ROBOTICS
MECHATRONICS

INSIGHTS IN SLAM ALGORITHM MODULARITY
FROM RTAB-MAP AND ORB-SLAM?2

M. (Mark) te Brake

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
dr. ir. D. Dresscher

dr. F.C. Nex

April, 2021

019RaM2021

Robotics and Mechatronics
EEMCS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

UNIVERSITY | TECHMED UNIVERSITY | DIGITAL SOCIETY
OF TWENTE. | CENTRE ~ OF TWENTE. | INSTITUTE




ii

Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Mark te Brake University of Twente



iii

Summary

The reusability and adaptability of SLAM software implementations in general is limited. As a
consequence, the use of SLAM systems to support different applications or the adaptation of
SLAM systems to different environments or platforms, requires significant efforts.

In order to improve on the reusability of SLAM implementations, this thesis considers two
open-source visual, feature-based, pose graph SLAM systems: RTAB-Map and ORB-SLAM?2.
Several aspects of these systems are investigated to define a baseline for the behaviour and con-
cepts implemented by those SLAM implementations. The analysis uncovers details about the
functionality that is contained within these systems, the type of information that is processed
for these functions and architectural aspects of both implementations that affect reusability
and modularity.

The insights gained by this analysis are used to define a framework of generalised components,
which can be used to implement modular SLAM algorithms. Within this framework, a set of
three entities (Feature, Sample and Landmark) is used as foundation from which knowledge in
a SLAM system is constructed. Correspondences of six different types allow to distinguish all
possible relations that can be established between the presented entities.

Six different responsibilities are defined from the analysis of SLAM theory and the systems
mentioned before. These responsibilities are assigned to be fulfilled by components of the
X-, F-, C-, OE-, DM- and DS-types. The tasks that they perform are in corresponding order:
pose estimation for samples and landmarks, feature extraction, establishing correspondence,
trajectory and map optimisation and estimation, data management and finally, data storage.
Modularity and interchangeability of components is facilitated by the framework by restricting
the output of components to a specific format that matches with their responsibilities. This
allows for easy interchanging or reuse of components of the same type.

The framework is used to design a modular version of RTAB-Map, as an example on how a real
SLAM system can be implemented in a way that promotes the reuse of (parts of) the algorithm.

Robotics and Mechatronics Mark te Brake



iv

Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Mark te Brake University of Twente



Contents

Summary

1 Introduction
1.1 Problem statement . . .
1.2 Research questions . . .

1.3 Relatedwork . ... ...

1.4 Modularity and reuse for software engineering. . . . . ... ... ..........

1.5 Thesis outline . ... ..

2 Inside SLAM
2.1 Theory ..........
2.2 Analysis..........

2.3 Modularity for SLAM SYStems . . . . . . . . . v v it e e e e

3 Framework
3.1 Definitions and notation
3.2 Framework components

33 RTAB-Map ........

4 Conclusion
4.1 Findings .........
4.2 Theoretical implication
4.3 Policy implication . . . .
4.4 Futureresearch . .. ..
4.5 Limitations. .. ... ..

4.6 Concluding statements

Bibliography

iii

D NN -

41

47
47
50
57

67
67
69
69
70
70
71

72

Robotics and Mechatronics

Mark te Brake



vi

Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Mark te Brake University of Twente



1 Introduction

This master thesis is the result of an assignment at the Robotics and Mechatronics group at the
University of Twente. The research group takes part in the i-Botics innovation centre, which is
a collaboration between the University of Twente and the Dutch TNO institution. As part of the
research for inspection robots, i-Botics investigates remotely-operated or tele-robotics.

A key goal of this research is to be able to have the human operator separated at a distance
from the robot that he controls, but provide him with an experience that feels as if he is right at
the spot. This technology is especially valuable for applications where people have to perform
tasks in dangerous environments, or situations where specialists are not locally available to
perform difficult tasks.

Remote robotic operations often require some form of map or reconstruction of the environ-
ment where the robot is operating in. Of course, it is also important to know where the robot is
actually located within this map. This combination of information can be used for navigation,
interaction with objects in the environment or for providing the operator with a virtual view
into the environment.

If both the map of the environment and the location of the robot have to be estimated at the
same time, the task becomes a Simultaneous Localisation and Mapping (SLAM) probleml. Al-
though SLAM is a well-researched problem for decades and the theoretical background is ex-
tensively established, it is still not trivial to use a SLAM system within a given application.

1.1 Problem statement

The user has to adapt the SLAM system to suit the application and platform at hand, such that
the output fits the requirements for further use by the actual application. This involves tuning
of parameters, integration of sensor hardware and modifications to the algorithm.

This process is troublesome due to several issues:

* The user does often not have an extended expertise in SLAM systems, but is only inter-
ested in using the map or positional information.

» Existing SLAM systems are lacking good documentation. Academic papers describe a
concept, method or idea, but do not necessarily provide a comprehensive user manual
or software documentation.

* Open source SLAM systems are a large piece of monolithic software, which makes it dif-
ficult to isolate the desired functionality or limit the scope of any modifications.

Although some level of understanding will always be required to identify the limiting factors
within the system, SLAM systems can improve to facilitate easier reuse and adaptability to new
applications.

The goal of this work is to reduce the effort that is required to integrate or adapt an existing
SLAM software product to a new application and to facilitate easier exchange of functionality
between different SLAM implementations. The solution is sought in a framework of compos-
able components, which should help to isolate and decouple functionality by clearly defined
boundaries. These boundaries at the component level also contribute to reusability by con-
fining the required knowledge for understanding the workings of a component and compart-
menting the documentation.

IContrary to a pure localisation problem, where the robots location is determined with respect to a given refer-
ence. On the other hand, only a mapping or reconstruction problem arises if the robots location can be measured
accurately.

Robotics and Mechatronics Mark te Brake



2 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

1.2 Research questions

While other attempts at solving this problem focused on software engineering or fundamental
SLAM theory, this thesis approaches the problem at the system level and looks into the desired
functional behaviour. The focus of this work will be on the use of SLAM software by users
who like to run or modify existing algorithms, but the solution should also be feasible from the
standpoint of the SLAM algorithm developer.

In order to develop a solution which fulfils these goals, the following questions will be ad-
dressed in this thesis:

1. What are the functions performed by current state-of-the-art SLAM systems?
2. What kind of information is required or processed in order to perform these functions?

3. In which way does the architecture of these SLAM systems influence the modularity and
reusability of the associated functionality?

4. How can functional behaviour be structured in logical framework components and in-
terfaces to facilitate reuse, interchangeability and adaptability?

1.3 Related work

Work relevant to the subject covered by this thesis falls into several categories, which cover
reusability efforts for SLAM algorithms, software engineering and frameworks for software in
robotic applications. Literature about SLAM algorithms or the theoretical foundations usually
do not cover architectural considerations or design patterns. Software frameworks targeted at
performing functions for SLAM algorithms exist, such as g20 (Rainer Kiimmerle (2011)) and
GTSAM. However, the related papers and documentation are mostly concerned with the work-
ings and usage of those libraries, instead of the architecture of the SLAM system in which it is
used.

The work of Ellery (2017) targets the reusability of software for robotic applications in general.
He applies three software engineering paradigms (object-oriented programming, component-
based software development and the separation of five concerns) to construct a framework for
reusable software. Reusability is measured by defining and evaluating reuse readiness levels for
9 different topics: documentation, extensibility, intellectual property, modularity, packaging,
portability, standards compliance, support and verification and testing. A component-based,
middleware independent implementation of a PID-controller is provided, demonstrating the
proposed structure and interfaces. The author also highlights the importance of well-defined
interfaces, documentation and manuals.

Abdelhady (2017) and Minnema (2020) develop a component-based framework by identify-
ing commonalities in functionality and interfaces among SLAM algorithms. Both make the
distinction between idiothetic and allothetic information. Abdelhady constructs a software
product line, by identifying fixed and variable components within SLAM algorithms. By de-
fining these stand-alone components, the number of dependencies through the algorithm is
reduced. Proof-of-concept implementations of basic extended Kalman filter and particle filter
SLAM are demonstrated, as well as two alternative structures for components to be invoked.
Minnema’s work targets the interchangeability of sensor and SLAM back-ends. He defines three
types of sensors, a generalised structure for a SLAM system and investigates the information
that is exchanged at the boundaries between the different parts. This knowledge is used to
derive interfaces between the components in the system. A distinction is also made between
an idiothetic update step, for processing of incoming idiothetic data and an allothetic update
step. This separation works well for the proof-of-concept systems that are constructed, but

Mark te Brake University of Twente



CHAPTER 1. INTRODUCTION 3

may cause difficulties for more complex algorithms that may contain additional dependencies
between idiothetic and allothetic information.

Broenink (2016) also considers the vast amount of effort required to adapt and deploy SLAM
algorithms to platforms or environments that are different to those used for the original ap-
plication. The belief or estimation about the real world is considered a common factor through
the whole SLAM system. In order to facilitate easier change of sensors, robotic platform or en-
vironment, the components of a SLAM system are separated into five functional blocks with
clearly defined interfaces:

* Robot specific.

e Environment specific.
¢ Feature specific.
 Sensor specific.

» World specific.

The proposed structure is used to implement a 2D particle filter SLAM system with wheel odo-
metry and a lidar sensor on top of the ROS middleware. Although the system was able to
provide a reasonable map of the environment, further work is required with respect to the map
component interface, placement of the feature detection within the structure and issues with
the robustness of the feature detection. Furthermore, the system also lacked computational
performance optimisations and its contribution to reusability was not validated.

The RobMoSys project (RobMoSys (2017)) aims to develop an open ecosystem for the develop-
ment of industry-grade software for robotics. It considers a wide range of systems and software
engineering aspects. Within the ecosystem three tiers are defined, each with their own roles,
requirements and level of abstraction. The problem covered by this thesis relates to tier 2 and
tier 3: domain experts define service definitions for SLAM, providing a structure suitable to
the SLAM problem. These definitions apply to data structure, properties and communication
semantics and facilitate in separated services which allow for more flexibility through compos-
ition.

Tier 3 users are then able to apply these service definitions to implement their components.
Composition is a key element within the ecosystem to promote reusability. The project also
highlights the importance of separation of levels and separation of concerns, and the need for
architectural patterns. Although all of these aspects are naturally relevant to this thesis, a closer
look at the defined levels is of particular interest:

e Mission.

* Task plot.

e Skill.

* Service.

¢ Function.

* Execution container.

* Operating system/middleware.

e Hardware.

Robotics and Mechatronics Mark te Brake



4 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

From the top down, the mission and task plot levels are giving rise to the need for a SLAM skill
and are (by themselves) out of the scope of this thesis. As this thesis attempts to stay away
from hardware, platform and implementation specific details, the skill, service, function and
execution container levels are most relevant for consideration.

1.4 Modularity and reuse for software engineering

From the fields of software engineering and computer science, the subject of reusability is
vastly covered. Reusability is also a reoccurring theme in discussions about software for robotic
applications. The work of Ellery (2017) (and Anguswamy (2013) to which he refers) touches on
several topics that are relevant to writing reusable software. Similarly, books like Cooling (2003)
also treat reusability in the context of software development and at a much wider level from a
systems engineering point of view.

This Section considers a number of topics that are often encountered when discussing the re-
usability of software. Designing and writing reusable software involves finding a suitable com-
promise between these topics that fits the application at hand. These topics are sometimes
closely related to each other, which means that they tend to share common goals or values.
Although they are listed as separate topics, the boundary is often much more fluid in practice.

1.4.1 Hierarchy and modularisation

Dividing a software application into separate modules aids by reducing the size of a task or
problem, such that each module can cope with a specific aspect of the application. By applying
a hierarchical structure to organise modules at different levels or layers, the role and level of
responsibility of specific modules within the system can be indicated. These concepts help to
cut a larger problem into smaller problems and assign responsibilities in a logical fashion.

When discussing modularisation, the words "module”, "component” and "object" are often
encountered. These words do already impose some form of hierarchy, as they describe entities
ranging from a high to low level respectively.

Modularisation of software improves reusability, by defining the boundaries around a certain
task or functionality. This allows for existing modules to be taken and used in other systems,
which is the key goal for the framework presented in this thesis.

For modularisation to be successfully contributing to reusability, it needs to go hand in hand
with the concepts of abstraction and interfaces, which will be discussed next.

1.4.2 Abstraction

The concept of abstraction is to only show the details that matter and hide anything that is not
relevant. Of course, the difficult part of abstraction is to decide, given the circumstances, what
matters and what not. Abstraction is about considering which information is relevant to carry
out the responsibilities that are assigned to a certain hierarchical level or a specific module,
component or object.

Reusability is improved by abstraction, as the irrelevant details are hidden from both the pro-
grammer as well as the software that is surrounding the functionality that is targeted for reuse.
The relevant details that are left, provides a boundary for reuse with reduced complexity.

1.4.3 Interfaces

Interfaces represent the inputs and outputs through which information flows in and out of
entities, like the modules, components and objects mentioned earlier. A formal description of
an interface specifies in which way information is allowed to cross the boundary of such an
entity. Abstraction and interfaces are closely related, as the interface provides a mechanism to

Mark te Brake University of Twente



CHAPTER 1. INTRODUCTION 5

present the details that are relevant to the outside world, while hiding irrelevant concepts and
details.

An important property of interfaces is restrictiveness. This means that an interface only carries
the bare minimum of information that is required. Restricting interfaces carefully has several
benefits:

* Entities cannot access data that they were not intended to.

* Rights to read and write information can be enforced, such that data is only modified by
components that are intended to do so.

* Restricting interfaces to carry only the required information prevents unnecessary de-
pendencies when reusing a piece of software.

Reusability is improved by specifying interfaces at the boundary of a module, component or
object, such that the programmer knows how to interact with it and get it to perform the oper-
ation it should do. A big issue for modularity and reuse arises when interfaces cause so-called
leaky abstractions. This happens when interfaces carry information that traces back to imple-
mentation specific or low-level details that needed to be abstracted away. These leaky abstrac-
tions often result in additional dependencies between different entities due to knowledge or
functionality that is now required to be existing at both ends of the interface.

1.4.4 Composition and variability mechanisms

Composition is the process of connecting separate modules or components to construct a lar-
ger system. This relies heavily on the previously mentioned topics, as composition requires
entities with well defined boundaries and interfaces.

Composition enables a system which supports different configurations, operating modes, plat-
forms or sensors. Variability mechanisms specify and control those options and the required
configuration for a given use case.

In this thesis, variants are encountered at the level of the components of which a SLAM al-
gorithm is constructed, the choice of sensory input that is supported, the platform on which
the SLAM algorithm is executed and the state it is running in. Reusability benefits from well
defined variability mechanisms, such that it it clear which options are available and how and
when different variants can be chosen. This involves consideration of several design choices,
such as:

* Do two variants of a similar operation result in two different components, or can they be
implemented in one component that can be configured as one of both variants.

* Are variants selected and configured at compile-time or run-time?

* Are variants statically configured, or can variants be changed dynamically while the pro-
gram operates?

1.4.5 Documentation

In order to be able to reuse any piece of software, it should be clear in the first place what that
piece actually is, what it does and how it should be used. These questions should be answered
by documentation accompanying the software. Documentation can come in several forms,
such as a separate document or web page, comments that are added to the code itself and in
the form of self-documenting code.

Although this thesis does not treat the subject of documentation in more detail, any of the
previously mentioned software engineering concepts contributes to writing documentation in

Robotics and Mechatronics Mark te Brake



6 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

a meaningful way. The development of a modular framework in this work and the associated
language to talk about the concepts that contribute to this framework, provides tools to write
about implemented functionality and facilitates consistent and structured documentation.

1.5 Thesis outline

Chapter 2 first introduces some relevant concepts from SLAM theory and then investigates the
functionality that is present in a selection of two SLAM systems (RTAB-Map and ORB-SLAM?2).
This provides a baseline for behaviour that should fit within the developed framework, answer-
ing the first two research questions. The third research question is answered in the last Section
of this Chapter, which discusses the architectural aspects of the analysed systems with respect
to the modularity and reusability of those systems.

In Chapter 3 this information is combined to derive a logical separation of functional behaviour
into generalised framework components. These components are accompanied by a specifica-
tion for interfaces to connect them together. The Chapter also contains guidelines which can
be followed to assign functionality to an appropriate component. A demonstration on how
to use the proposed framework is given by two examples, one of which covers the RTAB-Map
algorithm as analysed in Chapter 2.

In Chapter 4, the conclusions to the research questions and this work are presented, followed by
an discussion of the implications and limitations of the presented framework and suggestions
for future work.

Mark te Brake University of Twente



2 Inside SLAM

This Chapter investigates the functional behaviour and dependencies within existing SLAM
systems. Section 2.1 first explains SLAM concepts that are relevant to the systems investigated
in this thesis. Section 2.2 then analyses current open source SLAM implementations in order
to establish a baseline of functional behaviour that is required by these systems.

2.1 Theory

SLAM is subject of academic research since the 1980s. The first two decades of research are
identified as "the classical age" by Cesar Cadena (2016). During this period, the probabilistic
formulation of the SLAM problem was developed and the theoretical groundwork for localisa-
tion and mapping was laid down. SLAM approaches using (extended) Kalman filters or particle
filter approaches also originated from these times.

The book Probabilistic Robotics (Sebastian Thrun (2005)) provides a convenient overview of
the related theory and introduces relevant subjects such as probabilistic filter techniques, state
estimation and the localisation problem. This thesis follows the notation as introduced in this
book.

SLAM essentially boils down to generating a map with environmental landmarks and estimat-
ing the current position within this map. This creates a problem with a circular dependency,
because mapping requires knowledge about the current location and localisation requires the
existence of a map. For regular mapping or localisation, these inputs are assumed to be known
beforehand. In literature, the SLAM problem is usually formulated as a probabilistic prob-
lem. This takes the form of a posterior probability density function that has to be solved or
approached in order to provide the robots location and a map of the environment.

The SLAM problem is commonly divided in two categories: the online SLAM problem and the
full SLAM problem. The difference between these two formulations is in the state x that is es-
timated. While for online SLAM only the current position is estimated each iteration, full SLAM
attempts to provide a consistent estimate over the whole trajectory the robot has travelled.

The online SLAM problem can be formulated as:
p(xs, Mlz1:t, U1:r)

Time is defined at discrete intervals, indicated by the indices at the different variables. This
posterior probability density function p at time ¢ provides the current estimate of the robots
position x; and the map M containing the estimated landmark positions. These estimates
are determined given the set of all measurements z;.; and all controls u;.;. The name "con-
trols" refers to commands that are given to the robot in order for it to move. It should be noted
that data about the self-motion of the robot from sensors such as odometers, wheel rotation
sensors, inertial measurement units and gyroscopes, is also part of the control u;.

Similarly, the full SLAM problem provides an estimation for the whole trajectory (x;.;) and can
be formulated as:
p(xlzt, M|zt U1:r)

These formulations occur in many alternate forms in literature, up to the point that they are
reduced to the estimation of a single probabilistic variable given a single set of input data (such
as p(X|Z) in Cesar Cadena (2016)). In this thesis, the more explicit variant is used, in order to
provide more insight in the data that is used.

The definitions mentioned above provide an intuitive description of the task a SLAM algorithm
should fulfil, but they hide many details about the actual algorithm. Algorithms often require a

Robotics and Mechatronics Mark te Brake



8 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

mechanism to determine correspondences between different measurements, observations or
other pieces of information. These operations are generally called data association and can be
made explicit by formulating the SLAM problem with unknown correspondences c;:

p(xt, M, c¢lz1:¢, Ur:r)
p(xlitr Mr Cl:l’|zlltr ul!t)

But it quickly becomes difficult to provide a convenient problem formulation for more elabor-
ate implementations which depend on additional internal states and rely on previous estimates
during later iterations.

A special type of correspondences that is often encountered is loop closure detection, or long-
term data association. Detecting loops in the measurements that observe the environment
helps to identify errors in the trajectory of the robot which may have been accumulated over
time.

Finally, it should be noted that all data sets with indices 1 : ¢ can grow indefinitely in time. Real-
world SLAM approaches should include mechanisms to cope with this growing size of data to
maintain scalability in time.

2.1.1 Features and landmarks

The terms features and landmarks are commonly encountered in literature when discussing
SLAM systems that use camera sensors and/or construct feature-based maps. Features are
extracted from the raw sensor measurement by applying an extractor function f:

F}:N:f(zt)

Feature-based approaches extract a limited number of features from a measurement with a
higher dimensionality. Therefore, the amount of information with respect to the original meas-
urement is reduced in favour of a computational advantage.

The sort of feature that can be extracted from a measurement depends on the sensor type.
For image sensors, common features are representing edges and corners, fixed patterns such
as fiducial markers or objects of a distinct appearance. Range finding sensors can be used to
extract features such as lines, corners or local minima. Features can represent a point or larger
objects and shapes. In robotics it is also common to identify features in terms of high-level
concepts such as hallways or intersections.

A feature consists of a value identifying its location with respect to the reference frame of the
robot or sensor, together with a signature vector which holds values that describe one or more
properties of this feature.

Landmarks are objects or distinct features in the physical environment of the robot. Se-
bastian Thrun (2005) uses the terms "feature” and "landmark" interchangeably, as seems to
be common practice in literature. As described before, a feature-based map holds a set of land-
marks and their estimated locations in the global coordinate frame of the environment that is
mapped. So when does a feature become a landmark in terms of the SLAM algorithm? Without
a better definition from a reputable source, this work follows the following definition:

Asingle feature which is extracted from one or more measurement(-s), becomes a landmark when
a pose (estimate) in the global coordinate frame of the map is assigned to this feature.

This definition allows for SLAM systems that use landmarks while generating a non-feature-
based map.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 9

2.1.2 Posegraphs

Graph-based SLAM solves the full-SLAM problem by constructing a pose graph of which the
nodes represent the robot poses or landmark poses (Grisetti (2010)). The nodes in the graph are
connected by edges, which represents a metric constraint between the attached nodes. These
graphs can be efficiently optimised to find a set of poses for all nodes which minimises the error
with respect to the constraints set by the edges.

An example of a scene which can be represented by a pose graph is shown in Figure 2.1. This
particular robot travelled along a trajectory from the left to the right, between two walls.

While moving, the robot position is tracked by some kind of (inaccurate) source of odometry
information. These estimated poses are indicated by the squares, which can be carried over
as nodes in the pose graph. Edges between these nodes are represented by the dashed lines.
The associated constraints describe the displacement, calculated directly from the estimated
poses. Of course, at this point the constraints match exactly with the poses and optimisation
useless.

This changes if the landmarks and corresponding measurements are added to the pose graph.
The robot was able to detect several landmarks and estimate their position, as indicated by the
circles. These landmark poses can also be added as nodes to the pose graph. The dotted lines
represent the associated edges, of which the constraint is based on the measurement that was
used to observe the environment of the robot.

The resulting pose graph now contains information from several sources, with different levels
of reliability. A pose graph optimisation algorithm is now able to asses the estimated poses and
constraints and generate a new arrangement of poses that fits the full set of constraints.

Figure 2.1: Example of a scene (top view) which can be represented in by nodes and edges in a pose
graph. The estimated robot poses x; are indicated by squares, while the estimated landmark positions
are indicated by the circles. Constraints for the edges are based on the odometry values (dashed lines)
and measurements of the environment (dotted lines).

2.2 Analysis

Practical SLAM implementations end up using a hybrid mix of techniques and may deviate
from the pure theoretical algorithms to circumvent issues that arise when using a single specific
technique. In this Section, the design and functionality of two real-world SLAM systems will be
analysed.

Robotics and Mechatronics Mark te Brake



10 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Table 2.1 lists several visual, pose graph based, SLAM approaches of which the source code
is published!. These systems are often encountered in literature or used as benchmark for
comparison to newly developed systems. From the listed SLAM approaches, two are selected
to be further analysed in this thesis. This selection is guided by several criteria that are expected
to be beneficial for remote visualisation and tele-operation systems:

* Full-SLAM: providing a globally consistent estimation of the current and previously vis-
ited positions along the trajectory of the robot.

* Visual/appearance-based: enabling the use of cheap and widely available imaging
sensors as primary sensory input and providing information that is useful for 3D recon-
struction and visualisation of the environment.

* Pose-graph based: using some form of pose-graph representation for the robot trajectory,
facilitating the use of efficient optimisation methods.

e Scale-aware estimation: approaches only using a monocular camera are not able to es-
timate scale and suffer from scale drift.

RGBiD-SLAM uses a direct image registration method instead of a feature-based approach for
tracking camera motion. Although its loop closure detection seems to be feature-based by us-
ing a bag-or-words approach, a purely feature-based SLAM approach was preferred. Compared
to the other systems, iSAM2 seemed rather old. Furthermore, it was discarded from the selec-
tion as it is distributed as part of a larger software framework (GTSAM). Maplab, VINS-Mono
and LSD-SLAM all are monocular approaches, which are unable to correct for scale drift. Un-
fortunately, the source code for the stereo vision S-LSD-SLAM variant (Engel et al. (2015)) is not
published.

From the remaining approaches, RTAB-Map and ORB-SLAM?2 are selected for further analysis.
RTAB-Map seems to gain a lot of attention from within the robotics community. This is a huge
benefit when dealing with issues or when adapting RTAB-Map to your application. The KITTI
odometry benchmark (Geiger et al. (2012)) is regularly used to test visual odometry and SLAM
approaches. An online leader board for comparison of different approaches is also available.
Based on this benchmark, ORB-SLAM2 is the best performing among the remaining candid-
ates.

As software in a repository is susceptible to changes, the analysis is based on the specific ver-
sion at the time of first access. These versions can be identified by the following Git commit
hashes:

* RTAB-Map: e57b722ce2d24fff3d1a3a13e5fd008384686304 (29 Oct 2018). This is a com-
mit between the version 0.17.6 and 0.18.0 releases.

* ORB-SLAM2: 2e6f51cdc8d067655d90a78c06261378e07e8f3 (11 Oct 2017).

The selected systems are analysed by investigation of the related literature and source code.
The goal of this analysis is to paint a high-level picture of what makes these systems work as
they do, which functions are performed and what kind of role these functions play within the
whole algorithm. Including an investigation of the source code provides insight into the archi-
tectural choices that were made to implement these algorithms.

To achieve these goals, each high-level function that is executed by the SLAM system is ana-
lysed separately. This involves distinguishing separated functional steps. Where possible, the
separation into functional steps intends to follow the naming and separation as implemented

INote that this does not necessarily mean that the code can be freely used or modified. This depends on the
terms of the accompanying license.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 11

Table 2.1: A selection of recent visual, pose graph based SLAM approaches of which the source code is

publicly available.

Approach Description

RTAB-Map Labbé and Michaud (2011).
https://github.com/introlab/rtabmap.

LSD-SLAM Engel et al. (2014).
https://github.com/tum-vision/lsd_slam.

S-PTAM Pire et al. (2015).
https://github.com/lrse/sptam.

ORB-SLAM2  Mur-Artal and Tardéds (2017).
https://github.com/raulmur/ORB_SLAM2.

ProSLAM Schlegel et al. (2018).
https://gitlab.com/srrg-software/srrg_proslam.

RGBiD-SLAM Gutierrez-Gomez and Guerrero (2018).
https://github.com/dangut/RGBiD-SLAM.

iSAM2 Kaess et al. (2011).
https://github.com/borglab/gtsam.

VINS-Mono Qin et al. (2018).
https://github.com/HKUST-Aerial-Robotics/VINS-Mono.

Maplab Schneider et al. (2018).

https://github.com/ethz-asl/maplab.

Robotics and Mechatronics Mark te Brake



12 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

by the authors of the system. Nonetheless, it should be noted that some interpretation was re-
quired to include (often minor) behaviour that was not clearly allocated to a step by the original
authors. Furthermore, any behaviour that is required for initialisation of the system is ignored.

For each of the functional steps, the analysis consists of three parts:
* Ashort description of the task that is executed.

* A data-flow diagram showing the interaction between the task at hand and other parts of
the system.

* A table which summarises the type of information that is exchanged.

Because information is not only exchanged between different functions, but also stored for
later use or to represent a map, storage pools are introduced for both systems. These storage
pools are discussed separately when introducing the systems in general. In the data-flow dia-
grams, the different tasks and storage pools are indicated by the icons shown in Figure 2.2.

Storage pool Functional step

Figure 2.2: Icons to be used in the data-flow diagrams to indicate storage elements and functional steps.
Storage pools facilitate data storage, while functional steps perform consume, modify or produce data.

As a final note, this analysis attempts to provide high-level insight into the concepts that are of
vital importance when implementing a real-world SLAM system. At this level, many low-level
implementation details are not relevant to the problem of modularity and reusability. This
means that language and platform specific details are mostly neglected, or translated to a more
conceptual description. One example of this is the use of the previously mentioned storage
pools, which describe both the actual physical memory that is occupied, as well as the book-
keeping and structures to allow access to the stored data.

Another example is the use of synchronisation primitives in a multi-threaded implementation.
In this case, the choice was made to ignore mutexes that allow for atomic access and block for a
limited amount of time. Behaviour that is more involving, is presented as high-level signalling
with status signals such as flags or counters.

2.2.1 RTAB-Map

RTAB-Map, short for "Real-Time Appearance-based mapping", is an approach introduced in
Labbé and Michaud (2011). A stereo or RGB-D camera is used as the main source of measure-
ments. The algorithm executes one complete iteration for each image that is fed to the system.
Each image is required to be accompanied by an odometry-based pose estimate. This odo-
metry pose must be provided to the core algorithm by an external piece of software. Two visual
odometry methods are provided together with RTAB-Map, in case the platform running RTAB-
Map does not provide odometry by itself. For the remainder of this thesis, odometry is assumed
to be available and the visual odometry methods will not be discussed.

The user can choose between different feature detection techniques and descriptors like SURE
SIFT, FAST, BRIEF and ORB. A bag-of-words approach as introduced by Sivic and Zisserman
(2003) is also used, for which the visual words are derived from the previously generated fea-
ture descriptors. Using visual words and a bag-of-words for describing the appearance of ob-
servations provides an efficient way for RTAB-Map to identify matching features and search for
measurements that observe the same scene. The dictionary from which visual words are selec-
ted, is constructed dynamically from the feature descriptors that are observed. Similar to the

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 13

image feature extraction, a selection of different optimisation methods is provided for the user
to choose from. (E.g. based on TORO, g?o or GTSAM)

RTAB-Map appears to be broadly used due to it being freely available for a broad range of plat-
forms. It comes with additional tools for visualisation of the mapped environment and integ-
rates easily with ROS. Therefore, it provides a lot of functionality and configurability and integ-
rates well as a stand-alone application. It is written in C++ and comes under a BSD 3-clause
license. At the time of writing, RTAB-Map is actively maintained but the core algorithm does
not seem to be under development or receiving big changes.

Looking at the source code, the core functionality is contained within the corelib folder of the
repository. Most of the SLAM algorithm logic is contained within two large files: Rtabmap.cpp
and Memory.cpp, with other files containing supporting code. Unfortunately, documentation
about the software architecture and functionality contained in these files is not publicly avail-
able. In the context of this analysis, execution of the function process() in Rtabmap.cpp is con-
sidered one iteration of the algorithm.

RTAB-Maps key feature is a memory management approach, which divides its data into three
storage pools: short-term, working and long-term memory. This separation fulfils two separate
goals:

* Recent data is kept in short-term memory to avoid acting on data that is likely to be sim-
ilar to other recent measurements.

* The computational load is kept within bounds by only using data that is available in
working memory and excluding data that is stored in long-term memory.

Within these three storage pools, data is stored in the form of objects called Signatures. A Sig-
nature aggregates all information that is related to an observation made at a specific moment
in time. This involves static data that is sampled once: the control u;, measurement z; and
other constants at the time of sampling. But also includes values that are updated during the
execution of the SLAM algorithm, such as weights, status flags and connections to other Signa-
tures.

Connections between Signatures in storage are made with several types of Links. The type of
a Link indicates the different sources in the algorithm from which the Links originate, such as
the loop closure detection. Links define a spatial relation between two Signatures and con-
tain a transformation which describes the displacement from the one Signature to the other.
The information contained by Links is used throughout the algorithm, for example to identify
neighbouring Signatures in the trajectory followed by the robot. The constraints for the pose
graph optimisation are also generated from the transformations within the Links. Together
with the raw odometry poses, this yields the trajectory estimate x;.; after optimisation.

Table 2.2 lists the steps for one iteration of RTAB-Maps algorithm, in the order of their execu-
tion and with a short description of each task that is performed. Each of these steps is further
analysed in this Section, in order to identify the corresponding data dependencies, interac-
tions with other functions in the system and the type of information that is exchanged. For
each step, the accompanying figures and tables summarise the data dependencies and provide
details about the type of information that is exchanged via these dependencies. Figure 2.10 at
the end of this Section presents an overview of the steps and dependencies that are discussed.

It should be noted that some functionality present in the source code was ignored during the
analysis of the behaviour and dependencies, in order to focus on what are assumed to be the
most important tasks that are performed. The majority of the ignored behaviour is already
disabled in the default configuration of RTAB-Map. So called "Intermediate nodes" are often
encountered in the code and represent Signatures without sensor data, but with an estimated

Robotics and Mechatronics Mark te Brake



14 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

pose. These Signatures are only used as instrumentation for some benchmarks and are there-
fore ignored. Furthermore, behaviour related to GPS data, laser scan data, path planning or the
localisation mode is also not covered in this thesis.

Table 2.2: Overview of functional steps for one iteration of RTAB-Map, in order of execution.

Step Description

1. Create Signature Creating and storing a sample containing meas-
urement (features, descriptors, visual words) and
control (odometry pose) for further use by the al-
gorithm.

2. Rehearsal Reduce data in storage if the current observation is
very similar to the previous observation.

Enable data to be used for evaluation during loop
closure detection.

3. Bayes filter Find observations from the past which appear suf-
ficiently similar to the current observation to form
aloop closure.

4. Retrieval Retrieve existing data that may be related to the ro-
bots current location, for use by the algorithm.

5. Loop closure Link Determine a constraint between two observations
that are accepted by the Bayes filter as a loop clos-
ure.

6. Pose graph optimisation Estimate the trajectory of robot poses that minim-
ises the error with respect to the constraints that
are available in the data set.

7. Transfer Limit the execution time of the algorithm by redu-
cing the data set that is used by the algorithm.

Create Signature

The first step in RTAB-Map is the creation of a Signature object for use throughout the entire
system. As mentioned before, a camera image together with an odometry pose is provided to
the system for each iteration of the algorithm. The odometry pose (from u;)) is stored in the
Signature and represents the first estimate of the robot position at the current time. The pose is
expected to be an absolute position with respect to the origin of the odometry reference frame,
which is situated at the location where the system was started and initialised. This odometry
pose is never changed afterwards, as RTAB-Map keeps track of the optimised pose estimates
separately.

Using the odometry poses of the current and previous Signatures, the first Link is created
between the new (current) Signature and the previous Signature in short-term memory. This
Link is also stored in both involved Signatures and is used to keep track of the path that is fol-
lowed. The transformation associated with this Link is identical to the difference between both
associated odometry poses.

The visual information from the camera image is immediately used to extract the required im-
age features, descriptors and visual words during this step. The image itself is not used by the

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 15

algorithm any further, but RTAB-Map does store the image for future reference within the Sig-
nature. Because of this, the measurement (z;) that is used by the algorithm consists of the
image features (with 2D and 3D coordinates), descriptors and visual words that are part of the
bag-of-words for this Signature.

Figure 2.3 shows how Create Signature exchanges information with other parts of the system,
via dependencies on the short-term memory, pose graph optimisation and Transfer. These
dependencies are also listed in Table 2.3, which summarises the information that is exchanged.

\ 4

Short-term memory

+ RTAB-Map
o Pose graph
R1 ! R-4 ~ optimisation
Camera image ' -
RGB-D, stereo ' 7 .
( ) : Create Signature
Odomertry pose . >
R2 X R-5
: > Transfer
i R-3

Figure 2.3: Exchange of information and interaction between the Create Signature functionality of
RTAB-Map and other parts of the system.

Table 2.3: Data dependencies for the Create Signature step in RTAB-Map.

Dependency Direction Description

R-1 In Appearance (RGB or grey scale colour information)
and structure (pixel depth or stereo image). Spatially
sampled as pixels.

R-2 In 6 degrees of freedom odometry pose. Accompanied by
a covariance matrix as a measure of uncertainty.

R-3 In Data related to the previous Signature, such that the
newly created Signature can be linked to it.

R-3 Out Storing the newly created Signature and its Link to the
previous Signature.

R-4 Out Flag: information in storage has been modified/up-
dated.

R-5 Out Number: one Signature has been added to storage.

Rehearsal

The second step that can be identified is called Rehearsal. This step aims to reduce the data
set on which the algorithm operates. If the current observation is visually very similar to the
previous one, the new Signature and the data it contains is discarded. Along with the inform-

Robotics and Mechatronics Mark te Brake



16 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

ation that is part of the observation that is made, each Signature contains a weight. Rehearsal
increases the weight that is associated with the previous Signature to register such an event. An
increased weight can be regarded as a measure of confidence, as it indicates that a Signature is
supported by multiple similar observations.

Figure 2.4 shows Rehearsal and its dependencies to other parts of RTAB-Map. Fulfilling the
task requires a dependency on short-term memory to access the required information, while
the pose graph optimisation and Transfer are notified about the result. A summary of the in-
formation that is exchanged over these dependencies is listed in Table 2.4.

The dependency between the short-term and working memory is not directly related to Re-
hearsal, but happens immediately after Rehearsal. If the size of the short-term memory grows
over a specified limit, the oldest Signature in short-term memory is moved to the working
memory. This seems to be a minor step, but plays an important role within RTAB-Map. Keep-
ing recent observations in short-term memory excludes them from loop closure detection at a
later stage. Once the information has matured, the move to working memory allows for inclu-
sion during loop closure detection.

- Pose graph
R-8 optimisation
Rehearsal
R-9
A > Transfer
R-6
Y
R-7
Short-term memory ------------ »  Working memory

Figure 2.4: Exchange of information and interaction between the Rehearsal functionality of RTAB-Map
and other parts of the system.

Table 2.4: Data dependencies for the Rehearsal step in RTAB-Map.

Dependency Direction Description

R-6 In Data related to the current and previous Signature for
comparison of both observations.

R-6 Out In case of Rehearsal: deleting the current Signature
and updating the weight of the previous Signature.

R-7 - Post-Rehearsal: move oldest Signature in short-term
memory to working memory.

R-8 Out Flag: information in storage has been modified/up-
dated.
R-9 Out Number: one Signature has been deleted from storage.
Bayes filter

The Bayes filter step that is executed next is the first part of the loop closure detection in RTAB-
Map. During this step, the likelihood of a loop closure existing between the current Signature

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 17

(in short-term memory) and previous observations in working memory is estimated. The pre-
diction is based on a direct comparison of the visual appearance of image features in the obser-
vations that are involved. It should be noted that no spatial information about the location of
image features is considered, which means that the structure of the observed scene is ignored
during this prediction step.

RTAB-Map follows an approach by Adrien Angeli and Meyer (2008), for which the bag-of-words
(Sivic and Zisserman (2003)) of each Signature and associated scoring mechanism is used as
a metric for comparing the observations. A virtual Signature represents the most commonly
observed visual words. This virtual Signature is used to adjust the hypothesis, such that the
prediction is based on sufficiently unique words.

The Bayes filter operation produces two results that feed to the Retrieval and Loop closure Link
steps. The first part of the result is which Signature in working memory has the highest prob-
ability of forming a loop closure with the current Signature. The second part of the result is
the decision by the Bayes filter step if the hypothesis is sufficiently strong to be accepted as
an actual loop closure. These interactions are shown in Figure 2.5. Table 2.5 summarises the
information that is exchanged.

> Retrieval
R-12
Bayes filter
R-13
A A » Loop closure Link
R-10 R-11
\ 4
Short-term memory Working memory

Figure 2.5: Exchange of information and interaction between the Bayes filter functionality of RTAB-Map
and other parts of the system.

Table 2.5: Data dependencies for the Bayes filter step in RTAB-Map.

Dependency Direction Description

R-10 In Data related to the current Signature for comparison
of the visual appearance of the observation.

R-11 In Data related to all working memory Signatures for
comparison of the visual appearance against the cur-
rent Signature.

R-11 Out Storing the virtual Signature.

R-12 Out This Signature in working memory has the highest
probability of forming a loop closure with the current
Signature.

R-13 Out This Signature in working memory forms a loop clos-

ure with the current Signature.

Robotics and Mechatronics Mark te Brake



18 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Retrieval

Signatures may be stored in the long-term memory for reasons that will be discussed at a later
stage. Retrieval is tasked with fetching data from the long-term memory back into working
memory. Retrieving this data back into working memory makes it available for use by the al-
gorithm, for example during the Bayes filter step.

The strongest hypothesis from the Bayes filter is used as a starting point for the selection of
Signatures that may contain valuable information, along with several other criteria. Figure 2.6
shows that Retrieval interacts with the short-term, working and long-term memory to fulfil its
task. The behaviour of the pose graph optimisation and Transfer steps is also affected by the
outcome of Retrieval. Table 2.6 provides details about these dependencies.

ol Pose graph

R-17 optimisation
R-12
Bayes filter > Retrieval
R-18
A A A > Transfer
R-14 R-16
R-15
Y Y
Short-term memory Working memory Long-term memory

Figure 2.6: Exchange of information and interaction between the Retrieval functionality of RTAB-Map
and other parts of the system.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM

19

Table 2.6: Data dependencies for the Retrieval step in RTAB-Map.

Dependency Direction Description

This Signature in working memory has the highest
probability of forming a loop closure with the current
Signature.

Data related to Signatures in short-term memory used
to select potentially valuable Signatures from long-
term memory to be retrieved.

Data related to Signatures in working memory used to
select potentially valuable Signatures from long-term
memory to be retrieved.

Storing Signatures that are retrieved from long-term
memory.

Data related to Signatures in long-term memory used
for selection and retrieval of potentially valuable Sig-
natures.

Deleting Signatures that are retrieved from long-term
memory.

Flag: information in storage has been modified/up-
dated.

1) Number: amount of Signatures retrieved. 2) A list of
Signatures that have to be excluded from being trans-
ferred to long-term memory.

R-12 In
R-14 In
R-15 In
R-15 Out
R-16 In
R-16 Out
R-17 Out
R-18 Out
Loop closure Link

The next step performs the second part of the loop closure detection in RTAB-Map: generation
of the loop closure Link between two Signatures. Such aloop closure Link is generated between

the Signature that is indicated by the Bayes filter step and the current Signature.

The constraint associated to this Link provides an estimated displacement and rotation

between both observations. This estimate follows from the difference between the location
of image features observed by both Signatures that are involved with the loop closure. Cor-

responding points in both images can be related to a certain displacement between the robot
poses when taking both observations. While determining the transformation that describes the

associated constraint, this step also validates the loop closure at the same time.

Figure 2.7 shows the loop closure Link creation step and its interactions with other parts of the

system. Details about the information that is exchanged is listed in Table 2.7.

Robotics and Mechatronics

Mark te Brake



20 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

R-13 R-21
Bayes filter » Loop closure Link > Pose graph
optimisation
A A
R-19 R-20
Y \ 7
Short-term memory Working memory

Figure 2.7: Exchange of information and interaction between the loop closure Link functionality of
RTAB-Map and other parts of the system.

Table 2.7: Data dependencies for the loop closure Link step in RTAB-Map.

Dependency Direction Description

R-13 In This Signature in working memory forms a loop clos-
ure with the current Signature.

R-19 In Data related to the current Signature used to determ-
ine the constraint between both observations associ-
ated with the loop closure.

R-19 Out Storing the Link that describes the loop closure con-
straint between both involved Signatures.

R-20 In Data related to the loop closure candidate Signature
used to determine the constraint between both obser-
vations associated with the loop closure.

R-20 Out Storing the Link that describes the loop closure con-
straint between both involved Signatures.

R-21 Out Flag: information in storage has been modified/up-
dated.

Pose graph optimisation

Any changes by the previously executed steps provides new information which may improve
the estimated trajectory. Pose graph optimisation is performed in order to update the estima-
tion with the most recent information. Figure 2.8 depicts this behaviour by the dependencies
that are shown at the left side, which trigger an optimisation step.

The pose graph for optimisation is constructed from the information contained in both short-
term and working memory. After optimisation has finished, the result is validated before saving
it for the next iteration. If the result does not pass this validation, it is discarded and any new
loop closure Links involved are deleted.

The optimised pose estimates for the Signatures are stored separately from the original odo-
metry poses. Dependency R-22 and R-23 as listed in Table 2.8 are not completely true to the
actual implementation, as the optimised poses are not fed back into the short-term and work-
ing memories. To document the behaviour accurately, a fourth storage pool should be defined
for RTAB-Map. Because this would make the figures for RTAB-Map a lot more complicated and
the optimised pose storage is kept synchronously with short-term and working memory, the

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 21

choice was made to ignore this specific separation. Unfortunately, RTAB-Map’s implementa-
tion requires a lot of additional bookkeeping to keep the optimised poses synchronised with
contents of the short-term and working memories.

_ R-4
Create Signature
R-8
Rehearsal
R-17
Retrieval
. R-21
Loop closure Link
Pose graph
optimisation
A A
R-22 R-23
Y Y
Short-term memory Working memory

Figure 2.8: Exchange of information and interaction between the pose graph optimisation functionality
of RTAB-Map and other parts of the system.

Table 2.8: Data dependencies for the pose graph optimisation step in RTAB-Map.

Dependency Direction Description

R-4 In Flag: information in storage has been modified/up-
dated by the Create Signature step.

R-8 In Flag: information in storage has been modified/up-
dated by the Rehearsal step.

R-17 In Flag: information in storage has been modified/up-
dated by the Retrieval step.

R-21 In Flag: information in storage has been modified/up-
dated by loop closure Link step.

R-22 In Data related to all short-term memory Signatures to
construct a pose graph, pre-optimisation.

R-22 Out Storing optimised poses, post-optimisation.

R-23 In Data related to all working memory Signatures to con-
struct a pose graph, pre-optimisation.

R-23 Out Storing optimised poses, post-optimisation.

Robotics and Mechatronics Mark te Brake



22 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Transfer

The last step during an iteration of RTAB-Map is called Transfer, which is the opposite of
Retrieval. Transfer is tasked with moving information from working to long-term memory
whenever the execution time for one iteration or the working memory size exceeds a specified
threshold. Data in the long-term memory is excluded from use by the next iteration of the
algorithm, reducing the computational load.

Additional to the dependencies that follow from the description above, Figure 2.9 also shows
that there are interactions with other parts of the system. These signals are part of the pro-
cess that selects candidate Signatures for being Transferred. As before, Table 2.9 provides more
details about the information that is exchanged.

_ R-5
Create Signature
R-9
Rehearsal
R-18
Retrieval
Y
R-24
Elapsed time ————— Transfer
A A
R-25 R-27
R-26
Y Y
Short-term memory Working memory Long-term memory

Figure 2.9: Exchange of information and interaction between the Transfer functionality of RTAB-Map
and other parts of the system.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM

23

Table 2.9: Data dependencies for the Transfer step in RTAB-Map.

Dependency Direction Description

R-5
R-9
R-18

R-24

R-25

R-26

R-26

R-27

In
In

In

In

In

In

Out

Out

Number: one Signature has been added to storage.
Number: one Signature has been deleted from storage.

1) Number: amount of Signatures retrieved. 2) A list of
Signatures that have to be excluded from being trans-
ferred to long-term memory.

Elapsed time since the start of the current iteration up
to Transfer.

Data related to short-term memory Signatures used
during the selection of Signatures from working
memory for transfer.

Data related to working memory Signatures for the
selection and transfer of Signatures to long-term
memory.

Deleting Signatures that are transferred to long-term
memory.

Storing Signatures that are transferred to long-term
memory.

Robotics and Mechatronics

Mark te Brake



24 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

~
> v
] m AN i
£ » cc [€
© Q.9
: £5
1S N o 'E
~ o) © D ,,,_E
a b bl o oF
14 o 14 » QO (€
IS
a
A A
<
g S ) > 0
b = W ©
s 8 2 g g
> 7] < o @
3 5 < =] o
a & 5] S
© [ 14 Q
w <€ > Q
o
A A A q A A A A A
> 14
(e} i
8 e
@
14 IS -
2 o
g 14
S|
o €
=
= o~
[i4 (4
.
2
- =
& 2 o
) 2
m
o
S = 3
b > v
o g [
£ )
[} v
1S 14
<
E [« S
2 @
3 £ le
7 o [€
o) <
o %]
“?L)
x © A
3 @
14
3
(=]
@ §
14
Y
o
5
© 2 <
o g @
2
w
o
©
<
(@]
A
< QN
o o
05 O
)
go &
£ ©
£z =
LA <
2o &
88 2
€ o

Figure 2.10: System overview of RTAB-Map showing data dependencies between the identified func-
tional steps.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 25

2.2.2 ORB-SLAM2

ORB-SLAM2 (Mur-Artal and Tardés (2017)) ads RGB-D and stereo vision support to its monocu-
lar predecessor ORB-SLAM (Raul Mur-Artal (2015)). It is a feature-based system for perform-
ing real-time SLAM with loop closure detection and the possibility to re-locate itself within a
given map. The only input to ORB-SLAM2 is an RGB-D or stereo image from a camera sensor.
As the name implies, Oriented FAST and Rotated BRIEF (ORB) features are used throughout
the system. Visual words for a bag-of-words (Gélvez-Lépez and Tardés (2012), which is based
on Sivic and Zisserman (2003) and Adrien Angeli and Meyer (2008)) are also used for efficient
appearance-based comparison and matching for loop closure and landmark detection. The
g20 framework (Rainer Kiimmerle (2011)) is used to perform several bundle adjustment and
pose graph optimisations.

ORB-SLAM? is distributed including several benchmark examples and code to integrate with
ROS. A map viewer is also included. It is written in C++11 and comes with a GPLv3 license. At
the time of writing, ORB-SLAM?2 does not seem to be actively maintained.

The algorithm is divided over multiple threads that (partially) operate asynchronously. Only
the so-called Tracking thread runs at the cameras frame rate. The other threads are performing
what is called Local Mapping, Loop Closing and the global/full bundle adjustment optimisa-
tion. These are all triggered by events that mark the availability of updated information relevant
to each function.

ORB-SLAM2 uses three types of objects to manage and arrange information throughout the
system:

¢ Frames
¢ Key Frames
* Map Points

Frames and Key Frames aggregate the information that is available with respect to a single
observation of the environment by the robot, taken at a single moment in time. This in-
volves static data that is sampled once: the measurement z; and other constants at the time
of sampling. But also includes values that are updated during the execution of the SLAM
algorithm, such as statistics, status flags and connections to other objects like Frames, Key
Frames and Map Points. Frames are only relevant for the functionality within the Tracking
thread and are created for each camera image. Key Frames are derived from Frames from time
to time at a reduced rate and are primarily used for the mapping process and landmark detec-
tion.

Each detected landmark is represented by a Map Point, which aggregates all associated inform-
ation, such as the estimated pose and the Key Frames by which it is observed. Landmark ob-
servations are registered bidirectionally, by storing the associated references both within the
affected Key Frame and Map Point. This provides a mechanism to traverse along observations
in both directions: by selecting Map Points via an observing Key Frame, or by selecting Key
Frames via a specific Map Point.

Key Frames are also linked together by two mechanisms: the Spanning Tree and the Co-
visibility Graph. The Spanning Tree links Key Frames together in the order in which they are
created. It can be traversed in both directions, providing the means to iterate along all Key
Frames known to the system. The Co-visibility Graph is constructed from observations of land-
marks by all Key Frames. When two Key Frames observe the same landmark, these are said to
be co-visible. These Key Frames are connected in the Co-visibility Graph. Each connection in
the Co-visibility Graph describes how many landmarks are shared between those Key Frames.

Robotics and Mechatronics Mark te Brake



26 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

The resulting graph is used throughout the system as a mechanism to select neighbouring Key
Frames based on the number of shared observations.

ORB-SLAM2s bag-of-words approach makes use of a static dictionary which assigns weights to
specific words. These weights are correlated to the uniqueness of visual words, based on their
occurrence within a reference data set of images. A scoring mechanism is also provided based
on these weights, allowing for a direct comparison of two bags-of-words.

For the sake of this analysis, three storage pools can be identified in ORB-SLAM2: Tracking,
Global Map and the Key Frame database.

* The Tracking storage pool is not formally defined by the authors, but can be identified
within the software as the data that is only accessed by the functions of the Tracking
thread.

* The name Global Map will be used to refer to what the authors are calling just Map, to
prevent confusion with the general term map. This Global Map stores the data related to
all Key Frames and Map Points created by ORB-SLAM2. Each Key Frame also contains
fields to store the data which constitute the Co-visibility Graph and Spanning Tree in a
distributed way.

* The Key Frame database (name from code) or Recognition database (name from papers)
stores the information that is required to perform place recognition. This information is
limited to a registry such that Key Frames in the Global Map can be found by a search for
observed visual words in their bag-of-words.

Each of the previously mentioned objects (Frames, Key Frames and Map Points) is associated
with a position in the environment.

By using the Spanning Tree, the trajectory x;.; can be reconstructed from the poses of Key
Frames. The pose of a Key Frame always represents the most recent estimate available to the
system. The space between Key Frames in the trajectory is filled in by using the poses associ-
ated with Frames. Because Frames are not stored for future reference, this is done by separately
saving each Frame’s pose relative to its reference Key Frame. The actual pose of a Frame can
then be recovered by using the relative pose and the current estimate for the corresponding
reference Key Frame.

Each pose of a Map Point is directly contributing to the map m. When a new Map Point is cre-
ated, the position of the landmark directly follows from the projection of the associated image
feature into the world, using the pose of the observing Frame or Key Frame. Later, the pose is
adjusted by combining multiple observations in a bundle adjustment optimisation.

Table 2.10 lists the steps of the ORB-SLAM2 algorithm that will be discussed in the following
sections. Due to the implementation using asynchronous threads, these steps are not neces-
sarily always executed in the order they are listed. For each of the steps, a short description of
the task that is performed is included. At the end of this Section, an overview of the identified
functional steps and dependencies is given in Figure 2.21.

Because of the scope defined at the beginning of Section 2.2, behaviour that is related to ORB-
SLAM2’s monocular SLAM mode and the so-called Localisation mode is not covered. The Full
Bundle Adjustment is also ignored, as this operation is rather well separated from the other
parts of the algorithm. Furthermore, Rail Mur-Artal (2015) mentions that "when performing
the pose graph optimization, the solution is so accurate that an additional full bundle adjust-
ment optimization barely improves the solution”.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM

27

Table 2.10: Overview of functional steps for processing an image in ORB-SLAM2.

Step Description

1.  Create Frame Creating and storing a sample containing
the measurement (features, descriptors, visual
words) for further use by the algorithm.

2a. Track with motion model  Estimate current pose.

2b. Trackreference Key Frame Estimate current pose.

2c.  Re-localisation Estimate current pose.

3 Track Local Map Refine estimation of current pose.

4 Create Key Frame Decision making for and creation of a new Key
Frame out of the current Frame.

5 Process Key Frame Incorporating a newly created Key Frame into

the Global Map.

Data association for landmark detection and
reduction of data contained within the Global
Map.

6 Local Mapping

7 Loop detection Detecting loop closures and estimation of
the transformation describing the constraint

between the two involved observations.

8 Loop correction Inserting the detected loop closure constraint
into the map and pose graph optimisation to
update the estimated trajectory and landmark

poses.

Create Frame

The first step in ORB-SLAM?2 is creating a Frame object, which represents the current obser-
vation. At a later stage, the corresponding estimated robot pose is also added to the Frame.
During this first step, the visual and structural information is extracted from the stereo or RGB-
D image and stored in a generalised format for use by the rest of the system. Visual information
consists of ORB features and corresponding descriptors, as well as the bag-of-words which may
be derived from the descriptors at a later stage.

The generalised format provided by a Frame consists of both left and right image features, as
well as the corresponding depth for matching features. For RGB-D input, the position of the
"virtual" features in the right image are determined using the depth information. For stereo
image input this is the other way around, by determining the depth from the available matched
stereo features.

Colour information is discard by converting image data to grey scale before performing feature
extraction. The original image is not stored for further use by ORB-SLAM2.

Figure 2.11 shows how Create Frame interacts with other parts of the system. The information
that is exchanged over the corresponding interfaces is listed in Table 2.11.

Robotics and Mechatronics Mark te Brake



28 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

ORB-SLAM2

0-1
Camera image
(RGB-D, stereo)

> Create Frame

0-2

Y

Tracking

Figure 2.11: Exchange of information and interaction between the Create Frame functionality of ORB-
SLAM2 and other parts of the system.

Table 2.11: Data dependencies for the Create Frame step in ORB-SLAM2.

Dependency Direction Description

0-1 In Appearance (RGB or grey scale colour information)
and structure (depth image or via stereo image). Spa-
tially sampled as pixels.

0-2 Out Storing the newly created Frame.

Track with motion model

During regular operation, the Track with motion model step provides the first estimate for the
current robot pose. This step performs visual odometry by matching image features of the
current Frame against those of the previous Frame. Although Frames are not used to formally
register observations of landmarks in the Global Map, previously matched Map Points are used
to select image features for matching against the current Frame. ORB-SLAM2 uses the absolute
pose that is associated with each Map Point for re-projecting these image features.

Because the matching for visual odometry is based on absolute poses of features, the current
robot pose should be estimated first. This guess is based on the pose of the previous Frame and
a motion model which takes the robots movement into account. An estimate for the current
velocity is provided by the Track Local Map step, calculated during processing of the previous
Frame. Once sufficient matches are found, a bundle adjustment optimisation finalises the pose
estimation for the current Frame.

Figure 2.12 shows the expected dependency on the Tracking storage for access to the previous
Frame. An additional dependency on the Global Map is also required to access information
about the position of landmarks and update the previous Frame pose if its reference Key Frame
is updated due to Local Mapping or loop closure detection. Table 2.12 summarises the inform-
ation that is exchanged between the dependencies.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM

29

Track with motion | 0-5

Track Local Map

4

model

Y

\ 4

Tracking

Global Map

Figure 2.12: Exchange of information and interaction between the Track with motion model function-
ality of ORB-SLAM2 and other parts of the system.

Table 2.12: Data dependencies for the Track with motion model step in ORB-SLAM2.

Dependency Direction Description

0-3 In
0-3 Out
0-4 In
0-4 Out
0-5 In

Data related to the current and previous Frames, such
that the current pose can be estimated and image fea-
tures can be matched.

Storing updated pose estimates for the current and
previous Frames, as well as matched image features in
the current Frame.

Most recent pose estimate of the reference Key Frame
and relevant Map Points.

Storing status information within Map Points that are
discarded as outliers.

Estimated current velocity for use by the motion
model.

Track reference Key Frame

In some cases, Track with motion model may not be able to provide a pose estimate for the
current Frame. Track reference Key Frame provides an alternative method to determine the
current pose of the robot. As the name implies, the observation of the current Frame is com-
pared against the reference Key Frame. This reference Key Frame provides a pose and a set of
landmarks that are used for matching against image features in the current Frame.

Matching is also performed in an alternative way, using visual words out of the bag-of-words
of the Key Frame. Therefore, derivation of the bag-of-words for the current Frame is also per-

formed.

Figure 2.13 indicates where information is exchanged, while Table 2.13 summarises the data

that is exchanged.

Robotics and Mechatronics

Mark te Brake



30 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Track reference Key

Frame
A A
0-6 O-7
Y Y
Tracking Global Map

Figure 2.13: Exchange of information and interaction between the Track reference Key Frame function-
ality of ORB-SLAM2 and other parts of the system.

Table 2.13: Data dependencies for the Track reference Key Frame step in ORB-SLAM2.

Dependency Direction Description

0-6 In Data related to the current Frame for derivation of the
bag-of-words. Previous Frame pose.

0-6 Out Storage of the pose estimate, matched landmarks and
bag-of-words for the current Frame.

0-7 In Data related to the reference Key Frame and associ-
ated Map Points.
0-7 Out Storing status information within Map Points that are

discarded as outliers.

Re-localisation

If a Frame cannot be successfully matched against previous observations for the tracking steps
explained above, ORB-SLAM2 becomes lost. Once this happens, the mapping process stops
due to it not being fed with new information and the current robot pose is unknown.

To get back to normal operation, new Frames are now used for the Re-localisation step, which
determines the current robot position within the Global Map. This is achieved by performing
place recognition between the current Frame and all Key Frames in the Global Map. A bag-
of-words approach is used to find candidate Key Frames that observe a scene with a similar
appearance as the current Frame. Image features of candidate Key Frames are compared to
the current Frame by using the corresponding ORB descriptors. The matched features are then
used to estimate the current robot pose with respect to the associated Key Frame.

Figure 2.14 shows that Re-localisation depends on information out of each of the three storage
pools within ORB-SLAM2. More details are provided in Table 2.14. If Re-localisation success-
fully determines the current robot pose, ORB-SLAM2 returns to normal tracking operation.
Otherwise, the system remains lost and continues to process Frames for Re-localisation.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 31

Re-localisation

A A A
0-8 0-10
0-9
Y
Tracking Global Map Key Frame DB

Figure 2.14: Exchange of information and interaction between the Re-localisation functionality of ORB-
SLAM2 and other parts of the system.

Table 2.14: Data dependencies for the Re-localisation step in ORB-SLAM2.

Dependency Direction Description

0-8 In Data related to the current Frame used to derive the
bag-of-words and perform matching of image fea-
tures.

0-8 Out Storing the bag-of-words, matched Map Points, outlier

Map Points and estimated pose for the current Frame.

0-9 In Data related to the selected candidate Key Frames for
matching of image features.

0-10 In Bag-of-words lookup to identify candidate Key Frames
that observe features with a similar appearance as the
current Frame.

Track Local Map

The Track Local Map step follows after an initial pose estimate has been determined by Track
with motion model, Track reference Key Frame or Re-localisation. Each of these three steps
operated on alimited data set, which directly relates to the Frame or Key Frame that was used as
reference input. Along with the pose estimate, these steps also found matches between feature
of the current Frame and some landmarks.

Using the estimated pose and matched landmark observations by those previous steps, an ex-
tended data-set is sampled from the Global Map. This sub-set of the Global Map is called the
"Local Map" and contains Key Frames and Map Points that are selected following several cri-
teria, involving the Co-visibility Graph and Spanning Tree. It should be noted that this Local
Map for Tracking has no direct relation to the data-set on which the Local Mapping step is op-
erating. Both steps use different criteria and mechanisms for the selection of the data they work
with.

The landmarks contained in the Local Map are matched against image features of the current
Frame that are not yet associated with a Map Point. This should provide an increased number
of image features that is associated with a landmark. A bundle adjustment operation updates
the estimated robot pose, marking any outlier matches in the process.

The Track Local Map step also updates the so-called Found Ratio, a statistic that is stored along
Map Points in the Global Map. It describes the ratio between how often a Map Point is expected

Robotics and Mechatronics Mark te Brake



32 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

to show up within the image of a Frame (by re-projection) and how often the same Map Point
is successfully matched without being rejected by the bundle adjustment. The Found Ratio
is cumulative and therefore averages over multiple Frames as long as the corresponding Map
Point is within the view of the camera.

After Track Local Map has completed, the updated pose estimate is used to determine the cur-
rent velocity at which the robot is moving. This velocity is used by the motion model, feeding
back information to the Track with motion model step.

These dependencies are shown in Figure 2.15 and summarised in Table 2.15.

Track with motion | O-5

Track Local Map

model
A A
O-11 0-12
Y \ 4
Tracking Global Map

Figure 2.15: Exchange of information and interaction between the Track Local Map functionality of
ORB-SLAM?2 and other parts of the system.

Table 2.15: Data dependencies for the Track Local Map step in ORB-SLAM2.

Dependency Direction Description

0-5 Out Motion model velocity.

0O-11 In Data related to current Frame required for the con-
struction of the Local Map and for matching of fea-
tures to landmarks.

O-11 Out Storing data related to the current Frame, such as up-
dated pose estimate, matched Map Points and out-
liers.

0-12 In Data related to all Key Frames to select observed Map

Points that are relevant to the current Frame. Data
related to these Map Points for matching against fea-
tures in the current Frame and during pose estimation.

0-12 Out Storing statistics and re-projected coordinates for ob-
servations of Map Points by the current Frame.

Create Key Frame

The Create Key Frame step draws the border between the part of the algorithm that operates
on each Frame and the remainder that is running at a lower rate. In order to decide for the
creation of a Key Frame, several criteria are monitored during this step. Once these criteria are
met, a new Key Frame is created out of the Frame that is currently processed by the Tracking
thread.

During the creation of a Key Frame, the depth associated with detected image features is eval-
uated. All features of which the depth is below a certain threshold are "close" and therefore

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 33

required to be associated with a landmark. If during the previous operations no existing match
was detected, a new Map Point is created. Image features that are "far" may be evaluated in a
similar way if there are insufficient close points.

As indicated by Figure 2.16, ORB-SLAM2 directly stores information in the Global Map during
this step. It should be noted that this is not yet the case for the newly created Key Frame. For
the newly created Map Points, the existence of the observation is immediately added to the
Global Map, by registering the observation in the affected Key Frame and Map Point objects.
This allows for the previously described steps in the Tracking thread to directly make use of
these new landmarks. Any previously existing Map Points were already known to the Tracking
thread, such that registration of the observation by the Key Frame can be postponed. Therefore,
the new Key Frame is handed off to the Local Mapping thread, which takes care of adding it to
the Global Map and registering the observation of previously existing Map Points. This will be
discussed in the next Section. Table 2.16 indicates the flow of information across the different
interfaces.

» Process Key Frame
0O-15
Create Key Frame
<
0-16
A A q ;
> Local Mappin
0-13 0-14 PPing
Y Y
Tracking Global Map

Figure 2.16: Exchange of information and interaction between the Create Key Frame functionality of
ORB-SLAM?2 and other parts of the system.

Table 2.16: Data dependencies for the Create Key Frame step in ORB-SLAM2.

Dependency Direction Description

0-13 In Data related to the current Frame for decision making
and creation of the new Key Frame.

0-13 Out Storing references to the new (reference) Key Frame
and Map Points.
0-14 In Data related to the reference Key Frame and existing

Map Points for decision making.

0-14 Out Storing newly created Map Points in the Global Map.

0-15 Out Handing off the newly created Key Frame to the Local
Mapping thread.

0-16 In Flags: loop closure pending, Local Mapping idle.

Number: pending Key Frames.

0O-16 Out Flags: abort bundle adjustment, stop Local Mapping,
a new Key Frame has been created.

Robotics and Mechatronics Mark te Brake



34 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Process Key Frame

For the sake of clarity, the first step of the Local Mapping thread is discussed separately from the
other Local Mapping steps. This is done to create a better understanding of how responsibilities
are divided between the Tracking and Local Mapping threads in ORB-SLAM2.

Process Key Frame takes each newly created Key Frame from the Tracking thread and inserts
it into the Global Map. In order to prepare the Key Frame and associated Map Points for fur-
ther use, all Map Point observations are now registered. Once all observations are correctly
registered, the Co-visibility Graph information also has to be updated. If the original Frame
of which the Key Frame was created was not processed by Track reference Key Frame or Re-
localisation, the bag-of-words is also derived at this point.

Figure 2.17 shows the interaction of this step with other parts of the system. Process Key Frame
also notifies the Local Mapping step of any Map Points that are new ("recently added") to the
Global Map due to the creation of this Key Frame. These are the Map Points that were previ-
ously created during the Create Key Frame step. Table 2.17 summarises the information that is
exchanged across each connection.

Create Key Frame » Process Key Frame »  Local Mapping

A

Y
Global Map

Figure 2.17: Exchange of information and interaction between the Process Key Frame functionality of
ORB-SLAM?2 and other parts of the system.

Table 2.17: Data dependencies for the Process Key Frame step in ORB-SLAM2.

Dependency Direction Description

0-15 In Data related to the newly created Key Frame.
0-17 In Data related to existing Key Frames and Map Points
used for updating the Co-visibility Graph information.
0-17 Out Storing the new Key Frame and registering observa-
tion Map Points.
0-18 Out Recently added Map Points.
Local Mapping

The addition of a new Key Frame to the Global Map always triggers further processing by what
is called Local Mapping. Local Mapping consists of a number of steps that all operate on a local
sub-set of the Global Map. These steps are concerned with landmark detection, optimisation of
(local) Key Frame and Map Point poses and removal of low quality Key Frames and Map Points.

The execution of the five steps listed below depends on the availability of Key Frames gener-
ated by the Tracking thread. The first two steps (Map Point culling and Create new Map Points)
are always executed for every new Key Frame that enters the Global map via the previously

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 35

mentioned Process Key Frame step. Once these steps are finished, the third step (Search in
neighbours) is only performed if no new Key Frames became available for processing. Simil-
arly, the fourth and fifth steps (Local bundle adjustment and Key Frame culling) are only per-
formed if there are still no new Key Frames created after Search in neighbours has finished.
This approach shows that handling new Key Frames is prioritised over the Local Mapping op-
erations, especially since the Create new Map Points and Local bundle adjustment steps can
be interrupted and stopped by a new Key Frame becoming available.

* Map Point culling evaluates observations of Map Points that were recently added to the
Global Map. This involves looking at the Found Ratio for the Map Point (based on ob-
servations by Frames in the Track Local Map step) and the total number of Key Frames
observing the Map Point. Recently created Map Points are removed from the Global Map
if not passing the required criteria after a short period of time. Map Points that passed
this test remain in the Global Map until the number of Key Frames observing the Map
Point drops to zero, due to other steps such as Key Frame culling and Local bundle ad-
justment.

* Create new Map Points detects new landmarks by matching features between the current
Key Frame and its neighbour Key Frames. Neighbouring Key Frames are selected by using
the Co-visibility Graph, in order to find those that already share the most observations
with the current Key Frame. Only features that are not yet associated with the observation
of a Map Point are then considered for matching. The matching process makes use of
the bag-of-words of Key Frames to identify image features with a similar appearance. If
a suitable match is found, the Map Point pose is determined by projecting the image
feature coordinate into the world.

* Search in neighbours searches for more observations of Map Points that are already ob-
served by the current Key Frame and the Key Frames in its neighbourhood. Compared
to the previous step, no new Map Points are created and a larger set of neighbouring Key
Frames is processed. Additional observations are found by projecting the existing Map
Points into the camera coordinate frames of the Key Frames and matching against all
features of these Key Frames. A successful match is registered as a new observation or
replaces an existing observation if it is a better match.

* Local Bundle Adjustment optimises the estimated poses of local (co-visible) Key Frames
and the Map Points they observe. This optimisation considers all observations for the
bundle adjustment, such that the resulting pose estimates are based on the combined in-
formation carried by multiple observations of the same Map Point. Observations that are
marked as outlier during this optimisation are removed from the associated Key Frames
and Map Points in the Global Map.

* Key Frame culling removes Key Frames from the Global Map of which the majority of
observations is not contributing to the quality of the observed landmarks.

After these tasks have been finished, or when a newly created Key Frame is available for pro-
cessing, the current Key Frame is handed over to the Loop detection step. The information that
is exchanged between the steps of Figure 2.18 is summarised in Table 2.18. Dependencies 0-16,
0-20 and O-21 are only concerned with orchestrating the control flow between the Create Key
Frame step (Tracking thread) and the Loop detection and Loop correction steps (Loop Closing
thread). The other steps require knowledge about the state of the Local Mapping thread and
are allowed to interrupt or disable the Local Mapping functionality.

Robotics and Mechatronics Mark te Brake



36 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Loop detection

Y

Create Key Frame <€
0-16 0-20

Y

Local Mapping

Y
A

yy 0-21 .
Process Key Frame »  Loop correction

0-19

Y
Global Map

Figure 2.18: Exchange of information and interaction between the Local Mapping functionality of ORB-
SLAM2 and other parts of the system.

Table 2.18: Data dependencies for the Local Mapping step in ORB-SLAM?2.

Dependency Direction Description

0O-16 In Flags: abort bundle adjustment, stop Local Mapping,
a new Key Frame has been created.

0O-16 Out Flags: loop closure pending, Local Mapping idle.
Number: pending Key Frames.

0-18 In Recently added Map Points.

0-19 In Data related to the current and local Key Frames and

associated Map Points. Used for landmark detection
and matching, as well as pose optimisation via bundle
adjustment.

0-19 Out Storing updated observations and pose estimates for
Key Frames and Map Points. Adding and deleting Key
Frames and Map Points.

0-20 Out Pass current Key Frame for processing by the Loop de-
tection step.

0-21 In Flags: abort bundle adjustment, stop/start Local Map-
ping.

0-21 Out Flag: Local Mapping idle.

Loop detection

Each Key Frame that is created and added to the Global Map, is evaluated by the Loop Closing
thread of ORB-SLAM?2 after Local Mapping is done with it. The Loop detection step is first
executed within this thread and is responsible for detecting the existence of loops in the robots
trajectory. Like for the Re-localisation step, the bag-of-words of the current Key Frame is used
to find Key Frames in the Global Map that observe features with a similar appearance.

Candidate Key Frames from this initial selection process, are further scrutinised by evaluat-
ing groups of close neighbour Key Frames and the landmarks they observe. Once these Co-
visibility Groups result in potential loop closure candidates, matched points between the cur-
rent and candidate Key Frame are used to determine the transformation between the two ob-

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 37

servations (Horn (1987)). Further matching, optimisation and validation is performed, after
which a loop closure is accepted if a sufficiently good match has been found. The resulting
transformation describes the estimated translation, rotation and scale difference between the
two Key Frames involved.

While the Co-visibility Groups cover a number of Key Frames and their observations, actual
matching of image features is only performed between the current Key Frame and each indi-
vidual candidate Key Frame. At this point, a final search for observed Map Points is performed
by including the environment of the accepted candidate Key Frame. This last step is both val-
idating the loop closure and providing additional matches for later use during the Loop correc-
tion step.

Figure 2.19 contains an overview of the interaction between Loop detection and other parts of
the system. Details are listed in Table 2.19.

0-20 0-24
Loop detection »  Loop correction

\ 4

Local Mapping

0-22 0-23

Y
Global Map Key Frame DB

Figure 2.19: Exchange of information and interaction between the Loop detection functionality of ORB-
SLAM2 and other parts of the system.

Table 2.19: Data dependencies for the Loop detection step in ORB-SLAM2.

Dependency Direction Description

0-20 In Notifying the loop closure detection that a new Key
Frame was added to the map.

0-22 In Data related to all Key Frames and Map Points used
for selection of loop closure candidates, matching fea-
tures and estimation of the transformation describing
the loop closure.

0-23 In References to candidate Key Frames that potentially
form a loop closure with the current Key Frame. Se-
lection is based on the bag-of-words associated with
each Key Frame.

0-23 Out Storing (references to) the current Key Frame into the
Key Frame database, to be used for future bag-of-
words-based searches for candidate Key Frames.

0-24 Out Matches and estimated transformation associated
with the detected loop closure for further use during
Loop correction.

Robotics and Mechatronics Mark te Brake



38 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Loop correction

Once an acceptable loop closure candidate is detected and the corresponding transforma-
tion between the current and candidate Key Frames is determined, the Loop correction step
propagates this information to the Global Map. A selection of Key Frames and Map Points from
the region around the current Key Frame is moved to the candidate Key Frame’s location, by
adjusting the associates poses using the transformation that describes the loop closure.

After this feed-forward correction, the regions surrounding the current and loop closure Key
Frames are effectively laying on top of each other. As a consequence, different Map Points
from both regions may actually represent the same physical landmark. These regions were
separated before, but now the poses are corrected, the system is able to detect these duplicates.
Likewise, Map Points that previously existed in only one of both regions, may now be used
for matching against the other Key Frame’s features to identify more observations of the same
physical landmark. This warrants re-evaluation of the observation of Map Points by the current
Key Frame, such that new matches can be found and duplicate Map Points can be discarded.

Once these operations that only cover a limited region are finished, the Loop correction step
performs a pose graph optimisation. This optimisation covers all Key Frames in the Global Map
and is called the "Essential Graph" optimisation. The Essential Graph is constructed from the
ground up for every detected loop closure and contains the (feed-forward corrected) poses of
all Key Frames.

Constraints/edges for the pose graph are generated according to several criteria, based on the
connections in the Spanning Tree, the Co-visibility Graph and previously detected loop clos-
ures. The actual metric transformation that describes each constraint, is calculated from the
Key Frame poses involved. Depending on the criterion that is met, the poses may be taken as
they were before or after the feed-forward correction.

After the Essential Graph optimisation the estimated Key Frame poses are stored in the Global
Map, replacing the previous estimates. The Map Points in the Global Map are also adjusted, by
correcting their pose by the same amount as their associated reference Key Frames have been
moved due to the optimisation.

Loop correction is finished by adding a "Loop Edge" to the two Key Frames involved, register-
ing the occurrence of a loop closure for future reference. This is a bit of an inconvenient name
in relation to pose graphs, as this edge does not describe a constraint between both Key Frames
in any way. The Loop Edge only consists of a reference to the other Key Frame, such that the
counterpart can be identified. The previously determined transformation that describes a met-
ric constraint between the two involved Key Frames, is not stored or used any further after the
feed-forward correction operation.

Figure 2.20 shows that this step mostly depends on information that is stored in the Global
Map. Information about the existence of a loop closure is immediately provided by the Loop
detection step. A summary of the information that is exchanged over these interfaces is given
in Table 2.20.

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM

39

Local Mapping

Loop detection

0-21
>
Loop correction
>
0-24 A
0-25
Y
Global Map

Figure 2.20: Exchange of information and interaction between the Loop correction functionality of
ORB-SLAM?2 and other parts of the system.

Table 2.20: Data dependencies for the Loop correction step in ORB-SLAM2.

Dependency Direction Description

0-21
0-21

0-24

0-25

0-25

In

Out

In

In

Out

Flag: Local Mapping idle.

Flags: abort bundle adjustment, stop/start Local Map-
ping.

Matches and estimated transformation associated
with the detected loop closure for further use during
Loop correction.

Data related to all Key Frames and Map Points used
for matching of observations and construction of the
Essential Graph.

Storing updated poses for Key Frames and Map Points,
as well as registering updated observations and the
loop closure itself.

Robotics and Mechatronics

Mark te Brake



Insights in SLAM modularity from RTAB-map and ORB-SLAM2

40

1¢-0

gQ swel Aay|

€1-0

X 01-0
€¢-0
4 4 Y
>
91-0 Buiddeyy |eso] >» uoljo98)ep dooT »  uonoaL0d doo
N 02-0 ¥2-0
Ll
81-0 A A A
[4ale]
aswel Aay ssed0id
X X 61-0 §z-0
LL-0 4 4
N
= de [eqo|o
Gl-0 » 6-0
-0 A A A
[45¢] 10
-0
A 4 4 Y Y Y Y
awel Aay| ajeal depy |eo07 soel > 1spow owe.d uoljes||eso|-9.
—> 4 /94 8jeal I 1BOOT OBLL GO | uonow yumsioel] Koyl @oualaal Yoel] Hesleoorey
A A A A A
€-0
L-O 9-0
4 4 4
> Bupjoes

aweld ayeal)

(oa193s ‘q-g9Y)

A

abew elowe)

System overview of ORB-SLAM2 showing data dependencies between the identified func-

Figure 2.21

tional steps.

University of Twente

Mark te Brake



CHAPTER 2. INSIDE SLAM 41

2.3 Modularity for SLAM systems

Both RTAB-Map and ORB-SLAM2 do not seem to be designed and distributed with modularity
of the algorithm itself in mind. Nonetheless, availability of the source code opens the door to
reuse parts of these systems. The analysis in Section 2.2 provides insight into the functionality
contained within these systems, with the associated dependencies indicating the exchange of
information.

This information is used in this Section to discuss the architecture of RTAB-Map and ORB-
SLAM2, considering the factors that aid or work against a modular approach for these al-
gorithms. The discussion focuses on the dependencies between different parts of these sys-
tems and which responsibilities are fulfilled by each functional step. Some potential solutions
for architectural factors that work against modularity, are also discussed.

Figure 2.22 at the end of this Section, provides an example on how RTAB-Map could look like if
the proposed architectural changes are applied.

2.3.1 RTAB-Map

In general, RTAB-Map’s code base is no ideal candidate for being reused, due to the depend-
encies caused by the use of system-wide types and objects. A big part of the functionality is
implemented in two large classes, which makes it harder to separate parts for reuse. The doc-
umentation at GitHub and the associated publications are assuming that RTAB-Map is used as
a complete system, even when using it as a C++ library.

Some key issues are highlighted in the discussion that follows next.

Threading

RTAB-Map’s design primarily follows a single threaded execution of the steps shown in Figure
2.10. At a number of occasions, operations are dispatched to some helper threads, which al-
low for parallel execution, but the lifetime of these threads is short and limited to the specific
operation that is performed at that given moment in time. This approach narrows the scope
where these helper threads may affect information within the system, preventing the need for
complex synchronisation schemes. As such, the algorithm behaves as the fixed sequence of
operations as listed in Table 2.2 and modularity is not negatively affected by any temporal de-
pendencies due to asynchronous behaviour.

Separated (external) odometry

Another aspect of the architecture that is visible in Figure 2.10 is the separation of the odometry
functionality through the external input interface. Evidently, this allows for implementing odo-
metry as a stand-alone module which can be reused or interchanged easily. This is facilitated
by the definition of a suitable, restrictive interface which carries the information using widely
adopted concepts (pose and covariance).

Short-term memory

The Short-term memory of RTAB-Map is involved in many operations, as witnessed by the
number of dependencies that are shown in Figure 2.10. Especially when functional steps in-
teract with both the short-term and working memories, modularity and reuseability are neg-
atively affected due to the added complexity of these duplicated interfaces. As a result, any
derived systems need to cope with the concept of two separate storage pools and the associ-
ated logic.

However, most of the affected functionality does not rely on the actual short-term memory
concept as a whole. For example, Rehearsal only requires access to the data of the two most
recently created Signatures (current and previous). This means that dependency R-6 in Table

Robotics and Mechatronics Mark te Brake



42 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

2.4 does not specifically rely on the concept of short-term memory and all Signatures stored
within. The same holds for Create Signature (R-3, Table 2.3), the Bayes filter (R-10, Table 2.5),
Retrieval (R-14, Table 2.6) and the Loop closure Link (R-19, Table 2.7) steps.

The pose graph optimisation step already treats short-term and working memory as one stor-
age pool, by optimising the poses of all Signatures in both memories. Therefore, dependency
R-22 in Table 2.8 is only required by virtue of the existence of a short-term memory. Simil-
arly, dependency R-7 which represents moving the oldest Signature in short-term memory to
working memory is only there to facilitate the separation.

In all of these cases, the existing functionality does not rely on the actual separation between
the short-term and working memory concepts. Therefore, the overall architecture could be
greatly simplified by merging both memories together into one storage pool. This aids mod-
ularity by reducing the complexity of the interfacing for different steps. Code complexity also
reduces, as the majority of the interactions with short-term memory are only there to cope with
and enforce the separation between both memories.

Of course, short-term memory exists for a reason and merging the short-term and working
memories affects the functional steps that rely on the separation between the two. This is the
case for the Bayes filter (R-10, Table 2.5) and Transfer (R-25, Table 2.9) steps. Both steps can be
modified to support the use of a single, merged memory and benefit from the reduced interface
complexity. By moving the responsibility for distinguishing between recently created and older
Signatures into the steps themselves, they are no longer depending on external factors. As an
added bones, the criteria that separate short-term and working memory for both steps become
decoupled, which enables independent tuning.

Flags and signalling between steps

Another cause for many of the dependencies shown in Figure 2.10 are signals that carry flags or
counting values, used to exchange information about status and the occurrence of events. This
complicates the reuse of functionality from the different steps, due to the additional interfaces
imposed by these signals. The affected interfaces are concerned with the number of created
and deleted Signatures (R-5, R-9, R-18) and triggering pose graph optimisation after alterations
to the contents of short-term and working memory have been made (R-4, R-8, R-17, R-21).

The dependencies for these scenarios can be greatly simplified if the Transfer and Pose graph
optimisation steps would be able to extract this information from the storage pools by them-
selves. By monitoring the contents of the attached storage for relevant changes, each step
should be able to derive the relevant information or triggers by itself. This way, both steps
become responsible for their own triggers or tracking metrics like the number of added Signa-
tures. Modularity and reusability is greatly improved by these modifications, as the dependen-
cies to other functional steps are completely removed.

Storage-induced dependencies

Solving dependencies by storing additional information within Signatures may not always be
a good solution. For example, the weights assigned to Signatures during the Rehearsal step
are stored in memory. Doing so creates an implicit dependency via R-6 and R-26, between
Rehearsal and Transfer. However, in contrast to the flags and signals mentioned above, these
weights are intended to be used during future iterations of the algorithm.

Whenever the choice is made to store information for future reference, the consequences
should be carefully considered. In case of RTAB-Map’s Bayes filter approach for detecting loop
closures, a virtual Signature is constructed which represents the most commonly observed
visual words. This Signature is also stored in working memory, via dependency R-11. As a
consequence, all steps that interact with the working memory, need to be aware of its existence

Mark te Brake University of Twente



CHAPTER 2. INSIDE SLAM 43

to be able to ignore this specific Signature. Depending on the intended goals and context, such
a construction can also be considered a leaky abstraction, which is discussed next.

Leaky loop closure detection and memory management

The final issue that works against modularity of RTAB-Map’s functionality involves the loop
closure hypotheses (R-12 and R-13, Table 2.5) and the Signatures selected for immunisation (R-
18, Table 2.6). These dependencies carry information that is generated as intermediate result
of the algorithm that is implemented and is not implicitly available from the attached storage
pools.

When this kind of information crosses the boundary of a module or component via an inter-
face, it leaks information about the underlying implementation or algorithm and becomes a
leaky abstraction. Especially when this information is not easily represented in a format that
is applicable for general use, the resulting interfaces impose the need for associated logic on
both sides of the dependency. However, if there is such a tight coupling between both sides,
the question raises if both steps are actually fulfilling a part of the same task. If that is the
case, the associated functionality may be eligible to be merged, which completely deletes the
dependency.

In general, there are several solutions to solve the dependencies mentioned above:

* Merge both steps into one module or component, which removes the need for an inter-
face associated to this dependency.

* Move the behaviour that is responsible for generating the information which causes the
dependency.

* Make this information available via the storage pools.

For example, merging Retrieval and Transfer does away with the dependency between the two
steps (R-18), as is the case when merging the Bayes filter and Loop closure Link steps (R-13).
But this does not solve the coupling between the Bayes filter and Retrieval (R-12).

Moving the responsibility for immunisation from Retrieval to Transfer also does away with the
associated dependency (R-18). Similarly, if more of the decision making process is moved from
the Bayes filter to the Loop closure Link step, R-12 and R-13 can be simplified by merging those
into one interface which only carries knowledge about the highest hypothesis.

Robotics and Mechatronics Mark te Brake



Insights in SLAM modularity from RTAB-map and ORB-SLAM2

44

R

Aowew wis}-buo

|esleayoy

m €l-d
” 19|14 safkeg MUl 81nsojo doo
Zl-y m A A
m v " RY 0z
" > IEEN < m
: i 9y
R EEIRE sid | v
< H 8Ly ' Alowaw Buppopy <
«— — «——
v |z 9z | ! A
! : €-d
m A 4 | €c-d
Jajsuel| < v
uonesiwndo
R D ! ydeub esod
o
awi} pasde|g

alnjeubig ajealn

¢d
€«

———

1-d

asod AipawopQ

(03195 ‘q-gOY)
abew ejowe)

Figure 2.22: Example of an implementation for RTAB-Map with reduced complexity by applying the

proposed architectural changes.

University of Twente

Mark te Brake



CHAPTER 2. INSIDE SLAM 45

2.3.2 ORB-SLAM2

The steps that are executed by ORB-SLAM2 are mostly orchestrated by code that separates the
control flow from the functions that are performed. This provides a convenient starting point
when attempting to separate behaviour for reuse. Some parts may benefit from a better separ-
ation of responsibilities when designing a modular implementation.

The use of multiple threads enforces at least some modularity at an architectural level, but
the vast amount of dependencies causes a tight coupling of behaviour between the different
threads. This coupling occurs via information that is stored in the Global Map, which plays a
central role in Figure 2.21. Direct dependencies between the functional steps are only sporad-
ically used.

Separation between Tracking and Local Mapping

The use of Frames and Key Frames by ORB-SLAM?2 defines an explicit boundary between two
parts of the system. Unfortunately, this boundary is weakened by overlapping and weakly sep-
arated responsibilities between the Tracking thread context and Local Mapping thread context.
Several mechanisms are causing this:

e The direct access to Key Frame and Map Point objects (which are fundamental to the
Local Mapping thread) from within the Tracking thread context. Although it makes sense
to use (read) the most recent estimates out of the Global Map, the current implementa-
tion is not using restrictive interfaces that minimise the scope of access by the Tracking
thread functionality. Furthermore, these objects store data that is only relevant to the
Tracking thread, data that is only relevant to the Local Mapping thread and data that is
relevant to both. It is not clear which data is accessed when and modified by who. This
makes reuse difficult because the effects of a modification are hard to oversee.

* Managing the "Found Ratio" directly from within the Tracking thread context. The Track
Local Map step generates statistics about landmarks, required for the Local Mapping
functionality.

* The creation and registration of landmarks (Map Points) in the Global Map, which hap-
pens within both threads. While Local Mapping should carry the main responsibility for
this functionality, there seems to be a need for immediately registering newly detected
landmarks from within the Tracking thread. The most likely cause for this is that these
landmarks are to be used for the next iteration of the Tracking thread (the next camera
image) and registration should occur before the Local Mapping thread would be able to
do so.

A modular implementation would benefit from decoupling the functionality in the Tracking
thread from concepts that are related to Key Frames, Map Points and the Global Map. This
would be possible by implementing a more formal separation and mechanisms to sample in-
formation from the Global Map. However, these changes would affect functionality like the
Found Ratio and requires a different approach to the creation of Map Points from within the
Tracking thread.

Responsibilities in Tracking

There are also some issues that are specific to the Track Local Map step. A modular approach
that does not required ORB-SLAM2’s specific set of functionality may need to distinguish the
three tasks that are fulfilled by Track Local Map:

1. Provide an updated estimate for the current pose. Only when this estimation step is suc-
cessful, the motion model is updated.

Robotics and Mechatronics Mark te Brake



46 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

2. Sample landmarks from the Global Map and match these against the current observa-
tion.

3. Determine the "Found Ratio" for observed landmarks during this step, which is required
to remove low-quality Map Points from the Global Map that were recently created.

These tasks are also tightly coupled with the previous operations, by requiring an initial pose
estimate and a set of matched landmarks to be provided. Again, a modular approach should
define a suitable architecture to group this functionality in one or more components and form-
ally define restrictive interfaces to exchange the relevant information.

Multi-threading and asynchronous access to data

Finally, a remark on the asynchronous nature of ORB-SLAM2. As seen from the Map Points
and Key Frames in the Global Map, the information may change by the Tracking thread, Local
Mapping thread, loop closure detection thread and Global bundle adjustment thread. Nat-
urally, this requires some form of synchronisation mechanism to allow for atomic access and
preventing the Global Map having an inconsistent state. Because the intention seems to be
that each functional step should always use the most recent estimate, this means that every
operation has to block all other operations. This makes an asynchronous parallel application
functioning as if it was a regular, single threaded sequential program. But using asynchron-
ous threads also comes at the cost of the need for all kinds of synchronisation and protection
mechanisms, quickly adding up to all kind of workarounds to keep the data consistent. If not
designed carefully, this works against reuse and modularity by cluttering the view on how the
system works and causing all kind of errors due to race conditions and data inconsistencies.

Mark te Brake University of Twente



47

3 Framework

The analysis of two real-world SLAM implementations in Chapter 2 provides insight into the
functionality, architecture and dependencies within those systems. These insights will be used
to construct a framework of modular components which facilitates improved reuse and adapt-
ability for implementing SLAM algorithms. This effectively means rearranging the functionality
that is covered by Figures 2.10 and 2.21 of the previous Chapter.

The first step towards such a framework for designing reusable components and SLAM systems
is to develop a set of standardised components from which an algorithm can be constructed.
These components are presenting a compromise between different topics presented in the pre-
vious chapters:

* Software engineering aspects and practices for modular and reusable code as listed in
Section 1.4.

* Concepts and definitions from the SLAM theory presented in Section 2.1.

* Insights from the analysis of open source SLAM implementations in Chapter 2, covering
functional behaviour contained within the systems (Section 2.2) and architectural issues
that may affect modularity of the algorithm (Section 2.3).

Section 3.1 starts with defining the concepts and notation that is used to discuss SLAM al-
gorithms in the context of the proposed modular framework. Using these definitions, Section
3.2 introduces a set of 6 component types, which become the building blocks for SLAM al-
gorithms within the framework. At the end of this Section a basic example is given, to show how
these components can be used to construct a SLAM algorithm. Section 3.3 then demonstrates
how the functionality of RTAB-Map identified in Section 2.2 can be allocated to be implemen-
ted using the framework components.

3.1 Definitions and notation

This Section presents the concepts and notation that forms the base for the framework com-
ponents and interfaces throughout the remainder of this Chapter. These definitions are a com-
bination of the theory in Section 2.1 and insights from the SLAM systems in Section 2.2. The
language associated with these concepts facilitates a consistent treatment of the workings of
specific SLAM algorithm implementations and will be leveraged to derive modular compon-
ents in the next Section.

Table 3.1 lists the definitions that are used throughout the remainder of this Chapter. The first
part of the Table lists the inputs and outputs for a SLAM algorithm in general, which follows
from the theory in Section 2.1. The second part list the entities that are distinguished within
the information that is processed throughout a SLAM algorithm, and from which the SLAM
outputs are constructed. A subscript ¢ is used to identify the associated time index, while a
colon is used to indicate a range: i: j. A superscript index or range indicates that there are
more instances of the given type of entity at the given time index.

Some of the entries are associated with information fields, which applies hierarchy to the as-
sociated data. A map contains landmarks and a trajectory is constructed from poses. Samples,
landmarks, correspondences and features carry values like the estimated pose x;, as well as any
other information such as features F, descriptors D and correspondences c;.

The exact contents and format of these fields depends on the type of sensor and algorithm that
is used. In case the features are extracted from a camera image, the associated coordinates on
the image plane are commonly expressed as u and v. Alternatively, the definition in Section 2.1

Robotics and Mechatronics Mark te Brake



48

Insights in SLAM modularity from RTAB-map and ORB-SLAM2

also allows for a 3D-coordinate in the coordinate frame associated to the camera. Of course,
these specific designators are different if the sensor type changes to one which measures range
and bearing or time-of-flight.

Table 3.1: Concepts taken from SLAM theory to dissect and distinguish the different tasks that are per-
formed by functional steps of the analysed SLAM algorithms.

Concept Notation

Raw control Uy
Raw measurement z;

Correspondences  c¢;={i,j, T,Q}
Trajectory or pose  Xj.; Or X;

Map M=Lk"

Feature F!={u,v,D}

Landmark L} = {ct, x¢, D}

Sample S =1{uy, z;, ct,xt,F[h”,...}

Raw control u;: The conventional sensory input that carries information about the self-
motion of the robotic platform for SLAM. Examples are the data from wheel encoders,
motor control, accelerometers or gyroscopes.

Raw measurement z;: The conventional sensory input that carries information about
the environment surrounding the robotic platform for SLAM. Examples are the data from
optical/imaging sensors, radar, lidar, ultra-sonic sensors or force/touch-based sensors
and switches.

Feature F zl A feature represents the lowest level entity which can be extracted from the
measurement z;. Features represent structures like points, lines or shapes that can be
identified in the data from the measurement. Features can be associated with a coordin-
ate in a reference frame attached to the sensor and descriptors D that specify properties
of the detected feature. (This combined information forms the signature of a feature, as
defined by Sebastian Thrun (2005).)

Landmark L’;: As mentioned in Section 2.1, a landmark defines a distinct feature within
the physical environment, associated to a specific position in the coordinate frame of the
world or map. Like the features that can be extracted from the measurement, a landmark
represents structures like points, lines or shapes. Along the associated pose, landmarks
can contain other information like correspondences c; and descriptors D, which can be
used to identify distinct landmarks.

Sample S;: A sample represents all information that is available for a specific moment
in time, which may involve the control u;, the measurement z;, detected features F}:N ,
estimated pose x;, correspondences c¢; and any other fields that are describing the state
of the robot and the environment at time ¢.

Correspondences c;: A correspondence establishes a (bilateral) relation between two of
the entities mentioned above. As indicated in Section 2.1, establishing correspondence
is often implicitly part of a SLAM algorithm. Correspondences are chosen to be explicitly
included as they play an important role within the context of the presented framework.
The types of correspondences and the information that is carried by them is discussed in
more detail later in this Section.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 49

* Trajectory x.; or pose x;: The trajectory contains a contiguous set of poses along the
path followed by the robot. Each pose represents a coordinate in the world’s coordin-
ate frame and occurs with a specified number of degrees of freedom. All poses within a
trajectory are expressed in the same reference frame. Different reference frames can be
indicated by a superscript index: x{:t.

e Map M: The (feature-based) map contains a set of landmarks and/or associated poses to
represent knowledge about the structure of the environment. Like the poses of the robot
in the trajectory, landmark poses are expressed as coordinates in the world’s coordinate
frame and occur with a specified number of degrees of freedom. All poses within a map
are expressed in the same reference frame. Different reference frames can be indicated
by a superscript index: M.

3.1.1 Types of correspondences

Correspondences throughout the SLAM algorithm can be established between the three types
of entities listed in Table 3.1. To be able to distinguish between different operations and meth-
ods that establish correspondence, 6 possible types of correspondence are defined, which de-
scribe the relations that can be established between the entities mentioned above. Table 3.2
lists these 6 types of correspondences that can describe a relation between two of the previ-
ously mentioned entities.

Like samples, landmarks and features, correspondences can also be associated with additional
information fields. These fields can carry values such as a measure of confidence/reliability,
weights or a metric constraint. The example in Table 3.1 shows the notation for references to
the involved entities i, j and a transformation with covariance between those entities T, Q.

When registering metric constraints with correspondences between two entities, the format
which is used should be considered carefully. Although a correspondence is assumed to al-
ways describe a bilateral relation (no direction can be assigned to it), a constraint specified by a
transformation or displacement vector does carry directional information. Each implementa-
tion should clearly specify how this directional information should be handled and interpreted,
for it to able to be used in both directions along the correspondence. Also important when
adding metric constraints to a correspondence is specifying the coordinate frame that is used.

Correspondences of a certain type can often be derived implicitly when correspondences of
another type are known. This holds for example for deriving type-5 (landmark-sample) cor-
respondence from type-2 (feature-landmark) correspondences between features associated to
different samples. By knowing the type-2 correspondences between features and combin-
ing that information with knowledge about type-3 (feature-sample) correspondences between
the features of a specific sample, the type-5 correspondence between the involved landmarks
and sample can be established. The required type-3 correspondences are implicitly known
whenever a sample comes with an associated set of features as part of its information fields.
The same reasoning can be applied to the process of deriving type-6 (sample-sample) corres-
pondence from type-1 (feature-feature) correspondences, if the associated samples with their
features are available.

In any case, defining these relations explicitly allows for a better understanding of the inform-
ation that flows along different interfaces. The proposed distinction between correspondence
types provides the means to do this. Correspondence types can be specified by using the fol-
lowing extended notation:

Cr = C#lt

Where # is used to indicate the correspondence type as listed in Table 3.2 and the indices i and
t follow the conventions as introduced at the beginning of this Section. For example, when

Robotics and Mechatronics Mark te Brake



50 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

two sets with j type-2 and k type-6 correspondences are to be indicated at the current time,
notation becomes:

¢ = (C2,7,Cot%y

Table 3.2: Types of correspondences that can be determined between features, landmarks and samples.

Correspondence type Description

C1. Feature - Feature Establishes correspondence between two features.

C2. Feature - Landmark Establishes correspondence between a feature and a
landmark.

C3. Feature - Sample Establishes correspondence between a feature and a
sample.

C4. Landmark - Landmark Establishes correspondence between two landmarks.

C5. Landmark - Sample Establishes correspondence between a landmark and
a sample.

C6. Sample - Sample Establishes correspondence between two samples.

3.2 Framework components

This Section introduces the generalised set of components, each of which performs a task with
a specific character within the framework.

The concepts listed in the previous Section are leveraged to identify common behaviour in
the analysed SLAM systems. By using these concepts, further investigation of the functional
steps of the previous Chapter yields insight into the information that is consumed or generated.
These insights, together with the SLAM theory (Section 2.1) and considerations for modularity
(Section 1.4 and 2.3), lay the groundwork for the component definitions that are presented next.

The first goal for the framework components is to separate responsibilities in a consistent man-
ner and facilitate interchangeability. This is achieved by emphasising the type of output that is
provided by a component. By fixing the output format for a specific component type, changing
components becomes easy if changes are made to the available sensors or if there is a need
to use different algorithms. Inputs to a component are allowed to be open for choice by the
developer of the component. However, careful consideration of the required inputs for an al-
gorithm is important, as these inputs may pose a burden on the applicability of a component
for reuse in different systems. Inputs need to be kept restricted to only the information that
is essential for the algorithm that is contained within the component. Preferably, these inputs
make use of the generic concepts listed in the previous Section.

By looking at the definitions given in Table 3.1, the pose x;, features F lf and correspondences c;
can be identified as primary elements. These three elements are derived from the inputs to the
SLAM system and are the building blocks for the other concepts:

* Poses can be assigned to Samples and Landmarks.
» Features are associated with Samples and can represent the observation of a Landmark.
» Correspondences describe relations between the different entities.

Within the framework, three component types are defined, each of which is responsible for
the generation of one of these primary elements. This results in the X-type, F-type and C-type
components respectively.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 51

For the estimation of the trajectory x;.; and map M, the O(ptimisation) and E(stimation) com-
ponent type is defined. While the X-type component facilitates in the need for pose estimation
for Samples and Landmarks, the responsibility for generation of the trajectory and map estim-
ate is deemed a fundamentally different operation. This distinction results in an OE-type com-
ponent which estimates the (full-SLAM) trajectory and/or map with landmark positions. The
choice for a separate OE-type along the previously defined X-type component is inspired by
the occurrence of reusable behaviour in the analysed SLAM systems. Thus, a separated X-type
component improves the modularity for these kinds of operations.

The remaining components for the framework are responsible for two tasks that play an im-
portant supporting role within the analysed SLAM systems:

e Managing the data set on which the algorithm operates.
* Storing data for future reference.

These operations are supported within the framework by the D(ata) M(anagement) and D(ata)
S(torage) component types respectively. Both components are performing a fundamentally dif-
ferent kind of operation, as the DM-type component is allowed to interact with the information
provided via its inputs, while the DS-type component is only providing storage. All functional-
ity contained within the DS-type component is only for the purpose of storing information and
to allow access to the stored data. However, by storing the aggregated information produced
by the other components, the storage component becomes responsible for constructing the
actual Sample and Landmark entities.

Table 3.3 lists the 6 types of framework components of which a SLAM system can be construc-
ted. In the remainder of this Section, each of the component types is discussed in more detail.
This discussion highlights the considerations for the inputs and outputs for these components
and provides context on how the assign behaviour to a suitable component type. At the end
of this Section, an example is given on how these components can be connected together to
compose a basic SLAM algorithm.

Table 3.3: Definition of component types to be used in the proposed modular framework. The first five
components are performing operations which create or modify data. The sixth component does not
contain functional behaviour other than what is required to fulfil the storage task.

Component type Description

X-type Generates an estimated pose x;, associated to a Sample or
Landmark.

F-type Extracts features F ; and the corresponding descriptors D.

C-type Establishes correspondences C#’; between entities as listed in
3.2.

OE-type Optimisation and estimation, generates an estimate for the
trajectory x;.; and/or map M.

DM-type Data management, affects the (size of the) data set on which

the calculations for the algorithm are performed.

DS-type Data storage, stores information generated by the SLAM al-
gorithm for later use, such as samples, landmarks and their
associated information fields.

3.2.1 X-type components

The pose type component is defined to fulfil the need for pose estimation for both the ro-
bot and any detected landmarks. From the analysed systems became clear that many differ-

Robotics and Mechatronics Mark te Brake



52 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

ent methods were repeatedly used to provide an updated pose estimate for the current robot
location. RTAB-Map already facilitates a separated, external odometry implementation, while
ORB-SLAM2 implements several pose estimation steps in the Tracking thread.

By requiring a fixed pose-type output, but allowing a free choice of inputs, different X-type
component can be leveraged to adapt to the availability of different sensor types that contribute
to the control u,. In the absence of control data, the free choice of the input format also allows
for the implementation of visual odometry methods, which are fundamentally based on the
measurement z; or derived features F ; . Likewise, the methods for the estimation of the pose of
alandmark in visual SLAM are more similar to visual odometry.

3.2.2 F-type components

The feature type component is defined as a component which implements a method to pro-
duce or extract features from its input data. This component fits well with feature-based visual
SLAM systems, as shown by the occurrence of feature extraction in both of the analysed sys-
tems. However, features can occur in a wide range of variants and types, which makes an in-
teresting case for a separated component type that facilitates interchanging different imple-
mentations. F-type components can be easily swapped by using the fixed format F; for their
outputs, irrespective of the exact properties and information fields of these features.

Fixing the output format this way is only possible if the other parts of the system are able to
process and use features in a way that is agnostic to the type and associated information fields.
This is facilitated by using the two following mechanisms:

* Features contain standardised information fields, which describe common properties of
features, like the coordinate and orientation.

* An F-type component is always accompanied by a matching C-type component, which
is able to interpret the type-specific descriptors for matching and comparison.

Framework components that use features in their calculations, can directly use the values from
the common property fields, while type-specific comparisons can be made using the appropri-
ate C-type component.

In general, the input data for an F-type component is taken from the raw measurement data z;.
But different inputs are allowed to facilitate more elaborate methods for feature extraction, for
example an algorithm that produces line- or surface-features from a set of point-features.

3.2.3 C-type components

Correspondence type components perform operations that are often encountered in literature
as data association. Table 3.2 in the previous Section defined different types of correspondence,
such that the character of different operations can be made more explicit. The output of C-type
components is fixed by specifying the correspondence type for each output interface.

Like for the F- and X-type components, the inputs are free to be chosen by the developer, as this
allows for an unlimited range of algorithms to establish correspondence. Preferably, the inputs
are based on the previously introduced concepts, such as features Ft’ , poses x¢, landmarks Ll;,
samples S;, etc. But correspondences may even be directly established from the information
carried in the measurement z; and control u;.

Type-1 correspondences take a special place within the framework, as they are closely related
to the associated feature types. Cl-type components implement the matching and compar-
ison functionality between features, to form a pair with the corresponding F-type component.
The C1-type component contains knowledge about the feature-specific or descriptor-specific
properties that are required for comparison. The resulting C1-type correspondences between

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 53

the affected features may carry additional fields describing a metric relation or a measure of
similarity. Because these values can be expressed in generalised formats, the correspondences
can be used by other components in the system without requiring further knowledge of the
feature type that was used.

3.2.4 OE-type components

The optimisation and estimation type component contains the functionality which transforms
stored information into an updated estimate for the poses in the trajectory and map. Evidently,
the output is set to be a trajectory x;.; and/or a map M with the estimated positions of the
landmarks. The input is allowed to be varied to be tailored to the implemented approach, but
should at least specify a set of poses for samples or landmarks to be optimised and included
in the trajectory and/or map. And of course, the required information or constraints that are
required for the criterion which is optimised.

This approach allows for the optimisation to be interchanged with any other optimisation tech-
niques, as long as the required data is available within the storage pools. By defining the bound-
ary for the OE-components and requiring clearly specified inputs and outputs, it becomes
easier to identify which data set is optimised and where to look for the results. Furthermore,
this separation of functionality also fits well with the pose graph optimisation approaches that
were identified in Section 2.2.

3.2.5 DM-type components

The data management component finds its origin in the practical application of SLAM al-
gorithms in large environments. But rather than to detect or derive new information from its
input data, its responsibility is to filter and manage the data set itself, in every way possible. De-
pending on the intended operation, a DM-type component can be placed "in-line" to operate
on streaming data or it can be placed between storage pools to shuffle data around.

A significant part of the functionality in the analysed systems is responsible for managing the
data set, such that the load by computational intensive operations is kept within reasonable
boundaries. On top of this, the memory consumed by the data set cannot be left to grow
without bounds, as computational platforms have a limited amount of RAM and non-volatile
storage. These operations can be allocated to a dedicated DM-type component, which can be
removed, replaced or reused when desired.

3.2.6 DS-type components

The data storage type component has a different character as the other components, as it does
not implement functionality other than for providing storage. It serves as a source and destin-
ation for the other components within the framework. This component formalises storage as
an explicit, separate responsibility.

Data storage as a tool helps to distinguish between data that is intended to be used in the future
by other parts of the system and data that is of a temporary and local nature. This should
improve reusability, as it defines a distinct source from which information can be retrieved.

DS-type components can implement storage for one or more of the following pieces of inform-
ation:

e Samples S; and Landmarks Ll; and their associated information fields.

s C4-, C5- and C6-type correspondences (C4!, (C5. and C6!) and their associated inform-
ation fields. These describe relations between the Samples and Landmarks and need to
be stored at the same level as the entities they relate to.

Robotics and Mechatronics Mark te Brake



54 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

* A single set of information fields to describe the status, properties and statistics for the
storage component itself.

DS-type components provide separate interfaces to store and retrieve the different entities and
correspondences. These input and output interfaces are allowed to be implemented in differ-
ent ways, such as to allow per-field or per-entity access (or even all stored data at once).

Any DS-type implementation is free to choose which entities it supports to be stored. Likewise,
the framework does not specify any required fields for these entities. It is left to the algorithm
developer to identify the information that should be stored for future reference. As a result,
DS-type components can be targeted at maximising flexibility by supporting storage for any
information field that is offered at its interfaces, or targeted at robustness and reduced over-
head by defining a fixed structure for the information fields.

3.2.7 Integration example

Figure 3.1 contains an example on how to use the components presented in this Section for
the construction of a SLAM algorithm. In line with the subject of this work, the demonstrated
algorithm implements a basic feature-based, visual, pose graph SLAM system with loop closure
detection. The inputs u#; and z; consist of wheel encoder values and camera images, of which
the format is not further specified for this example.

This algorithm implements the following behaviour:

* Image feature extraction of an unspecified kind, such as ORB, SURE SIFT, etc. This is
implemented in the associated F- and C-type components in Figure 3.1.

* Wheel encoder based odometry, implemented in the X-type component which uses the
encoder values in u; to estimate the current pose x;.

e Landmark detection by comparison of current and past image features (C1-type corres-
pondence), according to an unspecified algorithm. The associated C-type component
implements this behaviour, while the landmark detection X-type component provides a
pose estimate for each detected landmark.

* Loop closure detection by comparison of landmarks observed by the current and previ-
ous Samples (C5-type correspondence), according to an unspecified algorithm. The loop
closure detection is implemented in a dedicated C-type component.

* Pose graph optimisation which estimates the poses for both the trajectory x;.; and land-
marks in the map M. The associated OE-type component is clearly visible in Figure 3.1.

* A single storage pool is used, indicated by the associated DS-type component.

The annotation at the interfaces between the components in Figure 3.1 indicate the informa-
tion that is exchanged and follows the notation introduced in Section 3.1. Some interesting ob-
servations about this implementation follow directly from the Figure and the presented struc-
ture:

e The inputs u; and z; are consumed by the odometry and feature extraction components
respectively. Both components contribute to the current sample S;, by feeding their out-
put to the storage component. As a result, samples in the storage component contain the
corresponding information fields: S; = x;, F;

e The F-type components is accompanied by a C-type component which performs the
feature-specific matching and comparison operations. Feature matching (C1-type cor-
respondence) is required for the landmark detection and loop closure detection C-type

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 55

components. The Figure shows the corresponding matching interfaces to and from the
feature matching C-type component. As a consequence, both components require fea-
tures at their inputs, which are provided with the Samples from storage.

e Additional to the Samples that are entering storage, the DS-type component also con-
tains Landmarks with poses, C5-type correspondences between Samples and Landmarks
and C6-type correspondences between Samples. This is immediately visible by the cor-
responding interfaces that feed data to the storage from the landmark detection X-type,
landmark detection C-type and loop closure detection C-type components. The C5-type
correspondences from storage are used by the loop closure detection and pose graph op-
timisation components, while the C6-type correspondences are only used for pose graph
optimisation.

* Both the landmark detection and the loop closure detection operate on the same set of
Samples. Evidently, the loop closure detection also requires C5-type correspondences for
its algorithm.

* The pose graph optimisation estimates the poses of the trajectory x;.; and landmark
poses for M based on the odometry pose of the stored samples S;.;{x} and the estimated
pose for the landmarks L;.;{x}. The C5- and C6-type correspondences from storage are
required to generated the constraints or edges for the pose graph. The Figure also shows
that the resulting optimised poses in the trajectory and map are never written back to
storage for future use.

e Data management is not performed by this algorithm, indicated by the absence of a DM-
type component.

One important aspect of the components is not visible in Figure 3.1. The required information
fields for a specific component are not indicated by the S;, L; and C#; annotation of the corres-
ponding input and output interfaces. For this specific example it would be possible to add the
required information fields to the annotation of each interface, due to its simplicity. However,
the view will become cluttered very rapidly for more complex systems that use a higher number
of different information fields for Samples and Landmarks. In general, Figures should only spe-
cify the types of entities and correspondences that are exchanged between components, while
the accompanying documentation should specify the specific information fields.

Robotics and Mechatronics Mark te Brake



Insights in SLAM modularity from RTAB-map and ORB-SLAM2

56

Ne———

Vlx€e—

(uonesiwndo
ydelb asod)
adf-30

N

*1go flgo
417 ¥lg
(ebeuo)s) P ] (Ayowopo) P
adA1-sQ < 'S adA}-x B
190 H %o}
) Is ' !
”—._\W " N
e (uonoenxs ainjesy) |
' adAy-4 Rl
(uonoayep suewpue) !
o ¥lg adAr-x ¥lg : m
¥ w o <u :
(uonoayep (48] q > |
uoNno8ap Yewpue = V Buiyojew ainjes, !
ansofo doo) (uon ummm-o pueT) " (Buy wo_b-ou 4) m
8dA-D I} ) ——— '
A : A :
E_H_ .C_I.
ho

Example of a generic feature-based, visual, pose graph SLAM algorithm when implemented

using the proposed framework components.

Figure 3.1

University of Twente

Mark te Brake



CHAPTER 3. FRAMEWORK 57

3.3 RTAB-Map

Using the definitions presented in Section 3.1 and the component definitions from Section 3.2,
the functional steps identified in Table 2.2 can be translated to a modular implementation.
When done right, the issues highlighted in Section 2.3 can be solved, such that reusability and
interchangeability improves.

With Figure 2.22 as a starting point, some additional rearrangement of behaviour is required
to fit the framework components. Table 3.4 lists the resulting framework components to which
the original functionality is mapped. Each new component is given an appropriate name for
identification, while the Table also lists the functional step(s) from which the behaviour origin-
ates.

For each component, a short description follows, which explains the main considerations for
arranging the behaviour of RTAB-Map this way. The resulting input and output interfaces for
each component are also discussed.

Table 3.4: Framework components to which the original RTAB-Map functionality is assigned in order to
implement the algorithm in a modular fashion.

Component Type Original functional step(s)
1. Feature extraction F-type Create Signature.
2. Feature matching C-type Rehearsal, Bayes filter and loop closure
Link.
3. Odometry X-type -
4. Loop closure detection  C-type Bayes filter and loop closure Link.
5. Rehearsal DM-type Rehearsal.
6. Memory management DM-type Retrieval and Transfer.
7. Pose graph optimisation OE-type Pose graph optimisation.
8. Working memory DS-type -
9. Long-term memory DS-type -

3.3.1 Feature extraction and matching: F- and C-type

The extraction of features and descriptors during the Create Signature step is allocated to a
single F-type component. RTAB-Map offers a range of choices for the type of features and
descriptors that are used by the system. The same range can be offered within the proposed
framework, by implementing a single component with support for all of these types, or by im-
plementing separate F-type components for each specific type. In any case, once RTAB-Map
is running the feature type is fixed. Therefore, the remainder of this work treats the feature
extraction in RTAB-Map as a single F-type component, without further specifying the feature

type.

The purpose and properties of visual words for the bag-of-words approach are very similar
to the conventional descriptors for image features. During the original Create Signature step,
the bag-of-words for a Signature is derived following the extraction of image features and
descriptors. Therefore, this responsibility is also added to the new F-type component for fea-
ture extraction.

Comparison of RTAB-Map’s image features can be achieved by using the conventional
descriptors, or by using the visual words from the bag-of-words approach. The C-type com-
ponent which performs these operations for RTAB-Map facilitates both methods. For the
conventional descriptors, this means that the appropriate OpenCV matching routines are
used, while the visual words are matched by simply comparing the integer values of their Ids.

Robotics and Mechatronics Mark te Brake



58 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Of course, the purpose of using a bag-of-words approach is to quickly search for samples that
observe features described by the same visual words. This functionality is also allocated to this
feature-specific C-type component, as it relies on the visual word descriptors. The C-type com-
ponent also maintains the associated (dynamic) dictionary functionality and inverse references
to samples, which are required for the comparison and matching tasks.

The pair of F- and C-type components are shown in Figure 3.2. A specification for the corres-
ponding interfaces is given below:

* The input z; for feature extraction contains a stereo or RGB-D camera image.

e The output F ; of the feature extraction consists of i features. These features contain fields
for 2D image plane coordinates ({u, v}), 3D camera frame coordinates ({x, y, z}), binary
feature descriptors (D ) and visual word descriptors (D,,):

- Fl={{u,v},{x,y,2}, Df, Dy}

* Both feature matching inputs require two descriptors of the same type, the conventional
binary descriptors Dy, or the visual words D,,,. Naturally, the matching input for lookup
of samples by their observed visual words only supports the visual word type descriptor.

- {F! :Df,FJ' =Dy}
- {Fi = Dvw,Fj =Dyy}
- F I = Dyy
* The outputs for the feature matching consist of C1- and C3-type correspondences. For
the feature matching by binary descriptor or visual words, the C1-correspondence con-
tains fields to refer to both involved features. Similarly, the inverse lookup provides a C3-

correspondence with fields to refer to the involved visual word descriptor and sample.
The outputs return an empty set when no match was found.

- Cl1,={F',F}}
- Cl1,={F',F}}
- C3,;={F,S}}

* The feature matching component implements dedicated interfaces to control both the
contents of the (dynamic) visual word dictionary and the references for the inverse
lookup of samples based on visual words. RTAB-Map’s dictionary of visual words is
dynamically constructed from the samples that reside in the short-term and working
memories. No further specification for this interface is given, as this involves a detailed
discussion of the desired control flow and the order of operations within RTAB-Map’s al-
gorithm. Depending on the specific needs, standardised formats can be used to offer the
required descriptors or correspondences for the component to be able to add, remove
and update the dictionary and references.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 59

Feature extraction

z—————
(F-type)

————Fi, = {{u, v}, {X, ¥, 2}, Ds, Dy}

(F1=Du F=Dg———__| | _—>Ch=F.F)

i i Feature matching i e
= JFl = — > ——-> ={F" F
{F' =Dy, FF=Dyu} (C-type) C1={F, F}}

/ \—)C3t = {Fi, Sj}

Fi = Dvw
BoW dictionary and e

lookup references control

Figure 3.2: F- and C-type feature extraction and matching components for the implementation of RTAB-
Map within the modular framework.

3.3.2 Odometry: X-type

Odometry within the core algorithm of RTAB-Map consists of a layer which passes the ex-
ternally provided odometry information through to the system. The corresponding interfaces
already implement some form of abstraction, which can be used as inspiration for the X-type
component.

This X-type component implements the same abstraction layer within the framework imple-
mentation. Although the abstraction may not be specifically necessary in this case due to the
identical input and output formats, defining this X-type component serves as an example.

Figure 3.3 shows the basic definition for an odometry component for RTAB-Map, which estim-
ates a pose x; from an unspecified sensory input u;.

* The input u; requires an odometry pose x;, with associated covariance Q to indicate the
uncertainty of the pose estimate. RTAB-Map expects a pose formatted as a transforma-
tion from the origin of the odometry reference frame to the current position, providing 6
degrees of freedom.

- ut = {xl” Q}
e The provided input is immediately propagated to the output:

- x:=1{x,Q}

Odometry -
—> —» X ={x, Q
Ut (X-type) X = {x, Q}

Figure 3.3: X-type odometry component for the implementation of RTAB-Map within the modular
framework.

3.3.3 Loop closure detection: C-type

As suggested in Section 2.3, the functionality of the Bayes filter and Loop closure Link steps of
RTAB-Map are merged into a single C-type component. Both original steps contribute in part to
the decision making process for detecting loop closures, which makes the separation between
the two inconvenient from a responsibility point of view. By merging both steps, all operations
that are required for the loop closure detection are encapsulated into one component.

Robotics and Mechatronics Mark te Brake



60 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

While the information that is originally part of dependency R-13 can now be kept internally, the
information carried by R-12 and R-20 still needs to be available from the component output.
This information consists of two parts:

* The "highest hypothesis", as determined by the Bayes filter. This describes a relation
between the current sample S; and a sample from working memory S;_;thatis associated
with a previously made observation.

» The actual occurrence of a loop closure between the same samples that are associated to
the "highest hypothesis", for which a metric constraint is determined by estimating the
transformation between the two image coordinate frames.

There are several solutions for solving this problem, depending on how the responsibilities are
separated between this and other components.

» This C-type component is responsible for the final decision on the existence of a loop
closure: two separate C6-type outputs can be used to represent the highest hypothesis
and loop closure concepts. Alternatively, a single C6-type output can be used. The avail-
ability or absence of an associated transformation in the correspondence can signal the
existence of a loop closure. This approach is less favourable, as it requires knowledge
about these concepts in the components that consume the output.

* A separate C-type component is responsible for the final decision on the existence of a
loop closure: a single C6-type output can be used to represent the highest hypothesis
of the Bayes filter. Effectively, this separates the loop closure detection again into two
components like the original implementation. This approach allows for mimicking the
original flow of execution of RTAB-Map, at the cost of complicating the reuse and inter-
changeability for the loop closure detection as a whole.

Lacking the evidence that the original Retrieval step is required to be executed before the Loop
closure Link step!, the single C-type component approach is chosen to reduce the complexity
of the overall structure.

Furthermore, the "virtual Signature" sample is removed from storage, such that other external
components do not have to take its existence into account. Instead, this sample can now be
maintained as part of the internal state of the loop closure detection component.

This results in the loop closure detection component shown in Figure 3.4. The following input,
output and matching interfaces are specified:

e The main input to the loop closure detection component are the reference features Ftlj
for the current sample S; and the set of features F}]’C associated to previously created
samples S;.x. For all of these features, descriptors are required to perform the matching
and lookup parts for the loop closure detection. The type of the descriptors actually fol-
lows from the components that are attached to the matching interfaces. In RTAB-Map’s
implementation, both use descriptors of the visual word type. For the features of the cur-
rent sample S; only a 2D-coordinate is required by RTAB-Map, instead of a 3D-coordinate
for the other features.

- S¢=F}/' ={{u,v},D}
- Sjk=Fjj =1{x,y,2}, D}

» Two separate C6-type outputs are generated, such that the system is able to distinguish
between the "highest hypothesis" correspondence without having an associated trans-

IRetrieval affects the inverse lookup references for visual words, but this functionality is not used by the Loop
closure Link step.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 61

formation and the actual "loop closure" correspondence which does contain a trans-
formation T as a constraint. The uncertainty of the transformation is also given by the
covariance Q. Both correspondences contain the references to the involved samples S;
and S;,.

- C6,=1{S;,Sulne ] ik
- C6t = {Stvsnr TrQ}In € ] : k
e The remaining matching interfaces in Figure 3.4 are used to find correspondences from
the visual words. These interfaces correspond to the inverse bag-of-words lookup to find

samples that observe the same visual words (C3-type) and regular feature matching (C1-
type) as previously defined.

|:it {FI FI
("lookup")  C3; ("matchmg") C1¢
\ / C6;¢ = {St, Sn}
( highest hypothesis")
L e Lodoe[)tecéttnlzl:]re
Sk = Fix ={{x. v, z}, D}}} (C-type) N
C6;={S; S, T. Q}

("loop closure")

Figure 3.4: C-type loop closure detection component for the implementation of RTAB-Map within the
modular framework.

3.3.4 Rehearsal and Memory management: DM-type

The Rehearsal step in RTAB-Map is primarily concerned with limiting the rate at which new
samples enter the system for being processed. This makes Rehearsal a prime candidate for
allocation to a DM-type component.

The Retrieval and Transfer steps of RTAB-Map are responsible for managing the separation
between two distinct data sets with samples: working memory and long-term memory. Fol-
lowing up on the suggestions in Section 2.3, the Retrieval and Transfer steps of RTAB-Map are
allocated within a single memory management DM-type component. This encapsulates the R-
18 dependency between both steps, which is associated with the responsibility for immunising
samples from the Transfer step. Other than adding a lot of complexity to the system, the short-
term memory concept did not contribute significantly to the algorithm and is not carried over
to the new memory management component. As a result, the memory management approach
becomes easier to interchange or reuse.

There still exists a dependency between the proposed Rehearsal and Memory management
components, as the weight values for samples are determined during the Rehearsal step.
Memory management evaluates these values as part of the selection criteria for Transfer. This
dependency is fulfilled in the original implementation by storing the weights as part of the Sig-
natures. Because a weight as a concept is sufficiently generic, this can be carried over to the
framework component by adding the weight as an information field for the samples. RTAB-
Map’s memory management can also function when weights are not available. Modularity and
reusability is greatly improved if the weight is defined as an optional input field to the DM-type
component.

Robotics and Mechatronics Mark te Brake



62 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Another dependency related to the memory management is due to the measurement of execu-
tion time of (a part of) the algorithm. Of course, the first consequence is that there should be
a mechanism to provide the time measurement to the Memory management component. This
can be solved by directly feeding the elapsed time to the component, by providing two time
stamps for the beginning and end of the measurement, or by just signalling the beginning and
end of the measurement window. Each of these approaches results in a different balance of
responsibilities between the Memory management component and the surrounding system,
causing different constraints on the reusability. For the remainder of this work, the measured
execution time is assumed to be available and passed as a single value to the Memory manage-
ment component.

The second consequence of this Memory management approach are an implicit requirement
on all operations that are performed during the window of the execution time measurement.
For the measurement to give an accurate representation of the computational load, execution
time of the algorithms that are monitored should not vary significantly in relation to the code-
path that is followed?. Ideally, the execution time should only depend on the size of the data
set that is used. This puts a heavy requirement on reusability, as the software surrounding the
Memory management component needs to take this into consideration. Generally, developers
are used to do exactly the opposite by using early returns and preventing heavy computations
if the initial checks fail. Intentionally causing a constant load may also work against the energy
efficiency of the algorithm.

The resulting DM-type components for RTAB-Map are shown in Figure 3.5. Both components
treat information on a per-sample base, being the current S; and previous sample S;_; for Re-
hearsal and those contained in working memory S;.; and long-term memory Si.; for Memory
management.

The minimum requirements for the information fields for these samples are as follows:

* Both input samples for Rehearsal are required to contain fields for the pose x;, weight w;
and features F; with visual word descriptors D ,,:

- S;={x,w,F'}, with Fi = D,,,
- S4-1={x, w, F'}, with F' = D,,,,

* The output for Rehearsal consists of one or both samples from the input, depending on
if a merge happened. The weights are adjusted accordingly:

- S;=1{x,w,F'}, with F' = D,
- S;1 ={x, w, F'}, with F = D,,, (Absent in case of a Rehearsal merge)
e All samples for the inputs and outputs for the Memory management component are

required to contain fields for the pose x;, weight w; and features Ft’ with visual word
descriptors Dyy:

= Sizn = {x, w, F'}, with F' = Dy,

For the visual word matching interfaces, refer to the corresponding feature matching C-type
component discussion above. The interfaces for the execution time measurement and diction-
ary management are not further specified at this time.

2This problem is closely related to the field of IT security, where time measurements are used as an side channel
attack to distinguish between different code-paths that are executed. This information can be used to extract in-
formation from the executed algorithm. To mitigate these issues, the execution time of different code-paths needs
to be made equally long.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 63

{F', F}
("matching”)  C;

{S¢={x, w, F}, Rehearsal
S e— ————>»{S; | {St, St
Suy = {x, W, Fi} (DM-type) {St [{St, St}
BoW dictionary and
lookup references control
Execution time
T NG
S.. ) Memory management m
) (DM-type) s
——>» Sy
Skl 7

Figure 3.5: DM-type Rehearsal and Memory management components for the implementation of
RTAB-Map within the modular framework.

3.3.5 Pose graph optimisation: OE-type

The pose graph optimisation in RTAB-Map is by itself already mostly a stand-alone compon-
ent. However, the code that constructs the pose graph is tightly coupled to the memory man-
agement approach. Moving this functionality to the proposed OE-type component and using
generalised interfaces to provide the relevant data set(-s), removes this coupling.

The poses and constraints that become the pose graph need to be derived from the available
input data. From the analysis in Section 2.2 it is known that RTAB-Map does not process land-
marks through the core of its algorithm. Therefore, the pose graph only contains poses of the
samples that contribute to the trajectory x;.;.

Figure 3.6 shows the required inputs and outputs for the resulting OE-type component. The

samples S;.; and correspondences C6y; at its inputs do require the following fields:

* For each sample that is represented by the pose graph, the associated pose x; and cov-
ariance matrix Q are required. The input for C6-type correspondences (corresponding
to RTAB-Map’s Neighbour and Loop closure Links) requires fields i and j to identify the
involved samples and carry a transformation T with covariance matrix Q to define the
metric constraint:

- Sl] = {x) Q}
- C6kl = {i’j) T) Q}

* The output of the pose graph optimisation only contains the optimised poses x;.;:

- Xiij=X

Robotics and Mechatronics Mark te Brake



64 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

RTAB-Map makes a distinction between the estimated poses that the result of the pose graph
optimisation and the original odometry poses for each sample. For the functionality of RTAB-
Map as discussed in this work, the optimised poses are only required as initial guess for the
pose graph optimisation itself. Therefore, the optimised poses can be kept as internal state
within the OE-type component, without the need for a dedicated "guess" input. This simplifies
the interfaces to the pose graph optimisation component, which is beneficial for the reusability
of the component.

Sjj——— > Pose graph
optimisation > X
Cby—————>| (OE-type)

Figure 3.6: OE-type Pose graph optimisation component for the implementation of RTAB-Map within
the modular framework.

3.3.6 Working and Long-term memory: DS-type

Following up on the suggestions made in Section 2.3, two storage pools will be used for the
modular RTAB-Map approach. The character of these two pools is different, as the combined
short-term and working memory pool keeps data in RAM, while the long-term memory imple-
mentation involves the use of an SQL database. This warrants the use of two separate DS-type
components, providing the two different implementations.

As mentioned before, RTAB-Map makes a distinction between the odometry poses and optim-
ised poses for the samples that are involved with the pose graph optimisation. The original
implementation stores the odometry poses with the samples in the short-term, working and
long-term memories, while separate variables in RAM are used to keep track of the optimised
values for future reference. Although the responsibility for the associated storage was removed
by incorporating an internally tracked state within the Pose graph optimisation component,
this particular case serves as a good example for when availability for future reference has to be
made explicit.

Following the original implementation, RTAB-Map keeps track of the odometry pose and op-
timised pose for Signatures in short-term and working memory. Within the framework, this
can be made to be shown explicitly by defining two separate information fields for samples in
storage: S; = {Xodometry Xoptimisea}- This shows that both values are stored in the associated
DS-type component(-s) for future reference. Likewise, components that require these values
from storage, need to add these fields to the specification of their input interfaces.

S§———> . IR
Working memory
Co— > (DS-type) N
S———— > S
Long-term memory
Co——» (DS-type) L »cH

Figure 3.7: DS-type Working memory and Long-term memory components for the implementation of
RTAB-Map within the modular framework.

Mark te Brake University of Twente



CHAPTER 3. FRAMEWORK 65

3.3.7 Integration

The components listed in Table 3.4 cover all of the original behaviour from the steps listed
in Table 2.2. Figure 3.8 shows how these components are combined to construct the SLAM
algorithm. As these framework components attempt to solve some of the modularity issues
discussed in Section 2.3, it is not surprising that the structure looks very similar to that of Figure
2.22.

As was the case for the example in Section 3.2, the Figure does not show information about
the actual information fields that are required for the samples and correspondences. The pre-
viously treated descriptions for each component are providing the associated documentation
about the required information fields.

Robotics and Mechatronics Mark te Brake



Insights in SLAM modularity from RTAB-map and ORB-SLAM2

66

(edA-sq)
Aowsw wis}-buo

—lg—>f

<«—\Ug

awl} uonNoaxg ¥y
(edA-30) }
Fh N U
ydeib asod
*lgo Hg
v | |
L w <«
(edh-NQ) s> (edf1-sQ) S
juswabeuew Alowsy . Aowaw Bupiopp
«—¥lg—— <«—g
1 | ) |
. v {Hsil s} Mis
90 S 9 q
190 _ e S S
_ \ 4
Ama\nunov Q\A _
uogosiop sieoy
ainso|o doo
A A A
fio%e) ho ho
(yuswabeuew dnyoo| pue Aieuonolp)
_GOH\SD Q_n_ ho_u_ E_n_ .c_n_ E_n_ hc_u_
(2dA1-0) (2dA1-1) m .

uonoeIXa ainjes

Implementation of RTAB-Map within the modular framework, made by composition of the

previously derived modular components.

Figure 3.8

University of Twente

Mark te Brake



67

4 Conclusion

The main goal of this thesis is stated in Chapter 1 as to reduce the required effort for integ-
rating or adapting existing SLAM software to new applications. To achieve this goal, this work
attempts to facilitate reuse and interchangeability of functionality between different SLAM sys-
tems by promoting the use of modular, composable components.

Within the field of SLAM there is little attention for the architectural organisation of SLAM sys-
tems in general and specifically SLAM as a software product. Previous efforts on the reusability
of SLAM software indicate that the proposed solutions may run into difficulties when applied
to real-world systems or different algorithms than covered by the corresponding research. The
work presented in this thesis fills in this gap by considering both high-level SLAM theory and
real-world SLAM implementations.

The following research questions were proposed in Chapter 1 for being covered by the research
in this thesis:

1. What are the functions performed by current state-of-the-art SLAM systems?
2. What kind of information is required or processed in order to perform these functions?

3. In which way does the architecture of these SLAM systems influence the modularity and
reusability of the associated functionality?

4. How can functional behaviour be structured in logical framework components and in-
terfaces to facilitate reuse, interchangeability and adaptability?

The remainder of this conclusion consists of several Sections. In Section 4.1 the answers
provided by this thesis to each of the research questions are discussed. This is followed by Sec-
tion 4.2, which discusses the implications of the presented results within the field of reusable
SLAM systems. Section 4.3 follows up on this, by explaining the implications for when the pro-
posed framework is to be used in general. Several ideas for future work were raised during the
development of this work, which are treated in Section 4.4. Section 4.5 discusses the limitations
of this work and the presented framework.

4.1 Findings

The individual research question are discussed next, to go over the findings that contribute to
answering these questions.

4.1.1 What are the functions performed by current state-of-the-art SLAM systems?

This question is targeted at gaining insights about the baseline of functionality that is required
for any system which performs SLAM estimations. Section 2.1 and 2.2 approach this problem
by going over the relevant SLAM theory and investigating the workings of two real SLAM im-
plementations: RTAB-Map and ORB-SLAM2. Together, this paints a picture of the operations
that are to be expected from a SLAM implementation.

The logical answer to the question about the performed functions follows directly from the the-
ory, which states that (full-) SLAM estimates the trajectory x;.; and the map of the environment
M. But by looking into the real-world SLAM implementations, insight into the "how" these
estimations are made was gained.

Numerous methods for matching and comparing features and observations were identified.
In both systems functionality for place recognition and loop closure detection also played a

Robotics and Mechatronics Mark te Brake



68 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

prominent role. The functions that manage the different data sets for the algorithms and the
attached storage pools were shown to be of great importance for the operation of both systems.

Deriving this baseline of functionality, as listed by Table 2.2 and 2.10, proved to be instrumental
to answering the remaining questions.

4.1.2 What kind of information is required or processed in order to perform these func-
tions?

The treatment of relevant theory in Section 2.1 did not extensively cover SLAM estimation al-
gorithms. However, by the defining the control u; and measurement z; inputs, there is at least
a vague idea about the information that is available to a SLAM system. Likewise, poses and
constraints were expected to occur in some form throughout the analysed systems.

Again, the analysis in Section 2.2 provided much more insight in the dependencies between
the operations in the different functional steps. These dependencies are associated with the
information that is processed by the systems.

The most important observation made here is that along the expected information (features,
poses, etc.), the SLAM implementations process a lot of information that is involved with man-
aging the different data sets, identifying specific relations and orchestrating the execution of
different functional steps.

The insights that follow from answering this question played an important role in the consid-
erations for answering the next two research questions.

4.1.3 In which way does the architecture of these SLAM systems influence the modularity
and reusability of the associated functionality?

Although the focus of this work is not targeted at modular software engineering practices, Sec-
tion 1.4 provided some background information on aspects that influence the reusability of
software in general.

By looking at these systems from a combined SLAM functionality and software engineering
point of view, Section 2.3 answers the research question by evaluating the identified behaviour
and dependencies within the analysed SLAM systems.

The most important observations that are made about the separation of functionality and re-
sponsibilities, are pointing out that these systems are suffering from leaky abstractions and
may benefit from a critical look at the information that is stored and the place it is stored at. Of
course, these observations come with the side note that the design of the analysed systems was
most likely not targeted at the reusability and modularity of (parts of) the algorithm.

4.1.4 How can functional behaviour be structured in logical framework components and
interfaces to facilitate reuse, interchangeability and adaptability?

The main contribution of this work follows from answering this specific question. The answer
comes in two parts:

* The first part consists of Section 3.1, which developed the concepts and notation that
facilitates a generalised way to discuss different SLAM systems.

* The second part to the answer is given by Section 3.2 and 3.3, which define and explain
the use of a set of six modular components within the presented framework.

By considering a theoretical view on SLAM, along with two practical implementations, a direct
comparison could be made between the functionality, requirements and concepts which follow
from each of these contributions. As a result, the developed framework is a fitting compromise,
based on the needs of both theoretical and practical implementations.

Mark te Brake University of Twente



CHAPTER 4. CONCLUSION 69

4.2 Theoretical implication

The framework presented in this work contributes to the field of SLAM by defining a strict set
of concepts, entities and by distinguishing between the different correspondence-types. These
definitions and the associated component types pave the way for capturing and describing the
relevant details of different SLAM approaches in general. Furthermore, the framework con-
siders SLAM as a combination of functional or algorithmic behaviour and a software product
that is executed on a computational platform.

The modularity and reusability of SLAM algorithms specifically benefits from the presented
definitions and components, by the boundaries that are defined between different compon-
ents. At these boundaries, data dependencies due to the interfaces for these components are
reduced by two mechanisms that follow from the proposed framework:

* The strict separation of the type of information that is available as output from a com-
ponent.

* The definition of generalised data types and data structures, which can be used to imple-
ment interfaces.

The framework does not impose a strict separation between the conventional SLAM front-end
and back-end operations. However, the separation between sensor-dependent operations of
the front-end and sensor-independent operations of the back-end can still be facilitated by
choosing an appropriate implementation for the components and structure for the composed
algorithm. For example, by isolating the F-, C- and X-type components that are fed by the raw
sensory inputs from the remainder of the system.

There are some noticeable differences and similarities with respect to the related work men-
tioned in Section 1.3.

e The "universal feature" used by Broenink (2016) is similar to the features used by this
framework. His suggestion to allocate the responsibility for feature matching to the "fea-
ture module” has a similar effect as the pair of F- and C-type components proposed for
feature extraction and matching in this work. Overall, the framework components in this
thesis provide more granularity to implement different responsibilities.

» The definitions used for the input to and landmarks detected by the SLAM system deviate
from those used by Minnema (2020). His "Idiothetic filter" component fulfils a similar
role to the presented X-type component. However, the presented framework allows for
a more flexible application of the different component types by using a flat hierarchy in
which components are allowed to consume which ever type of information they need to
fulfil their task. Sensor-independent operation is facilitated differently in the framework,
by using alternative X-, F- and C- type component implementations for different sensory
inputs.

4.3 Policy implication

Although there is no relation to policy making or legislation from this work, the proposed
framework affects the relation between the two groups of stakeholders mentioned in Section
1.2. As mentioned in the introduction Chapter, this work specifically targets the users of SLAM
systems who like to be able to reuse those systems for different applications.

The burden of developing reusable components for the construction of SLAM algorithms falls
to the developers of those SLAM systems, instead of the users or system integrators. Where
these categories of stakeholders overlap, there is no issue. However, SLAM developers that are
not directly involved with having to support different applications, may need to be convinced

Robotics and Mechatronics Mark te Brake



70 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

that making a modular design is worth the effort. Additionally, the threshold to apply the pro-
posed framework must be made as low as possible.

The framework assumes that there is a need and dedication for reusability and modularity from
the beginning of development. Especially if modularity is an afterthought, the required re-
design may involve a huge effort. This approach causes fundamental issues for the develop-
ment of new SLAM algorithms, as such a design process often does not fit well with experi-
mental work where the requirements may not be set in stone. But even when trying out new
ideas, it is beneficial that existing and stable components can be used to start from and keep
the experimental code separated.

4.4 Future research

The development of the modular framework presented in this thesis raised some questions
which are requiring further investigation to be answered. These are shortly discussed below:

* What would be the implications of having a SLAM algorithm with a dynamic structure,
rather than a static structure at runtime? And can such a dynamic structure be leveraged
to automatically adjust to changing operating conditions and applications or provide ro-
bustness against sensor failures? Such a dynamic approach can make use of the presen-
ted framework concepts to automatically assess alternative variants of components, or
select different structures to produce the same output.

* Of amore practical nature is the question on how additional software tooling can aid the
development of modular framework components and SLAM systems. Can these tools
perform tedious and repetitive tasks such as providing interface specifications and com-
ponent documentation? Can these tools provide a platform agnostic visualisation of the
information that flows through the SLAM system? Reduce the development efforts by
generating code and provide automatic composition and configuration of components?

* The development of new methods to benchmark, test and compare different SLAM im-
plementations. Especially the dynamic behaviour of information that flows through the
systems with respect to time is often unclear. It would be a tremendous improvement if
the performance of SLAM systems can be specified in terms of robustness, timing and
uncertainty like it is possible for control systems.

Similarly, can the performance of a SLAM system be determined with respect to the ve-
locity at which the robotic platform is moving, or can the algorithm be made responsive
to the dynamics of the sensory inputs?

4.5 Limitations

During the development of the presented framework, a number of choices were made that may
influence the applicability of the framework in its current state. These limitations are discussed
next, in order to assess the issues they pose to the use of this framework.

» The scope of this work was limited to two visual, feature-based, pose graph SLAM meth-
ods. This may have caused a bias towards these types of algorithms within the frame-
work. Further development to support other algorithms and sensor types is required
to make sure that these systems also fit within the presented framework. However, the
presented concepts are believed to be sufficiently generic to support feature-based meth-
ods with range finding type sensors and other algorithms like Kalman and particle filters.

* The framework presents a data-flow oriented view of SLAM systems, which in its current
form does not describe the control flow of operations very well.

Mark te Brake University of Twente



CHAPTER 4. CONCLUSION 71

* The description of the analysed SLAM systems required some abstraction, as it is im-
possible to describe every tiny detail and operation. Although an extensive investigation
of all interfaces, arguments and variables in the source code was performed, some beha-
viour or dependencies may have been overseen.

Some parts of the analysed systems were explicitly ignored. However, it is strongly be-
lieved that most of this behaviour can be allocated to one or more components of the
types specified by the framework without further alterations to the definitions.

* The localisation-only modes for RTAB-Map and ORB-SLAM2 were ignored and deemed
to be "not-SLAM" due to lacking the mapping part. These localisation modes have a lot
of functionality in common with the analysed SLAM algorithms, so there is potential for
the framework to support these modes along the current SLAM mode.

The framework may require further extension to support functionality like RTAB-Map’s
path planning mode.

* The strict separation of component types by the type of output they generate resulted in
amoderately low-level description of the operations performed by SLAM systems. For al-
gorithms that are more involving than RTAB-Map, this may result in a significant number
of different components to present an accurate view of the workings of the system.

If this proves to be a realistic issue in the future, the framework can potentially be exten-
ded with another level of abstraction. This level may support components which gener-
ate multiple output types at once, constructed by the currently presented set of compon-
ents internally.

The limitations discussed above are not fundamentally breaking the components or definitions
as given by the framework. Being able to discuss these issues in such a structured and detailed
manner, shows that the framework is able to contribute to the language and concepts that are
used to talk about SLAM systems. Due to the components facilitated by the framework, the
consequences of any potential issue are easier discussed and reviewed.

4.6 Concluding statements

The work covered by this thesis allows to discuss the construction and workings of SLAM al-
gorithms extensively. By structuring new SLAM systems according to the proposed framework,
the role of each step in the system can be made very explicit. Hopefully, this contributes to a
better understanding of and interesting new insights in the field of SLAM.

At the same time, the clarity and reusability provided by this framework lowers the threshold
and required knowledge for users to apply SLAM algorithms for a wide range of applications.

Robotics and Mechatronics Mark te Brake



72 Insights in SLAM modularity from RTAB-map and ORB-SLAM2

Bibliography

Abdelhady, M. (2017), Reuse-oriented SLAM framework using component-based approach, Mas-
ter’s thesis, University of Twente.

Adrien Angeli, David Filliat, S. D. and J.-A. Meyer (2008), Fast and incremental method for loop-
closure detection using bags of visual words, vol. 24, no.5, pp. 1027-1037.

Anguswamy, R. (2013), Factors Affecting the Design and Use of Reusable Components, Ph.D.
thesis, Virginia Polytechnic Institute and State University.

Broenink, T. (2016), On reusable SLAM, Master’s thesis, University of Twente.

Cesar Cadena, e. a. (2016), Past, present and future of simultaneous localization and mapping:
toward the robust-perception age, vol. 32, no.6, pp. 1309-1332.

Cooling, J. (2003), Software engineering for real-time systems, Pearson Education Limited, Es-
sex, England.

Ellery, D. (2017), Writing reusable code for robotics, Master’s thesis, University of Twente.

Engel, J., T. Schops and D. Cremers (2014), LSD-SLAM: Large-Scale Direct Monocular SLAM, in
European Conference on Computer Vision (ECCV).

Engel, ]., J. Stueckler and D. Cremers (2015), Large-Scale Direct SLAM with Stereo Cameras, in
International Conference on Intelligent Robots and Systems (IROS).

Galvez-Lépez, D. and J. D. Tardés (2012), Bags of Binary Words for Fast Place Recognition in Im-
age Sequences, vol. 28, no.5, pp. 1188-1197, ISSN 1552-3098, doi:10.1109/TR0.2012.2197158.

Geiger, A., P. Lenz and R. Urtasun (2012), Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite, in Conference on Computer Vision and Pattern Recognition (CVPR).

Grisetti, G. e. a. (2010), A tutorial on graph-based SLAM, vol. 2, no.4, pp. 31-43.

Gutierrez-Gomez, D. and J. J. Guerrero (2018), RGBiD-SLAM for Accurate Real-time Localisa-
tion and 3D Mapping.

Horn, B. K. P. (1987), Closed-form solution of absolute orientation using unit quaternions, vol.
4, no.4, pp. 629-642.

Kaess, M., H. Johannsson, R. Roberts, V. Ila, J. Leonard and E Dellaert (2011), iSAM2: Incre-
mental smoothing and mapping with fluid relinearization and incremental variable reorder-
ing, in 2011 IEEE International Conference on Robotics and Automation, pp. 3281-3288, doi:
10.1109/ICRA.2011.5979641.

Labbé, M. and E Michaud (2011), Memory management for real-time appearance-based loop
closure detection, in Proceedings of the IEEE/RS] International Conference on Intelligent Ro-
bots and Systems.

Minnema, J. (2020), Towards component-based, sensor-independent and back-end independent
SLAM, Master’s thesis, University of Twente.

Mur-Artal, R. and J. D. Tardés (2017), ORB-SLAM2: an Open-Source SLAM System for Monocu-
lar, Stereo and RGB-D Cameras, vol. 33, no.5, pp. 1255-1262, doi:10.1109/TR0.2017.2705103.

Pire, T., T. Fischer, J. Civera, P. De Crist6foris and J. Jacobo berlles (2015), Stereo Parallel Tracking
and Mapping for robot localization, in Proc. of the International Conference on Intelligent
Robots and Systems (IROS), pp. 1373-1378, d0i:10.1109/IR0S.2015.7353546.

Qin, T., P. Li and S. Shen (2018), VINS-Mono: A Robust and Versatile Monocular Visual-Inertial
State Estimator, vol. 34, no.4, pp. 1004-1020.

Rainer Kiimmerle, e. a. (2011), gzo: A General Framework for Graph Optimization, in [EEE In-
ternational Conference on Robotics and Automation.

Mark te Brake University of Twente



Bibliography 73

Raul Mur-Artal, e. a. (2015), ORB-SLAM: a Versatile and Accurate Monocular SLAM System, vol.
31, no.5, pp. 1147-1163, doi:10.1109/TR0O.2015.2463671.

RobMoSys (2017).
https://robmosys.eu/

Schlegel, D., M. Colosi and G. Grisetti (2018), ProSLAM: Graph SLAM from a Programmer’s
Perspective, 2018 IEEE International Conference on Robotics and Automation (ICRA),
do0i:10.1109/icra.2018.8461180.
http://dx.doi.org/10.1109/ICRA.2018.8461180

Schneider, T., M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen, 1. Gilitschenski and R. Siegwart
(2018), maplab: An Open Framework for Research in Visual-inertial Mapping and
Localization, IEEE Robotics and Automation Letters, doi:10.1109/LRA.2018.2800113.

Sebastian Thrun, e. a. (2005), Probabilistic robotics, The MIT Press, Cambridge, Massachusetts.

Sivic, J. and A. Zisserman (2003), Video Google: a text retrieval approach to object matching in
videos, in Proceedings of the ninth IEEE International Conference on computer vision.

Robotics and Mechatronics Mark te Brake


https://robmosys.eu/
http://dx.doi.org/10.1109/ICRA.2018.8461180

	Summary
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Related work
	1.4 Modularity and reuse for software engineering
	1.5 Thesis outline

	2 Inside SLAM
	2.1 Theory
	2.2 Analysis
	2.3 Modularity for SLAM systems

	3 Framework
	3.1 Definitions and notation
	3.2 Framework components
	3.3 RTAB-Map

	4 Conclusion
	4.1 Findings
	4.2 Theoretical implication
	4.3 Policy implication
	4.4 Future research
	4.5 Limitations
	4.6 Concluding statements

	Bibliography

