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Abstract

In this research a non-linear controller called the Hybrid Integrator-Gain
System has been designed and analysed. The controller switches between
integrator and gain control and it generates a control signal of the same sign
as its input signal. It has been applied to the positive real system of the
vibrating string. That system is an example of a linear Port-Hamiltonian
system. In such systems the change in energy in the system is equal to the
product of the input and output of the system. The model of the vibrating
string has been approximated and is connected to the Hybrid Integrator-Gain
System and integrator and gain control separately. The energy and stability
of the resulting closed loop feedback system has been analysed. Although
the integrator control does not stabilise the vibrating string on its own, the
Hybrid Integrator-Gain System stabilises the system and the energy in the
system decreases monotonically.
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1. Introduction

Many phenomena that evolve with time are modelled using dynamical sys-
tems. Often these phenomena are natural existing occurrences, such as
changes in weather, the streaming of water or the moving of planets or
man-made structures and machines, such as moving vehicles. We want to
understand all these phenomena better or even influence them. In a dynam-
ical system the behaviour of a such a phenomenon is mimicked by relating
its underlying variables, such as temperature, density or position. When a
dynamical system represents a real world occurrence correctly we can ex-
periment with the way it will react to external influences and predict its
behaviour in the future. For example, forces as wind, vibrations of an earth-
quake, or a push can influence the behaviour of a system. To get a system
to behave in a certain way we can search for the correct external influences
such that we get desired results, this is called controlling a system. The
found control can then be applied in the real world.

An important variable in dynamical systems is the energy stored in the sys-
tem. Some dynamical systems, without external influences, have the prop-
erty that the energy stored remains unchanged or leaves the system. Such
systems are called dissipative systems. When the change of the energy in the
system is equal tot the product of the input and output then the system is
called Port-Hamiltonian. The energy changes via the boundaries.

Port-Hamiltonian systems which are linear and time-invariant have a positive
real transfer function and are called Positive Real. It is useful to control such
a system in a way that the energy always decreases. This is possible using
non-linear control. In this project we will apply non-linear dynamic control
to Positive Real systems.

An more general example of non-linear dynamic control is reset control. It
will induce less phase lag into a system by keeping the sign of the control
input and output equal. This method does introduce discontinuous control
signals which can cause disturbances in the system..

A method which keeps the control signal continuous and also keeps the in-
tegrator input and output sign equal is the Hybrid Integrator-Gain System
(HIGS). These kind of systems use an adjusted integrator part which switches
to a proportional controller while keeping the control signal continuous.

In this thesis the method of Hybrid-Integrator Gain Systems has been re-
searched for positive real systems. How such systems work and what influ-
ence HIGS has on them is studied.
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2. Recent Research

Over the years non-linear control methods have been the subject of many
research projects. The notion of a Hybrid Integrator-Gain System based on
reset control has been introduced and formulated in [4]. The Clegg method
was used to reduce low frequency disturbance in a system while the HIGS
would also handle high frequency disturbances, since it does not hard-reset
the state of the controller. In [4] stability conditions for a Hybrid Integrator-
Gain System are provided and it has been experimentally tested on a wafer
stage system resulting in a performance improvement.

The paper [3] presents a mathematical framework to formally describe the
HIGS based on projected dynamical systems. This way the well-posedness
and global existence of solutions can be shown. It introduces two approached
to show closed-loop stability of a HIGS-controlled system. Well-Posedness
for non-linear controlled systems have been further researched in [1].

In this project the dynamical system model of the vibrating string will be
used. It is a common system in physics and theory on Partial Differen-
tial Equations. The vibrating string is a well-known example of a Port-
Hamiltonian system and the Hybrid-Integrator Gain System will be applied
to the model.
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3. Preliminaries

In this chapter some general definitions around dynamical systems and sys-
tem and control theory are outlined which will be referred to during the
report. An abstract definition of a dynamical system is given and some
practical models are defined. Next to that some important theorems and
properties are stated which will help in the analysis of the systems.

3.1 Models for Dynamical Systems

Dynamical systems can be modelled in several different ways. Properties of
a dynamical system such as the notion of linearity and time-invariance are
introduced and a well known way to model dynamical systems, called state-
space representations, is introduced. The definitions of these properties and
more background can be read in the source [10]. Some of the definitions
have been put in this chapter for easy reference. An abstract definition of a
dynamical system is given next.

Definition 3.1.1 (Dynamical System). A dynamical system Σ is defined as
a triple Σ = (T,W,B), with T ⊂ R, called the time axis, W a set called the
signal space, and B ⊆ {w : T→W} called the behaviour.

An important and useful property of a dynamical system is linearity.

Definition 3.1.2 (Linearity). A Dynamical System Σ is linear if signal space
W is a vector space and behaviour B is a linear subspace of all maps {w :
T→W}, i.e.

1. 0 ∈ B

2. if w1, w2 ∈ B then w1 + w2 ∈ B

3. if w ∈ B and λ ∈ R then λw ∈ B, ∀λ.

Next to linearity the property of time-invariance makes the analysis of dy-
namical systems simpler.

Definition 3.1.3 (Time-Invariance). A system Σ is time-invariant if time
axis T = R ∨ Z and for all τ ∈ T and signal w ∈ B the delay στw ∈ B,
where σ is the delay operator στw(t) = w(t+ τ).

Many dynamical systems can be represented as a so called input/output
system. These systems can be influenced via the input and are very common
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3 Preliminaries 6

in control theory since the input can be determined in such a way that the
output behaves as desired.

Definition 3.1.4 (LTI input-output system). A system with behaviour B =
{(u, y) : T → (Wu,Wy) | y = H (u)}, where input u determines output y is
called an input-output system defined by the map H : u→ y.
An input-output system is Linear Time-Invariant (LTI) if the map H is lin-
ear, i.e. for all u1, u2, u ∈ B, H (u1 +u2) = H (u1)+H (u2) and H (λu) =
λH (u) for all λ ∈ R, and time-invariant, i.e. H (στu) = στH (u) for all
τ ∈ T.

Next to an input and output a dynamical system can involve a state vec-
tor. The definition for linear time-invariant state-space systems is given in
Definition 3.1.5 and will be used extensively.

Definition 3.1.5 (State-Space Representation). A system of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.1)

is called a State-Space representation where u(t) ∈ Rp the input vector, y(t) ∈
Rn the output vector, x(t) ∈ Rq the state vector and A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rq×n and D ∈ Rq×p.

These are the types of models used in this report to apply control methods
to.

Existence of solutions for State-Space Representations

To control a dynamical system modeled by a state-space representation it is
always good to know if there actually exists an output for any given input
signal and if the state of the system exist in the case of state-space repre-
sentations. This section will show that there exist solutions as long as some
behavioural properties hold for the input signal of state-space systems.

A solution to a state-space representation is based on the input signal u(t),
which evolves with time t, and an initial condition of the state of the system,
x(t0) = x0. This initial condition represents the situation of the system at
the starting time t0. A solution of the state will be determined by the state
equation ẋ(t) = Ax(t)+Bu(t) in Definition 3.1. Starting with an exponential
candidate solution x(t) = eAtz(t) for a general state-space representation,
where z(t) ∈ Rn. The candidate solution is differentiated,

ẋ(t) = AeAtz(t) + eAtż(t). (3.2)
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3 Preliminaries 7

By the given state equation we have that Bu(t) = ẋ(t) − Ax(t), which,
substituting in our the expression for the candidate solution, results in an
expression for the derivative of the candidate solution ż(t),

Bu(t) = eAtż(t) =⇒ ż(t) = e−AtBu(t). (3.3)

Now integration and substitution of the candidate solution results in an ex-
pression for the state of the representation,

z(t) = z(t0) +

∫ t

t0

e−AτBu(τ)dτ

=⇒ x(t) = eAt
(
e−At0x(t0) +

∫ t

t0

e−AτBu(τ)dτ

)
,

(3.4)

which gives the expression,

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (3.5)

Clearly the solution for the state is completely determined by the initial
condition x0 and input signal u(t). The output is then also determined by the
initial state and input signal using the output equation y(t) = Cx(t)+Du(t)
in Definition (3.1), further described as

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t). (3.6)

These expressions for the state x(t) and output y(t) exist for all input signals
u(t) which are locally integrable functions. This confirms that the integral
in (3.5) and (3.6) exist. Locally integrable function are functions for which
the following property holds,∫ a

b

|u(τ)|dτ <∞ ∀(a, b) ∈ R. (3.7)

This gives a condition on the input of a state-space representation. Another
definition involving the behaviour of functions is the notion of Lipschitz con-
tinuity, [9], [5].

Definition 3.1.6 (Lipschitz continuity). A function f(x) ∈ R is globally
Lipschitz continuous if there exists a real constant C > 0 such that for all
x1,x2 ∈ R

|f(x1)− f(x2)| ≤ C|x1 − x2|. (3.8)

Intuitively a Lipschitz continuous function is a continuous function which
does not change abruptly. It is an important property for the existence of
solutions of differential equations.
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3 Preliminaries 8

3.2 Lyapunov stability

An important function in the analysis of dynamical systems is the Lyapunov
function. Such a is function is useful in determining if a system is stable. A
definition for a Lyapunov function is given in Definition (3.2.1).

Definition 3.2.1 (Lyapunov function). Given a dynamical system repre-
sented by ẋ(t) = f(x(t)), where x(t) ∈ Rn and f(0) = 0. A Lyapunov
function for such a system is a function V : Rn → R for which the property
holds that

V (x(t)) > 0 ∀x(t) 6= 0 (3.9)

and the derivative V̇ (x(t)) ≤ 0 along all solutions x(t) of the system. When
the derivative of V (x(t)) is equal to zero for all solutions x(t) then it is called
a weak Lyapunov function.

When a Lyapunov function exists for a dynamical system of the form ẋ(t) =
f(x(t)) then the dynamical system is asymptotically stable. This basically
means that the system will converge towards an equilibrium. In the case of
the existence of a weak Lyapunov function it means that such a system will
neither converge nor diverge, but instead will stay in a certain bounded area.

If, for a Lyapunov function V (x(t)), the implication holds that if ‖x(t)‖ →
∞ =⇒ V (x(t)) → ∞ then the Lyapunov function is called radially un-
bounded.

3.3 Transfer functions

Another way of writing a dynamical system modeled by a state-space repre-
sentation is by the use of the its Transfer Function, [6]. Transfer Functions
are functions in the frequency domain, s ∈ C, that show the response of the
a system on certain inputs. The Transfer Function of a state-space represen-
tation is defined as H(s) = C(sI − A)−1B + D. The Transfer Function is
the Laplace transform to the frequency response of a system. The relation
between the input signal U(s) and output signal Y (s) in frequency domain
is given by the equation Y (s) = H(s)U(s). When the system described by
a state-space representation is minimal then the eigenvalues of the matrix A
are also the poles of the function H(s).

A useful theorem for analysing Transfer functions is the Final Value Theorem,
stated in Theorem (3.3.1).
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3 Preliminaries 9

Theorem 3.3.1 (Final Value Theorem). Given a function f(t) where its
final value t → ∞ exists and it’s Laplace transform F (s) is defined for all
Re(s) > 0, then

lim
t→∞

f(t) = lim
s→0

sF (s). (3.10)

The Final Value Theorem is used to see if the output of a dynamical system
will converge or diverge.

3.4 Feedback systems

In this project we will control a dynamical system, which will be called the
plant. Controllers will be connected to the plant via a general negative
feedback loop, [6]. Such a feedback loop is visualised in the diagram below.
The input of the system is a desired reference signal r(t) of which the output

Controller Plant
r e = r − y u y

−

Figure 3.1: Feedback diagram

y(t) must mimic its behaviour. The error signal e(t) = r(t) − y(t) into the
controller represents how far off of the desired behaviour the output signal
is and determines via the controller what control signal u(t) is used as input
to the plant to achieve a better result. If the controller and plant both
have known transfer functions a combined transfer function to describe the
feedback loop as a whole can be derived. Given the transfer functions K(s) of
the controller and P (s) of the plant and using the relations Y (s) = P (s)U(s)
and U(s) = K(s)E(s) = K(s)(R(s)−Y (s)) a transfer function for the system
as a whole can be derived.

Y (s) = P (s)K(s)(R(s)− Y (s))

=⇒ Y (s)(1 + P (s)K(s)) = P (s)K(s)R(s)
(3.11)

The input output relation of the system is Y (s) = P (s)K(s)
1+P (s)K(s)

R(s), and the
transfer function for a general negative feedback loop is,

H(s) =
P (s)K(s)

1 + P (s)K(s)
. (3.12)

9



3 Preliminaries 10

This relation is very useful for simulating dynamical feedback systems and
controlling the output.

3.5 Port-Hamiltonian system

Port-Hamiltonian systems are dynamical systems in which the change in
energy in the system is equal to the product of the input and output of the
system. The energy only changes via the boundary of the system. A linear
Port-Hamiltonian system can be described as a state-space representation.
It will be defined in this section but first we need the notion of a Positive
Definite matrix, [10].

Definition 3.5.1 (Positive Definite matrix). A symmetric matrix A ∈ Cn×n,
i.e. A = A∗, is called Positive Definite if, for all vectors x ∈ Cn and x 6= 0,

x∗Ax > 0. (3.13)

We write A � 0.

Now we are ready to introduce a Port-Hamiltonian state-space representa-
tions. [2].

Definition 3.5.2 (Linear Port-Hamiltonian system). Let H be a positive-
definite matrix, and let J be a skew-adjoint matrix, i.e. J ∗ = −J . Then the
system

ẋ(t) = JHx(t) +Bu(t)

y(t) = BHx(t)
(3.14)

is called a linear Port-Hamiltonian system associated to H and J . J is called
the structure matrix and H is the Hamiltonian density. The Hamiltonian
associated to H is 1

2
x∗Hx.

10



4. Hybrid Integrator-Gain Sys-
tems

In this chapter we design and analyse a Hybrid Integrator-Gain System
(HIGS). The inner workings of the control method will be described in detail.
A HIGS application results in a switched dynamical system and is a form of
reset control.

4.1 Reset control

Reset control is itself a switching system. This means the model of a dy-
namical system switches from one representation to another. These switches
can be random but are often based on the behaviour of the signals in the
system. When certain criteria are met the system switches representation.
This results in a non-linear model and may result in a complex control prob-
lem. An example of a switching system is the Clegg controller. [4]. It is an
integrator which resets its state right-hand limit, denoted by xr(t

+), to zero
whenever the input and output are not of equal sign. The representation of
the system thus only changes in the state vector, a reset to zero. Still, this
is seen as a change in model representation. The Clegg controller has input
signal e(t) ∈ R, output signal ur(t) ∈ R and integrator frequency coefficient
ωr ≥ 0 ∈ R. For simplicity we consider the input signal e(t) to be contin-
uous. The integrator frequency ωr is used as a tune-able parameter of the
controller and can be adjusted when needed. To ensure the output signal will
start at zero the state of the controller is initially in rest by initial condition
xr(t0) = 0. The controller is described in the state-space form of (4.1),

Clegg(e(t), ur(t)) =


ẋr(t) = ωre(t) if e(t)ur(t) ≥ 0

xr(t
+) = 0 if e(t)ur(t) ≤ 0

ur(t) = xr(t).

. (4.1)

By the second equation in the definition of the Clegg controller in (4.1) the
right-hand limit is reset to zero when e(t)ur(t) ≤ 0. This happens when the
input and output signal of the controller is of unequal sign. One of them may
be positive while the other is negative and it does not matter which of the
signals is positive or negative. When the right-hand limit of the state is set to
zero it causes the state to be discontinuous. This results in the output signal
becoming discontinuous also. When applying reset control, such as the Clegg
controller, to a plant it is important to know how the plant will deal with a

11



4 Hybrid Integrator-Gain Systems 12

discontinuous input signal, since the control input will be discontinuous. In
certain dynamical systems this will be undesired and might cause problems
like breaking of a machine or amplifying small disturbances.

As an example the test signal e(t) = sin (2t) + 1
2

sin (3t), with integrator
frequency ωh = 1, is put into the Clegg controller.

In Figure 4.1 the output is clearly reset to zero where the input signal crosses
the horizontal axes and becomes negative. After the reset the signs stay equal
again until a reset occurs.

Figure 4.1: Clegg output with test input

The design of a HIGS will have a similar structure to the Clegg controller.

4.2 The HIGS design

The goal of a Hybrid Integrator-Gain System is to create a control signal of
equal sign as the input signal. It is designed as a controller which switches
between two control methods, [4]. These two methods are integrator control
and gain control. Both well known methods in control theory and often
used in controllers, [6]. When to switch is based on the relation between
the input, the input derivative and the output of the controller. The vector
xh(t) represents the state of the controller, e(t) the input signal and u(t) the
output signal. Connected to a plant in a closed-loop system u(t) will be the
control signal into the plant. The HIGS will always be initially in rest, so
xh(t0) = 0 for the starting time t0. The coefficient ωh is called the integrator
frequency and kh the gain constant. Both ωh, kh ∈ (0,∞) and must be
seen as tune-able parameters to provide the desired output of the feedback
system.

12



4 Hybrid Integrator-Gain Systems 13

The HIGS block is designed to not reset the state completely to zero, as does
the Clegg controller (4.1), but instead switch control mode and continue the
state. This way the state will be continuous, which will result in a continuous
output signal as well. The Hybrid Integrator-Gain System is defined in (4.2),

H(e, ė, u) =


ẋh = ωhe if (e, ė, u) ∈ F1

xh = khe if (e, ė, u) ∈ F2

u = xh.

(4.2)

The output signal of a HIGS is bounded by an area denoted as F . This
area consists of two subregions, one region for each control method, noted
as the union F = F1 ∪ F2. When the output signal is in F1 the HIGS is in
integrator mode and in F2 it is in gain mode. The specific areas are described
by constraints on the input, input derivative and output signals.

F = {(e, ė, u) ∈ R3 | kheu ≥ u2}. (4.3)

The constraint for area F ensures that the input and output signal always
have the same sign. The constraint holds if e(t) and u(t) are both positive
or both negative. When u(t) = 0 the boundary of F is reached.

For the second area F2 the HIGS is in gain mode.

F2 = {(e, ė, u) ∈ F | u = khe ∧ ωhe2 > khėe}. (4.4)

The area is part of the line u(t) = khe(t) on the boundary of F . There
equality of the constraint for being in F holds, khe(t)u(t) = u(t)2. In gain
mode the state xh(t) = khe(t) results in the output signal u(t) = khe(t),
hence the output u(t) follows the behaviour the input signal. The second
constraint of area F2 compares the derivative of u(t) in gain mode to what
the derivative of u(t) would be in integrator mode. The output derivative in
gain mode is u̇(t) = khė(t) and the derivative in integrator mode would be
u̇(t) = ωhe(t).

The interior of F is the other subregion F1, here the HIGS is in integrator
mode,

F1 = F \ F2. (4.5)

In Figure 4.2a a plot of the area F is given. The area F1 is the interior of a
cone bounded by the line u(t) = khe(t), which is area F2, and the horizontal
axis. For more insight the visualisation of F is also given in three dimensional
space with the derivative of e(t) as third dimension, Figure 4.2b. In the areas
(1) the HIGS block is in integrator mode and in (2) it is in gain mode.

13



4 Hybrid Integrator-Gain Systems 14

(a) Two dimensional (b) Three dimensional

Figure 4.2: Visualisation of F , [4]

When a switch occurs the derivative of the state is abruptly changed resulting
in a piecewise differentiable state and thus a piecewise differentiable output
signal.

Initialisation

The HIGS will always start in integrator mode and its state at the starting
time t0 will always be in rest, xh(t0) = 0. The output signal at that time
will be zero, u(t0) = 0 and will start to evolve according to the input signal
e(t). The constraint khe(t0)u(t0) ≥ u(t0)

2 will be equal at the starting time
and so we start inside of F .

Crossing the horizontal axis

When both e(t) and u(t) are zero we are still inside of F . This will be shown
using simple Taylor series approximations of the input and output signals
e(t) and u(t) around a point in time denoted τ , assuming both e(τ) and u(τ)
are zero at this time. To make the Taylor approximations we must have an
appropriate differentiability for the signals in the system. The input signal
must be at least once differentiable such that its series can be of first order
and the output signal must be at least twice differentiable for a second order
approximation. For t around τ the two Taylor series are,

e(t) ≈ e(τ) + ė(τ)(t− τ)

u(t) ≈ u(τ) + u̇(τ)(t− τ) +
1

2
ü(τ)(t− τ)2.

(4.6)

Since τ is the point on the horizontal axis where the two signals touch,
u(τ) = 0 and e(τ) = 0. Assume ė(τ) arbitrary, then, in integrator mode,

14



4 Hybrid Integrator-Gain Systems 15

u̇(τ) = ωhe(τ) implies u̇(τ) = 0 as well. The Taylor approximations (4.6)
become e(t) ≈ ė(τ)(t − τ) and u(t) ≈ 1

2
ü(τ)(t − τ)2 for t close to τ . The

series are substituted in both sides of the constraint for F ,

khe(t)u(t) ≈ khė(τ)(t− τ)
1

2
ü(τ)(t− τ)2

u(t)2 ≈ (
1

2
ü(τ)(t− τ)2)2

(4.7)

This results in khė(τ)1
2
ü(τ)(t− τ)3 ≥ 1

4
u(τ)2(t− τ)4, or simply,

khė(τ)ü(τ) ≥ 1

4
ü(τ)2(t− τ). (4.8)

The left-hand side is constant and the right-hand side is linear. The con-
straint holds for all t close to τ , where the right-hand side is close to zero.
So the constraint for F is satisfied at τ and we stay in F when crossing the
horizontal axis.

This method holds even if ė(τ) = 0. In that situation the order of the Taylor
series is increased and the same result will occur. The signals need to have
one order of differentiability higher for those higher order Taylor series to
exist.

The input signal is allowed to be piecewise differentiable, in this case the
derivatives in the Taylor expansions must be seen as the right-hand limit
derivatives at τ+. These limit derivatives do exist for piecewise differentiable
signals.

4.3 Switching control modes

An overview will give insight in the switching of control modes of the Hybrid
Integrator-Gain System.

When in integrator mode at time τ in the interior of F , we are in
F1 and the derivative of the output signal is u̇(τ) = ωhe(τ). If e(τ) > 0
the signal u(τ) increases as long as we are inside the interior the inequality
u(τ) < khe(τ) holds, so we stay in integrator mode. When e(τ) < 0 the
signal decreases and as long as we are inside the interior the inequality u(τ) >
khe(τ) holds. Again, we stay in integrator mode. Combining the positive and
negative case of e(τ) we only check if we stay in the interior of F , the area
F1.

• u(τ) 6= khe(τ) =⇒ stay in integrator mode

15



4 Hybrid Integrator-Gain Systems 16

When in integrator mode at time τ on the boundary of F we are
on the boundary F1 and the output signal touches the line F2. Here u(τ) =
khe(τ) and the second constraint of F2 is checked.

If e(τ) > 0 the inequality ωhe(τ) > khė(τ) would imply that, by staying in
integrator mode, we leave F since the derivative in integrator mode u̇(τ) =
ωhe(τ) would increase faster than the derivative u̇(τ) = khė(τ) in gain mode.
The constraint khe(τ)u(τ) ≥ u(τ)2 is violated if the HIGS would stay in
integrator mode so it makes a switch to gain mode.

The same argument holds if e(τ) < 0, in this case the inequality ωhe(τs) <
khė(τ) is checked instead, and a switch to gain mode is made. The positive
and negative cases of e(τ) are captured in the combined constraint ωhe(t)

2 >
khė(t)e(t).

• ωhe(τ)2 > khė(τ)e(τ) =⇒ switch to gain mode

When in gain mode at time τ on the boundary of F we are in the area
F2 and the derivative of the output is u̇(τ) = khė(τ). When e(τ) > 0 then, if
ωhe(τ) > khė(τ), a switch to integrator mode would result in leaving F , so we
stay in gain mode. The output in integrator mode would increase faster than
in gain mode, which would cause the constraint khe(τ)u(τ) ≥ u(τ)2 to be
violated. When e(τ) is negative the same argument holds for ωhe(τ) < khė(τ)
and we stay in gain mode. The output moves along the boundary, F2. Both
cases are combined in the constraint ωhe(t)

2 > khė(t)e(t).

• ωhe(τ)2 > khė(τ)e(τ) =⇒ stay in gain mode

If instead, for e(τ) > 0, the inequality ωhe(τ) ≤ khė(τ) holds the output
in integrator mode would increase slower than the output in gain mode. A
switch to integrator mode would cause the output go into the interior of
F , so a switch to integrator mode is made. The same switch occurs for
e(τ) < 0 and the inequality ωhe(τ) ≥ khė(τ). Both cases are combined in
the constraint ωhe(t)

2 ≤ khė(t)e(t).

• ωhe(τ)2 ≤ khė(τ)e(τ) =⇒ switch to integrator mode

Discontinuities

Imagine the following situation. When e(t) is positive, in integrator mode,
u(t) is increasing. If e(t) would jump from positive to negative then the
output u(t) will start to decrease but the signal remains positive just after
the moment of the jump. In such a situation they are not of equal sign and
khe(t)u(t) < 0. The constraint for F would be violated and the signal is

16



4 Hybrid Integrator-Gain Systems 17

outside of F , specifically in the upper left quadrant in Figure 4.2a. u(t) is
decreasing and going into the cone again, but it has been outside F for a
while. Such situations we want to avoid by restricting the signal e(t) to not
have a discontinuities. In the next sections some example signals give more
insight.

4.4 An example signal

To understand when the HIGS switches a test signal e(t) = sin (t)+ 1
2

sin (3t)
is put into it, where the parameters are kept simple, ωh = 1 and kh = 1.5.
In Figure 4.3 the test signal and the output u(t) is plotted. The signals in
the governing constraints are plotted below it.

A switch to gain mode is applied when we hit u = khe and the constraint
ωhe

2 > khėe holds at that time. A switch back to integrator mode is applied
when the constraint ωhe

2 > khėe does not hold anymore. The switching
points can be compared in the plots of Figure 4.3.

17



4 Hybrid Integrator-Gain Systems 18

Figure 4.3: Test signal, u(t) and the subregion constraints

At t = 0 the test signal is zero and its derivative is positive. Moving slightly
such that t = ε, see that the derivative ė still is positive, Figure 4.3. The
constraint ωhe(ε)

2 > khė(ε)e(ε) does not hold since ė(ε) is a lot larger than
e(ε) ≈ 0. The HIGS starts in integrator mode until u hits khe.

Clearly, in gain mode the signals are on the boundary of F and a switch to
integrator mode makes the signal go back into the interior. The switch back
to integrator mode is made when the signal ωhe

2 dives below khėe in the
second plot. When the output signal crosses khe(t) in the first plot a switch
to gain mode is made, correctly according to the constraint in the second
plot.

18



4 Hybrid Integrator-Gain Systems 19

4.5 Dealing with discontinuities

In certain situations the HIGS can deal with a discontinuous input signal
e(t). When a jump in the signal e(t) does not change sign it is possible to
stay in F . The jump will change the derivative of the output u(t) and causes
it to be non-differentiable. When e(t) > 0 the output signal u(t) must still
be positive after a jump. A jump up is no problem but a jump down must
be smaller than |khe(t−1)| − |u(t−1)|.

In Figure 4.4a a step signal has been put in which jumps back to zero,
this causes the output derivative to become zero and we leave F since the
constraint kheu ≥ u2 does not hold anymore.

(a) Jump to zero (b) Large jump

Figure 4.4: Leaving F after negative jumps

In Figure 4.4b a jump larger than |khe(t)| − |u(t)| is made and we leave F .
The derivative of the output signal is still positive so u(t) keeps increasing
above khe(t).

A smaller jump than |khe(t)| − |u(t)| is seen in Figure 4.5. u(t) is still in-
creasing but slower. Such a small jump does not violate kheu ≥ u2 and we
stay in F .
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4 Hybrid Integrator-Gain Systems 20

Figure 4.5: Staying in F after a small negative jump

In Figure 4.7 and Figure 4.6b a positive jump is made. The derivative of
u(t) in the first plot becomes larger and the signal increases faster but the
constraint for F will stay satisfied. In the second plot u(t) is determined by
Gain mode of the HIGS when the jump happens and it causes no problems, at
the jump it switches to Integrator mode because the constraint ωhe

2 > khėe
is violated by the jump where the derivative of e(t) is infinite and after the
jump u(t) does not equal kge(t) anymore.

(a) A positive jump (b) Another positive jump

Figure 4.6: Staying in F with positive jumps

When the input signal jumps to across the horizontal axis it changes sign
and we will briefly leave F . This is seen in Figure 4.7. After the jump
the output signal changes direction since the derivative switches sign. The
moment where u(t) and khe(t) are of opposite sign the constraint kheu ≥ u2

is violated.
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4 Hybrid Integrator-Gain Systems 21

Figure 4.7: Jumping past the horizontal axis

Similar arguments can be made for negative step functions as input e(t).

These are all examples of step functions but the situations do extend to any
discontinuous piecewise differentiable functions e(t).

In practice it is a good idea to avoid these discontinuous input signals entirely.
Signals that do have jumps like this can best be approximated by a continuous
function that increases or decreases very fast at the original jumping points.
This way the output signal will be crossing khe(t) and the HIGS will switch
to gain mode at the jumping moment.

4.6 Existence of closed loop HIGS solutions

In this section a Hybrid Integrator-Gain System is applied to the general
model of a plant. We will use a closed loop feedback system as in the diagram
in Figure 4.8.

H(s) G(s)
r e = r − y u y

−

Figure 4.8: HIGS H(s) applied to a plant G(s)

The goal is to proof the existence of solutions for such closed-loop systems.
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4 Hybrid Integrator-Gain Systems 22

The plant considered will be a general Port-Hamiltonian state-space repre-
sentation.

The Port-Hamiltonian plant is of the form (3.5.2), restated here,

ẋ(t) = JHx(t) +Bu(t)

y(t) = B∗Hx(t).
(4.9)

The control signal u(t) is the output of the HIGS and the input of the HIGS
is the error signal e(t) = r(t)− y(t).

Consider the plant to be in motion, the state is non-zero at some starting time
t0, then the HIGS should steer the plant to rest. In this case the reference
signal is set to zero, r(t) = 0, and the only focus of the HIGS is to stabilise
the plant. This makes the error signal to just be e(t) = −y(t).

The output of the plant is stated as y(t) = B∗Hx(t), resulting in the error
signal e(t) = −B∗Hx(t).

Assume the HIGS is in integrator mode for a certain time interval, the state
of the HIGS in that interval is then described as ẋh = −ωhB∗Hx and the
control signal output is u(t) = xh(t). Combining the Port-Hamiltonian plant
and integrator form of the HIGS the closed loop system in the integrator
mode time interval can be written into one state-space representation with
a new state, [10],

ẋi(t) =

(
JH −B

ωhB
∗H 0

)
xi(t)

y(t) =
(
B∗H 0

)
xi(t).

(4.10)

A solution exists for this system, just as in (3.6), when the initial condition
of the new state xi(t0) ı̀s given. The input is the reference signal r(t) = 0,
which is just a constant.

Now an interval in which the HIGS is in gain mode gives a control signal
u(t) = −khy(t) and results in a combined state-space representation, with
state xp(t)

ẋp(t) = JHxp(t)− (khBB
∗H)xp(t)

y(t) = B∗Hxp(t),
(4.11)

which simplifies to the system

ẋp(t) = (J − khBB∗)Hxp(t)
y(t) = B∗Hxp(t).

(4.12)
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4 Hybrid Integrator-Gain Systems 23

This is a proportional controlled system with damping matrix R = khBB
∗.

For a time interval in which the system is in gain mode the closed loop system
is described by (4.12). A unique solution exists when an initial condition for
xp(t0) is given.

In non-overlapping time intervals the HIGS controlled closed loop system
is either described by (4.12) or (4.10). For both control modes there exist
solutions of the system. Together the separate solutions for all intervals
combine to one solution over the whole time axis of the HIGS controlled
system.

The whole solution can be written in one term. Say for a number n ∈ N
there exist solutions yi(t) to the closed-loop integrator controlled system
(4.10) on the respective continuous time intervals (ti, tiend ] where ti < tiend
and i = 1, 2, . . . n. Also, for any number m ∈ N, yj(t) are m − n solutions
to the closed loop gain controlled system (4.12) on the respective continuous
time intervals (tj, tjend ] where tj < tjend and j = n+ 1, n+ 2 . . .m. The time
intervals do not overlap such that (ti, tiend ] ∩ (tj, tjend ] = ∅ for all i and j.
The solution for the closed loop HIGS controlled system is written as the
summation

y(t) =
∑
i

yi(t)1((ti, tiend ]) +
∑
j

yj(t)1((tj, tjend ]). (4.13)

It is important that the time intervals, in which the system is either in
integrator or gain mode, are non-empty and continuous. If the system would
switch between control modes at one point in time infinitely a problem called
a sliding mode would occur, [11]. The HIGS is defined such that this problem
does not happen, at any time the control mode of the HIGS is clear.

The representation of a general solution assumes that the states of the two
closed loop systems are of equal dimension. For the two closed loop state-
space representations we have that the states can be different dimensions. A
switch will change the dimension of the state of the whole closed loop system
and the analysis of the closed loop system becomes more complex.

State continuity

Lets look at the control block as a general state-space representation where
A = 0 in both domains F1 and F2. BF1 = ωh and BF2 = kh in F1 and F2

respectively. Where e(t) is the input in F1 and derivative ė(t) is the input in
F2.
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Using a candidate solution xh(t) = eAtz(t) where, with any function z(t) ∈ R,
we get xh(t) = z(t).

Since ωh, kh ∈ R the solution for the HIGS state xh(t) can be written, de-
pending on the control mode it is in, as

xh(t) = xh(t0) +

∫ t

t0

ωhe(τ)dτ in F1,

xh(t) = xh(t0) +

∫ t

t0

khė(τ)dτ in F2.

(4.14)

These expressions exist for locally integrable function e(t) in F2 and locally
integrable derivative ė(t) in F1 and are determined by the initial condition
of the state.

The output function uh(t) is then given by the state xh(t) itself.

Now consider a switch to the other control mode. When this happens
the state it left off with will be used as new initial condition. Lets say
xswitch(tswitch) is the state at switching time tswitch. When going from inte-
grator to gain mode at time tswitch set xh(t0) = xswitch(tswitch) and see,

xh(t) = xswitch(tswitch) +

∫ t

tswitch

khė(τ)dτ in F1. (4.15)

Going back from gain to integrator mode at time tswitch, see

xh(t) = xswitch(tswitch) +

∫ t

tswitch

ωhe(τ)dτ in F2. (4.16)

This way the state will be continuous. The state is Lipschitz continuous if
e(t) is integrable and, in case of gain mode in F1, also ė(t) must be integrable.
The definition of Lipschitz continuity is given in (3.1.6). The result is put in
Theorem (4.6.1).

Theorem 4.6.1. Given the real integrable function e(t) and it’s integrable
derivative ė(t), then the state and output of the Hybrid Integrator-Gain Sys-
tem as defined in 4.2 are Lipschitz continuous.

Proof. Given that e(t) and it’s derivative are locally integrable then there
exist real constants C1,C2 ∈ R such that for any time t and initial time t0
the following integrals are bounded,∫ t

t0

|e(τ)|dτ ≤ C1 and

∫ t

t0

|ė(τ)|dτ ≤ C2. (4.17)
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Then, in section F2, for all two points in time t1, t2 ∈ R and initial condition
xh(t0)

|xh(t1)− xh(t2)| =
∣∣∣∣xh(t0) +

∫ t1

t0

ωhe(τ)dτ − xh(t0)−
∫ t2

t0

ωhe(τ)dτ

∣∣∣∣
=

∣∣∣∣∫ t2

t1

ωhe(τ)dτ

∣∣∣∣ ≤ ∫ t2

t1

|ωhe(τ)|dτ ≤ |ωh|C1

= K|t1 − t2|

(4.18)

for some real constant K = |ωh|C1

|t1−t2| , which proves Lipschitz continuity of xh(t)
in F2.

A similar proof shows the Lipschitz continuity of the state in F1 using C2

and the integrability of ė(t).

Since the current state is used as initial condition when a switch happens
there are no discontinuities in the trajectory of the state.
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5. Vibrating string system

An example of a positive real system is the model of the vibrating string.
It is described by the well known partial differential equation of the wave
equation. In this chapter we will rewrite the model of the vibrating string
into a fitting state-space representation in order to apply control. While the
model is derived it is also shown why it is a positive real system.

5.1 The Partial Differential Equation

The model of the vibrating string is a version of the wave equation. [8]. It
models the movement of a string, which can up and down by applying a force
on the string. The motion of the string is governed by the following partial
differential equation (5.1),

∂2ω

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂ω

∂ζ
(ζ, t)

)
. (5.1)

Here T and ρ represent the physical properties of the string at the horizontal
location ζ. The parameter T represents Young’s modulus, which is an indi-
cation of the tension on the string. The parameter ρ is the mass density of
the string and ω(ζ, t) is a variable which represents the vertical displacement
of the string at location ζ and time t. The string begins and ends at the
points a and b and there exists an initial condition for the begin position of
the string at time t0 = 0, stated as a function of ζ,

ω(ζ, 0) = ω0(ζ). (5.2)

Figure 5.1: The vibrating string [2]
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5 Vibrating string system 27

The string is fixed on the left and can move freely on the right where a force
can be applied. Lets take a look at the units of the arguments of the model.
An overview is given in the Table 5.1.

Description: Variable: Units:
Vertical coordinate ω meter (m)
Horizontal displacement ζ meter (m)
Time t Seconds (s)

Density ρ Kg per meter (Kg
m

)
Young’s modulus (elasticity) T Newton per meter (N)
Begin & end points a, b meter (m)

Table 5.1: Unit overview

The second derivative term on the left of the equal sign in (5.1) has unit
‘meter per seconds squared’

(
m
s2

)
. For the model to make sense the unit of

the term on the right-hand side should be the same as on the left-hand side,
which will be checked. The derivative of ω to ζ is dimensionless since it is the
derivative of a variable in ‘meter’ to ‘meter’. This unit multiplied by the unit
of T gives the term in the brackets of the right-hand side in (5.1) the unit
‘Newton’. The derivative to ζ has the unit ‘Newton per meter’

(
N
m

)
. A force

can be expressed as mass times acceleration. So unit ‘Newton’ is expressed
as ‘kilogram times meter per second squared’

(
Kgm

s2

)
. So N

m
is equal to Kg

s2
.

Because 1
ρ

has unit ‘meter per kilogram’
(
m
Kg

)
the term on the right will

become m
Kg

Kg
s2

, which simplifies to m
s2

. Indeed this is the same unit as that of
the term on the left-hand side so it is concluded that the model makes sense
in terms of units.

The goal is to write the PDE for the string model into a state-space repre-
sentation.

5.2 The Port-Hamiltonian representation

That the model of the vibrating string is a positive real system and equation
(5.1) is a Port-Hamiltonian partial differential equation will be shown in this
section. A linear state-space representation of a Port-Hamiltonian system
has already been defined in Definition 3.5.2 but there also exists a class of
Port-Hamiltonian PDE’s. A system being Port-Hamiltonian means that the
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5 Vibrating string system 28

energy can only enter or leave the system via its boundaries, also called its
‘Ports’. The ‘Hamiltonian’ is a specific equation which describes the energy
in the system. The class is described in Definition 5.2.1.

Definition 5.2.1 (Linear, First-order Port-Hamiltonian PDE). Let P1 ∈
Cn×n be invertible and self-adjoint, let P0 ∈ Cn×n be skew-adjoint, i.e. P ∗0 =
−P0, and let H ∈ L∞([a, b];Cn×n) be symmetric, i.e. H(ζ)∗ = H(ζ) and
positive then the differential equation

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t)) + P0(H(ζ)x(ζ, t)) (5.3)

is called a linear, first order Port-Hamiltonian system with the associated
Hamiltonian E : [0,∞)→ [0,∞) given by

E(t) =
1

2

∫ b

a

x(ζ, t)TH(ζ, t)x(ζ, t)dζ. (5.4)

The model of the vibrating string in (5.1) has the structure of a Port-
Hamiltonian system,

∂

∂t

(
ρ(ζ)∂ω

∂t
∂ω
∂ζ

)
=

(
0 1
1 0

)
∂

∂ζ

(( 1
ρ(ζ)

0

0 T (ζ)

)(
ρ(ζ)∂ω

∂t
∂ω
∂ζ

))
, (5.5)

where the state is x(ζ, t) =

(
ρ(ζ)∂ω

∂t
∂ω
∂ζ

)
. The variables in the state represent

the energy in the system, ρ(ζ)∂ω
∂t

the momentum and ∂ω
∂ζ

the strain. The

matrices of the model in equation (5.3) are specified as

P1 =

(
0 1
1 0

)
, H(ζ) =

( 1
ρ(ζ)

0

0 T (ζ)

)
and P0 = 0.

For solutions of the model there need to be boundary conditions, which will
be determined in next section.

5.3 Boundary conditions

The boundary conditions of a Port-Hamiltonian PDE are of the special form
(5.6), where the matrix M = [M1,M2] must be of full rank n, [2].

M1(Hx)(b, t) +M2(Hx)(a, t) = 0, (5.6)
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5 Vibrating string system 29

The left side of the string will be stationary and the right side will have
no force applied to it at the starting time. This results in a homogeneous
boundary condition on the right side. Together this gives the two boundary
conditions,

T (b)
∂ω

∂ζ
(b, t) = 0 and

∂ω

∂t
(a, t) = 0. (5.7)

This makes the matrices in (5.6) to be chosen as M1 =

[
0 0
0 1

]
and M2 =[

1 0
0 0

]
such that the desired boundary conditions are written in the correct

form. Clearly these boundary conditions are a sufficient choice since the
chosen matrix M = [M1,M2] has rank 2.

5.4 Hamiltonian

The Hamiltonian of a Port-Hamilton system is defined in Definition 5.2.1. It
represents the energy in the system, which can be seen as a function of time,

E(t) =
1

2

∫ b

a

x(ζ, t)TH(ζ, t)x(ζ, t)dζ. (5.8)

Filling in the term inside the integral for the specific string model results in,

x(ζ, t)TH(ζ)x(ζ, t) =
(
ρ(ζ)∂ω

∂t
(ζ, t) ∂ω

∂ζ
(ζ, t)

)( 1
ρ(ζ)

0

0 T (ζ)

)(
ρ(ζ)∂ω

∂t
(ζ, t)

∂ω
∂ζ

(ζ, t)

)
=
(
∂ω
∂t

(ζ, t) T (ζ)∂ω
∂ζ

(ζ, t)
)(ρ(ζ)∂ω

∂t
(ζ, t)

∂ω
∂ζ

(ζ, t)

)
= ρ(ζ)

(
∂ω

∂t
(ζ, t)

)2

+ T (ζ)

(
∂ω

∂ζ
(ζ, t)

)2

,

(5.9)

and the Hamiltonian of the vibrating string system is determined as

E(t) =
1

2

∫ b

a

ρ(ζ)

(
∂ω

∂t
(ζ, t)

)2

+ T (ζ)

(
∂ω

∂ζ
(ζ, t)

)2

dζ. (5.10)

It is known that kinetic energy is expressed as E = 1
2
mv2, where m is mass

and v velocity. The unit of energy is Kg(m
s

)2. To be certain if the Hamilto-

nian is correct the unit will be checked. Since ρ has Kg
m

and (∂ω
∂t

)2 is (m
s

)2, T
is in ‘Newton’ and (∂ω

∂ζ
)2 is unit-less. The term inside the integral in (5.10)
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is than in ‘Newton’
(
N = Kgm

s2

)
. Because the integral is over ζ in ‘meters’

we get a unit of Kg(m
s

)2 for the integral as a whole. This is indeed the unit
of energy. From a unit standpoint the Hamiltonian makes sense.

The change in energy is the derivative of the Hamiltonian, so differentiating
the energy, while making use of the PDE in (5.1), the power balance equation
is derived,

d

dt
E(t) =

1

2

∫ b

a

2ρ(ζ)
∂ω

∂t
(ζ, t)

(
∂2ω

∂t2
(ζ, t)

)
+ 2T (ζ)

∂ω

∂ζ
(ζ, t)

∂

∂t

(
∂ω

∂ζ
(ζ, t)

)
dζ

=

∫ b

a

ρ(ζ)
∂ω

∂t
(ζ, t)

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂ω

∂ζ
(ζ, t)

)
+ T (ζ)

∂ω

∂ζ
(ζ, t)

∂

∂ζ

(
∂ω

∂t
(ζ, t)

)
dζ

=

∫ b

a

∂

∂ζ

(
∂ω

∂t
(ζ, t)T (ζ)

∂ω

∂ζ
(ζ, t)

)
dζ

=
∂ω

∂t
(b, t)T (b)

∂ω

∂ζ
(b, t)− ∂ω

∂t
(a, t)T (a)

∂ω

∂ζ
(a, t)

(5.11)

As can be seen from power balance, the change of energy is only possible
via the boundaries of the string. The right side of the string will be used to
influence the system and change the energy in the string.

5.5 Input/Output formulation

When adding a controller to the system it must have an input, which will
be the control signal, as well as an output to measure the results. In this
section the input and output of the vibrating string model are defined. The
input is denoted as u(t) and the output as y(t). A Port-Hamiltonian system
combined with homogeneous boundary conditions and an input and output
is summarised as the system (5.12), [13]

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t))

0 = M11(Hx)(b, t) +M12(Hx)(a, t)

u(t) = M21(Hx)(b, t) +M22(Hx)(a, t)

y(t) = C1(Hx)(b, t) + C2(Hx)(a, t),

(5.12)

30



5 Vibrating string system 31

where rank

M11 M12

M21 M22

C1 C2

 = n+ rank
[
C1 C2

]
.

The input will be a force applied to the right of the string, so u(t) =
T (b)∂ω

∂ζ
(b, t). The output will represent the velocity of the string on the right,

so y(t) = ∂ω
∂t

(b). The following matrices are chosen to describe input, output
and boundary conditions of the vibrating string model in one input/output
system,

M11 =
[
0 0

]
,M12 =

[
1 0

]
,

M21 =
[
0 1

]
,M22 =

[
0 0

]
,

C1 =
[
1 0

]
, C2 =

[
0 0

]
.

(5.13)

With this input/output description the transfer function of the vibrating
string model can now be found.

5.6 Transfer function

In this section the transfer function for the vibrating string model is derived
using the matrices (5.13) and the useful term

(
H(b)x(b, t)
H(a)x(a, t)

)
=


∂ω
∂t

(b, t)
T (b)∂ω

∂ζ
(b, t)

∂ω
∂t

(a, t)
T (a)∂ω

∂ζ
(a, t)

. (5.14)

The input and output of 5.12 are written in a new form, [2]

u(t) = WB

(
H(b)x(b, t)
H(a)x(a, t)

)
(5.15)

y(t) = WC

(
H(b)x(b, t)
H(a)x(a, t)

)
. (5.16)

The desired boundary conditions are achieved with the matrices WB =(
0 1 0 0

)
and WC =

(
1 0 0 0

)
, since u(t) = T (b)∂ω

∂ζ
(b, t) and y(t) =

∂ω
∂t

(b, t). The transfer function is found by solving a differential equation
with inhomogeneous boundary conditions following Theorem 5.2.1 in [13].
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The theorem states that, if for a given s ∈ C and u0 ∈ R, we can solve

sx0(ζ) = P1
∂

∂ζ
(H(ζ)x0(ζ)) + P0(H(ζ)x0(ζ))

u0 = WB

(
H(b)x0(b)
H(a)x0(a)

)
G(s)u0 = WC

(
H(b)x0(b)
H(a)x0(a)

)
,

(5.17)

then G(s) is the transfer function of the system. For simplicity the param-
eters ρ and T are considered to be constant, which makes the differential
equation solvable. The differential equation of the string results in the sys-
tem

sx0(ζ) =

(
0 1
1 0

)
d

dζ

((
1
ρ

0

0 T

)
x0(ζ)

)
u0 = T

∂ω

∂ζ
(b)

∂ω

∂t
(a) = 0

G(s)u0 =
∂ω

∂t
(b).

(5.18)

Now two terms are defined, Q0(ζ) = ρ∂ω
∂t

and φ0(ζ) = ∂ω
∂ζ

. This way the

state and boundary conditions at the starting time are x0(ζ) =

(
Q0(ζ)
φ0(ζ)

)
,

u0 = Tφ0(b) and y0 = 1
ρ
Q0(b). This gives the following two useful equations,

sQ0(ζ) = T
∂φ0

∂ζ
(ζ)

sφ0(ζ) =
1

ρ

∂Q0

∂ζ
(ζ).

(5.19)

Now a candidate solution for Q0(ζ) is defined as Q0(ζ) = esBζ . The derivative
of the candidate solution is ∂Q0

∂ζ
(ζ) = sBesBζ . From the second equation in

(5.19) a term for φ0(ζ) can now be derived,

sφ0(ζ) =
1

ρ

∂Q0

∂ζ
(ζ) =

1

ρ
sBesBζ =⇒ φ0(ζ) =

1

ρ
BesBζ . (5.20)

Now that term is differentiated as well, ∂φ0
∂ζ

(ζ) = 1
ρ
sB2esBζ , and a new ex-

pression for Q0(ζ) is found, using the first equation of (5.19), see

sQ0(ζ) = T
∂φ0

∂ζ
(ζ) =

T

ρ
sB2esBζ =⇒ Q0(ζ) =

T

ρ
B2esBζ . (5.21)
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With the chosen candidate solution for Q0(ζ) an equation for the constant
B is derived,

T

ρ
B2esBζ = esBζ =⇒ T

ρ
B2 = 1. (5.22)

Concluding a term for the constant B = ±
√

ρ
T

and resulting in the two
general solutions to equations (5.19)

Q0(ζ) = αes
√

ρ
T
ζ + βe−s

√
ρ
T
ζ

φ0(ζ) = α
1

ρ

√
ρ

T
es
√

ρ
T
ζ − β 1

ρ

√
ρ

T
e−s
√

ρ
T
ζ .

(5.23)

With these two solutions the differential equation of (5.18) can be solved
for the transfer function G(s). Combining the general solutions (5.23) with
the given input and output conditions of (5.18) expressions for α and β are
found, see(

u0
0

)
=

(
Tφ0(b)
Q0(a)

)
=

(
T
ρ

√
ρ
T
es
√

ρ
T
b −T

ρ

√
ρ
T
e−s
√

ρ
T
b

es
√

ρ
T
a e−s

√
ρ
T
a

)(
α
β

)

=⇒
(
α
β

)
=

1

det

(
e−s
√

ρ
T
a T

ρ

√
ρ
T
e−s
√

ρ
T
b

−es
√

ρ
T
a T

ρ

√
ρ
T
es
√

ρ
T
b

)(
u0
0

)
,

(5.24)

where the determinant is expressed as

det =
T

ρ

√
ρ

T
(es
√

ρ
T
(b−a) + es

√
ρ
T
(a−b)). (5.25)

The full expression for α and β are stated

α =
1

det
e−s
√

ρ
T
au0 =

e−s
√

ρ
T
a

T
ρ

√
ρ
T

(es
√

ρ
T
(b−a) + es

√
ρ
T
(a−b))

u0

β = − 1

det
es
√

ρ
T
au0 =

−es
√

ρ
T
a

T
ρ

√
ρ
T

(es
√

ρ
T
(b−a) + es

√
ρ
T
(a−b))

u0.

(5.26)
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The output equation of (5.18) is used to derive the transfer function itself,

y0 =
1

ρ
Q0(b) =

(
1
ρ
es
√

ρ
T
b 1

ρ
e−s
√

ρ
T
b
)(α

β

)
= (

1

ρ
es
√

ρ
T
b)(

1

det
e−s
√

ρ
T
au0) + (

1

ρ
e−s
√

ρ
T
b)(− 1

det
es
√

ρ
T
au0)

=
(1
ρ
es
√

ρ
T
b)(e−s

√
ρ
T
au0)

T
ρ

√
ρ
T

(es
√

ρ
T
(b−a) + es

√
ρ
T
(a−b))

−
(1
ρ
e−s
√

ρ
T
b)(es
√

ρ
T
au0)

T
ρ

√
ρ
T

(es
√

ρ
T
(b−a) + es

√
ρ
T
(a−b))

=
(es
√

ρ
T
(b−a) − e−s

√
ρ
T
(b−a))u0

T
√

ρ
T

(es
√

ρ
T
(b−a) + e−s

√
ρ
T
(b−a))

=
1

T
√

ρ
T

tanh (s

√
ρ

T
(b− a))u0

=⇒ G(s)u0 =
1

T
√

ρ
T

tanh (s

√
ρ

T
(b− a))u0.

(5.27)

Resulting in the transfer function for the vibrating string model expressed
by

G(s) =
1

T
√

ρ
T

tanh (s

√
ρ

T
(b− a)). (5.28)

In the next sections we analyse this transfer function and approximate it
numerically using a Laurent Series, making use of the Residue Theorem, [5].

5.7 Approximation by Residue Theorem

The transfer function (5.28) involves a hyperbolic term. In order to run
simulations that term must be approximated of a polynomial. One way to
achieve this is by using the Residue Theorem, [5].

Theorem 5.7.1 (Residue theorem). Given a complex function f(z) and
some contour C, then

f(z) =
∞∑

n=−∞

an
(z − pn)

an =
1

2πi

∮
C

f(z)

(z − pn)
dz

(5.29)

where pn represent the poles of the complex function f(z) and the coefficients
an are the called the ‘residues’ of f(z) at the corresponding pole pn.

The poles of the transfer function G(s) of the vibrating string model are
where cosh

(
s
√

ρ
T

(b− a)
)

= 0, which occurs at the frequencies s
√

ρ
T

(b−a) =
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iπ
2

+ iπn, for n ∈ Z. This implies that the poles of the transfer function are

at s =
iπ
2
+iπn√
ρ
T
(b−a)

and they are simple poles, all of them have a multiplicity of

one, [10]. The residues of a function G(s) = P (s)
Q(s)

are found by the formula,

[5]

Res(G(s), pn) =
P (pn)

Q′(pn)
.

In case of the vibrating string transfer function the definition of the hyper-

bolic tanh (s) = sinh (s)
cosh (s)

and the poles s =
iπ
2
+iπn√
ρ
T
(b−a)

result in a constant residue

for every pole,

Res(G(s),
iπ
2

+ iπn√
ρ
T

(b− a)
) =

1

ρ(b− a)

sinh
(
iπ
2

+ iπn
)

sinh
(
iπ
2

+ iπn
) =

1

ρ(b− a)
.

By the Residue Theorem 5.29 the transfer function of the string can be
written as the infinite summation,

G(s) =
∞∑

n=−∞

1

ρ(b− a)(s−
iπ
2
+iπn√
ρ
T
(b−a)

)
.

In practice, using an infinite amount of poles in a simulation is not possible.
Instead, the transfer function is approximated by the use of a finite amount
of poles in the summation. When one pole is used the complex conjugate of
that pole is also used, so when pole pn is used then pole p−n is used in the
approximation as well. This way the poles are chosen symmetric and they will
appear in pairs. The result is a finite approximation of the hyperbolic term
in the transfer function. The approximation is a rational transfer function
where its order is determined by the amount of poles used. The more poles are
used, the better the approximation of the original transfer function becomes,
but simultaneously, the more complex the numerical simulations will be. Say
2N + 1 poles are used, then

G(s) =
N∑

n=−N

1

ρ(b− a)(s−
iπ
2
+iπn√
ρ
T
(b−a)

)
. (5.30)

Looking at the units of the approximation of the transfer function and com-
paring the result to the units of the original transfer function (5.28) will
indicate if the approximation makes sense. They should both have the same
unit.
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First the original transfer function (5.28) is checked. From the unit table
(5.1) it is known that the term

(
ρ
T

)
has unit Kg

mN
. Using N = Kgm

s2
, which

has unit Kg
mKg m

s2
, gives the unit s2

m2 . Resulting in the term
√

ρ
T

to have the

unit s
m

.

Inside the hyperbolic term the length of the string (b− a) in ‘meter’ and the
frequency s has the unit 1

s
. The unit s

m
1
s
m is dimensionless, which makes

sense as argument in the hyperbolic function.

Now 1

T
√

ρ
T

has unit m
Ns

, which becomes m
Kg m

s2
s
. Resulting in the complete

transfer function to have unit s
Kg

.

Now for the unit of the approximated transfer function. It has a term ρ(b−a)
with unit Kg. Again, frequency is in 1

s
and the poles are in terms of 1

s
as

well. The approximation has unit s
Kg

which is indeed the same unit as the
original transfer function.

Another way of checking if the approximation could be correct is by looking
at the relation Y (s) = G(s)U(s) and comparing the unit of the input and
output functions. U(s) has unit ‘Newton’ and Y (s) has unit ‘meter per
second’

(
m
s

)
. The right term s

Kg
N written in full is s

Kg
Kgm

s2
, which results

in unit m
s

. Indeed, this is the same unit as the unit of Y (s).

The approximated transfer function will be used to write the vibrating string
model in a suitable state-space representation.

5.8 Some realisations

To give an insight in the vibrating string system the approximation to the
transfer function has been generated in MATLAB. To keep the model simple
the parameter values T = 1 Newton per meter and ρ = 1 kilogram per
meter are used and the string has a length of 1 meter, [a, b] = [0, 1]. In the
approximation 20 poles will be used.
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Figure 5.2: G(s) and it’s approximation, s ∈ R

In this comparison, Figure 5.2, it is seen that the approximation is close to
the original function around the origin. Since we have used a limited amount
of poles, far away from the origin, in either the positive or negative direction,
the approximation will go back to zero.

(a) Bode Diagram of G(s) (b) Pole-Zero map of G(s)

Because all the poles are on the imaginary axis the Bode-plot in Figure 5.3a
does not give clear information. The frequencies where the Bode diagram
shoots up are the locations of the poles and where it shoots down the zeros
are located. Because of the logarithmic scale of the plots the poles and zeroes
after a certain frequency are not visible in the plot since they lay too close
to each other.

The poles in Figure 5.3b all lay on the imaginary axis which indicates that
the system is marginally stable. To stabilise the system one should shift
these poles to the left of the imaginary axis. This is possible by connecting
a controller which will be done in later chapters.
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(a) Impulse response of G(s) us-
ing 20 poles

(b) Step response of G(s) using
20 poles

In Figure 5.4a the impulse response is plotted. The impulse causes the system
to oscillate, which is common behaviour for marginally stable systems. In
Figure 5.4b the output, the speed at the right-hand side of the string, is
plotted for a constant input signal of 1. Since the output is the speed of the
string the plot can be interpreted as moving in one direction for two seconds
and in the opposite direction for another two seconds.

Figure 5.5: Response to a square signal input of G(s)

For an input of a square wave, a step to 1 for ten seconds, the output is
plotted. The behaviour of the string becomes a bit more chaotic already.

For clarity and simplicity just two poles will be used in the approximation
of the transfer function. Namely poles p0 = iπ

2
and p−1 = − iπ

2
. The transfer

function will be a simple rational function,

G(s) =
2s

s2 + π2

4

. (5.31)
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Clearly it has a zero at s = 0 and a pair of complex conjugate poles at

s ≈ ±
√

π2

4
i.

The inverse Laplace Transform of (5.31) equals the impulse response h(t) of
the approximated vibrating string system. [7]. Using the Laplace transform
of cosine stated,

s

s2 + b2
←→ L{cos (bt)}, ∀Re(s) > 0, (5.32)

the function (5.31) results in an expression for the impulse response,

h(t) ≈ 2 cos (±
√
π2

4
t), ∀t ≥ 0. (5.33)

Indeed in Figure (5.6a) and Figure (5.6b) the two impulse responses are the
equal.

(a) Impulse response approxima-
tion with two poles

(b) Inverse Laplacian of approx-
imated G(s)

5.9 Positive realness

In this section the property of positive realness of the transfer function for
the vibrating string system will be shown. The positive realness is the reason
the vibrating string model is a Port-Hamiltonian system. First a definition
of a Positive Real complex function is given in Definition 5.9.1.

Definition 5.9.1 (Positive Real function). A complex function Z(s), s ∈ C
is called Positive Real if for all s with Re(s) > 0 =⇒ Re(Z(s)) ≥ 0.

When a transfer function is positive real the system it describes is a positive
real system.
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To show positive realness the Hamiltonian of the vibrating string model will
be used. The Hamiltonian matrix H is positive definite 3.5.1 and is restated
here,

H(ζ) =

( 1
ρ(ζ)

0

0 T (ζ)

)
. (5.34)

The parameters ρ and T are positive scalars or real and positive functions
of ζ. This makes the Hamiltonian matrix self-adjoint, i.e. H = H∗ and its
property of being positive definite follows from the quadratic terms below,

x∗H(ζ)x =
(
ρ(ζ)∂ω

∂t

∗ ∂ω
∂ζ

∗
)( 1

ρ(ζ)
0

0 T (ζ)

)(
ρ(ζ)∂ω

∂t
∂ω
∂ζ

)
=
(
ρ(ζ)∂ω

∂t

∗ ∂ω
∂ζ

∗
)( ∂ω

∂t

T (ζ)∂ω
∂ζ

)
= ρ(ζ)

∣∣∣∣∂ω∂t
∣∣∣∣2 + T (ζ)

∣∣∣∣∂ω∂ζ
∣∣∣∣2 > 0.

(5.35)

Indeed x∗Hx > 0 for any x 6= 0.

In Port-Hamiltonian partial differential equation systems the change in en-
ergy of the system obeys the following equation, [13],

d

dt
E(t) =

1

2
[(H(ζ)x(ζ, t))∗P1(H(ζ)x(ζ, t))]ba. (5.36)

In previous section the derivative of the energy in the system of the vibrating
string has already been derived, (5.11), that result is restated here,

d

dt
E(t) =

∂ω

∂t
(b, t)T (b)

∂ω

∂ζ
(b, t)− ∂ω

∂t
(a, t)T (a)

∂ω

∂ζ
(a, t). (5.37)

Now the right-hand term of (5.36) is derived to check if the result is similar,

1

2
[(H(ζ)x(ζ, t))∗P1(H(ζ)x(ζ, t))]ba

=
1

2
[
(
∂ω
∂t

∗
(ζ, t) T (ζ)∂ω

∂ζ

∗
(ζ, t)

)(0 1
1 0

)(
∂ω
∂t

(ζ, t)
T (ζ)∂ω

∂ζ
(ζ, t)

)
]ba

=
1

2
[
(
∂ω
∂t

∗
(ζ, t) T (ζ)∂ω

∂ζ

∗
(ζ, t)

)(T (ζ)∂ω
∂ζ

(ζ, t)
∂ω
∂t

(ζ, t)

)
]ba

=
1

2
[
∂ω

∂t

∗
(ζ, t)T (ζ)

∂ω

∂ζ
(ζ, t) + T (ζ)

∂ω

∂ζ

∗
(ζ, t)

∂ω

∂t
(ζ, t)]ba

=
1

2

(
∂ω

∂t

∗
(b, t)T (b)

∂ω

∂ζ
(b, t) + T (b)

∂ω

∂ζ

∗
(b, t)

∂ω

∂t
(b, t)

−∂ω
∂t

∗
(a, t)T (a)

∂ω

∂ζ
(a, t)− T (a)

∂ω

∂ζ

∗
(t, a)

∂ω

∂t
(a, t)

)
.

(5.38)
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When the arguments are considered to be real it simplifies to equation (5.37),

1

2

(
∂ω

∂t

∗
(b, t)T (b)

∂ω

∂ζ
(b, t) + T (b)

∂ω

∂ζ

∗
(b, t)

∂ω

∂t
(b, t)

−∂ω
∂t

∗
(a, t)T (a)

∂ω

∂ζ
(a, t)− T (a)

∂ω

∂ζ

∗
(t, a)

∂ω

∂t
(a, t)

)
=
∂ω

∂t
(b, t)T (b)

∂ω

∂ζ
(b, t)− ∂ω

∂t
(a, t)T (a)

∂ω

∂ζ
(a, t).

(5.39)

So indeed equation (5.36) holds. A result of the vibrating string being a
Port-Hamiltonian system.

The chosen input, output and boundary conditions are substituted in the
equation to get an expression for the change in energy in the system using
the input and output arguments,

d

dt
E(t) =

1

2
(y(t)∗u(t) + u(t)∗y(t)) . (5.40)

Now for the positive realness of the transfer function, consider general so-
lutions for the input, output and state, u(t) = u0e

st, y(t) = y0e
st and

x(t) = x0e
st respectively, [13]. The boundary condition y0 = G(s)u0 from

(5.18) is applied as well. For generality the initial input is u0 ∈ C. The
change in energy in the system with these general solutions results in a pos-
itive expression,

1

2
(y(t)∗u(t) + u(t)∗y(t)) =

1

2

(
(y0e

st)∗u0e
st + (u0e

st)∗y0e
st
)

=
1

2

(
(G(s)u0e

st)∗u0e
st + (u0e

st)∗G(s)u0e
st
)

=
1

2

∣∣u0est∣∣2 (G(s)∗ +G(s))

=
1

2

∣∣u0est∣∣22Re(G(s)) =
∣∣u0est∣∣2Re(G(s)).

(5.41)

Similarly the Hamiltonian equation is differentiated using the general solution
for the state,

E(t) =
1

2

∫ b

a

x(ζ, t)∗H(ζ)x(ζ, t)dζ

=
1

2

∫ b

a

(x0(ζ)est)∗H(ζ)x0(ζ)estdζ

=
1

2

∫ b

a

∣∣est∣∣2x0(ζ)∗H(ζ)x0(ζ)dζ

=
1

2

∫ b

a

e2Re(s)tx0(ζ)∗H(ζ)x0(ζ)dζ,

(5.42)
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which results in the following expression,

d

dt
E(t) = Re(s)e2Re(s)t

∫ b

a

x0(ζ)∗H(ζ)x0(ζ)dζ. (5.43)

SinceH is positive definite, which was shown in (5.35), the integral is positive
and the whole expression is positive.

The two results for the derivative of the energy function combine to form the
equation,

Re(s)e2Re(s)t
∫ b

a

x0(ζ)∗H(ζ)x0(ζ)dζ =
∣∣u0est∣∣2Re(G(s)). (5.44)

Since |u0est|2 > 0 for all s ∈ C, for Re(s) > 0 the transfer function must
be positive real, i.e. Re(G(s)) > 0. The change in energy is equal to the
product of the input and output which is a typical property of positive-real
systems. Another property of such systems is the Positive Real Lemma,
which is explained in next section.

5.10 The Positive Real lemma

A positive real transfer function can be written into a state-space represen-
tation of Hamiltonian form 3.5.2 by use of the Positive Real lemma. The
lemma itself states that there exists a positive real transfer function for a
linear Port-Hamiltonian system, (3.5.2). It is used the other way around,
to form a state-space representation from an existing positive real transfer
function. The lemma is stated next.

Lemma 5.10.1 (Positive Real lemma). Consider the state-space system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

x(0) = x0,

(5.45)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m and (A,B)
controllable and (A,C) observable. It’s transfer function, H(s) ∈ Rm×m,
s ∈ C is H(s) = C(sI − A)−1B + D, exists and is Positive Real if and only
if there exist matrices P = P T > 0, P ∈ Rn×n, L ∈ Rn×m and W ∈ Rm×m

such that

ATP + PA = −LTL
PB − CT = −LW
D +DT = W TW

(5.46)
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The equation ATP + PA = −LTL is known as the Lyapunov equation for
matrices, [10].

The transfer function of the vibrating string is used to rewrite it to an or-
dinary differential equation. From there a state-space representation can be
derived and the matrices P,L and W will be found.

The three equations in the lemma can be written as one Linear Matrix In-
equality, [12], which is feasible for a positive symmetric matrix P > 0, defined
as [

ATP + PA PB − CT

BTP − C −DT −D

]
= −

[
L
W T

][
LT W

]
≤ 0. (5.47)

When D +DT > 0 it can even be written as a Quadratic Matrix Inequality
related to the Algebraic Riccati Equality, [12]

ATP + PA+ (PB − CT )(D +DT )−1(PB − CT )T ≤ 0. (5.48)

When D = 0 it follows that that W = 0 and PB = CT . This is the case for
the vibrating string model, just the Lyapunov inequality is left. The matrix
P is the Hamiltonian matrix of the linear Port-Hamiltonian system.

5.11 State-space representation

The approximate transfer function will be written into a state-space repre-
sentation. This is possible by use of the Positive Real Lemma 5.10.1 from
previous section.

Let us restate the transfer function involving two poles for the uncontrolled
system as in (5.31),

P (s) =
2s

s2 + π2

4

. (5.49)

This will be called the plant. Based on the corresponding ordinary differential
equation of the transfer function state variables will be chosen for the state-
space representation. The ODE is derived by use of the relation Y (s) =
G(s)U(s).

s2Y +
π2

4
Y = 2sU =⇒ ÿ(t) +

π2

4
y(t) = 2u̇(t). (5.50)

To define the states variables x1 and x2 the differential equation is rewritten
and integrated twice,

ÿ = 2u̇− π2

4
y =⇒ y =

∫ ∫
[2u̇− π2

4
y] =⇒ y =

∫
[2u+

∫
[−π

2

4
y]].

(5.51)
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Choosing x1 =
∫

[−π2

4
y] and x2 =

∫
[2u+ x1], where y = x2, their derivatives

are ẋ1 = −π2

4
y and ẋ2 = 2u + x1. Together they form the state-space

representation of the plant as a whole,

ẋ =

(
0 −π2

4

1 0

)
x+

(
0
2

)
u

y =
(
0 1

)
x.

(5.52)

It can be checked that this system is correct by use of the definition of a
transfer function for general state-pace representations. As stated in the sec-
tion 3.3, a transfer function of certain state-space representations is defined
as H(s) = C(sI −A)−1B +D, [12]. In the case of the derived system (5.52)
see

H(s) =
(
0 1

)(
s

(
1 0
0 1

)
−
(

0 −π2

4

1 0

))−1(
0
2

)
=

2s

s2 + π2

4

. (5.53)

The state-space representation is correct. Note that the matrix D = 0, which,
by the equations in the Positive Real lemma (5.10.1), implies that W = 0
and PB = CT .

The eigenvalues of A are imaginary, namely λ == ±
√

π2

4
i = ±π

2
i, which

indicates that the system is marginally stable. This property was already
concluded from the pole-zero map of the approximated transfer function ion
Figure 5.3b, where twenty poles were used. In the coming sections the system
is stabilised by controllers which will cause the real parts of the eigenvalues
to become negative.

When the system is controlled it is very useful to know how the energy in
the system behaves. To get an insight in the energy behaviour the values
in the Hamiltonian matrix for the approximated model will be determined.
The Lyapunov equation for the plant is solved for a symmetric function P .
Since the system is marginally stable we choose L = 0 and solve for P ,(

0 1

−π2

4
0

)(
p1 p2
p3 p4

)
+

(
p1 p2
p3 p4

)(
0 −π2

4

1 0

)
= 0

=⇒
(

p3 p4
−π2

4
p1 −2.467p2

)
+

(
p2 −π2

4
p1

p4 −π2

4
p3

)
= 0.

(5.54)

The four equations p3 + p2 = 0, p4 − π2

4
p1 = 0, −π2

4
p1 + p4 = 0 and −π2

4
p2 −

π2

4
p3 = 0 result in a unique solution matrix, where the elements p1 and p2

44



5 Vibrating string system 45

are variables, giving the solution matrix,

P =

(
p1 p2
−p2 π2

4
p1

)
. (5.55)

This solution matrix is the corresponding Hamiltonian density H for the
uncontrolled approximated model of the vibrating string.

Using the standard Port-Hamiltonian state-space representation form of 3.5.2
and the equations in the Positive Real lemma 5.10.1, namely C = BTH and
BTP = C, the elements in the matrix can be specifically determined,

(
0 1

)
=
(
0 2

)( p1 p2
−p2 π2

4
p1

)
, (5.56)

concluding in the values p1 = 1

2(π
2

4
)

and p2 = 0. The matrix is H =

(
2
π2 0
0 1

2

)
.

If this matrix is correct the equation A = J ∗H, in a Port-Hamiltonian rep-
resentation, should reveal a skew-adjoint matrix J . Indeed,(

0 −π2

4

1 0

)
= J ∗

(
2
π2 0
0 1

2

)
=⇒ J =

(
0 −π2

2
π2

2
0

)
(5.57)

gives a matrix J which is skew-adjoint. The found Hamiltonian matrix
used in the function 1

2
xTHx correctly describes the energy in the approxi-

mated model and the approximated vibrating string system is a linear Port-
Hamiltonian system.

A weak Lyapunov function is derived for the approximated uncontrolled vi-
brating string following the definition 3.2.1 in section 3.2. It is the function
V (x) = xTHx, where indeed V (0) = 0 and

V̇ (x) = ẋTHx+ xTHẋ = (Ax)THx+ xTHAx
= xT (ATH +HA)x = 0.

(5.58)

5.12 Energy behaviour

The Hamiltonian function E = 1
2
x∗Hx, which represents the energy in the

system, is plotted in Figure 5.7.
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Figure 5.7: Energy function of uncontrolled system

A point on the energy function in Figure 5.7 is set as initial condition to see
how the energy will evolve when the system is simulated. As a clear initial
condition point x0 =

(
−5, 5

)
is chosen since, as seen in the energy function,

the energy would start in the front corner at about a height of 9. See how
the energy evolves in the open-loop system of the plant using an input signal
u(t) = 0 and the chosen initial condition for the state of the plant.

(a) Energy (b) Input and output signals

Figure 5.8: Simulation of the uncontrolled vibrating string
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5 Vibrating string system 47

The energy in Figure 5.8a is seen to decay very slowly, which is caused by
small numerical errors in the simulation. In practice the energy is constant
at the value where the simulation started, the chosen initial condition.

The output and input of the uncontrolled system are plotted in Figure 5.8b.
The input is zero and the output is oscillating. This result makes sense
because the uncontrolled system is marginally stable and therefore it will
neither diverge nor converge.

Remember that the system is Port-Hamiltonian. The change in energy is
equal to the product of input and output. For this simulation of the open-
loop system the input signal is u(t) = 0, which causes the change in energy
to be zero everywhere, regardless of the output of the system. The energy
will be constant for any initial condition of the plant, as long as the signal
input stays at zero.
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6. PID-control for the vibrating
string

In this chapter two variations of PID-control [6] are applied to the vibrating
string model. Namely proportional gain control and integrator control. These
two methods are chosen since they form the basis of the Hybrid Integrator-
Gain system (4.2). The controllers will be connected in a negative feedback
loop as in Figure 6.1. In this figure the signal r(t) represents the reference
speed that the vibrating string should achieve. The behaviour of the energy
of the plant will be analysed.

K(s) P (s)
r e = r − y u y

−

Figure 6.1: Vibrating string P (s) with PID controller K(s) in negative feed-
back

A transfer function of a general negative feedback loop has already been
derived in equation (3.12) and is restated here,

H(s) =
P (s)K(s)

1 + P (s)K(s)
. (6.1)

A PID-controller always has a transfer function of the form K(s) = kp +
1
s
ki + kds, where the PID coefficients are constant. This causes a general

closed-loop PID controlled feedback system of the vibrating string (5.49) to
have the general transfer function, including a pole-zero cancellation,

FCL(s) =
2kds

2 + 2kps+ 2ki

(2kd + 1)s2 + 2kps+ 2ki + π2

4

. (6.2)

Note that if we use differentiator control, i.e. kd 6= 0, the transfer function
will just be proper and not strictly proper [10]. Looking at the limit

lim
s→0

sFCL(s) = 0, (6.3)

then, by the Final Value Theorem 3.3.1, every form of PID-control will re-
sult in an output that converges to zero. This makes PID-control only useful
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6 PID-control for the vibrating string 49

to bring a system into rest. Just like the transfer function of the plant the
general closed-loop transfer function can be written into a state-space repre-
sentation. Equation (6.2) corresponds to the following differential equation,

(2kd + 1)ÿ(t) + 2kpẏ(t) + (2ki +
π2

4
)y(t) = 2kdr̈(t) + 2kpṙ(t) + 2kir(t). (6.4)

Rewriting equation (6.4),

ÿ =
1

2kd + 1

(
−2kpẏ − (2ki +

π2

4
)y + 2kdr̈ + 2kpṙ + 2kir

)
(6.5)

integrating twice,

y =
1

2kd + 1

∫ ∫ [
−2kpẏ − (2ki +

π2

4
)y + 2kdr̈ + 2kpṙ + 2kir

]
=

1

2kd + 1

(
2kdr +

∫ [
−2kpy + 2kpr +

∫ [
−(2ki +

π2

4
)y + 2kir

]])
.

(6.6)

The state variables are defined as x1 =
∫ [
−(2ki + π2

4
)y + 2kir

]
and x2 =∫

[−2kpy + 2kpr + x1] while the output is y = 1
2kd+1

(2kdr + x2). Using this
expression for the output the derivatives of the state variables are derived

ẋ1 =
−(2ki + π2

4
)

2kd + 1
x2 +

−(2ki + π2

4
)2kd

2kd + 1
r + 2kir

ẋ2 =
−2kp

2kd + 1
x2 +

−4kpkd
2kd + 1

r + 2kpr + x1.

(6.7)

The general closed-loop state-space representation from r(t) to y(t) using
PID-control is the system,

ẋ(t) =

(
0

−(2ki+π2

4
)

2kd+1

1 −2kp
2kd+1

)
x(t) +

(
−(2ki+π2

4
)2kd

2kd+1
+ 2ki

−4kpkd
2kd+1

+ 2kp

)
r(t)

y(t) =
(
0 1

)
x(t) +

2kd
2kd + 1

r(t).

(6.8)

The definition for the transfer function of this state-space representation is
exactly the transfer function of equation (6.2), so we know that it describes
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6 PID-control for the vibrating string 50

the same system,

H(s) = C(sI − A)−1B +D

=
(
0 1

)
(

(
s 0
0 s

)
−

(
0

−(2ki+π2

4
)

2kd+1

1 −2kp
2kd+1

)
)−1

(
−(2ki+π2

4
)2kd

2kd+1
+ 2ki

−4kpkd
2kd+1

+ 2kp

)
+

2kd
2kd + 1

=
2kds

2 + 2kps+ 2ki

(2kd + 1)s2 + 2kps+ 2ki + π2

4

.

(6.9)

6.1 Proportional control

To apply proportional control only a negative feedback law for the input
signal, u(t) = −kpy(t) is used. Proportional control is also called gain control.
The proportional transfer function is connected to the approximated transfer
function of the vibrating string (5.31) to find the transfer function of the
whole feedback loop, as in equation (6.2), where are ki = kd = 0,

FP (s) =
2kps

s2 + 2kps+ π2

4

.

The state-space representation is derived from (6.8) and becomes,

ẋ(t) =

(
0 −π2

4

1 −2kp

)
x(t) +

(
0

2kp

)
r(t)

y(t) =
(
0 1

)
x(t).

(6.10)

The proportional system is a damped version of the uncontrolled system
(5.52), implying that there should be a matrix R which represents the damp-
ing of the string in the model. The standard Port-Hamiltonian state-space
form of (3.5.2) is extended with a damping matrix R, [2]. The extended
system is still Port-Hamiltonian and is stated here,

ẋ(t) = (J −R)Hx(t) +Br(t)

y(t) = BHx(t)
(6.11)

Equation A = (J −R)H is used to derive the matrix R,(
0 −π2

4

1 −2kp

)
=

((
0 −π2

2
π2

2
0

)
−R

)( 1
π2

2

0

0 1
2

)
, (6.12)

resulting in damping matrix R ≈
(

0 0
0 4kp

)
. This matrix is positive semi-

definite.
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6 PID-control for the vibrating string 51

Closing the loop

Another approach to get to the state-space representation of the proportional
controlled system is by adding a control rule directly to the state-space rep-
resentation of the uncontrolled system (5.52). The negative feedback rule
u(t) = −kpy(t) is added to the plant and the loop is closed with the ref-
erence signal r(t) set to zero. The feedback rule is added by substituting
−kpy(t) = −

(
0 kp

)
x(t) as input signal in (5.52), which gives

ẋ(t) =

(
0 −2.467
1 −2kp

)
x(t)

y(t) =
(
0 1

)
x(t)

(6.13)

This system is the exact state-space representation found before (6.10), where
the reference signal r(t) is zero. Applying the feedback rule directly to the
state-space representation removes the need to use the transfer function and
its corresponding differential equation.

The system is generated with gain coefficient kp = 1. The magnitude plot in
Figure (6.2a) shows that signals with low and high frequencies get reduced.
In the phase plot the signals with low frequencies get advanced and high
frequencies get delayed.

(a) Bode Diagram (b) Pole-Zero map

Figure 6.2: Proportional controlled system, kp = 1

The poles of the closed-loop system in Figure 6.2b lay in the left half plane
and at −1± 1.2114i. They both have negative real part, which indicate that
the system is asymptotically stable but there still is a zero at the origin.
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6 PID-control for the vibrating string 52

(a) Impulse response (b) Step response

Figure 6.3: Input responses

Since the system is stable the impulse response in Figure 6.3a goes to zero,
i.e. the system goes into rest. The step response in Figure 6.3b goes to zero
as well. When the gain constant is increased to kp = 100 the step response
touches 1 and goes back to zero after, see Figure 6.4.

Figure 6.4: Step response, kp = 100

6.2 Proportional energy behaviour

The energy in the proportional controlled vibrating string system will be
analysed in this section. The proportional feedback rule u(t) = −kpy(t) is
substituted into the input/output expression of the derivative of the power
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balance from (5.40),

d

dt
E(t) =

1

2
(y(t)∗u(t) + u(t)∗y(t))

=
1

2
(y(t)∗(−kpy(t)) + (−kpy(t))∗y(t))

=
1

2
− kp

(
|y(t)|2 + |y(t)|2

)
= −kp|y(t)|2.

(6.14)

When kp > 0 the change of energy in the system is negative (6.14), implying
that the energy decreases. The system will go into rest once the energy hits
zero.

Now the initial condition of the plant is set to x0 =
(
−5, 5

)
and the reference

signal is zero, r(t) = 0. The energy in Figure 6.5a is seen to converge to
zero after a hurdle between 0 and 0.5 seconds. The energy is monotonically
decreasing.

(a) Energy curve (b) Control signal and output

Figure 6.5: Proportional controlled model

Since the plant is connected via a negative feedback loop the control signal
u(t) is equal to the negative of the output signal y(t), see Figure 6.5b. The
input and the output of the plant are of opposite sign at any time. Knowing
that the plant is Port-Hamiltonian it makes sense that the energy is mono-
tonically decreasing, the change in energy is equal to the input times the
output of the plant. At crossings of the horizontal axis the change in energy
is zero, there the energy is constant. These are exactly at the points where
the energy curve in Figure 6.5a is constant.
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Tracking a reference signal

When the output y(t) of the plant should behave in a desired way a reference
signal r(t) can be put into the system. This section will show that gain control
alone will not result in good signal tracking. Suppose the output must be
constant y(t) = 1, then the reference signal r(t) = 1 is set as input. The
initial condition of the plant is set to x(0) = (0, 0), i.e. the plant is initially
at rest.

Since the gain constant kp = 1 is low, the output fails to track the reference
signal, see Figure 6.6.

Figure 6.6: Reference and output signal

When the gain is increased to kp = 100, the controller will be more aggressive
and the reference signal is reached. The output diverges from the desired
signal immediately and will become zero again, see Figure 6.7a. The energy
of the system converges to a high value and stays there, since the output
becomes zero the energy becomes constant, Figure 6.7b.
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(a) Reference and output (b) Energy

Figure 6.7: Aggressive gain control

This is in line with the Final Value Theorem, 3.3.1. The transfer function
of the closed-loop proportional controlled vibrating string is defined for all
Re(s) > 0 and the limit of the function is

lim
s→0

s
2s

s2 + 2s+ π2

4

= 0. (6.15)

Reference tracking will not work with just a proportional controller.

6.3 Integrator control

In this section an integrator part is added to the proportional controller
from previous section. To keep the model simple an integrator coefficient
of ki = 1 is used and the proportional coefficient is kp = 1 again. These
control coefficients are to be tuned based on the results. By the transfer
function derived as (6.2) the transfer function of the whole negative feedback
closed-loop system here is

FPI(s) =
2s+ 2

s2 + 2s+ 8+π2

4

. (6.16)

The respective state-space representation, derived as (6.8), will be

ẋ(t) =

(
0 −8+π2

4

1 −2

)
x(t) +

(
2
2

)
r(t)

y(t) =
(
0 1

)
x(t).

(6.17)
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This system is effected by the zero in the approximated transfer function
(5.31). The pole-zero cancellation results in the state of the closed-loop
system being two dimensional. If the system were to be written into state-
space representation without use of the pole-zero cancellation it would result
in a three dimensional state and the system might not be Port-Hamiltonian
anymore.

There is a damping matrix R again and using the matrix J and the derived
Hamiltonian matrix of the energy in the plant R is derived by equation
A = (J −R)H,(

0 −π2

2

1 −2

)
=

((
0 −π2

2
π2

2
0

)
−R

)( 1
π2

2

0

0 1
2

)
. (6.18)

By AH−1 = J − R the damping matrix is R =

(
0 4
0 4

)
, which is positive

semi-definite.

The magnitude plot of the integrator controlled system in Figure 6.8a shows
that high frequencies get filtered out. The Figure 6.8b shows the poles with
negative real part, which indicate asymptotic stability. The zero has been
moved from the origin into the left half-plane.

(a) Bode diagram (b) Pole-Zero map

Figure 6.8: PI controlled system, kp = 1, ki = 1

In Figure 6.9a the system goes to zero after an impulse at starting time
zero. Next to it, in Figure 6.9b, the output to a step response converges to
a positive value.
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(a) Impulse response (b) Step response

Figure 6.9: Input responses

6.4 Integrator energy behaviour

The closed-loop system of (6.17) with initial condition of the plant at x0 =
[−5, 5] has been simulated. Figure 6.10b shows the control signal into plant
and its resulting output. The output y(t) goes to zero which drives the
system into rest. However, the control signal converges to a positive value
just higher than one. To keep the system in rest a force needs to constantly
be applied to the system and so the control signal will not go to zero.

(a) Energy curve (b) Control and output signal

Figure 6.10: PI controlled system

With the result of the Final Value Theorem 3.3.1, again, the following limit,

lim
s→0

s
2s+ 2

s2 + 2s+ 8+π2

4

= 0, (6.19)
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implies that the output of the impulse response to the system will go to zero
regardless of the chosen PI-coefficients.

6.5 A pure integrator

The Hybrid Integrator-Gain System makes use of pure integrator control and
proportional control. Just a pure integrator does not steer the system of the
vibrating string into rest. This is because of the zero at s = 0 in the transfer
function of the plant. The initial condition for the plant at x0 = (−5, 5)
is used here as well. The closed-loop transfer function with ki = 1 and
kp = kd = 0 gives,

FI(s) =
2

s2 + 8+π2

4

. (6.20)

The corresponding pure integrator controlled state-space representation in-
cluding the pole-zero cancellation is,

ẋ(t) =

(
0 −8+π2

4

1 0

)
x(t) +

(
2
0

)
r(t)

y(t) =
(
0 1

)
x(t).

(6.21)

The matrix A has eigenvalues with zero real part, indicating that this system
is just marginally stable. A Bode-plot does not give sufficient information
and the pole-zero map shows the poles being on the imaginary axis.

(a) Bode diagram (b) Pole-Zero map

Figure 6.11: Pure integrator controlled system, ki = 1

The impulse and step responses for this system give similar oscillating results
for the output signal, see Figure 6.12a and Figure 6.12b.
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(a) Impulse response (b) Step response

Figure 6.12: Input responses

The energy in the system oscillates and does not converge. Looking at the
control signal and output this makes sense because of the Port-Hamiltonian
property of the plant. See Figures 6.13a and 6.13b.

(a) Energy curve (b) Control and output signals

Figure 6.13: Pure integrator control
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7. HIGS applied to the vibrat-
ing string

In this chapter the Hybrid-Integrator Gain System is applied the vibrating
string model. It is connected via negative feedback. To keep the system
simple the gain constant kh = 1 and integrator frequency wh = 1 are used.
In practice these values can be tuned based on the output of the system. It
is applied to the approximated model of the vibrating string using 2 poles
and the initial condition of the plant is set to x0 = [−5, 5]. The reference
input r(t) is set to zero because the goal is to steer the plant into rest.

7.1 HIGS as switched system

In integrator mode the closed-loop system is described by the already derived
state-space representation (6.21) using the pole-zero cancellation, here the
state of this system is called xi(t),

ẋi(t) =

(
0 −8+π2

4

1 0

)
xi(t) +

(
2
0

)
r(t)

y(t) =
(
0 1

)
xi(t).

(7.1)

In gain mode another representation has been derived, (6.10), with another
state xp(t),

ẋp(t) =

(
0 −π2

4

1 −2

)
xp(t) +

(
0
2

)
r(t)

y(t) =
(
0 1

)
xp(t).

(7.2)

Both these representations have been derived while including the pole-zero
cancellation of the transfer function.

For a switched system the existence of a radially unbounded common Lya-
punov function implies Global Uniform Asymptotic Stability (GUAS) of the
system, as stated on page 23 of [11],

Theorem 7.1.1. If all systems in the family of a switched system share
a radially unbounded common Lyapunov function for the systems then the
switched system is GUAS.

In practice only the controller switches and the plant keeps the same repre-
sentation. This results in 2 state values when the controller is in gain mode
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7 HIGS applied to the vibrating string 61

and 3 state values in integrator mode. When the HIGS switches control
mode the closed-loop system switches between a two dimensional and three
dimensional state. The found energy function and Hamiltonian matrix of the
plant is no common Lyapunov function of the switched system and Theorem
7.1.1 is not useful because of the dimension changes of the state.

In integrator mode the closed-loop system is marginally stable and in gain
mode it is asymptotically stable. In next section we see that the HIGS does
stabilise the vibrating string.

7.2 Simulations

The switched system is simulated in MATLAB using Simulink.

The input signal of the HIGS, e(t) = −y(t), is plotted with the control signal
u(t) in Figure 7.1. The sign of the input and output of the block is the
same everywhere. The control signal is seen to be continuous and piecewise-
differentiable. At switching points the derivative of the control signal u(t) is
seen to change abruptly.

Figure 7.1: Input and output of HIGS

In Figure 7.2a the input and output of the plant is shown. The output of the
plant goes to zero, which means the plant goes in rest, which is the desired
result. The output y(t) and input signal u(t) are seen to keep switching
sign, they are always the opposite sign of one another. Remember that the
vibrating string is a Port-Hamiltonian system and so the change in energy
equal to d

dt
E(t) = u(t)y(t). Since the signals are always of opposite sign the

change in energy is always negative and the energy decreases. This is seen
in the energy curve in Figure 7.2b as well. It decreases monotonically. The
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7 HIGS applied to the vibrating string 62

energy never increases, what could cause problems in certain systems. In
the vibrating string model increasing energy might not be a problem but in
other applications an increase in energy can set problems in motion.

(a) Input and output signals (b) Energy curve

Figure 7.2: HIGS control

Figure 7.3 shows the constraint when a switch in control mode is made. In the
bottom plot it can be seen that the output stays in F and is on the boundary
when in gain mode. The HIGS starts in gain mode, since the derivative ė(0)
is positive and e(0) is negative and in the constraint khė(0)e(0) is negative
while ωhe(t)

2 is positive. The constraint for F2 holds and u(0) = khe(0).

The Figure 7.3 shows the moments the control mode switches. The second
plot shows the constraint for F2 and the third shows the constraint for being
in F .
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7 HIGS applied to the vibrating string 63

Figure 7.3: khe and output u, constraint for F2 and constraint for F overall

Concluding, in practice the switched system does stabilise the vibrating string
and the energy decreases monotonically. The HIGS is specifically designed to
generate a control signal of opposite sign to the output of the plant resulting
in the use of the Port-Hamiltonian nature of the plant.
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8. Conclusion

In this report a switching non-linear control method has been designed. The
method, called a Hybrid Integrator-Gain System, switches between pure in-
tegrator control and proportional control. It is designed such that the input
and output signal are of opposite sign. The specific design details and area
of solutions to the system have been described in detail.

A Partial Differential Equation for a model of a vibrating string has been
approximated and its Port-Hamiltonian structure has been shown. The ap-
proximated model is written into a suitable state-space representation and
has been simulated using various methods of PID-control connected in a
closed-loop feedback system. Gain control has resulted in an asymptotically
stable system and the energy in the string behaved nicely while integrator
control did not.

The Hybrid Integrator Gain System is applied to the approximated model
of the vibrating string. The combination of the Port-Hamiltonian property
of the change in energy in the vibrating string system and the opposing
signs of the input and control signals of the HIGS result in a monotonically
decreasing energy in the vibrating string. Although pure integrator control
does not stabilise the vibrating string the switching to gain control in the
HIGS does result in a stabilising feedback loop.

8.1 Recommendation

The model of the vibrating string has been kept very minimal in this report.
The string has not been modeled using realistic parameter settings so a real-
life interpretation of the model is not clear. In its approximation the Residue
Theorem has been applied to using only two poles. This approximation
resulted in low dimensional state-space representations but does not approach
the vibrating string system realistically.

To better see the impact of a Hybrid Integrator-Gain System it more inter-
esting to use it on a more advanced Port-Hamiltonian system than that of the
vibrating string. Preferably a system that benefits greatly from a monotonic
decrease in energy.
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A. Appendix

A.1 Differential Equations for the HIGS in

closed-loop

The closed-loop system connecting HIGS to the vibrating string model as
plant can be described by a differential equation making use of indicator
functions. The indicators are 1 when its arguments are in the subscripted
set and 0 when the arguments are not, giving the rather long differential
equation

1F1(e, ė, u)(ÿ(t) + (2ωh + 2.467)y(t)) + 1F2(e, ė, u)(ÿ(t) + 2khẏ(t) + 2.467y(t))

= 1F1(e, ė, u)(2ωhr(t)) + 1F2(e, ė, u)(2khṙ(t)).

(A.1)

Expression (A.1) consists of two differential equations representing the two
forms of control.

ÿ(t) + (2ωh + 2.467)y(t) = 2ωhr(t) in F1

ÿ(t) + 2khẏ(t) + 2.467y(t) = 2khṙ(t) in F2

(A.2)

Two terms in the indicator functions on the left side will always be in the
equation so they can be moved outside the indicators functions, making the
equation a bit more compact,

ÿ(t) + 2.467y(t) + 1F1(e, ė, u)(2ωh) + 1F2(e, ė, u)(2khẏ(t))

= 1F1(e, ė, u)(2ωhr(t)) + 1F2(e, ė, u)(2khṙ(t)).
(A.3)

A solution to the second order differential equations (A.2) exists only if there
are real initial conditions y(t0) and ẏ(t0) for an initial time t0. Combining the
two differential equations as in (A.3) the solution to the close-loop system
switches between the solutions of the two separate equations. When a switch
in the HIGS block happens at tswitch the initial condition of the next differ-
ential equation to which is being switched will be set to y(t0) = y(tswitch).
This way the solution to (A.3), after a switch, will continue at the same point
before the switch.

A.2 Variation of Parameters

The method of variation of parameters [9] is used to solve for solutions of both
differential equations and will be combined for the closed-loop differential
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equations as a whole. First we show the method of variation of parameters
in a general case. Given the functions p(t), q(t) and g(t) a solution y(t) =
yp(t) + C1y1(t) + C2y2(t) can be found to the second order inhomogeneous
differential equation, stated

ÿ(t) + q(t)ẏ(t) + p(t)y(t) = g(t). (A.4)

A solution to such a second order homogeneous differential equation (A.4)
exists on an interval (a, b), a, b ∈ R, if the functions q(t), p(t) and g(t) are
continuous on that interval and for a number t0 ∈ (a, b), there exist real
initial conditions y(t0) and ẏ(t0). The resulting solution will be unique.

A particular solution yp(t) is of the form yp = v1y1 + v2y2 where y1 and y2
are linear independent particular solutions to the homogeneous version of the
differential equation. v1 and v2 will be found later and they will be used for
yh(t) = C1y1(t) + C2y2(t). The inhomogenous version of equation one of the
equations is

ÿ(t) + q(t)ẏ(t) + p(t)y(t) = 0. (A.5)

Th expression for yp is differentiated,

ẏp = v̇1y1 + v1ẏ1 + v̇2y2 + v2ẏ2, (A.6)

and the equation v̇1y1 + v̇2y2 = 0 is set. Now Differentiating again,

ÿp = v̇1ẏ1 + v1ÿ1 + v̇2ẏ2 + v2ÿ2 (A.7)

and substituting the two derivatives into (A.4) gives

ÿ + qẏ + py = (v̇1ẏ1 + v1ÿ1 + v̇2ẏ2 + v2ÿ2) + q(v1ẏ1 + v2ẏ2) + p(v1y1 + v2y2)

= v1(ÿ1 + qẏ1 + py1) + v2(ÿ2 + qẏ2 + py2) + v̇1ẏ1 + v̇2ẏ2 = g.

(A.8)

Since y1(t) and y2(t) are solutions to the homogenous differential equation
(A.5), see that v̇1ẏ1 + v̇2ẏ2 = g. Now system of linear equations for v̇1 and
v̇2 should be solved, it is made up of the homogenous and inhomogenous
differential equations

v̇1y1 + v̇2y2 = 0

v̇1ẏ1 + v̇2ẏ2 = g.
(A.9)

Giving the terms, v̇1 = −y2g
y1ẏ2−ẏ1y2 and v̇2 = y1g

y1ẏ2−ẏ1y2 . Integrating the solutions
and substituting them into the particular solution yp = v1y1 + v2y2 gives,

v1 =

∫
−y2g

y1ẏ2 − ẏ1y2
dt

v2 =

∫
y1g

y1ẏ2 − ẏ1y2
dt.

(A.10)

67



A Appendix 68

This method is used for the vibrating string model in next section.

A.3 Solutions for the vibrating string

The method of variation of parameters is applied to the model (A.2). In F1 we
have g(t) = 2ωhr(t). Two linear independent solutions to the inhomogenous
version are y1(t) = cos

(√
2ωh + 2.467t

)
and y2(t) = sin

(√
2ωh + 2.467t

)
.

They can be checked by substituting them into the homogenous differential
equation

ÿ(t) + (2ωh + 2.467)y(t) = 0. (A.11)

The expression yh(t) = C1y1(t) + C2y2(t) is already found.

Using the formulas (A.10), the terms v1 and v2 simplify into

v1 =

∫ − sin
(√

2ωh + 2.467t
)
2ωhr(t)

√
2ωh + 2.467(cos

(√
2ωh + 2.467t

)2
+ sin

(√
2ωh + 2.467t

)2
)
dt

v2 =

∫
cos
(√

2ωh + 2.467t
)
2ωhr(t)

√
2ωh + 2.467(cos

(√
2ωh + 2.467t

)2
+ sin

(√
2ωh + 2.467t

)2
)
dt.

(A.12)

In the denominator sin(x)2 +cos(x)2 = 1 appears, giving a bit more compact
expressions,

v1 =

∫ − sin
(√

2ωh + 2.467t
)
2ωhr(t)√

2ωh + 2.467
dt

v2 =

∫
cos
(√

2ωh + 2.467t
)
2ωhr(t)√

2ωh + 2.467
dt.

(A.13)

Substituting v1 and v2 into the particular form yp = v1y1 + v2y2,

yp(t) =

∫ − sin
(√

2ωh + 2.467t
)
2ωhr(t)√

2ωh + 2.467
dt cos

(√
2ωh + 2.467t

)
+

∫
cos
(√

2ωh + 2.467t
)
2ωhr(t)√

2ωh + 2.467
dt sin

(√
2ωh + 2.467t

)
.

(A.14)

Now we have a general solution,

y(t) = yp(t) + C1y1(t) + C2y2(t). (A.15)

Trigonometric functions are bounded and integrable, so these integrals exist
for appropriate reference signal r(t). The reference signal should be inte-
grable.
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Now for F2 the function g(t) = 2khṙ(t) and the second order inhomogenous
differential equation is different. Particular solutions to the homogeneous
version must be found first. The homogenous version of the second equation
is

ÿ(t) + 2khẏ(t) + 2.467y(t) = 0, (A.16)

which has a general exponential solution y(t) = eλt. The characteristic poly-
nomial of (A.16) is

λ2 + 2khλ+ 2.467 = 0 (A.17)

with p = 2kh and q = 2.467. If the roots of the characteristic polynomial
are real or imaginary is determined by the term p2 − 4q = 4k2h − 9.868. The
choice of kh determines the general form of a solution to (A.16). It will not
be analysed any further.

69


	Introduction
	Recent Research
	Preliminaries
	Models for Dynamical Systems
	Lyapunov stability
	Transfer functions
	Feedback systems
	Port-Hamiltonian system

	Hybrid Integrator-Gain Systems
	Reset control
	The HIGS design
	Switching control modes
	An example signal
	Dealing with discontinuities
	Existence of closed loop HIGS solutions

	Vibrating string system
	The Partial Differential Equation
	The Port-Hamiltonian representation
	Boundary conditions
	Hamiltonian
	Input/Output formulation
	Transfer function
	Approximation by Residue Theorem
	Some realisations
	Positive realness
	The Positive Real lemma
	State-space representation
	Energy behaviour

	PID-control for the vibrating string
	Proportional control
	Proportional energy behaviour
	Integrator control
	Integrator energy behaviour
	A pure integrator

	HIGS applied to the vibrating string
	HIGS as switched system
	Simulations

	Conclusion
	Recommendation

	Appendix
	Differential Equations for the HIGS in closed-loop
	Variation of Parameters
	Solutions for the vibrating string


