

POSITIONING AND ORIENTATION CONTROL OF A

NEEDLE-INSERTION MRI COMPATIBLE MEDICAL

ROBOT BASED ON ROS USING VISUAL FEEDBACK

P. (Pamela) Shametaj

MSC ASSIGNMENT

 Committee:

dr.ir. F. van der Heijden
dr. V. Kalpathy Venkiteswaran

dr.ir.M.Abayazid
G. Wardhana, MSc

 April, 2021

Robotics and Mechatronics

EEMCS

University of Twente

P.O. Box 217

7500 AE Enschede
The Netherlands

iii

i

Abstract

Within the discipline of surgical interventions, there has been a focus on percutaneous nee-
dle insertions. The procedure usually involves the insertion of a needle or probe deep inside
the patient’s skin. These minimally invasive procedures are usually used for ablation, abscess
drainages, biopsies or preventive purposes. The robot used in this project has been designed to
be used as a patient mounted robot for irreversible electroporation (IRE) targeting pancreatic
adenocarcinoma tumor cells. The project’s scope is creating a functional first prototype that
could be used for the insertion of electrodes during the IRE procedure, with a focus on creating
a software framework that can be adapted to future changes in the physical robot design.

This thesis will skew from a traditional approach of a pure research or design thesis project and
be a combination of two phases, Implementation and Design. This is due to the initial state
of the project, where only the physical structure of the robot was available. In the first phase,
an initial testing prototype upon which research could be performed was developed. With the
use of ROS, a modular framework that integrated all the hardware components, calculated the
robot kinematics and handled the communication within the software was designed. In the
second phase, the project’s focus changed to researching a specific design decision, that of the
robot feedback. After analysing the available options, the decision of using non-MRI visual
feedback was made. In this stage, the accuracy and reliability that vision feedback offers in
terms of control were investigated. A calibration was proposed, and its ability to be performed
with minimal errors through visual feedback was examined. The type of hardware that could
provide the best visual feedback, as well as the tracking and detection algorithms that could
provide the highest accuracy, were explored. Both research and experimentation were carried
out in order to address these statements.

The Intel RealSense Depth Camera (D435i), a stereo solution, was implemented to provide vi-
sual feedback. Four different trackers, CSRT, MOSSE, KCF and Medianflow, were implemented
and compared to one another through testing. The tracker with the most satisfying results KCF
was then chosen to perform a robot calibration. In the end, the testing showed that in the
current implementation, the use of visual feedback provided unsatisfactory results. However,
visual feedback could still prove feasible when implementing the necessary updates, such as
a combination of IR and Aruco markers for higher accuracy and a combination of KCF and
Kalman Filtering for better tracking results.

Robotics and Mechatronics Pamela Shametaj

ii
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Contents

1 Introduction 1

1.1 Context . 1

1.2 First Prototype . 2

1.3 Research Objective . 4

2 Current State 5

2.1 Background . 5

2.2 Robot . 7

3 Analysis 13

3.1 Implementation Work . 13

3.2 Design Work . 14

4 Kinematics 18

4.1 Kinematic Diagram . 18

4.2 Traditional Implementation . 18

4.3 ROS Implementation . 23

5 Planning Framework 26

5.1 Robot URDF . 26

5.2 Gazebo . 28

5.3 MoveIt . 30

5.4 Robot Interfaces . 32

6 Robot Feedback 34

6.1 Vision hardware . 34

6.2 Vision software . 35

7 Testing Method 40

7.1 Workspace Test . 40

7.2 Vision tests . 43

7.3 Target tests . 44

8 Results 45

8.1 Workspace Test . 45

8.2 Vision tests . 49

8.3 Target tests . 52

9 Conclusion 54

Pamela Shametaj University of Twente

CONTENTS iii

9.1 Discussion . 54

9.2 Conclusion . 55

9.3 Future Work . 56

A Tracker Results 57

B Figures 66

C Motion of a rigid body 69

Bibliography 71

Robotics and Mechatronics Pamela Shametaj

iv
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Pamela Shametaj University of Twente

1

1 Introduction

1.1 Context

Robotics in the field of surgical interventions is not a new discipline. The first recorded medical
application can be dated as far back as 1985 where it was used for a brain biopsy. Recently,
various medical robots have been developed for use in rehabilitation, telesurgery and needle
guidance operations. (Monfaredi et al., 2015) The necessity for automation is because of the
high accuracy needed for such procedures. (Bekku et al., 2014) One could also understand the
importance of technology involved in such procedures by considering how repetitive, lengthy
and accurate medical processes are. Despite requiring human supervision such tasks seem to
be highly suited for robotic integration.

Furthermore, within the discipline of surgical interventions, there has been a focus on percu-
taneous needle insertions. The procedure usually involves the insertion of a needle or probe
deep inside the patient’s skin. These minimally invasive procedures are usually used for abla-
tion, abscess drainages, biopsies or preventive purposes.(Patel et al., 2018; Bekku et al., 2014;
Monfaredi et al., 2015; Dehghani et al., 2018) The current process involves doctors inserting
needles manually, a process which is highly dependent on the physician’s skill. When using
medical imaging such as Xray, MRI and CT, the doctors themselves need to imagine the trajec-
tory of insertion at the moment of extraction or ablation. Usually, such processes are lengthy
and tough on both the patient and the doctors since it might require re-insertion if the needle
or probe does not reach the target. With a lack of real-time feedback, this scenario is not un-
common. Recent technological advancements have allowed for the development of multiple
specialised robotic systems used for needle guidance and insertion. (Patel et al., 2018; Bekku
et al., 2014; Monfaredi et al., 2015; Dehghani et al., 2018) Using the specialised robotic systems
brings many benefits in needle insertion procedures. Many robotic systems can calculate the
trajectory of insertion needed to reach the tumor, thus reducing the errors that come from
free-handing the procedure. Even a partially automatic needle insertion, where the needle is
oriented and positioned by the robot but inserted by the doctor, can provide a more stable nee-
dle insertion and reduce the doctor’s workload. Such improvements can lower the number of
times a patient gets punctured making the process less painful.

The robot used in this project has been designed to be used as a patient mounted robot for ir-
reversible electroporation (IRE) targeting pancreatic adenocarcinoma tumor cells. The novelty
of the IRE technique sets this project apart from the already available technology. During the
procedure an electrode is inserted in soft tissue. Pulsed electrical fields are then delivered to the
cells, creating lethal nanopores in the plasma membrane to induce cell death. Different elec-
trodes need to be inserted with distances between 10 and 20mm, depending on the tumour
size. This method is considered a non-thermal ablation method. IRE uses a series of square
high voltage pulses to target the cells. Rebersek et al. (2014) Although the electrodes used for
clinical practice and in vivo experiments are either needles or plates, stainless steel or titanium
electrodes will be used in this experiment. Usually, they are covered with an insulating mate-
rial, except for a certain tip length. The exposed tip length of the electrode is described as the
"active tip length" which delivers the pulses to the soft tissue.

Although the IRE method requires the accommodation of multiple needles, the first robot pro-
totype will initially carry only one needle. In the future, new prototype designs that include
multiple needles and specialised multiple needle holders will be explored. In this project, the
scope will be creating a software framework that accommodates changes in design and posi-
tions and orients the singular needle to an external target. The main focus, goals and require-
ments will be discussed in detail in the coming sections.

Robotics and Mechatronics Pamela Shametaj

2
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

1.1.1 Project Scope

In this section, the project’s scope, and the general requirements, will be discussed. A review
of the project’s current state will also be carried out in order to obtain a clearer understanding
of the areas that can be improved upon. This thesis will skew from a traditional approach of
a pure research or design thesis project. The main reason behind this decision is the starting
state of the project. In the initial state, the physical robot design had already been finalized and
assembled. The actuation method, pneumatic actuation, was printed and integrated into the
physical robot. However, the robot lacked the low level and high level control implementation
to be a finished prototype. Initial implementation decisions needed to be made for both the
hardware and software components. The decisions to be made were regarding the implemen-
tation and programming of a micro-controller, implementation and calculation of kinematics,
as well as a software platform that facilitates the necessary communication between all the
software components.

The project’s scope is creating a functional first prototype that could be used for the insertion of
electrodes during the IRE procedure, with a focus on creating a software framework that can be
adapted to future changes in the physical robot design. The software can then be improved and
optimized in the future phases of the project. Thus a necessary preliminary step for this thesis
was the development of an initial testing prototype upon which research could be performed.
In the second phase of this thesis, the project’s focus will change to researching a specific design
decision. The two project phases will be noted as the Implementation phase and the Design
phase.

Possible directions were explored for the design phase, including; further optimisation of the
software, adaptations to the physical design, comparison with a different actuation method,
sensory feedback and target imagining. The decision was made based on the following ques-
tions; How does this research benefit the current state of the project, will it aid in the fulfilment
of a functional prototype, and can it be built upon after the conclusion of this thesis. Other
important aspects to keep in mind are the time and physical constraints. Can this research be
concluded in the planned time frame, and is it feasible considering the current resources. By
evaluating all the prospective directions and their feasibility, the chosen research direction was
on designing the robot’s sensory feedback.

1.2 First Prototype

This section will focus on introducing the first prototype, as well as looking at the current state
of robot design and what can be improved further. An initial robot design was already present
at the start of this project. The decisions behind the design and the designs capabilities will be
introduced in the first subsection. In the initial prototype, no external sensors were present,
thus in the second subsection, the sensor choices and the motivation behind each choice will
be explored and explained.

1.2.1 Robot Design

The needle insertion robot was created with the goal of targeting pancreatic tumor cells. To
be able to reach the pancreas, the robot should be positioned on top of the patient’s body.
Simultaneously, part of the procedure will be performed inside the MRI, such that the needle
position and its distance from the tumor can be checked in real-time. Taking these situations
in consideration, the following requirements were established. Firstly, the robot needs to be
lightweight since it will be mounted on top of the patient. Secondly, in order to be used inside
the MRI, the robot should be made with MRI compatible materials. Lastly, the space inside the
MRI should also be taken into account. Even with a wide bore MRI the space inside is 70 cm
wide with only up to 75 cm head-space, meaning the robot cannot take significant space and
needs to be relatively small.

Pamela Shametaj University of Twente

CHAPTER 1. INTRODUCTION 3

To achieve both the lightweight and MRI compatible requirements, all the robot links and joints
are 3D printed using tough Polylactic Acid (PLA) material. The material is fully MRI compatible
and light-weight, weighing only 1.24 grams per C M 3. (Herrmann et al., 2014) The first pro-
totype, a parallelogram robot, is shown in figure 1.1. The robot has 4 DOF; translation in the
x-axis, y-axis, rotation in the z-axis and y-axis. The rotation in y is a coupling between two x-
translations. The robot dimensions are 10.8 cm in height and 26.1 and 20.8 cm in length and
width. The robot is actuated with pneumatic stepper motors developed at the University of
Twente. The motors are 3D printed and use the same materials as the rest of the robot, making
them completely MRI compatible. This is very practical for prototyping while also being a low-
cost solution. Initially, the robot was not equipped with any external sensors. Only the robot’s
physical structure was available at the start of the project, making this the first prototype to be
explored. A more thorough description of the robot joints, links and limits will be explained in
chapter 2.

Figure 1.1: The robot prototype assembled.

1.2.2 Robot Feedback

A critical part of the project is the usage of external sensors for providing feedback for both the
motors and the kinematic calculation. When choosing the type of feedback for such an appli-
cation, the options are limited by the weight, accuracy, real-time implementation and material
requirements. Although this is the first prototype, the feedback choice must adhere to the pre-
viously mentioned requirements. The current robot design and interface still have to be vali-
dated inside and outside of the MRI. Previous works on similar applications indicate that the
two main options for feedback are vision and sensors. Within the sensor domain, two other
options are presented; using MRI compatible sensors and using non-MRI compatible sensors.
Non-MRI compatible sensors should then fulfill the requirements of not being bulky, not in-
terfering with the current design, and be removable in order to test the robot design inside the
MRI machine. On the other hand, the other option was to create an MRI compatible sensor
as the ones available on the market are significantly expensive and exclusive. One such op-
tion for creating MRI compatible sensors is using optical fiber to create a fully MRI compatible
encoder. This would be the optimal solution; however, it would shift the thesis’s focus on just
implementing an MRI compatible sensor for the current motors. It would also be quite chal-
lenging to create an optical fiber sensor that is small enough for the current design and does

Robotics and Mechatronics Pamela Shametaj

4
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

not increase the number of cables. Because the motors used are pneumatic, the number of ca-
bles is already significant and disruptive to the movement. Adding more cables would increase
the difficulty of building and testing new prototype and complicate the operation of the robot.

If using a sensor is not an option, it still leaves us with two vision feedback options; using a
non-MRI compatible camera and using the MRI itself for feedback. Although using the MRI
as feedback would fulfill all the requirements, which the previously mentioned options could
not, it still cannot provide fast enough feedback. It is also an impractical method for testing
multiple prototypes. On the other hand, using a non-MRI compatible camera could be a good
way of providing a fast way to test the current design and interface of the robot. By providing
real-time feedback, this implementation allows for a fast way to test ever-changing prototypes
and may also be used for calibration outside of the MRI machine. Since the robot’s motors
can be operated in feed-forward mode at a safe frequency, this outside calibration method is
possible. In conclusion, considering the positive and negative aspects, the usage of a non-MRI
compatible vision setup is more viable in the current application than other methods.

1.3 Research Objective

The goal of this project is to create a functional prototype of the needle positioning robot. Since
this is the first prototype of many to come, it means that a framework must be designed with
the goal of it being capable of easily adapting to changes in the physical model. Thus a way
to approach the trajectory planning and modelling of a hybrid serial-parallel needle insertion
robot should be explored thoroughly. During this exploration, the proposed solution must ful-
fill requirements such as modularity and accuracy while keeping the implementation as simple
as possible for the benefit of future research.

On the other hand, the accuracy and reliability that vision feedback offers in terms of control
will also be investigated. Due to the nature of the motors, vision feedback should be sufficient.
This comes as a consequence of the fact that the implemented stepper pneumatic motors pro-
vide no backlash. However, the motors move relative to their initial position and require a
proper zero position calibration. Simultaneously, supervision is also required in case of error
build-up or hardware malfunction. A literature review, prototype development, and experi-
mentation were carried out to investigate those directions, calibration and supervision.

As mentioned previously, in order to position and orient the needle accordingly, a good calibra-
tion needs to be achieved. The possibility of keeping the design of the prototype independent
from its sensory visual feedback is explored. However, specific questions need to be answered
to finalize the implementation of such a feedback method. Firstly, how reliable and accurate is
the usage of visual feedback? For example, can an accurate calibration with minimal errors be
performed with just visual feedback? What hardware or camera could provide the best accu-
racy for such a problem? What tracking and detection algorithms provide the highest accuracy?
Both research and experimentation will be carried out in order to address these questions. In a
later phase, the whole implementation will be tested alongside the performed calibration.

In conclusion, the assignment’s primary goal is to be able to control and position the actual
prototype of the Needle-Insertion robot correctly, and conduct an analysis on the accuracy of
the designed implementation in ROS by using visual feedback.

Pamela Shametaj University of Twente

5

2 Current State

Several needle insertion robots were studied to understand technology’s current state better
and provide inspiration for this project. Consequently, this review focused on aspects such as
the actuation of the robot, the method of feedback, the structure of software implementation,
and the robot’s kinematics implementation.

For this project, extensive research was already conducted in regards to the IRE technique. The
previous research focused on determining the number, type and size of the electrodes nec-
essary for the IRE procedure. However, this project’s scope is having a functioning prototype
that positions and orientations electrodes to the target position rather than the IRE procedure.
In this section, the project’s current state , which was already introduced in chapter 1 will be
looked at further. The robot’s design will be expanded on in terms of DOF and kinematic struc-
ture, along with the choice of actuation and choices made regarding hardware implementation.

2.1 Background

Available needle insertion robots were studied during a literature review, and a variety of tech-
nical and structural aspects of these robots were analysed. Since no examples of robots created
for the purpose of IRE were identified, examples of robots created for the purpose of kidney of
cryoablation Tokuda et al. (2018), prostate brachytherapy Orlando and Joseph (2017), cryother-
apy of renal cancer Hata et al. (2016), for both kidney and liver cryoablation Watkins et al. (2016)
and lastly, an example of robots not being constrained to a specific organ Hungr et al. (2016)
were examined instead. However, none of these robots specifically targeted the pancreas, mak-
ing it harder to take inspiration regarding the robot’s workspace requirements and design.

Despite the fact that none of the robots were built for the same purpose, some were designed
for the upper body and therefore have similar designs. One robot that was looked at for in-
spiration was a multimodal patient-mounted interventional radiology robot, evaluated under
MRI guidance.(Ghelfi et al., 2018) The prototype is a light puncture robot which utilises kine-
matics with two serial kinematic chains connected in parallel. This approach is unique in that
most other available needle insertion robots, such as Bekku et al. (2014); Patel et al. (2018);
Hata et al. (2016), provide solely either fully serial or fully parallel robot solutions. In this ways
it shares similarities with the first prototype design in this project. To overcome the complexity
of such a robot, a combination of transformation matrices and geometric solutions was used.
For the serial chains, just like the robot mentioned in the study Hata et al. (2016), the Denavit
and Hartenberg (DH) convention is used. A similar approach could solve the kinematics of the
current design by considering the two parallel chains as serial chains and equalizing the end
effectors.

Another feature that some of the robots in the reviewed studies shared with this project was
their MRI compatibility. By looking at the MRI compatible robots, two elements were looked
at; the actuation method and the implemented sensors. The MRI compatible robot in the study
of (Ghelfi et al., 2018) utilises a combination of pneumatic and piezoelectric actuation. The au-
thors justify this decision by the claim that piezoelectric actuators are considered to be more
accurate than available pneumatic motors. On the other hand, the pneumatic actuator is used
to gripping the needle due to its high reliability. The claim that pneumatic motors’ usage is not
highly common despite being a fully MRI compatible solution can also be seen in the other
reviewed studies. Hungr et al. (2016); Watkins et al. (2016) Another interesting direction to ex-
plore is the usage of sensors in an MRI environment, and for this reason, the study Gassert
et al. (2008) was analysed. The authors Gassert et al. (2008) argue that if placed sufficiently
away from the imaging region and equipped with adequate shielding and filtering, conven-

Robotics and Mechatronics Pamela Shametaj

6
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

tional electrically powered sensors may be used. This includes sensors such as camera-based
measurement systems, strain gauges, accelerometers, Hall effect sensors, force/torque sensors,
and optical encoders. The paper also provides particular examples of MRI sensors used in pre-
vious projects, such as a hydrostatic water pressure transducer to infer grip force, a modified
sphygmomanometer bladder connected to a mercury column, and fiber optic sensors. The lat-
ter ones are said to guarantee high MRI compatibility, a simple and flexible installation, and
negligible transmission delay and signal loss even over long distances. The works from Hungr
et al. (2016) also shows some examples of MRI compatible sensing. Here the optical tracker
(Certus, NDI, Waterloo, ON, Canada) was used together with fiducial markers.

The final aspect that was researched was how the studies approached the organization of the
software framework. The first study that was closely looked at was the one of Hungr et al.
(2016). In this research, the robot was programmed to insert a needle through the patient’s
skin anywhere in the upper body, without being restricted to a specific organ. The research
details the particular interfaces that are used in the general implementation: QT used for the
GUI, Visualization Toolkit (VTK) used for visualisation of tumor, Insight toolkit (ITK) used for
image analysis, and Computer Assisted Medical Intervention Tool Kit (CamiTK) used for com-
munication. The software was used respectively for the following tasks: 1) robot controller, 2)
robot/scanner registration software, 3) user interface software, and 4) a communication chan-
nel to transfer MRI images and control signals between the scanner room and the control room.
This implementation shows a similar structure to that of ROS but specialised for medical ap-
plications. The other study that was analysed was a continuation of the work from Hungr et al.
(2016), by Patel et al. (2018). Here a GUI based application providing both joint spaces as well
as task-space control was developed and added to the previous work. The GUI is designed such
that the clinician can observe all the desired robot status information, such as the current robot
pose versus its desired pose. The study by Tokuda et al. (2018) also concentrated on the overall
software framework design. The designed system consists of navigation software and a needle
guide device controller running in parallel. The controller is in charge of controlling the actua-
tors and monitoring the encoders and sensors. It receives control commands and parameters
(e.g. registration transform and target coordinates) and sends hardware status (e.g. current
orientation of the needle guide and hardware error information) to and from the navigation
software. The target coordinates received are translated to individual actuators’ displacements
by computing the inverse kinematics and passing to the PID control to control individual ac-
tuators. The encoder readings are converted to the needle guide’s orientation guide and sent
back to the navigation software.

During this review it was noted that the actuation most commonly used in MRI compatible
robots was piezoelectric actuation. All the papers prioritized the high accuracy offered by
piezoelectric motors over the high MRI compatibility of the pneumatic motors. Therefore, a
pneumatic motor needs to provide high accuracy to be chosen over a piezoelectric motor. It
also became clear that to provide fully MRI compatible feedback; one can either develop an
MRI compatible sensor or use MRI imaging as feedback. The MRI compatible sensors used
in the papers which are available for purchase are low in number and highly costly. Imaging,
on the other hand, was used often and was shown to be successful but was only tested on the
tracking the needle tip. Additionally, such an implementation requires the constant use of an
MRI machine during the experimentation phase, which is infeasible for the current project. All
the statements in this review reinforce the analysis done in the previous chapter, where it was
decided for an non MRI compatible camera. The general framework of the projects and their
implementation structure was another aspect that was paid significant interest to. In terms of
the general software framework, the use of standalone programs or especially designed soft-
ware was preferred, while available robot frameworks such as Robot Operating System (ROS)
were not used at all. When designing or choosing the software, no particular notice was paid
to issues such as modularity. On a more structural level of implementation, it can be seen from

Pamela Shametaj University of Twente

CHAPTER 2. CURRENT STATE 7

the papers that the actual needle control software framework was divided into three steps: po-
sition, orientation, and manual or automatic insertion of the needle. However, multi-needle
control was not mentioned in any of the papers.

After presenting the current state of the available needle insertion robots, the robot’s current
state used during this project will be explained. The decisions behind its design and imple-
mentation will be backed by the knowledge gained from this section.

2.2 Robot

2.2.1 Design

This section will focus on familiarizing the reader with the design of the first prototype and
elaborate on the design choices made. Initially, the kinematic structure - including the robot
joints, their limits, links and DOF - will be introduced together with the chosen needle inser-
tion method. Besides textual explanations, diagrams and models will be utilized to help with
visualization of the overall robot structure.

The developed robot has 4DOF, two of which are reserved for translations in the x- and y-axes
and the other two for end-effector rotations in the z- and y-axes. The rotation in z is achieved
by the bottom joint and is used to transport the entire top platform. The joint’s position can be
seen more clearly in figure 2.1. The rotation in y is performed by coupling the two x translations
of the top frame and the bottom frame as seen in figure 2.2. By using this method, more support
is given to the needle for insertion. However, this means that the translation of the needle in z is
also coupled with this x orientation. Although this does not pose an issue, as the insertion itself
is entirely manual, and the needle is not transported while the robot is moving, this coupling
of axes should still be taken into account. This method allows for a broader workspace since
the distance from the upper and bottom frame does not become a limitation. Each joint has
upper and lower limits either for rotation or translation. The bottom joint, which can be seen in
figure 2.1, can rotate from -1.34 radians to 1.34 radians. The upper and bottom side prismatic
joints translate from -35 mm to 35 mm. The middle prismatic joint translates from -31.25 mm
to 31.25 mm.

Figure 2.1: The rotation joint found at the bottom base of the robot.

Robotics and Mechatronics Pamela Shametaj

8
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 2.2: Two translation joints that provide orientation of the needle. As can be seen in the figure the
translation joint is in fact two coupled translation joints instead. (J stands for Joint)

To accommodate both needle’s insertion and orientation, passive rotational joints were used
in the upper and bottom frames as seen in figure 2.3. It needs to be noted that the bottom joint
is both a passive rotation joint and a passive translation joint. In total, there are eleven joints,
four of which are passive while the other seven are actuated. From the seven actuated joints,
four of them are coupled and are mirroring each other. An example of this can also be seen in
figure 2.2.

Figure 2.3: Passive joints of the robot needed for orientation of the needle. (J stands for Joint)

The links have significantly complicated shapes as can be seen in figures 2.1,2.2,2.4 and are
integrated into the motors. For example, most of the upper links are either the linear guide
of the motor or the motor itself with extensions. All the links are very lightweight and fully

Pamela Shametaj University of Twente

CHAPTER 2. CURRENT STATE 9

MRI compatible, as they are 3D printed using plastic material. As mentioned beforehand, the
needle is inserted after links and joints’ final position has been reached. The needle is taken
as an end-effector simply for calculating the final kinematic position. Dynamically, the upper
translation joint movement and the bottom translation joints are not effected by the needle.
This manual insertion of the needle has been chosen for two reasons; a proper needle holder
needs to be designed but is beyond the scope of this project, and a higher orientation can be
achieved by manually inserting the needle. There is no finalized needle holder design in the
current prototype, but simply a 3 mm diameter opening in the extensions of the links on the
top and bottom as seen in figure 2.5. This means that only electrodes of slightly smaller than
3mm diameter can be accommodated in the current design.

Figure 2.4: All links and joints of the robot excluding the rotation joint and bottom link.

Figure 2.5: Needle inside the needle holder.

Robotics and Mechatronics Pamela Shametaj

10
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

2.2.2 Actuation

In the current implementation, pneumatic motors are used to actuate the robot. The actuation
method was mainly chosen because of the MRI compatibility of the motors. The decision to
use these motors was further validated through the analysis of other available MRI actuation
methods. The authors of the studies examined stated that piezoelectric motors were usually
favoured over pneumatic motors.Hungr et al. (2016); Watkins et al. (2016) The reasoning behind
this claim was stated to be the lack of accuracy in the available pneumatic motors. However,
the motors chosen for this application overcome that limitation by providing high accuracy,
especially when driven at lower frequencies.

The chosen pneumatic motors were produced at the University of Twente by Groenhuis et al.
(2018) with the goal of being used for applications that require MRI compatibility. The motors
are 3D printed linear stepper motors with the name T-26. A 3D model of the motor can be seen
in figure 2.6. T-26 is composed of two pistons surrounded by a 3D printed housing that pushes
against a rack. As a result of the motors comprising the link’s physical structure, the length
of the wedges is dependent on the required size of the links. The rack is a wedge mechanism
comprised of tiny teeth of 2.5mm on both sides. The tooth size of the wedge mechanism is what
determines the step resolution. The teeth provide piston’s grip to progress into different states,
which then move the motor forward or backwards. The pistons have four housing chambers.
Two chambers are needed for each piston, with one residing on the top and one on the bottom,
as shown in figure 2.7. The housings of the motor are pressurised in an orderly manner by
having each piston move back and forth in the double-acting cylinder. This is done to create
the stepping movement that moves the robot forward and backwards. Only one piston, the
one which was pressurized formerly, can be fully engaged to the rack. During movement, the
most recently pressurized piston temporarily releases its grip, allowing the other piston to fully
engage to the rack .(Groenhuis et al., 2018) Out of this motion, five consecutive motor states
exist in the linear stepper, displayed in figure 2.8.

Figure 2.6: 3D model of the T-26 motor taken from the AutoCad model.

Four pneumatic tubes and two pneumatic valves are needed for each motor o pressurize the
chambers of the pistons. The valve serves as the mechanism that opens and closes the pneu-
matic connections. In the current hardware implementation, only eight valves are used. This
is because four motors were coupled in order to limit the number of pneumatic tubes, as seen
in figure 2.9. The valves used can be seen in figure B.5 in appendix C. The sharing of valves
is done to reduce the amount of actuation and number of pneumatic tubes. As can be seen
from figure B.5, there is already an overwhelming amount of tubes going into the robot. Such
a construction can limit robot movement, increase overall weight while making it harder to
troubleshoot and fix leaks. To control all the valves - and consequently, the motors - a 2600

Pamela Shametaj University of Twente

CHAPTER 2. CURRENT STATE 11

Figure 2.7: T-26 motor cross section taken from the 3D AutoCad model.

Figure 2.8: T-26 motor states taken from paper Groenhuis et al. (2018).

mega Arduino micro-controller is used. To connect the valve with the digital Arduino pins, an
additional circuit is constructed as seen in figure B.4 in appendix C.

Figure 2.9: The coupled motors utilising only one valve.

Robotics and Mechatronics Pamela Shametaj

12
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

During this chapter, the physical structure of the robot in its initial state was addressed. The
existing state of needle insertion robots was also investigated. The following chapter will go
through a more in-depth review of the thesis’s objectives as well as the decisions taken during
the Implementation and Design phases.

Pamela Shametaj University of Twente

13

3 Analysis

3.1 Implementation Work

This section will concentrate on the first stage of the thesis, Implementation. The project’s
goals and requirements, as well as the necessary practical implementation will be discussed in
detail. The available options for each decision will be noted, and each choice’s reasoning will
be argued.

3.1.1 Software framework

The main goal of the Implementation phase is to create the first functioning prototype. A low-
level micro-controller needs to be programmed accordingly and software calculating the for-
ward and inverse kinematics has to be developed. Lastly, all the software components need to
be integrated seamlessly under one communication software structure. When attempting to
achieve the Implementation phase’s objectives, specific requirements must be noted as well.
The first and most critical requirement is the development of a modular software framework.
The current prototype will be the first of several, implying that the robot architecture will un-
dergo numerous changes during its development cycles. In the future, the robot will include
more than one needle; thus, the ability to plan for multiple end-effectors needs to be avail-
able. New hardware and software can be introduced in future prototypes. As a result, a soft-
ware framework capable of integrating a wide range of external software and hardware must be
built. The final requirement is the availability of seamless communication between the soft-
ware units. In the following sections, these requirements will be addressed.

Two options are commonly available when creating software for robotics applications; using
one’s own implementation or using the Robot Operating System (ROS) platform. Creating a
specialised communication platform is a more straightforward option. Just as the name sug-
gests, this option would give the creator the option to choose its own preferred scripting lan-
guage as well as their preferred communication protocols, making the platform prototype spe-
cific. Nevertheless, implementing a personalised framework is a time-consuming task when
dealing with a great number of software and external devices. The communication between the
different software needs to be developed and optimized, creating difficulty when implement-
ing or testing new hardware. Since modularity and updating of the prototype are important
aspects of this project, this communication aspect is problematic.

On the other hand, ROS has become a common choice when writing software for robots. The
framework provides tools and libraries created by specialists worldwide and is used to simplify
the task of creating complex and robust software for robots. Its main goal is to provide fast
prototyping and efficient communication. As a result, it can be used to write general-purpose
software, which can be continuously built upon in future stages. Such a solution is ideal for this
project because it can provide a stable foundation for a constantly evolving robot. Simultane-
ously, through ROS, one can integrate hardware, third-party software and visualisation tools
quickly.

After analysing the two available options for creating robotics software, ROS was chosen as the
prototype’s preferred framework. This implementation provides easy integration with visual-
ization tools such as Rviz and Gazebo, using hardware such as Arduino and a multitude of ex-
ternal sensors. The framework takes care of all the communication through ROS messages and
allows for both C++ and Python scripting. Most importantly, ROS is an open-source framework
that is constantly tested and optimized.

The second aspect to address in terms of the modularity requirements is the kinematic imple-
mentation. Two popular options are available in the robotics field, the usage of Matlab and

Robotics and Mechatronics Pamela Shametaj

14
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

ROS-MoveIt. The two platforms provide a variety of solvers, mainly regarding inverse kinemat-
ics.

Matlab is programming and numeric computing platform generally used to analyze data, de-
velop algorithms, and create models. When implementing robotics solutions, a combination
of Matlab, Simulink and Toolboxes is used. Simulink is a model-based programming tool that
provides a simulation environment to textual Matlab programming. The software packages
used in combination with Simulink are the Robotics system Toolbox , Symbolic Math Toolbox,
Simscape Multibody and Fuzzy logic. The forward kinematics can either be performed by cre-
ating multibody models through Simscape or implementing one owns the mathematical solu-
tion. The inverse kinematics, on the other hand, can be solved through the four Toolboxes. The
solution can be either analytical by using geometry or numerical by calculating the geometric
Jacobian.

MoveIt is an open-source robotics manipulation platform for developing commercial appli-
cations, mostly used for planning kinematics and executing trajectories. The software offers
its methods of collision checking, one for the robot with itself and one for the robot with its
environment. The forward kinematics is done within MoveIt with the help of the transforma-
tion (TF) package. TF is actually utilized to figure out the transformations between the robot
links. Together with the joint positions from the joint state publisher, these transformations
are utilized by MoveIt to calculate the forward kinematics. To solve the inverse kinematics,
three MoveIt solvers are available: KDL, IKFast and TrackIk. The KDL kinematics plugin wraps
around the numerical inverse kinematics solver provided by the Orocos KDL package. IK Fast
is a powerful inverse kinematics solver provided within ROSen Diankov’s OpenRAVE motion
planning software. It can analytically solve the kinematic equations of any complex chain and
generate language-specific files (like C++) for later use. However, the IKFast plugin generator
tool does not work with <6 degrees of freedom arms. TRAC-IK is an inverse kinematics solver
developed by TRACLabs that combines two IK implementations via threading to achieve more
reliable solutions than common available open-source IK solvers. TRAC-IK concurrently runs
two IK implementations. One is a simple extension to KDL’s Newton-based convergence algo-
rithm that detects and mitigates local minima due to joint limits by random jumps. The second
is an SQP (Sequential Quadratic Programming) nonlinear optimization approach which uses
quasi-Newton methods that better handle joint limits.

Both options, Matlab and ROS, provide fast solutions and are implemented in a similar mod-
ular manner, both fulfilling the modularity requirement. It even is possible to implement a
combination of ROS and Matlab by using an additional Matlab toolbox. This allows Matlab to
be used alongside the ROS platform that had already been chosen for hardware and software
integration. However, Matlab is not an open source software, requires an additional toolbox
to communicate with ROS, and has a more complex collision checking method. To keep the
software structure more reliable, open source and seamless, MoveIt was chosen for the overall
implementation of the kinematics and TRAC-Ik was the chosen inverse kinematic solver.

3.2 Design Work

3.2.1 Vision Hardware

The chosen robot feedback, a non-MRI compatible camera, and the reasoning behind this de-
cision were already discussed in this project’s introduction chapter. A non-MRI compatible
camera is capable of providing real-time feedback and a fast way to test the current and fu-
ture designs. The camera also allows for calibration outside of the MRI machine. The latter is
done by taking advantage of the fact that the robot at hand has the ability to be driven in feed-
forward when used at a safe frequency. The setup’s ability to achieve high accuracy calibration
and tracking feedback still need to be tested.

Pamela Shametaj University of Twente

CHAPTER 3. ANALYSIS 15

In the current implementation, the used joint feedback is actually a measure of distances. To
be able to measure the distance effectively, the 3D coordinates of the objects of interest need
to be available. The depth component can be used to get rid of false detections by remov-
ing the background information. To measure the z-coordinate, either a monocular camera or a
stereo camera can be used. There have been multiple studies on achieving high accuracy depth
and measurement approximation from monocular cameras. However, the papers focus on a
non-real-time application. In addition, the monocular approximation methods need objects
of reference and particular calibration methods, are dependent on learning the environment
and require specialised equipment.Kang et al. (2015); Wei Liu et al. (2016); Mane and Yangan-
dul (2016); Bui et al. (2018) On the other hand, the stereo camera can provide highly accurate
results.Min-jeong Kang et al. (2008); Mustafah et al. (2012a,b); Meng et al. (2018); Bui et al.
(2018); DANDIL and ÇEVİK (2019) The downsides of stereo cameras are their bulkiness, long
processing time, the lack of accuracy because of improper camera alignment, and complicated
calibration.Mane and Yangandul (2016); Bui et al. (2018) To be able to bypass the mentioned
limitations of monocular implementations while prioritising high accuracy and real-time feed-
back, a stereo camera was chosen to be implemented.

After the choice of stereo versus mono camera setup was made, one other question remained.
Will the camera be sourced from the range of already available stereo cameras, or will it be
developed from two mono-cameras? Before the question is answered, the requirements need
to be set. First, it needs to be mentioned that a high depth value is not within the scope of
requirements. Instead, a close-range implementation would provide satisfactory results. Sec-
ondly, high accuracy is a requirement; thus, the camera must have a high resolution to be able
to fulfill the accuracy requirement.

There are multiple advantages of building one’s own stereo camera setup. Parameters such as
baseline, resolution, and focal length can be chosen to achieve the appropriate depth levels.
Simultaneously, using two mono-cameras can be cost-effective, considering that purchasable
stereo cameras come with specialized software and can be highly costly. On the other hand, an
arduous amount of time needs to be spent on perfecting the setup. From a hardware stand-
point, the cameras must be correctly aligned and positioned, and the setup must be robust,
since misalignment and hardware adjustments may cause major accuracy errors. Mane and
Yangandul (2016); Bui et al. (2018) Besides the hardware aspect, specialized software needs
to be built and optimized. A camera calibration method must be created, as well as feature
extraction and stereo matching techniques. During these phases, it needs to be made sure
both of the video feeds are aligned. On the other hand, available market cameras can provide
a sturdy product that is already self-aligned and tested. A significant number of these cam-
eras also come with their own on-chip camera calibration as well as optimized software. By
looking at both implementations’ positive and negative aspects, a decision was made to use a
purchasable camera. In the current project the sturdiness, ease of implementation regarding
hardware alignment, and code efficiency was prioritized over customizability. Recently, pur-
chasable stereo cameras have also become more easily available at a lower cost and a higher
resolution.

The next step is looking at available stereo cameras. A comparison of their specs can be seen
in the table 3.1. Looking at the camera’s specifications, the camera chosen for this implemen-
tation is Intel RealSense Depth Camera (D435i), United States. The Real Sense Camera D435
offers a higher field of view, a good minimum depth, high resolution for both depth and RBG
feeds with up to 90 fps. After further research the depth accuracy error also stands at less then
2 percent up to 2m.

Robotics and Mechatronics Pamela Shametaj

16
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Cameras Intel® Re-
alSense™
D435

ZED Stereo
Camera

Tara Intel®RealSense™
D415

Depth Technology Active IR Embedded Embedded Active IR
RGB module Yes Yes No Yes
Depth Resolution 1280 × 720 2208 x 1242 752 x 480 1280 × 720
Dimensions(mm) 90×25×25 175x30x33 100x30x35 99×20×23
Min Depth(m) 0.28 1.5 0.5 0.45
Depth FOV 86° × 57° 96° x 54° 60° H 64° × 41°
Frame Rate(fps) 90 15 60 90
Price(dollar) 179 449 169 149

Table 3.1: A comparison table of the stereo cameras

3.2.2 Vision Software

In this subsection, the reasoning behind the software decisions will be discussed. The main
goal in this phase of the project is to perform a calibration method for the motors and be able
to track their movement as feedback for the kinematics. Thus in terms of vision, the goal is to
create a method that is able to track the robot joints of the motor, determine their 3D position,
and calculate their distance from the joint’s initial(zero) position. The first requirement to be
noted is the software’s ability to track and identify multiple markers at the same time.

To be able to fulfil this requirement, as well as to achieve faster and more stable results, an
algorithm combining both detection and tracking is utilized. The tracker takes over for the de-
tector by providing faster results and searching on a smaller region of interest.(Pallapotu, 2019;
Yao et al., 2016; Tannús, 2020; Lehtola et al., 2017) This is due to having previous knowledge
of the targets and their previous position. The trackers also deal better with partial occlusions.
(Pallapotu, 2019) Simultaneously, the detection is used to initiate the trackers and get rid of the
accumulated error since tracking algorithms can accumulate a small amount of error through
multiple frames. (Pallapotu, 2019)

To be able to make a choice on which tracker could provide the best solution, the current setup
needs to be looked at. The detected objects are not expected to change in number from frame
to frame, could be moving significantly fast, do not have a great change from the first frames
in terms of size, and most probably will never be fully occluded. At the same time, the most
crucial requirement will be to keep up with its movement and the ability to achieve accurate
results. When considering these requirements, four trackers were selected. In regards to track-
ing discriminative method trackers were mainly looked at. These target tracking algorithms are
known to provide real-time tracking by simplifying the time consumption calculation. Correla-
tion Filters were one the most popular discriminative methods mentioned in literature. (Gong
et al., 2020)

The first selected tracker is the Discriminative Correlation Filter with Channel and Spatial Re-
liability (CSRT). "The CSRT tracker joins the channel and spatial reliability concepts to dis-
criminative correlation filters tracking. The spatial reliability map adjusts the filter support
to the part of the object suitable for tracking." (Tannús, 2020) In such a way, one can enlarge
the region of interest (ROI) and improve the tracking of non-rectangular objects.(Tannús, 2020;
Ullah et al., 2019; Biswas et al., 2019). To localise the object reliability scores are used as fea-
ture weighting coefficients. These scores reflect the channel-wise quality of the learned fil-
ters.(Tannús, 2020) The CSRT tracker is known for its accuracy and the ability to track differ-
ently shaped objects. However, a drawback of the tracker is that it prioritizes accuracy over
speed and does not do very well with occlusions.(Biswas et al., 2019)

Pamela Shametaj University of Twente

CHAPTER 3. ANALYSIS 17

The Kernelized Correlation Filters (KCF) algorithm is the second chosen tracker. It uses the
shift-invariance property of Fourier transform (FFT) and Inverse Fourier Transform (IFT) to
increases the speed of the tracker. Simultaneously, it does have a lightweight implementation
by exploiting the large overlapping regions between various positive samples. (Raghava et al.,
2020) The tracker is known for good reporting of tracking failures, as well as a satisfying com-
promise between speed and accuracy. This tracker’s drawbacks are its inability to recover from
full occlusions and lack of efficiency when dealing with objects that change in size. Overall
the tracker is favoured by many papers as well as in comparison to the other selected trackers,
which are mentioned in this chapter. (Charalampaki and Malamos, 2017; Ullah et al., 2019;
Raghava et al., 2020; Rani et al., 2017; Lehtola et al., 2017)

Median flow is the third chosen tracker. In this algorithm, a region of interest (ROI), represented
by a bounding box, is used as input. A grid is then generated from this bounding box, and its
points are tracked from frame to frame. Then the sparse optical flow is used to estimate the
movement of the object of interest. Here the object of interest is assumed as a combination of
points moving synchronously. The quality of the predictions is estimated, and for each object
point, an error is calculated. Half of the best predictions are then used to estimate the displace-
ment of the object. (Raghava et al., 2020) Median flow is known for its speed and does a con-
siderably good job at reporting failures; however, it has a hard time dealing with large jumps in
motion, fast movements and abrupt appearance changes. (Charalampaki and Malamos, 2017;
Ullah et al., 2019; Raghava et al., 2020; Rani et al., 2017; Lehtola et al., 2017)

Minimum Output Sum of Squared Error (MOSSE) is the final chosen tracker. MOSSE was ini-
tially created for solving the single-object tracking task. Initially, a ROI/tracking window is se-
lected where the object of interest is centred. The object is then tracked by correlating the filter
over a searching window in the next frame. The maximum value in the correlation output is
looked at to estimate the object’s position in the next frame. (Shen et al., 2018) The tracker is
known for its high speed due to the computational efficiency of correlation filters. (Yao et al.,
2016) MOSSE is mentioned many times in the literature as a good choice whenever one needs
pure speed and is considered more robust to variations in deformation, scale and occlusion.
However, many mention its high inaccuracy and failure to track when there is a more signifi-
cant change in direction or pose. Overall in terms of accuracy, it seemed to perform worse than
the CSRT and KCF trackers. (Ullah et al., 2019; Biswas et al., 2019)

3.2.3 Chapter conclusion

In this chapter, a detailed analysis of the thesis’s two phases was given, the Implementation
phase and the Design phase. The goals and requirements were noted for each phase, and the
motivation behind various design decisions was explained. This chapter’s subsections serve as
an introduction to the practical work that will follow in the coming chapters. So far, the moti-
vation behind the implementation phase was discussed, and the answer to one of the research
sub-questions was provided. In the following chapters, the practical implementation of both
phases will be elaborated on in detail. The Implementation phase chapters are the Kinematics
chapter and Planning Framework, while the Design phase chapter is called Robot Feedback.

Robotics and Mechatronics Pamela Shametaj

18
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

4 Kinematics

Kinematics in robotics uses geometry to study the movement of robots manipulators. The
robot’s links are modelled as rigid bodies while joints are separated traditionally into revolute
and prismatic joints. The idea behind studying the kinematics of the robot is to be able to un-
derstand the relationship between the dimension of the joints and links and the placement of
the end-effector in space, as well as the relationship between velocities in the joints with the
help of the Jacobian matrix.

The goal of the kinematics in this project is reaching specific targets in the workspace. The
focus of this project will be on positioning and orienting the needle to achieve this. The speed
of the end-effector and the forces applied to it will calculated, since the needle’s insertion is
kept manual and is performed after the joints have moved to their respective values. The end-
effector has 4-DOF in terms of position and orientation, as well as an additional DOF created by
pushing the needle in the patient’s body. The DOF coming from pushing the needle needs to be
considered when planning for the kinematics, because one of the needle rotations is coupled
with the z translation. Therefore, to have a precise understanding of the final position and
orientation that can be reached by the needle, 5-DOF will be taken into account.

4.1 Kinematic Diagram

The first thing that will be studied at is how the robot is be expressed in terms of its kinematics.
In the current case, there are three scenarios, each with their own benefits and limitations. An
example diagram of the first scenario can be seen in figure 4.1. In this kinematic diagram, the
bottom joint is connected in serial with the rest of the frames. Two serial chains comprising the
upper chain and the bottom chain are then connected in parallel. The upper chain connected
to the top of the needle and the bottom chain to the tip. This approach would be beneficial
when considering a static needle, one that is inserted at the beginning of the implementation.
However, that is not the case in the current design, as the insertion of the needle is performed at
a latter stage to facilitate for a higher needle orientation. In the second scenario is to consider
the robot is considered as a serial chain. Only the top joints are considered in the kinematic
calculation, as seen in figure 4.2. The bottom y translation joint is considered as an actuator
for the rotation. In order to account for the needle being pushed inside the body, an extra z
translation joint is added. The problem behind this approach is that it makes it harder to check
if the position is reachable, while also complicating the overall framework implementation.
The third scenario considers the robot as a tree structure with two serial chains as seen in figure
4.3. Two end-effectors are considered in this scenario. The kinematics is then solved for both
of the chains with the same end-effector configuration. It needs to be noted that a z translation
is added for both of the chains, to account for the needle being pushed into the patients skin.
The benefits of such an implementation are the reachability of a bigger workspace, the ability
to plan for needle insertion, and assurance that the position is reachable. A negative aspect
of such a method is that it requires a manual needle insertion. However, this does not pose a
problem for the current implementation.

The third scenario of implementing each chain separately was chosen for this setup. This im-
plementation can be seen in figure 4.4, which displays all the joints of the two chains and their
respective links.

4.2 Traditional Implementation

There are two main ways of implementing kinematics in the traditional sense without using
ROS. Denavit-Hartenberg (DH) and the use of twists. DH notation is more generally available
for standard industrial robots and is used by most commercial robot simulation and program-

Pamela Shametaj University of Twente

CHAPTER 4. KINEMATICS 19

Figure 4.1: Scenario one of the kinematic structure.

Figure 4.2: Scenario two of the kinematic structure.

Figure 4.3: Scenario three of the kinematic structure.

ming systems. The DH method is achieved by setting a list of parameters for each link and
then constructing the homogeneous transformations between frames using these parameters.
These parameters are obtained by applying a set of rules in order to specify the position and
orientation of frames attached to each link of the robot. For the traditional implementation
of this project,the kinematics were solved using the product of exponentials and twist repre-

Robotics and Mechatronics Pamela Shametaj

20
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 4.4: Kinematic diagrams of the two chosen kinematic chains. The diagrams show both the joint
of the two chains and their respective links.

sentation instead of the DH notation. The advantage of using this method over DH is that one
only needs two set of frames; that of the base and end-effector. The small number of frames
combined with the geometric meaning of twists makes the chosen method superior in terms
of simplicity and practicality. In the traditional implementation, the following limitations were
taken in set to comply with the requirements of the set up. To simplify the problem at hand and
be able to apply the product of exponentials, the robot kinematics were expressed in terms of
an open chain with extra constraints in one of the joints. Thus, the chain’s joints are the bottom
rotation joint, translation in x, rotation in y and translation in y. The bottom actuated joint is
then calculated through geometry.

4.2.1 Forward Kinematics

The first step in calculating the end-effector matrix is noting the homogeneous transformation
from the base to the end-effector at zero configuration. The two frames are chosen as seen in
the previous figure 4.4. The same matrix stands for both of the chains, while the only changing
parameters are the velocity vector values. The respective vector values are further explained in
equation 4.2.

H 0
ee (q = 0) =

1 0 0 −v1
0 1 0 −v2
0 0 1 −v3
0 0 0 1

 (4.1)

Pamela Shametaj University of Twente

CHAPTER 4. KINEMATICS 21

v1_chai n1 = (L0− (L3+L4))

v2_chai n1 = L1+L5

v3_chai n1 = L2−L6

v1_chai n2 = (L0_1− (L3_1+L4_1))

v2_chai n2 = L1_1+L5_1

v3_chai n2 = L2_1−L6_1

(4.2)

Next, the unit twists are calculated for all the joints. Only the translation unit vector is needed
for the translational joints since the rotational unit twist is zero. The twist has a w rotational
component and a v linear component. When dealing with a prismatic joint, the rotational
component w is zero, and only the v component is needed. The general format can be seen
in equation 4.3. The rotational joint has a rotational component w and a linear component v,
which is a cross product between a chosen q vector and the rotational vector w. The q vector is
chosen along the joint’s axis to denote the distance from the world axis to the joint. The general
format can be seen in equation 4.4.

T =
·

0
~v

¸
(4.3)

T =
·

~w
~qx~w

¸
(4.4)

The final unit twists are then calculated using the formats mentioned in equations 4.3 and 4.4
by looking at figure 4.4. The twists of the top chain (1) can be found in 4.5,4.6 while the twists
of the bottom chain (2) can be found in equation 4.7.

T 0,0
1 =

0
0
1
0
0
0

T 0,1
2 =

0
0
0

−L0
−L1
L2

T 0,2
3 =

1
0
0
0

L2
L1

 (4.5)

T 0,3
4 =

0
0
0

−(L0− (L3+L4)
−L1
L2

T 0,4
5 =

0
0
0

−(L0− (L3+L4)
−(L1+L5)

−L2

 (4.6)

T 0,0_1
1 =

0
0
1
0
0
0

T 0,1_1
2_1 =

0
0
0

−L0_1
−L1_1
L2_1

T 0,2_1
3_1 =

1
0
0
0

L2_1
L1_1

 (4.7)

Robotics and Mechatronics Pamela Shametaj

22
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

T 0,3_1
4_1 =

0
0
0

L3_1+L4_1−L0_1
−L1_1
L2_1

T 0,4_1
5_1 =

0
0
0

L3_1+L4_1−L0_1
−L1_1−L5_1

−L2_1

 (4.8)

In the end, the exponential formula is used to calculate the final relation between the end-
effector and the joint values. The formula can be seen in equation 4.9. The same formula is
used for both of the chains. The end-effector is expressed in the form of a rotational vector
in combination with a linear vector as seen in equation 4.11. To find the values of the passive
joints, the two chains are equalized.

H 0
ee (θ) = e

eT 0,0
1 θ1 e

eT 0,1
2 θ2 e

eT 0,2
3 θ3 e

eT 0,3
4 θ3 e

eT 0,4
5 θ4 H 0

ee (0) (4.9)

H 0
ee (θ) = e

eT 0,0_1
1_1 θ1 e

eT 0,1_1
2_1 θ2 e

eT 0,2_1
3_1 θ3 e

eT 0,3_1
4_1 θ3 e

eT 0,4_1
5_1 θ4 H(0) (4.10)

H 0
ee (θ) =

[R0
ee] ~v0

ee

0x3 1

 (4.11)

4.2.2 Inverse Kinematics

There are multiple ways to calculate the inverse kinematics for a robot. One of the common
methods of resolving such a calculation is using the Jacobian matrix. The Jacobian is a repre-
sentation of the velocities present in the manipulator. This matrix is then calculated for both of
the chains. The geometric Jacobian is calculated by using figure 4.4. The Jacobian columns for
chain one can be seen in 4.12, 4.13, while the columns for chain two can be seen in 4.15,4.16.
Where the [exp1 exp2 exp3] vector is the cross product of w and q in equation 4.14 for chain
one and [exp_1 exp_2 exp_3] vector is the cross product of w_1 and q_1 in equation 4.17.

J0 =

0
0
1
0
0
0

 J1 =

0
0
0

−si n(J0)
cos(J0)

0

 J2 =

cos(J0)
si n(J0)

0
exp1
exp2
exp3

 (4.12)

J3 =

0
0
0

−si n(J0)cos(J2)
cos(J0)cos(J2)

si n(J2)

 J4 =

0
0
0
0

−si n(J2)
cos(J2)

 (4.13)

~w =
cos(J0)

si n(J0)
0

~q =
cos(J0)[L3−L0]− si n(J0)[J1−L1]

si n(J0)[L3−L0]+ cos(J0)[J1−L1]
L3

 (4.14)

Pamela Shametaj University of Twente

CHAPTER 4. KINEMATICS 23

J0_1 =

0
0
1
0
0
0

 J1_1 =

0
0
0

−si n(J0_1)
cos(J0_1)

0

 J2_1 =

cos(J0_1)
si n(J0_1)

0
exp1_1
exp2_1
exp3_1

 (4.15)

J3_1 =

0
0
0

−si n(J0_1)cos(J2_1)
cos(J0_1)cos(J2_1)

si n(J2_1)

 J4_1 =

0
0
0
0

−si n(J2_1)
cos(J2_1)

 (4.16)

~w_1 =
cos(J0_1)

si n(J0_1)
0

 ~q_1 =
cos(J0_1)[L3_1−L0_1]− si n(J0_1)[J1_1−L1_1]

si n(J0_1)[L3_1−L0_1]+ cos(J0_1)[J1_1−L1_1]
L3_1

 (4.17)

The next step would be calculating the pseudo-inverse Jacobian. With the help of the pseudo
inverse, the joint changes can be calculated.

J+ = (J T J)−1 J T (4.18)

The kinematics calculation noted down in this chapter exists to get a better understanding of
the robot’s kinematics, as well as how the calculation can be implemented in the traditional
manner. Despite the calculations of this chapter, the traditional implementation is not used in
the software implementation of this project.

4.3 ROS Implementation

The first thing to be considered is that we will only solve our kinematics for positioning since
the motors receive the position value directly. The speed of the motors at the moment will be
kept at a particular safe frequency. Both forward and inverse kinematics will be done for the
robot. At the beginning of chapter 3, three kinematic chain approaches were discussed. The
one chosen for the ROS implementation is the third case, thus considering the robot as two sep-
arate serial chains. Taking advantage of the way the robot is built and its joint limitations, solv-
ing for the same position and orientation separately can still bring us an acceptable solution.
The first chain will be that of the first revolute Joint_0, top translation Joint_1_1 , top rotation
Joint_2_1, upper translation Joint_3_1 and needle connected through a translation Joint_4_1.
The second chain is simply comprised of the bottom translation Joint_1_2, bottom rotation
Joint_2_2, bottom translation Joint_3_2 and the needle connected by a translation Joint_4_2
as well. All the implementation can be seen in figure 4.5. The reason why the initial rotational
joint was not included in the calculation of the second chain is because the bottom chain is also
affected by the bottom rotation Joint_0. The kinematics are calculated for two end-effectors si-
multaneously; the end-effector of the upper chain and the end-effector of the bottom chain
as can be seen in figure 4.6. Both of the needles are identical. The needle is included as an
end-effector twice to allow for separate kinematic calculations for each of the chains. In this
implementation, all the joints are considered active when planning the kinematics. However,
the passive joints (Joint_1_1, Joint_1_2) are not sent to the hardware microcontrollers inter-
face. The joint values passed to the hardware interface are the bottom rotation joint, the top
and bottom x translation joints, and the middle y translation joints, as seen in figure 4.5.

Robotics and Mechatronics Pamela Shametaj

24
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 4.5: Diagram of the joints of the robot.

Figure 4.6: Diagram of the full implementation including both links and joints of the robot.

The first step in creating a proper kinematics implementation by using ROS is by creating a
Unified Robot Description Format (URDF) model. URDF is a ROS specific XML format for rep-
resenting a robot model. The file stores the kinematic structure of the robot, its appearance
through geometric shapes and meshes, as well as other information such as joint limits, link
masses and types of joints. The other format needed is the Semantic Robot Description For-
mat (SRDF); this format saves the kinematic chains and uses them for solving kinematics. The
URDF and SRDF store the mentioned parameters, which are then used by MoveIt. The forward
kinematics is done within MoveIt with a combination of the joint state publisher and robot
state publisher as well as the transformation (TF) package. TF is actually utilized to figure out

Pamela Shametaj University of Twente

CHAPTER 4. KINEMATICS 25

the transformations between the robot links. These transformations together with the joint po-
sitions from the joint state publisher, are utilized by MoveIt to calculate the forward kinematics.

The solver chosen in this project for solving the inverse kinematics is the Track_. The package
is an inverse kinematics solver developed by TRACLabs that combines two IK implementations
via threading to achieve more reliable solutions than common available open-source IK solvers.
The package combines two different solvers. One is a simple extension to KDL’s Newton-based
convergence algorithm that detects and mitigates local minima due to joint limits by random
jumps. The second is an SQP (Sequential Quadratic Programming) nonlinear optimization ap-
proach which uses quasi-Newton methods that better handle joint limits. By default, the IK
search returns immediately when either of these algorithms converges to an answer.

This chapter introduces to what method is used for the implementation of the forward and in-
verse kinematics, as well as what external packages and software make the execution possible.
In the coming chapter, the specifics of the implementation will be explained in detail as well as
the overall framework.

Robotics and Mechatronics Pamela Shametaj

26
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

5 Planning Framework

A major focus of this project is creating a general interface that connects the user input for the
needle position and orientation to the feedback, robot simulation and actual hardware. From
the figure 5.1 one can see the general overlay of how the robots interface works. The first step of
this implementation is sending a setpoint. At the moment, the framework has been designed
with two options; one where the user can input an endpoint with a position and orientation,
and another where the user can use the GUI by guiding the needle to a physical marker in the
robot space. The option to directly input a position and orientation has been made possible
such that in the future, the whole process can be semi-automated. By doing so, the tumor
information can be sent in the robot’s coordinates, and the doctor can guide the needle towards
the tumour using the desired orientation and position. In the future, the process can become
entirely automated by directly sending the data from either from the MRI script to the planning
script.

The second step is the actual planning, which is done through the MoveIt package. A script
is used to call the planner, which solves the inverse kinematics for both of the end-effectors
in each chain. Identical position and orientation end-effector values are sent to the interface
in order to solve the inverse kinematics. If planning for both of the chains succeeds, then the
value is sent through a trajectory controller. When using a simulation such as Gazebo, a con-
troller from a ROS package called ros_control is used. The interface diagram when using Gazebo
can be seen in figure 5.2. This package sends commands to the joints in the simulation and
reads the joints’ current value in the simulation to feed it back to the MoveIt package. On the
other hand, if the connection directly to the robot is used, a separate script (hardware interface)
transforms those commands into something that the hardware can understand. These values
are sent through ROS, as ROS messages, to the Arduino interface. The Arduino interface then
uses the motors’ library to drive the motors to the right position using a preset velocity.

Figure 5.1: Diagram of the robot overall framework when connected to the real hardware.

In the next sections, the interface and its script components will be explained in detail.

5.1 Robot URDF

The creation of a URDF model is the first step to a proper MoveIt implementation. The URDF
stores the kinematic structure of the robot, its appearance through geometric shapes and

Pamela Shametaj University of Twente

CHAPTER 5. PLANNING FRAMEWORK 27

Figure 5.2: Diagram of the robot overall framework when using the Gazebo simulation.

meshes, as well as other information such as joint limits, link masses and types of joints. The
object types within the URDF format are link and joint, equivalent to the traditional robotic
concepts of link and joint. There are six types of joints within the URDF format:

• fixed with no motion

• revolute with rotation along a single axis

• continuous with rotation around a single axis with no limits

• prismatic with translation in one dimension

• planar translation in two dimension

• floating with unlimited motion

In this robot, only the basic revolute and prismatic joints are used. All the joints have upper and
lower limits mirroring the real-life hardware and, thus move along only one axis. The unit of
translation is in meters, while the unit for rotation is in radians. The robot expressed in URDF
format can be seen in figure 5.3.

All the robot elements are created with respect to a world coordinate. The first link of the robot
is the base link which is then connected to Link1 as seen in figure 5.3 through a revolute joint,
Joint_0. In terms of rotation, the joint has an upper limit of -1.5 radians (-85 deg) and a lower
limits of 1.5 radians (85 deg). From Link1, two translation joints can be seen; Top_Side_Link_1
and Bottom_Side_Link_1. Two translation joints are then coming out from the top and the bot-
tom of the first link as shown in figure 5.4, which shows the whole robot in RViz. The side links
are, in fact, connected by two joints with Link1; but, the motors controlling those two joints are
connected to the same valve. Because they cannot be controlled separately, they are consid-
ered as one joint. This goes for both the top translation link and the bottom translation link. In
the future, the possibility of controlling them separately should be made possible. In this way,
one can correct for small inaccuracies and discrepancies that can be found between the cou-
pled joints. A combination of a rotational and prismatic joint is present in both the top chain
and the bottom chain. Because such a joint does not exist in the URDF format, a fake empty
link is created in between those joints, as seen in figure 5.3. In both the top and bottom chains,
two translation links equipped with a needle holder extension needed for needle insertion are
present. They are shown in figure 5.3 and are labelled as middle links. The top middle link is,
in fact, just the motor body and its casing. To facilitate the kinematics and the actual position
of the needle tip, two needles of the same size are connected through the needle extension by
a prismatic joint, Joint_4_1 and Joint_4_2. As mentioned before, the needle insertion in the
real robot will be manual. Therefore, the needle cannot be considered rigidly connected in the
kinematics. Thus an empty link is created at the tip of the needle to simulate the insertion. All

Robotics and Mechatronics Pamela Shametaj

28
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

the mentioned links seen in figure 5.3 are created with their own transformation frames, which
are attached to the centre of their 3D bodies.

Figure 5.3: Diagram of all the robot links and their 3D models.

Figure 5.4: The full 3D model of the robot in RViz.

5.2 Gazebo

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed simulator
makes it possible to rapidly test algorithms, design robots, perform regression testing, and train
AI systems using realistic scenarios. Gazebo offers the ability to accurately and efficiently sim-
ulate robots in complex indoor and outdoor environments. It is a robust physics engine with
high-quality graphics, and convenient programmatic and graphical interfaces. What makes

Pamela Shametaj University of Twente

CHAPTER 5. PLANNING FRAMEWORK 29

Gazebo stand out is also its very involved community that continuously upgrades its capabili-
ties as a toolbox.

Gazebo will be used to simulate the robot’s movement. To make the simulation possible, either
a URDF or a Simulation Description Format (SRDF) script is needed. Both URDF and SRDF
are utilized as their description formats provide different benefits. Three simulation model
versions of the robot were made. The reason behind these versions was to be able to simulate
the robots real-life environment as accurately as possible. The first open loop version without
the needle was made to ensure the inertias of the robot were correct. The closed-loop version
is what should be aimed for to have a proper realistic implementation. However, it was found
that in the current state of the software, it is not possible to have a fully functional closed-loop
implementation. In future prototypes, a customised plugin should be written such that the
motors move according to the controller in closed-loop form. The open-loop version with two
needles is what the current implementation utilises.

In all three models, the main script is in the URDF format, while the SDF tags were used mainly
in the closed-loop model. These tags are useful when one wants to add extra Gazebo specific
functionalities or unsupported functionalities from the URDF. For links to be able to be dis-
played in Gazebo, they need to have a proper mass and inertia within the <inertia> and <mass>
tags of every link. By adding the <gazebo> tags within the link, one can convert stl files to dae
files for better textures. By adding a <joint> tag, one can set proper damping and control pa-
rameters. The latter was useful for making these joints actuated. All the scripts have an extra
link in the current implementation that rigidly connects the robot to the world. Because of how
the robot is built and its inability to have composite joints, fake links were also utilized within
the URDF. To be able to display these joints within gazebo, low inertias were used instead.

Another benefit of using Gazebo is its easy connection with ROS. Through gazebo one is able
to publish joint states and control the movement of the robot. To make the joints actuated, an
external plugin has to be added to URDF. The main plugin used in the current project is that
of gazebo_ros_control. In combination with this, plugin <transmission> tags are also added for
each actuated joint. The tag specifies which joint is being actuated, the type of transmission
and the type of hardware interface being used. There are three types of hardware interfaces;
effort, velocity and position. In this implementation, the physical motors take the position as
input, so the hardware interface chosen is that of position control as well.

After the joints and their transmission have been specified, the next step is setting up a ROS
controller that can send commands. The real robot takes in position commands. These con-
trollers will be used to connect the rest of the planning with the simulation and the simulated
joints will then send their position back to the planning. Doing so allows one to have a fully
working simulation. Two controllers must be set up, a joint_state_controller which publishes
current simulation joints and position_controller, which sends joint commands taken from the
planning directly to the simulation joints with the help of the <transmission> tag.

Two URDF scripts were written for the Gazebo simulation. The first script holds an open loop
model while the second script a closed-loop one. The open loop model without the needle is
shown in figure B.2 appendix. The model where the upper and lower loops both contain a full
needle is shown in figure 5.5. Here all the joints are considered actuated. The script itself mainly
contains URDF tags of parent and children links where one child does not have more than one
parent. On the other hand, the closed-loop model uses the sdf tags to overcome the limitation
that a child cannot have more than a single parent. The needle link is split into two pieces and
connects in the middle with a fixed joint. The new fixed joint that creates the closed-loop is not
a URDF tag joint but an sdf one. In this manner, we overcome the inability of URDF scripts of
creating closed-loop models. The actual model can be seen in figure B.1 in the appendix C.

Robotics and Mechatronics Pamela Shametaj

30
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

In the end, the chosen implementation was that of the open-loop since the decision to have the
needle insertion done manually was made regardless of the gazebo model. Simultaneously, a
big limitation in having a closed-loop model is the fixed size of the needle and the inability to
have the needle slide for insertion. To simulate needle insertion, the points where the needle
is connected to other links are considered prismatic joints. In the closed-loop, such an imple-
mentation creates too many problems, mainly because of the lack of rigidity when splitting the
needle in two separate pieces. These reasons, together with how gazebo communicates with
the planning scripts, are why the closed-loop implementation was not chosen. The closed-loop
model could be useful in a future implementation in combination with a self-written plugin for
control of the joints in closed form.

Figure 5.5: The open loop robot containing the needle in gazebo

5.3 MoveIt

MoveIt is a primary source of the functionality for joint manipulation in ROS. It builds on the
ROS messaging and build systems and utilizes some of the common tools, ROS Visualizer (RViz)
and the ROS robot format (URDF), to create a robot planning framework. The package takes
parameters from the ROS server and uses them in combination with other external packages to
create kinematic solutions. The general framework of the package is mainly based around the
move_group node.

The MoveIt package has a central node called move_group. This node communicates with other
topics to get the necessary joint information where topics are named buses over which nodes
exchange messages. This communication provides the essential current joint position that is
needed to plan and execute commands. By knowing the joints current value, the node can cal-
culate how much it needs to move the joint for it to achieve its final position. The joint_states
topic is published through the joint_state_publisher, which is aware of the information in the
URDF configuration and combines it with information from external hardware values or sim-
ulation values. The Transformation (TF) package is utilized to figure out the transformations
between the robot links. Robot_state_publisher uses the joint information received through
both joint_state_publisher and URDF and publishes link transformations with the help of the
TF package. In this way, one can get the Cartesian position of each link. These transformations

Pamela Shametaj University of Twente

CHAPTER 5. PLANNING FRAMEWORK 31

are then used to display the robot in RViz and calculate the forward and inverse kinematics of
the robot. Better visualisation of this communication can be seen in figure 5.6.

Figure 5.6: Diagram displaying the inputs of the move_group.

Different plugins can be used for the planning of inverse kinematics. The default planner is
Kinematics and Dynamics Library (KDL), which uses the numerical Jacobian-based way to
solve kinematics. Other external solvers can also be implemented through MoveIt if specifi-
cally needed. As mentioned in the kinematics chapter, the Track_Ik solver was chosen. Another
important part of MoveIt and a major reason for it being the preferred choice for interface cre-
ation is the Collision plugin. This plugin is called during each planning session to check if the
links collide with each other or the environment. The plugin facilitates the use of meshes as
collision matrices, which is highly beneficial when the robot has a complicated build. After the
planners have calculated the necessary joint values to achieve the requested Cartesian posi-
tion, an extra package is needed to execute the commands, ros_control. Joint commands are
sent through a ROS action interface and a joint trajectory controller. A server needs to service
this action. For this to take place, a specific controller called trajectory_controller can be cre-
ated independently from MoveIt by using the ros_control package. In our case, the trajectory
controller package based on ros_control is created and is called robot_test_control.

It needs to be mentioned that to use the services provided by move_group node, three imple-
mentations are possible as seen in figure B.3 in appendix C. The first implementation is through
C++, using the move_group_interface package. The second method, which is also one of the
chosen implementations, is through Python by using the MoveIt_commander package. This
python package is, in fact, just a wrapper of the original C++ package. The final type of im-
plementation is through the GUI by using the Motion Planning plugin in RViz. The GUI im-
plementation can also be beneficial from a medical perspective. This could give the doctor a
better visual understanding of how the needle approaches the tumor. This is because this type
of implementation allows for a visualization of the tumor in the robot’s workspace by using RViz
and an external transformation script. The python implementation was chosen in this project
to keep the same scripting language throughout all the software framework.

Robotics and Mechatronics Pamela Shametaj

32
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

5.4 Robot Interfaces

5.4.1 MoveIt planning interface

A python interface script was created to be able to use the functionalities of MoveIt. As
mentioned in the MoveIt section, those functionalities can be reached with the help of the
MoveIt_commander package. The script is written in python and called through ROS. It takes
as input a vector with position and orientation, and it outputs joint positions. As mentioned
in the previous chapter, the robot itself is separated into two kinematic chains. The top kine-
matic chain is called move_group_1. This chain contains the rotational Joint_0, top transla-
tional Joint_1_1, top rotational Joint_2_1, top middle prismatic Joint_3 _1 and needle prismatic
Joint_4 _1. The bottom kinematic chain is called move_group _2. This chain contains the bot-
tom translational Joint_1_2 joint, bottom rotational Joint_2_2 joint, bottom middle prismatic
Joint_3_2 joint and needle prismatic Joint_4_2 joint. Track_Ik.

A visualization of the script workflow can be seen in figure in the 5.7. Initially, an end-effector
setpoint should be fed to the script. At the moment, the end-effector position is given within
the script but it could also be sent through a ROS topic. For the final joint positions to be
calculated and sent through ROS, the get_joint function is called. This function takes in the
aforementioned end-effector setpoint and returns either true or false depending on whether
a solution has been reached. Get_joint calls for the inverse kinematics through the external
TracIk package, after a solution has been reached and collision checking is performed. Only
after both of these calls return true are the joint values sent through a ROS command and the
inverse kinematics is considered executed.

Figure 5.7: Diagram visualizing the workflow of the used MoveIt python interface with TrackIk package
used for the inverse kinematics. Both the inverse kinematics and collision checking are called inside the
MoveIt commander class. The output of those functionalities in the end are calculated joint position.

5.4.2 Python hardware interface

The python hardware interface is necessary for converting the joint information sent from the
MoveIt interface to something that the motors and Arduino can understand. The communica-
tion between the two interfaces is done with the help of ROS messages. The joint information
coming from the MoveIt interface is in meters and, it already takes into account the joint lim-
its. Arduino, on the other hand, accepts steps as input. The step size differs depending on the
motor, so the calculation is joint-specific. A diagram showing the input of the script is shown
in figure 5.8.

Pamela Shametaj University of Twente

CHAPTER 5. PLANNING FRAMEWORK 33

Figure 5.8: Diagram showing the input and outputs of the Joint to Step python interface. This script
simply does a conversion and uses ROS to send the appropriate message type containing the joint values
in step unit to the arduino.

5.4.3 Arduino interface

The Arduino communicates with the python script via ros_serial package. The data it receives is
already converted into a format that the motors can directly understand. To control the motors
themselves, a package called pneumatic stepper is used. The package contains a motor class
that is used to create a motor object. The functionalities that exist within this class are set-
ting a setpoint, speed, update motor state and even specify the type of pneumatic motor used
(number of valves). In the current implementation, the movement of the motors is relative to
the initial positioning performed during calibration and keeps a static speed throughout all the
implementation. The setpoint needed for the motors is received by subscribing to a ROS topic
where a python script publishes only when a target has been specified. On the other hand, the
Arduino script continuously publishes the joint’s current position. The process of the motor
update and the ROS subscription is done separately from each other in different threads.

Robotics and Mechatronics Pamela Shametaj

34
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

6 Robot Feedback

6.1 Vision hardware

The camera used for this implementation is an Intel RealSense Depth Camera (D435i), United
States. The camera can be seen in figure 6.1. The D435i is a stereo solution, offering both depth
information and RGB feed for a variety of applications. It is a wide field camera with a high
resolution. A better view of its internal components can be seen in figure 6.2. The camera
has an on-chip calibration as well as its own Intel RealSense SDK 2.0 software package, which
provides a variety of useful functionalities. The camera is placed on top of the robot allowing
for a full top-down view of the robot. The RGB aspect of the camera is used for detection. The
colors in combination with the different sizes make it easier to track a multitude of objects. It
needs to be noted that in the current implementation, the chosen resolution is the 1280x720
pixel format with an fps of 30.

Figure 6.1: Realsense D435i camera (RealSense, 2020)

Besides the camera, the markers to be detected also needed to be chosen. Two types of objects
must be detected by the software. One marker type was placed on the moving joints, while a
reference type was placed on the frame itself. The reason behind this is to be able to do the
calibration independently of how the robot is placed in front of the camera. Even if the robot
has been placed in a rotated or displaced manner, the result of the calibration must still be the
same. In total there are 4 joint markers; bottom rotation Joint_0, top side translation Joint_1_1,
top middle translation Joint_3_1, bottom side joint Joint_1_2 and three reference markers; bot-
tom reference marker as Ref_0, top corner reference marker as Ref_1, middle reference marker
as Ref_2. The markers placed on the robot can be seen in figure 6.3. One of the reference mark-
ers, Ref_1, will be used for two joints, top side translation Joint_1_1 and Joint_1_2, to reduce the
number of overall markers. Each marker has a small holder on the robot as to keep its position
static in between calibrations. The markers themselves are relatively small but differ in color,
size and placement. Red is the color of the Joint_0, Joint_1_1, Joint_3_1 while yellow that of
Joint_1_2. The reference markers are blue for the two top translation joints and green for the
bottom rotation joint. All the markers are circles to achieve rotation in-variance, and matte

Pamela Shametaj University of Twente

CHAPTER 6. ROBOT FEEDBACK 35

Figure 6.2: Block diagram of the D435i internal components. (RealSense, 2020)

so they don’t change significantly under lighting conditions. The reason behind keeping the
markers flat is to have a better depth result.

Figure 6.3: Joint markers and reference markers on the robot

6.2 Vision software

When developing the vision software, a combination of OpenCv and Intel RealSense SDK 2.0
was used. To send the resulting values from the detection, ROS messages were utilized. All
the packages were implemented within one python script to increase the practicality of the
software integration.

Robotics and Mechatronics Pamela Shametaj

36
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

6.2.1 SDK and Depth implementation

The video feed and depth information were all retrieved using the RealSense SDK 2.0 software,
created within the RealSense brand. In this project, the SDK software is utilized to retrieve the
depth information. This is done because the software has direct information on the intrinsic
and extrinsic parameters, which are needed for the pixel projection and de-projection. Pixel
projection takes a point from a stream’s 3D coordinate space and maps it to a 2D pixel location
on that stream’s images. De-projection takes a 2D pixel location on a stream of images, as well
as a depth specified in meters, and maps it to a 3D point location within the stream’s associated
3D coordinate space.

By using the depth information provided by the 3D camera, one can differentiate between ob-
jects that are of importance from those that are present in the background. The depth value
varies depending on the camera’s distance; thus, a threshold can be specified to classify back-
ground/foreground objects properly. This classification is helpful when dealing with busy
backgrounds, and the usual features were chosen, such as colour or size are not sufficient for
the differentiation. On the other hand, the distances measured are of a higher accuracy since
the distance is calculated in 3D, and SDK is capable of taking in account camera distortions.
Another benefit of using SDK is the possibility of retrieving the raw feeds, colour and depth.
This is done with the reasoning that both the depth feed and the RGB feed come pre-synced.
However, an alignment of the frames still needs to be done in order to get accurate depth read-
ing. This is because the depth and RGB feeds have different maximum resolutions and viewing
angles. The chosen resolution for both of the feeds was 1280x720 pixels with 30fps.

The first step in 3D distance measurement is retrieving the 2-dimensional X and Y values of the
object’s centroid from the RGB feed. Z depth of the same object’s centroid is then stored from
the aligned depth frame. The three coordinate values are then transformed to real-world 3D
coordinates using the already known intrinsic parameters. Finally, a 3D euclidean distance is
measured between the two objects of interest by using their respective world coordinates. The
measurement pseudocode can be seen in 6.1.� �

distance_measurement (trackers , references)
{

t h i s value i s taken from the SDK parameters
cam_intrinsic ;

s o r t according to s i z e and depth
t h i s i s done to match tracker to r e f e r e n c e
trackers=sort (trackers)
references=sort (references)

deprojection calculation
for tracker in trackers :

3D_pos= calculate3D (centroid , depth , cam_intrinsic)
trackers_posit ion . append(3D_pos)

for references in trackers :
3D_pos= calculate3D (centroid , depth , cam_intrinsic)
trackers_posit ion . append(3D_pos)

distance calculation
for i =len (trackers)
3D_distance=euclidian (tracker , reference)
joint_value . append(3 D_distance)

Pamela Shametaj University of Twente

CHAPTER 6. ROBOT FEEDBACK 37

}� �
Listing 6.1: Measurement pseudo code

Now that the motivation behind the usage of SDK software has been stated and the technical
implementation of the 3D measurement has been explained, the next section will focus on a
different aspect of the framework. In the coming section the detection and tracking method
will be clarified.

6.2.2 OpenCv Implementation

OpenCv is an open-source, fully documented library with tools and optimization methods for
several tracking algorithms. The platform is used for pre-processing, detection and tracking.
The workflow diagram of the software can be seen in more detail in figure 6.4. The detection
and tracking are, in fact, done in the RGB feed. The first step in detection is transforming the
feed into HSV colorspace. This is done because one of the main features of the tracked mark-
ers is colour. Because similar colours can be present in the background and the lighting in the
environment may vary, morphological operations such as opening and closing are done to the
scene. After the noise has been dealt with, the actual detection takes place. Contour detection
is used within OpenCv for the markers. The detected contours are then filtered depending on
size, shape, and depth. The pseudocode of the detection algorithm can be seen in 6.2. The
resulting objects of interest are then used to initialize the tracker class. The tracker class is
reinitialized each time the tracker fails, or after 200 frames have passed such that the accumu-
lated error can be cleared. This class provides information such as the X, Y, Z, coordinates of
the object’s centroid in the cameras world frame. This position is then used to find the distance
between the joint markers and the reference markers. This distance will be the information
utilized for calibration and as well as feedback.� �

detection (aligned rbg_feed , aligned depth_feed)
{

#The xy coordinates of the rgb feed match those of the
#depth feed
aligned rbg_feed ;
aligned depth_feed ;

hsv_tracker= hsvfortracker (aligned rbg_feed)
hsv_reference= hsvfortracker (aligned rbg_feed)

hsv_tracker=open(hsv_tracker)
hsv_tracker=close (hsv_tracker)
hsv_reference=open(hsv_reference)
hsv_reference=close (hsv_reference)

contours_tracker=findCountour (hsv_tracker)
contours_reference=findCountour (hsv_reference)

for cnt in contours_tracker :
area=moments(cnt)
points=approxPolyDP (cnt)

i f threshold_1 >contours>threshold_2 and points >8
find centroid ;
find w, l

Robotics and Mechatronics Pamela Shametaj

38
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

find depth (centroid , depth_feed) ;

i f distance >depth>depth
track_det . append(nr , centroid , depth ,w, l)

for cnt in contours_reference :
area=moments(cnt)
points=approxPolyDP (cnt)

i f threshold_1 >contours>threshold_2 and points >8
find centroid ;
find w, l
find depth (centroid , depth_feed) ;

i f distance >depth>0
ref_det . append(nr , centroid , depth ,w, l)

}� �
Listing 6.2: Detection pseudo code

Pamela Shametaj University of Twente

CHAPTER 6. ROBOT FEEDBACK 39

Figure 6.4: Diagram displaying the workflow of the OpenCv vision feedback software.

Robotics and Mechatronics Pamela Shametaj

40
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

7 Testing Method

7.1 Workspace Test

The workspace test will give a good indication on the achievable positions of the needle in the
robots workspace. A comparison between the simulation test versus the real workspace can
pinpoint physical problems with the actual robot.

7.1.1 Simulation Test

To check the robot workspace, a simulation workspace test is done. A script is written to it-
erate through the joint combinations and use them to calculate the forward kinematics. The
script calls for Moveit to execute the kinematics. Consequently, combinations where a colli-
sion is happening are not taken into account. The end-effector in this test is set at the tip of the
needle and is saved in an external file in each iteration. To reduce simulation time, not every
single joint combination was taken in account. Instead, joint limits were taken into account
and testing was performed for joint positions in between these limits.

Since the bottom kinematic chain is solved separately, the way the test was performed was by
solving for forwarding kinematics on the top chain, taking into account the joint combinations,
and then using the top chain’s end-effector position to solve inverse kinematics for the bottom
chain. In this way, it is made sure that the joint positions can take us to an achievable needle
position. The test was done for a needle of 20 cm and needle insertions for up to 4 cm from the
initial position.

The final end-effector positions were recorded and saved to an external file with the help of a
Python script and then used as input for a plotting script.

7.1.2 EM tracker Test

The real-life workspace test was performed with the help of a physical sensor as a ground
truth. For this test, the medical Aurora 3D Guidance electromagnetic sensor manufactured
by Northern Digital Inc was used. The sensor works by using a field generator that emits a low-
intensity, varying electromagnetic field and establishes the tracking volume position. In the
current setup, a tabletop field generator is used. The robot is then placed on top of the tabletop
generator and lifted slightly with non-conductive platforms. The actual setup can be seen in
figure 7.1. The sensor is a 6DOF Aurora EM tracker and is placed in the needle as seen in figure
7.2.

The reason for not placing the sensor at the tip of the needle is because the needle is inserted
manually. With the current robot, it is not possible to keep the needle fixed to the robot while
moving, nor is it possible to place the sensor at the tip of the needle. This sensing method is
expected to introduce some inaccuracies in the measurements. The whole physical setup can
be seen in the diagram in figure 7.3.

Besides the physical aspect of the EM tracker, the ability to record and save the data depends
on its software setup as well. The overall idea of the software can be seen in figure 7.4. An
NDI server is established with the help of Matlab and the Aurora software package. This server
sends the EM tracker data in the form of a customizable message containing the x,y,z position
in millimeters and rx, ry, rz, rw orientation information in the form of quaternions. The laptop
client is then connected to this server with the help of an external ROS package called ROS-
IGTL-Bridge. To be able to analyze the results, this incoming information is then saved in a
ROSbag. Using a Python script and the ROS-IGTL-Bridge package, the data is saved onto a text
file containing only positions and orientations.

Pamela Shametaj University of Twente

CHAPTER 7. TESTING METHOD 41

Figure 7.1: EM tracker physical setup picture

Figure 7.2: EM tracker sensor put on the needle

Figure 7.3: EM tracker physical setup components

After recording all the needle data and before performing analysis and comparisons, a transfor-
mation needs to be done from the robot in the EM tracker workspace to the robot workspace.
The EM tracker sensor is placed in multiple known positions in the robot geometry, and these
points are recorded with the help of ROS in the form of ROSbags. After the necessary points
have been recorded in a similar manner, their position in the robot simulation is recorded as
well. By knowing the positions in the EM tracker workspace and the robot workspace, a rigid
transformation can be performed. In this example, seven points were used for the transfor-

Robotics and Mechatronics Pamela Shametaj

42
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 7.4: EM tracker software setup

mation. All of the points were located on the surface of the robot. The chosen method for
this transformation was done by using a 3D affine transformation and solving using singular
value decomposition (SVD). The pseudo-code of this transformation can be seen in 7.1. This
method provides the optimal rotation and translation between corresponding 3D points. From
this test, one can see how the needle position is in the real world workspace compared to the
needle position in the simulation.� �

int transform (simulation_points , EM_tracker_points)
{

#The points / point clouds from the two d i f f e r e n t
#workspaces are used as input

s_points=simulation_points ;
t_points=EM_tracker_points ;

#The centroid of the two " point clouds " are calculated
s_centroid=mean(s_points)
t_centroid=mean(t_points)

#The origin of the two " point clouds " i s calculated
s_Origin =(s_points −s_centroid)
t_Origin =(t_points −t_centroid)

#The translat ion component i s removed from the clouds
H=s_origin x transpose (t_Origin)

#The SVD method i s used to find the optimal rotation
U, S , V=svd (H)

#The rotation matrix i s calculated
R= transpose (V) x transpose (T)

#The translat ion component i s calculated
T=−R x s_centroid + t_centroid

rotation and translat ion are returned
return R, T ;

}

Pamela Shametaj University of Twente

CHAPTER 7. TESTING METHOD 43

� �
Listing 7.1: SVD method pseudo code

7.2 Vision tests

These tests will provide the answer to the core questions of this thesis, regarding whether visual
feedback is reliable and what methods provide the best result. Two main tests will be performed
in this chapter. The first test will be a comparison between the selected trackers, and the sec-
ond test will be a motor calibration test. From the first test one can see if continuous feedback
is accurate enough and what algorithms can be used, while the second test will showcase the
results of the calibration of the motors. When doing the calibration, continuous feedback mat-
ters less than the final distance measurement for reaching the 0-joint position. It needs to be
noted that both vision tests were performed on different days, with the base of the robot being
placed at various initial rotations.

7.2.1 Tracker Comparison Test

The tracker comparison test is performed to help understand which trackers bring the best re-
sults when using vision for feedback. As mentioned in the vision paragraph, the general struc-
ture of the vision application uses a combination of detection and object tracking. In this test,
two joints will be followed; the upper translation joint and the middle translation joint. Besides
the actual moving joints, the reference markers will be followed as well. In total, four markers
will be tracked, and two sets of multi-trackers will be initiated. The four trackers are the KCF,
CSRT, MOSSE and MedianFlow. After all the markers have been tracked, a euclidean distance
is calculated between the joint markers and the reference marker. For all the trackers, the dis-
tance is measured using the 3D x,y,z data. For each tracker, seven tests were done, and the
robot itself was placed at different positions under the camera.

To facilitate a comparison between the ground truth and the test result, another script inside
the Arduino containing the known step value is sent through ROS. The previous paragraph
mentioned that the motors move relative to an initial position, and as long as the test environ-
ment is stable and the motor keeps a safe speed, the actual ground step position is recorded
and sent through a ROS topic. Both the value of the distance from the tracker and the Arduino
step value are sent to a ROS node, which translates the step value into a distance using the size
step and saving it to an external file. The values are then imported to a Python file where the
error is calculated and plotted.

7.2.2 Calibration Test

In the calibration test, one of the trackers is chosen and all the joints are tracked. During cali-
bration, the joints are moved one by one to their respective zero position. The order of calibra-
tion goes as follows; bottom rotation joint calibration, upper side translation joint and middle
joint calibration, bottom translation joint calibration.

First, detection of the rotation joint and the rotation reference marker is performed. If that
is not achieved, a move message is sent to the Arduino through ROS. When the rotation joint
marker and the reference marker are detected, the tracker takes over. While this is happening,
the distance between the reference marker and the rotation joint marker is measured. When
the required distance to reach the zero position is achieved, a stop message is sent by ROS to
the motors. After the rotation calibration is performed, the calibration of the other joints is
performed. The same procedure is repeated, the distance from the top translation joint and
middle translation joint with their respective reference markers is calculated, and the motors
are moved until the zero position distance has been reached. Lastly, the same logic is applied
for the bottom joint. When all the joints have moved to their respective zero positions, the vi-
sion code moves to continuous feedback mode, and all the trackers are refreshed and initialised

Robotics and Mechatronics Pamela Shametaj

44
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

simultaneously. To check if the calibration was performed correctly, the motors are moved ex-
tra steps closer to the zero position. The steps left for reaching the true zero position are then
counted as the error.

7.3 Target tests

The final experiment is the target test, in which the whole setup will be tested. The robot will
be calibrated with the help of visual feedback. Targets are then placed in the real world in the
form of a target paper, as shown in figure 7.5. This is done to test the accuracy and repeatability
of the full robot setup. On the bottom frame, a target paper is placed with positions relative to
the robot already known. Those points are then sent to the framework for performing inverse
kinematics and moving the robot to the necessary position. The needle is then inserted manu-
ally and the paper is poked. In total, there are fourteen targets per test. The test was repeated
ten times. The error is then measured from center of the target to the position of the needle
insertion.

Figure 7.5: Target paper used during the target tests.

Pamela Shametaj University of Twente

45

8 Results

8.1 Workspace Test

8.1.1 Simulation Test

The simulation test was done to see all the achievable points of the robots needle. During this
test, the robot iterated through all the possible joint positions for the upper and bottom chain
and saved the tip needle position in an external file. The figure with just the points but not the
surface approximation can be seen in figure 8.1. Then a convex hull surface approximation was
made to get a better visualization of the overall surface. The result of the surface can be seen in
figure 8.2.

Figure 8.1: Simulation workspace of the needle in points.

Figure 8.2: Simulation workspace of the needle by using surface approximation.

8.1.2 EM tracker Test

Before the EM tracker comparison tests are performed, the current motor ranges are checked.
This allows for a better understanding on where the errors might come from. In figure 8.3, the
robots positions in the EM tracker space can be seen. In this figure, the motor range is also
visible in the green, red, blue and yellow plotted lines. Both the color blue and yellow denote a
right side motor. The colors were chosen such that one can differentiate between the two tests.
The tests were performed with the EM tracker placed in exactly the same position each time.
All three motors, two side and one middle motor, were tested for their range.

Robotics and Mechatronics Pamela Shametaj

46
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 8.3: Motors range from the EM tracker measurEMent test 1 on the left test 2 on the right

The expected range values for the motors from the simulation are 70mm for the side motors
and 62.5 mm for the middle motor. The ranges were calculated from the EM tracker test, seen
on the left side in figure 8.3. From the calculations, it is seen that the motor range in the side
motors is, in fact, achieved with the left side motor being 69.49 mm and the right side motor
being 70.58 mm. From here, a small discrepancy of 1 mm can be seen between the two motors.
This discrepancy could bring slight errors for the needle in the future. These two motors are
coupled and move the needle in the y position. If there is a slight change between the two
motors, it could cause a y-position error in the needle. The middle motor does not reach its
full range, instead reaching only 47.2 mm. In the middle motor this is a significant error of 15.3
mm. This joint moves the needle in the x-direction meaning such an error on the motor can
cause a needle error in the x-direction. The ranges of the second EM tracker test can be seen
to the right in figure 8.3. The calculations showed that the achieved range of side motors was
70.58 and 68.73 mm. Once again, a 1.85 mm discrepancy between the side motors that could
bring errors in the future in regards to the needle position. The middle motor once again does
not reach its full range with only 49.17 with a significant error of 13.3 mm. These range errors
could manifest in even bigger errors in future tests. The main reason for this error could be
inaccurate calibration.

In the next test, a comparison was performed between the EM tracker needle position and the
simulation needle position. The first step, as explained in the previous chapter, is to transform
the EM tracker workspace to the simulation workspace. For this transformation, certain points
were chosen on the real robot with the help of the EM tracker, and their respective points were
then recorded in the simulation. Those points were then used to transform the EM tracker
workspace to the robot simulation workspace by using a homogeneous transformation. In to-
tal, seven points were recorded in both of the tests. The chosen points can be seen as black dots
in figure 8.4.

After the EM tracker points have been transformed, they are plotted next to the corresponding
simulation points. The visualisation of these transformations can be seen in figures 8.6 and 8.7.
Figure 8.5 shows how the robot considers the transformed positions.

Table 8.1 shows the error for the two tests of transformed points. Here the x, y and z distance
error between the simulation needle position versus the simulation needle position was mea-
sured. The needle itself was put at different joint positions displayed on the left column of the
table. The difference between the position of the simulation needle and the physical needle de-
notes the error in x,y and z. As can be seen, the leftmost column of the table denotes the joint
positions of the robot. The first value denotes the first joint, which is the rotation joint with a

Pamela Shametaj University of Twente

CHAPTER 8. RESULTS 47

Figure 8.4: Chosen points used in the real robot used for the homogeneous affine transformation to
transform to the simulation workspace. Points chose from test 1 on the left and points chosen from test
2 on the right.

Figure 8.5: The simulation robot with joints at 0,0,0,0 and the simulation robot with joints at 340,0,0,0.

range value of 0 to 340 steps, the second value denotes the top middle translation joint with a
range value of 0 to 90 steps, the third value denotes the bottom side translation joint which has
a range value of 0 to 112 steps, and the final value is the top side translation joint with a range
value of 0 to 112 steps as well. The second column shows the averaged error in the x-direction
of both EM tracker tests, the third column the averaged error in the y-direction, the fourth col-
umn the averaged error in the z -direction, and the final column the total 3-dimensional error
between the simulation needle and the EM tracker average.

The results were corrected for the z position since all results have a similar z-direction error.
After normalizing for the z-distance error, it can still be seen that there is a significant error,
especially at joint positions 340,0,112,112. This shows that there are discrepancies between the
robot in real life and the one in the simulation. These discrepancies are expected to show up
in the target tests as well. Initially, such discrepancies emerge because the motors have not
reached the full range, mainly the middle motor. The other issues could be miscalculations in
the rotation of the needle itself, meaning the needle does not reach the 0-rotation we expect it
to have. However, errors in the transformation should also be taken into account. These trans-
formation errors can come from the chosen points. The values of the chosen points in the EM
tracker workspace might not relate 100 percent with their respective values in the simulation.

Robotics and Mechatronics Pamela Shametaj

48
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 8.6: Transformed points vs the simulation points test 1.The unit of the x, y and z values is in m.

Figure 8.7: Transformed points vs the simulation points test 2. The unit of the x, y and z values is in m.

Error table in mm
Joint positions X-dst (mm) Y-dst (mm) Z-dst (mm) Total-dst(mm)
0,0,0,0 5.03 5.23 1.42 7.42
0,90,0,0 2.32 6.26 0.43 6.74
0,0,112,112 2.38 2.51 2.63 4.66
0,90,112,112 2.88 5.94 0.79 6.65
340,0,112,112 8.10 6.32 0.85 10.34
340,90,112,112 2.99 4.51 0.60 5.62
340,90,0,0 2.14 4.63 1.47 5.36
340,0,0,0 6.05 6.44 1.83 9.05

Table 8.1: Distance between the tracker transformed and simulation needle

One final reason behind this error could also be the placement of the EM tracker. In the future,
a proper holder should be designed for the placement of the sensor.

Pamela Shametaj University of Twente

CHAPTER 8. RESULTS 49

8.2 Vision tests

Two joints were focused on to make a comparison of the trackers. For each of the joints, four
trackers were tested seven times. For this purpose, a ground truth value of the joint was saved.
The error was then calculated between the ground truth joint distance and the tracker value
joint distance. The averaged error for all the joint positions is then plotted to check and com-
pare the four trackers. The standard deviation value is also plotted to see the repeatability of
these trackers.

8.2.1 Tracker Comparison Test

First, the results for the side joint will be reviewed. Initially, the accuracy plot in figure 8.8 will
be commented on. The trackers, represented as a line, were plotted for all the joint positions in
order to make a proper visual comparison. All tests performed on CSRT and KCF trackers were
successful. No tests needed to be repeated as the tracker did not entirely lose track of the object
of interest. On the other hand, for Median flow and MOSSE, some of the tests needed to be
repeated as seen in tables 8.4 and 8.5. Two tests failed and needed to be repeated when testing
MOSSE, and four failed and needed to be repeated with MedianFlow. The tests were repeated
such that it would be possible to have seven tests from all trackers. From the plot, it is clear
that there is not a significant difference between the trackers. The only one that shows notably
less accuracy is the Medianflow tracker. The other trackers on, the other hand, mostly overlap
with each other throughout all the testing positions. In fact, such a high overlap between the
trackers was not expected, higher accuracy was expected from KCF and CSRT.

Figure 8.8: Comparison of average position values of the four trackers with the ground truth for the top
side motor.

Another crucial aspect to study is the repeatability of these trackers, which can be seen in figure
8.9. Here, however, one can see that in terms of repeatability, MOSSE does significantly better
while Medianflow and KCF follow behind with CSRT performing the worst. This could be a
result of the speed MOSSE provides and its ability to keep up with the real time feedback of the
ground truth.

Next, the results for the middle joint will be reviewed. The accuracy plot in figure 8.10 will be
commented on first. The trackers represented once again as a line, were plotted here as well for
all the joint positions. However, the difference in terms of accuracy between the four trackers

Robotics and Mechatronics Pamela Shametaj

50
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure 8.9: Comparison of the standard deviation for position values of the four trackers for the top side
motor from all the tests.

is notably smaller. In spite of this, one can see that for the middle motor, the tracker generally
performs better than for the side motor, with the error getting comparable only after 40 mm of
joint movement.

Figure 8.10: Comparison of average position values of the trackers with the ground truth for the middle
motor from all the different tests.

In terms of repeatability, shown in figure 8.11, the results follow those of the previous joint. It
can be seen that the CSRT tracker performs significantly worse in terms of repeatability, while
MOSSE and Medianflow perform much better. KCF falls right in the middle in terms of repeata-
bility performance.

Pamela Shametaj University of Twente

CHAPTER 8. RESULTS 51

Figure 8.11: Comparison of the standard deviation for position values of the joint trackers for the middle
motor.

To study the difference of the results, the actual repeatability error was noted in table 8.2 and
the average error was noted in table 8.3. A more thorough visualisation of the results can also
be seen in the appendix A. From the tables, one can see in more detail that MOSSE does, in
fact, perform best in terms of repeatability and that Medianflow and KCF show a more signif-
icant difference in terms of repeatability when it comes to the middle motor. It can also be
seen that the performance is, on average better for the middle motor than the side motor. On
the other hand, in terms of accuracy, MOSSE once again performs well together with CSRT and
KCF. Even in this closer look, the difference does not seem to be very significant between the
trackers. Overall, in the performed tests MOSSE provides generally better results, with KCF fol-
lowing right after when considering both accuracy and repeatability. The reason behind such
a result might be the speed required to keep up with the real time movement of the joints. A
tracker like CSRT considered to be more accurate in literature suffers when dealing with faster
moving objects. However, it must be kept in mind that MOSSE needed to be restarted twice
to perform the test correctly. At the same time based in literature MOSSE is not known to be a
highly accurate tracker with its performance mostly based on pure speed. When MOSSE was
compared against trackers like KCF, it was never the preferred choice. In terms of accuracy
KCF, does not fall behind significantly compared to MOSSE, having an accuracy difference of
0.7-0.1 mm. With a basis on literature as well as the fact that it does not fall significantly be-
hind in terms of accuracy, KCF will be chosen for the calibration stage. The reason behind not
considering MedianFlow in this discussion is the significant number of failed tests as seen in .

Repeatability Error
Trackers Middle motor Side motor
CSRT 2.011 2.256
KCF 1.169 1.964
Medianflow 0.546 1.868
MOSSE 0.742 1.278

Table 8.2: Table denoting the reapeatability of MOSSE , MedianFlow, KCF and CSRT.

Robotics and Mechatronics Pamela Shametaj

52
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Accuracy Error in mm
Trackers Middle motor Side motor
CSRT 3.574 3.772
KCF 3.181 4.195
Medianflow 2.754 5.965
MOSSE 2.476 4.093

Table 8.3: Table denoting the Accuracy of of MOSSE , MedianFlow, KCF and CSRT.

Testing Performance
Test number CSRT KCF MOSSE MedianFlow
Test 1 Success Success Success Success
Test 2 Success Success Success Success
Test 3 Success Success Success Success
Test 4 Success Success Success Repeated
Test 5 Success Success Repeated Repeated
Test 6 Success Success Success Success
Test 7 Success Success Success Success

Table 8.4: Table denoting the test performance of MOSSE , MedianFlow, KCF and CSRT for the middle
joint.

Testing Performance
Test number CSRT KCF MOSSE MedianFlow
Test 1 Success Success Success Success
Test 2 Success Success Success Success
Test 3 Success Success Repeated Repeated
Test 4 Success Success Success Success
Test 5 Success Success Success Success
Test 6 Success Success Success Repeated
Test 7 Success Success Success Success

Table 8.5: Table denoting the test performance of MOSSE , MedianFlow, KCF and CSRT for the side joint.

8.2.2 Calibration Test

After comparing the four trackers, only one was chosen for the calibration. The decision was
made based on both literature and the test results. Despite MOSSE performing much better
overall, its shortcomings were mentioned in the literature. This tracker would definitely be a
final choice if the motors would be moving at a faster speed and used for continuous feedback.
However, the more reliable tracker in literature and overall testing while still displaying com-
parable results was chosen for calibration (KCF). The results of this test can be seen in figure
8.12. From the plot, it can be seen that the calibration error ranges from 1 to 1.5 mm and the
std value stays under 1. The closer the value is to 0, the less variance the test data has from cal-
ibration to calibration, meaning the better it performs in terms of repeatability. From this plot
one can clearly see that in the current state, the calibration through vision is not fully reliable.
These errors will, in the future, add up to the physical errors of the robot and give suboptimal
results.

8.3 Target tests

The final test performed was that of a target test, as explained in the previous chapter. Both
the standard deviation and mean of the error between the reached position versus the aimed

Pamela Shametaj University of Twente

CHAPTER 8. RESULTS 53

Figure 8.12: Standard deviation and mean of the calibration error of the translation joints and of the
rotation joint

target was plotted in the figure 8.13. From the plot, one can see that the average error per target
averages between 1 to 3 mm.

Figure 8.13: Standard deviation and mean of the target error

Robotics and Mechatronics Pamela Shametaj

54
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

9 Conclusion

9.1 Discussion

In this section, the results in chapter 7 will be discussed. The workspace test was studied first.
From the plots, it can be seen that the reachable space was 13.7 cm and 13.6 cm in x and y,
respectively, for the first depth range. The reachable space was 14.2 cm and 15 cm in x and y,
respectively, for the second depth range. The second depth range is 4 cm lower. It can be seen
from this test that the deeper the needle is inserted, the bigger the reachable workspace of the
needle. By comparing these results with the usual pancreas size, it can be inferred that in order
to reach the tumor cells, the robot could be placed in the abdomen as designed. The average
pancreas length is around 15 cm, with each part of the pancreas shown in figure 9.1. This
implies that most of the tumor cells would be within the reachable space. It must be considered
that the robot height over the body is 10.8 cm, the needle length is 20 cm, and in the current
design, the needle can be inserted only 7 cm in depth. The needle would be able to reach more
workspace with a longer needle.

Figure 9.1: The size of the pancreas and its chambers.

The next thing to be discussed is the results of the tracker comparison and the calibration pro-
cedure. From the tracker comparisons plots and the tables in the results chapter, it could be
seen that without considering the test performance failures, two repeated tests, MOSSE seemed
to outperform all the other trackers. In the end, a decision had to be made between overall ac-
curacy, reliability and overall performance. The KCF tracker was chosen instead due to its high
reliability. The tracker came close second when considering both accuracy and repeatability.
The literature review also indicated that KCF is the preferred tracker choice in many other ap-
plications. However, the accuracy error of the KCF tracker when continuously tracking the joint
ranges from 6 to 2 mm. On the other hand, the tracker seemed to perform much better when
only the final position of the joint was checked, which was the focus of the calibration test.
The maximum error during this procedure was within 1-2 mm. The cause of this tracking error
must be discussed further as well. Throughout the tests, all the trackers had difficulties follow-
ing the movement of the joints and lagged slightly behind the moving object. When dealing
with multiple trackers and a live camera feed, such lag is expected. Besides the lag, the track-
ers also had a hard time centring the object. Transforming the marker centroids into real-life
coordinates comes with its errors, specifically less than two percent of the distance, which is a
big reason behind the error in the results. A combination of all the above-mentioned reasons
is the hypothesized cause behind the significant error seen in these vision tests.

Lastly, by studying the target test, one can see the error range of the final needle procedure.
The error ranges from 1 to 5 mm. The target error is an accumulation of calibration errors,

Pamela Shametaj University of Twente

CHAPTER 9. CONCLUSION 55

combined with the physical discrepancies between the simulation robot and the real life-robot
registered in the workspace tests.

9.2 Conclusion

To test the reliability and accuracy of visual feedback through a 3D camera, literature was
looked at, and tests were performed. The results of both the calibration and the tracker com-
parison tests were discussed in the previous sections. By looking at the results, a conclusion
can be drawn on whether the usage of vision as feedback is a realistic option when dealing
with a needle insertion robot. When considering which tracker implementation could provide
the best results, it was found out that MOSSE outperformed the other trackers slightly, with
an error range of 1-5 mm. Nevertheless, this tracker failed to succeed in all the tests, and thus
KCF was opted for instead. From the tests where KCF was used, it could be seen that the error
ranged from 2-6 mm for tracking and 1-2 mm for calibration. For the current robot, an error of
1 mm in one of the joints can cause an error of 1 mm in the final needle position. Taking into
account that these position discrepancies might come from multiple joints, the magnitude of
the error accumulation needs to be considered. In a medical procedure such as IRE, which re-
quires significantly high accuracy, a change of 2-6 mm is notably high, especially when taking
into account the accumulation.

In the end, the RGB-D camera was opted for when measuring the actual distance instead of
approximating through 2D information. The reason behind this was the accuracy and on-chip
calibration provided by the RGB-D camera as well as its accompanying software SDK, which
simplified the alignment and stitching complexity that comes from stereo cameras. The 3D
depth information made it much easier to subtract the background during the detection phase
of the vision implementation. In the future, the 3D camera could be useful for introducing
targets under the robot through a point-cloud and transforming it in the robot workspace using
the same transformation principles used during the EM tracker testing.

Finally, the target test showed that the average error per target ranged between 1 to 3 mm with
instances where the error even reached up to 4 mm. Such high errors were already expected
because of the results workspace test as well as the vision tests. The physical discrepancies be-
tween the simulation robot and the real-life robot are a result of coupling between the top side
and the bottom side motors. The accumulated error is definitely a combination of calibration
errors together with the aforementioned physical discrepancies. In the end, it can be seen that
for the final prototype, the usage of a physical sensor needs to be explored. Such a sensor could
provide superior results and improve on both the calibration errors as well as give a more ac-
curate way of validating the physical robot design. Another aspect that has introduced errors is
the holder of the needle. The ill-fitting needle introduces slight rotation errors that are hard to
measure with the manual insertion. This could be fixed by introducing a holder that properly
grasps the needle.

From the current interface, it was seen that using ROS did, in fact, make it easier to make
changes and update the robot prototype. When small changes needed to be made in the robot,
such as limits or 3D collision matrices, the current implementation required one only to change
a value or mesh location in the URDF. The scripting also makes it easier to add new joints and
links, as well as background objects to the robot and its workspace. ROS also lowered the dif-
ficulty in integrating different languages, software, hardware and simulation programs such as
Gazebo. Implementing the 3D camera with the Arduino and the rest of the software was made
possible and significantly easier by using specific ROS messages. Most of the hardware used
did, in fact, already offer libraries for ROS integration available in multiple languages (Python,
C++). The possibility of keeping the framework in one language (Python) made the learning
and programming flow more structured. Lastly, the ROS implementation of the kinematics
through MoveIt made it possible to do collision checking by using the actual 3D format of the

Robotics and Mechatronics Pamela Shametaj

56
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

robot, which increased the accuracy of the overall implementation. All the aforementioned
points are proof that the modularity that ROS offers is quite suitable in the prototyping phase.
The majority of the implementation can still be kept, and the rest can be slightly modified in fu-
ture implementations. Thus, the goal of having a working first prototype and implementation
has been reached.

Overall, a proper framework was built, and the robot prototype is functional, although still in
need of improvement. The modular framework makes it easier to switch to different feedback
or design in future prototypes. The existing vision implementation could still be a feasible
option for testing new designs and prototypes without fully implementing new sensors.

9.3 Future Work

To improve the overall implementation performance, the existing robot design can be im-
proved in a number of ways. First, the robot’s passive lower translation joint must be converted
to an actuated joint. Notable errors were introduced during the insertion of the needle because
of the passivity of the joint. The introduction of a motor would allow for a more stable move-
ment and lower the needle error in the y axis in both position and orientation. Next, the needle
holder also needs to be updated so that the needle is clasped firmly. This update would remove
the residual orientation introduced to the final position caused by the holder. Lastly, a decou-
pling of the motors for the upper and lower translation joints should be taken into considera-
tion. In the current implementation, it is not possible to correct for discrepancies between the
two coupled motors.

In terms of vision feedback, the current implementation could benefit from the addition of
a lighting source. Constant pre-processing can be quite expensive in a real-life tracking sce-
nario, where speed is of high importance. Another approach that can be taken to improve on
the errors introduced by the environment illumination is using a combination of Infrared (IR)
Markers and the current RGB implementation or a combination of Infrared (IR) Markers and
Augmented Reality (AR) markers. The Realsense camera already uses two IR modules, mak-
ing such an implementation feasible even with the current setup. A comparison test between
the usage of visual feedback and different Augmented (AR) markers can also be performed to
provide the most accurate results. The IR markers could make it easier to center and track the
moving joints since they are not as effected by changes in the illumination. A recent similar
study was conducted by Ehambram et al. (2019) which combined Aruco and IR markers and
detected them using a RealSense D435 camera. The results of both markers were integrated
through sensor fusion for more accurate results. The paper concluded that the usage of the IR
markers improved the results remarkably.

The tracking of the markers can also be improved. As discussed in the previous chapters, KCF
is an accurate tracker but suffers with fast-moving objects. On the other hand MOSSE bet-
ter results but failed in two tests making it a less reliable option. A combinat ion of the two
trackers could be implemented to achieve more satisfying results. Additionally, a multi-tracker
implementation can be quite expensive for real-life implementation. To improve the speed of
the tracker, code optimisation could be performed using multithreading or more efficient data
structures.

In the final prototype, the sensor should be changed to an MRI compatible sensor. The visual
feedback is still not usable inside the MRI and can mainly be used for prototyping and calibra-
tion. This sensing alternative can be explored as it would also introduce the ability to drive the
motors at a higher speed. However, the produced sensor needs to be researched in detail such
that it fulfills the requirements of not being bulky and not disrupting the robot’s design.

Pamela Shametaj University of Twente

57

A Tracker Results

The plots in these chapter display the results of all seven tests for each of the tested markers.
This was done to have a better understanding of the results data. All the trackers are plotted
against the ground truth data, denoted with a continuous black line. The recorded tracker data
is discrete thus is plotted as a scatter plot as seen in the figures.

Robotics and Mechatronics Pamela Shametaj

58
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

(a) Test1 side motor (b) Test2 side motor

(c) Test3 side motor (d) Test4 side motor

(e) Test5 side motor (f) Test6 side motor

(g) Test7 side motor

Pamela Shametaj University of Twente

APPENDIX A. TRACKER RESULTS 59

(a) Test1 middle motor (b) Test2 middle motor

(c) Test3 middle motor (d) Test4 middle motor

(e) Test5 middle motor (f) Test6 middle motor

(g) Test7 middle motor

Robotics and Mechatronics Pamela Shametaj

60
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

(a) Test1 side motor (b) Test2 side motor

(c) Test3 side motor (d) Test4 side motor

(e) Test5 side motor (f) Test6 side motor

(g) Test7 side motor

Pamela Shametaj University of Twente

APPENDIX A. TRACKER RESULTS 61

(a) Test1 middle motor (b) Test2 middle motor

(c) Test3 middle motor (d) Test4 middle motor

(e) Test5 middle motor (f) Test6 middle motor

(g) Test7 middle motor

Robotics and Mechatronics Pamela Shametaj

62
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

(a) Test1 side motor (b) Test2 side motor

(c) Test3 side motor (d) Test4 side motor

(e) Test5 side motor (f) Test6 side motor

(g) Test7 side motor

Pamela Shametaj University of Twente

APPENDIX A. TRACKER RESULTS 63

(a) Test1 middle motor (b) Test2 middle motor

(c) Test3 middle motor (d) Test4 middle motor

(e) Test5 middle motor (f) Test6 middle motor

(g) Test7 middle motor

Robotics and Mechatronics Pamela Shametaj

64
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

(a) Test1 side motor (b) Test2 side motor

(c) Test3 side motor (d) Test4 side motor

(e) Test5 side motor (f) Test6 side motor

(g) Test7 side motor

Pamela Shametaj University of Twente

APPENDIX A. TRACKER RESULTS 65

(a) Test1 middle motor (b) Test2 middle motor

(c) Test3 middle motor (d) Test4 middle motor

(e) Test5 middle motor (f) Test6 middle motor

(g) Test7 middle motor

Robotics and Mechatronics Pamela Shametaj

66
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

B Figures

Figure B.1: The closed-loop robot in gazebo

Figure B.2: The open loop robot in gazebo

Pamela Shametaj University of Twente

APPENDIX B. FIGURES 67

Figure B.3: Interface of the central MoveIt node noted as move_group.

Figure B.4: The constructed circuit needed to connect the motor valves to the Arduino pins.

Robotics and Mechatronics Pamela Shametaj

68
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure B.5: The used motor valves in the current implementation.

Pamela Shametaj University of Twente

69

C Motion of a rigid body

This appendix will be an explanation of the kinematics of the rigid body, forward kinematics
and calculation of geometric Jacobian. This material is taken from lecture notes on geometry
and screw theory for robotics. Stramigioli and Bruyninckx (2001)

C.0.1 Kinematics of rigid body

The pose of a rigid body with respect to the inertial reference frame is expressed as a configu-
ration matrix in the Lie group SE(3) in equation C.1. In this equation R0

1 denotes the rotation
matrix in of the body with respect to the reference frame, while p0

1 denotes the position of the
body with respect to the inertial frame. The schematic of the reference and inertial frames can
be seen in figure C.1.

Figure C.1: Schematic showing the fixed world frame and rigid body’s inertial frame.

H 0
1 =

R0
1 p0

1

03 1

 (C.1)

The general velocity of the rigid body with respect to the reference frame expressed in the ref-
erence frame is written as a twist in equation C.2.

T 0,0
1 =

·
~w
~v

¸
(C.2)

C.0.2 Forward kinematics

Brocket’s formula in equation C.3 can be used to find the position of the end-effector of a serial
manipulator. The formula calculates the end-effector position by using the joints position in
the joint space, the calculated unit twists of the joints, and the initial configuration of the robot.
The unit twists are calculated using the manipulators inital configuration in figure C.2. The tilde
form of the twist mentioned in the equation C.3 can be found by using equation C.4.

H i−1
i (θ) = e(i−1) eT i−1

i θi H i−1
i (0) (C.3)

eT 0,0
1 = Ḣ 0

1 (H 0
1)−1) (C.4)

Robotics and Mechatronics Pamela Shametaj

70
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Figure C.2: Schematic showing the frames of a serial kinematic chain.

Tho find the homogeneous matrix of the initial configuration in figure C.2 the chain rule in
equation C.5 is used.

H i−1
i (θ) = H 0

1 H 1
2H ee−1

ee (C.5)

Lastly the product of exponentials in equation C.6 is used to calculate the pose of the end-
effector in a specific configuration, where theta is the value of the joints.

H 0
ee (θ) = e

eT 0,0
1 θ1 e

eT 0,1
2 θ2 e

eT 0,2
3 θ3 e

eT 0,3
4 θ3 e

eT 0,4
5 θ4 H 0

ee (0) (C.6)

C.0.3 Geometric Jacobian

The geometric Jacobian is a mapping from the joints’ velocities to the end-effector twist of a
serial manipulator, as shown in equation C.8 .

T 0,0
n = J (θ)θ̇ (C.7)

The columns of the Jacobian are the position dependent unit twists of the joints expressed in
the reference frame as shown in equation

J (θ) = £T 0,0
1 (θ1) T 0,1

2 (θ2) T 0,ee−1
ee (θn)

¤
(C.8)

Pamela Shametaj University of Twente

71

Bibliography
Bekku, A., J. Kim, Y. Nakajima and K. Yonenobu (2014), A body-mounted surgical assistance

robot for minimally invasive spinal puncture surgery, in 5th IEEE RAS/EMBS International
Conference on Biomedical Robotics and Biomechatronics, pp. 19–23, doi:10.1109/BIOROB.
2014.6913745.

Biswas, D., H. Su, C. Wang and A. Stevanovic (2019), Speed Estimation of Multiple Moving Ob-
jects from a Moving UAV Platform, International Journal of Geo-Information, vol. 2019, p.
259, doi:10.3390/ijgi8060259.

Bui, M. T., R. Doskocil and V. Krivanek (2018), Distance and angle measurement using monoc-
ular vision, in 2018 18th International Conference on Mechatronics - Mechatronika (ME), pp.
1–6.

Charalampaki, E. and A. Malamos (2017), Tracking football players with a conventional mobile
device camera, pp. 1–2, ISBN 978-1-4503-5355-7, doi:10.1145/3139367.3139411.

DANDIL, E. and K. K. ÇEVİK (2019), Computer Vision Based Distance Measurement System
using Stereo Camera View, in 2019 3rd International Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT), pp. 1–4, doi:10.1109/ISMSIT.2019.8932817.

Dehghani, H., S. Zhang, P. Kulkarni, P. Biswas, L. Simms and S.-E. Song (2018), Design and Sim-
ulation of Robotic Needle Guide for Transperineal Prostate Biopsy.

Ehambram, A., P. Hemme and B. Wagner (2019), An Approach to Marker Detection in IR- and
RGB-images for an Augmented Reality Marker, pp. 190–197, doi:10.5220/0007810301900197.

Gassert, R., D. Chapuis, H. Bleuler and E. Burdet (2008), Sensors for Applications in Magnetic
Resonance Environments, vol. 13, no.3, pp. 335–344, doi:10.1109/TMECH.2008.924113.

Ghelfi, J., A. moreau gaudry, N. Hungr, C. Fouard, B. Véron, M. Medici, E. Chipon, P. Cinquin and
I. Bricault (2018), Evaluation of the Needle Positioning Accuracy of a Light Puncture Robot
Under MRI Guidance: Results of a Clinical Trial on Healthy Volunteers, CardioVascular and
Interventional Radiology, vol. 41, doi:10.1007/s00270-018-2001-5.

Gong, J., Y. Mei and Y. Zhou (2020), Research on an Improved KCF Target Tracking Algorithm
Based on CNN Feature Extraction, in 2020 IEEE International Conference on Artificial Intel-
ligence and Computer Applications (ICAICA), pp. 538–543, doi:10.1109/ICAICA50127.2020.
9182522.

Groenhuis, V., F. Siepel and S. Stramigioli (2018), Dual-Speed MR Safe Pneumatic Stepper
Motors, robotics: Science and Systems 2018, RSS 2018 ; Conference date: 26-06-2018
Through 30-06-2018.
http://roboticsconference.org/

Hata, N., S.-E. Song, O. Olubiyi, Y. Arimitsu, K. Fujimoto, T. Kato, K. Tuncali, S. Tani and
J. Tokuda (2016), Body-mounted robotic instrument guide for image-guided cryotherapy of
renal cancer, Medical Physics, vol. 43, pp. 843–853, doi:10.1118/1.4939875.

Herrmann, K.-H., C. Gärtner, D. Güllmar, M. Krämer and J. Reichenbach (2014), 3D printing of
MRI compatible components: Why every MRI research group should have a low-budget 3D
printer, Medical engineering physics, vol. 36, doi:10.1016/j.medengphy.2014.06.008.

Hungr, N., I. Bricault, P. Cinquin and C. Fouard (2016), Design and Validation of a CT- and
MRI-Guided Robot for Percutaneous Needle Procedures, vol. 32, no.4, pp. 973–987,
doi:10.1109/TRO.2016.2588884.

Kang, M., C. Lee, B. You and Y. Chung (2015), A 3D object measurement method using a single
view camera, in 2015 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 790–792, doi:10.1109/ICTC.2015.7354666.

Robotics and Mechatronics Pamela Shametaj

http://roboticsconference.org/

72
Positioning and orientation control of a needle-Insertion MRI compatible medical robot

based on ROS using visual feedback

Lehtola, V., H. Huttunen, F. Christophe and T. Mikkonen (2017), Evaluation of Visual Tracking
Algorithms for Embedded Devices, pp. 88–97, ISBN 978-3-319-59125-4,
doi:10.1007/978-3-319-59126-1_8.

Mane, S. S. and C. G. Yangandul (2016), Calculating the dimensions of an object using a single
camera by learning the environment, in 2016 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT), pp. 457–460,
doi:10.1109/ICATCCT.2016.7912042.

Meng, Z., X. Kong, L. Meng and H. Tomiyama (2018), Distance Measurement and Camera
Calibration based on Binocular Vision Technology, in 2018 International Conference on
Advanced Mechatronic Systems (ICAMechS), pp. 342–347,
doi:10.1109/ICAMechS.2018.8506743.

Min-jeong Kang, Choong-Ho Lee, Jin-Hwan Kim and Uk-Youl Huh (2008), Distance and
velocity measurement of moving object using stereo vision system, in 2008 International
Conference on Control, Automation and Systems, pp. 2181–2184,
doi:10.1109/ICCAS.2008.4694460.

Monfaredi, R., E. Wilson, R. Sze, K. Sharma, B. Azizi, I. Iordachita and K. Cleary (2015),
Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study, in
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 3643–3646, doi:10.1109/EMBC.2015.7319182.

Mustafah, Y. M., R. Noor, H. Hasbi and A. W. Azma (2012a), Stereo vision images processing for
real-time object distance and size measurements, in 2012 International Conference on
Computer and Communication Engineering (ICCCE), pp. 659–663,
doi:10.1109/ICCCE.2012.6271270.

Mustafah, Y. M., R. Noor, H. Hasbi and A. W. Azma (2012b), Stereo vision images processing for
real-time object distance and size measurements, in 2012 International Conference on
Computer and Communication Engineering (ICCCE), pp. 659–663,
doi:10.1109/ICCCE.2012.6271270.

Orlando, F. and M. Joseph (2017), Development of closed loop coordinated control of a robot
guided SMA actuated flexible active needle with multimodal sensory feedbacks, in IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2846–2851,
doi:10.1109/IECON.2017.8216480.

Pallapotu, K. (2019), DATA SET GENERATION USING DEEP LEARNING ALGORITHMS AND
VISUAL FEATURE TRACKING.

Patel, N. A., J. Yan, D. Levi, R. Monfaredi, K. Cleary and I. Iordachita (2018), Body-Mounted
Robot for Image-Guided Percutaneous Interventions: Mechanical Design and Preliminary
Accuracy Evaluation, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1443–1448, doi:10.1109/IROS.2018.8593807.

Raghava, N., K. Gupta, I. Kedia and A. Goyal (2020), An Experimental Comparison of Different
Object Tracking Algorithms, in 2020 International Conference on Communication and Signal
Processing (ICCSP), pp. 0726–0730, doi:10.1109/ICCSP48568.2020.9182101.

Rani, A., V. Maik and B. Chithravathi (2017), Robust object tracking using kernalized
correlation filters (KCF) and Kalman predictive estimates, pp. 587–591,
doi:10.1109/RTEICT.2017.8256664.

RealSense, I. (2020), Product Family D400 Series.

Rebersek, M., D. Miklavcic, C. Bertacchini and M. Sack (2014), Cell membrane
electroporation-Part 3: the equipment, vol. 30, no.3, pp. 8–18,
doi:10.1109/MEI.2014.6804737.

Pamela Shametaj University of Twente

Bibliography 73

Shen, J., D. Yu, L. Deng and X. Dong (2018), Fast Online Tracking With Detection Refinement,
vol. 19, no.1, pp. 162–173, doi:10.1109/TITS.2017.2750082.

Stramigioli, S. and H. Bruyninckx (2001), Geometry and screw theory for robotics, p. 75.

Tannús, J. (2020), Comparison of OpenCV Tracking Algorithms for a Post-Stroke Rehabilitation
Exergame, in 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 272–276,
doi:10.1109/SVR51698.2020.00049.

Tokuda, J., L. Chauvin, B. Ninni, T. Kato, F. King, K. Tuncali and N. Hata (2018), Motion
compensation for MRI-compatible patient-mounted needle guide device: Estimation of
targeting accuracy in MRI-guided kidney cryoablations, Physics in Medicine and Biology,
vol. 63, doi:10.1088/1361-6560/aab736.

Ullah, K., I. Ahmed, M. Ahmad and I. Khan (2019), Comparison of Person Tracking Algorithms
Using Overhead View Implemented in OpenCV, doi:10.1109/IEMECONX.2019.8877025.

Watkins, C., T. Kato and N. Hata (2016), Disposable patient-mounted geared robot for
image-guided needle insertion, in Medical Imaging 2016: Image-Guided Procedures, Robotic
Interventions, and Modeling, volume 9786 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Eds. R. J. Webster and Z. R. Yaniv, p. 97860S,
doi:10.1117/12.2216779.

Wei Liu, Xin Ma, Ling Chen, Jinghao Yang and Zhenyuan Jia (2016), A monocular vision 3D
measurement method based on refraction of light, in 2016 IEEE 25th International
Symposium on Industrial Electronics (ISIE), pp. 880–884, doi:10.1109/ISIE.2016.7745006.

Yao, R., S. Xia, F. Shen, Y. Zhou and Q. Niu (2016), Exploiting Spatial Structure from Parts for
Adaptive Kernelized Correlation Filter Tracker, vol. 23, no.5, pp. 658–662,
doi:10.1109/LSP.2016.2545705.

Robotics and Mechatronics Pamela Shametaj

