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MANAGEMENT SUMMARY 

Brynild is a Norwegian manufacturer of confectionary. We perceive Brynild’s current production 
scheduling processes as inefficient; Brynild creates their current schedules manually using experience-
based techniques, and lacking insight in whether the resulting schedules deliver good or poor 
performance. Our data analyses of the current scheduling method indicates that while the bottleneck, 
the drying area, is almost always occupied, namely 89% to 97% of the time, it is far from fully utilized, 
solely 40% to 57% of the time. Therefore, the research goal of this thesis is: 
 

‘Develop a scheduling method that improves the scheduling of the production orders under 
consideration of multiple process constraints’ 

 
System settings: two-stage hybrid flow shop with zero buffer capacity 
We classify the production line under consideration as a two-stage hybrid flow shop. This hybrid flow 
shop consists of the following stages: 

- Stage 1: a single line including sequential processes such as, set-up of the line, cooking, and 
moulding of the confectionary;  

- Stage 2: 5 parallel drying cabinets. Stage 2 starts when the moulding of the confectionary starts 
and ends when the drying cabinet finishes. 

Stage 1 and Stage 2 overlap during the moulding time since both the single line and one of the parallel 
machines need to be available during moulding.  
 
The two-stage hybrid flow shop has the following characteristics: 1) non-identical parallel machines 
(drying cabinets) in terms of processing time and capabilities of drying certain products; 2) sequence 
dependent set-up times; 3) production time windows; and 4) zero buffer capacity between the 2 stages. 
The fourth characteristic, scheduling with zero buffer capacity, is only briefly analysed in the existing 
literature, and with this research we contribute to the literature on this relatively new problem 
configuration. 
 
Methods: MILP with three MILP-based heuristics 
We base our MILP model on input data that we structure in such a way that jobs consist of 1 or more 
intermediates that can dry together and, in terms of quantity do fit in 1 drying cabinet. We obtain this 
input data by pre-processing the data, using a heuristic that joins 2 intermediates in 1 job when this 
fits in the drying cabinet. And in the case that the intermediates’ quantity exceeds the capacity of the 
drying cabinets, the heuristic divides the quantity of the intermediate evenly over the minimum 
number of jobs.  
 
For the two-stage hybrid flow shop problem, we develop a mixed integer linear programming (MILP) 
scheduling model that minimizes the make span. We also develop a second objective function for this 
model that minimizes the maximum end time for the first stage, since only this stage involves human 
activities. We conduct multiple experiments for which we use 7 of Brynild’s production weeks.  
 
For certain weeks, the MILP requires more than 1 night (16 hours) to compute; this is too long for 
practical purposes. Therefore, we develop 3 heuristics with shorter computation time that we base 
on our MILP: 

- Our MILP without sequence dependent set-up times; 
- Our MILP that we decompose in an assignment and a sequencing MILP, which we solve 

sequentially; 
- Our MILP with a maximum computation time of 10 minutes. 
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The results: significant improvements in maximum make span 
In comparison to Brynild’s original week schedules, our schedules perform better: 

- When minimizing the end-drying time, the last drying cabinet finishes significantly earlier 
(p<0.05); on average 38 hours, with peaks up to 49 hours earlier; 

- When minimizing the end Stage 1 time, the last job on Stage 1 finishes significantly earlier 
(p<0.05); on average 17.5 hours, with peaks up to 39 hours earlier.  

Brynild works with shift schedules, which inform managers how much personnel to hire per day of the 
week. Our experiments show that: 

- We schedule 75% of the originally 3-shift schedules in 29% less time;  
- We schedule 33% of the originally 2-shift + Saturday schedules in 10% less time.  

The heuristic with a maximum computation time of 10 minutes, performs the best for both objectives: 
- When minimizing the end-drying time, the heuristic re-creates 86% of the optimal schedules; 
- When minimizing the end Stage 1 time, the heuristic performs the most stable in terms of 

deviation from the optimal solution, with a variance of 0.826.  
To show that our methods work in practice, we schedule weeks 7 and 8 of 2021 with live data from 
Brynild, to analyse whether the schedules we create can be adopted in practice. After several 
iterations with the scheduler’s insights, the operators of the production line gave feedback on the 
practical feasibility and responded positively that they ‘find it hard to believe that the scheduling is 
done by a model´.  
 

Besides Brynild’s case study we evaluate the general capabilities of our main MILP using the end-
drying objective. We observe an exponential increase in computation time for all 3 types of instances 
(short, long, or mixed drying times) when the number of jobs increase. When the number of parallel 
machines increases, the number of jobs that we can schedule within 16 hours, decreases. Next, we 
examine 8 two-stage hybrid flow shops varying in including production time windows, sequence 
dependent set-up times, and non-identical parallel machines, that share the characteristic of zero 
buffer capacity between the 2 stages. We conclude that models without sequence dependent set-up 
times compute much faster than models with sequence dependent set-up times. Next, in almost all 
cases the models without production time windows compute faster than the models with production 
time windows. Finally, including identical parallel machines results in both increase and decrease in 
computation time. After further evaluation, we hypothesise that when the process time becomes the 
same for the parallel machines, the model has a faster computation time; and when all parallel 
machines can process all jobs, the solution space becomes larger and the computation time longer. 
 

Recommendations 
We recommend Brynild to use the Stage 1 objective 3 weeks in advance to create a week schedule 
and to determine the minimum number of shifts. Brynild should consider this minimum number of 
shifts while selecting the shift schedule. Thereafter, we recommend Brynild to use the MILP with the 
end-drying time objective, in which they incorporate the selected shift schedule as a constraint. If 
Brynild wants to do scenario testing, to analyse whether the number of intermediates or the quantity 
of the intermediates can increase within the week, we recommend using the 10-min run heuristic.  
 

In our analysis, we make some assumptions that offer promising possibilities for future research. For 
example, including in the MILP, batch composition, as this characteristic opens many possibilities for 
scheduling results and enhances the literature. Furthermore, our experiments show that the model 
computation time highly depends on the number of parallel machines and jobs. Therefore, when 
Brynild decides to expand its production line with another drying cabinet or by increasing the number 
of jobs, we expect that not all weeks can be scheduled within 16 hours when using the developed 
MILP. In this case, we recommend Brynild to use the MILP and interrupt the MILP after 16 hours, as 
the model has most likely found the (near) optimal solution within this time frame. This thesis offers 
Brynild and other companies with likewise problems, a method to greatly improve their scheduling 
method.  
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AP Assignment Problem 
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FJSP Flexible Job Shop Problem 

GA Genetic Algorithm 
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IA Immune Algorithm 

IABC Improved artificial bee colony 

IG Iterative Greedy 

ILS Iterative local search 
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KPI Key Performance Indicator 
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MILP Mixed Integer Linear Programming 

MPS Master Production Schedule 

NEH Nawaz-Enscore-Ham 

PVNS Parallel Variable Neighbourhood Search 

QMKP  Quadratic Multiple Knapsack Problem 
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SDST Sequence dependent set-up time 
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WIP Work in progress 
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1 INTRODUCTION 

The purpose of this master thesis is to explore multiple scheduling methods for a sequence dependent 

production line. With a literature study and some new concepts, we want to provide Brynild Gruppen 

AS advice on the scheduling of their production line. Section 1.1 describes the organizational context. 

Section 1.2 introduces the problems experienced by Brynild, and in Section 1.3 we present the 

research goal and articulate our approach to solve the problem. Finally, Section 1.4 presents the 

research scope. 

1.1 ORGANIZATIONAL CONTEXT OF SINTEF AND BRYNILD GRUPPEN AS 
This research is performed in collaboration with SINTEF and commissioned by the company Brynild 

Gruppen AS. SINTEF has been given the task to optimize Brynild Gruppen’s production line. We 

introduce both companies further in Section 1.1.1, Section 1.1.2, and Section 1.1.3. 

1.1.1 SINTEF 
SINTEF, founded in 1950, is one of the largest independent research organisations within Europe. The 

headquarter of SINTEF is located in Trondheim, Norway. There are 2000 employees with 75 different 

nationalities active at SINTEF. They deliver applied research, technology development, knowledge, 

innovation, and solutions for 3600 large and small customers from around the world. This makes that 

SINTEF excels in over 400 research areas, varying from ocean space to outer space and everything in 

between. SINTEF’s vision is “Technology for a better society” (SINTEF, 2020). We conduct this specific 

research at the department of technology management within the group Learning & Decision support 

in Trondheim.  

1.1.2 Brynild Gruppen AS 
Brynild Gruppen AS is one of Norway’s largest confectionary manufacturers and family-owned by the 
4th and 5th generation. They have roots going back to 1895. Brynild gruppen Holding AS is the parent 
company of various brands and operates in fast-moving consumer goods, such as chocolate, 
confectionary (sweets) and snacks (nuts and dried fruits).  
 

Den Lille Nøttefabrikken, Brynild, Minde Sjokolade, Dent, and St. Michael are Brynild Gruppen’s largest 
brands (see Figure 1.1). The market position of Brynild Gruppen ranges from being a minor challenger 
(in chocolate) to being a market leader (in nuts). Next to this, Brynild Gruppen is also a distributor for 
the German company Beiersdorf, which is best known for their brands NIVEA, Labello and Hansaplast.  
 

Brynild Gruppen is responsible for all the value adding processes; starting from the product 
development, purchasing, the logistics and production up to the sales and marketing of their own 
brands, that consist of approximately 350 Stock Keeping Units (SKUs). They have 200 employees 
working for them, and the annual turnover is 750 million NOK, i.e., 70.6 million euros. 90% of the sales 
are originated from Norway and the other 10% from other Nordic countries (Brynild Gruppen, 2020).  
 

 

  

Figure 1.1: Brands Brynild Gruppen 
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1.1.3 Production line Brynild Gruppen AS 

Brynild Gruppen AS has 1 production plant in Fredrikstad, Norway. This production plant has 3 
production lines that produce all the different products of the various brands. We focus on the 
confectionary production line, which produces the Brynild and Dent brands. This production line 
produces all the various confectionary products, as we show in Figure 1.2.  
 

 
Figure 1.2: Production line confectionery 

Figure 1.2 shows the processes in the squares, and the work in progress (WIP) in the triangles. The 
process starts with the input of raw materials. With these raw materials, Brynild Gruppen prepares 
the candy, which is called ‘intermediate’ until it is packaged, by cooking the raw materials. After 
cooking the mass, Brynild Gruppen adds the flavour and colour. When Brynild Gruppen finishes this 
process step, they mould the cooked substance in the right shapes. After the moulding process, the 
intermediates need to dry. The drying process requires different humidity for different types of 
confectionary, such as temperature and duration. After drying, the moulding machine separates the 
confectionary from its mould, and two process options arise. Option 1: oiling; Option 2: sour or sugar 
sanding. One of these two options must always occur. The oiled intermediates and most of the sanded 
intermediates go straight into the packaging station. Only some of the sanded intermediates require 
coating and glazing before Brynild can package them. Within this production line buffer points occur, 
namely before cooking (the raw material), and after sanding & oiling, coating, glazing, and packaging.  

1.2 PROBLEM STATEMENT 
Brynild Gruppen AS, to we refer to as Brynild from now on, has several strong competitors such as 
Mars, Chupa Chups, Kellogg’s, Haribo, Lindt, Tic Tac, Nestlé, Ferrero, Kinder, Milka, Orkla (Nidar), 
Mondelez, and more. Due to these strong competitors, Brynild focuses on product innovation and 
building brands. To stay ahead of the competitors, Brynild aims to continuously optimize the following 
operational targets: 

- Achieve high service levels; 
- Minimize inventory levels; 
- Maximize resource utilization; 
- Minimize obsolescence and its risks; 
- Simplicity in production planning. 

 
The demand at Brynild has grown with 25% over the last 2 years. A consequence of the growing 
demand is that Brynild is not able to produce enough products. Norwegian grocery retail demands an 
average of 98% in full and on time from food suppliers. It is however difficult for Brynild to achieve 
these high service levels and therefore Brynild has to say ‘no’ more often. This results in dissatisfaction 
with customers (retail stores), which in turn causes reputation damage for Brynild. 
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1.2.1 Problem cluster 
To investigate how we can improve the production capacity of Brynild, we create a problem cluster in 
order to identify the cause and effect relationships that lead to the core problem(s) (Heerkens & 
Winden, 2012). As Brynild focuses on different operational targets we mention the ones that occur in 
the problem cluster: 

- High service levels are difficult to achieve as meeting the order due date becomes more 
difficult; 

- Bottleneck (drying area) resources are not fully utilized; 
- The process of creating the schedules is not generic, therefore there is no simplicity in the 

production planning and scheduling. 
We explain the problem cluster in this section and Figure 1.3 presents an overview of the problem 
cluster. From Figure 1.3 we observe 3 final problems: reputation damage, the scheduling requires a 
lot of time and high risk in relation to absence for sickness and/or holidays. 
 
The high risk that comes with sickness and holidays, is a consequence of having only 1 employee who 
exactly knows how to schedule the confectionary production line. This makes the process of 
scheduling production orders non-generic, as the scheduling is done experience-based. Therefore, it 
is difficult for other employees to repeat this process, which makes Brynild reliable on 1 specific 
employee. Another problem that arises from working experience-based is that obtaining the 
schedules takes a lot of time. The process is often trial and error, which is very time consuming, 
without knowing if the schedule is as efficient as it could be. The reason that Brynild conducts the 
sequence and assignment scheduling manually and experience-based, is because there is no advanced 
scheduling method within Brynild’s Enterprise Resource Planning (ERP) system.  
 

Brynild indicates reputation damage as the most serious problem that arises. Dissatisfied (future) 
customers are the cause for the reputation damage. Currently the reputation damage is minor as 
Brynild ‘only’ has to reject new clients and promotions. However, this is a temporary escape to deal 
with the capacity constraint Brynild experiences. Another reason for the dissatisfaction of the 
customers is that not all orders meet the order due date. Not being able to meet the due dates is 
another consequence of the higher demand; as demand is higher than the production capacity, Brynild 
cannot produce enough products on time. The limitations of the production capacity have two main 
causes: 

1. There is limited amount of floor space for the WIP; 
2. The drying area is often the bottleneck, which stagnates the whole production line. 

 

There is not enough free space on the Brynild’s work floor, which causes the limited amount of floor 
space for the WIP. Not enough free space indicates that the production location is not big enough for 
how Brynild currently produces the products. 
 

One of the reasons that the drying area is the bottleneck is, according to Brynild, the availability of 
drying cabinets during a week that produces 24 hours a day. That is why Brynild is in the process of 
buying and installing an additional drying cabinet. However, even with the additional drying cabinet 
Brynild indicates that the drying area is likely to remain the bottleneck.  
 

The other reason that the drying area is the bottleneck, is because Brynild does not fully utilize the 
drying cabinets. Often, the drying cabinets are full, but not fully used. Full, but not fully used, refers to 
two different aspects. On the one hand, the cabinet is drying, however it is only half full due to batch 
sizes that do not consider the entire capacity of the drying cabinet. On the other hand, the products 
stay longer in the drying cabinet than necessary. Brynild only empties the drying cabinet when a new 
batch enters the cabinet. These two reasons make the effective utilization of the drying area lower 
than it can be. This inefficient use of the drying cabinets is due to experience-based assignment and 
sequencing. The reason for applying experience-based assignment and sequencing is, as mentioned 
earlier, that there is no advanced scheduling method in place.   
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Figure 1.3: Problem cluster 
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1.2.2 Core problem 

We find the core problem in the problem cluster by following the rules of thumb (Heerkens & Winden, 
2012). The problem cluster shows 3 problems that do not have a further cause themselves and that 
we could influence in the context of this research, namely: 

- “Production location is not big enough”; 
- “There are not enough drying areas”; 
- “No advanced scheduling method in place”. 

 
There is one problem that we can solve without altering Brynild’s production space, and, which has 
the biggest influence on the rest of the cluster “no advanced scheduling method in place”. When 
Brynild conducts the scheduling using a better method, the probability is high that the production line 
obtains more production capacity. Next to more production capacity, an advanced scheduling method 
comes with a more generic approach, which makes it possible for the production schedulers of 
different lines to be interchangeable. On top of that, the scheduling requires less personnel worktime, 
as the method does most of the work. To make this problem more quantifiable, we focus on the 
following Key Performance Indicators (KPIs): 

- The percentage of production orders that meet the planned due date; 
- The occupation of the bottleneck; the drying area; 
- The utilization of the bottleneck; 
- The utilization of the bottleneck in comparison with the occupation; 
- The make span of the production week; 
- The changeovers set-up times. 

 
The KPIs above give a clear grasp on the magnitude of Brynild’s scheduling problem. Next to getting a 
better insight, we also use (most of) these KPIs to compare the performance of the schedules we 
create in this research. 

1.3 RESEARCH GOAL 
This section presents the main research goal and the corresponding research questions.  

1.3.1 Main research goal 
Together with Brynild Gruppen AS, we desire to improve the scheduling of the production line to free 
up valuable production capacity, which improves the throughput of the production line. This generic 
method should require a minimum amount of knowledge and time of the scheduler.  
 
The research goal is: 
 
 
 
 
This research goal results in the following main research question: 
 
 
 
  

‘Develop a scheduling method that improves the scheduling of the production orders under 
consideration of multiple process constraints’ 

‘How should we construct the scheduling method for Brynild Gruppen AS, such that the 
production line can realize a higher throughput?’ 
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1.3.2 Research questions 
To answer the central research question, we formulate the following sub-research questions. Each 
chapter of this thesis answers one of the questions. 
 
1. What does the current situation at Brynild look like? 

In Chapter 2 we give an overview of characteristics and conditions of the production line and the 
scheduling process. This overview gives a better understanding of the underlying problems we 
describe in Section 1.2. To obtain the information we need, we conduct a series of interviews with 
the supply chain manager, the scheduler, and the production manager. Next to interviews, we do 
observations at the production area. We collect associated documentation, such as schematic 
overviews and historical data of the production and scheduling process. Then, we analyse the 
performance of the current situation on the KPIs we mention in Section 1.2.2. With this 
information we evaluate the current situation, which provides us the benchmark for the 
improvement methods.  

 
2. Which methods are described in literature regarding the scheduling of a production line similar 

to Brynild’s? 
To answer the second research question, we perform a review and analyse the relevant scientific 
literature in Chapter 3. We focus on scheduling methods that tackle the assignment problem and 
the sequencing problem. We describe the similarities, differences, and applications of the 
scheduling problems that are similar to Brynild’s problem. Next to that, we review multiple 
opportunities on how to solve the problems. Finally, we discuss, which methods are applicable for 
Brynild and, which method is the most suitable for our research.  

 
3. How can we develop a scheduling model that improves the throughput of the production line?  

Chapter 4 presents a mathematical formulation of the problem we describe in Chapter 2. First, we 
decide, which variables and parameters we consider while formulating the scheduling problem. 
The scheduling problem beholds the characteristics and conditions of the production process. We 
evaluate multiple objectives that could lead to the focus of the scheduling method; obtaining a 
higher throughput.  

 
4. How does the proposed scheduling method perform? 

In Chapter 5, we test the performance of the model against practical instances. We also study the 
differences between our method and the current way of scheduling. This comparison is in the 
form of a case study that we base on historical data. After creating the new schedules, experts 
analyse our method to verify them based on the practical use for Brynild. Thereafter, we examine 
the performance of the general use of the model we develop. 

 
Chapter 6 contains the conclusions and recommendations of this research. 

1.4 SCOPE OF THE RESEARCH 
We base our scheduling on the confectionery production line in Fredrikstad. This implies that we 
exclude the other production lines, for nuts and chocolate, of Brynild Gruppen AS from this research. 
The planning needs to provide the intermediates and the weight of the intermediates as production 
orders for each specific week. This planning considers the variability from outside the production line; 
like the availability of raw materials, maintenance etc..  
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2 CURRENT SITUATION 

In this chapter we answer the first research question: ‘What does the current situation at Brynild look 
like?’. Therefore, we give a detailed overview of the confectionary production process in Section 2.1. 
In Section 2.2 we describe the scheduling process including all challenges it encounters. In Section 2.3 
we discuss the current performance of the confectionary line, and in Section 2.4 we give a conclusion 
of this chapter. 

2.1 BRYNILD’S CONFECTIONARY PRODUCTION PROCESS 
Brynild produces 38 different intermediates on their confectionary production line. These 
intermediates are divided into 6 product families. Brynild bases these families on the drying 
characteristics. From these 38 intermediates, 7 have to go past the Drage Sukker line, the other 31 
intermediates go directly to packaging, see Figure 2.1.  
 

 
Figure 2.1: Processing stages sugar confectionary line 

2.1.1 Cooking and Moulding 

The first two processing stages are cooking and moulding. In the first 
stage, Brynild mixes and cooks the raw materials. After cooking, the mass 
transfers through pipes to the moulding machine. Cooking starts 30 
minutes before moulding. Within each batch the colouring and taste may 
vary as this has no further consequences for the next processes. At the 
moulding machine, Brynild sprays the sugar confectionary into wooden 
trays that contain corn flour pre-formed beds in the shape of the correct 
intermediate. The trays can contain between 96 and 800 pieces, 
depending on the product type. After moulding, Brynild stacks the trays 
on pallets and automatically transfers the pallets to the drying area. One 
pallet can contain 150 wooden trays, independent of the product type, 
see Figure 2.2. On average, Brynild can mould 27 trays every minute. 

2.1.2 Drying and Separation from mould 

Directly after cooking and moulding, the drying process starts. The process, starting from cooking until 
the intermediates enter the drying cabinets is a continuous process, which does not have any buffer 
points in between. The drying processing stage has 7 cabinets with different characteristics and 
capacities. There are 3 various drying cabinets: Catelli, Dynaflow and Lateskap (passive cabinet). The 
Catelli and Dynaflow are modern drying cabinets, which have shorter throughput time than the 
Lateskap, the older cabinet. The drying temperature ranges from room temperature 20°C to 65°C. The 
drying time can vary between 24 hours to 94 hours, depending on the drying temperature and on the 
type of intermediate. As the humidity in summer, especially in August, is higher than in winter, some 
products have different winter and summer drying times. Since Brynild is in the process of buying 
dehumidifiers, we do not take this variation in drying times into account in our research.  
 
There is 1 product family, in Norwegian called ‘Familie D’, that can only use the new drying cabinets 
to preserve the quality of the products. We present the capacity per drying cabinet in Figure 2.3. 

Figure 2.2: Transportation to 
the drying area 
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All drying cabinets together have a capacity of 20 lanes. Each lane can store 18 pallets. Therefore, in  
theory, a total of 54,000 trays could dry at the same time. As Brynild states the quantity of each 
intermediate in kilogram, the data for the capacity of the drying area for each intermediate is also in 
kg per lane, see Appendix A.  
 
Some intermediates from the same family can dry at the same time in the same drying cabinet. In this 
case, the drying cabinet has to be available when the first intermediate starts moulding. The drying 
can only start when the final tray from the second intermediate enters the drying section, as the whole 
drying cabinet locks and heats simultaneously. Not all products from the same family can dry together, 
see Table 2.1.  
 

Table 2.1: Product families 

Product family # of intermediates Same drying temp and time 

Familie A 7 1,1,5 
Familie B 1 1 
Familie C 1 1 
Familie D 10 2,3,5 
Familie K (Kaldstøp) 16 1,5,10 
Familie 3 1,2 

 

We write all the product family names in Table 2.1 using their Norwegian spelling. When intermediates 
have the same drying temperature and the same drying time, they can dry in the same cabinet. We 
summarize this in the last column, for example in Familie A, 5 intermediates could dry together and 
the other 2 need to dry individually.  
 

The drying cabinets have different characteristics. The Catelli 
cabinet is heated, circulated, and ventilated. The Dynaflow 
cabinet is only heated and circulated, and the Lateskap 
cabinet is only heated. Achieving the right temperature and 
cooling takes more time in the Lateskap than in the new 
sections, which lead to longer total drying time. We present 
the impact of the new drying cabinets in an example for 
Jordbærfisker (strawberry fish) in Figure 2.4, which shows 
that this intermediate needs 92 hours drying in the old 
drying cabinet, and 56 hours in the new drying cabinet.  

0

10

20

30

40

50

60

0 20 40 60 80 100

Jordbærfisker drying curve OLD vs NEW  drying sections
oC vs hours

Figure 2.4:The old vs new drying cabinets 

Figure 2.3: Capacity drying cabinets 
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After the intermediates finish drying, they are sent back to the moulding machine. At the moulding 
machine, the intermediates separate from their trays, we call this demoulding. The trays are already 
in the moulding machine where Brynild uses the trays immediately for a new batch of intermediates. 
There is a limited number of trays, namely the 54,000 that fit in the drying areas. There is no additional 
storage for the trays. Therefore, the trays that leave the drying cabinet return to the exact same drying 
cabinet. As moulding and demoulding is a continuous process it takes approximately the same amount 
of time, which is 27 trays per minute on average. After the separation from their moulds, the 
intermediates transfer to the next stage: oiling or sanding. 

2.1.3 Oiling or Sanding 

In this stage the intermediates convey to either the oiling drum or the sanding drum. There are 6 
different sanding/sugaring types of which 3 are sugar free. To make the sanding/sugar stick to the 
intermediates, steam is shortly applied to the surface just before the sanding drum. Brynild uses only 
one type of oil/wax is to give the intermediate a shiny surface. Directly after oiling or sanding, Brynild 
fills plastic boxes of approximately 8 to 10 kg each with the intermediates. This process requires about 
30 minutes. Next, the intermediates have to rest in the boxes for 24 hours before further processing 
can start. 18% of the intermediates that come from the oiling drum need further processing and go to 
the coating and glazing stage, all the other intermediates go straight to packaging.  

2.1.4 Coating and Glazing 

In this stage the intermediates go through the coating and glazing processes. This is the process where 
additional flavour and/or colour is added in parallel rotating drums. Approximately 40% of the 
intermediates’ final weight stems from the coating process. Brynild has 16 coating drums of which 8 
are pear shaped, the others are apple shaped. The pear-shaped drums have 5% more capacity per 
batch than the apple shaped ones. The intermediates of Familie D are only fit for the pear-shaped 
drums. The capacity of coating is 1400 kg/shift for sugar containing intermediates, or 700 kg/shift for 
sugar free intermediates. This capacity doubles when 2 operators are working simultaneously. The 
coated products need to rest for 24 hours before they can be glazed.  
 
All intermediates that go through the coating process must go through glazing process as well. With 
glazing, some small amount of wax is added to polish the surface and make the intermediates ready 
for packaging. The glazing is done in one of the 3 bigger drums that. These drums have a capacity of 
3500 kg/shift. All glazed products need ripening, i.e., time to mature. The following rules apply: 

- Sugar containing products can be packed 48 hours after glazing; 
- Sugar free products can be packed 72 hours after glazing. 

 
The feeding into the drums and emptying the drums into plastic boxes is done manually for both 
coating and glazing.  

2.1.5 Packaging 

Brynild packs the intermediates first into consumer packages (F-pak) and then into distribution 
packages (D-pak). The distribution packages are placed onto pallets and become inventory at the 
warehouse of Leman, 40 minutes away from Fredrikstad. Three to four times a day a truck leaves to 
restock the warehouse. There are 4 packaging lines that package different products: Dent, Bulk, Bosch 
and HGD. Finished SKUs consist of one or several intermediates gathered in one consumer package. 
Some intermediates are sold both as individual products and as a part of consumer packages, 
consisting of a mixed set of intermediates. The mixed packages can only start packaging when all 
intermediates are available.   
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2.1.6 Work in Progress 

Figure 2.1 shows that there are several WIP inventory points. Brynild stores their intermediates in 
plastic boxes at these WIP inventory points. One pallet can hold 40 boxes, 4 boxes per layer and 10 on 
top of each other. The boxes contain 8 to 10 kg of intermediates. There are around 8,000 boxes 
available for the confectionery production line. The floor space in this area is limited. Brynild does not 
know the capacity of the floor space per buffer point, as all the buffer points use the same floor space. 

2.2 PRODUCTION SCHEDULING AT BRYNILD 
In this section we describe how Brynild determines their Master Production Schedule (MPS) and how 
they use the MPS output in the scheduling process.  
 
Brynild uses SAP’s ERP system. This ERP system reports the weekly demand for each intermediate. 
The ERP system considers the lead time and historical demand in the previous year. The output of the 
ERP system is unevenly distributed over the weeks. To level the demand, the production planner 
manually changes this weekly demand using a “drag and drop” approach. The planner typically drags 
demand to an earlier week in the year according to the following priority rules:  

1. Seasonal products; 
2. New products; per year, there are only 3 time windows for introduction; 
3. Packed bags; 
4. Bulk products for pick and mix. 

These priority rules are based on “not wanting to lose the sale by producing it too late”. The 
production planner considers known factors such as planned maintenance or lack of raw materials. 
This is how Brynild determines their MPS. The MPS states the production orders that consists of which 
intermediates, in what week, and the quantity to produce. Brynild uses the information from the MPS 
in their scheduling process.  
 
The ERP system does not determine the sequence or drying assignment of the production orders. 
Therefore, the scheduler creates the sequence and assignment schedules manually. The scheduler 
tries to obtain satisfactory schedules based on experience-based techniques, where he makes use of 
Microsoft Excel. After the schedule is created, the scheduler prints the schedule, as there is no digital 
version of the production schedule on the production floor. This print includes the recipe for the 
intermediates and the bill of material for each SKU. The planner/scheduler makes the planning every 
week and uses an iterative approach for the upcoming week to make sure that the planning fits in the 
schedule.  
 
The experience-based techniques for scheduling mainly focuses on the drying cabinets. The two rules 
of thumb the scheduler considers while scheduling are: 

1. The production orders need to fit in the drying cabinets; 
2. Try to use the new drying cabinets as much as possible. 

 
Figure 2.5 presents an example schedule with the different drying cabinets on the left, in the upper 
part the products, and the amount in kg that goes into each of the specific drying cabinets. It also 
states d, k or n, which stands for d= dag (day), k= kveld (evening) and n= natt (night). The lower part 
of the schedule shows what to unload from the drying cabinet. Note that most emptied drying 
cabinets are also the ones that are filled, as this is a continuous process. 
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Figure 2.5: Brynild’s drying cabinet schedule of Week 40 2020 

To check if the schedule is feasible, the scheduler makes a visualization like we present in Figure 2.6.  
 

 
Red presents the moulding, orange the heating, and blue the cooling. As examples on how to read 
Figure 2.6: in Skap 1 (the most upper one) 2 intermediates are dried at the same time next, no 
moulding is done between Tuesday afternoon and Wednesday end of the morning as all drying 
cabinets are occupied.  
 
Brynild’s scheduling procedure presents various challenges and restrictions: different shifts, 
changeovers, drying capacity, and shelf life. We elaborate these challenges in Section 2.2.1 to Section 
2.2.4 respectively. 

2.2.1 2-shifts and 3-shifts systems 

Brynild uses various shift systems. A normal week consists of a 2-shift system or a 3-shift system. In a 
2-shift system, there are 9 production shifts per week. Brynild uses the early and late shifts of the 
weekdays for production, except the late shift on Friday. There are 8 production hours per shift, which 
make up 72 production hours per week. In a 3-shift system, there are 14 production shifts per week. 
Brynild uses the early, late and night shifts of the weekdays for production, except for the late shift 
and the night shift on Friday, instead the production starts at Sunday night. In a 3-shift system, there 
are 8 production hours per shift as well, which make up 112 hours of production per week. For both 
types of shift-weeks there is a possibility for extension with 2 additional shifts. The additional shifts 
can be a late Friday shift and/or an early Saturday shift, see Figure 2.7. 
 

Figure 2.6: Visualization of a 3-shift drying schedule 
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Figure 2.7: Brynild’s different shift schedules 

The green presents the 9 available shifts with a normal 2-shift system. Blue are the additional shifts 
that occur in a the 3-shift schedule. The yellow presents the shifts that Brynild can additionally 
schedule as overtime when 9 or 14 shifts are not enough. Orange indicates the time that Brynild 
cannot use for production. However, the drying continues through the whole week including during 
the orange times.  
 
Overtime is paid 200% of the salary, which makes it far from ideal to run a system that always indicates 
to use these 2 additional shifts. One overtime is more expensive than one night shift, where manning 
is paid 130%. Another alternative for overtime is from 22:30h to 00:00h. Brynild can make this decision 
even on the same day, as the manning is normally more than willing to work these additional hours. 
Brynild decides at least 2 full weeks in advance whether they use a 2-shift or a 3-shift schedule. 

2.2.2 Set-up times for changeovers 

The set-up times for the changeovers in Støperi 1 are sequence dependent. The changeovers always 
happen within a shift or in overtime at the cost of available production time. The set-up time for a 
changeover depends on the tool that is required for the intermediate. Intermediates require different 
tools on Støperi 1. We give an overview of which intermediate requires what tool in Appendix A. When 
Brynild produces the same intermediate; no set-up time is needed. When the intermediates require 
the same tools only cleaning is necessary for which Brynild calculates 90 minutes of set-up time. When 
different tools are required, the set-up time is 120 minutes. These set-up times are upper bounds as 
we do not know beforehand, which employee does the changeover. 

2.2.3 Drying area 

The schedule in Figure 2.5 only shows the drying cabinets of Støperi 1. This is the main focus of the 
scheduler. Only when the scheduler can find some spare time, he focuses on Drage Sukker and Godteri 
Pakking as well. Otherwise, the operators of these lines have the job to process whatever is on the 
work floor. The reason that the scheduling mainly focuses on the drying area is due to several 
constraints for the drying cabinets. Some of these constraints we already mention in Section 2.1.2; 
limited capacity, intermediates drying together, different drying times per intermediate, and 1 family 
that is always dried in the new drying cabinets. In this section, we discuss the additional constraints 
for the drying cabinets and summarize all the constraints in Table 2.2. 
 
The moulding trays circle from the drying cabinet to the moulding machine and back to the same 
drying cabinet. Familie K is dried at room temperature. The intermediates of this family cannot dry 
consecutively at the same drying cabinet more than 2 times, as the trays otherwise become too wet, 
because the temperature is too low to dry them sufficiently.  
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Another constraint is that Brynild never schedules the drying cabinets using full capacity. All drying 
cabinets must include at least 2 empty pallets. They use these empty pallets for flexibility. The cooking 
quantity is variable, and it is not exactly known how much more or less the operators produce in 
practice. The 2 empty pallets serve as buffer in case of overproduction. Using the 2 empty pallets, 
Brynild almost never has to discard confectionery mass. In this research we assume that this 2-pallet 
strategy is a good way to deal with the variability in quantity of the cooking process. 
 
The final constraint regards the unloading of the drying cabinets. The intermediates that dry at room 
temperature need to be unloaded within 48 hours after finishing. The heated intermediates can stay 
in the drying cabinet for maximum 7 days. These 7 days include the drying time.  
 

Table 2.2: Constraints drying area 

Constraints Clarification 

Capacity 3 drying cabinets with 4 lanes and 2 drying areas with 2 times 2 
lanes 

Product families Some intermediates within a product family are able to dry together 
Throughput time Old and new drying cabinets with different throughput time, which 

results in different drying times for the same intermediate 
Familie D One product family that can only dry in the new drying cabinets 
Trays room temp.  Not more than 2 times in a row can room temperature 

intermediates dry in the same drying cabinet 
Moulding and demoulding A drying cabinet has to be available while moulding and demoulding 
Sequencing The sequencing with different set-up times affects the drying 

cabinet utilization 
Two empty pallets At least 2 empty pallets per drying cabinet scheduled for flexibility 
Unloading room temp. Intermediates that dry at room temperature need to be unloaded 

within 48 hours after completion 
Unloading heated Intermediates that dry with heat need to be unloaded within 7 days 

after entering the drying area 

2.2.4 Packaging line and Shelf life 

The confectionary products have shelf lives that vary from 5 up to 24 months. The retailer chains 
demand that there is a remaining shelf life of at least 100 days before shipment. The shelf life starts 
after packaging. Brynild prints the best before date on the package once the product is packaged, 
regardless of when the intermediate is produced. Two packaging lines, Bosch and HGD share the same 
subsequential line, called Roverma. Roverma is a wraparound line, which packs the consumer package 
into a distribution package. A consequence of sharing the same wraparound line is that Bosch and 
HGD cannot run at the same time.  
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2.3 CURRENT PERFORMANCE OF THE SCHEDULING PROCESS 
There is no data on the realized performance of the schedules. Therefore, we evaluate Brynild’s 
schedules instead. The data we use in this section we obtain from 8 consecutive schedules from 2020, 
like Figure 2.5. We assume that the drying area is empty at the beginning of the year due to a two-
week Christmas break. The data we obtain show several flaws and incorrections: 

- For 30% of the intermediates, the occupation time scheduled is less than the time that is 
required for occupation; filling and drying of the drying cabinets. For 8% of the intermediates, 
the occupation time scheduled is even less time than the minimum drying time; 

- Around 4% of the intermediates are kept in the drying area longer than 7 days; 
- Around 1% of the intermediates have a higher quantity when they exit the drying cabinet than 

when they enter; 
- Around 3% of the intermediates that exit the drying area never entered; 
- Around 3% of the intermediates are switched from drying cabinet, they exit a different cabinet 

than they enter. 
 
We clean the data discrepancies with the assumption; what exits the drying cabinets is the most up 
to date data. Therefore, we make the following changes: 

- We do not change the drying time to make the schedule feasible. However, in determining 
the utilization, we use an upper bound of 100% for the drying time. Therefore, the drying 
cabinet cannot be utilized more than 100%; 

- We do not change anything in the schedule where intermediates are kept in the drying cabinet 
longer than 7 days, besides that this should not happen, the data is not contaminated by this 
discrepancy; 

- When the quantity is higher when the intermediate exits the drying area, we assume that 
more Bryniled produces more quantity than thought beforehand. Therefore, we change the 
quantity that enters the drying cabinet to the same quantity that exits the drying cabinet; 

- When an intermediate never enters a drying cabinet, but does exits one, we add this data. 
The schedule does mention when Brynild empties this drying cabinet before this specific 
intermediate. Thus, we add in the schedule that the specific intermediate enters the drying 
cabinet at this time; 

- When the intermediates are switched from drying cabinets when they exit, we change the 
drying cabinet that they enter. So, what comes out of the drying cabinet is leading.  

 
After cleaning this data, we research the different KPIs, which we mention in Chapter 1. In Section 
2.3.1 we review the percentage of due dates reached, in Section 2.3.2 we discuss the occupation of 
the bottleneck, in Section 2.3.3 we calculate the utilization of the bottleneck, in Section 2.3.4 we 
compare the utilization of the bottleneck to its occupation, in Section 2.3.5 we present the make span 
of the production weeks, and in Section 2.3.6 we analyse the changeovers and their set-up times. 

2.3.1 Percentage of due dates reached 

To calculate, which percentage of the due dates Brynild reaches, we set the order due date indicated 
by the planning as a benchmark. If this order due date is not reached in terms of enough kg produced 
on time, we view this production order as unfulfilled. It does not matter if this order is unfulfilled by 1 
kg or 1000 kg, or by 1 day or 100 days, as we view the fulfilment as a binary value. We assume that 
these production orders are backordered and therefore need to be fulfilled before the next production 
order of the same intermediate can be fulfilled. In the situation we describe, 64% of the order due 
dates are unmet.  
 
Figure 2.8 presents the unmet percentage of due dates per week, the number of orders per week, and 
their trendlines.  
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Figure 2.8: Number of unmet orders vs the number of order due dates per week 

For the (linear) trendlines in Figure 2.8, we observe a descending trend in the percentage of unmet 
production orders per week and an ascending trend in the number of production orders per week.  
 
We justify the observation of a descending trend of the percentage of unmet production orders per 
week with: needing time to re-stock inventory. In the Christmas holiday, Brynild closes, so there is no 
production, however there are still demand requests. Therefore, after the holiday break the inventory 
is lower than usual. This lower inventory makes it harder to meet the production order due dates. 
Likewise, the trend of number of orders per week is ascending. Brynild does not accept all production 
orders, when they know with certainty that they cannot be met. We explain both trendlines by the 
lower inventory after the Christmas holiday. 
 
Week 2 however, does not fit in with the explanation, we explain the lower percentage of unmet order 
due dates by having 2 additional production days in Week 1. Brynild starts in Week 1 with producing 
the order due dates for Week 2, instead of the order for Week 1. This choice results in no order due 
dates met in Week 1, and more due dates met than we expect in Week 2. The high number of 
production orders in Week 2 is because Brynild knows beforehand that more production capacity is 
available than normally, as the order in Week 1 would require only 25% of the capacity of Week 1. 
When we discard Week 1 and Week 2 from this evaluation, we still observe that the trend lines follow 
the exact same trends as in Figure 2.8.  

2.3.2 Occupation of the indicated bottleneck 

After interviews with Brynild employees and several data analysis, we indicate the drying area as the 

bottleneck. We review the occupations of the cabinets separately, see Figure 2.9. With the term 

occupation we mean the time that intermediates are physically in the drying cabinet and the time that 

is required for moulding the intermediates. 
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Figure 2.9: Occupation of the drying cabinets in % 

Dynaflow has the lowest occupancy rate, namely 88,96%. We expect this high occupation percentages 
for two reasons. Firstly, Brynild’s mention of the drying cabinets being almost always occupied. 
Secondly, Brynild generally only empties the drying cabinets when another intermediate enters the 
drying cabinet. Resulting in the drying cabinet being occupied for most of the time and used as storage 
area; waiting for Brynild to empty when another intermediate is ready to enter the drying cabinet. 

2.3.3 Utilization of bottleneck 

In Section 2.3.2 we observe high occupation percentages. In this section we calculate the utilization. 
When intermediates are in the drying cabinet, however the cabinet is not actually drying or cooling, 
the cabinet is not utilized. The cabinet is therefore occupied, but not utilized. Next to this, when the 
cabinet is drying intermediates, however half empty, the utilization is only half as well. We calculate 
the utilization for the 8 weeks as follows: 
 

𝑈𝑡𝑙 = Utilized hours and space per intermediate per drying cabinet, see formula [2.1.1] 
#𝐿 = Number of lanes used per drying cycle 
𝑇 = Time needed for the drying and the moulding per drying cycle 

𝑈𝑡𝑙 = #𝐿 ∗ 𝑇         [2.1.1] 
 

𝑇𝑈𝑡𝐼 = The total utilized hours per drying cabinet over the past 8 weeks, see formula [2.1.2] 
𝑇𝑈𝑡𝐼 = ∑ 𝑈𝑡𝑙         [2.1.2] 

We calculate the 𝑇𝑈𝑡𝐼 for every drying cabinet separately.  
 

𝑇𝑜𝑡𝑇𝑆 = Total time and space available in the past 8 weeks, see formula [2.1.3] 
#𝐻𝑝8𝑊 = The number of hours per 8 weeks, which is 1304 
#𝐿𝑝𝐷 = The number of lanes per drying cabinet, which is 4 

𝑇𝑜𝑡𝑇𝑆 = #𝐻𝑝8𝑊 ∗ #𝐿𝑝𝐷 = 5216      [2.1.3] 
Thus, there are 5216 lane hours available per cabinet in the 8 weeks. Drying also occurs during the 
weekends and nights while there is no production during these times. We calculate the number of 
hours per 8 weeks by obtaining the difference between the first day and the last day of production 
and multiply the day difference by 24 hours. We calculate the total utilization per drying cabinet in 
the 8 weeks in formula [2.1.4]. 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑑𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑏𝑖𝑛𝑒𝑡 =
𝑇𝑈𝑡𝐼

𝑇𝑜𝑡𝑇𝑠
     [2.1.4] 
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We present the results from formula [2.1.4] and the occupation we calculate in Section 2.3.2 in 
Figure 2.10. 
 

 
Figure 2.10: Utilization and Occupation of the drying cabinets 

In Figure 2.10 we compare the utilization with the occupation from in Figure 2.9. The utilization is 
between 40% and 57%. When compare this percentage to the percentage of occupation, we observe 
that the utilization percentage is substantially lower. We expect that the utilization percentage and 
the occupation percentage differ somewhat, as the drying cabinets are not scheduled to be completely 
full. Next to that, drying finishes during the weekends or during the night, when the drying cabinet 
cannot be emptied immediately. However, the percentages should not differ this much. The 
occupancy percentage is, in comparison to the utilization percentage, approximately twice as high. 
Therefore, in theory on the base of Figure 2.10, using a 3-shift schedule the drying utilization could be 
almost doubled. 

2.3.4 Utilization of bottleneck in comparison to the occupation 

We also calculate the utilization in another way. Namely, not in comparison with the time that the 
drying cabinets could dry in the 8 weeks, but in comparison with the time the intermediates are 
occupying the drying cabinet. In this case, we calculate the effective drying time by dividing the time 
the intermediates require for moulding and drying by the time the intermediates are occupying the 
drying cabinet. We calculate the effective capacity by dividing the occupied number of pallets by the 
number of pallets available in that drying section, which is 36 or 72 depending on the drying cabinet. 
Using this calculation, we obtain the percentage of utilization while the drying cabinets are occupied. 
Thus, the percentage that the drying cabinets, when in use, are in use effectively. The higher 
percentage of the utilization in comparison with the occupation, the better. Figure 2.11 shows the 
effective drying time, effective use of the capacity, and utilization in comparison with the occupation 
per drying cabinet.  
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Figure 2.11: Different types of utilization per drying cabinet 

Skap 3 has the highest effective drying time. Highest effective drying time means that Brynild uses this 
drying cabinet the least as storage area. We explain the relatively high effective drying time as 30% of 
intermediates that are scheduled use less time than what is needed in theory. This 30% of the 
intermediates have an effective drying time of 100%. Without these intermediates, the average 
effective drying time for the 8 weeks is 71% instead of 79%. The effective capacity utilization mostly 
dependents on the planning as the planning decides how much kg of each intermediate needs to be 
produced in a week. The schedule can influence the effective capacity utilization by scheduling more 
intermediates to dry together whenever possible.  

2.3.5 Make span of the production week 

With make span of the week, we intend the time it requires for all the intermediates that Brynild 
produces in a certain week to finish drying. For the make span, we calculate the number of hours 
between the start of a week and the time the last drying cabinet finishes drying, see Figure 2.12.  
 

 
Figure 2.12: Make span per week 
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Weeks 6 to Week 8 have the longest make span. This is because in these weeks Brynild uses a 2-shift 
+ Saturday schedule. In Week 1 and in Week 5 all drying cabinets finish on Monday. In none of the 
weeks all drying cabinets finish before the start of the upcoming week. This results in a lot of flexibility 
constraints for the next week, which results in a higher probability of obtaining a sub-optimal 
schedule. Figure 2.12 does not give much more information at this moment, however we use this 
figure as a benchmark for the new schedules.  

2.3.6 Changeover set-up times 

The average set-up time per changeover is 88 minutes and in total for the 8 weeks 7440 minutes. 
Figure 2.13 shows the number of times a type of changeover occurs in the 8 weeks. 
 

 
Figure 2.13: Number of times certain set-up times are required 

Most changeovers need 120 minutes for set-up, see Figure 2.13. Brynild does try to schedule the same 
intermediates consecutively, however they do not focus on the same tool changeovers (90 minutes). 
We also evaluate the set-up times per week and the number of changeovers per week in Figure 2.14. 
 

 
Figure 2.14: Total set-up time and number of changeovers per week  
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Figure 2.14 shows as we expect that there is a relation between the number of changeovers and the 
set-up time per week. The more changeovers, the more set-up time. The average set-up time per 
changeover per week is the highest for Week 4. We explain this by the high number of changeovers. 
Next, the higher the number of changeovers, the more difficult it is to have an overall overview of the 
schedule. With less changeovers like in weeks 6 to 8, it is easier for the scheduler to focus on the 
changeovers and not only on the feasibility of the schedule.  
  



University of Twente C.M.S. van der Valk 29 | P a g e  

2.4 CONCLUSION 
The confectionary production line consists of 3 parts. We give a detailed visualization in Figure 2.15.  

 

Figure 2.15: Brynild’s confectionary production line in detail 

We indicate the drying area as the biggest bottleneck of the entire production process. Therefore, the 
scheduler already focuses first on Støperi 1 and when more time is available the focus is on Drage 
Sukker and Godteri Pakking. The scheduler creates the production schedules of Støperi 1 manually 
and experience-based, taking into account the following two rules: 

1. The production orders need to fit in the drying cabinets; 
2. Try to use the new drying cabinets as much as possible. 

 
We formulate the scheduling problem of Støperi 1 as: “a problem with non-identical parallel machines, 
sequence depending set-up times, production time windows and without buffers”. The drying cabinets 
are the non-identical parallel machines as we discuss in Section 2.2. In Section 2.2 we discuss that the 
sequence dependent set-up times are zero when the same intermediate is produced, 90 minutes 
when the intermediates require the same tools, and 120 minutes when the intermediates require 
different tools. Last, we discuss that Brynild uses 2-shift schedules and 3-shift schedules therefore, 
production time windows are required. In Section 2.1 we mention that in Støperi 1 there is a 
continuous process starting from cooking till the intermediates entering the drying cabinets. This 
results in no buffer points between cooking and the drying area.  
 
During the data analyses of the current performance of the schedule we observe that the bottleneck, 
the drying area, is almost always occupied, however not fully utilized. On average 50% of the time that 
the drying cabinets are occupied, they are used as storage area rather than actually being utilized. The 
two scheduling rules do not involve set-up times. We do observe however, that the scheduler does 
take these set-up times into account when the problem is small and does not require much 
changeovers. However, when the problem becomes bigger and more difficult to solve, the scheduler 
shifts his focus from the changeovers to solely creating a feasible schedule. 
 
To identify and find possible solutions for this scheduling problem, we conduct a literature study in 
Chapter 3.  
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3 LITERATURE STUDY 

This chapter answers the research question: ‘Which methods are described in literature regarding the 
scheduling of a production line similar to Brynild’s?’. In this chapter we provide insight into alternative 
solutions for scheduling a production line that we can propose to Brynild. In general, scheduling 
problems are complex and dynamic, therefore they can be difficult to solve to optimality. The 
complexities arise from the many interrelationships that exist in scheduling problems (Williams, Pitts, 
& Kamery, 2004). In Chapter 2 we indicate that Brynild has a scheduling problem containing non-
identical parallel machines (drying cabinets), sequence depending set-up times, production time 
windows and no buffer points. Therefore, the two most important decisions for Brynild’s scheduling 
problem are the sequencing/start time of the intermediates and the assignment of intermediates to 
drying cabinets. In Section 3.1 we research different scheduling problems, with their roots in 
sequencing. In Section 3.2 we research whether we can identify Brynild’s problem as an assignment 
problem (as well), because the assignment of the intermediates to the drying cabinets is an important 
part of Brynild’s problem. In Section 3.3 we determine to what type of problem we can define Brynild’s 
problem using information we obtain in Section 3.1 and Section 3.2. Section 3.4 contains a more 
elaborate mathematical description of the problem we select in Section 3.3. In Section 3.5 we analyse 
different solution approaches for the problem. Lastly, in Section 3.6 we conclude this chapter by giving 
an overview of our literature research and determine the solution approach we use. 

3.1 THE DIFFERENT SCHEDULING METHODS 
We start in Section 3.1.1 by discussing scheduling in general to narrow down the options in scheduling 
problems. After narrowing down we focus on the remaining scheduling problem, we start reviewing 
job shop scheduling in Section 3.1.2. Thereafter, in Section 3.1.3 we analyse a flexible job shop 
problem that includes 2 stages and parallel machines. In Section 3.1.4 we study the hybrid flow shop 
problem, which is somewhat more restricted than the flexible job shop problem. 

3.1.1 Scheduling in general 

There are three dimensions to classify production schedules (Graves, 1981): 
1. Requirements generation; 
2. Processing complexity; 
3. Scheduling criteria. 

 
The first dimension makes a distinction in terms of an open shop versus a closed shop. In an open shop 
the production orders are requested by customers and no inventory is stocked. In a closed shop the 
customer requests are serviced from inventory. We also know this as customer order decoupling point 
(CODP), see Figure 3.1. 
 

 
 
 

Brynild’s production tasks are a result of inventory replenishment decisions. Therefore, Brynild is a 
closed shop scheduling problem and has a Make-to-Stock production line.  
 

Figure 3.1: CODP options for different production lines 
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The second dimension is primarily concerned with the number of processing steps associated with 
each production task. A common breakdown is the following: 

- One-stage, one-processor; 
- One-stage, parallel processors; 
- Multistage, flow shop; 
- Multistage, job shop. 

 
In multistage problems each task requires processing at different machines, where typically a strict 
precedence ordering for the machines is in state. The flow shop problem assumes that the tasks are 
to be processed on the same set of machines with an identical precedence. The job shop problem 
(JSP) is the most general production scheduling problem. In this classification, there are no restrictions 
on the processing steps and alternative routing is allowed. We describe Brynild’s problem as a two-
stage problem with a single machine in the first stage and parallel machines (drying cabinets) in the 
second stage. Brynild’s problem is not a typical two-stage problem, because there are no buffer points 
between the first stage and the second stage, as this is a continuous process. Both the flow shop and 
the job shop can have single and parallel machines in different stages.  
 
The third dimension indicates the measures that are used to evaluate the schedules. Two types of 
objective functions are schedule cost and schedule performance. The cost includes fixed costs, 
associated with set-ups, variable production and overtime costs, inventory costs, shortage costs, and 
expediting costs. The performance can be measured in many ways. Common measures are the 
utilization level of the resources, tardiness, and flow time. For Brynild’s problem the performance is 
more important than the costs as the planning already considers the costs.  
 
In Section 3.2 we research the processing complexity further by analysing the job shop problem and 
the flow shop problem. 

3.1.2 Job shop scheduling 

The job shop problem is first introduced by Muth & Thompson (1963). A simple job shop problem 
contains 𝑛 jobs that need to be processed on 𝑚 machines; the machines can process 1 job at the time. 
The processing of a job on a machine is called an operation and cannot be interrupted. The operation 
requires a given time on that specific machine. Each job consists of 1 or more operations, which 
need(s) to be completed in a specified sequence, forming a chain of operations. The sequencing of a 
job shop is allocating time on a machine for the operations, the sequence itself should be feasible and 
optimize the objective, which is classically minimize the make span.  
 
The shifting bottleneck procedure (Adams, Balas, & Zawack, 1988) is a well-known (approximation) 
method of the JSP. This procedure gives a mathematical impression of the JSP and how sequencing is 
mathematically formulated in general. 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                       𝑡𝑛         (3.3.1) 
𝑆𝑢𝑏𝑡𝑗𝑒𝑐𝑡 𝑡𝑜                    𝑡𝑗 − 𝑡𝑖 ≥ 𝑑𝑖                                                ∀(𝑖, 𝑗) ∈ 𝐴    (3.3.2) 

                                          𝑡𝑖 ≥ 0                                                          ∀𝑖 ∈ 𝑁    (3.3.3) 
                                          𝑡𝑗 − 𝑡𝑖 ≥ 𝑑𝑖  𝘝 𝑡𝑖 − 𝑡𝑗 ≥ 𝑑𝑗                      ∀(𝑖, 𝑗) ∈ 𝐸𝑘 , 𝑘 ∈ 𝑀  (3.3.4) 
 

In this method 𝑁 = {0,1, … , 𝑛) denotes the set of operations (jobs or tasks), where 0 and 𝑛 are the 
dummy operations for start and finish. 𝑀 is the set of machines, 𝐴 the set of precedence relations of 
the operations, and 𝐸𝑘 the set of operations to be scheduled on machine 𝑘. The processing time of 
operation 𝑖 is denoted by 𝑑𝑖 and 𝑡𝑖  refers to the start time of operation 𝑖.  
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The objective (3.3.1) refers to the make span, and minimizes the latest start time of the last operation, 
taking the following constraints into account: 

- Constraints (3.3.2) ensure that precedence relationships are considered; 
- Constraints (3.3.3) make sure that the starting time of a job cannot become negative; 
- Constraints (3.3.4) ensure that only one operation is processed on a machine at the same time. 

 
There are different job shop problems that consider resources and/or multiple plants (Zhang, Ding, 
Zou, Qin, & Fu, 2017). These JSPs with resources and/or multiple plants are out of scope for this 
research as they do not apply to the Brynild case. We do consider multiple stages; therefore, we 
analyse the flexible job shop problem (FJSP) in Section 3.2.2. The FJSP is an adaption on the JSP that 
includes the multi-purpose machine extension. 

3.1.3 Flexible Job Shop Problem 

The FJSP includes multi-purpose machine extension, which is a workplace with multiple machines and 
the operation can be processed on any among a set of available machines. Within this workplace the 
operation needs to be appointed to one of the machines. The operations might have different 
processing times on different machines (Pezzella, Morganti, & Ciaschetti, 2007). The FJSP introduces 
a further decision level besides the sequencing; namely the assignment of operations to suitable 
machines, also called routing. The FJSP can be categorized into two subproblems (Chaudhry & Khan, 
2016):  

1. A routing subproblem, where a suitable machine, among the available ones, needs to be 
selected to process the operation; 

2. A scheduling subproblem, where a feasible schedule is obtained by sequencing the assigned 
operations, thus a sequencing problem. 

There are two types of approaches to tackle this problem: hierarchical approaches and integrated 
approaches. In hierarchical approaches the assignment of operations to machines and the sequencing 
of the operations are treated separately. Thus, the assignment and sequencing are considered 
independently, this reduces the complexity of the problem (Xia & Wu, 2005). The first time this 
decomposition of the FJSP is used, is by Brandimarte (1993). The routing problem is solved using 
existing rules and thereafter the focus is on the sequencing problem. In integrated approaches, there 
is no differentiation between assignment and sequencing (Xia & Wu, 2005). The first integrated 
approach is presented by Dauzère-Pérès, Roux, & Lasserre (1998) where the neighbourhood structure 
made no distinction between reassigning and resequencing an operation.  
 
There is a wide ranch of different objectives for the FJSP, some examples are: make span, mean 
completion time, total tardiness, maximum lateness, total workload of machines and critical machine 
workload. Often multi-objective optimization algorithms are used to achieve the minimum make span 
and the minimum cost with a balanced workload on machines. Thereafter the operation sequence is 
obtained (Zhang, Ding, Zou, Qin, & Fu, 2017). The Pareto approach provides an alternative to the multi-
objective optimization. Different solutions are compared based on the Pareto dominance relation. 
This results in a set of multiple solutions that are all nondominated, meaning that none of the 
objectives can be improved without making one of the other objectives worse (Chiang & Lin, 2013).  
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3.1.4 Hybrid flow shop 

In hybrid flow shops (HFS), 𝑛 jobs need to be processed in a series of 𝑚 stages. The sequence of the 
jobs needs to be determined in every stage to optimize a certain objective. The characteristics of the 
HFS are the following (Ruiz & Vázquez-Rodríquez, 2009): 
 

1. The number of processing stages 𝑚 is at least 2; 

2. Each stage 𝑘 has 𝑀(𝑘) ≥ 1 machines in parallel and in at least one of the stages 𝑀(𝑘) > 1; 
3. All jobs are processed following the same production flow. A job might skip a stage provided 

it is processed in at least one of them; 
4. Each job j requires a processing time 𝑝𝑗𝑘 in stage 𝑘. 

 
In general, in HFSs (i) all jobs and machines are available at time 0, (ii) the parallel machines at a given 
stage are identical, (iii) each machine can only process 1 operation at the time and each job can be 
processed by only 1 machine at the time, (iv) set-up times are negligible, (v) pre-emption is not 
allowed, (vi) the capacity of buffers between stages is unlimited, and (vii) the data is deterministic and 
known in advance. 
 
The solution to a two-stage hybrid flow shop scheduling problem requires two aspects: the sequencing 
of the jobs on both stages and the assignment of the jobs to various machines at each stage (Gupta, 
1988). Next to that, Gupta (1988) proves that the HFS problem is NP-complete by proving Theorem 1.  
Theorem 1: For max (m1,m2)>1, the two-stage, hybrid flowshop problem is NP-complete even if the 
number of the machines at one of the two stages is one. 

3.2 ASSIGNMENT PROBLEMS 
In Chapter 1 we conclude that the drying area is Brynild’s bottleneck. The scheduling of the drying 
area consists of two elements, sequencing of the intermediates, and the assignment of intermediates 
to the drying cabinets. This is a complex problem and in general to overcome complexities that arise 
from many interrelationships it is suggested to concentrate solely on optimizing a defined segment 
(Williams, Pitts, & Kamery, 2004). 
 
In Section 3.1 we discuss different scheduling problems where we solely consider sequencing (JSP) 
and later consider both sequencing and routing/assignment (FJSP & HFS). In this section, we start by 
solely considering the assignment of the intermediates to drying cabinets, what we identify as an 
assignment problem (AP). The classic version of the AP is referred to as linear sum assignment problem 
(LSAP). The objective of the problem is finding the lowest cost assignment between 𝑛 tasks and 𝑛 
agents, with 1 task per agent and 1 agent per task. The costs 𝑐𝑖,𝑗, indicates the costs of assigning agent 

𝑖  to task 𝑗  (Burkard, Dell'Amico, & Martello, 2009). In Section 3.2.1 we discuss the generalized 
assignment problem, which presents the assignment part of Brynild’s problem best. In section 3.2.2 
we analyse whether it is possible to incorporate sequencing in the assignment problem. 

3.2.1 Generalized Assignment Problem 

Many variations on the LSAP have been introduced over the years. The generalized assignment 
problem (GAP) is one of these variations and is first presented by Ross & Soland (1975). The goal for 
the GAP, is finding the lowest cost assignment between 𝑛 tasks and 𝑚 agents, where 𝑛 > 𝑚, thus 
with multiple tasks per agent and 1 agent per task. The GAP is a NP-hard problem (Chakrabarty & Goel, 
2010). Therefore, a GAP that determines the existence of a feasible solution is NP-complete and small 
problem instances can be solved within reasonable time (Martello & Toth, 1990). 
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The mathematical formulation of the generalized assignment problem is: 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼          (3.1.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      ∑ 𝑟𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖                                                                         ∀𝑖 ∈ 𝐼𝑗∈𝐽    (3.1.2) 

                           ∑ 𝑥𝑖𝑗 = 1                                                                               ∀𝑗 ∈ 𝐽𝑖∈𝐼    (3.1.3) 

                           𝑥𝑖𝑗 ∈ {0,1}                                                                                 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽  (3.1.4) 

Here, 𝐼 = {1,2, … , 𝑚} is a set of agents (or locations) indices, 𝐽 = {1,2, … , 𝑛} is a set of task indices, 
𝑐𝑖𝑗 is the cost incurred for assigning agent 𝑖 is to task 𝑗, 𝑟𝑖𝑗 is the resource required by agent 𝑖 to carry 

out task 𝑗, and 𝑏𝑖 is the amount of resource available to agent 𝑖. The objective (3.2.1) is to minimize 
the total assignment costs, considering the following constraints: 

- Constraints (3.1.2) ensure that the capacity of the agents are not exceeded; 
- Constraints (3.1.3) make sure that every task is assigned to exactly 1 agent; 
- Constraints (3.1.4) are the domain constraints, where 𝑥𝑖𝑗 = 1 when agent 𝑖 is assigned to task 

𝑗, 0 otherwise. 
 
This problem presents Brynild’s assignment best, because in general Brynild has to assign more 
intermediates (tasks) to fewer drying cabinets (agents). In Brynild’s case, assigning an intermediate to 
a specific drying area incurs time instead of costs. The amount of resource is in our problem the 
capacity of each drying cabinet. This GAP is only one part of Brynild’s problem. After a static 
assignment, the intermediates still need move to the second stage and arrive at the assigned cabinet. 
In Section 3.2.2 we study the generalized quadratic assignment problem (GQAO) that incorporates 
movement.  

3.2.2 Generalized Quadratic Assignment Problem 

The GQAP is introduced by Lee & Ma (2003). The GQAP optimally assigns 𝑚 pieces of equipment to 𝑛 
locations, where 𝑚 > 𝑛 . Tasks are performing a specific sequence of operations and must move 
between equipment. Each piece of equipment must be assigned to exactly 1 location, and there can 
be multiple pieces of equipment at 1 location, as long as there is no violation of the space limitation. 
The objective is to find an assignment such that the total costs, consisting of assignment costs and 
transportation costs, is minimized. 
 
The mathematical formulation for the GQAP is: 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘 + 𝑣 ∑ ∑ ∑ ∑ 𝑞𝑖𝑗𝑑𝑘ℎ𝑥𝑖𝑘𝑥𝑗ℎ

 𝑛
ℎ=1

𝑛
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1

𝑛
𝑘=1

𝑚
𝑖=1     (3.2.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑠𝑖𝑥𝑖𝑘 ≤ 𝑆𝑘                                                                                   ∀𝑘𝑚
𝑖=1   (3.2.2) 

                      ∑ 𝑥𝑖𝑘 = 1                                                                                        ∀𝑖𝑛
𝑘=1    (3.2.3) 

       𝑥𝑖𝑘 ∈ {0,1}                                                                                             ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐾  (3.2.4) 
 

Here, 𝑖, 𝑗 = {1,2, … , 𝑚} is a set of equipment and 𝑘, ℎ = {1,2, … , 𝑛} is a set of locations. The following 
parameters and variable are indicated as: 

- 𝑐𝑖𝑘 is the cost incurred for assigning equipment 𝑖 is to location 𝑘; 
- 𝑞𝑖𝑗 is the flow volume (volume of all tasks) from equipment 𝑖 to equipment 𝑗; 

- 𝑑𝑘ℎ is the distance between location 𝑘 and location ℎ; 
- 𝑣 is the travel cost per unit distance and per unit flow volume; 
- 𝑠𝑖  is the space required by equipment 𝑖; 
- 𝑆𝑘  is the available space at location 𝑘. 

 
The objective (3.2.1) is to minimize the total costs, in assignment and transportation costs taking the 
following constraints into account: 

- Constraints (3.2.2) ensure that the space capacity of the location 𝑘 is not exceeded; 
- Constraints (3.2.3) make sure that every equipment is assigned to exactly 1 location; 
- Constraints (3.1.4) are the domain constraints, where 𝑥𝑖𝑘 = 1 when equipment 𝑖 is assigned 

to location 𝑘, 0 otherwise. 
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The GQAP has a form of transportation costs. In Brynild’s case this could be the time incurred by 
transporting the cooked mass to the drying area. However, this problem does not consider the 
occupation of a drying cabinet that comes with previous arrived and assigned jobs. The occupied 
drying cabinets and sequencing of intermediates is timing related. The timing is important to obtain a 
feasible solution for Brynild’s problem. 
 
Besides the GAP and GQAP we review other assignment problems. For example, the process allocation 
problem (Chu, 1969), which is considered a special class of the GQAP and the quadratic multiple 
knapsack problem (QMKP) (Hiley & Julstrom, 2006). The QMKP states that each task is assigned to at 
most 1 agent (location), which in our case could lead to no assignment for certain intermediates. 
Looking from the assignment perspective to Brynild’s problem, we do not result in in finding a 
complete problem that is fully relatable problem to Brynild’s case.  

3.3 DETERMINATION SCHEDULING PROBLEM BRYNILD: HFS 
We summarize the capabilities of the problems we review in Section 3.1 and Section 3.2 in Table 3.1. 
 

Table 3.1: Capabilities of the problems we review 

 JSP FJSP HFS GAP GQAP 

Parallel machines No Yes Yes Yes Yes 

Non-identical parallel machines No Yes No Yes Yes 

Sequencing/Timing Yes Yes Yes No No 

2-stages No Yes Yes No Yes 

Zero buffer space No No No No No 

 
The constraints for a general FJSP have the most in common with Brynild’s scheduling problem. 
However, the production line of Brynild is a flow shop. All intermediates follow the exact same order 
on the production line. Brynild’s production line is a special HFS case, which is far from the general 
HFS as:  

(i) Not all machines are available at time 0, as some drying cabinets can still be drying the 
intermediates from the previous week; 

(ii) The parallel machines are not identical, they can have different throughput times and 
capacity constraints; 

(iii) Each machine can in some cases process more than 1 operation at the time, however each 
job can indeed only be processed by 1 machine at the time; 

(iv) Set-up times are not neglected; 
(v) Pre-emptions are indeed not allowed, same as for the general HFS; 
(vi) Brynild has a two-stage process without buffer points between the single machine stage 

and multiple machine stage; 
(vii) Same as for the general HFS the data is deterministic and known in advance. 

 
An eighth point we like to mention is that Brynild has production time windows. This is not specifically 
mentioned for a general HFS, therefore we do not focus on the production time windows in the rest 
of the literature review. We do consider the production time windows in Chapter 4. Thus, Brynild’s 
problem is a two-stage hybrid flow shop with non-identical parallel machines, sequence dependent 
set-up times, production time windows and without any buffer points between the 2 stages.  
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3.4 TWO-STAGE HFS MATHEMATICAL DESCRIPTION 
There are not many mathematical formulations regarding a two-stage hybrid flow shop that is similar 
to the problem we identify in Section 3.3. In this section we present a mathematical formulation for 
the HFS that is partially relatable to Brynild’s problem. The HFS has a single machine in Stage 1 and 
identical parallel machines in Stage 2. Next, the HFS considers sequence dependent set-up times and 
unlimited buffer points (Lee, Hong, & Choi, 2015). In the formulation, job 0 is a dummy job to impose 
set-up time for the first job(s) and the processing time of job 0 is set to be zero. 
 
              𝑀𝑖𝑛 𝑧           (3.5.1) 
𝑠. 𝑡.  
              ∑ 𝑥0𝑗1 = 1𝑁

𝑗=1           (3.5.2) 

              ∑ 𝑥0𝑗2 = 𝑅𝑁
𝑗=1           (3.5.3) 

              ∑ 𝑥𝑖𝑗𝑘 = 1𝑁
𝑗=1 ,    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁,   𝑘 = 1,2   (3.5.4) 

              ∑ 𝑥𝑖𝑗𝑘 = 1𝑁
𝑖=0 ,      𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁,   𝑘 = 1,2   (3.5.5) 

              𝑐𝑗1 − 𝑐𝑖1 + 𝐵𝑖𝑔𝑀(1 − 𝑥𝑖𝑗1) ≥ 𝑠𝑖𝑗 + 𝑝𝑗1 ,    

                                                                          𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑁,   𝑗 = 1,2, … , 𝑁   (3.5.6) 

              𝑐𝑗2 − 𝑐𝑖2 + 𝐵𝑖𝑔𝑀(1 − 𝑥𝑖𝑗2) ≥ 𝑝𝑗2 ,    

                                                                          𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑁,   𝑗 = 1,2, … , 𝑁   (3.5.7) 
              𝑐𝑗2 − 𝑐𝑗1 ≥ 𝑝𝑗2 ,    𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁    (3.5.8) 

              𝑐𝑗𝑘 ≥ 𝑐0𝑘 ,    𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁, 𝑘 = 1,2   (3.5.9) 

              𝑧 ≥ 𝑐𝑗2 ,     𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑁    (3.5.10) 

              𝑥𝑖𝑗𝑘 ∈ {0,1},    ∀𝑖, 𝑗, 𝑘      (3.5.11) 

              𝑥𝑖𝑗𝑘 = 0,    ∀𝑖 = 𝑗, 𝑘 = 1,2    (3.5.12) 

              𝑐𝑗𝑘 ≥ 0,    𝑓𝑜𝑟 𝑗 = 0,1, … , 𝑁, 𝑘 = 1,2   (3.5.13) 

 
Here, 𝑖, 𝑗 = {1,2, … , 𝑁} is a set of jobs and 𝑘 = {1,2} is the set of stages. The parameters are: 

- 𝑠𝑖𝑗 is the set-up time between job 𝑖 and job 𝑗; 

- 𝑝𝑗𝑘 is the processing time of job 𝑗 at stage 𝑘; 

- 𝑅 is the number of identical parallel machines; 
- BigM is a very large value. 

 
The variables in the formulation present: 

- 𝑐𝑗𝑘  is the completion time of job 𝑗 at stage 𝑘; 

- 𝑥𝑖𝑗𝑘 is 1 when job 𝑖 is processed directly before job 𝑗 at stage 𝑘, 0 otherwise. 

 
The objective (3.5.1) is to minimize the make span, taking the following constraints into account: 

- Constraints (3.5.2) and (3.5.3) ensure that the jobs are scheduled on a machine at Stage 1 and 
on 𝑅 machines at Stage 2 by assigning job 0 to the 𝑅 machines; 

- Constraints (3.5.4) and (3.5.5) ensure that each job is sequenced immediately before and after 
only 1 job, respectively, on only 1 machine at each stage. The summation is over different 
ranges as job 0 does not have predecessor; 

- Constraints (3.5.6) ensure that the completion time of job 𝑗 at Stage 1 is greater than that of 
job 𝑖 by at least the processing time of job 𝑗 at Stage 1 plus the set-up time between jobs 𝑖 and 
𝑗, if job 𝑖 is sequenced immediately before job 𝑗 at Stage 1; 

- Constraints (3.5.7) ensure that the completion time of job 𝑗 at Stage 2 is greater than that of 
job 𝑖 by at least the processing time of job 𝑗 at Stage 2, if job 𝑖 is sequenced immediately before 
job 𝑗 on a machine at Stage 2; 

- Constraints (3.5.8) ensure that the completion time of a job at Stage 2 is always greater than 
that of the same job at Stage 1 by at least the processing time of the job at Stage 2; 

- Constraints (3.5.9) force job 0 to be sequenced first; 
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- Constraints (3.5.10) link the objective function and the decision variables; 
- Constraints (3.5.11), (3.5.12) and (3.5.13) impose the boundary of the decision variables. 

 

This formulation of a HFS is introduced by Lee, Hong & Choi (2015) to describe the scheduling problem 
in more detail. This mathematical model is not solved as it is a relatively large-sized problem, which 
needs to be solved within reasonable short time. There are differences between this two-stage HFS 
and Brynild’s two-stage HFS. Firstly, Brynild’s HFS includes unidentical parallel machines instead of 
identical parallel machines. Next, Brynild’s problem needs to incorporate production time windows. 
Lastly, the HFS we analyse in this section has unlimited buffer capacity between the 2 stages, while 
Brynild has a continuous production line and therefore, zero buffer capacity between the 2 stages. 

3.5 SOLUTION APPROACHES TWO-STAGE HFS 
In this section we examine various approaches to solve a hybrid flow shop with: 

- Non-identical parallel machines; 
- Sequence depending set-up times; 
- Zero buffer capacity. 

We do not research the production time windows in this literature research as we mention in Section 
3.3. 
 

There is very limited literature on HFS problems without buffer capacity. We find 5 articles of which 3 
articles consider a problem setting that is irrelevant for Brynild’s problem (Wei, Wu, Jiang, & Cheng, 
2019), (Zhang, Rong, & Liu, 2014) and (Chen, Pan, Zhang, Ding, & Li, 2019). Next, we analyse a 
promising abstract, however the remainder of this paper is written in Chinese, a language skill we do 
not possess (Zhang, Li, Storer, & Yan, 2013). Thus, there is 1 paper that partially represents Brynild’s 
two-stage HFS without buffer capacity.  
 

In Section 3.5.1 we research the two-stage HFS without buffer capacity and other HFS problems that 
include finite buffer capacity. We consider finite buffer capacity as well, to research the influence of 
the buffer points and what solution approaches are applied to those types of problems. In Section 
3.5.2 we identify solution approaches for HFSs with sequence dependent set-up times and in Section 
3.5.3 we discuss solution approaches for HFSs with non-identical parallel machines. We cannot find 
much literature on HFSs including a combination of 2 of Brynild’s characteristics and no literature at 
all on the 3 characteristics combined. To broaden our knowledge, we research solutions for flexible 
job shop problems as well. A summary of this literature study is given in Appendix B. From this 
literature study we conclude that also in this area we are not able to find representing FJSPs without 
buffer point capacity and therefore no new insights in solution approaches for this type of problem. 

3.5.1 HFS with finite intermediate buffers 

The only paper that includes a two-stage hybrid flow shop problem without buffer points interesting 
for the Brynild case is applied to a hospital setting (Dekhici & Belkadi, 2010). The first stage in this 
paper are the operating rooms, and the second stage the beds to which the patient needs to be 
assigned. Dekhici & Belkadi propose a local search for constraint satisfaction in the initial feasible 
solution and a tabu search (TS) with a restricted neighbourhood system for a make span optimization. 
TS is a meta-heuristic based on the local search principle. TS begins from an initial solution and chooses 
at each iteration the best solution in the current neighbourhood, even when the best solution in the 
current neighbourhood does not improve the quality of the current best solution found. Therefore, TS 
can escape a local optimum. TS makes use of a tabu list that includes certain actions that are previously 
executed. The tabu list has a certain length and when the list is full, the principle first in first out occurs 
and one the previous action can be executed again. The efficiency of approaches based on local search, 
such as tabu search, depends heavily on the quality of the initial solution (Ennigrou & Ghédira, 2008). 
For the hospital problem the TS provides feasible schedules, however there is no comparison with 
other meta-heuristics to determine if TS creates good schedules (Dekhici & Belkadi, 2010).  
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We also research a hybrid flow shop problem with limited buffer capacity (Yaurima, Burtseva, & 
Tchernykh, 2009). This problem includes unrelated machines, sequence-dependent set-up time, 
availability constraints and limited buffers. In the paper they propose a genetic algorithm (GA) to 
minimize the make span. Many authors separate sequencing and assignment decisions in the HFS 
problem. However, in this paper they follow the way proposed by Ruiz and Maroto (2006), where the 
assignment of jobs to machines and the sequence in each stage is done by the evaluation function. 
The change Yaurima, Burtseve & Tchernykh (2009) make to this function is that a job is assigned to 
the machine that can finish the job at the earliest time at a given stage instead of assigning the job to 
the first machine available. 
 
Another HFS scheduling problem with finite intermediate buffers is solved with a TS (Wang & Tang, 
2009). The objective is to minimize the sum of weighted completion time of all jobs. A TS heuristic 
where a scatter search mechanism is incorporated is proposed. The TS has two neighbourhood 
structures; 1) reinsertion, and 2) swap, the scatter search is incorporated to improve the diversity of 
the search procedure. The solution denotation is a permutation of all jobs representing their 
processing order in the first stage and the greedy constructive procedure that obtains the 
corresponding complete schedule. The TS provides good solutions compared to the lower bound and 
outperforms the Lagrangian relaxation algorithm. The Lagrangian relaxation is a method that 
approximates the problem by incorporating adapted constraints as punishment in the objective, 
instead of using constraints.  

3.5.2 HFS with sequence dependent set-up times 

HFSs with sequence dependent set-up times (SDST) are commonly known as SDST hybrid flow shops. 
Very limited studies address this exact type of problem, as the set-up time is often ignored in literature 
or considered as a part of the processing time. Zandieh, Ghomi and Husseini (2006) compare an 
immune algorithm (IA) to a random key genetic algorithm (RKGA), to solve the SDST HFS. IA and RKGA 
are both generic algorithms. AI is based on the biological immune theory. An operator accomplishes 
immunity by two steps: 1) a vaccination and 2) an immune selection, of which the former is used for 
raising fitness and the latter is for preventing the deterioration. RKGA is based on an array of 𝑛 random 
keys, where a random key is a real number randomly generated. The objective used in the paper is to 
minimize the make span and Zandieh, Ghomi and Husseini (2006) establish that in their paper the IA 
outperforms the RKGA.  
 
Li (1997) considers a two-stage hybrid flow shop with a single machine in Stage 1 and multiple identical 
parallel machines at Stage 2. Li (1997) characterizes the flow shop by major and minor set-ups, part 
families, and batch production allowing to split jobs at Stage 2. The objective is to minimize the make 
span. Li (1997) develops 2 allocation policies: forward heuristic (FH) and backward heuristic (BH). The 
FH starts with sequencing of Stage 1 and allocates the jobs to machines afterwards. The advantage of 
the FH is that it is easy to understand and implement. The BH starts with allocating the jobs to 
machines at Stage 2 and sequences the jobs later. Li (1997) finds that the Backward Heuristic is in 
general superior to the Forward Heuristic.  
 
Another HFS with sequence depending set-up times evaluates multiple meta-heuristics (Bozorgirad & 
Logendran, 2016). They comprehensively address the question of what type of meta-heuristic 
algorithm is most appropriate to solve these types of problems. The paper reviews tabu search, 
simulated annealing (SA) and the genetic algorithm. The objective of the scheduling problem is to 
minimize a linear combination of the total weighted completion time and the total weighted tardiness 
of the jobs. In general, the GA performs the best. However, when we only evaluate interesting 
instances to the Brynild case, we observe that in most instances the TS and/or the SA 
outperformance(s) or match(es) the results of the GA.  
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3.5.3 HFS with non-identical machines 

HFS with non-identical machines is also referred to as HFS with unrelated parallel machines. The 
unrelated parallel machines have different run times for the same job due to different machine 
capabilities. We discuss an HFS with unrelated parallel machines where they consider pre-determined 
groups of jobs (Shahvari & Logendran, 2016). The objective is to minimize the weighted sum of the 
completion time and total tardiness. Shahvari & Logendran (2016) propose a meta-heuristic algorithm 
based on tabu search. The tabu search moves back and forth between batching and scheduling phases. 
Bozorgirad & Logendran (2013) also use a tabu search to solve an HFS with unrelated-parallel 
machines. In this paper the unrelated-parallel machines indicate that not all machines can process all 
jobs. This is relevant as some of Brynild’s intermediates cannot be processed by every drying cabinet. 
 
Aqil & Allali (2020) discuss a hybrid flow shop with unrelated parallel machines under constraints of 
sequence dependent set-up time. The objective is to minimize the total tardiness of all jobs. Two 
methods are proposed to solve the problem, the iterative local search (ILS) and the iterated greedy 
(IG) meta-heuristics. The ILS is based on two main phases, the first phase starts from an initial solution, 
it consists of exploring the neighbourhood by a perturbation procedure. The second phase, is allowing 
the local search to accept or reject the new solution according to a given criterion. The IG is based on 
two main steps, the first step consists of two phases, the destruction phase and the reconstruction 
phase. The second step is the exploration in local search, which is important for the search in the 
neighbourhood of the current solution. Aqil & Allali (2020) consider an initial solution set generated 
using priority rules. They classify the jobs in descending order based on the priority rules to obtain a 
sequence to number the jobs. The further scheduling of these solutions is ensured by the Nawaz-
Enscore-Ham (NEH) algorithm and the greedy randomized adaptive search (GRASP) procedure. In the 
NEH two subsets of the first two jobs are created. Then an iteration from job 3 to 𝑛 is conducted by 
inserting the new job in the different positions of the current built solution and remembering the 
sequence with the smallest tardiness. In the GRASP a job is selected from a restricted candidate list to 
be scheduled in the current sequence at an interval established by a margin of choice given by the 
objective function. Aqil & Allali (2020) find that the IG algorithm based on NEH initialization heuristic 
gives a good qualitive start solution that has a good convergence time to the best solution.  
 
An improved artificial bee colony (IABC) algorithm for the HFS with unrelated parallel machines is also 
proposed (Li, Li, Gao, & Meng, 2020). The IABC adopts a greedy iterative strategy to generate high 
quality initial solutions. Next to that the IABC also adopts the advantages of simulated annealing and 
retention mechanism. In the paper they compare IABC to GA and IG, where IABC performs the best, 
however the iterative greedy algorithm is a very close second.  
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3.6 CONCLUSION 
After an extensive literature review in Section 3.1 and Section 3.2, we come to the conclusion in 
Section 3.3 that the Støperi 1 line of Brynild is a two-stage hybrid flow shop with non-identical parallel 
machines, sequence dependent set-up times, production time windows, and without intermediate 
buffer points.  
 
We study 6 different types of HFS and their solution approaches. We present the 6 different HFS in 
Table 3.2.  
 

Table 3.2: Different HFS models 

 
Model 

Zero buffer 
points 

 
Limited buffer capacity 

Non-identical parallel 
machines 

 
SDST 

1 X    

2  X   

3   X  

4    X 

5   X X 

6  X X X 
 

In Table 3.3, we summarize the various solution approaches for the HFS problems from Table 3.2, and 
the source of the paper that we obtain the solution approach from. 
 

Table 3.3: Heuristics used to solve the HFS problems and the source 

 1 2 3 4 5 6 

TS (Dekhici & 
Belkadi, 
2010) 

(Wang & 
Tang, 
2009) 

(Shahvari & 
Logendran, 
2016) 

(Bozorgirad & 
Logendran, 2016) 

  

GA    (Bozorgirad & 
Logendran, 2016) 

 (Yaurima, 
Burtseva, & 
Tchernykh, 
2009) 

SA    (Bozorgirad & 
Logendran, 2016) 

  

IA    (Zandieh, Ghomi, 
& Husseini, 2006) 

  

IABC   (Li, Li, Gao, 
& Meng, 
2020) 

   

RKGA    (Zandieh, Ghomi, 
& Husseini, 2006) 

  

ILS     (Aqil & 
Allali, 
2020) 

 

IG   (Li, Li, Gao, 
& Meng, 
2020) 

 (Aqil & 
Allali, 
2020) 

 

FH    (Li S. , 1997)   

BH    (Li S. , 1997)   

Mathematical 
model 

   (Lee, Hong, & 
Choi, 2015) 
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The HFS is a complex scheduling method. In general, to overcome the scheduling complexities that 
arise from many interrelationships, near optimal solutions are suggested, or it is suggested to 
concentrate solely on optimizing a defined segment within the total operational framework (Williams, 
Pitts, & Kamery, 2004). This is exactly what we see in our literature review, since all HFSs that we find 
are solved using (meta) heuristics to find a (near) optimal solution and the HFSs with limited buffer 
capacity optimize only one defined segment.  
 
Using Table 3.3 we conclude that the tabu search is most frequently used to solve problems that are 
similar to Brynild’s problem. From our research regarding solution approaches for FJSPs we conclude 
that TA and GA are the most common used as well. However, in Brynild’s problem there is no buffer 
capacity between the 2 stages and production time windows are in place. Due to these two 
characteristics, is it difficult to obtain good solutions using an integrated meta-heuristic. When using 
an integrated meta-heuristic a lot of solutions the heuristic creates are infeasible. Some infeasible 
solutions can be useful to escape a local optimum, however too many infeasible solutions make it very 
difficult to obtain a (near) optimal solution 
 
Another option to solve the problem is to separate the assignment and sequence and use a meta-
heuristic on one part of the problem. Because when the assignment (sequence) changes the sequence 
(assignment) must most likely be adapted accordingly to create a feasible solution. Therefore, we can 
apply a meta-heuristic to the assignment (sequence) and enumerate the sequence (assignment) of 
the jobs to obtain the optimal sequence (assignment) for that assignment (sequence). 
 
Luckily, the instances of Brynild’s problem are likely small enough to solve within reasonable time 
using a Mixed Integer Linear Programming (MILP) model. In Chapter 4 we present our MILP model 
that represents Brynild’s scheduling problem. To develop this Brynild’s MILP we use the MILP from 
Section 3.4 as a guideline. 
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4 MILP DESCRIPTION OF BRYNILD’S PRODUCTION LINE AND 3 HEURISTICS 

In this chapter we answer the following research question: ‘How can we develop a scheduling model 
that improves the throughput of the production line?’. As we mention in Chapter 3, we design a MILP 
including Brynild’s uncommon characteristic; no buffer point capacity. To develop a scheduling model, 
we determine the scope and clarify our modelling assumptions in Section 4.1. In Section 4.2, we 
describe the mathematical model and the objective function to improve the throughput of the 
production line. In Section 4.3, we present 3 heuristics based on our MILP. Lastly, in Section 4.4 we 
conclude this chapter. 

4.1 SCOPE AND ASSUMPTIONS OF THE MATHEMATICAL MODEL 
Recall that first Brynild focuses solely on the Støperi 1 line. In our solution approach we focus only on 
Støperi 1 as well, as this line contains the drying area, the bottleneck. If we consider the entire 
production line, including the packaging line, the model becomes very large and complicated. Due to 
the buffer points between Støperi 1, Drage Sukker, and Godteri Pakking, we consider these 3 lines as 
3 separate scheduling tasks, as we assume that there is infinite buffer capacity between the lines. In 
practice Brynild’s buffer capacity is limited, however Brynild indicates that the specific production day 
within a week for each intermediate has little effect on the buffer capacity. For the capacity of the 
buffers, it is far more important in what week Brynild produces the intermediate. Therefore, we 
assume infinite buffer capacity between the 3 lines, as Brynild considers the buffer capacity while 
planning the production orders. 
 

The main focus of scheduling Støperi 1 is the sequencing/start times of the production orders and the 
assignment of intermediates to the drying cabinets. The start times have a direct effect on how we 
can assign the jobs to drying cabinets. After demoulding, the intermediates are continuously 
transported to the oiling or sanding process in Støperi 1. Both the oiling and sanding process have 
enough production capacity to handle the output of the demoulding process, independent of the 
sequencing and assignment in the preceding processes. Therefore, we exclude the oiling and sanding 
process from our analysis. Concluding, we focus on the start times of the production orders and the 
assignment of intermediates to drying cabinets.  
 

Given this focus, we model the scheduling problem as a two-stage hybrid flow shop, where the drying 
cabinets are non-identical parallel machines. We include sequence dependent set-up times, 
production time windows, and no buffer capacity between the 2 stages. The next step is to define how 
we construct and use the input data.  
 

The complexity of the mathematical model depends on how much we pre-process the input data. 
During pre-processing, we make important decisions before solving the model. More pre-processing 
indicates a smaller solution space, and therefore the MILP is less complex and requires less 
computation time. We assume that the input data is structured in such a way that jobs consist of 1 or 
more intermediates, which can dry together and, in terms of quantity always fit in 1 drying cabinet. 
This assumption has the advantage that we do not need to include any constraints and variables for 
batching in the mathematical model, which results in a more comprehensible MILP. The advantage of 
pre-determining the batches is that the schedule we create connects better to practice as undesired 
outcome for quantity production and the sequence of intermediates drying together is already 
covered by the pre-processing. The disadvantage is the loss of flexibility. In Appendix C we have a 
detailed discussion concerning this assumption for the input data together with various alternatives. 
We conclude from this detailed discussion that we need to make another assumption as well. To 
obtain the input data structure we must assume that all drying cabinets have the same capacity as 
otherwise we cannot know the maximum size of a job. Therefore, we combine the 2 Catelli drying 
cabinets in the model and we also combine the 2 Dynaflow cabinets. 
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Next to the input data we make some other assumptions. We assume that the drying cabinets are 
available at the beginning of the week. This is a reasonable assumption as in a 2-shift schedule there 
are 64 hours available for drying in the weekend and in a 3-shift system there are 56 hours available. 
Table 4.1 presents the percentage of the intermediates that always finish drying during the weekend 
when Brynild produces them Friday afternoon. 
 
Table 4.1: Percentage of intermediates to complete drying before the start of the new week 

 New drying cabinets Old drying cabinets 

2-shift 97,4% 73,7% 
3-shift 81,6% 68,4% 

 
In the mathematical model we focus on the end time of the drying cabinets and not on the time when 
we empty the drying cabinets. Therefore, we do not consider the maximum time an intermediate is 
allowed to stay in the drying cabinet. This is reasonable as the drying cabinets can be emptied without 
having to re-fill the drying cabinet immediately. Emptying, without refilling does require more 
handling. However, the schedule should not depend on the fact that the drying cabinet is solely 
emptied when a new intermediate enters the drying cabinet, as this is not necessary for the 
production line.  
 
Other additional assumptions are: 

- All machines in the production line are available at all times; no breakdowns or maintenance; 
- Jobs process always without error; 
- We cannot interrupt job processing, so no pre-emption; 
- We cannot process jobs on more than 1 machine simultaneously; 
- A machine may only process 1 job at a time; 
- All data is known deterministically when creating the schedule; 
- We do not consider set-up time between weeks.  

4.2 MATHEMATICAL MODEL 
In this section we describe and explain the mathematical model of the two-stage HFS considering: 

- No buffer points; 
- Sequence dependent set-up times; 
- Non-identical parallel machines; 
- Production time windows. 

 
The hybrid flow shop consists of the following stages: 

- Stage 1: a single line including sequential processes such as, set-up of the line, cooking, and 
moulding the confectionary; 

- Stage 2: the parallel drying cabinets. Stage 2 needs to consider the moulding duration as well. 
Stage 2 starts when the moulding of the intermediate starts and ends when the intermediate 
finishes drying. 

 
The moulding time is taken into account in Stage 1 and in Stage 2. This does not mean we consider 
the moulding time twice. However, Stage 1 and Stage 2 do overlap during the moulding time as both 
the single line and one of the parallel machines need to be available during moulding.  
 
We present the indices, parameters, and variables in Section 4.2.1. Section 4.2.2 discusses the 
constraints and Section 4.2.3 presents the objective we select. 
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4.2.1 Indices, Parameters and Variables 

In this section we describe all the indices, parameters, and variables we use in our mathematical 

model. 

Indices 
𝑗, 𝑖 ∈ 𝐽 Jobs, including 2 dummy jobs, dummy job 1 at the beginning and dummy job 2 at 

the end of each schedule 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job 𝑗 in hours 

𝑣𝑗,𝑐  Drying time of job 𝑗 in drying cabinet 𝑐 in hours 

𝑠𝑖,𝑗 Set-up time of job 𝑗 after job 𝑖 for Stage 1 in hours 

𝑘𝑗  Cooking time for job 𝑗 in hours 

𝑜𝑝 First possible non-negative start time of processing day 𝑝 (day 1 has as start time 0) 

𝑙𝑝 Latest possible non-negative end time in hours of processing day 𝑝  

𝑔𝑗,𝑐  Binary parameter, indicating whether job 𝑗, can dry in drying cabinet 𝑐 (𝑔𝑗,𝑐 = 1), or not 

(𝑔𝑗,𝑐 = 0) 

𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job 𝑗 

𝑇𝑗  Duration of job 𝑗 in Stage 1 (set-up, cooking, and moulding) 

𝑁𝑗 Start moulding time of job 𝑗 

𝐸𝑗 End time of job 𝑗 in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job 𝑗 in cabinet 𝑐 at Stage 2, after drying 

 
Binary variables 
𝑊𝑗,𝑝 Indicates whether job 𝑗 starts processing at day 𝑝 for 𝑊𝑗,𝑝 = 1, otherwise 0 

𝑋𝑖,𝑗  Indicates whether job 𝑗 is sequenced somewhere after job 𝑖 in Stage 1 and therefore in Stage 

2 as well for 𝑋𝑖,𝑗 = 1, otherwise 0 

𝑌𝑗,𝑐 Indicates whether job 𝑗 is assigned to cabinet 𝑐 for 𝑌𝑗,𝑐 = 1, otherwise 0 

𝑍𝑖,𝑗 Indicates whether job 𝑗 is sequenced directly after job 𝑖 in Stage 1 for 𝑍𝑖,𝑗 = 1, otherwise 0 

 
Figure 4.1 presents the parameters (durations) and variables (time points) for Stage 1.  
 
 
 
 
 
 
 
 
 
 
  

Figure 4.1: Two intermediates scheduled at Stage 1 

 

 

𝐵𝑖  𝐸𝑖≤ 𝐵𝑗  
𝑁𝑖 

𝑠ℎ,𝑖 𝑘𝑖  𝑚𝑖 𝑠𝑖,𝑗 𝑚𝑗 

𝐸𝑗 

𝑁𝑗 

𝑘𝑗  

𝑇𝑖  𝑇𝑗  
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In Figure 4.1 we schedule 2 jobs 𝑖 and 𝑗 in Stage 1. We schedule job 𝑖 after a job ℎ. Job 𝑖 starts at time 
𝐵𝑖  and at this time the set-up from job ℎ to job 𝑖 starts with duration 𝑠ℎ,𝑖. After the set-up, Brynild can 

start cooking job 𝑖 that has a duration of 𝑘𝑖. Directly after cooking, the time point 𝑁𝑖 indicates the start 
of the moulding process at which a drying cabinet must be available as well. The moulding has a 
duration of 𝑚𝑖 . Directly after moulding at time point 𝐸𝑖 , job 𝑖  has completely entered the drying 
cabinet and job 𝑖 exits the single line (Stage 1). The total time job 𝑖 is in Stage 1 is 𝑇𝑖 . At time point 𝐸𝑖, 
job 𝑗 can start processing at Stage 1. The begin time of job 𝑗, 𝐵𝑗 , must therefore start at the same time 

or later than the end time of the previous job, 𝐸𝑖. When job 𝑗 starts, it goes through the same cycle as 
job 𝑖. 
 
For job 𝑖, Stage 2 starts at timepoint 𝑁𝑖, see Figure 4.1. At time 𝑁𝑖 one of the five drying cabinets needs 
to be available for job 𝑖. During the moulding time, the drying cabinet is emptied and filled again. Job 
𝑖 dries in a drying cabinet that is able to process this job. The drying time depends on the drying cabinet 
the job is assigned to.  

4.2.2 Constraints 

We summarize all the constraints in 20 mathematical (in)equalities. In this section we start with the 
constraints for Stage 1, then the constraints for Stage 2, and end with the general constraints.  
 
Stage 1 constraints 
Constraint [4.1.1] states that job 𝑗 and job 𝑖 process in series. We schedule job 𝑖 before job 𝑗, or job 𝑗 
before job 𝑖, as only 1 of these statements can be true. Note that we cannot schedule a job before or 
after itself thanks to Constraint [4.1.2]. 
 

𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1    ∀𝑖, 𝑗    𝑖 ≠ 𝑗    [4.1.1] 

 
𝑋𝑗,𝑗 = 0    ∀𝑖 = 𝑗     [4.1.2] 

 
 
Constraint [4.1.3] makes sure that we never schedule job 𝑗 directly after job 𝑖 if we do not schedule 
job 𝑗 somewhere after job 𝑖 in general. These constraints also enforce 1 schedule, as we do not allow 
multiple sub-schedules. Without this constraint it could occur that we schedule job 𝑖 directly after job 
𝑗  and schedule job 𝑗  in general after job 𝑖 . We want to enforce that 𝑍𝑖,𝑗  and 𝑋𝑖,𝑗  have the same 

sequence.  
 

𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗     ∀i, 𝑗    𝑖 ≠ 𝑗    [4.1.3] 

 
 
We introduce 2 dummy jobs, which we locate at the start and the end of the production schedule. We 
need these dummy jobs to obtain values for 𝑍𝑖,𝑗 . Without the dummy jobs we do not know, which job 

has no predecessor and, which job has no successor before we start scheduling.  
 
Constraint [4.1.4] assures dummy job 1 is the first job in the schedule as we cannot schedule any other 
job before dummy job 1. Constraint [4.1.5] assures that dummy job 2 is last job as we cannot schedule 
any other job behind dummy job 2. 
 

𝑋𝑖,𝑗 = 0    𝑗 = 𝑑𝑢𝑚𝑚𝑦 1     ∀𝑖   [4.1.4] 

 
𝑋𝑖,𝑗 = 0    𝑖 = 𝑑𝑢𝑚𝑚𝑦 2      ∀𝑗    [4.1.5] 
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Constraint [4.1.6] ensures that we schedule each job directly after only 1 other job. The constraints 
leave out dummy job 1 for 𝑗 as we schedule this job first. Constraint [4.1.7] ensures that we schedule 
each job directly before only 1 other job, except for dummy job 2. 
 

∑ 𝑍𝑖,𝑗𝑖∈𝐽 = 1     ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1     𝑖 ≠ 𝑗   [4.1.6] 

 
∑ 𝑍𝑖,𝑗𝑗∈𝐽 = 1     ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2     𝑖 ≠ 𝑗   [4.1.7] 

 
 
The cooking time, moulding time, and the set-up time of job 𝑗 together determine the duration of job 
𝑗 in Stage 1, see Constraint [4.1.8]. The set-up time is the summation over all jobs 𝑖  that we can 
schedule before job 𝑗. We schedule only one of these jobs 𝑖s directly before job 𝑗, as 𝑍𝑖,𝑗  has the value 

of 1 for only one specific job 𝑖. We add this set-up time to the duration of job 𝑗 in Stage 1. Dummy jobs 
can induce set-up times at the beginning or end of the week when we desire.  
 

𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗    [4.1.8] 

 
 
Constraint [4.1.9] states that we calculate the end time of job 𝑗 in Stage 1 by adding the duration of 
job 𝑗 in Stage 1 to the begin time of job 𝑗.  
 

𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗    [4.1.9] 

 
 
Constraint [4.1.10] ensures that jobs do not overlap in Stage 1. 𝑍𝑖,𝑗  is 1 if job 𝑗 is the immediate 

successor of job 𝑖. In this case, the difference between the Stage 1 end time of job 𝑗 and the Stage 1 
end time of job 𝑖 should be larger than the duration of job 𝑗 at Stage 1. If we do not schedule job 𝑗 
directly after job 𝑖, 𝑍𝑖,𝑗  is 0, and this relation does not have to hold. These constraints apply to all jobs 

𝑖 and jobs 𝑗, however job 𝑖 cannot be the same job as job 𝑗.  
 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗   [4.1.10] 

 
 
Constraint [4.1.11], [4.1.12], and [4.1.13] make sure that the jobs we schedule at Stage 1 stay within 
the production time windows. These constraints assure that every job 𝑗 needs to start, and end within 
the same processing day. Constraint [4.1.11] states that we can schedule job 𝑗 in only 1 time window. 
 

∑ 𝑊𝑗,𝑝 = 1𝑝∈𝑃      ∀𝑗    [4.1.11] 

 
 
Constraint [4.1.12] ensures that when we schedule job 𝑗 on day 𝑝, thus when  𝑊𝑗,𝑝 is 1, the job does 

not start before processing day 𝑝 starts. Because, when we schedule job 𝑗 on day 𝑝, the begin time of 
job 𝑗, 𝐵𝑗 , needs to be larger than or equal to the begin time of day 𝑝, 𝑜𝑝. Constraint [4.1.13] ensures 

that job 𝑗 finishes before the end, 𝐸𝑗, of day 𝑝, 𝑙𝑝. 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝∈𝑃 ) ≤ 𝐵𝑗    ∀𝑗    [4.1.12] 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝∈𝑃     ∀𝑗    [4.1.13] 
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Stage 2 constraints 
Constraint [4.1.14] assures that the start moulding time of job 𝑗 in Stage 1 is the same or larger than 
the end time of job 𝑖 in Stage 2. This is only the case when we schedule job 𝑖 somewhere before job 𝑗, 
and we assign jobs 𝑖 and 𝑗 to the same drying cabinet. So, if we do not schedule job 𝑖 somewhere 
before job 𝑗 or if we do not assign job 𝑖 and job 𝑗 to the same drying cabinet, BigM ensures that the 
constraint is always fulfilled, independent of the values for 𝐷𝑖,𝑐 and 𝑁𝑗. 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀i, 𝑗, 𝑐    𝑖 ≠ 𝑗   [4.1.14] 

 
We indicate the moulding start time of job 𝑗 by the end time of job 𝑗 of which we subtract 
the moulding time, Constraint [4.1.15]. 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗     ∀𝑗    [4.1.15] 

 
We calculate the end time of drying job 𝑗 in cabinet 𝑐, 𝐷𝑗,𝑐, by adding the drying time to 

the end of job 𝑗 at Stage 1. We only add the drying time when we assign job 𝑗 to drying 
cabinet 𝑐. Otherwise, the end-drying time of job 𝑐 is the same as the end time of job 𝑗 in 
Stage 1, Constraint [4.1.16]. 
𝐷𝑗,𝑐 = 𝐸𝑗 + 𝑣𝑗,𝑐 ∗ 𝑌𝑗,𝑐    ∀𝑗, 𝑐    [4.1.16] 

 
The fact that jobs get an end-drying time for cabinets to which we do not assign them, does not lead 
to further problems thanks to constraint [4.1.14]. We disregard these wrongfully assigned end-drying 
times with constraint [4.1.14] when we do not assign job 𝑗 to drying cabinet 𝑐. Therefore, the end-
drying time has no further influence on the other jobs.  
 
 
Constraint [4.1.17] forces us to assign every job 𝑗 to exactly 1 drying cabinet 𝑐, except for the 2 dummy 
jobs. 
 

∑ 𝑌𝑗,𝑐 = 1𝑐      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑦 2  [4.1.17] 

 
 
Constraint [4.1.18] ensures that we cannot assign job 𝑗 to cabinet 𝑐, when the drying cabinet cannot 
process this job. 
 

𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐     ∀𝑗, 𝑐     [4.1.18] 

 
 
General constraints 
Constraints [4.1.19] indicate the binary variables to be 0 or 1. 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 , 𝑌𝑗,𝑐 , 𝑍𝑖,𝑗   ∈ {0,1}    [4.1.19] 

 
Constraints [4.1.20] indicate that the different variables cannot become a negative value. 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐  ≥ 0    [4.1.20]  
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4.2.3 Objective 

Given these constraints, we can optimize the schedule of Brynild according to various objectives. 
Brynild proposes an objective to minimize the individual throughput time of each job to be able to 
produce more products per week. However, we do not select this objective, since minimizing the 
individual throughput time results in undesired effects on the schedule. Some undesired effects are 
drying as much as possible in the new drying cabinets and not necessarily starting Monday morning. 
We do not desire these 2 effects as Brynild regularly deals with unexpected changes, such as 
unplanned maintenance and additional production orders (that can maybe only dry in the new drying 
cabinets). Therefore, we desire to finish as early as possible in the week, so that Brynild can easier 
adapt the schedule through the week. When we schedule all orders at the end of the week we lose a 
lot of flexibility halfway through the week next to that, the probability increases that the schedule 
induces restrictions for the week after. 
 
The objective we select for our model is to minimize the make span, see [4.1.21].  

min [ max
𝑗,𝑐

𝐷𝑗,𝑐]        [4.1.21] 

 
We minimize the latest time that the last job finishes drying in one of the drying cabinets. The MILP 
enables us to schedule more quantity within a week than Brynild does now, which is Brynild’s initial 
desire. This objective can deal best with the unexpected changes and limits the restriction for the 
upcoming week by finishing drying as early as possible. Our objective spreads the work force as evenly 
as possible over the drying cabinets to finish all jobs as early as possible. This objective makes it easier 
to observe whether Brynild can increase the throughput. In Appendix C we present a detailed 
description regarding the selection of the objective and the advantages and disadvantages of various 
objectives.  
 
In Chapter 5 we introduce another objective solely optimizing Stage 1. We still consider Stage 2, 
however we do not optimize Stage 2. We use this model to quantify the effect of different objectives. 

4.3 HEURISTICS BASED ON OUR DEVELOPED MODEL 
In the MILP from Section 4.2 we consider multiple decision variables, resulting in a large solution 
space. Therefore, we expect (and observe during the experiments from Chapter 5) that the 
computation time of the MILP is relatively high.  
 
We base the heuristics on the MILP and not on (meta-)heuristics, such as local search, tabu search, or 
simulated annealing. We prefer to conduct further research regarding the possibilities of the MILP and 
how heuristics based on this MILP perform rather than developing a (new) heuristic, as there is very 
limit literature research based on this problem. We cannot apply a (meta-)heuristic without fully 
adapting the heuristic to our problem. During the adaption, the probability is high that (unknown) 
obstacles emerge. For example, when an operator for the (meta-)heuristic does not consider 
infeasible solutions, then escaping from a local optimum becomes very difficult. It is difficult to escape 
a local optimum as a local search (meta-)heuristic has to ‘navigate’ through large spaces of infeasible 
solutions to obtain a good solution. When the drying cabinet for a job on Stage 1 is not available the 
job jams the whole production line until the drying cabinet is available. When the job on Stage 1 is 
jamming the schedule too long we cannot schedule all jobs within the week, and the schedule 
becomes infeasible. We could temporarily discard the end time of the week to create more feasible 
schedules, which makes it for the operator of the heuristic easier to navigate. If we allow to 
temporarily discard the end time, we need to ‘remember’ much more schedules to later determine 
the best feasible schedule including the weeks end time. Next, we mislead the operator partially, 
therefore the operator uses more computation time to obtain schedules that we later find infeasible. 
This approach results in a larger solution space. To thoroughly navigate this larger solution space that 
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includes a lot of infeasible schedules the probability can arise that these heuristics require more time 
and memory than solving the MILP. Therefore, we do not focus on these (meta-)heuristics in this 
thesis.  
 
We find it useful to observe whether the MILP is still applicable as a basis when the problems require 
faster solving or if the problems become larger. Therefore, we introduce these 3 heuristics we base 
on our main model from Section 4.2: 

- Our MILP without sequence dependent set-up times; 
- Our MILP that we decompose in an assignment and a sequencing MILP, which we compute 

sequentially; 
- Our MILP with a maximum computation time of 10 minutes. 

 
We expect that these heuristics achieve (near) optimal solutions in less time than the main model. In 
Section 4.3.1 we describe the MILP without SDST, in Section 4.3.2 the decomposition of our MILP, and 
in Section 4.3.3 the heuristic where we reduce the computation time. 

4.3.1 MILP without SDST 

Brynild indicates that most of the time they do not consider the sequences dependent set-up times 
while determining the week schedules, and assume for scheduling purposes a set-up time of 2 
hours, 𝑠 = 2. Therefore, we decide to change the variable time of job 𝑗 at Stage 1, which includes the 
SDST, to a parameter including the standard set-up time of 2 hours.  
 
We change the duration at Stage 1 for each job from a variable to a parameter therefore, we no longer 
need the dummy jobs to describe the MILP. Next, we discard the variable 𝑍𝑖,𝑗  that we use to determine 

whether we schedule job 𝑗 directly after job 𝑖. Therefore, we need to change and discard multiple 
constraints and variables from our main MILP. Thus, we make the following 3 changes: 
 

1. We no longer need the dummy jobs therefore, we remove all constraints regarding the 
dummy jobs from model, which are [4.1.4] and [4.1.5]; 

 
2. We no longer need variable 𝑍𝑖,𝑗 therefore, constraint [4.1.19] can discard the variable 𝑍𝑖,𝑗 . 

Next, we remove the following constraints including 𝑍𝑖,𝑗 from the model [4.1.3], [4.1.6], and 

[4.1.7]. Constraint [4.1.10], includes 𝑍𝑖,𝑗  as well and for this constraint the variable 𝑍𝑖,𝑗 

changes in 𝑋𝑖,𝑗; 

 
3. Variable 𝑇𝑗 , the duration of job j in Stage 1, becomes a parameter we denote as 𝑡𝑗 . So, 

equation [4.1.8] changes into equation [4.2.1]. 
 

𝑡𝑗 = 𝑘𝑗 + 𝑚𝑗 + 𝑠    ∀𝑗   [4.2.1] 

 
We present the adaptions to the MILP as Model 7 in Appendix D. We base the order of Appendix D on 
Table 5.8 from Chapter 5. 
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4.3.2 Two separate MILPs 

The second heuristic is decoupling the assignment of jobs to drying cabinets and the sequencing of 
jobs in Stage 1. Similarly to the heuristic from Section 4.3.1, we base this heuristic on turning a variable 
in a parameter to reduce the solution space. In the initial model we conduct the assignment and 
sequencing of jobs simultaneously, which is interactive. In this heuristic we use 2 separate MILPs. The 
first MILP assigns the jobs to cabinets, like GAP in Section 3.2.1. As objective we decide to spread the 
workload as evenly as possible over the drying cabinets by minimizing the maximum total time that 
we assign to the drying cabinets, see objective [4.3.1]. 
 

min [ max
𝑐

𝑅𝑐]         [4.3.1] 

 
Where 𝑅𝑐  is the total time in quantity we assign to cabinet  𝑐. The total time is the summation of the 
drying time and the moulding time, see equation [4.3.2].  
 

𝑅𝑐 = ∑ (𝑗 𝑌𝑗,𝑐 ∗ (𝑚𝑗 + 𝑣𝑗,𝑐))    ∀𝑐   [4.3.2] 

 
We select this objective as we do not know exactly how full a drying cabinet can be. We present the 
decision for our objective of this assignment model in part 1 of Model 9 in Appendix D. After 
determining the assignment of jobs to drying cabinets we use this output as input for our MILP to 
decide the sequence in Stage 1. The Variable 𝑌𝑗,𝑐 indicating whether we assign job 𝑗 to drying cabinet 

𝑐 becomes the parameter 𝑦𝑗,𝑐 , using the output of the assignment MILP. Therefore, we no longer need 

constraints [4.1.17] and [4.1.18] in the sequencing MILP as we already use these constraints in the 
assignment MILP. We present the sequence MILP in part 2 of Model 9 in Appendix D. 

4.3.3 10 min MILP 

In the third heuristic the MILP of Section 4.2 has a maximum computation time of 10 minutes. We do 
not base this third heuristic on reducing variables and constraints, as opposed to the two previous 
heuristics we describe. We base this heuristic on the observation that our MILP model typically finds 
a good, or even optimal, solution within the first few minutes. The additional time the solver uses is 
to eliminate the remainder of possible solutions to state with certainty that the already found solution 
is optimal. Brynild indicates that they like to use the model as a scenario tester as well. Therefore, the 
computation time should not be more than 1 hour. However, we observe in Chapter 5 that 10 minutes 
is for most instances already enough to create (near) optimal schedules. 
 
We present the MILP from Section 4.2 without explanation as Model 1 in Appendix D.  
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4.4 CONCLUSION 
Our mathematical model focuses on the Støperi 1 line as this line contains the drying area, which is 
the bottleneck. We do not take the oiling and sanding into account as this process has enough 
production capacity to always process the output from demoulding the intermediates, therefore oiling 
and sanding do not become a bottleneck when the bottleneck shifts. Given this focus, we model the 
scheduling problem as a two-stage hybrid flow shop in which the drying cabinets are non-identical 
parallel machines. The model includes sequence dependent set-up times, production time windows, 
and no buffer capacity between the 2 stages.  
 
We assume that we structure input data in such a way that jobs consist of 1 or more intermediates, 
which can dry together and, in terms of quantity always fit in 1 drying cabinet. Another assumption 
we make is that the drying cabinets are available at the beginning of the week. In our mathematical 
model we focus on the end time of the drying cabinets and not on the time we empty the drying 
cabinets. The other additional assumptions we make are: 

- All machines in the production line are available at all times; no breakdowns or maintenance; 
- Jobs process always without error; 
- We cannot interrupt job processing, so no pre-emption; 
- We cannot process jobs on more than 1 machine simultaneously; 
- A machine may only process 1 job at a time; 
- All data is known deterministically when creating the schedule; 
- We do not consider set-up time between weeks.  

 
In addition to our main MILP model with as objective to minimize the make span of the schedule, we 
introduce 3 heuristics we base on this main MILP: 

- Our MILP without sequence dependent set-up times; 
- Our MILP that we decompose in an assignment and a sequencing MILP, which we compute 

sequentially; 
- Our MILP with a maximum computation time of 10 minutes. 

 
We do not research meta-heuristics further as Brynild has a 2-stage HFS problem with no buffer 
capacity between the 2 stages and production time windows. These two conditions make it difficult 
to apply and adapt meta-heuristics to solve the problem. Furthermore, we find it useful to observe 
whether the MILP is still applicable as a base when the problem requires less computation time or 
becomes larger.  
 
In Chapter 5 we evaluate the experiments regarding the MILP we develop in Section 4.2, the 3 

heuristics, and other variants of our MILP.  
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5 EXPERIMENT DESIGN & RESULTS 

In this chapter we answer the research question: ‘How does the proposed scheduling method 
perform?’. In Section 5.1, we compare the two-stage hybrid flow shop with non-identical parallel 
machines, sequence dependent set-up times, production time windows, and zero buffer points MILP 
to Brynild’s week schedules. Thereafter, in Section 5.2 we compare the test results of the 3 heuristics 
from Section 4.3 to the results from Section 5.1. In Section 5.3 we examine the general capabilities of 
our MILP and various other MILPs that we base on zero buffer capacity between 2 stages.  
 
We compute all instances within this research with the CPLEX 12.10 solver. We conduct the 
experiments with a Dell Precision M2800, with a x64-based processor of 2.50GHz and a RAM of 8.00 
GB.  

5.1 CASE STUDY: BRYNILD 
Section 5.1.1 describes the experiment design. Section 5.1.2 summarizes and evaluates the results of 

the experiment design. 

5.1.1 Case study: Experiment Design 

In the Brynild case study, our MILP model reschedules Brynild’s Week 2 to Week 8 from 2020. We 
present the input data of these weeks in Appendix E. We perceive the weeks as independent, due to 
the buffer function of the weekends, as we explain in Section 4.1.3.  
 
Since we reschedule independent weeks, we make use of a 1-week scheduling horizon. We use a 1-
week scheduling horizon for two main reasons. Firstly, this 1-week horizon represents current 
practices at Brynild best, as Brynild currently schedules one week at a time as well. Secondly, the 
output of the planning indicates the intermediates and their quantity that Brynild needs to produce 
in a 1-week period. If we consider scheduling more than one week at the time, the solution space 
becomes larger and when creating the best schedule the probability is high that intermediates change 
between weeks. However, by interchanging the intermediates between weeks, we nullify the 
calculations of the planning regarding holding costs, operating costs, etc., since we do not produce 
the correct intermediates in the correct week any longer.  
 
We start with the determination of jobs in Section 5.1.1.1. In Section 5.1.1.2 we discuss how we obtain 
the input data for the jobs. In Section 5.1.1.3 we explain the experiment design.  

5.1.1.1 Determination of the jobs 

The raw data available from the planning process is not, like we assume in Chapter 4, structured in 
such a way that jobs consist of 1 or more intermediates, which can dry together, and that the jobs fit 
in 1 drying cabinet. This assumption requires data pre-processing. We schematically present the pre-
processing in the flowchart in Figure 5.1.  
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Figure 5.1: Flowchart of the pre-processing of the input data  
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The flowchart in Figure 5.1 starts with the quantity of each intermediate that Brynild plans to produce 
in one week. We calculate the number of lanes that each intermediate requires to dry the quantity. 
With this information we calculate the minimum number of jobs we need for 1 intermediate to dry all 
the quantity. We calculate the minimum number of jobs we need by rounding up: dividing the number 
of lanes for an intermediate by the number of lanes available per drying cabinet. When we require 
more than one job to produce the quantity of the intermediate, we divide the quantity over the 
minimum number of jobs. How we divide the quantity over the various jobs, is up to the decision 
maker. We propose 3 different heuristics that the decision maker can use to divide the quantity: 

1. Divide the quantity evenly over the minimum number of jobs; 
2. Fill the jobs completely and the last job contains the rest quantity; 
3. Obtain a variety of different job sizes when we require more than 2 and less than 6 jobs, as 

we do not encounter an intermediate that requires more than 5 jobs. We fill the first job 
completely, the second job consists of the quantity that a job would have when there is an 
even distribution, for the third job we subtract the difference between the first and second 
job from the quantity of the second job, and the fourth job is the average between the first 
and second job. When there is not enough quantity left to construct a job, the job just consists 
of the rest quantity. 

Figure 5.2, illustrates the 3 constructive heuristics.  
 

 
Figure 5.2: Heuristics for the quantity division over jobs 

Also, we could use other heuristics, which generate more than the minimum number of jobs. For 
example, ‘every job can only be half full’; in this case we need 5 jobs, if we consider the same situation 
as we illustrate in Figure 5.2. In the remainder of this research, we only consider the 3 heuristics we 
describe above and in Figure 5.2, since these lead to the minimum number of jobs. We make this 
decision because the model requires more computation time when we use more jobs as input.  
 

After determining the minimum number of jobs we need for each intermediate, we check whether 
certain intermediates can dry together. When an intermediate can dry with more than one other 
intermediate, we determine for every combination of previously made jobs if they fit in the drying 
cabinets together. We combine the jobs consisting of intermediates that can dry together and do fit 
in the same drying cabinet as 1 job. When we combine intermediates in 1 job, we add the additional 
time of cooking, moulding and set-up between the intermediates to the job’s moulding time. We do 
so because both the drying cabinet and the production line need to be available when producing the 
additional intermediates. When the intermediates that can dry together do not fit in the same drying 
cabinet, the intermediates remain separate jobs. It may occur that multiple intermediates can dry 
together, and multiple combinations of these intermediate batches fit together in 1 drying cabinet. In 
that case, the result of our data pre-processing is 2 or more job configurations, thus 2 or more input 
data sets. By creating multiple job configurations and optimizing each of them with our MILP, the 
overall solution space becomes larger and the probability of obtaining the optimal solution increases. 
The disadvantage is that the computation time increases as well.  
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We automate this process of determining jobs in Excel, except for the part where the answer to the 
question ‘multiple combinations fit the drying cabinet’ is ‘yes’. We do not program this part in Excel 
as this situation does not occur in our sample weeks and is not necessary to include in our 
experiments. The process itself requires a few seconds. Therefore, the disadvantage of pre-processing 
requiring more time is negligible.  

5.1.1.2 Input data 

We present the 7 weeks we use to conduct our experiments in Table 5.1. 
 
Table 5.1: Brynild’s week descriptions 

Week # of jobs # of machines Original schedule 

2 11 5 3-shift 

3 13 5 3-shift 

4 11 5 3-shift 

5 11 5 3-shift 

6 10 5 2-shift + Sat 

7 9 5 2-shift + Sat 

8 10 5 2-shift+ Sat 

 
The number of jobs varies between 9 and 13. We consider 5 drying cabinets, which are all available in 
the weeks under consideration. Therefore, there is no variation in the number of machines in this case 
study. In Section 5.3 we do vary the number of parallel machines. Brynild originally schedules four of 
the seven weeks using a 3-shift schedule, and the other three with a 2-shift + Saturday schedule.  
 
In Chapter 2, we explain that a 3-shift schedule starts production on Sunday at 22:30h and finishes on 
Friday at 14:30h. Therefore, in case of a 3-shift schedule there is 1 large time window for index 𝑝. In 
the schedule we create with our MILP, the first job has the start time 0, which indicates Sunday 22:30h. 
In a 2-shift schedule the first shift of the week starts on Monday at 6:30h. So, start time 0 in a 2-shift 
schedule indicates Monday 6:30h. Within the 2-shift schedules the production in Stage 1 stops during 
the night. For example, we do not allow the model to schedule any jobs between time 𝑙𝑝= 16 and 𝑜𝑝= 

24, which indicates Monday 22:30h and Tuesday 6:30h. We present the specific values we use to 
obtain a 2-shift and a 3-shift schedule in Appendix E. 
 
The set-up time depends on the tools that the intermediates on the production line require, as we 
describe in Chapter 2. When the intermediates make use of the same tool, there is a set-up time of 
1.5 hours, and when the intermediates make use of different tools there is a set-up time of 2 hours. 
For jobs containing the same intermediate there is zero set-up time. The cooking time is 0.5 hours for 
every job. We present the drying time and tools for each of the intermediates in Appendix E.  
 
We calculate the moulding time in minutes using the following equation:  
 

𝑀𝑜𝑢𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 =
#𝑃𝑎𝑙𝑙𝑒𝑡𝑠 ∗ 150

27
 

 
There are 150 trays on 1 pallet, and on average it takes 1 minute to mould 27 trays. We require the 
moulding time in hours, thus we divide this value by 60 minutes to obtain the value for our moulding 
time parameter. In case 2 or more intermediates dry together we add the additional time for set-ups 
and cooking to the moulding time as well.  
 
In Appendix E we state the intermediates and the quantity in kg that Brynild produces in weeks 2 to 
8.  
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5.1.1.3 Experiment design 

The experiments we conduct analyse 3 specific aspects: constructive heuristic for the input data 
selection, multi-objective evaluation, and shift evaluations. We start with testing, which constructive 
heuristic within the pre-processing is best to use for the further experiments. We conduct an 
experiment using our MILP and the 7 weeks from Brynild and test the different heuristics for every 
week. Therefore, we conduct 21 tests. From these tests we collect the objective value and the 
computation time of the model. We consider the computation time as well, as different job sizes can 
have different effects on the computation time, especially in a 2-shift schedule. 
 
After determining, which constructive heuristic we use for further experiments we test 2 objectives. 
The first objective we already introduce in Chapter 4, which is the end-drying objective: the 
minimization of the make span (after drying):  

min [ max
𝑗,𝑐

𝐷𝑗,𝑐], 

where 𝐷𝑗,𝑐 is the end-drying time of job 𝑗 in cabinet 𝑐. 

 
The second objective, the Stage 1 objective, is the minimization of the production make span of all 
jobs at Stage 1: 

min [ max
𝑗

𝐸𝑗], 

where 𝐸𝑗 is the end time of producing job 𝑗 in Stage 1. 

 
We consider the second objective as only in Stage 1 Brynild requires staff to work the production line. 
When the jobs are inside the drying cabinets Brynild can deploy the personnel somewhere else in the 
production lines. When using the second objective we still consider the constraints for the drying 
cabinets, and the difficulties that come with scheduling the drying cabinets. However, we only 
optimize the make span of Stage 1 and not the entire HFS problem; we foresee that the model 
schedules the jobs with longer drying times last. The Stage 1 objective solely optimizes Stage 1, 
therefore we do not select this second objective as our main objective for our MILP. However, we do 
want to conduct experiments with the second objective since the results could be interesting for 
Brynild whenever they want to reduce personnel costs. Next, we aim to quantify the effect of the 
different objectives for Brynild.  
 
We conduct the experiments using the 2 objectives for all 7 weeks. From these tests we collect the 
objective value, the value for the other objective, the set-up time, and the computation time of the 
model. We compare the objective values of both objectives to Brynild’s schedules. Thereafter, we 
evaluate the influence of the set-up times on the Stage 1 end times.  
 
The final experiment we conduct is to analyse whether it is possible to ‘scale down’ the number shifts 
we use in the schedules. With scale down we mean scheduling all intermediates that Brynild originally 
schedules in a 3-shift schedule in a 2-shift + Saturday schedule or even in a 2-shift schedule. For the 2-
shift + Saturday schedules we examine whether it is possible to schedule all the intermediates without 
the Saturday. Due to time constraints, we conduct these 18 experiments only for the drying objective 
as this is our main objective.  
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5.1.2 Case Study: Results MILP model 

We start with evaluating the results of the constructive heuristics in Section 5.1.2.1. Thereafter, we 
evaluate the results of the experiments we conduct with the first objective in Section 5.1.2.2, and with 
the second objective in Section 5.1.2.3. In Section 5.1.2.4 we evaluate the influence of the set-up times 
on the Stage 1 end time. Finally, in Section 5.1.2.5 we assess the possibility of scaling down the original 
schedules of Brynild.  

5.1.2.1 Constructive heuristics 

In Section 5.1.1 we describe 3 heuristics for dividing the quantity of intermediates, which are too large 
for 1 job. Every week has 1 or more intermediate(s) of which the quantity requires more jobs. Week 
4 and Week 5 have only intermediates that require a maximum of 2 jobs. Thus, for Week 4 and Week 
5 heuristics 2 and 3 result in the same input instance, as both heuristics start filling one job completely 
and the second job obtains the rest. When the model requires more than 2 hours to complete the 
schedule, we interrupt the model. The reason for this interruption after 2 hours is that we have limited 
time available for this research. Our main focus is not to find the best constructive heuristic, but rather 
on developing a scheduling method after the pre-processing. Luckily, we only have to interrupt the 
model in Week 3. 
 
Figure 5.3 presents the objective values we find using the 3 heuristics. 
 

 
Figure 5.3: Objective values for the 3 constructive heuristics 

 

For every week the second heuristic achieves the same or a better objective function than the third 
heuristic. In Week 3, the first heuristic achieves the best objective value. If we solely consider the 
objective values, the second heuristic would dominate the third heuristic. However, we consider the 
computation time as well. So, when the second heuristic computes the schedule faster than the third 
heuristic for every week, we dismiss the third heuristic completely, as the second heuristic then 
dominates the third heuristic in both aspects. 
 
Figure 5.4 presents the time in seconds to find the schedule for the 3 heuristics. 
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Figure 5.4: Time in seconds to find the objective 

In Figure 5.4, we observe that in Week 6 the second heuristic requires the most time. Therefore, the 
second heuristic does not dominate the third rule and we cannot discard any of the heuristics. Week 
3 is the only week that requires more than 2 hours to obtain the objective values. Each of the heuristics 
requires in at least one of the weeks the most computation time. The first heuristic requires the most 
computation time in weeks 2, 5, and 7, the second heuristic in Week 6, and the third heuristic in Week 
8.  
 
Our sample size consists of a limited period of 7 weeks. The experiments suggest that the second 
heuristic: ‘Fill the jobs completely and the last job contains the rest quantity’, has the most potential. 
We do not analyse the outliers within the computation time, since our main focus in on our MILP from 
Chapter 4, and not on the pre-processing of the jobs. We mainly use these experiments to indicate 
further research for Brynild. 
 
We decide to conduct the rest of the experiments using the first constructive heuristic: ‘Divide the 
quantity evenly over the minimum number of jobs’. This heuristic is most similar to the division of 
intermediates that Brynild currently uses. If the experiments show that 1 heuristic is superior in every 
week for both the objective value and the computation time we would use that heuristic. However, 
currently none of the heuristics performs superior in every week, therefore we consider a trade-off 
between the second heuristic with the highest potential and the first heuristic, which is the default 
heuristic that creates the most similar jobs when we compare them to Brynild’s original job 
configuration. The second heuristic shows great prospect, however we do not want to contaminate 
possible scheduling output by deviating so much from Brynild’s original job configuration in the pre-
processing. If we had enough time, we would conduct all upcoming experiments with both job 
configurations to obtain more data however, for now we find the data too limited to choose a heuristic 
that deviates much from the original, without knowing the full extend and reasons behind the results 
from Figure 5.4. We recommend researching the outliers before switching the heuristic for dividing 
the quantity over jobs, as the reason behind the largest outlier in Week 6 can be structural in one way 
or another.  
 
Next, working with the first heuristic emphasizes the effect of scheduling the jobs with our MILP and 
shows the potential of our method in comparison to Brynild’s current scheduling practice, which, for 
now, we prefer over including the effects of the pre-processing.  
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5.1.2.2 Min max end-drying time for the original schedules 

As we explain in Section 5.1.1.3, we conduct several experiments to compare multiple objectives. In 
this section we evaluate the end-drying objective. On average, we reduce the maximum end-drying 
time by 20.5%. Figure 5.5 presents the maximum end-drying time of Brynild’s schedules and the 
schedules of our MILP model for each week.  
 

 
Figure 5.5: End-drying time comparison between Brynild and our MILP 

From Figure 5.5, we conclude that our model gives a reduction in the latest end-drying time for each 
week. When we consider the reduction in hours, on average the latest drying cabinet finishes 38 hours 
earlier. For Week 3 we achieve the least reduction in hours, namely 27 hours, nevertheless, this is still 
more than 1 day. For Week 4 we achieve the largest reduction in hours, namely 49 hours, which is 
more than 2 days faster than Brynild’s original schedule. The difference between Brynild’s end-drying 
times and the end-drying times of our scheduling method is significant (p<0.05, see Appendix G). 
 
Focusing on minimizing the end-drying times, has as a consequence that we consider the end time of 
Stage 1 only as a constraint; for five of the seven weeks the Stage 1 end time increases. The maximum 
increase of the Stage 1 end time is 5.87%, which is in this case approximately 7 hours.  
 
Appendix F gives more information regarding the test results of our MILP, including the end time of 
Stage 1 we achieve under the end-drying objective in comparison to Brynild’s end Stage 1 time.  
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5.1.2.3 Min max end time Stage 1 for the original schedules 

In this section we evaluate the Stage 1 objective. On average, we reduce the maximum Stage 1 end 
time by 15.5%. Figure 5.6, presents the maximum Stage 1 end time of Brynild’s schedules and the 
schedules of our MILP for each week.  
 

 
Figure 5.6: End Stage 1 time comparison between Brynild and our MILP 

From Figure 5.6, we conclude that our model gives a reduction in latest Stage 1 end time for each 
week, including Week 6 and Week 8 that we schedule using a 2-shift + Saturday schedule. The 
objective values of weeks 6 and 8 do not differ much from Brynild’s original schedule. In Week 7 
however, Stage 1 finishes far earlier than in Brynild’s schedule. This shows that we probably do not 
need the Saturday to schedule all intermediates. We discuss this further in Section 5.1.2.5, where we 
consider the reduction in shifts. On average the last job of Stage 1 finishes 17.5 hours earlier than in 
Brynild’s schedules. The schedule of Week 6 shows the least reduction in hours, namely 0.3 hours. The 
schedule of Week 7 has the largest reduction in hours, namely 39 hours, which is a reduction of more 
than 1.5 days in comparison to Brynild’s schedule. 
 
Focussing on the Stage 1 end time, we disregard the drying end times. For six of the seven weeks the 
drying end time decreases as well; with a maximum of 19.84%. However, for three of the seven weeks 
the last drying cabinets do not finish before the next week starts. In Week 6 the last drying cabinet 
even finishes on Tuesday at 23:38h the following week.  
 
Appendix F gives more information regarding the test results of our MILP, including the end-drying 
time we achieve under with the end Stage 1 objective in comparison to Brynild’s end-drying time. 
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5.1.2.4 Evaluation set-up times for each objective 

After evaluating the 2 objective values in the previous sections, we continue with analysing the set-up 
times we achieve for both objectives and present them in Figure 5.7. 
 

 
Figure 5.7: Set-up times of Brynild and both objectives for each week  

Figure 5.8 presents the end time of Stage 1 for each week and objective. 
 

 
Figure 5.8: End production times of Stage 1 of Brynild and both objectives for each week 

The sequence dependent set-up time is the only variable in the processing time of a job at Stage 1. 
Therefore, more set-up time leads to more total production time at Stage 1. Thus, it is plausible to 
assume that more total production time, probably leads to a later end time of Stage 1. After analysing 
both Figure 5.7 and Figure 5.8 we conclude that more set-up time does not necessarily mean a later 
end time at Stage 1. We observe that in none of the weeks the expectation, that more set-up time 
means a later Stage 1 end time, upholds. For example, in Week 6, the objective to minimize the end 
time of Stage 1 (in grey) has the most set-up time however, finishes the earliest. The same applies for 
Week 8. We conclude that less sequence dependent set-up time does not necessarily come with an 
earlier finish time of Stage 1. As there is no other variable in the Stage 1 production time, we 
hypothesise that the availability of drying cabinets in Stage 2 has a larger effect on the end time of 
Stage 1 than the set-up times.   
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5.1.2.5 Scaling down the original schedule sizes 

For the schedules of weeks 2 to 5 we try to reduce the 3-shift schedule to a 2-shift + Saturday schedule 
and if possible, to a 2-shift schedule. For the schedules of weeks 6 to 8 we try to reduce the 2-shift + 
Saturday schedule to a 2-shift schedule. We present our results in Table 5.2.  
 

Table 5.2: End-drying time for the original schedules and the reduced schedules 

Week Original 
Brynild 
schedule 

Reduced 
schedule 

Original end-
drying time 

New end-drying 
time (old 
schedule) 

New finished 
drying (reduced 
schedule) 

2 3-shift 2-shift + Sat One week later 
Monday 11:43h 

Saturday 23:15h Sunday 1:50h 

3 3-shift 3-shift One week later 
Monday 12:18h 

Sunday 9:11h  

4 3-shift 2-shift + Sat One week later 
Monday 16:49h 

Saturday 15.58h Sunday 17:27h 

5 3-shift 2-shift + Sat Sunday 13:43h Saturday 6:44h Sunday 11:50h 

6 2-shift + Sat 2-shift + Sat One week later 
Tuesday 11:25h 

Sunday 17:53h  

7 2-shift + Sat 2-shift One week later 
Tuesday 11:43h 

Sunday 15:20h Sunday 15:20h 

8 2-shift+ Sat 2-shift + Sat One week later 
Tuesday 11:43h 

Sunday 21:41h  

 
The third column ‘Reduced schedule’ in Table 5.2 presents the schedule to which we reduce the 
original schedule from column two. We observe that we can schedule the intermediates of weeks 2, 
4, 5, and 7 in a schedule with less processing time for Stage 1. The fourth column ‘Original end-drying 
time’ presents on what day and time Brynild’s original schedule finishes drying. All weeks, except for 
Week 5, cause a restriction for the next week as 1 or more drying cabinets do not finish drying before 
the start of the upcoming week. The column ‘New end-drying time (old schedule)’ presents the latest 
end-drying time of our MILP using the original number of shifts. All drying cabinets finish before the 
start of the upcoming week, and do not generate any restrictions for the next week. This is in line with 
our assumption of independent scheduling weeks from Chapter 4. When we use the reduced shift-
schedules and less time for Stage 1 is available, the end-drying time of all weeks still finishes before 
the start of the upcoming week. Thus, we conclude that these reduced schedules do not generate any 
disadvantages, in terms of constraints for the upcoming week. On top of that, the reduced schedules 
require less time in Stage 1, and therefore lower personnel costs in these 4 weeks. In Appendix G we 
examine why we can or cannot scale down certain weeks. As a result, we expect that scaling down 
from a 3-shift schedule to a 2-shift + Saturday schedule is possible when the average production hours 
at Stage 1 is under 80 hours, which equals the number of hours available at Stage 1 in a 2-shift + 
Saturday schedule. Next, we expect that scaling down from a 2-shift + Saturday schedule to a 2-shift 
schedule is influenced by the available drying time and the total drying time required by the jobs, 
rather than by the available time at Stage 1.  
 
We give a graphical representation of the schedule of Week 5 using a 3-shift schedule: in Figure 5.9 
we present Stage 1 and in Figure 5.10 we present Stage 2.  
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Figure 5.9: A Stage 1, 3-shift production schedule, using the min max end drying objective 

 

Figure 5.10: A Stage 2, 3-shift production schedule, using the min max end drying objective 

We divide the figures in grids of 24 hours. The 168th hour reflects the end of the week when the 
following week is using a 3-shift schedule as well. We observe for example that Job 3 could start earlier 
in Stage 1, because Skap 1 is already free in Stage 2 and there is some time left in the schedule between 
Job 6 and Job 3 in Stage 1. This available space for adjustment has no effect on the objective value. 
We can easily do the adjustment for Job 3 manually after obtaining the schedule. Another option is 
scheduling more intermediates or more quantity, because if the schedule is using the weeks full 
capacity the available adjustment space does not occur. We give a graphical representation of the 
schedule from Week 5 using a 2-shift + Saturday schedule: in Figure 5.11 we present Stage 1 and in 
Figure 5.12 we present Stage 2.  
 

 
Figure 5.11: A Stage 1, 2-shift + Saturday production schedule, using the min max end drying objective 

 

Figure 5.12: A Stage 2, 2-shift + Saturday production schedule, using the min max end drying objective 

We again divide the figures in grids of 24 hours. The 168th hour reflects the end of the week and the 
start of the following 2-shift schedule. Using a 2-shift schedule, we can no longer schedule jobs in 
Stage 1 during the night. Therefore, production starts at each grid again, as this is when each 
production day starts, with 0 indicating Monday 6:30h, see Figure 5.11. When we schedule Week 5 
using a 2-shift + Saturday schedule we observe that there is still space left for Job 2, 3, and 11 to 
increase their quantity, given that these quantity increases fit within the drying cabinet.   
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5.2 CASE STUDY BRYNILD: HEURISTICS 
This section evaluates the experiments we conduct with the heuristics we base on our MILP. We 
describe our experiment design in Section 5.2.1. In Section 5.2.2 we summarize the results of the 
experiment design. Section 5.2.3 contains the evaluation by Brynild experts regarding the results and 
findings of our main model, and the heuristics.  

5.2.1 Heuristic case study: Experiment Design 

With our MILP we find the optimal schedule taking into consideration the pre-processed input data. 
We conduct experiments using heuristics, because finding the best solution requires multiple hours 
for most weeks. The goal of conducting the experiments with heuristics is to achieve a (near) optimal 
solution in less time, in minutes instead of hours, than with the main MILP.  
 
We conduct experiments with the 3 heuristics we mention earlier in Chapter 4: 

- Our MILP without sequence dependent set-up times; 
- Our MILP that we decompose in an assignment and a sequencing MILP, which we compute 

sequentially; 
- Our MILP with a maximum computation time of 10 minutes. 

 
The instances for the experiments are the same 7 weeks as we use in Section 5.1. We test the 2 
objectives for all 3 heuristics and obtain the objective values and computation time from the 
experiments. Next, we analyse the possibility of scaling down the shift schedules for every week using 
the heuristics. In total we conduct 24 experiments using 3-shift schedules, 36 experiments using 2-
shift + Saturday schedules, and 6 experiments using 2-shift schedules.  
 
When we compare the schedule we create using the heuristic without SDST to the main MILP, we 
incorporate the SDST. Because, in practice the SDST remain even when we do not consider them 
during scheduling. Therefore, we note that we schedule without taking into consideration the SDST, 
however we do add the required set-ups to the schedule before comparing the schedule to the main 
MILP. 
 

5.2.2 Case study: Heuristic results 

After describing the experiment design in Section 5.2.1 we evaluate the results. In Section 5.2.2.1 we 
start with analysing the results of the heuristics in comparison to our MILP, regarding the end-drying 
time objective. In Section 5.2.2.2 we do the same as in Section 5.2.2.1, however now for the Stage 1 
objective. In Section 5.2.2.3 we compare the computation time of each heuristic to the computation 
time of our MILP. In Section 5.2.2.4 we analyse whether the heuristics are also able to find the 
schedules that we scale down in number of shifts. 
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5.2.2.1 Min max end-drying time for the heuristics 

This section evaluates the end-drying time objective for the 3 heuristics in comparison to the MILP 
model, as we depict for each week in Figure 5.13. 
 

 
Figure 5.13: End-drying time for the heuristics and the MILP from Chapter 4 

When we examine Figure 5.13 we observe that all heuristics perform relatively well. Especially 
stopping the MILP after 10 minutes gives good prospects. We analyse the difference of every heuristic 
in comparison to our MILP in percentages in Table 5.3.  
 

Table 5.3: End-drying time heuristics compared to our MILP in percentages 

End Drying Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST +1.38% +3.71% +1.59% +1.56% +1.58% +2.02% +1.19% 

Ass. & Seq. separate +1.44% +3.76% +4.21% +1.61% +10.57% 0.00% +0.33% 

10 min run 0.00% +0.87% 0.00% 0.00% 0.00% 0.00% 0.00% 

 
Table 5.3 confirms that running the model for 10 minutes is an accurate heuristic. For almost all weeks 
the 10 min run heuristic finds the same objective value as our MILP. Only in Week 3, the heuristic finds 
a slightly less efficient schedule. Both the other heuristics find near optimal objective values, except 
for the 2-separate models in Week 6, where the objective is more than 10% higher. The difference 
between the weeks with a 2-shift + Saturday schedule, is that Week 6 includes more jobs with shorter 
drying times, and we assign all these jobs to the same drying cabinet. The objective for assigning the 
jobs, evenly distributes the drying time quantity over the drying cabinets and does not consider the 
number of jobs in 1 drying cabinet. Therefore, the reason regarding the ‘bad’ objective value could be 
that we assign these shorter drying times to the same drying cabinet in Week 6 as this is the main 
difference between weeks. The assignment of these shorter jobs to the same drying cabinet, in 
combination with the use of a 2-shift + Saturday schedule, can be the cause that the jobs are ‘pushed’ 
to the next day. If this ‘push’ happens on multiple days with multiple jobs in 1 drying cabinet, the end-
drying time of the last job in that cabinet is relatively late. With separate models the jobs cannot 
interchange between drying cabinets when this occurs. We do not test this theory with other 
instances, but we expect that the ‘bad’ objective value in Week 6 for the heuristic that assigns and 
sequences the jobs separately is a combination of these factors. First, the assignment of short jobs to 
the same drying cabinet and second due to sequencing with production time windows, therefore the 
jobs are ‘pushed’ further in the schedule. Appendix F contains more information on the test results of 
the heuristics for the end-drying time objective.   
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5.2.2.2 Min max Stage 1 time for the heuristics 

This section evaluates the Stage 1 end time objective for the 3 heuristics in comparison to the MILP 
model, as we depict for each week in Figure 5.14.  
 

 
Figure 5.14: End time Stage 1 for the heuristics and the MILP from Chapter 4 

We observe from Figure 5.14 that the heuristics have varying performances. For example, in Week 2, 
the schedule using the 2-separate models heuristic finds the worst objective value. In Week 3, the 
schedule using 10 min run heuristic, performs the worst, while in Week 7, the schedule using the 
model without SDST heuristic performs the worst. We also analyse the difference of every heuristic in 
comparison with the MILP in percentages, see Table 5.4. 
 

Table 5.4: End time Stage 1 heuristics compared to our MILP in percentages 

End Production Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST +6.00% +1.62% +3.66% +5.71% +0.53% +17.62% +0.83% 

Ass. & Seq. separate +6.48% +0.81% +3.59% +0.83% +0.53% 0.00% +0.42% 

10 min run +1.47% +3.04% +1.22% +3.36% 0.00% 0.00% 0.00% 

 
From Table 5.4 we observe that the 10 min run heuristic performs well for the 2-shift + Saturday 
schedules in weeks 6, 7, and 8. In weeks 2 to 5 however, the 10 min run heuristic performs the most 
stable with a variance of 0.826. We calculate the variance over the difference with the MILP. 
Therefore, it does not conclude how well a heuristic performs, but just how stable its performance 
deviation from the optimal solution is. The variance of the heuristic without SDST is 1.919 and for the 
2 separate models the variance is 6.645.  
 
The model without SDST has an outlier in Week 7; which is due to the 2-shift + Saturday schedule. 
When the set-up times are 2 hours instead of 0 or instead of 1.5 hours, the possibility arises that, with 
these longer set-up times we can only schedule 2 jobs, rather than the possibly previous 3 jobs per 
production day. We must schedule the additional job and the remaining jobs later because of this. We 
recognize a sort of bullwhip effect in this event. Even when we compare the practical model, without 
considering the SDST in the schedule, many set-up times remain 2 hours.  
 
Appendix F presents additional information over the test results of the heuristics for the Stage 1 
objective.   
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5.2.2.3 Computation time of all heuristics and the main MILP for all weeks and both objectives 

We compare the objective results of the schedules we create using the heuristics, to the schedule we 
create using our MILP which we discuss in the previous section. In this section we compare the 
computation time of the heuristics to the MILP computation time for both objectives. 
 
Due to time limitations for this research, we interrupt solving the models in some cases. We present 
the cases we interrupt in red. We stop the model when the integrality gap does not improve for more 
than 1 hour. Table 5.5 presents the computation time in seconds, for the Drying and Stage 1 objective.  
 

Table 5.5: Computation time in seconds for the drying objective and Stage 1 objective 

Drying 
Week MILP 

Without 
SDST Separate 10 min 

Stage 1 
Week MILP 

Without 
SDST Separate 

10 
min 

2 3840.97 21.56 2.14 600 2 12278.99 8075.22 3.34 600 

3 4979.94 1316.81 26.31 600 3 42096.3 10314.06 9.73 600 
4 147.48 8.83 2.81 147.48 4 12507.53 8196.91 2.34 600 
5 1179.17 6.42 3.92 600 5 9940.61 6019.55 1.95 600 
6 438.74 10.95 0.41 438.74 6 11426.4 31.63 0.78 600 
7 379.91 6.16 0.37 379.91 7 466.94 7.61 0.62 466.94 
8 498.31 13.42 2.82 498.31 8 6882.33 74.05 6.71 600 

 

In Table 5.5 we display the computation times of the end-drying objective on the left part of the table 
and the computation times of the Stage 1 objective on the right part of the table. We only require 
interruption of models with the Stage 1 objective, for the MILP and for the MILP without SDST. The 
separate heuristic has the shortest computation time for both objectives. This is what we expect, 
because without the interaction between the assignment of parallel machines, and the sequencing of 
the single machine, the solution space becomes much smaller than the solution space for the other 
models. The main MILP and the MILP without SDST are solvable within reasonable time for the end-
drying objective. However, for the Stage 1 objective, the weeks 2 to 5 take relatively long. Therefore, 
we conclude that models that consider both stages and have zero buffer capacity between these 2 
stages, require more computation time to optimize Stage 1, than to optimize the whole schedule. This 
is opposed to models with infinite buffer capacity between the 2 stages, as in that case Stage 1 can 
optimize without considering the constraints from Stage 2. Then the model becomes a ‘simple’ 
sequencing problem, that requires less time than when the model must consider both stages. 
 
All heuristics require the same amount or less time than our MILP. This is because the heuristics are 
simplifications of the MILP, and therefore require less time. We cannot state this with certainty for 
the heuristic MILP without SDST for the Stage 1 end time objective. Therefore, we evaluate the 
integrality gaps as well.  
 
We analyse the integrality gap because we interrupt some models. When the integrality gap is small 
the model almost reached with certainty the optimal solution. When the integrality gap is still large, 
the probability is much higher that there exists a better solution than when the gap is small. We 
present the integrality gaps for the 10 min heuristic of the drying objective and the integrality gaps of 
the Stage 1 objectives in Table 5.6. 
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Table 5.6: Integrality gaps of the interrupted schedules 

Drying 
Week 

 
10 min 

Stage 1 
Week MILP Without SDST 10 min 

2 1.53% 2 52.24% 24.42% 82.37% 

3 27.04% 3 85% 27.17% 86.73% 

4  4   33.39% 

5 5.65% 5 68.98% 24.82% 82.98% 

6  6   57.66% 

7  7    

8  8 64.89%  74.39% 

 
For both objectives, the integrality gaps are the largest for the 10 min heuristic in Week 3. Week 3 has 
the most jobs and is a 3-shift schedule, on top of that the 10 min heuristic stops the earliest. Therefore, 
the solution space is still the largest and the gap most likely requires the most time to completely 
close. For the Stage 1 objective, the integrality gaps are larger for the MILP than for the MILP without 
SDST. Therefore, we hypothesize that the MILP requires more additional time to complete the 
computation time. Moreover, all the MILPS we interfere, we stop later than the MILPs without SDST. 
Thus, we conclude that the SDST most likely finds their optimal solution faster than the MILP if we 
solve both to completion.  

5.2.2.4 Reduction of shifts in schedule realized by heuristics 

We test for every week whether we can create reduced schedules using the 3 heuristics. We present 
the results for this experiment in Table 5.7. 
 
Table 5.7: Scaling down of the schedules using heuristics 

Week Model Without SDST Separate 10 min 

2 Yes No Yes Yes 

3 No No No No 

4 Yes No Yes Yes 

5 Yes Yes Yes Yes 

6 No No No No 

7 Yes Yes Yes Yes 

8 No No No No 

 
The heuristic without SDST cannot find a reduced schedule for Week 2 and Week 4, whereas our MILP 
can find a reduced schedule. We assume that the reason that the heuristic cannot construct a schedule 
for these 2 weeks is the same type of bullwhip effect as we mention in Section 5.2.2.2. We therefore 
conclude that the sequence dependent set-up times are important to take into account when 
constructing the schedules. This applies particularly to schedules with high varying set-up times and 
multiple production time windows, such as the 2-shift schedules.  

5.2.3 Case study: Evaluation by Brynild experts 

The Brynild experts, supply chain manager and the planner/scheduler, are positive about the results. 
They agree that the objective to minimize latest end-drying time rather than minimizing the 
throughput for each intermediate individually, results in the desired schedules. The desired schedules 
are more flexible when dealing with unknown changes, reduce the constraints for upcoming weeks, 
and we can easily observe when the throughput can be higher.  
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The objective to minimize the end time of Stage 1 is of less importance to Brynild when scheduling 1 
week ahead. Brynild states that they need to know the shift schedules 3 weeks in advance and that 
they assign staff members to complete shifts. Besides, Brynild wants to realise more throughput per 
week and for that goal, the end-drying time objective is of more relevance. The end-drying time 
objective requires less computation time and considers the next week as much as possible, since the 
end-drying time objective reduces the number of constraints for the upcoming week. Brynild experts 
agree that for an optimal schedule they do not mind running the model at night and obtaining the 
schedule in the morning. Furthermore, for testing various scenarios, Brynild wants to use the heuristic 
where the MILP stops after 10 minutes.  
 
Following their positive reactions, the Brynild experts want to test the MILP with live data to see if 
they could use the MILP directly practice. We create a schedule for Week 7 and Week 8 of 2021 that 
we base on live data from Brynild. Although they are positive about the outcomes, there is one remark 
regarding the test schedule. In test Week 8, we start with the so-called Dent product. In practice 
however, Brynild does not prefer this product to start, since the materials for Dent products require 
pre-processing of 3 hours. Therefore, we add an additional constraint that ensures that the jobs 
containing Dent cannot start producing earlier than 3 hours after the start of the week. In practice it 
is also difficult to produce Dent products in the weekend, therefore we add a similar constraint for the 
weekends. The scheduler discusses the new schedule with the operators of the Støperi 1 team to 
collect feedback on whether the schedule can be applied in practice. The operators did not find any 
large discrepancy and positively comment that they ‘find it hard to believe that the scheduling is done 
by a model’.  
 
In finetuning the schedules, the scheduler requests to change the input for the moulding/unloading 
to an average of 25 trays per minute, instead of 27 trays. Furthermore, they like to incorporate the 
full drying cabinets from the week before, for when the drying does not finish before the beginning of 
the week. We can easily add constraints for the specific drying cabinet that the model cannot schedule 
them before a certain time. After incorporating these remarks, we schedule Week 9 with live data. 
Unfortunately, Brynild momentarily has a lot going on in the factory and they could not find the time 
to analyse Week 9.  

5.3 GENERIC USE OF THE MATHEMATICAL MODEL 
In this section we evaluate the experiments regarding the general capabilities of our MILP. In Section 
5.3.1 we present experiment designs, where we explain the reasoning behind conducting certain 
experiments and what we examine. In Section 5.3.2 we present the results of the experiments. During 
these experiments we solely use the end-drying time objective. 

5.3.1 General capabilities: Experiment design 

In Section 5.3.1.1 we present the experiment design for examining the computation time limits of our 
MILP, testing with various numbers of jobs and parallel machines. In Section 5.3.1.2 we present the 
experiment design to examine multiple variants of our MILP without buffer capacity. We base both 
experiments in this section on different job instances: 

- Small jobs: short drying time on the parallel machines; 
- Large jobs: long drying time on the parallel machines; 
- Mixture of small and large jobs. 

In Appendix E, we give the details regarding how we construct these job instances that we base on 
Brynild’s input data.  
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5.3.1.1 Experiment design: Computation time limits of our main MILP 

The goal of this experiment is to indicate for what size, in terms of number of jobs and number of 
parallel machines, we can compute the entire model in 1 night, that is 16 hours. With the results of 
the experiments, we can approximate whether we can compute future model sizes within a 
reasonable amount of time, or if we should recommend using a heuristic to solve the problem instead. 
Next, we analyse if the various types of jobs, e.g., small, large, or a mixture of both have an influence 
on the computation time.  
 
During this experiment we test the 3 job types for 2, 6 and 10 parallel machines. We start with 3 jobs 
and we increase the number of jobs until the computation time requires more than 16 hours (960 
minutes). When the job instances are too large and require more than 16 hours, we assess the 
integrality gap. We mainly focus on the increase of jobs as in the Brynild case study, we learn that the 
difference between the number of jobs has a large effect on the computation time of the model. Our 
other focus is on the number of parallel machines as these largely influence the size of the solution 
space.  
 
To conclude, we conduct experiments using 3 different job types, and for 3 different numbers of 
parallel machines. The number of jobs we test depends on when we reach a computation time that 
requires more than 16 hours. The experiments give a general idea of when the instances are too large 
to compute within 16 hours. We must note that a better processor could theoretically solve the 
instances faster.  

5.3.1.2 Experiment design: 8 models with zero buffer capacity of our MILP 

The goal of this experiment is to enhance the literature on the topic of models with zero buffer 
capacity. The first experiment is to run the model for 5 minutes. The goal of this experiment is to 
observe whether a model reaches optimality within 5 minutes, or if an integrality gap remains. In the 
second experiment we let the model run until the integrality gap is zero and the model creates the 
optimal solution. Thereafter, we compare the objective value after 5 minutes to the optimal objective. 
 
In Chapter 4 we describe a two-stage Hybrid Flow Shop with non-identical parallel machines, sequence 
dependent set-up times, production time windows, and zero buffer capacity. The newfound idea of 
this MILP is the absence of buffer capacity between Stage 1 and Stage 2 of the HFS. To broaden our 
scope on the zero buffer capacity subject, we conduct the experiments using various mathematical 
models without buffer points. We conduct the experiments using 8 different MILPs, see Table 5.8.  
 
 
Table 5.8: Mathematical models without buffer capacity 

Model Non-identical 
parallel machines 

Sequence dependent 
set-up times 

Production 
time windows 

1 X X X 

2 X X  

3 X   

4  X  

5   X 

6  X X 

7 X  X 

8    
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We present the mathematical description of the models from Table 5.8 in Appendix D. Model 1 is the 
main model we describe in Section 4.2. Model 2 has many commonalities with the 3-shift schedules 
of the Brynild case study, with the only difference that in this model unlimited production hours are 
available. Model 7 is a familiar model as well; this model is one of the heuristics we review during the 
Case study in the Section 5.2. 
 
We conduct 2 experiments with the 8 models out of Table 5.8. We test 3 different instances for these 
8 models. The instances consist of 5 parallel machines and 10 small jobs, large jobs, or a mix of both. 
We specifically use this composition of instances, as we find for the experiments from Section 5.3.1.1 
that, for the main MILP, these instances probably have a computation time under 16 hours. The 3 
instances are the same for all 8 models, to allow a comparison between the models. When there is no 
SDST, the set-up time is 2 hours. The production time windows are 16 hours each. The identical parallel 
machines are able to produce all jobs, and all cabinets have the processing time of the fastest drying 
cabinet.  

5.3.2 General capabilities: Results 

In Section 5.3.2.1 we present the results for the experiments concerning computation time limits of 
our model. In Section 5.3.2.2 we present the results of the 8 models that have zero buffer capacity 
between the 2 stages. 

5.3.2.1 Results: Computation time limits of our main MILP 

We present the computation time in minutes for the instances including jobs with short processing 
times in Figure 5.15. 
 

 
Figure 5.15: Computation time for short jobs in minutes for 2, 6, and 10 parallel machines 

 
Figure 5.15 indicates that the computation time for the jobs with short processing times abruptly 
increases as soon as we add one job (too many). We can include, and compute within a reasonable 
amount of time, more jobs for the instance with 2 parallel machines than the instances with 6 and 10 
parallel machines. Both instances with 6 and 10 parallel machines can easily create a schedule for 9 
jobs, however not for 10 jobs. The integrality gap for 6 parallel machines is 16.3%, and the integrality 
gap for 10 parallel machines is 19.82%. Considering these integrality gaps, we assume that the instance 
with 6 parallel machines is closer to optimality than the instance with the 10 parallel machines. 
Therefore, we conclude for short jobs, that more parallel machines lead to less possible jobs to 
schedule within a reasonable amount of time. 
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We present the computation time in minutes for instances including jobs with long processing times 
in Figure 5.16. 
 

 
Figure 5.16: Computation time for long jobs in minutes for 2, 6, and 10 parallel machines 

Figure 5.16 confirms our findings regarding Figure 5.15, that the more parallel machines we include, 
the less jobs we can schedule in a reasonable amount of time. The computation time for 2, 6, 10 
parallel machines gradually increase for the instances where jobs contain long processing times. We 
observe that the computation time is for some instances higher than for the short jobs, as for example 
we see in the case of 2 parallel machines. We suspect that the computation time is longer for certain 
instances because we must use more production time windows to compute the jobs with longer 
processing times. These time windows influence the computation time as well.  
 
We present the computation time in minutes for instances including jobs with mixed processing times 
in Figure 5.17. 
 

 
Figure 5.17: Computation time for mixed jobs in minutes for 2, 6, and 10 parallel machines 

Figure 5.17 is a combination of Figure 5.15, where the computation times increase abruptly, and of 
Figure 5.16, where the computation times increase gradually. We can explain this combination by the 
fact that the instances contain both jobs with long and short processing times.  
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For all instances with different types of jobs and the use of various number of parallel machines, we 
observe an exponential increase in computation time when the number of jobs increases. Besides, the 
more parallel machines per instance, the less jobs we can schedule within a reasonable amount of 
time. Another observation is that the difference in number of jobs is higher when we vary between 2 
and 6 parallel machines, than the difference in jobs between the use of 6 and 10 parallel machines.  

5.3.2.2 Results: 8 models with zero buffer capacity of our MILP 

After conducting the experiments for the 8 models, we evaluate the objective values of each model, 
and for each instance, with the objective value we find after 5 minutes. The largest difference we 
observe is for Model 4 in Instance 1, with a difference of 3.05%. For more than 70% of the outcomes 
we find the same objective value within 5 minutes computation time, as after completion of the full 
computation time. Only Model 1 has a small difference for every instance; 2.98% for Instance 1, 0.79% 
for Instance 2, and 0.22% for Instance 3. Therefore, we conclude that for these instances’ sizes, most 
models find the optimal solution within 5 minutes. We present the comparison of the objective value 
of the optimal schedule to the objective value after 5 minutes graphically in Appendix F. 
 
We compare the objective (diagram) and the final computation time (line) of the 3 instances for all 8 
models in Figure 5.18. 
 

 
Figure 5.18: Comparison of the 8 models for 3 instances in terms of objective value (diagram) and computation time (line) 

Note that the computation time for Instance 1, with short drying times, is for almost all models the 
highest; this is in line with the patterns we observe in Section 5.3.2.1. 
 
The objective values are in line with what we expect: 

- Higher objective values for models with production time windows; 
- Lower objective values for models with SDST; 
- Higher objective values for models with non-identical parallel machines. 

 
We explain the lower objective values for models with identical parallel machines by the fact that the 
identical parallel machines have the shortest drying time out of the two available drying times. 
Moreover, all machines can produce all jobs. Thus, shorter processing times and a larger solution 
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space lead to a higher probability of obtaining a lower objective value. The lower objective for models 
with SDST is explainable since the set-up times become 2 hours without SDST. These changes in 
objective values arise as a result of how we conduct the instances. For example, if we state that the 
models without SDST have zero set-up time, the objectives of models without SDST are lower instead 
of higher. 
 
Model 5 and Model 7 have the highest objective of all instances. Model 5 and Model 7 have in common 
that there are no sequence dependent set-up times in place, and that there are production time 
window constraints. The other models do not share the combination of these 2 features. Therefore, 
it is reasonable to conclude that in our case the combination of no SDST and the presence of 
production time windows, leads to the highest objective values.  
 
The objectives depend heavily on what values we assign to the parameters of the different models. 
Therefore, we zoom in on the computation time of the various models. The values of the parameters 
have less influence, however the amount of various parameter values does have considerable 
influence on the computation time. As the number of values for parameters is the same for all models, 
and since what parameters we include depends on the models, we make a comparison that is mainly 
influenced by the model type. 
 
We isolate every character trade by comparing 2 models that differ in only one of the 3-character 
trades. For example, comparison of Model 2 to Model 3 to evaluate the effect of SDST on the 
computation time. We present our evaluation of the findings in Table 5.9, Table 5.10, and Table 5.11. 
 
Table 5.9: Difference in percentage in computation time when there are no SDST 

SDST Model 1 vs  
Model 7 

Model 2 vs  
Model 3 

Model 4 vs  
Model 8 

Model 5 vs  
Model 6 

Instance 1 -99% -94% -98% -100% 

Instance 2 -89% -85% -98% -81% 

Instance 3 -79% -97% -98% -6% 

 
Table 5.9 indicates that for every model and for every instance, the model without the sequence 
dependent set-up times computes much faster than the model with SDST. Only the comparison 
between Model 5 and Model 6 for Instance 3 gives a small difference in computation time. We 
conclude that all models without the SDST compute faster, like we in Section 5.2 partly observe with 
the heuristic as well.  
 
Table 5.10: Difference in percentage in computation time when there are no time windows 

Time 
Windows 

Model 1 vs  
Model 2 

Model 3 vs  
Model 7 

Model 4 vs  
Model 6 

Model 5 vs  
Model 8 

Instance 1 -91% -17% -86% 262% 

Instance 2 -95% -93% -20% -92% 

Instance 3 -85% -98% -30% -99% 

 
Table 5.10 indicates for almost all models, except for Model 5 in comparison with Model 8 for Instance 
1, that not taking time windows into consideration, decreases computation time. Model 5 does not 
consider non-identical parallel machines, and SDST, but does consider production time windows. 
Model 8 is the basic model, which does not consider any of the 3 characteristics. We do not know why 
Model 5 computes faster than Model 8 for the instance with jobs containing short processing times. 
It could be a coincidence that we compute Model 5 for this specific instance very fast. Therefore, we 
test the assumption for other instances with jobs containing short processing times. Model 5 requires 
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much longer to solve than Model 8 for these other instances with jobs containing short processing 
times. We do not know the specific reason why this specific instance 1 solves faster for Model 5.  
 
Table 5.11: Difference in percentage in computation time when there are no identical parallel machines 

Non identical 
parallel machines 

Model 2 vs 
Model 4 

Model 5 vs  
Model 7 

Model 1 vs  
Model 6 

Model 3 vs  
Model 8 

Instance 1 271% -69% 137% 33% 

Instance 2 231% -66% -80% -61% 

Instance 3 134% 118% -51% 19% 

 
In Table 5.11 we observe that computation time increases and decreases for models with identical 
parallel machines. We explain this increasing and decreasing in computation time by the fact that the 
non-identical parallel machines differ in two ways. Firstly, there are different processing times for 
different parallel machines. Secondly, not all parallel machines can dry all jobs. If changing the first, 
that is all parallel machines have the same processing time, then in theory the model should compute 
faster. However, when changing the second, that is all parallel machines can dry every job, this makes 
the solution space larger and therefore, in theory the model requires more computation time. The 2 
differences between non-identical parallel machines and identical parallel machines have different 
weights in different situations, as we see in Table 5.11. We confirm this hypothesis by changing only 
one of the two differences, and we obtain the effect we expect. Thus, shorter computation times with 
every parallel machine having the same drying time, and longer computation times in the case that all 
the parallel machines can dry every job. We conclude that the models without non-identical parallel 
machines solves faster or slower depending on the situation. It is important to know the difference 
between the identical and non-identical parallel machines. We do not analyse why a specific 
characteristic is more influential than the other in the different situations.   
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5.4 CONCLUSION 
This chapter discusses the Brynild case, where we evaluate the experiment design and results of the 
main MILP and the heuristics. Next, we evaluate the general characteristics of our MILP and other 
models, which similar to our MILP, do not have any buffer capacity between 2 stages of the HFS.  

5.4.1 Brynild case 

We examine 7 weeks, namely Week 2 to Week 8 of 2020. Originally Brynild schedules the first four of 
the seven weeks using a 3-shift schedule, and the remaining 3 weeks using a 2-shift + Saturday 
schedule. We evaluate different heuristics in the pre-processing phase. The heuristics regard the 
dividing of products over multiple jobs, in the case that the quantity of the product is too large to fit 
in 1 drying cabinet. After evaluating the results, we decide to use the same rule as Brynild originally 
does: divide the quantity evenly over the minimum number of jobs.  
 
We evaluate 2 objectives. The first objective is the drying objective; the minimization of the latest end-
drying time. In all the schedules we create the drying finishes significantly earlier (p<0.05). On average 
38 hours earlier than in Brynild’s original schedules. The second objective is the Stage 1 objective; the 
minimization of the maximum end time in Stage 1. In all schedules, Stage 1 finishes significantly earlier 
(p<0.05), on average 17.5 hours earlier than in Brynild’s original schedules. Next, we observe that the 
set-up time does not have a direct effect on the end time of Stage 1. Therefore, we conclude that the 
availability of the drying cabinets is likely more influential to the Stage 1 end time than the set-up 
times are.  
 
We can scale down four out of the seven schedules. We can schedule three out of four original 3-shift 
schedules using a 2-shift + Saturday schedule, and one of the three original 2-shift + Saturday 
schedules using a 2-shift schedule.  
 
Out of the 3 heuristics we mention in Chapter 4, the heuristic where we interrupt our MILP after 10 
minutes, performs the best considering the objective values and the computation times of both 
objectives. Moreover, we find that considering sequence dependent set-up time is very important for 
creating schedules. Especially when production time windows are in place. 

5.4.2 General 

To examine the limits of our MILP we research 3 types of jobs: with short, with long, and with a mix of 
short and long drying times. Furthermore, we test different numbers of parallel machines. For all 3 
types of instances and for the different number of parallel machines, we observe an exponential 
increase in computation time when the number of jobs increase. Next, the more parallel machines per 
instance, the less jobs we can schedule within 16 hours. For the short jobs we observe a sudden 
increase in computation time, while for the long jobs and the mixed jobs the increase in computation 
time develops more gradually.  
 
We examine 8 two-stage models varying in: including production time windows, SDST, and non-
identical parallel machines, that share the characteristic of zero buffer capacity between the 2 stages. 
We conclude that models without sequence dependent set-up times compute much faster than 
models with sequence dependent set-up times. Besides, in almost all cases the models without 
production time windows, compute faster than the models with production time windows. Lastly, it 
variates whether models with identical parallel machines compute faster than models without 
identical parallel machines. After further evaluation, we hypothesize that when solely the process time 
becomes the same for the parallel machines, the model computes faster, and when all parallel 
machines are able to process certain jobs, the solutions space becomes larger and the computation 
times higher.  
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6 CONCLUSION & RECOMMENDATIONS 

Chapter 6 concludes our research; we give short answers to every research question in Section 6.1. In 
Section 6.2 we discuss Brynild’s case study. In Section 6.3 we discuss the scientific value of our work. 
Lastly, in Section 6.4 we give recommendations on how to move forward with implementing the MILP. 

6.1 RESEARCH QUESTION CONCLUSIONS 
This section answers the research questions as we formulate in Chapter 1. Together, these sub 
research questions answer the main research goal.  
 
Research question 1: What does the current situation at Brynild look like? 
Brynild’s production line consists of 3 parts; Støperi 1, Drage Sukker, and Godteri Pakking. The biggest 
bottleneck is the drying area, which is part of Støperi 1. The production scheduling of Støperi 1 is done 
manually and experience-based. We formulate the scheduling problem of Støperi 1 as: a problem with 
non-identical parallel machines, sequence depending set-up times, production time windows, and 
without buffers. The data analyses of the current scheduling methods indicates that the bottleneck, 
the drying area, is almost always occupied (89% to 98% of the time), but not fully utilized (40% to 57% 
of the time).  
 
Research question 2: Which methods are described in literature regarding the scheduling of a 
production line similar to Brynild’s? 
We identify Brynilds Støperi 1 line as a two-stage hybrid flow shop with non-identical parallel 
machines, sequence dependent set-up times, production time windows, and without intermediate 
buffer points. This exact problem is not known in literature. Therefore, we evaluate 6 problems with 
similar characteristics. It appears that these similar models are solved using a meta-heuristic such as 
tabu search, or genetic algorithms. In Brynild’s case however, there is no buffer capacity between the 
2 stages, and production time windows are in place. Due to the combination of these 2 conditions is 
it difficult to obtain good solutions using integrated meta-heuristics, therefore we prefer not to use 
them to compute our HFS problem. Luckily, the instances of Brynild’s problem are likely small enough 
to compute within reasonable time using a Mixed Integer Linear Programming model. 
 
Research question 3: How can we develop a scheduling model that improves the throughput of the 
production line?  
Before developing a scheduling model that improves the throughput of the production line, we 
assume that we structure the input data in such a way that jobs consist of 1 or more intermediates, 
which can dry together and, in terms of quantity always fit in 1 drying cabinet. Another assumption 
we do is that the drying cabinets have the same capacity, and are available at the beginning of the 
week. We develop the main MILP model that considers a two-stage hybrid flow shop in which the 
drying cabinets are non-identical parallel machines. The model includes sequence dependent set-up 
times, production time windows, and there is zero buffer capacity between the 2 stages. The objective 
of the model is to minimize the make span of the schedule. Next, we introduce 3 heuristics that we 
base on our main MILP: 

- Our MILP without sequence dependent set-up times; 
- Our MILP that we decompose in an assignment and a sequencing MILP, which we compute 

sequentially; 
- Our MILP with a maximum computation time of 10 minutes. 
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Research question 4: How does the proposed scheduling method perform? 
We examine 7 weeks: Week 2 to Week 8 of 2020. The first four of the seven weeks consist of a 3-shift 
schedule and the remaining three weeks of a 2-shift + Saturday schedule. We evaluate 2 objectives. 
The first objective minimizes the make span up to the end-drying time, and the second objective the 
make span up to Stage 1. Both objectives provide significantly better schedules in comparison to 
Brynild’s original schedules. Using the first objective we create solutions that on average finish 38 
hours earlier, while with the second objective finishes on average 17.5 hours earlier. We could 
schedule four of the seven weeks using a shift schedule that requires less shifts. The heuristic that 
interrupts the MILP after 10 minutes performs the best. For the end-drying time objective, the 
heuristic obtains the same objective value for six of the seven weeks, and in the other week an 
objective that is 0.87% higher. Brynild agrees that the scheduling method is very representable for 
practice and that the scheduling methods only needs a few small changes before Brynild could use the 
method in practice.  
 
We evaluate 2 generic experiment designs. The first experiment is to evaluate the limits of our MILP 
in terms of computation time. We observe an exponential increase in computation time for all 3 types 
of instances (short, long, or mixed processing times), when the number of jobs increase. The second 
experiment is to evaluate 8 two-stage models varying in rather or not including production time 
windows, SDST, and non-identical parallel machines, that share the characteristic of having zero buffer 
capacity between the 2 stages. We conclude that models without sequence dependent set-up times 
compute much faster than models with sequence dependent set-up times. Next, in almost all cases 
the models without production time windows compute faster than the models with production time 
windows. Finally, a model including identical parallel machines shows variating results in whether the 
computation requires less or more time. After further evaluation, we conclude that when solely the 
process time becomes the same for all parallel machines, the model computes faster. When more 
parallel machines are able to process certain jobs, the solutions space becomes larger and the 
computation time higher. 
 
Concluding, our proposed MILP model, supplemented with the 10 minute run heuristic, is a good 
scheduling method that can successfully be used by Brynild. Brynild confirms that the scheduling 
method would be able to realize higher throughput of the production time and that it is feasible to 
use in practice. Therefore, our MILP model realizes the research goal, which is: To develop a scheduling 
method that improves the scheduling of the production orders under consideration of multiple process 
constraints. 

6.2 DISCUSSION BRYNILD CASE STUDY  
In this discussion we evaluate the largest limitation of our model, which is of interest for Brynild. Next, 
we discuss multiple improvement suggestions for the model. Thereafter, we discuss further research 
areas for Brynild to explore in order to improve the scheduling of their production line. Lastly, we 
discuss Brynild’s future in terms of expanding the production line and using our scheduling method. 
 
The largest limitation of the model of importance to Brynild is that in our MILP we consider 5 drying 
cabinets all with the same capacity. While in practice there are 7 drying cabinets; Dynaflow and Catelli 
consist of two times 2 drying lanes, instead of one time 4 drying lanes. By considering solely 5 drying 
cabinets we lose scheduling flexibility. However, if we consider 7 drying cabinets, we need to 
acknowledge 1 additional characteristic for the drying cabinets, namely the capacity of each drying 
cabinet. Due to this additional characteristic, the problem becomes larger. The model needs to be able 
to dry jobs together, since all jobs obtain the maximum size of the smallest drying cabinet. If we 
construct the MILP in this way, the instances contain 7 drying cabinets, and almost two times the 
number of jobs. When observing the results of the experiments regarding the computation time limits, 
we conclude that these instances do not compute within the reasonable amount of time of 16 hours. 
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Another way to incorporate the different sizes of drying cabinets is by using a MILP that considers 
batching. The disadvantage of batching is that the theoretical model is very difficult to produce in 
practice. The trade-off Brynild can make, is to assume 5 drying cabinets and obtain an optimal 
schedule for these 5 drying cabinets. Or alternatively, to incorporate jobs that dry together and 
schedule 7 drying cabinets in order to obtain a (near) optimal solution with a heuristic.  
 

We have several improvement suggestions for Brynild to make the practical use of the MILP simpler. 
The first suggestion makes the practice use of the MILP simpler if Brynild wants to use the scheduling 
model for unanticipated changes in the production planning as well. We suggest using a rolling horizon 
instead of a finite horizon. With a rolling horizon the schedule can easily adapt when unexpected 
changes arise. We also suggest to assign a priority to the remaining jobs if changes occur. We need 
the priority when it appears that we cannot produce all jobs in one week any longer. The priority 
indicates, which jobs we need to produce in that specific week and, which jobs we ‘only’ prefer to 
produce in that week. We can include the priority in the objective or as a constraint. 
 

Brynild indicates that they prefer to schedule maintenance as well. When the maintenance still 
requires planning we suggest that Brynild defines a specific job representing the maintenance time. 
After running the MILP, the model schedules the maintenance on the best time possible for Brynild. 
In the case that the maintenance is already planned at Stage 1, we suggest adjusting the production 
time windows of the model. When maintenance is planned for a drying cabinet, we need to add an 
additional constraint, which indicates that we cannot use that specific drying cabinet during the 
maintenance period.  
 

We have another suggestion regarding the practical use of the scheduling method. Brynild should use 
the objective to minimize the end time of Stage 1 to create a week schedule 3 weeks in advance, and 
to determine the minimal number of shifts. Brynild can use this information to select the shift 
schedule. Brynild must take into account that certain changes can occur and should therefore 
incorporate some slack for the number of shifts. Accordingly, we suggest that Brynild uses the MILP 
with the end-drying objective, in which they incorporate the selected shift schedule as a constraint.  
 

We have various suggestions for further research that can be beneficial for the scheduling of the 
production line from Brynild’s confectionary. The first recommendation is to examine the schedule for 
multiple weeks, using the end time Stage 1 objective and add as constraint that the drying cabinets 
need to finish drying before the start of the upcoming week. In our 7 weeks from 2020 we observe 
much potential for this suggestion. All drying cabinets finish drying in time and we can minimize the 
Stage 1 end time. However, it can occur that the model cannot find a feasible schedule. For example, 
for the 3 weeks we schedule with the end-drying objective using live data from Brynild, two of the 
three schedules feature drying cabinets that finish drying in the first shift of the following week. With 
a constraint on the end-drying time, these instances would be infeasible to schedule. Therefore, we 
suggest exploring the probability that these types of seemingly infeasible instances occur, before using 
the model in this way.  
 

The second suggestion is to research various heuristics dividing the quantity over jobs in the pre-
processing phase. Heuristic rule 2, fill the jobs completely and the last job contains the rest quantity, 
has much potential to create better objectives values. Brynild could test different input instances and 
may find patterns. In this study, alternative job configurations should be taken into consideration as 
well. Thus, not solely those heuristics that lead to the minimum number of jobs. This research can 
provide suggestions for different situations regarding when to use what heuristic. Brynild can use the 
10 minuntes’ heuristic to research whether different job configurations can be interesting for 
obtaining better schedules. We expect that using the correct heuristic in a particular situation can 
reduce the objective with 8 or more hours, like we observe in Week 8 during our limited research 
regarding heuristics.  
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The third research suggestion has an influence on the parameters of our MILP. Brynild indicates a 
variability in production volumes. Therefore while scheduling, 2 pallets need to remain empty. Brynild 
can obtain useful information when they further examine this variability for the various products. 
Thereafter, Brynild can do a trade-off regarding the 2-pallet rule for each product. In this trade-off, 
Brynild can weight the costs of materials against the profit resulting from the additional drying space. 
Before making the trade-off, we should know what the variability of each product is, as this could be 
different for every product. Brynild can conduct a stochastic simulation, using Monte Carlo, to obtain 
the insight they need for this trade-off. The Monte Carlo can also help to determine for every 
intermediate the number of trays or pallets that Brynild should schedule empty or maybe the number 
of trays or pallets that Brynild should schedule to overproduce. When this information is available, the 
theoretical schedule represents practice better, and the probability for obtaining more profit 
increases. 
 
A last recommendation for Brynild to further research is the possibility of scheduling more than one 
week at a time. We assume a 1-week scheduling horizon since the output of the planning is cost-
based. Interchanging intermediates would nullify the planning output. Therefore, if for example 
Brynild would become interested in a scheduling horizon of 2 weeks, the planning should give weights 
of importance to the production of specific intermediates in certain weeks. Brynild can incorporate 
these weights in the objective or as a constraint. Changing the scheduling horizon to 2 or even to 3 
weeks can improve Brynild’s throughput as the solution space becomes much larger.  
 
The future of Brynild might involve expanding the complexity of their production line by adding an 
additional drying cabinet. Furthermore, the number of jobs is likely to increase as well. As Brynild is 
currently at the limit of scheduling within 16 hours (with approximately 11-12 jobs per week) with the 
use of our MILP model, there is a high probability that they cannot schedule all week instances to 
optimality within 16 hours. In this case, we recommend Brynild to still use the MILP, but interrupt the 
MILP after these 16 hours, as the (near) optimal solution is most likely already found. 

6.3 DISCUSSION TO FURTHER ENHANCE THE LITERATURE VALUE  
In this discussion we evaluate the limitations of our model, which are of interest to the literature. 
Next, we recommend further research to enhance the literature.  
 
The limitation with the biggest impact on our MILP, is the assumption of pre-processing the input data. 
We structure the input data in such a way that jobs consist of 1 or more intermediates, which can dry 
together and, in terms of quantity always fit in 1 drying cabinet. This is a reasonable assumption for 
the Brynild case as in this way the schedule becomes more useful in practice. However, the general 
experiments we conduct with our MILP represent only part of a two-stage hybrid flow shop problem 
without buffers. Therefore, we recommend researching other MILPs including batching and different 
capacities for the non-identical parallel machines. As the parallel machines differ regarding 3 
characteristics, we recommend testing every characteristic individually and in different combinations 
in order to evaluate the effect of each of the characteristics. We also recommend conducting the same 
experiment design for the MILP that considers batching, like we do for the 8 different MILPs. Our 
experiments can be used as a benchmark to evaluate the influence of batching on the MILPs’ 
computation time and objective values. We hypothesize that the model with batching finds better 
objective values, however also that the computation requires much more time.  
 
During the evaluation of our experiments, some questions remain unanswered. One of these is “why 
is Model 5 with production time windows solved much faster than Model 8 without production time 
windows, for Instance 1”. We find that this is not the case for other instances with short jobs. 
Therefore, there is a high probability that this discrepancy is specific for this instance and an exception 
to the rule. In this stage of our research, we recommend to not focus on these very specific cases. 
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When more of these discrepancies arise, we could conduct a research to explore underlying causes. 
For now however, we recommend focussing on a broader aspect, including the zero buffer capacity 
between stages.  
 
During the research regarding the limitations of our MILP, we solely differentiate between instance 
types, number of parallel machines and the number of jobs. However, also other parameters have 
impact on the computation time. For example, the number of different set-up times. We recommend 
to explore all these different parameters and to evaluate, which parameters have the most influence 
on the computation time of the model. We assume that the parameters we already tested are the 
ones with the most influence, since that is why we tested them. Besides, we observe a large difference 
between the number of jobs that we can schedule for 2 parallel machines and for 6 parallel machines 
within 16 hours. Therefore, it could be interesting to evaluate 3, 4, and 5 parallel machines as well. 
Another interesting observation is that the computation time of the jobs with short processing times 
increases abruptly, and that the computation time for jobs with long processing times increases 
gradually. We suspect that this has to do with the number of production time windows. However, 
further research is required to reinforce this suspicion or to reject the hypothesis and find another 
explanation.  
 
We further recommend testing more (different types of) instances for the 8 different MILPs. With 
more data, the differences can be quantified as averages. Consequently, we may then be able to state 
for example: when characteristic Y is not considered, on average the model computes X% faster. The 
specific percentages can be evaluated using box plot diagrams. We start this evaluation and observe 
high potential, however we do not test enough instances to conclude with what percentages the 
computation time would increase or decrease for the various characteristics. 
 
Another interesting research topic is to evaluate the difference in objective values for problems with 
(limited) buffer capacity and those without the buffer capacity. This research provides insight, whether 
investing in (additional) buffer capacity can be profitable or not.   
 
We can recommend many more research topics, as the zero buffer capacity is a relatively unknown 
issue in literature for both the HFS and FJS, as we conclude in Chapter 3. Such research opens a new 
topic and perspectives, therefore almost all related research and experiments enhance the literature.  

6.4 RECOMMENDATIONS ON HOW TO IMPLEMENT OUR MILP 
We recommend implementing the MILP in different interactive phases: 

- Phase 1 is to receive Brynild’s approval for the developed scheduling method. We need the 
approval, as a confirmation that Brynild acknowledges the value of the new scheduling method 
when testing and implementing; 

- Phase 2 is to integrate the MILP in the software such that the MILP can obtain data from 
Brynild’s ERP system; 

- Phase 3 is an iterative phase with Phase 4. In Phase 3 we conduct shadow runs; we run the 
MILP next to the current scheduling method. We evaluate the outcome in relation to the 
current method of scheduling and to signal possible discrepancies of the MILP; 

- Phase 4 is to evaluate the discrepancies and to adjust the MILP to Brynild’s requirements and 
preferences. After adjusting the model, we conduct new shadow runs in Phase 3. When Brynild 
is satisfied with the outcome of the shadow runs of the MILP, we start Phase 5; 

- Phase 5 is when the MILP is fully integrated within the ERP system. Next the scheduler and the 
line operators need ‘training’ on how to work with the new scheduling method. The layout and 
precision of our scheduling method is different from what the employees at Brynild are used 
to. For the scheduler the focus is on how to use the method and how to perceive the output, 
the line operators need to learn how to use this schedule in practice. A human eye remains 
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needed to check if the theoretical model can indeed be applied in practice. However, checking 
the schedule is less time consuming than making the schedule from scratch. We recommend 
to keep the current scheduling method as a shadow run in the beginning of the 
implementation. The shadow run functions as a backup mechanism, and we can also use it as 
performance comparison. When Brynild is completely satisfied with the MILPs’ functioning, 
the shadow runs can phase out.  

 
We present our experiment findings to Brynild and they are excited about the results. Therefore, we 
already accomplish Phase 1 by gaining Brynild’s approval. We jump over Phase 2 as this phase is very 
time consuming. We can jump over Phase 2 since in Phase 3 we enter the input data manually. We 
cannot yet test the integration and solely focus on the results of the schedule. We already start Phase 
3 by running the MILP for Week 7 and Week 8 of 2021. We receive the feedback that the schedule 
should not start with Dent products, since it requires material preparation, which takes 3 hours. 
Therefore, in Phase 4 we add an additional constraint that states that jobs containing Dent products 
can only start after 3 hours in the model. Back in Phase 3, we run the model once again. This type of 
interactive and iterative shadow scheduling should continue until Brynild is completely satisfied with 
the schedules our MILP creates.  
 
In the meanwhile, another student, Joey Klein Koerkamp, creates a new planning method for Brynild. 
This planning indicates what and how much to produce in what week, while considering the costs and 
the buffer space between the production lines. If Brynild wants to implement both the scheduling 
method and the new planning method, we recommend to start with the implementation of the 
scheduling method. Once the scheduling method is fully functional, we can also implement the 
planning method. There are two reasons for implementing the scheduling first. If we implement the 
planning first, the shadow runs for the planning are much more time consuming. We need to check 
the shadow runs of the planning method on feasibility, and whether there is additional space left in 
the schedule when the planning indicates a full week. To be able to obtain these answers, we do need 
to schedule the planning, which is currently done manually. The other reason is that if we start with 
implanting the planning method, the shadow runs and adjustments of the planning are based on the 
manual scheduling method. Therefore, when we implement the scheduling method, the planning has 
to be adjusted based on our MILP, since our method creates more optimal schedules and delivers a 
more accurate feasibility check.  
 
If Brynild implements the planning method first, we require much more time. Firstly, to adjust the 
planning method to the manual scheduling, which itself costs more time. Moreover, once the 
scheduling method is implemented, we must adjust the planning method for a second time. 
Therefore, we recommend starting with the implementation of the scheduling method. 
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APPENDIX A: GENERAL INFORMATION BRYNILD 

Appendix A consist of general information regarding Brynild’s current situation. Table A.0.1 consists 
of the family name, article number and the product name. Column 4, gives the number of 
intermediates that fit on 1 tray and the 5th column contains the tool number that Brynild uses to 
produce the intermediate. 
 
Table A.0.1: Product information part 1 

  Art. Nr Art.navn Antall figurer pr brett  Dyseplate 

Familie A 112270-71 Godte Gomp 800 2790 

  113072 Stupedama 800 2790 

  113500 Påske Fruktgele 168 3245 

  112958 Jordbærfisker 168 3245 

  113482 Jul Fruktgelè 168 3245 

  113729 Supermixgelè 168 3245 

  113515 Lakrisbåter 384 2792 

Familie B 112815 Knatter 800 2790 

Familie C 107270 Frutti Beans xxl 476 2791 

Familie D 111916 Dent Eukalyptus 660 5020 

  112189 Dent Trio 660 5020 

  111918 Dent Salt lakris 660 5020 

  113304 Dent Crush Medium salt 660 5020 

  113319 Dent Crush Pomello Jordb. 660 5020 

  113943 Dent Crush Sweet Mint 660 5020 

  113927 Dent Flip Lakris Karamell 168 3245/5327 

  113932 Dent Flip Cola Sitron 168 3245/5327 

  113940 Dent Flip Jordbær Bringebær 168 3245/5327 

  113604 HF P.P Lakris Sukkerfri 476 2791 

Familie K 105994 Gelepynt Freia 476 2791 

(Kaldstøp) 107935 Jellymen ekstra tykke 168 3245 

  106571 Myke seigmenn 168 3245 

  104452 Røde Hjerter 168 3245 

  106497 Sure Skumfrosker 168 3245 

  113492 Figurskum-gele jul (2 lag) 168 3245/5327 

  113543 Skumgele Appelsin Påske 168 3245/5327 

  113542 Skumgele Cupuacu Påske 168 3245/5327 

  112873 Sure Colaflasker skumgelè 168 3245/5327 

  113541 Gompegelé 168 3245/5327 

  113087 HF Skumgelé Solbær 168 3245/5327 

  113717 Barnetimen skum/gele 168 3245/5327 

  113095 HF Skumgelé Cupuacu Sommer 2017 168 3245/5327 

  113494 / 113538 Søte Rakkere 168 3245 

  113561/113562 Sure Rakkere 168 3245 

  113563 Myke Rakkere 168 3245/5327 

Familie 111132 Sure Buttons 96 5136 

  111892 Skumegg 384 2792 

  113496 Sure tær 156 5134 
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Table A.0.2 consists of the family name, article number and the product name. Column 4, gives the 
warm drying time and cold drying time for the new drying cabinets, and the fifth column the warm 
and cold drying time for the old drying cabinets. The 6th column informs us how much kilogram of an 
intermediate fits in 1 drying lane.  
 
Table A.0.2: Product information part 2 

   
Dynaflow og 
Catelli 

Late skapene  

  Art. Nr Art.navn 
Tid 
Varme  

Tid 
Kjøl 

Tid 
Varme  

Tid 
Kjøl 

Ferdig tørk 1 
rad 

Familie A 
112270-
71 Godte Gomp 

37 10 60 24 
1651 

  113072 Stupedama 38 10 48 24 2056 

  113500 Påske Fruktgele 38 10 48 24 2400 

  112958 Jordbærfisker 38 10 48 24 2439 

  113482 Jul Fruktgelè 38 10 48 24 2400 

  113729 Supermixgelè 38 10 48 24 2439 

  113515 Lakrisbåter 38 10 48 24 3571 

Familie B 112815 Knatter 48 10 48 24 1150 

Familie C 107270 Frutti Beans xxl 48 10 70 24 2506 

Familie D 111916 Dent Eukalyptus 36 10 x x 1818 

  112189 Dent Trio 36 10 x x 1818 

  111918 Dent Salt lakris 48 10 x x 1818 

  113304 Dent Crush Medium salt 48 10 x x 1871 

  113319 Dent Crush Pomello Jordb. 36 10 x x 1871 

  113943 Dent Crush Sweet Mint 36 10 x x 1871 

  113927 Dent Flip Lakris Karamell 40 10 x x 1080 
  113932 Dent Flip Cola Sitron 40 10 x x 1080 

  113940 Dent Flip Jordbær Bringebær 40 10 x x 1080 

  113604 HF P.P Lakris Sukkerfri 36 10 x x 1311 

Familie K 105994 Gelepynt Freia 0 24 0 24 2838 

(Kaldstøp) 107935 Jellymen ekstra tykke 0 24 0 24 3797 

  106571 Myke seigmenn 0 24 0 24 2742 

  104452 Røde Hjerter 0 24 0 24 3290 

  106497 Sure Skumfrosker 0 24 0 24 1791 

  113492 Figurskum-gele jul (2 lag) 0 48 0 48 2441 

  113543 Skumgele Appelsin Påske 0 48 0 48 2618 

  113542 Skumgele Cupuacu Påske 0 48 0 48 2618 

  112873 Sure Colaflasker skumgelè 0 72 0 72 2723 

  113541 Gompegelé 0 48 0 48 1365 

  113087 HF Skumgelé Solbær 0 48 0 48 2618 

  113717 Barnetimen skum/gele 0 48 0 48 1946 

  113095 
HF Skumgelé Cupuacu Sommer 
2017 

0 48 0 48 
2618 

  
113494 / 
113538 Søte Rakkere 

0 48 0 48 
2063 

  
113561/
113562 Sure Rakkere 

0 48 0 48 
2257 

  113563 Myke Rakkere 0 48 0 48 2082 

Familie 111132 Sure Buttons 48 10 48 12 2239 

  111892 Skumegg 24 10 24 10 1132 

  113496 Sure tær 48 10 48 10 2540 
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APPENDIX B: SOLUTION APPROACHES FLEXIBLE JOB SHOPS 

As we do not find not a lot of HFS problems that have the same similarities with the Brynild case we 
also review the FJSP with sequence-dependent set-up times (FJSP-SDST). FJSP-SDST problems have in 
common with the Byrnild case that the machines are non-identical and that they consider sequence 
dependent set-up times. However, also in this area we find no cases with zero intermediate buffer 
capacity. Often some sort of swarm intelligence is used like Particle Swarm by (Toshev, 2019), Ant 
colony by (Rossi, 2014), Hybrid Cloud Particle Swarm by (Xu, Jiawei, & Ming, 2017), and Bee colony by 
(Caldeira, Gnanavelbabu, & Solomon, 2019). These swarm intelligence applications are most of the 
time integrated with a GA or TS, therefore we focus on the GA and TS. The three most used and 
evaluated methods to solve the FJSP-SDST are Tabu Search, Genetic Algorithms and Variable 
Neighbourhood Search. 
 
A FJSP-SDST formulated by Azzouz, Ennigrou & Said (2016) with the objective to minimize make span 
is solved by a Genetic Algorithm (GA). The GA is evaluated for two types of objectives, make span and 
Aggregate Objective Function. In this paper they compare GA to a VNS, which is proposed by Bagheri 
& Zandieh (2011), an adapted TS proposed by Ennigrou & Ghédira (2008), Artificial Immune System 
and Particle Swarm Optimization from Sadrzadeh (2013). The relative percentage deviation is used to 
compare the performance of the algorithms. GA performs best in most instances, however in 3 out of 
20 instances VNS performs the best and for 1 instance TS performs the best.  
 
Shen, Dauzère-Pérès & Neufeld (2017) solve a FJSP-SDST with a TS and the objective is to minimize 
the make span. Four moves are identified, 2 focus on the resequencing on the same machine and the 
other 2 focus on reassignments to another machine. González, Vela & Varela (2013) propose a 
neighbourhood, which is embedded into a GA hybridized with TS for a FJSP-SDST. They find that a TS 
combined with a GA works very well. For the smaller instances of 10 jobs the TS by itself finds the 
same values or very close values to the GA+TS method.  
 
Bagheri & Zandieh (2011) consider a FJSP with sequence-dependent set-up times to minimize the 
make span and mean tardiness. To solve this FJSP problem a variable neighbourhood search algorithm 
is proposed. First the operations are assigned to a machine. After this assignment, the sequence is 
determined. Multiple random feasible solutions are produced and the best one is chosen. The method 
is evaluated against the parallel variable neighbourhood search algorithm of Yazdani, Amiri & Zandieh 
(2010) and the genetic algorithm of Pezzella, Morganti & Ciaschetti (2007). The relative percentage 
deviation is used as an evaluation. the variable neighbourhood search performs better than the 
adapted parallel variable neighbourhood search and genetic algorithm for all instances.  
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APPENDIX C: DECISIONS CONCERNING THE MODEL 

We explain in the appendix the 2 important decisions we make regarding the main model. Firstly, the 
pre-processing of the input data for the model. We discuss the various options we consider and the 
advantages and disadvantages of the options. Secondly, the objective of the model. We discuss 
different objectives and the advantages and disadvantages of the objectives.  

PRE-PROCESSING INPUT DATA 

Data pre-processing options 

In this section we determine how detailed we want our mathematical model to be. The degree of the 
details influence the number of constraints, variables, and to what extent we need to pre-process the 
input data. The raw input data for the Støperi 1 scheduling problem is the output data of the week 
planning. This planning indicates the quantity in kg of every intermediate to be produced each week. 
In this research we consider using 3 different options on how to use and pre-process the input data. 

1. The input data is the direct output data of the planning; 
2. We pre-process the input data slightly; we divide intermediates that are too large, so 1 

intermediate always fit in the drying cabinet; 
3. We pre-process the input data fully; we divide intermediates that are too large, and combine 

intermediates that can dry together, thus 1 or multiple intermediates fit in the drying cabinet 
together. 

 
We examine different input data possibilities, as the input data has a large effect on our mathematical 
model. The 3 options have in common that the following conditions should be taken into account: 

- No buffer points; 
- Sequence dependent set-up times; 
- Non-identical parallel machines; 
- Production time windows. 

There are zero buffer points in the model, every process passes through in a continuous flow. The 
sequence dependent set-up times depends on whether the intermediate is the same or if the 
intermediates make use of the same tool. With the non-identical parallel machines, the intermediates 
have different throughput times for the drying cabinets. Last, we require the production time windows 
to indicate the 2-shift schedules and to end the 3-shift time schedules.  
 
The 3 different options for data input, have different levels of flexibility and scheduling difficulties, 
which we discuss in the subsections below.  

Input data is the planning output data 

In this first option, the input data has the same format as the output data from the planning; the 
different intermediates with their quantity for every week. When the input of the model is the output 
of the planning the following additions must be taken into account: 

- Batch sizing; 
- Intermediates drying together. 

 
It can occur that the quantity of the planned intermediate is too large and does not fit in 1 drying 
cabinet. Therefore, the mathematical model needs to be able to make batches for every intermediate. 
The batches have a maximum quantity in kg that fit in the drying cabinets. The quantity depends on 
each intermediate and each drying cabinet.  
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Next to batch sizing, this input data also requires the option in which intermediates could dry in the 
same drying cabinet. The mathematical model has to determine whether intermediates dry together, 
if the intermediates fit together and can dry together in the drying cabinets and recalculate the 
utilization time of the drying cabinet. The drying end time for both intermediates becomes the same 
and the drying only starts when the second intermediate enters the drying cabinet.  
 
A disadvantage of having the output data from the planning as input data is that the model has a large 
and complex solution space. We need various constraints and decision variables for this model to 
work. Since the batch size still requires determination and is not integer, continuum of possibilities 
arise. This mathematical model requires a great time to compute, at least multiple days, if the 
instances are even small enough to be solvable. Another disadvantage is that the output could be hard 
to apply in practice. It is difficult to produce the exact quantity from the schedule, it often occurs that 
Brynild produces more, or less than they intend. 
 
Although using the output data directly as input imposes disadvantages, there are also two important 
advantages. The first advantage is that the data does not need pre-processing. Another advantage is 
that the model creates the most optimal, given the planning as input, schedule since we do not reduce 
the flexibility of the model in any way. 

Slight pre-processing of the input data: 1 intermediate fits in the drying cabinet 

In the second option for the input data, we alter the intermediates quantity such that we make 
batches before scheduling that always fit in every drying cabinet. There are multiple ways to divide 
the production quantities. One is to evenly distribute the quantity over the number of batches we 
minimal need. Another option could be to completely ‘fill’ multiple batches and have 1 batch left 
containing the rest. We must research what would generally work the best for Brynild’s scheduling 
problem. We still need to consider the following addition when the input of the model are pre-
processed batches containing 1 intermediate that fits in every drying cabinet: 

- Intermediates drying together. 
 
The advantages of determining the batch sizes before scheduling is that we sperate the intermediates 
beforehand, so the final output is more useful in practice. This is the case since the scheduler is able 
to do an additional check on feasibility, before using the input data in the model. The second 
advantage is that we need less constraints and decision variables, since the model no longer needs to 
separate the input data in batches to fit the drying cabinets. Therefore, the model requires less 
computation.  
 
A disadvantage of pre-determining the batches is the loss of flexibility. By pre-determining the 
batches, it could be that the model can no longer create the most optimal schedule. Another 
disadvantage is that the mathematical model still needs to have constraints and variables to dry 
different intermediates together. Therefore, the parallel machines must be able to process multiple 
batches at the same time. One of the main assumptions of a hybrid flow shop we mention in Chapter 
3 is that each machine can only process 1 operation at the time and each job can be processed by only 
1 machine at the time.  

Pre-processing of the input data: 1 or multiple intermediates fit in the drying cabinet together 

For the third option we further alter the output data of the planning than in Option 2. As opposed to 
Option 2, batch sizes made in Option 3 consider the additional possibility of batches drying together. 
This would allow for consecutive production of the batch combinations, such that we minimize the 
waiting time in an open drying cabinet. This additional alteration to produce the intermediates 
consecutively when they dry together is not farfetched, as the first intermediate must always wait for 
the other intermediates before the drying cabinet can begin. Also, in practice it is far from ideal to 
have liquid intermediates waiting for a long time in an open drying cabinet, since the quality of the 
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product reduces. If we alter the input data for Option 3, no additions need to be taken into account. 
However, we do need to consider the 2 Catelli drying cabinets as one and the 2 Dynaflow cabinets as 
one. We consider 5 drying cabinets with the same capacity instead of 7 drying cabinets with varying 
capacities. Because if we consider cabinets with varying capacities, we cannot know how large a job 
can be. Therefore, all jobs need to have the size of the smallest cabinet and the model becomes far 
from optimal, or should still consider jobs drying together.  
 
The main advantage of pre-processing the input data by making batches containing intermediates to 
dry together is that the model requires less constraints and decision variables. The constraints in the 
model no longer need to consider, batches drying together in a drying cabinet since we already 
combine the intermediates in 1 batch. Therefore, this model can compute faster than the models of 
the other two options. Another advantage is that the undesired outcomes are no longer in the solution 
space of the model. With undesired outcomes we mean outcomes undesired in practice, for example 
where the first intermediate must wait over night before the second intermediate starts producing, 
since this is not good for the quality of the products.  
 
The disadvantage is more loss of flexibility than with Option 2. And that we consider 5 drying cabinets 
equal in capacity instead of 7 uneven in capacity. Thus, there is even a higher probability that, given 
the planning as input, the theoretical optimal solution is not in the solution space of the model when 
using the input data of Option 3. 

Determination of the input data 

In Section 4.1.2 we examine 3 options for pre-processing of the input data. Option 1 needs the most 
variables and constraints as this option considers the least pre-processing. Option 3 requires the most 
pre-processing and therefore needs the least variables and constraints. Table C.0.1, shows what we 
need to consider for each data input option. 
 
Table C.0.1: Input data processing option 1, 2, and 3 summarized 

 Option 1 Option 2 Option 3 

No buffer points X X X 
Sequence dependent set-up times X X X 
Non-identical parallel machines X X X 
Production time windows X X X 
Batch sizing X X  
Intermediates drying together X   

 
After considering the advantages and disadvantages of the 3 options for the input data, we chose to 
use Option 3: we batch 1 or multiple intermediates together to fit in the drying cabinet. In Option 3 
the number of constraints, variables and the solution space is more manageable. Due to these 
simplifications for Option 3, see Table C.0.1, the probability of being able to solve the mathematical 
problem in the least amount of time is the highest. The loss of flexibility is unfortunate for reaching 
the optimality in the theoretical schedule. However, this loss of flexibility makes the theoretical 
schedule of Option 3 most feasible in practice.  
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OBJECTIVE VALUE 
Given the constraints from Chapter 4, we can optimize the schedule of Brynild using various 
objectives. Brynild indicates that they focus on minimizing the individual throughput time. Their 
reasoning for this that with lower throughput times they are able to produce more products. However, 
minimizing individual throughput time does not always result in being able to produce more.  
 
We examine 3 objectives, of which the drying time of the job is central. We look specifically at the end 
time of jobs and not the throughput time. Otherwise, in theory the schedule can obtain the same 
objective starting on Monday or Tuesday as long as the throughput is the same. This is not desirable 
in practice; therefore, we disregard objectives based on throughput times. More specifically we 
analyse 3 objectives that all focus on the total make span, thus end-drying times of the jobs.  
 
Objective 1 is the minimization of the make span of all jobs: 

min [ max
𝑗,𝑐

𝐷𝑗,𝑐] 

We minimize the latest time a job finishes drying. This objective does not minimize every individual 
throughput time of each job. The objective spreads the work force as evenly as possible for the drying 
cabinets to finish with all jobs as early in the week as possible.  
 
Objective 2 is to minimize the summation over the make span of each job: 

min ∑ 𝐷𝑗

𝑗∈𝐽 

 

This objective minimizes the make span for each job. Therefore, this objective results in scheduling 
the shorter jobs first and the longer jobs at the end of the week.  
 
Objective 3 is to minimize the summation over the latest end times at all cabinets: 

min [∑ max 𝐷𝑗,𝑐

𝑐∈𝐶 

] 

This objective results in minimizing the throughput time per job the most of the 3 objectives. Because 
the jobs that have different drying times on the drying cabinets we schedule on the cabinets with the 
shortest time.  
 
These 3 objectives have advantages and disadvantages in comparison to each other.  
 
As a consequence of Objective 2, that schedules shorter jobs first and longer jobs at the end, the 
solution space becomes limited and does not necessarily results in a schedule that Brynild desires. 
Producing the short jobs first and the longer jobs later does not result in producing more than 
producing the long jobs first and the shorter jobs later. Therefore, we do not select Objective 2.  
 
Objective 3 does not differentiate between; 2 drying cabinets both finishing on Thursday or 1 on 
Wednesday and 1 on Friday. While in objective 1 the drying both finishes on Thursday. Both outcomes 
have pros and cons. The second option, drying finishing on Wednesday and on Friday, could be more 
desirable when the model runs just once and the change in jobs or unplanned jobs are added 
manually. Because the drying cabinets cannot start emptying at the same time, therefore it would be 
better when they end at different times. However, the drawback of Objective 3 is that this objective 
fills the new drying cabinets the most as these give the least throughput time. In terms of flexibility 
later in the week, we do not desire this. 
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The reason that we do not select Objective 3 is that Brynild indicates that schedules may change due 
to emergency jobs or other unforeseen complications. In this case it would be better to do as much as 
possible in the beginning of the week. Then, when changes occur, Brynild should run the model again. 
Therefore, it wouldn’t matter that 2 drying cabinets finish at the same time. As the model runs again 
to determine a new schedule, or the production week finish early. 
 
So, we select Objective 1 as the objective for our MILP. Objective 1, does not directly minimize the 
throughput time for the jobs individually, however Objective 1 does minimize the total make span of 
1 week. Next, with a schedule based on Objective 1, it is easier to anticipate on unforeseen changes 
and makes the schedule more flexible during the week.  
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APPENDIX D: MATHEMATICAL MODELS 

We construct Appendix D according to Table D.0.1. As addition we add Model 9, which consists of 2 
separate models, one for the assignment of jobs to parallel machines and one for the sequencing of 
jobs.  
 
Table D.0.1: Different MILPs without buffer capacity 

Model Non-identical 
parallel machines 

Sequence 
dependent set-up 
times 

Production 
time windows 

1 X X X 

2 X X  

3 X   

4  X  

5   X 

6  X X 

7 X  X 

8    
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MODEL 1: MAIN MILP 
Indices 
𝑗, 𝑖 ∈ 𝐽 Jobs, including 2 dummy jobs, dummy job 1 at the beginning of the schedule and 

dummy job 2 at the end of each schedule 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑠𝑖,𝑗 Set-up time of job j after job i for Stage 1 in hours 

𝑘𝑗  Cooking time for job j in hours 

𝑜𝑝 First possible non-negative start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible non-negative end time in hour of processing day p  

𝑔𝑗,𝑐  Binary parameter, indicating whether job j, can be dried in drying cabinet c (g=1), or not 

(g=0) 
𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑇𝑗  Duration of job j in Stage 1 (set-up, cooking and moulding) 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑊𝑗,𝑝 Indicates whether job j starts processing at day p for 𝑊𝑗,𝑝=1, otherwise 0 

𝑋𝑖,𝑗  Indicates whether job j is sequenced somewhere after job i in Stage 1 and therefore in Stage 

2 for 𝑋𝑖,𝑗=1, otherwise 0 

𝑌𝑗,𝑐 Indicates whether job j is assigned to cabinet c for 𝑌𝑗,𝑐=1, otherwise 0 

𝑍𝑖,𝑗 Indicates whether job j is sequenced directly after job i in Stage 1 for 𝑍𝑖,𝑗, otherwise 0 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑖 = 𝑗  

 
𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗      ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑍𝑖,𝑗𝑖∈𝐽 = 1      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1     𝑖 ≠ 𝑗  

 
∑ 𝑍𝑖,𝑗𝑗∈𝐽 = 1      ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2     𝑖 ≠ 𝑗  

 
𝐵𝑗 = 0      𝑗 = 𝑑𝑢𝑚𝑚𝑦 1    

 
∑ 𝑋𝑖,𝑗 =𝑗∈𝐽 0     𝑖 = 𝑑𝑢𝑚𝑚𝑦 2   

 
𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗  
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𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑊𝑗,𝑝 = 1𝑝∈𝑃      ∀𝑗 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝∈𝑃 ) ≤ 𝐵𝑗    ∀𝑗 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝∈𝑃     ∀𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐 = 𝐸𝑗 + 𝑣𝑗,𝑐 ∗ 𝑌𝑗,𝑐    ∀𝑗, 𝑐  

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑦 2  

 
𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐      ∀𝑗, 𝑐 

 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 , 𝑌𝑗,𝑐 , 𝑍𝑖,𝑗   ∈ {0,1} 

 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,  ≥ 0 
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MODEL 2: WITHOUT PRODUCTION TIME WINDOWS 
The difference with the main MILP is that we no longer need the index p. With the disappearance of 
this index, all the parameters, variables and constraints that have a connection to this index disappear 
as well.  
 
Indices 
𝑗, 𝑖 ∈ 𝐽 Jobs, including 2 dummy jobs, dummy job 1 at the beginning of the schedule and 

dummy job 2 at the end of each schedule 
𝑐 ∈ 𝐶  Drying cabinets 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑠𝑖,𝑗 Set-up time of job j after job i for Stage 1 in hours 

𝑘𝑗  Cooking time for job j in hours 

𝑔𝑗,𝑐  Binary parameter, indicating whether job j, can be dried in drying cabinet c (g=1), or not 

(g=0) 
𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑇𝑗  Duration of job j in Stage 1 (set-up, cooking and moulding) 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑋𝑖,𝑗  Indicates whether job j is sequenced somewhere after job i in Stage 1 and therefore in Stage 

2 for 𝑋𝑖,𝑗=1, otherwise 0 

𝑌𝑗,𝑐 Indicates whether job j is assigned to cabinet c for 𝑌𝑗,𝑐=1, otherwise 0 

𝑍𝑖,𝑗 Indicates whether job j is sequenced directly after job i in Stage 1 for 𝑍𝑖,𝑗, otherwise 0 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑖 = 𝑗  

 
𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗      ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑍𝑖,𝑗𝑖∈𝐽 = 1      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1     𝑖 ≠ 𝑗  

 
∑ 𝑍𝑖,𝑗𝑗∈𝐽 = 1      ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2     𝑖 ≠ 𝑗  

 
𝐵𝑗 = 0      𝑗 = 𝑑𝑢𝑚𝑚𝑦 1    

 
∑ 𝑋𝑖,𝑗 =𝑗∈𝐽 0     𝑖 = 𝑑𝑢𝑚𝑚𝑦 2   

 
𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗  
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𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐 = 𝐸𝑗 + 𝑣𝑗,𝑐 ∗ 𝑌𝑗,𝑐    ∀𝑗, 𝑐  

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑦 2  

 
𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐      ∀𝑗, 𝑐 

 
𝑋𝑖,𝑗 , 𝑌𝑗,𝑐 , 𝑍𝑖,𝑗    ∈ {0,1} 

 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,  ≥ 0 
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MODEL 3: WITHOUT SDST AND NO PRODUCTION TIME WINDOWS 
The difference in comparison to the main MILP are the same as for Model 2, the disappearance of 
index p and that we do not need the variable for the exact sequence. Therefore, we no longer need 
the dummy jobs. We do not need this variable as there are no longer any sequence dependent set up 
times. We give every job a standard set-up of the maximum set-up time (two hours).  
 
Indices 
𝑗, 𝑖 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑠 Set-up time is 2 
𝑘𝑗  Cooking time for job j in hours 

𝑡𝑗  Duration of job j in Stage 1; 𝑡𝑗 = 𝑘𝑗 + 𝑚𝑗 + 𝑠 

𝑔𝑗,𝑐  Binary parameter, indicating whether job j, can be dried in drying cabinet c (g=1), or not 

(g=0) 
𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑋𝑖,𝑗  Binary variable indicating whether job j is sequenced somewhere after job i 

𝑌𝑗,𝑐 Binary variable indicating whether job j is assigned to cabinet c 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑗 

 
𝐸𝑗 = 𝐵𝑗 + 𝑡𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑋𝑖,𝑗) ≥ 𝑡𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐  = 𝐸𝑗 + 𝑣𝑗,𝑐 ∗ 𝑌𝑗,𝑐    ∀𝑗, 𝑐 

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 

 
𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐      ∀𝑗, 𝑐 
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𝑋𝑖,𝑗 , 𝑌𝑗,𝑐     ∈ {0,1} 

 
𝐵𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,   ≥ 0 
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MODEL 4: WITH IDENTICAL PARALLEL MACHINES AND NO PRODUCTION TIME WINDOWS 
The difference with the main MILP is that we no longer need the index p. With the disappearance of 
this index, all the parameters, variables and constraints that have a connection to this index disappear 
as well. Next, we do not need index c for the drying time as all drying times for every cabinet are the 
same is solely dependent on the job and we also do not need the binary parameter to determine 
whether a job can dry in a specific drying cabinet, since the drying cabinets are identical.  
 
Indices 
𝑗, 𝑖 ∈ 𝐽 Jobs, including 2 dummy jobs, dummy job 1 at the beginning of the schedule and 

dummy job 2 at the end of each schedule 
𝑐 ∈ 𝐶  Drying cabinets 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗 Drying time of job j 

𝑠𝑖,𝑗 Set-up time of job j after job i for Stage 1 in hours 

𝑘𝑗  Cooking time for job j in hours 

𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑇𝑗  Duration of job j in Stage 1 (set-up, cooking and moulding) 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑋𝑖,𝑗  Indicates whether job j is sequenced somewhere after job i in Stage 1 and therefore in Stage 

2 for 𝑋𝑖,𝑗=1, otherwise 0 

𝑌𝑗,𝑐 Indicates whether job j is assigned to cabinet c for 𝑌𝑗,𝑐=1, otherwise 0 

𝑍𝑖,𝑗 Indicates whether job j is sequenced directly after job i in Stage 1 for 𝑍𝑖,𝑗, otherwise 0 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑖 = 𝑗 

 
𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗      ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑍𝑖,𝑗𝑖∈𝐽 = 1      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1     𝑖 ≠ 𝑗  

 
∑ 𝑍𝑖,𝑗𝑗∈𝐽 = 1      ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2     𝑖 ≠ 𝑗  

 
𝐵𝑗 = 0      𝑗 = 𝑑𝑢𝑚𝑚𝑦 1    

 
∑ 𝑋𝑖,𝑗 =𝑗∈𝐽 0     𝑖 = 𝑑𝑢𝑚𝑚𝑦 2   

 
𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗  
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𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐 = 𝐸𝑗 + 𝑣𝑗 ∗ 𝑌𝑗,𝑐     ∀𝑗, 𝑐  

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑦 2  

 
𝑋𝑖,𝑗 , 𝑌𝑗,𝑐 , 𝑍𝑖,𝑗    ∈ {0,1} 

 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,  ≥ 0 
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MODEL 5: WITH IDENTICAL PARALLEL MACHINES AND NO SDST 
In comparison to the main MILP, we do not need index c for the drying time as all drying times for 
every cabinet are the same is solely dependent on the job and we also do not need the binary 
parameter to determine whether a job can dry in a specific drying cabinet, since the drying cabinets 
are identical. Next, we do not need the variable for the exact sequence. Therefore, the dummy jobs 
are not needed any longer. We do not need this variable as there are no longer any sequence 
dependent set up times. We give every job a standard set-up of the maximum set-up time (two hours).  
 
Indices 
𝑗, 𝑖 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗 Drying time of job j 

𝑠 Set-up time is 2 
𝑘𝑗  Cooking time for job j in hours 

𝑡𝑗  Duration of job j in Stage 1; 𝑡𝑗 = 𝑘𝑗 + 𝑚𝑗 + 𝑠 

𝑜𝑝 First possible start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible time in hour of processing day p  

𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑊𝑗,𝑝 Binary variable indicating whether job j starts processing at day p 

𝑋𝑖,𝑗  Binary variable indicating whether job j is sequenced somewhere after job i 

𝑌𝑗,𝑐 Binary variable indicating whether job j is assigned to cabinet c 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑗 

 
𝐸𝑗 = 𝐵𝑗 + 𝑡𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑋𝑖,𝑗) ≥ 𝑡𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑊𝑗,𝑝 = 1𝑝      ∀𝑗 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝 ) ≤ 𝐵𝑗    ∀𝑗 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝     ∀𝑗 
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𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐  = 𝐸𝑗 + 𝑣𝑗 ∗ 𝑌𝑗,𝑐     ∀𝑗, 𝑐 

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 

 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 , 𝑌𝑗,𝑐    ∈ {0,1} 

 
𝐵𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,   ≥ 0 
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MODEL 6: WITH IDENTICAL PARALLEL MACHINES, SDST, AND PRODUCTION TIME WINDOWS 
In comparison to the main MILP, we do not need index c for the drying time as all drying times for 

every cabinet are the same is solely dependent on the job and we also do not need the binary 

parameter to determine whether a job can dry in a specific drying cabinet, as the drying cabinets are 

identical. 

Indices 
𝑗, 𝑖 ∈ 𝐽 Jobs, including 2 dummy jobs, dummy job 1 at the beginning of the schedule and 

dummy job 2 at the end of each schedule 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗 Drying time of job j 

𝑠𝑖,𝑗 Set-up time of job j after job i for Stage 1 in hours 

𝑘𝑗  Cooking time for job j in hours 

𝑜𝑝 First possible non-negative start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible non-negative end time in hour of processing day p  

𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑇𝑗  Duration of job j in Stage 1 (set-up, cooking and moulding) 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑊𝑗,𝑝 Indicates whether job j starts processing at day p for 𝑊𝑗,𝑝=1, otherwise 0 

𝑋𝑖,𝑗  Indicates whether job j is sequenced somewhere after job i in Stage 1 and therefore in Stage 

2 for 𝑋𝑖,𝑗=1, otherwise 0 

𝑌𝑗,𝑐 Indicates whether job j is assigned to cabinet c for 𝑌𝑗,𝑐=1, otherwise 0 

𝑍𝑖,𝑗 Indicates whether job j is sequenced directly after job i in Stage 1 for 𝑍𝑖,𝑗, otherwise 0 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑖 = 𝑗  

 
𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗      ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑍𝑖,𝑗𝑖∈𝐽 = 1      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1     𝑖 ≠ 𝑗  

 
∑ 𝑍𝑖,𝑗𝑗∈𝐽 = 1      ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2     𝑖 ≠ 𝑗  

 
𝐵𝑗 = 0      𝑗 = 𝑑𝑢𝑚𝑚𝑦 1    

 
∑ 𝑋𝑖,𝑗 =𝑗∈𝐽 0     𝑖 = 𝑑𝑢𝑚𝑚𝑦 2   
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𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗  

 
𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑊𝑗,𝑝 = 1𝑝∈𝑃      ∀𝑗 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝∈𝑃 ) ≤ 𝐵𝑗    ∀𝑗 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝∈𝑃     ∀𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐 = 𝐸𝑗 + 𝑣𝑗 ∗ 𝑌𝑗,𝑐     ∀𝑗, 𝑐  

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1 𝑎𝑛𝑑 𝑑𝑢𝑚𝑚𝑦 2  

 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 , 𝑌𝑗,𝑐 , 𝑍𝑖,𝑗   ∈ {0,1} 

 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,  ≥ 0 
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MODEL 7: WITHOUT SEQUENCE DEPENDENT SET-UP TIMES 
The difference with the main MILP is that we do not need the variable for the exact sequence and 
therefore we do not need the dummy jobs any longer. We do not need this variable as there are no 
longer any sequence dependent set up times. We give every job a standard set-up of the maximum 
set-up time (two hours).  
 
Indices 
𝑗, 𝑖 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑠 Set-up time is 2 
𝑘𝑗  Cooking time for job j in hours 

𝑡𝑗  Duration of job j in Stage 1; 𝑡𝑗 = 𝑘𝑗 + 𝑚𝑗 + 𝑠 

𝑜𝑝 First possible start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible time in hour of processing day p  

𝑔𝑗,𝑐  Binary parameter, indicating whether job j, can be dried in drying cabinet c (g=1), or not 

(g=0) 
𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑊𝑗,𝑝 Binary variable indicating whether job j starts processing at day p 

𝑋𝑖,𝑗  Binary variable indicating whether job j is sequenced somewhere after job i 

𝑌𝑗,𝑐 Binary variable indicating whether job j is assigned to cabinet c 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑗 

 
𝐸𝑗 = 𝐵𝑗 + 𝑡𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑋𝑖,𝑗) ≥ 𝑡𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑊𝑗,𝑝 = 1𝑝      ∀𝑗 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝 ) ≤ 𝐵𝑗    ∀𝑗 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝     ∀𝑗 
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𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐  = 𝐸𝑗 + 𝑣𝑗,𝑐 ∗ 𝑌𝑗,𝑐    ∀𝑗, 𝑐 

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 

 
𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐      ∀𝑗, 𝑐 

 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 , 𝑌𝑗,𝑐    ∈ {0,1} 

 
𝐵𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,   ≥ 0 
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MODEL 8: BASIS MODEL FOR NO BUFFER CAPACITY 
Indices 
𝑗, 𝑖 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗 Drying time of job j 

𝑠 Set-up time is 2 
𝑘𝑗  Cooking time for job j in hours 

𝑡𝑗  Duration of job j in Stage 1; 𝑡𝑗 = 𝑘𝑗 + 𝑚𝑗 + 𝑠 

𝑀 Very large number 
 
Variables 
Non-binary variables 
𝐵𝑗  Begin time of job j 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
Binary variables 
𝑋𝑖,𝑗  Binary variable indicating whether job j is sequenced somewhere after job i 

𝑌𝑗,𝑐 Binary variable indicating whether job j is assigned to cabinet c 

 
Constraints 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
𝑋𝑗,𝑗 = 0     ∀𝑗 

 
𝐸𝑗 = 𝐵𝑗 + 𝑡𝑗      ∀𝑗 

 

𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑋𝑖,𝑗) ≥ 𝑡𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐  = 𝐸𝑗 + 𝑣𝑗 ∗ 𝑌𝑗,𝑐     ∀𝑗, 𝑐 

 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 

 
𝑋𝑖,𝑗 , 𝑌𝑗,𝑐     ∈ {0,1} 

 
𝐵𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,   ≥ 0 
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MODEL 9: ASSIGNMENT & SEQUENCING SEPARATED 
This model consists of 2-separate models namely the assignment of jobs to the drying cabinets. We 
use the output (the assignment) as input parameter for the second model, which determines the 
sequence.  

Assignment 
The assignment model has two constraints the same as the main model. However, now only the 
assignment is the outcome of this model. Therefore, we need an ‘intermediate’ objective.  
 

Indices (Sets) 
𝑗 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
 

Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑔𝑗,𝑐  Binary parameter, indicating whether job j, can be dried in drying cabinet c (g=1), or not 

(g=0) 
 

Variables 
𝑅𝑐  Total time as quantity assigned to cabinet c  
𝑌𝑗,𝑐 Binary variable indicating whether job j is assigned to cabinet c 
 

Constraints 
∑ 𝑌𝑗,𝑐 = 1𝑐       ∀𝑗 

 
𝑌𝑗,𝑐 ≤ 𝑔𝑗,𝑐      ∀𝑗, 𝑐 

 
𝑅𝑐 = ∑ (𝑗 𝑌𝑗,𝑐 ∗ (𝑚𝑗 + 𝑣𝑗,𝑐))   ∀𝑐 

 
𝑌𝑗,𝑐      ∈ {0,1} 

 
𝑅𝑐       ≥ 0 
 

Objective 
We cannot exactly know how full a drying cabinet can be. It could be said a drying cabinet can be full 

for maximum a week as we want the cabinets to finish before the start of the consecutive week. The 

problem is that when drying cabinets are full for precisely one week, at least four of the five drying 

cabinets do not be finish before the end of the week as these drying cabinets have to start later with 

drying than the drying cabinet that gets assigned the first job that is produced. With the same 

reasoning, we do not know beforehand that when a job finishes drying, a new job is already produced 

and could directly enter the drying cabinet. Thus, we do not know exactly the maximum amount of 

time a drying cabinet has, to obtain a feasible solution. Therefore, we decide on an objective where 

this problem as a very low probability to occur.  

As objective we decide to minimize the maximum total time assigned to the drying cabinets: 
min [ max

𝑐
𝑅𝑐] 

Therefore, no cabinet is much fuller than another, which is in line with the objective of the sequencing 
the jobs. After, assigning the jobs to the drying cabinets to distribute the workload the sequencing of 
the jobs is determined by the following mathematical model. 
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Sequencing 
Indices 
𝑗, 𝑖 ∈ 𝐽  Jobs 
𝑐 ∈ 𝐶  Drying cabinets 
𝑝 ∈ 𝑃  Processing days 
 
Parameters 
𝑚𝑗 Moulding time of job j in hours 

𝑣𝑗,𝑐  Drying time of job j in drying cabinet c in hours 

𝑠𝑖,𝑗 Set-up time of job j after job i in hours 

𝑘𝑗  Cooking time for job j in hours 

𝑜𝑝 First possible start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible time in hour of processing day p  

𝑦𝑗,𝑐  Binary parameter, indicating whether job j is dried in drying cabinet c (g=1), or not (g=0) 

𝑀 Very large number 
 
Variables 
𝐵𝑗  Begin time of job j 

𝑇𝑗  Duration of job j in Stage 1 

𝑁𝑗 Start moulding time of job j 

𝐸𝑗 End time of job j in Stage 1, after moulding 

𝐷𝑗,𝑐 End time of job j in cabinet c at Stage 2, after drying 

 
𝑊𝑗,𝑝 Binary variable indicating whether job j starts processing at day p 

𝑋𝑖,𝑗  Binary variable indicating whether job j is sequenced somewhere after job i 

𝑍𝑖,𝑗 Binary variable indicating whether job j is sequenced directly after job i 

 

Constraints 
A lot of constraints are the same as in the main model. The difference is that the assignment of jobs 
to the drying cabinets is now a parameter instead of a variable.  
 
𝑋𝑖,𝑗 + 𝑋𝑗,𝑖 = 1     ∀𝑖, 𝑗   𝑖 ≠ 𝑗 

 
𝑋𝑗 = 0      ∀𝑗 

 
𝑍𝑖,𝑗 ≤ 𝑋𝑖,𝑗      ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑍𝑖,𝑗𝑖 = 1      ∀𝑗 ≠ 𝑑𝑢𝑚𝑚𝑦 1  

 
∑ 𝑍𝑖,𝑗𝑗 = 1      ∀𝑖 ≠ 𝑑𝑢𝑚𝑚𝑦 2  

 
𝐵𝑗 = 0      𝑗 = 𝑑𝑢𝑚𝑚𝑦 1  

 
∑ 𝑋𝑖,𝑗 =𝑗∈𝐽 0     𝑖 = 𝑑𝑢𝑚𝑚𝑦 2  

 
𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖    ∀𝑗 

 
𝐸𝑗 = 𝐵𝑗 + 𝑇𝑗      ∀𝑗 
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𝐸𝑗 − 𝐸𝑖 + 𝑀(1 − 𝑍𝑖,𝑗) ≥ 𝑇𝑗     ∀𝑖, 𝑗    𝑖 ≠ 𝑗 

 
∑ 𝑊𝑗,𝑝 = 1𝑝      ∀𝑗 

 
∑ (𝑊𝑗,𝑝 ∗ 𝑜𝑝𝑝 ) ≤ 𝐵𝑗    ∀𝑗 

 
𝐸𝑗 ≤ ∑ (𝑊𝑗,𝑝 ∗ 𝑙𝑝)𝑝     ∀𝑗 

 

𝐷𝑖,𝑐 ≤ 𝑁𝑗 + 𝑀(2 − 𝑋𝑖,𝑗 − 𝑌𝑗,𝑐)   ∀𝑖, 𝑗, 𝑐    𝑖 ≠ 𝑗 

 
𝑁𝑗 = 𝐸𝑗 − 𝑚𝑗      ∀𝑗 

 
𝐷𝑗,𝑐  = (𝐸𝑗 + 𝑣𝑗,𝑐) ∗ 𝑦𝑗,𝑐     ∀𝑗, 𝑐 

 
𝑊𝑗,𝑝, 𝑋𝑖,𝑗 ,  𝑍𝑖,𝑗   ∈ {0,1} 

 
𝐵𝑗 , 𝑇𝑗 , 𝑁𝑗, 𝐸𝑗, 𝐷𝑗,𝑐 ,  ≥ 0 
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APPENDIX E: INFORMATION TO RE-CONSTRUCT EXPERIMENTS 

This appendix consists of the information we need to re-construct the same experiments for the 
Brynild case study and the general capabilities study.  

BRYNILD CASE STUDY 
We start with the parameter settings of the shift schedules. Second, we present the information of 

every SKU we need for the calculations to obtain the parameter values of the different products. 

Lastly, the production orders of every week. 

Shift schedules 
𝑜𝑝 First possible non-negative start time of processing day p (day 1 has as start time 0) 

𝑙𝑝 Latest possible non-negative end time in hour of processing day p  

 
Table E.0.1: Values 2-shift + Saturday schedule 

2-shift + Saturday 𝒐𝒑  𝒍𝒑 

Monday 6:30h 0 Monday 22:30h 16 

Tuesday 6:30h 24 Tuesday 22:30h 40 

Wednesday 6:30h 48 Wednesday 22:30h 64 

Thursday 6:30h 72 Thursday 22:30h 88 

Friday 6:30h 96 Friday 14:30h 104 

Saturday 6:30h 120 Saturday 14:30h 128 

 
3-shift schedule starts on Sunday 22:30h indicated by 0 and end Friday 14:30h indicated by 112.  
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Information Intermediates 

 
Figure E.0.1: Intermediate's drying time 

 

Production demand per week 
Week 2 

Intermediate Quantity in kg 

111132 6500 
113543 5000 
113500 7500 
112189 3200 
104452 8000 
112958 7500 
106571 8300 
112815 10800 
113319 4500 
113542 5000 
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Week 3 
Intermediate Quantity in kg 

111916 4500 
106571 33200 
112958 14000 
112815 10800 
113304 4500 
113496 3200 
113500 2450 
111132 2000 

 
Week 4 

Intermediate Quantity in kg 

112873 3700 
113561/113562 700 
113542 700 
106497 4500 
113729 6500 
104452 8100 
113319 4500 
107935 6500 
111918 4500 
107270 6500 
112815 7200 
113563 3100 
113543 700 
113494/113538 700 

 
Week 5 

Intermediate Quantity in kg 

113515 6200 
111132 13000 
106497 4500 
112958 7200 
112815 7200 
106571 11000 
111916 4500 
113541 1300 
113717 1500 

 
Week 6 

Intermediate Quantity in kg 

112270/112271 9200 
106571 13800 
112815 15300 
113604 2600 
112958 7200 
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Week 7 
Intermediate Quantity in kg 

112189 3000 
112958 12200 
106571 7000 
112815 14400 
113304 3500 

 
 
Week 8 

Intermediate Quantity in kg 

106571 16600 

111132 12600 

112815 14400 

112873 6100 

111918 5000 

 
 

TEST INSTANCES GENERAL CAPABILITIES 
To test the capabilities of the MILP develop 3 types of job instances: 

- Small jobs: short drying time on the parallel machines; 
- Large jobs: long drying time on the parallel machines; 
- Mixture of small and large jobs. 

 
We base our instances on Brynild’s input data. The parameters we determine are set-up time, cooking 
time, moulding time, drying time for every cabinet, and whether drying is possible in a certain drying 
cabinet: 

- We randomly allocate set-up time that varies between 0, 1.5, and 2 hours; 
- Cooking time remaines the same for every job, namely 0.5 hours; 
- The average minimum moulding time of Brynild is 2.7977 hours and the average maximum 

moulding time of Brynild is 7.0145 hours. Therefore, we randomly select a moulding time 
between 2.8 hours and 7 hours for each job; 

- In Brynild’s case the possibility of a drying cabinet being able to dry a certain product is 85%. 
We use this percentage to randomly decide, which job can or cannot dry in certain drying 
cabinets; 

- We present the drying times for the various instances in Table 0.2. 
 

Table 0.2: Drying time for the different job instances 

 Drying 

Small Jobs New cabinets= Random between 12 and 24 hours 
Old cabinets= 70% probability + 24 hours, 30% probability + 0 hours 

Large Jobs New cabinets= Random between 24 and 36 hours 
Old cabinets= 70% probability + 24 hours, 30% probability + 0 hours 

Mixture of Jobs New cabinets= 50% probability random between 12 and 24 hours, 50% probability 
random between 24 and 36 hours 
Old cabinets= 70% probability + 24 hours, 30% probability +0 hours 
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APPENDIX F: RESULTS 

In this appendix we state some additional information of the results we find. We start with the 
results from the Brynild case. Thereafter, the results of the general experiments. 

BRYNILD CASE STUDY 

Main MILP 
The main model experiments.  
 
End-drying objective 
Additional results of the end-drying objective. Both the end-drying time and the end production time 
in comparison to the Brynild schedules in Table F.0.1.  
 
Table F.0.1: Results main model end-drying objective 

Brynild vs MILP Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

End Drying -20.12% -14.92% -26.22% -19.46% -21.09% -22.5% -19.28% 

End Production +2.08% -1.47% +2.02% -2.92% +4.76% +2.48% +5.87% 

 
End Stage 1 objective 
Additional results of the Stage 1 objective. Both the end Stage 1 time and the end-drying time in 
comparison to the Brynild schedules in Table F.0.2.  
 
Table F.0.2: Results main model end Stage 1 objective 

Brynild vs MILP Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

End Production -19.56% -5.13% -25.24% -26.45% -0.22% -31.52% -0.42% 

End Drying -11.57% -10.54% -8.08% -13.14% +6.21% -19.84% -6.10% 

Heuristics 
The heuristics in comparison to the main MILP. 
 
End-drying objective 
Additional results of the end-drying objective. First the comparison of the end-drying time between 
the heuristics and the main model in Table F.0.3. Second, the comparison of the end production time 
between the heuristics and the main model in Table F.0.4.  
 
Table F.0.3: Heuristic results end-drying objective; end-drying time 

End Drying Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST +1.38% +3.71% +1.59% +1.56% +1.58% +2.02% +1.19% 

Ass. & Seq. separate +1.44% +3.76% +4.21% +1.61% +10.57% +0.00% +0.33% 

10 min run 0.00% +0.87% 0.00% 0.00% 0.00% 0.00% 0.00% 

 
Table F.0.4: Heuristic results end-drying objective; end Stage 1 time 

End Production Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST -16.03% +5.28% +1.93% +1.92% +1.87% -19.28% +2.19% 

Ass. & Seq. separate 0.00% +5.35% +4.75% +1.98% +1.23% -21.80% +0.68% 

10 min run -17.50% -0.60% 0.00% 0.00% 0.00% 0.00% 0.00% 
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End Stage 1 objective 
Additional results of the Stage 1 objective. First the comparison of the end production time between 
the heuristics and the main model in Table F.0.5. Second, the comparison of the end-drying time 
between the heuristics and the main model in Table F.0.6.  
 
Table F.0.5: Heuristic results end Stage 1 objective; end Stage 1 time 

End Production Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST +6.00% +1.62% +3.66% +5.71% +0.53% +17.62% +0.83% 

Ass. & Seq. separate +6.48% +0.81% +3.59% +0.83% +0.53% 0.00% +0.42% 

10 min run +1.47% +3.04% +1.22% +3.36% 0.00% 0.00% 0.00% 

 
Table F.0.6: Heuristic results end Stage 1 objective; end-drying time 

End Drying Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Without SDST +3.30% +5.65% -2.75% +2.30% -15.85% +1.21% +7.04% 

Ass. & Seq. separate +0.18% +4.37% -8.35% +0.96% -16.33% 0.00% -0.64% 

10 min run +0.81% +10.56% 0.00% +11.08% 0.00% 0.00% 0.00% 

GENERAL EXPERIMENTS 
The additional information of the general experiments regarding the different models. We present 
the comparison between the objective values for the optimal schedule and the objective values when 
we stop the scheduling after 5 minutes, see Figure F.0.1, Figure F.0.2, and Figure F.0.3.  
 

 
Figure F.0.1: Objective values instance 1 
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Figure F.0.2: Objective values instance 2 

 

 
Figure F.0.3: Objective values instance 3 
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APPENDIX G: EVALUATION RESULTS 

This appendix consists of additional evaluation regarding results from Chapter 5. 

PAIRED T-TESTS OBJECTIVE VALUES 

End-drying time objective 

To be certain that the reduction in time is significant we perform a paired t-test (Kim, 2015). We use 
the following hypothesis: 
H0: There is no significant change, on average, in the end drying outcome of Brynild and our MILP. 
H1: There is an average significant change in drying end time. 
 
We use α= 0.05 for the level of significance and find a p-value of 0.000005339 for the one-tail. We use 
the one-tail test as we know beforehand that all our MILP values are lower than the Brynild’s values. 
However, even with a two-tail the p-value is 0.00001068. Therefore, we reject H0 hypothesis with a 
significance level of 0.05 and we state that the differences in end-drying time is significant.  
 

Stage 1 end time objective 

To be certain that the reduction in time is significant we perform a paired t-test (Kim, 2015). We use 
the following hypothesis: 
H0: There is no significant change, on average, in the end Stage 1 outcome of Brynild and our MILP 
H1: There is an average significant change in Stage 1 end time 
 
We use α= 0.05 for the level of significance and find a p-value of 0.01195 for the one-tail. Also for the 
Stage 1 objective we use the one-tail test as we know beforehand that all our MILP values are lower 
than the Brynild’s values. However, even with a two-tail the p-value is 0.0239. Therefore, we reject H0 
with a significance level of 0.05 and we state that the differences in end-drying time is significant.  

EXAMINATION OF SCALING DOWN RESULTS 
From Table 5.2, three out of the four 3-shift schedules we can schedule using a 2-shift + Sat except for 
Week 3. One of the three 2-shifts + Saturday schedules we can schedule using a 2-shift schedule. The 
difference between a 3-shift schedule, 2-shift schedule + Saturday and a 2-shift schedule is the 
available production time in Stage 1. The amount of drying time remains the same. To research the 
reason why we can reduce certain weeks and others not, we examine the constraint that determines 
the time needed for Stage 1.  
 

𝑇𝑗 = 𝑘𝑗 + 𝑚𝑗 + ∑ (𝑠𝑖,𝑗 ∗ 𝑍𝑖,𝑗)𝑖∈𝐽    ∀𝑗    [4.1.8] 
 

The production time is a variable due to the sequence dependent set-up times. Therefore, we analyse 
different production times. The first option is without any set-up times, so the minimum the 
production time certainly needs. The second option is the production time with the average of the 
set-up times of that week and the third option is the production time, which uses 2 hours as set-up, 
the maximum production time. The calculations for each week we present in Table G.0.1. 
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Table G.0.1: Stage 1 production hours per week 

Week Original Brynild 
schedule 

Min production 
hours 

Average 
production hours 

Max production 
hours 

2 3-shift 60.73 h 79.00 h 80.73 h 

3 3-shift 67.82 h 87.59 h 91.82 h 

4 3-shift 59.70 h 78.33 h 79.70 h 

5 3-shift 53.29 h 71.75 h 73.29 h 

6 2-shift + Sat 53.07 h 66.87 h 71.07 h 

7 2-shift + Sat 43.83 h 56.38 h 59.83 h 

8 2-shift+ Sat 53.15 h 67.95 h 71.15 h 

 
Before examining the information we provide in Table G.0.1, we need the production hours maximum 
available in the different shift schedules, see Table G.0.2. 
 
Table G.0.2: Production hours available 

Shift schedule Stage 1 hours available 

3-shift 112 hours 
2-shift + Saturday 80 hours 
2-shift 72 hours 

 
If the problem is a two-stage HFS with infinite buffers between the 2 stages, we only have to determine 
whether the maximum production hours is less than the production hours available in Stage 1. What 
means that we can schedule all 2-shift + Saturdays schedules within in a 2-shift schedule.  
 
Even with the information above, it is still difficult to predict whether a week worth of production fits 
in a certain shift week without running the model. We do not give this inside with much certainty as 
the test population is small. However, we do suspect that to scale down the 3-shift schedules to a 2-
shift + Saturday it is necessary for the average production hours to be under 80 hours. This assumption 
is not farfetched as the additional Saturday gives room for drying cabinets to finish, and fill again within 
that time. The available production time on Stage 1 becomes less, however better spread over the 
week, which the schedule needs to finish drying and make place for the next job. We also see that in 
in the 3-shift schedule there is a lot of vacant time. Even for Week 3, Stage 1 is not in use for 112-91.92 
= 20 hours.  
 
The statements above are all under the assumption that the drying time of the jobs is based on 
Brynild’s indicated drying times. When the drying times become way longer, it is obviously not possible 
to produce everything in 1 week. So, these statements are only valid when the 3-shift schedule is 
already proven feasible.  
 
To be able to go from a 2-shift + Saturday to a 2-shift schedule, it is not enough to have the average 
production time under the production time available as we observe for Week 6 and Week 8. When 
we remove the Saturday from the schedule, an important additional day for the drying cabinets to 
finish drying and be refilled is absent. We do not have enough information to do an estimated guess 
of how much time we should be under the 72 hours. We suspect that going from a 2-shift + Saturday 
to a 2-shift schedule is influenced more by the available drying time and the drying time needed. We 
do not examine this any further.  
 


