootstrap method are both not described and tested before as in this
study. Especially, the lessons which we learned about the dynamics of the triangles when outliers
and non-normally distributed residuals are added to the triangles, yield valuable insights into the
impact these have on the SCR and ultimately on the correlation estimates.

Thirdly, the correlation bootstrap method seems to be able to measure the correlation between
triangles with a different length of the development pattern, which was not proven before. This
is remarkable, as many papers indicated that it is not possible to use the correlation bootstrap
method on triangles with a different number in development periods.

8.1.2 Limitations

Despite the promising outcomes of the study, we encountered a number of limitations that need
to be mentioned.

The simulations performed in this research are mainly based on two datasets, one containing
a relatively long development pattern and relatively low MAS parameter and one containing a
short development pattern having a relatively high MAS parameter. With the parameters of these
triangles, many possible scenarios are simulated. However, more real datasets would make it easier
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to generalize the outcomes.

The simulation time of the simulation model is relatively long, making it necessary to make
choices in the simulations which are performed. Especially in the simulation runs containing a
violation of the assumptions, more simulations would have strengthened the outcomes.

The most recent literature on the aggregation of reserve capitals is published in Germany in
the German language. This forms an obstacle both in language barrier as in permissions required
to read the articles.

8.2 Recommendations
This study has shown that it is possible to determine the correlation between reserving triangles
using a quantitative method. If Achmea wants to continue with the research into methods to
quantify the correlation between different reserving triangles, the following is recommended:

1. Focus on the correlation bootstrap method, as this method performed substantially better
in the simulations compared to the the implicit correlation method. Besides, the method
mimics more realistically the development of a portfolio containing both triangles.

2. Be aware of the impact outliers may have on the other residuals belonging to the development
period the outlier finds itself in. All residuals belonging to the development period containing
an outlier will change significantly, eliminating the correlation that might have been available
in that development period.

3. Only include the development periods in which real developments occurred. Development
periods in which the residuals only represent little changes will decrease the overall correlation
in the model.

4. Stay up to date with the developments in the research performed in Germany into the aggre-
gation of risk capitals. However, many papers are written in German, it seems that the most
promising works are translated over time before they are published in the more renowned
actuarial papers.

5. It would be interesting to apply the method used on a larger number of insurance portfolios
to see how much the quantitatively obtained correlation estimates differ from the qualitative
correlation estimates obtained by the expert panel.

8.3 Future research
In this research, we investigated how accurately the implicit correlation method and the correla-
tion bootstrap method are capable of estimating the correlation parameter between two reserving
triangles. However, the research also generates new questions that could form the basis for future
research.

The implicit correlation method has shown to be extremely sensitive to the residual set used in
a simulation. However, no unambiguous answer could be given to the question why the correlation
estimate differs so much per residual set. Understanding what makes the outcomes differ so much
would give more insights in the method and potentially guidelines in which this method can be
equally good as the correlation bootstrap method.

We observed that the correlation slightly differs if the volume of the triangles is changed. It
would be interesting to know whether it is possible to scale the triangles in such a way that the
correlation estimates become even more accurate, without changing the residuals available in the
triangle.

An interesting question that could potentially make the correlation estimating process much
easier, is to investigate what creates the difference between the pre-set correlation and the output
of the correlation bootstrap method. In many situations, the difference between these two is ex-
tremely low. In case it is possible to derive the correlation parameter by determining the Pearson
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correlation of the two vectors of residuals obtained from the dataset which is corrected for infla-
tion, portfolio developments and outliers, it would be possible to skip the complete bootstrapping
process.
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A The Chain Ladder Method
The Chain Ladder method works in the same manner for any kind of triangle, so the approach
can be used as well as for AQ-triangles as for AA-triangles and as well for paid triangles as for
incurred triangles. Let’s take a 5x5 cumulative paid triangle, with on the x-axis the development
years and on the y-axis the accident years:

Figure 21: Example AA-triangle.

To estimate the second development year for accident year 2004, the development factor between
development year 1 and development year 2 is needed. This development factor can be obtained
by the formula:

f̂j =

∑n−j+1
k=1 Ck,j∑n−j+1
k=1 Ck,j−1

2 ≤ j ≤ n j ∈ N (38)

Filling in the formula for the development factor between development year 1 and development
year 2 yields:

f̂2 =

∑5−2+1
k=1 Ck,2∑5−2+1
k=1 Ck,1

=
320 + 310 + 380 + 350

100 + 125 + 140 + 110
=

1360

475
≈ 2.86 (39)

The expectation for development year 2 of accident year 2004 becomes: 135 ∗ 2.86 ≈ 386. In the
same way, it is possible to fill in the rest of the expected values:

Figure 22: Calculating the lower triangle.

55



B The bootstrapping process
In this appendix the steps from Figures 7 and 8 will be explained one by one. In Figure 23, the
process from a cumulative triangle to scaled residuals is visualized. In Figure 24, the process from
resampled residuals to the outstanding claims is visualized. In the remainder of this appendix, the
steps are explained one by one.

Figure 23: From cumulative claims to scaled residuals.

Figure 24: From resampled residuals to expected outstanding claims.

In the column furthest to the left is the cumulative triangle with the development factors as
explained in Appendix A. On the right side of the cumulative claims triangle is the triangle with
the individual development factors. The individual development factors can be derived by dividing
the cumulative claims in a development period belonging to an accident year by the cumulative
claims in the previous development period of that same accident year. This is visualized in Figure
25.

Figure 25: From cumulative triangle to individual development factors.

In Figure 26, the way the unscaled residuals can be derived is visualized. For the unscaled residuals,
the cumulative claims triangle, the average development factors and the individual development
factors are needed.
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Figure 26: Obtaining the unscaled residuals.

To obtain the MAS parameter, the unscaled residuals are squared and all the squared unscaled
residuals are added to each other. This number is divided by the number of datapoints in the de-
velopment period corrected by one. Furthermore, it is not possible to calculate the MAS parameter
for the last development period, as the divisor would be 0. The variance in the last development
period is determined by taking the maximum MAS parameter in the previous two development
periods.

Figure 27: Obtaining the variance.

In figure 28, the unscaled residuals are scaled to scaled residuals. Firstly, the residuals get a
bias adjustment, to adjust for the limited number of observations in the development period.
Secondly, the unscaled residuals (corrected for bias) are divided by the standard deviation of the
corresponding development period.

Figure 28: Scaling the residuals.

The next step in the bootstrapping process is to resample the residuals over the triangle. In Figure
29, this bootstrapping process is visualized using colors. The bootstrapping process is performed
with replacement, so it is possible that one residual is picked multiple times. Zero-residuals are
excluded in the bootstrapping process.
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Figure 29: The resampling process.

In Figure 30, the process to obtain new development factors is depicted. For the new development
factors, the original cumulative claims, the original average development factor, the original MAS
parameter and the resampled residuals are required.

Figure 30: Obtaining the new development factors.

In Figure 31, the process of obtaining a new paid claims history is visualized. The first development
period is identical to the original first development period. In the remainder of the triangle, the new
cumulative paid claims can be determined by multiplying the original cumulative paid claims in the
previous development period with the new development factor corresponding to the development
period and specific accident year. Based on the newly created cumulative paid claims and the
original paid claims in the previous development period, it is possible to obtain new average
development factors.

Figure 31: Creating a new history.

In Figure 32, the lower triangle is created based on the newly created average development factors.
With the lower triangle it is possible to determine the expected outstanding claims by subtracting
the already paid claims from the ultimate expected cumulative claims per accident year. By adding
up the expected outstanding claims for every accident year, it is possible to determine the total
expected outstanding claims for a HRG.

58



Figure 32: Deriving the expected outstanding claims.
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C Obtaining the P&L
To obtain the expected P&L over a one year period of a triangle, the expected outstanding claims
are determined at time t=0 and time t=1 as well as the expected settlements between t=0 and
t=1. By first bootstrapping the triangle 100.000 times, it is possible to determine the expected
settlements between t=0 and t=1 by taking the average of all expected settlements in the upcoming
year. It is then possible to determine the P&L for every bootstrapped triangle.

Figure 33: P&L of the cumulative paid claims triangle.

The P&L of the incurred triangle is determined slightly differently. The last development period
at t=0 and t=1 denotes the expected ultimate settled claims. The difference between these two
expected ultimate settled claims is the adjustment over a one year horizon. If the ultimate expected
settled claims at time t=1 is lower than the ultimate expected settled claims at time t=0, there is
a profit and otherwise there is a loss. The process is depicted in Figure 34 on the next page.
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Figure 34: The P&L of the incurred triangle.
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D Detecting and dealing with outliers
In this Appendix, the methods of Busse et al. [2010] and Verdonck & Debruyne [2011] are explained.

The algorithm of Busse et al. [2010] only works properly on datasets with a relatively stable
development pattern, in which the settlements of the claims follow a stretched pattern. According
to the algorithm of Busse et al. [2010], a data point can be denoted as an administrative outlier if
it fulfills the following properties:

Ci,j − Ci,j−1 ≥ αCi,N (40)

Ci,j+1 − Ci,j ≤ −αCi,N (41)

Where α is an arbitrary factor between 0.1 and 0.3, depending on the nature of the portfolio.
Negative administrative outliers can be detected when the following two conditions hold:

Ci,j − Ci,j−1 ≤ −αCi,N (42)

Ci,j+1 − Ci,j ≥ αCi,N (43)

Outliers caused by other reasons can be detected if there is a strong deviation from the average
development factor:

fi,j ≥ βf̂j (44)

Where β is an arbitrary factor between 10 and 100.

The method of Verdonck & Debruyne [2011] proposed to weight the residuals and allocate lower
weights to potential outliers. This is done to prevent the outliers from being excluded from the
model and makes sure as much as possible data is used in the bootstrapping process. This can be
done using the Huberized value:

ψc (ri,j) =

{
(ri,j) (ri,j ≥ c)
(c ∗ sign(ri,j)) (ri,j ≤ c)

(45)

And the formula:
Weighted residualsi,j =

ψc (ri,j)

ri,j
(46)

The tuning constant c typically gets the value 1.345, however in [Verdonck et al., 2009] it is shown
that this value is often too low and is it proposed to take c as the 75% percentile of the absolute
ranked residuals. This makes sure the c value is adjusted to the specific conditions found in the
dataset. Taking a higher percentile will increase efficiency but decrease the breakdown factor.
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E Results Section 7.2
In this appendix, the results from Section 7.1 will be extended with additional tables. First, the
difference between including and excluding the first development year for the AQ-paid triangle will
be depicted. Thereafter, the results of Section 7.1 will be grouped in a different order and the
correlation estimates will be available in numbers.

Table 48: AQ-paid including year 1. Table 49: AQ-paid excluding year 1.

In Table 48, are on the left the outcomes of the simulations with the AQ-paid triangle including
the first 3 development periods. In Table 49 on the right are the outcomes when only the values
at the end of the first development year are taken as the starting point of the simulation. As can
be seen, are the deviations in Table 49 substantially lower compared to the outcomes in Table 48
when looking to the MAS parameter, the other parameters stay close to the same.

As for the AQ-paid triangle, the other tables will also be grouped to each other, to make the
differences clearer.

Table 50: AA paid – MAS parameter. Table 51: AA paid – Settlement periods.

Table 52: AA paid – Initial claim amounts.
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Table 53: AQ paid – MAS parameter. Table 54: AQ paid – Settlement periods.

Table 55: AQ paid – Initial claim amounts.

Table 56: AA incurred – MAS parameter. Table 57: AA incurred – Settlement periods.

Table 58: AA incurred – Initial claim amounts.

Table 59: AQ incurred – MAS parameter. Table 60: AQ incurred – Settlement periods.

Table 61: AQ incurred – Initial claim amounts.

In the following tables, on the left side are the tables in which the correlation estimates are
shown instead of the deviations. On the right side are the tables with the %-difference in the SCR.
These are shown side by side, as this makes it easier to interpret the results.
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Table 62: AA-Paid correlation estimates. Table 63: AA-Paid %-difference in SCR.

Table 64: AA-Incurred correlation esti-
mates. Table 65: AA-Incurred %-difference in SCR.
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Table 66: AQ-Paid correlation estimates. Table 67: AQ-Paid %-difference in SCR.

Table 68: AQ-incurred correlation esti-
mates. Table 69: AQ-incurred %-difference in SCR.
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F Outcomes combining parameters
The correlation estimates of the other possible situations which can be made with the parameters
can be found in this appendix. The outcomes show a comparable pattern as shown in Section 7.1
in which the individual parameters are discussed.

Table 70: Combining parameters AA-paid.

Table 71: Combining parameters AA-incurred.

Table 72: Combining parameters AQ-paid.

Table 73: Combining parameters AQ-incurred.
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G From outliers to residuals
To understand the outcomes of Section 7.5 and Section 7.6.1 it is good to understand the impact
one (or several) outliers in a development period have on the rest of the residuals and ultimately on
the correlation estimate. The example is made up using the datasets found in the paper of Braun
[2004] and the dataset generator described in Section 5. On the left side, an example of a triangle
without outliers will be visible, on the right side an example with an outlier will be showed. This
makes it easy to follow the difference in the development of the residuals.

Figure 35: Resdiuals normal distribu-
tion.

Figure 36: Residuals including an out-
lier.

In red, the outlier is visualized in Figure 35. This outlier is quite extreme, to show how the
residual develops itself during the process.

With the residuals, preset development pattern, preset MAS parameter and preset initial claim
amounts it is possible to construct the triangle. By keeping these parameters the same for both
triangles, the effect can best be seen.

Figure 37: Triangle without outlier. Figure 38: Triangle with outlier.

In Figure 38, it can be seen that the red block contains a much higher value compared to the
value on the same place in Figure 37. This is the result of the outlier. The interesting thing
happens when the residuals are again derived from the triangle.
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Figure 39: Residuals triangle without
outlier.

Figure 40: Residuals triangle with out-
lier.

In Figure 40 it becomes clear that the outlier of figure 36 of 20 is reduced to an outlier of 3.29.
Furthermore, the rest of the residuals in development period 2 did all became negative. The preset
correlation between the two triangles without outliers was 0.6, but the correlation between the
residuals in the second development period of figure 39 and 40 is close to 0. So, one outlier can
cause the complete correlation between two development periods to vanish.

This is mostly the result of the difference in the MAS parameter and the difference in the
development pattern. The preset MAS parameter, which is used to scale the residuals can be seen
in Figure 41.

Figure 41: The MAS parameter from the initial triangle.

Figure 42: The MAS parameter after the outlier is added.

In Figure 41 and 42 it becomes clear that the MAS parameter belonging to the first average
development factor increased significantly as a result of the outlier. This is not strange, as a
result of the outlier the differences between the individual development factors and the average
development factor increases which automatically scales the MAS parameter. A higher MAS
parameter means lower residuals as a result of (10). The reduction of the residual from 20 to
3.29 can mainly be explained by this:

√
348207.91√
11104.38

≈ 5.6 which is almost in line with 20
3.29 ≈ 6.1.

The difference between 5.6 and 6.1 can be explained in the difference in development pattern.
The initial development pattern can be found in Figure 43 and the development pattern from the
created triangle can be found in Figure 44.

Figure 43: The MAS parameter from the initial triangle.

Figure 44: The MAS parameter after the outlier is added.

The difference between Figure 43 and Figure 44 is mainly in the first average development factor,
the rest of the development factors did hardly change in the triangle generation process. The
difference between the two development factors is not strange, the outlier is so extreme that it

69



is impossible to reproduce the same average development factor. The increase of the average
development factors causes the other residuals to become negative earlier. As can be seen in
Figure 40, the residuals other than the outlier are all negative and relatively close to 0. Especially
when these are compared to the residuals in Figure 39.
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H Not normally distributed residual sets
In this appendix are the results of the test with not normally distributed datasets. In the first four
figures are the outcomes of the gamma distribution with a scale parameter of 1, a shape parameter
of 0.5 and a correlation parameter of 0.

Table 74: AA paid using gamma distribu-
tion.

Table 75: AA incurred using gamma distri-
bution.

Table 76: AQ paid using gamma distribu-
tion.

Table 77: AQ incurred using gamma distri-
bution.

In the following tables are the absolute correlation estimates of the tables which are in Section
7.6.1.

Table 78: AA paid using gamma distribu-
tion.

Table 79: AA incurred using gamma distri-
bution.

Table 80: AQ paid using gamma distribu-
tion.

Table 81: AQ incurred using gamma distri-
bution.
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