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ABSTRACT

’Wie is de Mol?’ is a Dutch game show annually broadcast by the AVROTROS on NPO1 since
1999 with players having to fulfil exercises in order to earn money. Amol among them unknown
to the spectators and other players however has to prevent them from earning money. The goal
for these players and spectators is to discover the mol. Although no spectator has shown to
be able to consistently find the real mol. This thesis presents the Moldel, an algorithm able to
predict the mol. To do so the Moldel aggregates the predictions of four separate models using
stacking. These models are named the Exam Drop layer, the Exam Pass layer, the Wikipedia
layer and the Appearance layer. All of them uses either mathematical modelling or machine
learning to predict the mol. Different models are discussed as possible implementations for
these layers, which includes Bayesian Models, Probabilistic Programs, Logistic Regressions,
Cosine Similarity, Nearest Neighbor, Gaussian Naïve Bayes and Kernel Density Estimation.
For each of these implementations their strengths and weaknesses are compared with respect
to themes such as overfitting, generalization and complexity. Moreover the power of some
feature preparation techniques used is shown, such as Feature Discretization, Feature Cluster-
ing, Principal Component Analysis, Natural Language Processing, Logarithmic Transformation
and Linear Discriminant Analysis. Besides statistical tests are used to backup the results of
the Moldel, which includes the Mann-Whitney U Test, Student Paired T-Test, Wilcoxon Signed
Rank Test, Pearson Correlation Test and Kendall Correlation Test. Last of all, the performance
of the Moldel is evaluated using metrices such as (Mol) Log Loss, Concordant-Discordant Ra-
tio, Mean Mol Likelihood and Mean Mol Rank which reveals that the Moldel performs better
than uniform guessing in the past. Nevertheless this breakthrough is not only beneficial for the
’Wie is de Mol?’-community, but also for the Data Science community in general. Dealing with
shortage of data is a returning issue for many projects and the Moldel provides solutions how
to deal with shortage of data, which are data augmentation, using multiple models combined
with stacking and feature reduction techniques. Moreover the Moldel also illustrates how to
evaluate purely probabilistic predictions rather than deterministic predictions. This is useful as
well, because most well-known evaluation methods are only meant for deterministic predictions,
e.g. confusion matrices, recall, precision and accuracy. Furthermore two less commonly used
models are introduced, i.e. the Split Classifier and a Kernel Density Estimation classifier. Both
of these are models for 1-dimensional feature classification. The Split Classifier is a model that
does not require a lot of data and can provide decent and stable predictions. On the other hand
the Kernel Density Estimation classifier is a very general model able to understand almost any
(probabilistic) pattern as long as enough data is provided. Secondly two feature processing
techniques are emphasized, i.e. feature encoding using clustering and a forward information
gain selection procedure to determine the number of bins per feature when using discretization.
Feature encoding using clustering is a powerful type of encoding which does not depend on
the label, thus having a low risk of overfitting. Similarly the forward information gain selection
procedure to determine the number of bins does neither depend on the labels and is also a
useful method to determine how many bins should be assigned to each feature. Last of all,
a natural language processing technique is introduced named Subword Extraction. Subword
Extraction is a method to recognize similarities between different words by using a dictionary.
This method has a low false negative rate, but unfortunately has a high false positive rate.
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Glossary

21 The additional season of ’Wie is de Mol?’ broadcast in the period from 5 September 2020
until 24 Oktober 2020 is defined to be the 21th season of ’Wie is de Mol?’. This season is
also named the Renaissance season.

alive A player is defined as alive in a given episode if that player did not drop out before that
episode and did not return back during that episode.

executie The executie is a phase in the game that happens after the test. The player excluding
the mol that has the least number of correct answers on the test will drop out during this
phase. In case of a tie the player that took the longest time for the test will drop out.

executies Plural form of executie.

joker A joker is an item that can be used during the test. A player using a joker will have a
wrong answer marked as correct per joker used in the test.

jokers Plural form of joker .

mol One of the players has secretly been assigned the role mol at the start of the game. The
goal of the mol is to reduce the money that the players earn without being noticed.

normalization Normalization is the process in which a vector of probabilities is normalized.

normalize Normalizing a group of likelihoods P = (ρ1, ρ2, . . . , ρn) means that every likelihood
ρi in P is divided by the sum of all likelihoods, i.e.

ρnewi ← ρoldi∑n
i=1 ρ

old
i

which ensures that all probabilities sum up to 1, i.e.
∑n

i=1 ρ
new
i = 1.

normalized See the definition of normalize.

penningmeester The penningmeester is the player that is responsible for keeping all earned
money.

potential mol A potential mol is someone that could theoretically be themol. Every player that
has not dropped out yet, has not yet seen a red screen or has not yet been revealed during
the game show not being the mol is a potential mol. Note that potential mol players are
different from alive players. A player could have seen a red screen without dropping out,
could have dropped out and returned back to the game or could have been revealed by
the cast to not be the mol. In those circumstances a player is alive, but no potential mol
anymore.
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test During the test players have to answer questions about the behavior and identity of the
mol.

tests Plural form of test.

voluntarily See the definition of voluntary.

voluntary A dropout is defined as voluntary if the reason of that dropout was not related to
having the worst test score. A non-voluntary dropout is therefore a dropout which is related
to having the worst test score. An example of a voluntary dropout is the dropout of Manuel
in season 10, because he felt sick.

vrijstelling A vrijstelling is an item that can be used during the test. A player using a vrijstelling
will not take part in the executie and therefore will automatically go on to the next episode.
Among the players not using a vrijstelling the dropout is selected.

vrijstellingen Plural form of vrijstelling.

zwarte vrijstelling The zwarte vrijstelling is an item that can be used during the test. When
used it will cancel out the effects of all jokers and vrijstellingen used during the test. This
item has been introduced since season 14.

zwarte vrijstellingen Plural form of zwarte vrijstelling.
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1 INTRODUCTION

1.1 Popularity

’Wie is de Mol?’ is a television show in the Netherlands produced by IDTV that has been broad-
cast (almost) annually since 1999 by the AVROTROS on NPO1 [1]. In 1999, when ’Wie is de
Mol’ started, it was still a quite unknown game show, but over the years the number of spectators
increased rapidly. In 2013 ’Wie is de Mol’ received an award named the ’Gouden Televizier-
Ring’ for being the best Dutch television programme [2]. And currently with a record of around
four million spectators [3], ’Wie is de Mol?’ is considered to be one of the most popular game
shows in the Netherlands. The game show ’Wie is de Mol?’ is about discovering the identity of
the mol, which is one of the participants that secretly tries to sabotage the assignments which
the players have to fulfil in order to earn money. The player that discovers the identity of the
mol wins all this earned money at the end of the game show.

The interesting aspect of the game show is that the audience can also play along from home,
because the cast of ’Wie is de Mol?’ hides the identity of themol for the audience as well. Hence
spectators can also look for clues to discover the mol. This has become a large business in
itself by:

– Youutube channels that discuss their suspicions and clues about the mol, e.g.
’de therMOLmeter’, ’Gido Verheijen - Wie is de Mol?’, ’Felix - Wie is de Mol 2020’, ’Siem’,
’WIDM TV’ and ’Wouter’.1

– ’DeWie is deMol? podcast’ which is a radio programme that looks back to the last episode
and sometimes has an interview with the latest dropout of ’Wie is de Mol?’.2

– The television programme ’MolTalk’ which is broadcast after every episode of ’Wie is de
Mol?’. In this television programme all suspicions and clues of the last episode are dis-
cussed.

– Forums related to ’Wie is de Mol’ where users can discuss their suspicions and clues, e.g.
’de Mol Fansite forum’ and the ’Reality Net - Wie is de Mol? forum’.3

Furthermore a lot of news channels and television/radio programmes cover suspicions during
the period that ’Wie is de Mol?’ is broadcast. Although there are lots of channels discussing
suspicions about the mol, none of them has shown to be able to consistently find the real mol.
A reason for this is that none of these channels has an objective or systematic approach to

1These Youtube channels can be accessed by: https://www.youtube.com/channel/UC-
uL4PfhVutX62ucvmABB6A (de therMOLmeter), https://www.youtube.com/channel/UCp7JFGkv9oIkMhyCg7byWZg
(Gido Verheijen - Wie is de Mol?), https://www.youtube.com/channel/UCogf9qj0OzVT89RKdRSJbtQ
(Felix - Wie is de Mol 2020), https://www.youtube.com/channel/UC8pE9riHyfmzqg9Mfj9mdkg (Siem),
https://www.youtube.com/channel/UCaHf2Hyygl5KxrYooH5Xx9w (WIDM TV), https://www.youtube.com/
channel/UCbX2TUQGsV4F2jAcxWsQJ5w (Wouter)

2This podcast can be accessed by: https://www.nporadio2.nl/podcasts/de-wie-is-de-mol-podcast
3These fora can be accessed by: https://www.widm.nl/forum.html and https://www.wieisdemol.com/forum
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discover themol, despite that they discuss verifiable facts. However none of them has seriously
investigated the validity of their clues. Moreover it is impossible for these channels to prove that
all clues are covered by their channel. On the contrary, it usually happens that a channel has
tunnel vision, i.e. the channel takes it for granted that a player is the mol and only searches
for evidence that supports it. With all of these issues, it is hard to reflect on what went wrong
with your predictions and to improve your predictions for the next season. This motivates the
use of machine learning and mathematical modelling to determine the mol in an objective4 and
systematic manner.

1.2 Related Work

Using machine learning, mathematical modelling or big data techniques to do predictions for
game shows is not something entirely new. For example the game show ”Let’s Make a Deal”
is one of the most famous examples, also known as the ”Monty Hall Problem”, where mathe-
maticians were able to predict the outcome using a simple mathematical model [4]. At the end
of this show the host, Monty Hall, lets the participant choose between three closed doors. Be-
hind one of these doors is a car and behind the others is a goat. After the participant selected
a door, Monty Hall opens another door with a goat behind it and asks the participant whether
he wants to switch to the other closed door. Contrary to popular belief, there is a probability
of 2/3 of the car behind the other closed door [4]. Hence this is an old game show in which
predictions by mathematical modelling has shown to be effective. But also for more modern
television shows, like Survivor, it is possible to do predictions [5]. This research tried multiple
machine learning techniques, i.e. Logistic Regression and Naïve Bayes Classifier to predict
the winner. The features used by these models were events that happened during the game
or characteristics about the player itself, which were combined with proper feature extraction
techniques such as Linear Discriminant Analysis and Principal Component Analysis [5]. Hence
machine learning has also recently been used to make predictions for game shows. Last of
all based on social media analysis, which is a big data technique, scientists have been able to
predict the winner of American Idols [6]. In American Idols the audience decide the winner by
voting, thus a model was used that counts the number of tags and mentions on Twitter related
to any of the contestants to estimate the popularity of contestants in different regions [6].

So these models apply either machine learning, mathematical modelling or big data techniques
to do predictions for a game show. Though all of these game shows are American game shows,
none of them are ’Dutch’ game shows. And to the best of our knowledge no scientific article has
yet been written regarding predictions for a typical ’Dutch’ game show. This thesis is therefore
the first scientific article about making predictions for a typical ’Dutch’ gameshow, which in this
case is the gameshow ’Wie is de Mol?’. However note that having no scientific articles about
’Wie is de Mol?’ does not imply that it has never been investigated or analysed. There have
been serious attempts to discover the mol in an objective and/or systematic manner, which
includes:

– The social media analysis of Jaap van Zessen, which checks the online and social me-
dia activity of players during the recording period of ’Wie is de Mol?’ [7]. Van Zessen
argues that players with a high activity on social media during the recording period drop
out early and therefore could not be the mol. The results of his analysis are quite accu-
rate and therefore these results are used in adjusting the final predictions of the Moldel as
discussed in Section 5.4.

– The face recognition analysis of Mattijn van Hoek on ’Wie is de Mol’ [8]. For this project a
face recognition library of Adam Geitgey was used [9] to detect the appearance of players

4Though the building of the Moldel is subjective, because of the subjective design choices made.
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during episodes. During the first four episodes of season 18 up to 20 the mol appeared
less than other players according to his analysis. For other seasons no analysis has been
done so far. Also Van Hoek did not build a machine learning model on top of his analysis.
Therefore for this project permission is requested and received by Van Hoek to continue
investigations in the appearance of players. In Chapter 4 this investigation is discussed,
which includes the questions whether the mol indeed appears less and how this can be
turned into a prediction model.

– The ’Gelijkekansentheorie’ (in English: equal probability hypothesis), analyzing assign-
ments where players are split up in different groups [10]. According to this hypothesis the
mol is evenly distributed over the groups, i.e. every player ends up the same number of
times with the mol in his/her group. Unfortunately this hypothesis was not valid for newer
seasons [10], so this hypothesis is not investigated any further in this project.

– The WIDM-hints algorithm that analyses clues posted on social media and clues received
from visitors of their website.5 Visitors of their website can vote for these clues and based
on these votings the algorithm is able to predict the mol. Unfortunately the algorithm is
closed source. Moreover circular reasoning could be a major problem here, e.g. if your
algorithm suspects a player to be themol then the visitors tend to vote for the clues related
to that player.

1.3 Game Mechanics

’Wie is de Mol’ is usually recorded in the months May & June [11] and is broadcast weekly in the
months January, February & March, where every episode takes about one hour. The television
show starts with ten players including one mol.6 They have to fulfil assignments in order to
earn any money. The mol on the other hand, whose identity is unknown to the other players,
tries to secretly sabotage these assignments and to reduce the earned money. Every episode
normally consists of three assignments, which can vary from a laser quest where players have
to follow a trail without getting shot to assignments where players have to transfer a message
to one another. Nevertheless a central aspect of these assignments is to form groups, which
all have to function properly in order to fulfil the assignment. At the end of the assignments the
players earn (part of) the money (or even lose money) based on how they have performed. Also
players can receive certain items, e.g. jokers, vrijstellingen and zwarte vrijstellingen, during the
assignments that can help them to pass the executie. These items can be kept by the player that
received them, however the money is kept by the penningmeester . The penningmeester , one
of the players (approved by the majority of all players), is responsible for keeping the money.

At the end of an episode there is a test. For the test, players normally have to answer 20multiple
choice questions about the mol which are the same for every player. An example of a question
is to which group the mol belonged during a given assignment. Furthermore the players are
allowed to use their items, e.g. jokers, vrijstellingen and zwarte vrijstellingen, during the test.
But once an item is used, a player cannot re-use it again. In addition there are rules about
the usage of items sometimes, e.g. that a vrijstelling should be used directly in the episode in
which it was earned. But if there are no rules then the player is allowed to use their items during
any test, except for the final test. When all players have filled in the test, an executie happens.
During the executie the player with the least correct answers excluding themol drops out.7 This
happens by showing the players a screen. If that screen turns green then the player is safe (or
the mol). But if the screen turns red then the player drops out. This is usually how the test and

5This website can be accessed by: http://widm-hints.nl/
6Except for season 3 which started with 11 players.
7In case of a tie the player among them that took the most time drops out.
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executie works. However there are some special events that can happen during the executie,
for example:

– Only part of the players see their screen. If there is no red screen among them then all
players pass on.

– They have used a group vrijstelling, which means that all players pass on to the next
episode.

– Two players with the least number of correct answers drop out instead of one player.

But normally only a single player drops out during the executie, after which the episode ends.
If the penningmeester was the dropout then his/her role and money is transferred to one of the
remaining players. Moreover sometimes the dropout is allowed to give his/her remaining items
(jokers, vrijstellingen and zwarte vrijstelling) to the players that pass on to the next episode.

The next episode follows the same procedure, which is three assignments followed by a test and
executie, but with one player (and potential mol) less.8 This continues until the finals in which
usually 3 players (including the mol) are left.9 These players do the final test, which consists of
40 questions. The player, except for themol, that has the most correct answers wins all earned
money in the showdown episode, which is the episode right after the finals. In the showdown
episode the winner and the mol are revealed. Likewise in the showdown episode flashbacks
happen to the sabotage actions of the mol and all clues are revealed that referred to the mol.

1.4 Goal

With these sabotage actions and clues revealed it often seems to be obvious to predict themol.
However these clues and sabotage actions are not revealed before the showdown episode.
Therefore it is a challenge to predict the mol before the showdown episode. The algorithm dis-
cussed in this thesis, which is named the Moldel, faces this challenge. To predict themol before
the showdown episode, the Moldel uses multiple separate layers that all analyse a particular
aspect of the game with machine learning and/or mathematical modelling. These layers are:

– The Exam Drop layer, which analyses answers given on the test by dropouts and whether
players referred to by these answers are the mol.

– The Exam Pass Layer, which analyses the relationship between joker and vrijstelling us-
age and being the mol.

– The Wikipedia Layer, which analyses the influence of famousness and job on being the
mol.

– The Appearance Layer, which analyses the relationship between appearance during episodes
and being the mol.

The output of all these layers results in a likelihood distribution, i.e. {(p1, ρ1), . . . , (pn, ρn)}, where
pi is the player and ρi is the likelihood of being the mol. Likelihoods are equal to probabilities
in the sense that a player pi with likelihood ρi is expected to be relatively ρi times the mol in
similar scenarios10 and that:

– The likelihood ρi of an arbitrary player pi is a value between 0 and 1, i.e. 0 ≤ ρi ≤ 1.
8Except for some cases where the dropout is allowed to return back to the game.
9Except for season 7 & 20 which both had 4 players in the finals.
10Which are scenarios whose modeling representations by the Moldel are equal.

9



– All likelihoods of the players sum up to 1, i.e.
∑n

i=1 ρi = 1.

The next step of the Moldel is to aggregate these likelihood distributions into a single likelihood
distribution, followed by excluding all non-potential mol players as mol and excluding players
as mol based on Social Media data. A general overview of the Moldel is shown in Figure 1.1.

Figure 1.1: Overview of the Moldel

In this overview each Di represents an output likelihood distribution, where D6 is the final pre-
diction of the Moldel. The goal with respect to this final prediction D6 is to:

Goal Statement. Predict the actual mol of the game show ’Wie is de Mol?’ with a likelihood
higher than 0.5 right after the finals in the season that is broadcast in 2021. Moreover the final
predictions of seasons 9 up to 21 should be significantly better than random guessing, i.e. the
hypothesis that these predictions are as good as uniform random guessing or worse should be
rejected with a p-value smaller than or equal to 0.05.

In this goal statement uniform random guessing is defined as the uniform distribution
{(p1, ρ1), . . . , (pn, ρn)} with:

ρi =


1

|P+|
if pi ∈ P+

0 if pi /∈ P+

(1.1)

where P+ is the set of all potential mol players and |P+| is the size of this set. In the following
chapters it is described how the Moldel has evolved over time, how the Moldel is currently
implemented and why certain implementation decisions are/were made. Finally the Moldel is
evaluated and statistically tested upon which we reflect. More specifically:
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– In Chapter 2 the previous implementation and current implementation of the Exam Drop
Layer and the Exam Pass Layer are discussed.

– In Chapter 3 the previous implementation and current implementation of the Wikipedia
Layer are discussed.

– In Chapter 4 the previous implementation and current implementation of the Appearance
Layer are discussed.

– In Chapter 5 the different type of approaches to aggregate these layers are described and
compared. Finally it is discussed which of these approaches is selected and how it is
implemented.

– In Chapter 6 it is discussed how the predictions of the Moldel are evaluated. Likewise
some of the predictions of the Moldel are shown in this chapter.

– In Chapter 7 the Moldel is statistically tested. Furthermore the results, these tests and
other aspects of the Moldel are reflected upon.

For more information and details about the current state of the Moldel, you can access the
project by the following URL:

https://github.com/Multifacio/Moldel
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2 EXAM LAYER

2.1 Introduction

The research on predicting themol started with the ExamLayer dating back to 16 February 2019.
Which was 3 days after episode 7 of the 19th season of ’Wie is de Mol?’. During this episode
there were 2 dropouts, whoweremy first and secondmost suspectedmol Rick-Paul and Jamie.1
The outcome was unexpected, not only because both my suspected mol players dropped out,
but also because they both used jokers. In addition 3 out of the 6 players did not use any jokers
at all, which made the outcome even more unexpected since usually a player not using any jok-
ers drops out. So this episode was closely analysed at that time on what the players answered
during the test and how many jokers they used, which revealed the following:

Player Answered On2 Used Jokers
Jamie Rick-Paul 2
Merel Jamie 0
Niels Jamie 2

Rick-Paul Jamie 1
Sarah Merel 0
Sinan Rick-Paul, Jamie, Merel 0

Table 2.1: Analysis of the test in season 19, episode 7

Based on this analysis the reasoning started which of the players left could be the mol (Merel,
Niels, Sarah or Sinan). For each of these players it was argued whether the test outcome could
be explained if that player was the mol and these were the arguments:

Niels If Niels is themol then all answers were wrong. This means that the players using jokers
were more likely to pass the executie. Which did not happen, since Jamie and Rick-
Paul both dropped out whereas Merel, Sarah and Sinan passed the executie. Thus this
scenario is very unlikely.

Sarah In case Sarah is the mol then the same reasoning used for Niels can be applied here.
However it explains why Sarah passed the executie, since she is the mol. But it remains
an unlikely scenario, because Merel or Sinan, who both used less jokers than Jamie and
Rick-Paul, did not drop out.

Sinan Sinan’s scenario of being the mol is similar to Sarah’s scenario of being the mol. It
explains why Sinan passed the executie, but it still does not explain why Merel or Sarah
did not drop out. Hence this scenario is unlikely.

Merel For Merel the situation is totally different. If one assumes that Merel is the mol then it
is more reasonable why Sarah and Sinan passed the executie, because they both had

1This episode is available at: https://www.npostart.nl/wie-is-de-mol-aflevering-7-2019/16-02-2019/
AT_2111648

2These players were covered by the answer revealed of that player.
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a correct answer. And it explains why Merel did not drop out, since she always had her
answer wrong regardless whether Niels, Sarah, Sinan or Merel was the mol. Therefore
this scenario is the most likely scenario.

Thus according to the reasoning, Merel was expected to be the mol, which was also confirmed
during the showdown episode.

So was this just a lucky guess, or a valid approach to determine the mol? One could argue
that in almost all tests at most one single answer is revealed per player. And each test, except
for the final test, consists of 20 multiple choice questions. Hence there are 19 questions left
for every player which can turn around the entire outcome. However this is highly unlikely to
happen if it is assumed that the dropout performs similar as other players on the remaining
questions.2 Hence it explains why in most cases the shown answer of the dropout is incorrect.
If the shown answer was correct then the dropout was at least one or two correct answers ahead
on all other players.3 But since he/she dropped out, all other players would have caught up with
this advantage which is very unlikely.2 Thus the scenario that the shown answer is incorrect of
the dropout is most plausible, especially during earlier episodes. With these insights the first
”Wie is de Mol” prediction layer was created. A layer that makes predictions by looking at what
the dropouts answered, how many jokers & vrijstellingen players used and what the players
that passed on answered. And by looking at these answers on the multiple choice questions a
shared structure can be found, e.g. some of these multiple choice questions are:

1. Is the mol a male or a female? Answers: Male, Female.

2. Is the mol the current penningmeester? Answers: Yes, No.

3. In which room did the mol slept last night? Answers: 105D, 203A, 255G, 307F

4. How many jokers did the mol collect during the last exercise? Answers: 0, 1, 3.

5. Who is the mol? Answers: Jamie, Merel, Niels, Rick-Paul, Sarah, Sinan.

Each of these questions is a set of answers Q′ = {A1, A2, . . . , An}, where each answer Ai is a
set of players. More concretely, each question is a partitioning over the set of players alive.

Definition 1. Q′ = {A1, A2, . . . , An} is a partition of set S if and only if:

S =
n∪

i=1

Ai and ∀i ̸=j Ai ∩Aj = ∅

Which means that every player alive is included in exactly one answer. For example a player
slept either in room 105D, 203A, 255G or 307F and a player either collected 0, 1 or 3 jokers
during the last exercise. This also implies that exactly one answer is correct and that the other
answers are wrong. Based on this structure and the findings discussed in this section, a first
prediction model was created. This model uses a Bayesian approach. Computing the proba-
bility that a question is answered correctly given that someone drops out is generally hard to
do. However computing the probability that someone drops out given that an answer is correct
is much easier. Bayes theorem tells how to express this former probability using the latter, see
Section 2.2. After this more accurate and stable prediction models were created, known as the
current Exam Drop Layer and the current Exam Pass Layer. Both implementations uses ma-
chine learning techniques to determine the likelihood that someone is the mol. These models
focuses more on feature gathering, selection and extraction (see Sections 2.3 and 2.4).

2Which is illustrated at end of Section 2.2 by Table 2.2.
3By assuming that his/her answer was correct, one immediately also assumes that answers shown of some other

players are incorrect. For example if the dropout answers that the mol is a woman and another player answers that
themol was part of a team of only men then either one of the answers is incorrect. So if his/her answer was correct,
then he is immediately two correct answers ahead of that other player.
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2.2 Previous Approach

The goal of the Exam Layer is to compute the probability that someone is the mol given all
executie results known so far. Therefore the first implementation of the Exam Layer tries to
determine for every potential mol player p

P(p = Mol | D1 = Dropout(E1), . . . , Dn = Dropout(En))

where E1, . . . , En are the executies and D1, . . . , Dn are the sets of dropouts corresponding to
these executies.4 This probability is unfortunately hard to compute directly, but it is easier to
compute the probability that an executie result happened given previous executie results and
given player p′ is the mol, i.e.

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

because with the assumption that someone is the mol one knows which answers during the
test were correct and which answers were wrong. And with this knowledge one can argue how
likely every player would drop out. Thus it is preferred to use terms of

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

rather than terms of

P(p = Mol | D1 = Dropout(E1), . . . , Dn = Dropout(En))

Therefore the latter term needs to be expressed in the former terms, which is possible with
Bayes theorem:

P(p = Mol | D1 = Dropout(E1), . . . , Dn = Dropout(En)) =

P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p = Mol) · P(p = Mol)∑
p′ P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p′ = Mol) · P(p′ = Mol)

where
∑

p′ is the sum over all potential mol players. Furthermore the probability that any po-
tential mol player p′ is the mol given no information is P(p′ = Mol) = 1

#players where #players is
the number of potential mol players. Moreover by applying the chain rule we obtain:

P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p = Mol) =
n∏

i=1

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

Thus the latter term is now fully expressed in the former terms, where the former term

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

can be estimated by analysing the test corresponding to that executie Ei. To estimate this
term, we should remind ourselves that every test usually consists of 20 questions5 and that the
cast reveals (assumed randomly) some of the answers given by the players on some of these
questions. Based on an arbitrary player p+, these questions can be categorized in 3 groups:

Own Questions These are the questions of which the question-answer structure is known and
of which the selected answer of player p+ was revealed (and probably of other players as
well). Thus these questions leak information about the suspicions of player p+.

4An exception to this rule is described in the Exception Handling appendix at A.1.1.
5Except for the final test which consists of 40 questions.

14



Other Questions These are the questions of which the question-answer structure is known,
but of which the selected answer of player p+ was not revealed. So the answer partitioning
of this question is known. Andmaybe it is known what other players have answered on this
question as well. However it is unknown what player p+ has answered on this question.

Unseen Questions These are the questions of which the question-answer structure is un-
known, but do exists since a test consists of 20 questions.

When estimating this former term it is assumed that for the ’Other Questions’ every player p+
picks another player alive p∗ uniformly random per question on which he fills in his answer
(which might cover other players as well). And for the ’Unseen Questions’ we assume that these
questions have 1 separate answer per player6, where every player picks an answer uniformly
random as well. Thus the probability of a correct guess for ’Unseen Questions’ is 1

|P |−1 , where
|P | is the number of players alive during that test. The reasons for the assumptions were:

– For simplification purposes, the initial idea of the Moldel was to build a simple and under-
standable algorithm to predict the mol.

– To estimate an upper bound on P(Ei | Ei−1, . . . , E1, p
′ = Mol), because by assuming that

the dropout performs similar on the remaining questions as other players an upper bound
is obtained. In reality the dropout would perform worse on the remaining questions.

– To prevent this upper bound estimation from being too rough. The assumption that players
guess uniformly random on ’Other Questions’ and ’Unseen Questions’ combined with the
structure of ’Unseen Questions’ makes players perform worse on these questions than in
reality. So passing the executie mostly depends on the ’Own Questions’.

Note though that an estimated upper bound is different from an actual upper bound. For later
executie results the estimation of the term

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

by this model is often not an actual upper bound on this term, which is why these modelling
assumptions are sometimes inaccurate. Nevertheless with these assumptions we randomly
sample the number of correct answers per player and test given that someone is the mol. The
pseudocode for a single random sample procedure is: (parameter definitions are on the next page)

Algorithm 1 Random Sampling of Correct Answers
function sampleCorrectAnswers(p+, p′, P , Qown, Qother, |Qunseen|, |Q|, jokers)
1: score = 0 ▷ The number of correct answers
2: for question, answer in Qown do ▷ Loop over questions with corresponding answer
3: if p′ ∈ answer then score += 1
4: end for
5: for question in Qother do
6: Pick p ∈ P/{p+} uniform random
7: Pick answer ∈ question, s.t. p ∈ answer
8: if p′ ∈ answer then score += 1
9: end for
10: for i = 1, . . . , |Qunseen| do
11: if rand() < 1

|P |−1 then score += 1 ▷ Note 0.0 ≤ rand() ≤ 1.0

12: end for
13: return min(score+ jokers, |Q|) ▷ Add the jokers to the score

6Similar to question 20 of every test, which is the question ”Who is the Mole?” that has a separate answer for
every player.
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And the parameters for this procedure are:

– p+ is the player for which the number of correct answers is randomly sampled.

– p′ is the player that is assumed to be the mol.

– P is the set of all players that were alive during that test (and |P | is the size of this set).

– Qown is a set of questions-answer pairs of player p+ which were revealed.

– Qother is a set of questions which were revealed, but of which the answer of player p+ was
not revealed.

– |Qunseen| is the number of unseen questions.

– |Q| is the number of questions in total.

– jokers is the number of jokers used by player p+, which is equal to∞ if p+ used a
vrijstelling.

If one executes this procedure for all players p+ ∈ P \ {p′} and for the test corresponding to
executie Ei then one can sample the dropout(s) D′ for executie Ei, because the player(s) with
the least correct answers drop(s) out. So by doing this many times

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

can be estimated as7
#samples s.t. D′ = Di with p′ = Mol

#samples

where #samples should be large enough.8 And by doing this estimation for every executie Ei

and every possible mol p′, we can finally estimate

P(p = Mol | D1 = Dropout(E1), . . . , Dn = Dropout(En))

for every possible mol p, which gives us the mol likelihood distribution over all players.

This first implementation of the Exam Layer is therefore a mathematical model rather than a
machine learning model. It has the advantage that one does not need train data or has to learn
something in order to predict the mol, because the model already understands the mechanics.
Thus there are not any issues related to the shortage of training data and misunderstanding the
pattern in the data. On the other hand, this model has a lot of disadvantages, which includes:

– Inaccurate assumptions aremade. The assumption that the players pick a random answer
for ’Other Questions’ and ’Unseen Questions’ during the first episodes might be accurate,
however in later episodes (especially in the semi-finals and finals) this assumption is vi-
olated. Also it is highly unlikely that all ’Unseen Questions’ have a separate answer per
player. It is more common that there are also easy questions among them. Furthermore
the assumption that players have an equal guessing probability seems inaccurate as well.
The dropout often has a lower probability of making a correct guess. Last of all, the model
indirectly assumes that the cast reveals random answers of players and does not select
particular answers of players, which we are unsure about. So this implementation is not
the most accurate one.

7An exception to this rule is described in the Exception Handling appendix at A.1.2.
8The sample size #samples used in the original Moldel was 10000.
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– Inconsistent predictions over episodes. It is quite common for this model to have totally
different predictions for sequential episodes. Which is understandable, because only a
few answers per episode are revealed and we assumed independence between answers
given by the same player in different tests, because for ’Unseen Questions’ and ’Unknown
Questions’ the answer is randomly selected. Thus all answers in previous tests are ig-
nored, which carries valuable information, since the answers of a player are quite similar
for sequential episodes.

– Issues with random sampling. To approximate P(Ei | p′ = Mol) accurately one needs a lot
of samples, which makes the algorithm very slow, because P(Ei | p′ = Mol) is estimated
per episode and per player. To illustrate this point, for predicting the mol after episode
3 with 8 players still left in the game and #samples = 10000, you sample the number of
correct answers 3 · 8 · 10000 · 7 = 1, 680, 000 times. A solution to speed up the sampling is
to reduce #samples, but this results in more inaccurate and more unstable predictions.

Nevertheless this model illustrates the aspects of the test and executie quite well. For example
with the theory of this model one can estimate the likelihood of dropping out for a non-mol player
if his/her answer was correct (assuming all 20 questions are ’Unseen Questions’):

#P
#W 0 1 2 3 4 5 6 7 8

1 0.4373 0.2612 - - - - - - -
2 0.2456 0.1647 0.1157 - - - - - -
3 0.1538 0.1065 0.0762 0.0562 - - - - -
4 0.1018 0.0709 0.0507 0.0371 0.0278 - - - -
5 0.0692 0.0478 0.0338 0.0244 0.0179 0.0133 - - -
6 0.0475 0.0323 0.0223 0.0157 0.0112 0.0081 0.0059 - -
7 0.0324 0.0215 0.0144 0.0098 0.0068 0.0047 0.0033 0.0023 -
8 0.0217 0.0139 0.0090 0.0059 0.0039 0.0025 0.0017 0.0011 0.0008

Table 2.2: Likelihood of dropping out if the answer was correct

where #P is the number of non-mol other players and #W is the number of non-mol other players
that had at least one wrong answer. What becomes clear from this table is that the chance of
dropping out is very rare when the revealed answer is correct, especially when #P is still large.
Thus the answer of the dropout is often wrong according to this model.

Furthermore this model can be surprisingly accurate for early executie results. For instance
this model was able to predict the mol correctly after episode 7 of the 19th season of ’Wie
is de Mol?’ (see Section 2.1). In this episode the dropouts during the executie were D6 =
{Jamie,Rick-Paul} and we had:

P(D6 = Dropout(E6) | D5 = Dropout(E5), . . . , D1 = Dropout(E1), Merel = Mol) ≈ 7.90 · 10−2

P(D6 = Dropout(E6) | D5 = Dropout(E5), . . . , D1 = Dropout(E1), Niels = Mol) ≈ 1.79 · 10−2

P(D6 = Dropout(E6) | D5 = Dropout(E5), . . . , D1 = Dropout(E1), Sarah = Mol) ≈ 3.12 · 10−2

P(D6 = Dropout(E6) | D5 = Dropout(E5), . . . , D1 = Dropout(E1), Sinan = Mol) ≈ 2.83 · 10−2

where there are only 6 executie results, because in episode 6 there was no executie. Moreover,
as becomes clear by these results, is that the scenario of Jamie and Rick-Paul dropping out is
most plausible if Merel was themol (which was indeed the case). So after episode 7, there was
a major altering in the result, see Figure 2.1. After episode 6 Merel was not the most suspected
mol by the Moldel with a likelihood of 0.144. However with the reasoning of test and executie
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(a) Prediction after episode 6 (b) Prediction after episode 7

Figure 2.1: Predictions of Previous Exam Layer

in episode 7 (as explained in Section 2.1), Merel was the most suspected mol by the Moldel
after episode 7 with a likelihood of 0.433. Thus the old version of the Exam Layer was able
to predict the actual mol for this season. Nevertheless for earlier episodes and other seasons,
this approach was often inaccurate. Therefore there was a need for a more stable and accurate
approach for the Exam Layer, which is discussed in the next sections.

2.3 Current Approach - Drop Layer

The new approach for the Exam Layer, also known as the current approach of the Exam Layer, is
split up in two separate layers: the Exam Drop Layer and the Exam Pass Layer. The Exam Drop
Layer discussed in this section investigates the answers of the dropouts and tries to exclude
players based on the given answers. On the other hand the Exam Pass Layer, discussed in the
next section, predicts themol based on joker and vrijstelling usage of the potential mol players.
These are the only aspects that are analysed based on the test and executie data. So the current
implementation of the Exam Layer does not analyse the answers of players that pass the test,
which were analysed by the previous implementation of the Exam Layer. Although we should
notice that players that pass the executie might drop out later during the season and therefore
are used by the Exam Drop Layer. A second aspect of the game that is also not analysed
are executies where only part of the players see their screen and nobody drops out, which
were analysed in the previous approach (see exceptions A.1.1. and A.1.2.). These situations
unfortunately have not happened often enough to proper analyse them and are therefore fully
ignored by the Exam Pass Layer and mostly ignored by the Exam Drop Layer. However the
ExamDrop Layer takes into account the answers given during these type of episodes for players
that drop out later, but does not assume who would have dropped out during these episodes.
So there are some aspects of the tests and executies which are not analysed anymore, but
were analysed by the previous implementation. However there are also new aspects that are
analysed by this new implementation, which includes answers given during previous episodes
by the dropouts.
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2.3.1 Encoding

The Exam Drop Layer looks at all combinations of player-question-answer-player quartets,
where:9

– The first player P1 in this quartet corresponds to the player that has dropped out non-
voluntarily.

– The question Q′ = {A1, . . . , An}, which is a set of answers, in this quartet corresponds
to a question that has been answered by this dropout. These questions are not limited
to only questions of the executie where the player dropped out, but include questions of
previous episodes as well.

– The answer Ak, which is a set of players, in this quartet corresponds to the answer that is
selected by player P1 for question Q′.

– The second player P2 in this quartet corresponds to any player that was alive during this
episode, which is either included in Ak or not included in Ak. The purpose of this second
player P2 is to determine the likelihood of being the mol for this player.

The example below shows all quartets for a fictive example season:

Example 1. Suppose there is a season that started with 4 players named Diederik, Jochem,
Sanne and Thomas of whom Diederik dropped out during the first episode, Jochem dropped
out during the second episode (finals), Sanne was the winner and Thomas was themol. During
the first episode the following questions are revealed:

Q′
1 = {{Diederik, Jochem}, {Sanne,Thomas}} Q′

2 = {{Sanne}, {Diederik, Jochem,Thomas}}
Q′

3 = {{Diederik,Sanne}, {Jochem}, {Thomas}}

where Diederik answered onQ′
1 : {Diederik, Jochem}, Thomas answered onQ′

2 : {Sanne} and
Jochem answered on Q′

3 : {Diederik,Sanne}. Furthermore in the second episode the following
questions are revealed:

Q′
4 = {{Jochem}, {Sanne,Thomas}} Q′

5 = {{Jochem}, {Sanne}, {Thomas}}

where Sanne answered on Q′
5 : {Thomas}, Thomas answered on Q′

5 : {Sanne} and Jochem
answered on Q′

4 : {Sanne, Thomas} and Q′
5 : {Sanne}. Then all quartet combinations (14 in

total) for this season are:

(Diederik, Q′
1, {Diederik, Jochem},Diederik) (Diederik, Q′

1, {Diederik, Jochem}, Jochem)
(Diederik, Q′

1, {Diederik, Jochem},Sanne) (Diederik, Q′
1, {Diederik, Jochem},Thomas)

(Jochem, Q′
3, {Diederik,Sanne},Diederik) (Jochem, Q′

3, {Diederik,Sanne}, Jochem)
(Jochem, Q′

3, {Diederik,Sanne},Sanne) (Jochem, Q′
3, {Diederik,Sanne},Thomas)

(Jochem, Q′
4, {Sanne,Thomas}, Jochem) (Jochem, Q′

4, {Sanne,Thomas},Sanne)
(Jochem, Q′

4, {Sanne,Thomas},Thomas) (Jochem, Q′
5, {Sanne}, Jochem)

(Jochem, Q′
5, {Sanne},Sanne) (Jochem, Q′

5, {Sanne},Thomas)

Note that in a normal non-fictive season, there are about 10 players which includes 8 dropouts
and 9 episodes with a test. Hence a normal season has much more quartet combinations than
the example shown above. The Exam Drop Layer converts these quartets (P1, Q

′, Ak, P2) into
a matrix of feature values F , where the rows in this matrix correspond to the different quartets
and the columns correspond to the features values.

9An exception to this rule is described in the Exception Handling appendix at A.1.3.
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The features used to encode every quartet Q = (P1, Q
′, Ak, P2) are:

Exam Episode Number The episode number in which the test happened with question Q′.
The corresponding executie is defined as the Exam Executie. This feature is included,
because it is expected that answers given during later tests are more likely correct than
answers given during earlier tests.

Drop Episode Number The episode number of the executie in which P1 dropped out. The cor-
responding executie is defined as the Drop Executie.10 This feature is included, because
it is expected that earlier dropouts are more likely to suspect the wrong mol than later
dropouts.

Fail Executie A binary value which is 1 if the Exam Executie is equal to the Drop Executie
and 0 otherwise. In other words this feature is 1 if P1 dropped out (or his/her red screen
was shown) during this executie and 0 otherwise. This feature is included, because it
is expected that someone dropping out has more wrong answers during the test which
caused him to dropout than in earlier tests.

Real Executie A binary value which is 1 if someone/multiple dropped out during the Exam
Executie (including P1), because he/she/they had the worst test score. Otherwise the
feature value is 0 if nobody dropped out during the Exam Executie (even if some screens
were revealed) or if someone dropped out voluntarily. This feature is included, because
it is expected that if nobody dropped out then you could have dropped out, which means
that your answers are more likely to be wrong.

Exam Players The number of non-mol players that were alive before the Exam Executie.11
This feature is included, because it is expected that with less players alive you are more
likely to suspect the actual mol.

Drop Players The number of non-mol players that were alive (including P1) before the Drop
Executie.12 This feature is included, because it is expected that if you made it far in the
game, then you are more likely to suspect the actual mol.

Entropy The entropy is defined as −
∑n

i=1

|Ai|
|P |

ln
(
|Ai|
|P |

)
where |P | is the number of players

alive before the Exam Executie and |Ai| is the number of players included in answer Ai.
This feature is included, because it is expected that questions with a higher entropy are
more likely to be answered wrong than questions with a lower entropy.

Answer Players The number of players included in answer Ak, excluding player P1, which is
|Ak \{P1}|. This feature is included, because it is expected that if you selected an answer
with more players then your answer is more likely to be correct.

Answer Probability The probability of selecting answer Ak if player P1 would have selected a

random player asmol and filled in questionQ on that player. This is defined as |Ak \ {P1}|
|P | − 1

.

This feature is included by similar reason as the previous feature.

Same Pickers For this we define the suspicions for every player p and every executie e as Sp,e

which is the union of all answers given by player p in the test corresponding to executie
e excluding player p itself. If no answer was revealed of player p or Sp,e = ∅ then Sp,e is

10An exception to this rule is described in the Exception Handling appendix at A.1.4.
11The number of non-mol player alive is equal to the number of players alive minus 1.
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defined as all players P that were alive before executie e excluding player p. The Same
Pickers feature for the Exam Executie E is now defined as:12

#{p : p ∈ P \ (D ∪ {P1}) ∧ Sp,E ∩ (Ak \ {P1}) ̸= ∅}
|P \ (D ∪ {P1})|

where D is the set of non-voluntary dropouts during this executie (if nobody dropped out
non-voluntarily then this set is empty). In simple words this feature represents the relative
number of other players that pass the Exam Executie and share a common suspected
player with your given answer Ak. This feature is included, because it is expected that if
you suspect a player not suspected by other players and you drop out then that player is
less likely to be the mol.

Same Pick Probability The Same Pick Probability feature is closely related to the Same Pick-
ers feature, but also takes into account how many suspected players are shared. It is
defined as:

mean (SPP(Ak \ {P1}, p) : p ∈ P \ (D ∪ {P1}))

where the function SPP is defined as:13

SPP(A, p) = mean
(
|A ∩ (a \ {p})|
|a \ {p}|

: a ∈ AnswerGivenBy(p,E)

)
and AnswerGivenBy(p, e) is defined as the function that returns all answers given by player
p in the test corresponding to executie e. Similarly to Same Pickers feature E is defined as
the Exam Executie, P is defined as the players alive before this executie andD is defined
as the non-voluntary dropouts in this executie. Moreover in case no answer was given by
player p in the test corresponding to the Exam Executie E, SPP(A, p) is defined as:

SPP(A, p) = |A|
|P | − 1

This feature is included by similar reason as the previous feature.

Drop Test Jokers More This feature is equal to the relative number of other players p that
participated in the Drop Executie which were not part of the non-voluntary dropouts and
used more jokers than player P1 (which dropped out). Using a vrijstelling is considered
as using ∞ number of jokers in this feature definition and in the next feature definitions.
Mathematically spoken, if we define function J(p, e) as the joker usage of player p in the
test corresponding to executie e, then this feature is defined as:

#{p : p ∈ P \ (D ∪ {P1}) ∧ J(p,E) > J(P1, E)}
|P \ (D ∪ {P1})|

where E is the Drop Executie, P are the players alive before this executie and D are the
non-voluntary dropouts of this executie. This feature is included, because it is expected
that it is more likely you suspected the actualmol if you dropped out because other players
used more jokers and vrijstellingen than you did.

Drop Test Jokers Less This feature is equal to the relative number of other players p that
participated in the Drop Executie which were not part of the non-voluntary dropouts and
used less jokers than player P1 (which dropped out). Mathematically spoken, this feature
is defined as:

#{p : p ∈ P \ (D ∪ {P1}) ∧ J(p,E) < J(P1, E)}
|P \ (D ∪ {P1})|

12|P \ (D ∪ {P1})| ≥ 1, because the mol always passes the executie together with at least another player. Thus
|P \D| ≥ 2, which implies that |P \ (D ∪ {p})| ≥ 1 for any player p including P1.

13An exception to this rule is described in the Exception Handling appendix at A.1.5.
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where E is the Drop Executie, P are the players alive before this executie and D are the
non-voluntary dropouts of this executie. This feature is included, because it is expected
that it is more likely you suspected the wrong mol if you drop out during an executie when
using more jokers than other players.

Exam Test Jokers More This feature is equal to the relative number of other players p that
participated in the Exam Executie which were not part of the non-voluntary dropouts and
used more jokers than player P1. Mathematically spoken, this feature is defined as:14

#{p : p ∈ P \ (D ∪ {P1}) ∧ J(p,E) > J(P1, E)}
|P \ (D ∪ {P1})|

where E is the Exam Executie, P are the players alive before this executie and D are the
non-voluntary dropouts of this executie. This feature is included, because it is expected
that it is more likely you suspected the actual mol if you passed an executie where other
players used more jokers and vrijstellingen than you did.

Exam Test Jokers Less This feature is equal to the relative number of other players p that
participated in the Exam Executie which were not part of the non-voluntary dropouts and
used less jokers than player P1. Mathematically spoken, this feature is defined as:15

#{p : p ∈ P \ (D ∪ {P1}) ∧ J(p,E) < J(P1, E)}
|P \ (D ∪ {P1})|

where E is the Exam Executie, P are the players alive before this executie and D are the
non-voluntary dropouts of this executie. This feature is included, because it is expected
that it is less likely you suspected the actual mol if you passed an executie when using
more jokers and vrijstellingen than other players.

Drop More Jokers A binary value which is 1 if any of the non-voluntary dropouts in the Exam
Executie used more jokers than player P1. It is 0 if there are no non-voluntary dropouts
or if none of these dropouts used more jokers than player P1. This feature is included,
because it is expected that it is more likely you suspected the actual mol if you passed an
executie where the dropout used more jokers than you did.

Drop Less Jokers A binary value which is 1 if any of the non-voluntary dropouts in the Exam
Executie used less jokers than player P1. It is 0 if there are no non-voluntary dropouts or if
none of these dropouts used less jokers than player P1. This feature is included, because
it is expected that it is less likely you suspected the actual mol if you passed an executie
where you used more jokers and vrijstellingen than the dropout.

2.3.2 Discretization

With these 17 features, the most important aspects of the executie and test data are covered.
Also note that for the computation of these features you do not have to know the mol, so you
can compute these features for a season for which we want to do a prediction. But there is still
an important aspect that is missing in these features which is whether P2 ∈ Ak or not in every
quartet Q = (P1, Q

′, Ak, P2). Moreover to allow the Exam Drop Layer to learn more complex
relationships than a simple linear relationship, the feature matrix F is discretized using a K-bins
discretization with one-hot encoding [12, sections 6.3.4 & 6.3.5.1]. This technique partitions all
features independently into K one-dimensional intervals (bins) and encodes every feature value
as a sequence of binary values which represents whether that value is part of a given interval.
And since a value can only be part of exactly one interval, exactly one of the binary values is

14For this it is assumed that ∞ < ∞, ∞ = ∞ and ∞ > ∞ are all false statements.
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equal to 1 and the others are 0’s. This is why it is named one-hot encoding. An example of
K-bins discretization is presented in the following example:

Example 2. Suppose we have the data points:

X1 = (9, 4) X2 = (−5.5,−3.5) X3 = (10, 0)

with the following selected intervals:

I1,1 = (−∞,−5) I1,2 = [−5, 10) I1,3 = [10,∞) I2,1 = (−∞,−3) I2,2 = [−3, 4) I2,3 = [4,∞)

where the I1 intervals correspond to the first feature and the I2 intervals correspond to the
second feature. Then these data points are transformed with K-bins discretization into:

X1 → (0, 1, 0, 0, 0, 1) X2 → (1, 0, 0, 1, 0, 0) X3 → (0, 0, 1, 0, 1, 0)

Other options to deal with more complex non-linear relationships are polynomial encoding and
spline encoding [13, sections 2.4.3-2.4.5], which are more suitable in case the features are
continuous. However the Exam Drop Layer has a lot of discrete features and for continuous
features the same value often occurs multiple times. Hence K-bins discretization is preferred
over polynomial encoding and spline encoding [13, sections 2.4.3-2.4.5]. Furthermore the fea-
tures could have also been discretized multi-dimensionally with clustering techniques. Though
with one-dimensional discretization all separable functions f(x1, . . . , xn) : Rn → R can already
be approximated, which are a ton of functions. Thus multi-dimensional clustering is not required
for feature discretization.

Definition 2. f(x1, . . . , xn) : Rn → R is a separable function if it can be written as:

f(x1, . . . , xn) =
n∑

i=1

fi(xi)

with fi(xi) : R→ R an arbitrary one-dimensional function.

Example 3. f(x1, . . . , xn) = ln(
∏n−1

i=1 xi) + xn is a separable functions, because:

f(x1, . . . , xn) = ln

(
n−1∏
i=1

xi

)
+ xn =

n−1∑
i=1

ln(xi) + xn =
n∑

i=1

fi(xi)

However the bin sizes and the number of bins have to be chosen properly. To select the sizes
of the bins for the Exam Drop Layer, a K-means clustering approach is used [14, section 9.1]
for each feature independently. K-means clustering assigns to each group of feature values F T

i

a vector of centers µ1, . . . , µk such that:∑
x∈FT

i

(x− µ(x))2

is minimized, where µ(x) is the closest center (of µ1, . . . , µk) to value x. The k intervals I1, . . . , Ik
used for K-bins discretization are now defined as the regions that are closest to respectively the
centers µ1, . . . , µk from all these centers, i.e.

Ij = {x ∈ R : µ(x) = µj}

To select the number of bins for the Exam Drop Layer, we use a procedure in which different
number of bins are allowed per feature. This procedure starts with 2 bins for each feature and
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it iteratively expands the number of bins for the feature i with the most information gain with
respect to the clustering, i.e.15

argmax
i

E(F T
i , bi + 1)− E(F T

i , bi)

where F T
i is the group of values for the ith feature and bi is the current number of bins for

feature i. Moreover the entropy function E(F T
i , b) is defined as:

E(F T
i , b) = −

b∑
j=1

p(F T
i , j) · ln(p(F T

i , j)) with p(F T
i , j) =

#{x ∈ F T
i : µ(x) = µ̂j}
|F T

i |

where µ̂j are optimally placed means by the K-means clustering procedure. This process of
selecting and expanding a bin is repeated 40 times, after which we obtain the number of bins
used by K-bins discretization for all features.16 Doing this for season 5 up to 21 as training data,
results in the number of bins for each feature as shown by Table 2.3.

Feature Name #Bins Feature Name #Bins Feature Name #Bins
Exam Episode Number 5 Drop Episode Number 7 Fail Executie 2

Real Executie 2 Exam Players 7 Drop Players 6
Entropy 7 Answer Players 5 Answer Probability 6

Same Pickers 8 Same Pick Probability 6 Drop Ep. Jokers More 3
Drop Ep. Jokers Less 2 Exam Ep. Jokers More 2 Exam Ep. Jokers Less 2
Drop More Jokers 2 Drop Less Jokers 2

Table 2.3: Number of bins per feature

So with these settings, the matrix F can finally be discretized into a binary matrix F+. And to
include the P2 ∈ Ak component into the features, we transform every row F+ that corresponds
with quartet Q into:

(Fnew)
+
Q = [(Fold)

+
Q, (Fold)

+
Q · 1P2∈Ak

,1P2∈Ak
]

where 1P2∈Ak
is the indicator function which is equal to 1 if P2 ∈ Ak and 0 otherwise. After

this last transformation the final raw feature encoding is obtained for every quartet Q. The
corresponding labels for these quartets Q is whether P2 is the mol or not.

2.3.3 Feature Reduction

In total there are 2910 of these quartets when using all data from season 5 up to 21 and each
of these quartets Q is encoded by 149 features. A lot of these features are unfortunately not
correlated to the likelihood of being themol for player P2 and are correlated to each other which
increases the risk of overfitting. Hence the features should be reduced to a group of informative
features which are not correlated to each other. To achieve this two methods are used: Mann-
Whitney U Selection [15] and Principal Component Analysis [14, section 12.1]. We start by
using a Mann-Whitney U Selection, which filters out all features that are uninformative. This
method loops over all feature groups (F+)Ti and separates it in two groups Mi and Ni. Mi are
all feature values of (F+)Ti with P2 being the mol and Ni are all feature values of (F+)Ti with
P2 not being the mol. For every feature i a Mann-Whitney U test is applied which assumes
the values in each group (Mi and Ni) are independently and identically distributed. This test

15In the argmax we ignore all features for which the number of bins bi is already equal to the number of distinct
values for feature i.

16We achieve a good accuracy with 40 additional bins, see appendix B.
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checks if Mi is more biased towards lower or higher values than Ni. The null hypothesis and
alternative hypothesis for this test are respectively:

H0 : ∀z∈R FMi(z) = FNi(z) H1 : ∀z∈R FMi(z) < FNi(z)
∨
∀z∈R FMi(z) > FNi(z)

with FMi(z) the cumulative distribution function behind Mi and FNi(z) the cumulative distribu-
tion function behind Ni. After applying the Mann-Whitney U Test, the corresponding p-value
is checked. Every feature i is removed if the corresponding p-value is larger than 0.01, which
means there is no significant difference between the values of groupMi compared to group Ni.

After using the Mann-Whitney U Selection for seasons 5 up to 21, we end up with 21 features
in total. Unfortunately a lot of these features are correlated with each other and could therefore
cause issues with overfitting. Thus to prevent this from happening a second method is used
called Principal Component Analysis (PCA) which is a well-known method that combines cor-
related features into single components. This is done by doing an eigenvalue decomposition
on the covariance matrix of F+ (after features have been excluded by the Mann-Whitney U
selection). The eigenvectors with the largest eigenvalues (which explains the most of the vari-
ance) are now taken as Principal Components on which the feature encoding of every quartet is
projected upon. The number of Principal Components that we use is the smallest number such
that at least 95% of all variance is explained. Using this method reduces the number of features
from 21 down to 12. Hence we finally end up with 12 informative uncorrelated features, which
is better than having 149 mostly correlated and uninformative features.

2.3.4 Logistic Regression

By applying both feature selection methods, the training data has been transformed. The same
procedure can of course also be used to obtain the predict data in proper format. The only
difference is that we do not retrieve all quartets corresponding to that season, but only all quar-
tets that are known up to the latest episode of that season. To predict the corresponding labels
whether P2 is the mol for the predict data, a Logistic Regression model [14, section 4.3.2] is
trained on the train data, which is a probabilistic binary classifier model.17 The likelihood of P2

being the mol for quartet Q = (P1, Q
′, Ak, P2) in this model is estimated as σ(wTx) where:

σ(z) =
1

1 + e−z

and where x is the feature encoding of quartet Q, plus a bias term 1 and w are the weights
corresponding to the features that get trained.18 The likelihood of not being themol in a Logistic
Regression model is estimated as 1 − σ(wTx). And because 0 < σ(z) < 1 for all z ∈ R the
likelihood is always well defined (see Section 1.4) for being the mol and for not being the mol.
To train the Logistic Regression model a maximum likelihood estimation is applied on w, i.e.

argmax
w

∏
x,y,m∈T

σ(wTx)my · (1− σ(wTx))m(1−y) (2.1)

where T is the group of all train triplets in which x is the feature encoding (plus a bias term) for
every quartet Q, y is the corresponding label (whether P2 in quartet Q is the mol) and m is the
train multiplier for the corresponding train triplet.19 This train multiplier for quartet Q is defined

17Note that a Logistic Regression models can also be applied on classification problems with more than 2 classes.
However this is not discussed here, since there are only 2 classes.

18So x and w are vectors of size 13, because there are 12 features plus an additional bias term.
19In Section 4.3.2 of ’Pattern Recognition and Machine Learning’ [14] is described howw is computed without train

multipliers. To determine w in this specific formula one follows the same approach, however there is an additional
m term in the gradient.

25



as 1
#answers(Q) where #answers(Q) is the number of questions revealed of player P1 in the test

in which question Q′ was revealed.21 A multiplier term is used in the training process, because
answers given by the same player in the same test are expected to be similar, thus they do not
provide much additional information.

For the implementation of the Logistic Regression, a Scikit-learn library is used [16]. This li-
brary uses a Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS) [17] to
iteratively update w based on the gradient of the log loss associated with Equation 2.1. This
procedure stops after 100 iterations of updating w or if the largest gradient coefficient is smaller
than 10−4 during an iteration. After the training process we predict the mol likelihood of P2 for
every prediction quartet Q and aggregate them using the following steps:

1. If players included in the answer Ak gets a highermol likelihood than players not included
in the answer Ak, then the mol likelihood prediction is changed to 1/|P | for all players
alive during that episode. The reasoning behind this is that in the latest seasons it is more
common that themol is not suspected by late dropouts, whereas in earlier seasons almost
all late dropouts suspected the mol.

2. All quartets Q corresponding to the same test and same player P1 are grouped together.
For every group the geometric mean (see Section 5.2.3) of the mol likelihoods of P2 is
taken.

3. The geometric mean of all groups are naïvely aggregated (see Section 5.2.2), i.e. all
geometric means for player P2 are multiplied together.

4. When all likelihoods have been multiplied, all non-potential mol players have their likeli-
hood set to zero, after which the likelihoods are normalized.

An example of this aggregation procedure as follow-up of example 1 is given below.

Example 4. Suppose the predicted mol likelihoods for the quartets in example 1 are:

P1 Q′ Ak P2 Likelihood
Diederik Q′

1 {Diederik, Jochem} Diederik 0.15
Diederik Q′

1 {Diederik, Jochem} Jochem 0.15
Diederik Q′

1 {Diederik, Jochem} Sanne 0.35
Diederik Q′

1 {Diederik, Jochem} Thomas 0.35
Jochem Q′

3 {Diederik,Sanne} Diederik 0.30
Jochem Q′

3 {Diederik,Sanne} Jochem 0.20
Jochem Q′

3 {Diederik,Sanne} Sanne 0.30
Jochem Q′

3 {Diederik,Sanne} Thomas 0.20
Jochem Q′

4 {Sanne,Thomas} Jochem 0.40
Jochem Q′

4 {Sanne,Thomas} Sanne 0.30
Jochem Q′

4 {Sanne,Thomas} Thomas 0.30
Jochem Q′

5 {Sanne} Jochem 0.40
Jochem Q′

5 {Sanne} Sanne 0.20
Jochem Q′

5 {Sanne} Thomas 0.40

Table 2.4: Predicted Likelihoods

Then the non-normalized mol likelihood of Sanne by the Exam Drop Layer is:

0.35 · 0.25 ·
√
0.30 · 0.20 ≈ 2.14 · 10−2
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And the non-normalized mol likelihood of Thomas by the Exam Drop Layer is:

0.35 · 0.25 ·
√
0.30 · 0.40 ≈ 3.03 · 10−2

After normalization the mol likelihood of Sanne is 0.414 and of Thomas 0.586

2.4 Current Approach - Pass Layer

Thus with the technique described in previous sections, the mol can be predicted based on the
answers of the dropouts. However when it comes to test and executie results there is more to
analyse. One of these things is the relationship between the usage of jokers & vrijstellingen and
being the mol. This relationship looks odd at first sight, because the mol is not more/less likely
to receive jokers and vrijstellingen compared to other players. Nevertheless if someone used
many jokers and vrijstellingen then it is more explainable why that player reached the finals
compared to a player that did not use any of them. So the player that did not use any jokers and
vrijstellingen is more likely to be the mol than the player that did use many of them. Another
”Wie is de Mol?”-analyst [18] had a similar feeling and recognized the relationship between this
problem and the Monty Hall problem [4], which inspired me to the following modelling approach
for the Exam Pass Layer. The rules of this layer are:

1. The likelihood of player p being the mol without any information P(p = Mol) is equal to
1/|P+| for every potential mol p, where |P+| is the number of potential mol players.

2. All executie results with a non-voluntary dropout given p is the mol are computed using
the chain rule, i.e. if D1, . . . , Dn are the set of dropouts in different executies then

P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p = Mol) =
n∏

i=1

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p = Mol)

3. The likelihood of a set of players D dropping out which includes the mol in any executie
E is equal to 0, i.e.

P(D = Dropout(E) | Mol ∈ D) = 0

4. The likelihood of a set of players D dropping out, where at least 1 of the players in set D
used a vrijstelling, is equal to 0 for any executie E, i.e.

P(D = Dropout(E) | D ∩ Vrijstellingen(E) ̸= ∅) = 0

where Vrijstellingen(E) is the set of all players that used a vrijstelling in the test corre-
sponding to executie E.

In case D does not include the mol and does not include any player that used a vrijstelling, we
estimate his/her likelihood of dropping out for every p ∈ D using a Logistic Regression (see
Section 2.3.4) and multiply them together22, i.e.

P(D = Dropout(E) | Mol /∈ D) = α ·
∏
p∈D

σ(wTxp)

where α is a shared constant that ensures the likelihoods of all possible combinations (of same
length) of dropouts sum up to 1, w are the trained weights and xp is the feature encoding for
player p, which is defined as:

21So this includes question Q′ as well, meaning that #answers(Q) ≥ 1.
22Only episode results are taken into account with non-voluntary dropouts, thus D is never an empty set.
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Less Jokers The number of other players than p, which used less jokers than p.

Equal Jokers The number of other players than p, which used a same number of jokers as p.

More Jokers The number of other players than p, which used more jokers than p.

Bias A bias term, which is always equal to 1.

and these features are used directly. Thus we do not discretize these features, filter features
out with Mann-Whitney U Selection or use PCA. Furthermore we also do not use any train
multipliers.23 All of these methods are not needed, because there are less features and the
model is simpler than the ExamDrop Layer.24 So based on this feature encoding in combination
with a Logistic Regression model or the predefined rules we can determine

P(D = Dropout(E) | p = Mol)

for any possible mol p. And these likelihoods can be used in combination with Naïve Bayes
model to predict the likelihood of being the mol as:

P(p = Mol | D1 = Dropout(E1), . . . , Dn = Dropout(En)) =

P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p = Mol) · P(p = Mol)∑
p′ P(D1 = Dropout(E1), . . . , Dn = Dropout(En) | p′ = Mol) · P(p′ = Mol)

=

P(p = Mol) ·
∏n

i=1 P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p = Mol)∑
p′ P(p′ = Mol) ·

∏n
i=1 P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p = Mol)

where
∑

p′ is the sum over all player p′ that could possibly be themol,E1, . . . En are all executies
so far with respectively the non-voluntary non-empty set of dropouts D1, . . . , Dn. An example
of this is given below:

Example 5. Suppose we have a season with 6 players Jeroen, Nikkie, Patrick, Peggy, Ron and
Tygo of which Jeroen is the mol. And we have seen 2 executies in this season:

1. In the first executie E1 we had 2 dropouts Patrick and Ron. Moreover Nikkie and Tygo
used a vrijstelling in the test corresponding to executie E1.

2. In the second executie E2 Peggy dropped out. Furthermore Tygo used a joker in the test
corresponding to executie E2.

Hence the only potential mol players are Jeroen, Nikkie and Tygo. Moreover in the first executie
E1 the possible combinations of dropouts could have been: Jeroen & Patrick, Jeroen & Peggy,
Jeroen & Ron, Patrick & Peggy, Patrick & Ron, Peggy & Ron. And in the second executie E2

the possible dropouts could have been: Jeroen, Patrick, Peggy, Tygo. Since no jokers have
been used in the test corresponding to executie E1, all of the mentioned combinations have the
same likelihood of dropping out, excluding the ones which includes the mol. Thus:

P({Patrick,Ron} = Dropout(E1) | Jeroen = Mol) =
1

3

because if we exclude all dropout combinations with Jeroen included in it, we have 3 combina-
tions left. On the other hand we have:

P({Patrick,Ron} = Dropout(E1) | Nikkie = Mol) =

P({Patrick,Ron} = Dropout(E1) | Tygo = Mol) =
1

6

23Which is similar as using a train multiplier of 1 for all data.
24But unfortunately the Exam Pass Layer has also a lot weaker prediction than the Exam Drop Layer.
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since all 6 combinations are still possible. For the second executie E2 we get the following
feature encoding:

xJeroen = xNikkie = xPeggy = (0, 2, 1, 1)T xTygo = (3, 0, 0, 1)T

and if we assume that wT ≈ (−0.6045,−0.2297,−0.0346,−0.3252) after training the Logistic
Regression gives the following estimated dropout probabilities:

σ(wTxJeroen) = σ(wTxNikkie) = σ(wTxPeggy) ≈ 0.3059 σ(wTxTygo) ≈ 0.1054

Hence the estimated probability of Peggy dropping out in the second executieE2 is the following
for these potential mol players:

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Jeroen = Mol) =
P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Nikkie = Mol) ≈

0.3059

0.3059 + 0.3059 + 0.1054
≈ 0.4265

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Tygo = Mol) ≈
0.3059

0.3059 + 0.3059 + 0.3059
≈ 0.3333

So finally the mol likelihood for all players can be computed. In case of Jeroen, this likelihood
is computed as:

P(Jeroen = Mol | {Patrick,Ron} = Dropout(E1), {Peggy} = Dropout(E2)) =

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Jeroen = Mol)
P(Jeroen = Mol) · P({Patrick,Ron} = Dropout(E1) | Jeroen = Mol) ·

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Tygo = Mol)
P(Tygo = Mol) · P({Patrick,Ron} = Dropout(E1) | Tygo = Mol) ·

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Nikkie = Mol) +
P(Nikkie = Mol) · P({Patrick,Ron} = Dropout(E1) | Nikkie = Mol) ·

P({Peggy} = Dropout(E2) | {Patrick,Ron} = Dropout(E1), Jeroen = Mol) +
P(Jeroen = Mol) · P({Patrick,Ron} = Dropout(E1) | Jeroen = Mol) · ≈

1
3 ·

1
3 · 0.4265

1
3 ·

1
3 · 0.4265 +

1
3 ·

1
6 · 0.4265 +

1
3 ·

1
6 · 0.3333

≈ 0.5289

And for Nikkie and Tygo the likelihoods are similarly computed as:

P(Nikkie = Mol | {Patrick,Ron} = Dropout(E2), {Peggy} = Dropout(E3)) ≈
1
3 ·

1
6 · 0.4265

1
3 ·

1
3 · 0.4265 +

1
3 ·

1
6 · 0.4265 +

1
3 ·

1
6 · 0.3333

≈ 0.2644

P(Tygo = Mol | {Patrick,Ron} = Dropout(E2), {Peggy} = Dropout(E3)) ≈
1
3 ·

1
6 · 0.3333

1
3 ·

1
3 · 0.4265 +

1
3 ·

1
6 · 0.4265 +

1
3 ·

1
6 · 0.3333

≈ 0.2067
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3 WIKIPEDIA LAYER

3.1 Introduction

The Exam Layer is an approach with better predictions as time progresses, which implies that
during the first episodes it is a less powerful prediction model. So there is more demand for a
layer that already can make predictions during the early episodes. Of course it is hard to predict
the mol if all players are still in the game, but it should definitely be possible to already exclude
some players asmol during early episodes. Because when looking at the personality of themol
there seemed to be a bias. It is remarkable that the mol is often not very famous compared to
other players. Also the mol was very often an actor or a television/radio show host, whereas
a lot of sportsmen, singers, writers and comedians also participated in ’Wie is de Mol?’. Thus
with these findings a new layer was created.

The reasoning behind this layer was obvious, but unfortunately it was not so easy to create this
layer. How do you measure being ’famous’ and when does someone belong to a certain job
group? Moreover there was a need for a source from which background information could be
retrieved about the players. A source which already exists for a long time, so that early seasons
can also be used as training data. Furthermore this source should have information about all
players, not just a few of them. To the best of our knowledge Wikipedia is the only sources that
satisfies these requirements. Plus Wikipedia has the advantage that one can go back in time
to extract the Wikipedia page before the first episode of that season is broadcast. Although a
clear disadvantage of Wikipedia is that everyone has access to it and can add false information
as well. Moreover not all celebrities had a detailed Wikipedia page by 2009. So it is not possible
to (fairly) evaluate the Wikipedia layer for seasons that were broadcast before 2009, i.e. 5, 6,
7 and 8.1 Despite these disadvantages there were no other consistent and reliable sources
that satisfied all these requirements. Thus Wikipedia was used as source to gather data for this
layer. And therefore this new layer was named the Wikipedia Layer.

The Wikipedia Layer was the first built pre-layer. A pre-layer is a layer that can already be used
before the first episode has been broadcast. This has the advantage that it can already do
predictions for the first episodes. Therefore pre-layers play an important role in closing the gap
between earlier and later predictions. However pre-layers often do not have amajor contribution
in the predictions for later episodes, which also holds for the Wikipedia layer. In the next section
the previous approach of the Wikipedia layer is discussed. This approach manually links words
to certain jobs and counts the number of words for that job for each player providing a vector
of job scores for every player, which can be compared to one another using cosine similarity
(a commonly used method in Data Science for vector comparison[19]). Similar players in the
training data as a given player are then be used to predict whether that player is the mol. Un-
fortunately this approach was inaccurate, so in Section 3.3 an approach is discussed that uses
improved natural language processing techniques, better feature encoding and dimensionality
reduction techniques to exclude players as mol with an outlying score.

1However it is possible to use a later version of these Wikipedia pages as training data.
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3.2 Previous Approach

The Wikipedia Layer is a challenging layer, because it has to deal with natural language pro-
cessing. Words on Wikipedia pages need to be understood in order to determine the likelihood
of being the mol for every player, which is generally hard for an algorithm to do. Therefore the
problem is simplified by only linking words to a fixed group of jobs. These selected jobs, which
commonly appeared among ’Wie is de Mol?’ players, were: Comedian, DJ, Journalist, Musi-
cian, Radio Host, Radio Producer, Singer, Stage Actor, Stage Producer, Songwriter, Television
Actor, Television Host, Television Producer, Voice Actor and Writer.2 And to link the words to
the fixed group of jobs, the following steps are applied first:

1. Replace all special characters in the Wikipedia page by spaces, which includes tabs and
new lines as well.

2. Convert all capital letters in the Wikipedia page to lower case.

3. Tokenize the Wikipedia Page by splitting it on spaces, e.g. ”this is an example sentence”
becomes ”this”, ”is”, ”an”, ”example”, ”sentence”.

After these steps, a manual mapping is used to link the words to the jobs. This mapping was
created by myself, by manually going through the most frequently occurring words and linking
them to jobs. It is allowed in this mapping that words link to no job at all, e.g. words as ’de’ and
’het’. Likewise it is allowed to link a word to multiple jobs, e.g. ’televisie’ is linked to television
actor, television host and television producer. With this mapping between tokenized words and
jobs, we can count the number of words that are linked to an arbitrary job. Finally these counts
are used as features to encode every player, i.e. a player i is encoded as a vector of counts
xi = (ci1, c

i
2, . . . , c

i
14).3 To predict the likelihood y of being the mol for a given player encoded as

x = (c1, c2, . . . , c14), a weighted cosine similarity sum over all training data is used, i.e.4

y =

∑
i cossim(x, xi)2 · yi∑

i cossim(x, xi)2
with cossim(x, xi) =

∑
j xj · xij√∑

j(xj)
2 ·
√∑

j(x
i
j)

2

where yi is 1 if the ith train player was the mol and 0 if that player was not the mol. And the
cosine similarity score of x′ and x+ is a value between 1 and -15 for which it holds that:

– The closer it is to 1 the more similar the points are, i.e. both points are aligned in the same
direction.

– The closer it is to 0 the more the points are unrelated, i.e. both points are aligned in
orthogonal direction.

– The closer it is to -1 the more the points are opposites of each other, i.e. both points are
aligned in opposite direction.

However negative values do not occur, since all feature are word counts which are positive
values. Thus cossim(x, xi) returns a score between 0 and 1, where a larger value means a
higher similarity. Hence similar points as x get a larger weight in the sum and therefore have
more influence on the outcome of y. Moreover because a weighted sum is taken the outcome

2Also a lot of athletes have participated in ’Wie is de Mol?’, but it is hard to classify someone as athlete. Words
related to athletes are very diverse, thus athlete was not included as job. Moreover Movie Actors and Television
Actors are considered to be the same. Likewise Movie Producers are considered to be the same as Television
Producers.

3If someone appears in multiple seasons then it is treated as a different player in both seasons.
4An exception to this rule is described in the Exception Handling appendix at A.2.1.
5Assuming that x′ and x do not only consist of zeros.
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of y is always a value between 0 and 1, which means that the predictions can be interpreted as
likelihood of being themol. But of course the likelihoods of every player needs to be normalized
to obtain the final predictions.

This first implementation of the Wikipedia Layer was a good starting point, but unfortunately
these predictions were inaccurate, see appendix C. The likelihood of non-mol was often way
higher than the likelihood ofmol players. A cause for these inaccurate predictions could be that
there is no relationship between job and being the mol. However there are also some issues
with this implementation which could have caused these inaccurate predictions:

– The natural language processing techniques used are quite simple. More advanced nat-
ural language processing techniques could be used to reduce similar words to the same
form or recognize the same form in similar words, which is needed because it is impos-
sible to classify all possible words manually. For example a plural Dutch word as ”films”
should be reduced to the word ”film” or should be recognized to be similar as the word
”film”. By deciding not to do so, any form of any word has to be manually classified, which
is nearly impossible.

– The encoding of the features as absolute counts of words related to jobs might not be
appropriate. There are several issues with this encoding, e.g.

– It does not take into account the length of their Wikipedia pages. If you have more
words in your Wikipedia page you are also expected to have higher job counts.
Moreover there could also be a relationship between the number of words in your
Wikipedia page and being the mol, which is currently ignored.

– Words related to more jobs have the same importance as words related to fewer jobs
which is questionable. One could argue that words related to more jobs should be
weighted less, because they are less informative.

– A normal scale is currently used for the job counts which is questionable as well.
For example is someone with a ’journalist’ count of 80 twice as much ’journalist’ as
someone with a ’journalist’ count of 40?

– Vectors of only zeros are ignored in the current approach and players encoded as a
vector of only zeros have a likelihood of zero of being the mol. For seasons up to
the last season this hypothesis has indeed hold, but it is doubtful whether it holds for
future seasons as well.

– There are way too many features in this model, which is inappropriate when using co-
sine similarity. All jobs are treated as equally important, whereas some jobs occur more
frequently than other jobs. Thus players might be similar based on the most occurring
jobs, but still have a low cosine similarity score, since they are not similar based on less
occurring jobs. Also this implementation does not take into account that a lot of jobs are
related to each other, e.g. radio host is similar to DJ and stage actor is similar to television
actor.

– There are unfortunately no theoretical grounds for this model. The closest model this
implementation is related to is a nearest neighbor model [20, section 2.3.2], however the
cosine similarity score is not really a distance metric. Thus it is arguable whether the
outcome could be interpreted as a likelihood. Also there is no clear choice which power
should be used to strengthen or weaken the cosine similarity score. Currently a power of
2 is used, i.e. cossim(x, xi)2, but a power of 1, 3 or 0.5 could be used as well.
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3.3 Current Approach

So there are a lot of issues that have to be filtered out, before concluding whether there is
actually a relationship between a Wikipedia page and the likelihood of being the mol. Each
of these issues is solved in the next subsections. It starts by solving the natural language
processing issues, after which the problem with feature encoding is fixed and finally the feature
selection is improved together with the prediction model for the Wikipedia Layer.

3.3.1 Natural Language Processing

The natural language processing in the previous approach started with replacing special char-
acters by spaces, converting all letters to lower case and finally tokenizing the Wikipedia pages
based on spaces. We stick to this approach, beside that by doing so one discards some valu-
able information. For example Loretta Schrijver6 is suddenly classified as ’Writer’, because her
last name Schrijver occurs a lot in her Wikipedia page, which is the Dutch word for writer. And
by discarding capital letters, it becomes harder to distinguish names from words. Nevertheless
this is a single case where capital letters provide crucial information, so this error is tolerated,
because converting every letter to lowercase simplifies the manual classification process a lot.
Moreover we should keep in mind that there does not exists any natural language processing
technique which works for all cases. Thus the pros and cons have to be weighted for each
technique to decide which technique is the best for our case. This also becomes especially
clear in the following case, i.e. stemming versus subword extraction. As explained in previous
section it is impossible to manually classify any form of any word. One technique that could
be used to overcome this problem is stemming [21], which reduces similar words to the same
smaller form that is called the ’stem’. For example the (Dutch) Snowball Stemmer, a commonly
used stemming algorithm, maps the following Wikipedia words to these stem forms:

Full Word Stem Form Full Word Stem Form Full Word Stem Form
program program programma programma televisieprogramma televisieprogramma

presentator presentator presenteer presenter presenteren presenter
presentatrice presentatric presenteert presenteert presenteerde presenteerd

speel spel speelde speeld spelen spel
spelers speler speler speler gespeeld gespeeld
film film films film speelfilm speelfilm
single singl singles singles hitsingle hitsingl
zang zang zanger zanger zangeres zangeres

Table 3.1: Word to ’stem’ examples

Based on these examples, we notice that stemming is able to reduce some words to a similar
form. For example the Dutch words ’presenteren’ and ’presenteer’ are mapped to the same
form ’presenter’. Likewise ’films’ and ’film’ are mapped to the same form ’film’. However in most
cases it does not recognize the relationship between similar words. For example the Dutch
words ’presentator’, ’presenteert’, ’presenteerde’, ’presentatrice’ are also related to the word
’presenteer’, but are not mapped to a similar form. So it becomes clear from this given example
that stemming has a high false negative rate, i.e. a lot of similar words are not recognized as
similar words. Consequently these examples show that there are no non-similar words which
are reduced to the same form. Hence the false positive rate of stemming is very low, which is
a clear advantage of stemming. In the next technique that is discussed, subword extraction, an

6Loretta Schrijver is a player that participated in season 10 of ’Wie is de Mol?’. Her last name translated to English
is Writer.
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opposite trend can be seen, i.e. this method has a higher false positive rate, but a lower false
negative rate.

Subword extraction is a method that looks at all substrings w′ of a word w which are words in
itself recognized by the Dutch dictionary and it is defined that w is a subword of w even if it is not
recognized by the Dutch dictionary. Subword extraction could therefore be more powerful than
stemming, because it knows how to deal with composite words and recognizes more conjuga-
tions of the same word than stemming. However it causes a lot of issues, since small words
w′ could accidentally be included in a larger word w without being related to that larger word w.
To prevent this as much as possible only subwords w′ of at least length 4 are considered and if
the length of word w is smaller than 4 then w is the only considered subword of w. Examples
of subword extraction for Dutch words is shown below:

Full Word All Sub Words
televisieprogramma televisieprogramma, televisieprogram, visieprogramma, visieprogram,

programma, televisie, program, visie, gram
presentator presentator, present, pres
presenteert presenteert, presenteer, presente, present, teert, eert, pres, teer
presenteerde presenteerde, presenteer, presente, present, teerde, eerde, pres, teer
gespeeld gespeeld, gespeel, speel, gesp, peel
speler speler, spel

speelfilms speelfilms, speelfilm, films, speel, film, peel
hitsingles hitsingles, hitsingle, singles, single, hits
zangeres zangeres, zanger, zang

Table 3.2: Subword extraction examples

What becomes clear from this example is that subword extraction is able to recognize more
words as similar. For example the subword ’presenteer’ is recognized inside the words ’pre-
senteert’ and ’presenteerde’. Likewise the word ’film’ is recognized inside the word ’speelfilms’.
These are examples of cases where stemming failed to recognize the similarity, but where
subword extraction recognizes the similarity. However subword extraction unfortunately also
recognizes similarities between different words. For example the Dutch word ’eerde’ has noth-
ing to do with the word ’presenteerde’.7 And even if a smaller word is not accidentally included
in a larger word, it does not mean that there is immediately a relationship between both words.
For example one could argue that the Dutch child television program ’Fabeltjeskrant’ has less
to do with the Dutch word ’krant’.8 Hence subword extraction has a much higher false positive
rate than stemming, but a lower false negative rate on the other hand. Thus neither of these
techniques outperforms the other, i.e. there are always cases where one of the techniques per-
forms better. Therefore it has to be decided whether a low false negative rate is preferred or a
low false positive rate. In this case a lower false negative rate is preferred, because Wikipedia
pages consists of many words. And as long as most of these words are correctly mapped then
we still have reliable results. Whereas with a higher false negative rate, the similarity between
most words is not recognized. Hence the results depends only on a few recognizable words in
the Wikipedia page, which gives far less reliable results. Thus subword extraction is the pre-
ferred choice, which extract a set of subwordsW out of every word/token w. The following rules
are then applied to determine as which job ji word w should be classified:

1. DefineW (j) as all words (manually selected) that correspond to job j and define J as the
jobs that are still in the race, which is initially defined as all jobs J = {j1, . . . , jn}.

7’eerde’ is the Dutch word for honouring and ’presenteerde’ is the Dutch word for presenting.
8’krant’ is the Dutch word for newspaper.
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2. If no word is shared between any jobW (j) andW , i.e. ∀j∈J W (j) ∩ W = ∅, then we stop
immediately, define J = ∅ and conclude that w does not belong to any job j. Otherwise
we continue with the next step.

3. Remove all jobs j from J which share less words W (j) with the set of subwords W as
any other given job j′ ∈ J . Formally spoken J is redefined as:

Jnew = {j ∈ Jold : m = |W ∩W (j)|} with m = max
j′∈J
|W ∩W (j′)|

where |S| is defined as the number of words in set S. This rule is applied, because a word
is more related to a certain job if it shares more subwords.

4. Remove all jobs j from J of which the longest shared word w′ between W (j) and W is
smaller than the longest shared word w∗ between W (j′) and W for any other given job
j′ ∈ J . Formally spoken J is redefined as:

Jnew = {j ∈ Jold : l = L(W ∩W (j))} with l = max
j′∈J

L(W ∩W (j′)) and L(S) = max
w′∈S

|w′|

where |w′| is defined as the length of word w′. This rule is applied, because a larger
subword carries more information and thus indicates better to which job this word corre-
sponds.

5. The initial word w from which the subwords W are extracted is now classified to belong
to any job j in the set of jobs left J .

An example of these classification rules is given below:

Example 6. Suppose there are four jobs: ’Journalist’, ’Radio Host’, ’Television Host’, ’Voice
Actor’. With the following manual mapping:

Job Coresponding Words
Journalist journaal, journalist, krant, nieuws
Radio Host nieuws, produce, programma, radio

Television Host nieuws, programma, televisie
Voice Actor acteur, fabeltjeskrant, stem

Table 3.3: Subword extraction examples

If these rules are applied for the word ’fabeltjeskrantjes’ with extracted subwords W1:

’fabeltjeskrantjes’, ’fabeltjeskrantje’, ’fabeltjeskrant’, ’fabeltjes’, ’fabeltje’, ’krantjes’, ’krantje’,
’fabelt’, ’fabel’, ’krant’, ’abel’, ’belt’

then after step 3 the possible jobs left are ’Journalist’ and ’Voice Actor’, since they both share
1 word with W1 (respectively ’krant’ and ’fabeltjeskrant’) which is the highest number of shared
words. However after step 4. ’Journalist’ is removed as option, because ’fabeltjeskrant’ is
a longer word than ’krant’. So ’fabeltjeskrantjes’ is classified to belong only to ’Voice Actor’.
Moreover if the rules are applied for the word ’nieuwsprogramma’ with extracted subwords W2:

’nieuwsprogramma’, ’nieuwsprogram’, ’programma’, ’program’, ’nieuws’, ’nieuw’, ’gram’

then after step 3. the possible jobs left are ’Radio Host’ and ’Television Host’, because they both
share two words with w2 (which are ’nieuws’ and ’programma’) which is the highest number
of shared words. Note that ’Journalist’ is not included, since only one word is shared with
W2 (which is ’nieuws’). After step 4 none of these jobs is removed, because ’programma’ is
the longest word for both jobs which has the same length as itself. So ’nieuwsprogramma’ is
classified to belong to both ’Radio Host’ and ’Television Host’ as jobs.
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With these classification rules, we can keep track of the frequency of jobs for every player p
using a job counter Cp(j). The job counter is initially defined as Cp(j) = 0 for all jobs j. And
this counter is updated by looping over all words w in the Wikipedia page by increasing the
job counter Cp(j) by

1

|J |
for all jobs j ∈ J that belong to word w. This is a major difference

with the previous approach where the job counter Cp(j) was increased by 1 for all jobs j ∈ J
instead, because it weighs words that correspond to more jobs less. For example ’nieuwspro-
gramma’ increases the job counter for ’Television Host’ and ’Radio Host’ both by 1/2, whereas
’fabeltjeskrantjes’ increases the job counter of only ’Voice Actor’ by 1. Furthermore note that
this rule ensures that the sum of job counter increments is always equal to 1 for every word w
that corresponds to at least one job, which is a nice property of this weighting.

3.3.2 Feature Encoding

Also regarding the feature encoding there are some major changes, i.e. the job counts are not
directly used as features. Instead relative features are used with respect to the total number of
words and with respect to the occurrence of this job among other players of the same season.
To make this happen we first define the following terms:

– Sp is the set of players that participated in the same season as player p.

– P is the set of all players (which participated in any season).

– Tp is the total number of recognized words in the Wikipedia page of player p, which is
equal to the sum of all job counts of player p, i.e. Tp =

∑
iCp(ji).

– C ′
p(ji) is the feature representation for the job count of player p and job ji, i.e. C ′

p(ji) is
the feature representation of Cp(ji). Initially C ′

p(ji) is defined to be equal to Cp(ji).

– T ′
p is the feature representation for Tp.

Secondly, the job features are changed into relative features with respect to the total number of
words, since players with more words in their Wikipedia page are expected to have more words
that are linked to jobs as well. More specifically if a player has m times more words in his/her
Wikipedia page then he/she is expected to have m times more words linked to every job. So
the job feature representation C ′

p(ji) is updated with the following rule for every player p and job
ji:9

C ′
p(ji)←

C ′
p(ji)

Tp

which ensures that a player with m times more words in his/her Wikipedia page and m times
more words linked to a job ji have the same score. Thirdly, the job features are adjusted such
that they are relative with regard to the occurrence of the job among other players of the same
season, because if a job occurs more in a particular season then it is less special if a given
player p belongs to that job. Thus C ′

p(ji) is simultaneously transformed for every player p and
every job ji into:10

C ′
p(ji)←

C ′
p(ji)∑

p+∈Sp
C ′
p+
(ji)

Furthermore, because differences are expected to be better recognizable at a multiplicative
scale rather than an additive scale, a logarithmic transformation is applied, i.e.11

C ′
p(ji)← ln(C ′

p(ji))

9An exception to this rule is described in the Exception Handling appendix at A.2.2.
10We assume that

∑
p+∈Sp

C′
p+(ji) > 0. Although it does happen sometimes that C′

p+(Ji) = 0 for a given player
p+ and job ji, it is very unlikely that this is the case for all 10 players in a given season for any given job.

11An exception to this rule is described in the Exception Handling appendix at A.2.3.
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For example a relative value of 0.6 is expected to be more similar to 0.9 than to 0.3, which is
solved by applying a logarithmic transformation. Moreover the logarithmic transformation is also
justified, because the frequency distribution how often job counter values occur is very skewed,
e.g. Figure 3.1 contains the job counter frequencies for the job ’Singer’ of seasons 5 up to 21.

Figure 3.1: Histogram of the ’Singer’ job counter (seasons 5 up to 21)

After this logarithmic transformation, we have:

C ′
p(ji) = ln

(
Cp(ji)/Tp∑

p+∈Sp
Cp+(ji)/Tp+

)

The last transformation is a discretization which is applied, because a player either belongs to
a job or not. For this discretization it is assumed that the job features of each job follows a
separate Gaussian Mixture distribution [14, section 9.2] with two clusters, i.e.

C ′
p(ji) ∼ C1 + C2 with C1 = πi,1 · N (µi,1, σi,1) and C2 = πi,2 · N (µi,2, σi,2)

where the parameters πi,1, πi,2, µi,1, σi,1, µi,2, σi,2 for each job ji can be estimated using the
EM-algorithm [14, section 9.2.2]. A Gaussian Mixture model is more appropriate here than
a K-means clustering approach [14, section 9.1], because K-means clustering cannot handle
different variances in groups which is expected to be the case here, since player that do not
belong to a job ji have more similar C ′

p(ji) scores than player that do belong to the job ji. Thus
with the Gaussian Mixture model we update C ′

p(ji)← 0 for each player p and job ji if

ρ(C1 = C ′
p(ji)) > ρ(C2 = C ′

p(ji))

and else we update C ′
p(Ji) ← 1, where ρ is the probability density function. In other words if

C ′
p(ji) belongs to the first cluster, C ′

p(ji) is changed to 0 and if it belongs to the second cluster,
its value is changed to 1.
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For the total number of words, similarly it is made relative with respect to the total number of
words of other players in the same season for every player p by:12

T ′
p ←

T ′
p∑

p+∈Sp
T ′
p+

since in earlier seasons Wikipedia pages were less detailed. So having more words in your
Wikipedia page in earlier seasons was more special than having more words in your Wikipedia
page in later seasons. Furthermore a logarithmic transformation is applied on the total number
of word features for every player p by:13

T ′
p ← ln(T ′

p)

because once again we expect differences to be better recognizable at a multiplicative scale
rather than an additive scale. Moreover the frequency distribution of word counts is also skewed,
which again justifies the logarithmic transformation, see Figure 3.2.

Figure 3.2: Histogram of the Total Number of Words (seasons 5 up to 21)

The last transformation that is applied on the total number of words feature is a polynomial
transformation up to the second degree, i.e.

T ′
p ← (T ′

p, T
′
p
2
)

to ensure that the Wikipedia Layer recognizes patterns where the standard deviation of the total
number of words formol players is smaller than for non-mol players. And after all these changes
we end up with:

T ′
p = (ln

(
Tp∑

p+∈Sp
Tp+

)
, ln

(
Tp∑

p+∈Sp
Tp+

)2

)

12We assume that
∑

p+∈Sp
T ′
p+ > 0, because it rarely occurs that T ′

p+ = 0 for some player p+. Let alone that this
is the case for all players in a given season.

13An exception to this rule is described in the Exception Handling appendix at A.2.4.
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3.3.3 Feature Reduction

The approach does not address yet the issue of co-correlation between many of the job features
C ′
p(ji) and it also does not take into consideration how often jobs occur. For example if all or

none of the players in the training data belongs to a certain job then that job does not provide
any information. Therefore to deal with these issues, Principal Component Analysis [14, section
12.1] is applied on all the job features C ′

p(ji) which extracts the 5 largest components out of
all 15 job features.14 The benefit of applying Principal Component Analysis is that it reduces
the number of features unsupervised, which is the reason why this technique is not prone to
overfitting. On the other hand if Principal Component Analysis was not applied, then there are
15 job features and 2 word count features left for a data set of 170 data points (with season 5 up
to 21 as training data) of which 17 are classified asmol. And applying a machine learning model
on a data set with an equal number of features as data points belonging to the smallest class is
guaranteed to overfit. To illustrate this, almost any system of n linear equations with n variables
has a unique solution, even if the coefficients of the linear equations are randomly sampled.
Hence finding a solution to this system of linear equations does not imply a relationship between
any of the variables and the target outcome. Thus applying Principal Component Analysis is
crucial in the prevention of overfitting.

The result of applying Principal Component Analysis is 5 reduced job features. These 5 reduced
job features are combined with the 2 word count features, which results in 7 features in total.
Based on these 7 features the mol and non-mol data points are separated for which Fisher’s
Linear Discriminant [14, section 4.1.4] is used. This technique separates both classes super-
vised using a linear projection. More specifically, every feature vector x with this technique is
mapped to a one dimensional feature vector y = wTx, where w is fixed weight vector used to
separate both classes as much as possible. To do so, Fisher’s Linear Discriminant [14, section
4.1.4] determines the mean vector for both classes:

µ1 =
1

|non-Mol|
∑

x∈non-Mol
x µ2 =

1

|Mol|
∑
x∈Mol

x

with non-Mol the set of all non-mol data points and Mol the set of all mol data points. Moreover
with regard to these means µ1 and µ2, we select w such that:

w = max
w

w · (µ2 − µ1) s.t. |w| = 1 with |w| =
7∑

i=1

w2
i

since this w is the maximal separating unit vector. And according to section 4.1.4 of the book
’Pattern Recognition and Machine Learning’ [14, section 4.1.4] this w is proportional to:

w ∝ S−1(µ2 − µ1) with S =
∑

x∈non-Mol
(x− µ1)(x− µ1)

T +
∑
x∈Mol

(x− µ2)(x− µ2)
T

Fisher’s Linear Discriminant helps us therefore to separate both classes. However being cau-
tious when applying this technique is advised, because Fisher’s Linear Discriminant is a super-
vised technique that has the risk to overfit. Especially, because the least common class has 17
data points and 7 features are used to linear separate them. Although the risk of overfitting with
Fisher’s Linear Discriminant is drastically reduced by applying Principal Component Analysis
first. If Principal Component Analysis was not applied, then Fisher’s Linear Discriminant had to
linear separate both classes based on 17 features which was guaranteed to overfit.

14We achieve the best accuracy with around 5 principal components.
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3.3.4 Classification Model

After applying Fisher’s Linear Discriminant 10 yp values are obtained (assuming that 10 players
participated in the given season). For these yp values it holds by orientation of the Fisher’s
Linear Discriminant that if yp is larger it is more likely to correspond to a mol player and if yp is
smaller it is more likely to correspond to a non-mol player. To classify these yp values a simple
approach is used which determines a z-score zp (also known as standard score) for every yp
value, which is defined as:

zp =
yp − µ

σ
with σ =

√∑10
i=1(yi − µ)2

9
and µ =

1

10

10∑
i=1

yi

And based on these z-scores zp it is determined whether a player is less likely to be the mol or
not using a threshold t. If a player has a z-score below this threshold t then he/she is considered
less likely to be themol and above this threshold t the player is considered more likely to be the
mol. The selected threshold here is−0.524, because my estimation is that around three players
in every season are less likely to be the mol based on their personality and popularity. And a
z-score of −0.524 corresponds to:

P(N (0, 1) ≤ −0.524) ≈ 3

10

which ensures that around three players in each season (with 10 players) are less likely to be
the mol. The advantage by using z-scores is that the prediction of players dependent on each
other. For example if halve of all players have a low y value then less players have a z-score
below this threshold. This is also in line with our expectation, i.e. if there are more low y values
it is an indication that the Wikipedia layer does not perform well on this particular season. For
example if all players have a low y value, we are certain that themol also has a low y value. So
less players should be assigned a lower likelihood for this season.

Thus this technique divides all players in two groups, i.e. the less likely mol group and the
more likely mol group. For both groups a separate likelihood is given. For the less likely mol
group a likelihood of 0.079 of being the mol is given, since on average 7.9% of all players
with a negative z-score (< 0) are the mol. And all players that belong to the more likely mol
group get a likelihood of 0.117 of being the mol, because on average 11.7% of all players with
a non-negative z-score (≥ 0) are the mol. After assigning the probabilities to all players, the
non-potential mol players are assigned a likelihood of zero and the probabilities are normalized.
Note that a different threshold is used to determine the likelihoods (i.e. 0) than the threshold
to separate less likely players from more likely players (i.e. -0.524), because only few players
had a z-score below -0.524. So using -0.524 as threshold to determine the likelihoods gives
inaccurate estimations.
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4 APPEARANCE LAYER

4.1 Introduction

Other players in the game show always seem to be more suspicious than the actualmol himself.
When non-mol players fail an exercise, it is shown to the audience. Whereas if the mol fails an
exercise, it is often not shown to the audience. It seems that the cast of ”Wie is de Mol?” tries
to manipulate us by showing only selected parts of episodes. Another ”Wie is de Mol?”-analyst
[8] noticed this as well and assumed that the mol appeared less during episodes than average.
Hence he built a face recognition analyser for ”Wie is de Mol” that counts for every player the
frames in which that player appears [8].1 Using this tool he analysed the first four episodes of
season 18, 19 & 20 and concluded that the mol appeared less. His hypothesis might be true,
however you cannot draw this conclusion based on just three seasons. Thus after asking for
permission to use his code, which was given, I started analysing more seasons.

The first ten seasons were not suitable for face recognition analysis, since the production and
the video quality of those seasons was different than for season 11 and onwards. Moreover in
season 11 and 12 the mol does not appear less than other players. Therefore only seasons
starting from season 13 were analysed. For these seasons a relative appearance feature was
computed per player and episode, which can be computed by the following formula:

Ap,e = ln

(
FCp,e∑
p′ FCp′,e

· #playerse + 10−4

)
(4.1)

where FCp,e is the frame count, i.e. the number of frames of episode e in which player p is
detected by the face recognition tool.2 Besides #playerse is the number of players that were
alive in that episode. It is necessary to multiply #playerse with the relative frame count

FCp,e∑
p′ FCp′,e

because with less players you have a higher relative frame count per player. Thus without this
multiplication, you cannot compare the appearances in different episodes with one another.
Moreover a logarithm is applied, because we are interested in the differences of

FCp,e∑
p′ FCp′,e

· #playerse

at multiplicative scale rather than additive scale. For example a score of 0.6 is more similar
to 1.0 than to 0.2. Besides a logarithmic transformation is also justified, since the frequency
distribution of raw appearance values (before applying logarithmic transformation) is skewed.
The frequency distribution of raw appearance values for the first five episodes of seasons 13
up to 21 is shown by Figure 4.1.

1This tool was built using the image face recognition tool of Adam Geitgey [9].
2Due to performance issues it takes too much time to analyse every frame. Therefore only every frame that is a

multiple of 10 was analysed for video formats with a framerate of 15 and 25 frames per second and for video formats
with a framerate of 30 frames per second only every frame that is a multiple of 15 was analysed.
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Figure 4.1: Raw Appearance values in the first 5 episodes of seasons 13 up to 21

Furthermore a small number 10−4 is added before applying the logarithm, since the frame count
FCp,e could be equal to 0 of which the logarithm is undefined, which is a drawback of logarith-
mic transformation. However an important benefit of the logarithm function is that it is strictly
increasing, i.e. x > y implies ln(x) > ln(y). Thus if a player appears more in episodes then
it also has a higher A value. So if the hypothesis of van Hoek [8] holds then the appearance
value A for the mol is more biased towards lower values than the A value for non-mol players.
A plot with the fully transformed appearance values A for all players of season 13 up to 21 for
the first five episodes are shown by Figure 4.2.

Figure 4.2: Appearance values in the first 5 episodes of seasons 13 up to 21

The relative appearance values A are grouped based on whether that player was the mol or
not. By looking at this scatter plot you might believe that the relative appearance value of non-
mol and mol players follow the same probability distribution. On the other hand for non-mol
players values between 0.0 and 0.5 occur more frequently than for mol players. But we are not
sure about the probability distributions behind these appearance values. Hence it seems to be
difficult to show that the appearance values of themol is more biased towards lower values. For-
tunately there is a statistical test for this, named the Mann-Whitney U Test (see Section 2.3.3).
With this test it can be shown whether the appearance values of themol is more biased towards
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lower values. For this test it is assumed that the mol appearance values X are independently
and identically distributed. Likewise the non-mol appearance values Y are assumed to be in-
dependently and identically distributed.3 The null hypothesis and alternative hypothesis for this
test are respectively:

H0 : ∀z∈R FX(z) = FY (z) H1 : ∀z∈R FX(z) < FY (z)

where FX(z) is the cumulative distribution function behind X and FY (z) is the cumulative dis-
tribution function behind Y . The sample size for X was 45 and for Y it was 329, which results
in a U value of 4992. And this U value corresponds to a Z-score of ≈ −3.543, resulting in a
p-value of ≈ 1.977 · 10−4. Hence the hypothesis of van Hoek holds, meaning that the mol ap-
pears significantly less than non-mol players. But how could one exploit this idea into a layer
that predicts the mol? In Section 4.2 different attempts of the past are discussed to predict the
mol. These approaches includes:

– Nearest Neighbor classifier, which is a non-parametric model that classifies appearance
values based on similar appearance values.

– Gaussian naïve Bayes classifier, which is a parametric model that assumes appearance
values follow a separate Gaussian distribution per class (mol and non-mol).

– A Split classifier, which classifies appearance values based on the interval it belongs to.

Furthermore in Section 4.3 the current approach, Kernel Density Estimation, is discussed. Also
a data augmentation technique (how to increase the data size) and an outlier cutoff technique
are discussed in this section.

4.2 Previous Approaches

4.2.1 Nearest Neighbor

The first implementation of the Appearance Layer was a Nearest Neighbor regressor model.
The logic behind Nearest Neighbor is that a new unknown case should be classified as simi-
lar known cases in the train data set. For example in a K-Nearest Neighbor regressor model
with train data points (x1, x2, . . . , xn), where xi = (xi1, x

i
2, . . . , x

i
m), and with corresponding train

labels (y1, y2, . . . , yn) the label y of an unknown point x is determined by:

y =
1

k

∑
xi∈Nk(x)

yi

where Nk(x) are the closest k points to x [20, section 2.3.2] and yi is in our case 1 if the
corresponding player is the mol and 0 otherwise. To determine the closest points, one can
use an arbitrary distance metric, e.g. Euclidean, Manhattan or Chebyshev distance. For this
implementation a Manhattan distance was used, i.e.

d(x′, x+) =
m∑
i=1

|x′i − x+i |

Moreover instead of the K-Nearest Neighbor regressor model, a Weighted Nearest Neighbor
regressor model was applied to determine label y for point x, which takes a weighted sum over
all labels based on the distance to x:

y =

∑n
i=1w(x, x

i) · yi∑n
i=1w(x, x

i)
with w(x, xi) =

1

1 + d(x, xi)2

3The appearance values are unfortunately not fully independent, see appendix D.
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Figure 4.3: Weighted Nearest Neighbor Prediction Model

The outcome labels y for every point x are then normalized over all players, which makes them
valid mol likelihoods as defined in Section 1.4. But how should the data point x be encoded?
There are two common options for this:

1. Group all appearance values per player, where Ap are all appearance values for player p
in a given season. In this case x is encoded as:

x = (Q(Ap, 0), Q(Ap, 1/4), Q(Ap, 2/4), Q(Ap, 3/4), Q(Ap, 1))

where Q(Ap, i) is the i relative quantile of set Ap.4 Note that the quantile function is taken
instead of sorting all appearance values, because then the dropouts from the first four
episodes could also be included in the training data. Moreover the cases where the quan-
tile i lies between 2 values A(j) and A(k), a linear interpolation between those values is
taken. Choosing this option results in 81 non-mol training points and 9 mol training points
with five features each if only data from season 13 up to 21 is used.

2. Treat all appearance values independently, which means that every appearance value for
a single episode and a single player is a separated point x. All outcome likelihoods for
the sample player are then naïvely aggregated (see Section 5.2.2). Choosing this option
results in 329 non-mol training points and 45 mol training points with one feature each if
only the data from season 13 up to 21 is used.

The second option is preferred over the first option, because with the second option the training
data size is multiplied by 5 whereas the number of features is divided by 5. And since there is
a shortage of training data, a larger data set and fewer features are preferred. And with a lower
ratio

#features
#training data

the risk of overfitting decreases as well. Therefore the second option is selected as encoding
for the nearest neighbor approach and further approaches.5 But this encoding unfortunately did
not have good results for the Nearest Neighbor approach (see Figure 4.3 and Figure 4.4), since
Nearest Neighbor does not perform well if there is no clear distinction between classes. Nearest
Neighbor either overfits on the train data, or underfits the pattern. In Figure 4.3 the prediction
is shown for this Weighted Nearest Neighbor approach, where appearance values are treated
independently. This prediction underfits, i.e. the likelihood (red line) is not much different for
different appearance values. On the other hand in Figure 4.4 the prediction is shown of a 25-
Nearest Neighbour model, which overfits a lot on the training data.

4By definition of the quantile function, Q(Ap, 0) is the minimum of all appearance values and Q(Ap, 1) is the
maximum of all appearance values.

5However the second option is not fully justified, because there is some dependency between appearance values
of the same player in different episodes, see Appendix D.
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Figure 4.4: 25-Nearest Neighbor Prediction Model

4.2.2 Gaussian naïve Bayes

Nearest Neighbor was not the best implementation for the Appearance Layer, but it was a good
starting point to illustrate that the model has to find the right balance between overfitting and
underfitting. So the second implementation idea was a Gaussian naïve Bayes classifier [22,
section 3.5]. In a Gaussian naïve Bayes classifier one determines the likelihood that player p is
the mol given the appearance values by the following formula:

P(p = Mol | A1, . . . , An) =
ρ(A1, . . . , An | p = Mol) · P(p = Mol)

ρ(A1, . . . , An | p = Mol) · P(p = Mol) + ρ(A1, . . . , An | p ̸= Mol) · P(p ̸= Mol)

where P(p = Mol) is determined by the relative amount of train data classified asmol and P(p ̸=
Mol) is determined by the relative amount of train data classified as non-mol. For example
for 374 training points of which 45 are classified as mol, we have P(p = Mol) = 45

374 and
P(p ̸= Mol) = 329

374 . Moreover in a Gaussian naïve Bayes classifier it is assumed that the
probability density functions ρ(A1, . . . , An | p = Mol) and ρ(A1, . . . , An | p ̸= Mol) can be
decomposed as:

ρ(A1, . . . , An | p = Mol) =
n∏

i=1

ρ(Ai | p = Mol) and ρ(A1, . . . , An | p ̸= Mol) =
n∏

i=1

ρ(Ai | p ̸= Mol)

with Ai | p = Mol ∼ N (µ1, σ
2
1) and Ai | p ̸= Mol ∼ N (µ2, σ

2
2) (normally distributed), where

µ1, µ2, σ1 and σ2 are the parameters that are estimated using the training data. Hence after
training, ρ(Ai | p = Mol) and ρ(Ai | p ̸= Mol) can be determined for every appearance value
Ai, which finally gives us P(p = Mol | A1, . . . , An) for every player p. But the likelihoods of all
potential mol players might again not sum up to 1, i.e.∑

p′

P(p′ = Mol | Ap′,1, . . . , Ap′,n) ̸= 1

because the Gaussian naïve Bayes classifier only ensures per player p that:

P(p = Mol | A1, . . . , An) + P(p ̸= Mol | A1, . . . , An) = 1

Thus all likelihoods are normalized over all players. In Figure 4.5 the performance of this model
is shown using the data of seasons 13 up to 21. The red line is the density ρ(Ai | p = Mol), the
green line is the density ρ(Ai | p ̸= Mol) and the blue line is the posterior based on only a single
appearance value P(p = Mol | Ai). Unfortunately this approach was inaccurate, since the mol
appearance values are too evenly distributed to follow a Gaussian distribution. Neither do the
mol appearance values seem to follow a Gaussian distribution, because the appearance values
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Figure 4.5: Gaussian Naïve Bayes Prediction Model

are not symmetrically distributed, e.g. lower outliers are more deviated from the mean than
higher outliers. Therefore the posterior (blue line) is also inaccurate, because the underlying
assumptions are invalid. This can also be seen in Figure 4.5, where there are 10 non-mol
appearance values withmol likelihoods ≥ 0.3 compared to 3mol appearance values with amol
likelihood ≥ 0.3. A mol likelihood of 3/13 ≈ 0.23 was more appropriate for these appearance
values.

4.2.3 Split Classifier

Thus none approach has been successful so far. Therefore a new approach was used which
again treats all appearance values independently. This classifier splits the appearance val-
ues into a lower and higher part, where both intervals get a separate likelihood. To determine
whether an appearance value belongs to the lower or higher part, we compute the median m
over all appearance values. Appearance values that are smaller than or equal to the median
m belong to the lower part and the values larger than the median m belong to the higher part.
By splitting at the median, both intervals contain an equal number of values, which ensures a
good estimation of the mol likelihood for both intervals. These likelihoods Plower (for the lower
appearance values) and Phigher (for the higher appearance values) can be estimated by using
the following formulae on the train data:

Plower =
∑

xi≤m yi

#{xi ≤ m}
and Phigher =

∑
xi>m yi

#{xi > m}

where yi is 1 if the corresponding appearance value belongs to themol and 0 if the correspond-
ing appearance value did not belong to the mol. In other words these likelihoods Plower and
Phigher are equal to the relative number ofmol cases in those intervals. Using these likelihoods,
the likelihood that someone is the mol for new unseen cases can be computed as:

P(p = Mol | A1, . . . , An) =
n∏

i=1

P(p = Mol | Ai)

with

P(p = Mol | Ai) =

{
Plower if Ai ≤ m

Phigher if Ai > m

after which the likelihoods are normalized over all potential mol players. Training this Split Clas-
sifier for the data of season 13 up to 21 results in the prediction shown in Figure 4.6, which was
the first satisfactory prediction for the Appearance Layer. However it is an issue that appear-
ance values slightly smaller than -0.05 are classified totally different than appearance values
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Figure 4.6: Split Classifier Prediction Model

slightly larger than -0.05 and there is no justification why the split should happen at -0.05. A so-
lution to level out these differences is to split the appearance values into more intervals. Though
three splits would not be an appropriate choice, because values in the middle are grouped to-
gether which is where we expect to be a distinction between mol and non-mol cases. And four
or more splits worsens the mol likelihood estimations for those intervals, because with four or
more splits there are intervals with five mol appearance values or less which is too few for an
accurate estimation. Thus the Split Classifier has some major drawbacks. Nevertheless it is
more stable and accurate than the Gaussian naïve Bayes classifier.

4.3 Current Approach

With only one feature and 374 train appearance values (of which 45 are mol appearance val-
ues), it should be possible to find a better prediction model than the models used before. How-
ever it was difficult to determine such prediction model. Therefore the problem was simplified
to discovering an approach which estimates the probability density function of the appearance
values for non-mol players and mol players. If it is possible to estimate the probability den-
sity function for both cases then a naïve Bayes classifier can use it to determine the likelihood
of being the mol. Fortunately this method exists and it is named Kernel Density Estimation,
which can estimate the probability density function of a random variable given a random sam-
ple of that random variable. However Kernel Density Estimation is a non-parametric method
and therefore requires larger sample sizes than parametric methods, like a normal distributed
density estimation, would require to obtain accurate estimations. Nevertheless Kernel Density
Estimation performs better for more cases than parametric models would do.

4.3.1 Kernel Density Estimation

Kernel Density Estimation estimates the probability density function f(x) for an independent
and identically distributed sample X = (X1, X2, . . . , Xn) as [23, section 2.4]:

f(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
whereK(x) is a kernel function and h is the bandwidth parameter. For selection of these kernel
function K(x) and the bandwidth parameter h you have plenty of options, which can make the
difference between an accurate estimation and inaccurate estimation. Though there are some
important conditions which have to be satisfied. The bandwidth parameter h should be a positive
value and desirably the kernel function K(x) should satisfy the following conditions:6

6Only the first condition is really required. The other conditions are desirable for a Kernel function K(x).
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1. K(x) should be integrable and
∫∞
−∞K(x)∂x = 1. [23, section 2.4]

2. K(x) should be symmetric, i.e. ∀x∈R K(x) = K(−x). [23, section 2.4]

3. K(x) should be non-negative, i.e. ∀x∈R K(x) ≥ 0. [23, section 2.4]

4. K(x) should be decreasing as |x| increases, i.e. ∀x,y∈R |x| ≤ |y| =⇒ K(x) ≥ K(y).

Commonly selected kernel functions are the Gaussian, Rectangular, Triangular and Epanech-
nikov kernel functions [23, page 43]. For the Appearance Layer we stick to the Gaussian kernel,
which is defined as:

K(x) =
1√
2π

e−
1
2
x2

The advantages of the Gaussian kernel over other kernel functions is that it is a well-studied
kernel, it is a smooth kernel and has a non-zero density for all values x. The latter reason is
especially important, because kernels with zero density for some values x could cause troubles
with zero division in the naïve Bayes computation, which becomes clear later. To determine the
bandwidth h for the kernel density estimation, the following formula is used:

h = 1.06 ·min
(
σ,
IQR
1.34

)
· n− 1

5

which is a general rule of thumb when choosing h.7 Remark that there are also different band-
width estimation rules, but since IQR in this formula is the interquartile range, i.e. the difference
between the third quartile and the first quartile of X. Furthermore σ in this formula is the esti-
mated standard deviation of X, which is defined as:

σ =

√√√√ 1

n− 1

n∑
i=1

(Xi − µ)2 with µ =
1

n

n∑
i=1

Xi

With this method to select the bandwidth h and the selected kernel functionK(x), the probability
density function of the appearance values can be estimated. And this is done for the mol cases
ρ(x | p = Mol) and the non-mol cases ρ(x | p ̸= Mol). Using these densities we are now finally
able to compute the likelihood of being themol with a naïve Bayes approach (we assume again
independence between the appearance values). According to the naïve Bayes approach the
mol likelihood can be computed as (similarly as in Section 4.2.2):

P(p = Mol | A1, . . . , An) =
ρ(A1, . . . , An | p = Mol) · P(p = Mol)

ρ(A1, . . . , An | p = Mol) · P(p = Mol) + ρ(A1, . . . , An | p ̸= Mol) · P(p ̸= Mol)

where P(p = Mol) = 1
#players left and P(p ̸= Mol) = #players left−1

#players left . Moreover because of the
assumed independence it holds that:

ρ(A1, . . . , An | p = Mol) =
n∏

i=1

ρ(Ai | p = Mol) and ρ(A1, . . . , An | p ̸= Mol) =
n∏

i=1

ρ(Ai | p ̸= Mol)

which makes it possible to compute the likelihood of being the mol given the kernel density
estimation and the appearance values. Note however that the mol likelihoods of all players
might not sum up to 1, so they have to be normalized first before being interpreted as mol
likelihoods.

7This formula is mentioned in the book ’Density Estimation for Statistics and Data Analysis’ [23, section 3.4.2],
which is a combination of rule (3.28) and (3.30).
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4.3.2 Data Augmentation

One problem with Kernel Density Estimation is that the accuracy of the estimation highly de-
pends on the amount of training data. There are plenty of non-mol training data, i.e. 329 cases
in total when the appearance values of the first five episodes are used for season 13 up to 21.
So increasing the number of non-mol cases does not have a major influence on the estimation
of ρ(x | p ̸= Mol). However with only 45 appearance values for mol cases, we can definitely
get a better estimation of ρ(x | p = Mol) by acquiring more appearance values. A technique
that could be used to increase the number of appearance values is to include the appearance
values of more episodes in the training data and to use appearance values of more episodes to
make predictions. There is however a risk by doing so. In later episodes there are fewer play-
ers alive which implies that the variance of the relative frame count FCp,e∑

p′ FCp′,e
in Formula 4.1 is

larger. So using an additional episode increases the number of outliers. Moreover because the
variance is larger in later episodes, these appearance values are less representative compared
to the first episode. For example when including the sixth episode of every season in the data
set, the sixth episode of season 17 & 18 is included as well with only five players alive. These
appearance values are not comparable to the first episode with ten players alive. Thus the sixth
episode is not added to the data set.

Another method to increase the data size is to cut every episode in 4 parts. These cuts are
selected by joining all frame numbers for every player, in which the given player appears, to-
gether as a group of frame numbers F = (f1, f2, . . . , fm).8 As cuts the first quartile, the median
and the third quartile of F are chosen, which splits the group of all frames in 4 subgroups with
an (approximately) equal number of frames. Now we enable/disable parts and compute the
appearance value (see Formula 4.1) over only the enabled parts and this is done for all com-
binations where at least 2 parts are enabled, which are 11 combinations in total (see Figure
4.7). Therefore this method multiplies the number of appearance values by 11. Hence after
using this method there are 495mol appearance values and 3619 non-mol appearance values,
which should give accurate estimations for the probability density functions ρ(x | p ̸= Mol) and
ρ(x | p = Mol). The only disadvantage of this technique is that it increases the variance of
the appearance values. Although this is mostly prevented by only allowing combinations where
at least 2 cuts are enabled. Furthermore with this method you get a lot of similar appearance
values, because a player that appears a lot in one part of the episode appears more in another
part of the episode as well. Moreover appearance values in combinations where 3 parts are
enabled are very similar to the appearance values where all parts are enabled. However the
benefit of this technique, i.e. multiplying the data size by 11, outweighs these disadvantages
and therefore this technique is used.

Figure 4.7: All Combinations (green means enabled, red means disabled)

8Note that F is not a set, which means that a frame number f can occur twice or more in F if multiple players
appeared in that same frame f .
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4.3.3 Outlier Cutoff

So after using the data augmentationmethod and training the kernel density classifier, we should
have a proper classifier. Unfortunately this is not the case. When both is done, the appearance
values (for season 13 up to 21) as shown in Figure 4.8 are obtained. This corresponds to the
prediction shown in Figure 4.9 that is based on a single appearance value (where it is assumed
that there are 10 potential mol players).

Figure 4.8: Only Augmented Appearance Values

Figure 4.9: Only Augmented Kernel Density Prediction Model

The red line in Figure 4.9 is an estimated probability density of all the mol appearance values,
i.e. ρ(Ai | p = Mol). The green line is an estimated probability density of all the non-mol
appearance values ρ(Ai | p ̸= Mol). And the blue line is the posterior based on a single
appearance value P(p = Mol | Ai). What becomes clear from this plot is that the prediction is
decent for appearance values in the range of -2 up to 1. But outside this range, the prediction is
extreme. For example a player with an appearance value of -6 can never be the mol, whereas
a player with an appearance value of -3.3 is always themol. There are 2 likely causes for these
extreme predictions:

– The probability densities ρ(Ai | p = Mol) and ρ(Ai | p ̸= Mol) for an appearance value
Ai outside the range (−2, 1) is quite low. So in the naïve Bayes computation of the mol
likelihood P(p = Mol | A1, . . . , An) a small value is divided by a small value which results
in unexpected outcomes.

– There are outlier appearance values shown in Figure 4.8 that have a negative impact on
the Kernel Density Estimation and the bandwidth selection.

To deal with the first issue, a lower bound LB and an upper bound UB are determined on the
appearance values for which predictions are made. These bounds are defined such that:

P(A ≤ LB) = 0.005 P(A ≤ UB) = 0.995
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where P(A ≤ x) is the probability that an appearance value A is smaller than x which can be
estimated by:

P(A ≤ x) = P(A ≤ x | p = Mol) · P(p = Mol) + P(A ≤ x | p ̸= Mol) · P(p ̸= Mol)

=

∫ x

−∞
ρ(A | p = Mol)∂A · P(p = Mol) +

∫ x

−∞
ρ(A | p ̸= Mol)∂A · P(p ̸= Mol)

=

∫ x

−∞

1

n1h

n1∑
i=1

K

(
A−X1,i

h

)
∂A · P(p = Mol) +

∫ x

−∞

1

n2h

n2∑
i=1

K

(
A−X2,i

h

)
∂A · P(p ̸= Mol)

=
P(p = Mol)

n1h

n1∑
i=1

∫ x

−∞
K

(
A−X1,i

h

)
∂A+

P(p ̸= Mol)
n2h

n2∑
i=1

∫ x

−∞
K

(
A−X2,i

h

)
∂A

=
P(p = Mol)

n1h

n1∑
i=1

Φ

(
x−X1,i

h

)
+
P(p ̸= Mol)

n2h

n2∑
i=1

Φ

(
x−X2,i

h

)
In this formula Φ(x) is the cumulative distribution function of a standard normal distribution.
Moreover (X1,1, X1,2, . . . , X1,n1) are all mol appearance values used as training data and
(X2,1, X2,2, . . . , X2,n2) are all non-mol appearance values used as training data. Thus P(A ≤ x)
is fully estimatable, which can be used in combination with the bisection method [24, section
4.3] to determine the lower bound LB and the upper bound UB on the appearance values. If an
appearance value A occurs during the prediction phase that is lower than LB, the posterior is
computed as if A would be equal to LB. More specifically:

P (p = Mol | A ≤ LB) = P (p = Mol | A = LB)

Similar if A is larger than UB, the posterior is computed as if A would be equal to UB, i.e.

P (p = Mol | A ≥ UB) = P (p = Mol | A = UB)

To deal with the second issue, 0.5% of the lowest appearance values are removed and 0.5% of
the highest appearance values are removed from the train data, which removes all outliers. Re-
mark that outliers are not false measurements, e.g. during episode 2 of season 17 some players
were kidnapped and therefore did not appear during a large part of the episode. Thus these
players got a rightful low appearance value for this episode. However they are removed, since
they have a negative impact on the Kernel Density Estimation. Secondly this technique also
removes some inliers, but there is plenty of data after using the data augmentation techniques,
so removing some inliers does not worsen the Kernel Density Estimation a lot. In Figure 4.10,
the prediction is shown after using these techniques (where it is assumed that there are 10
potential mol players).

Figure 4.10: Kernel Density Prediction Model
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This prediction is quite similar to the prediction in Figure 4.9 for the range (−2, 1). Although
in this prediction appearance values get cut off, i.e. the black vertical line on the left in Figure
4.10 represents the lower bound LB and the black vertical line on the right represents the upper
bound UB. These bounds ensure that all predictions happen in a safe range. So with all these
cut-off techniques and data augmentation techniques combined, the likelihood of being the mol
can be computed, i.e.

P(p = Mol | A1, . . . , An)

All of these likelihoods of course have to be normalized, because they might not sum up to 1
for all players. Moreover after normalization, all predictions are limited to the range:(

0.2

#players left
,

1

#players left

)
This means that likelihoods lower than 0.2

#players left are set to 0.2
#players left and values higher than

1
#players left are set to 1

#players left , except for non-potential mol players whose likelihood is set to
zero. After this process the likelihoods are normalized again. The likelihoods of the appear-
ance layer get limited to this range, because the prediction of the appearance layer went hor-
ribly wrong for season 16. Moreover in season 11 and 12 there was also no clear pattern in
appearance values. And there are only 8 seasons of training data which is still not a lot. More
specifically, the reason for this range is that the Appearance Layer should only be used exclude
players asmol, thus the predictions have an upperbound of 1

#players left . Moreover the predictions
have lowerbound of 0.2

#players left , because the Appearance Layer did not provide good results for
seasons 11, 12 and 16. If we weight seasons 11 and 12 by 0.5 (since earlier seasons are less
representative than later seasons) then relatively

0.5 + 0.5 + 1

0.5 + 0.5 + 9
= 0.2

of the seasons had an inaccurate prediction by the Appearance Layer.
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5 AGGREGATION

5.1 Introduction

The strength of the Moldel is of course that it uses multiple prediction models rather than a
single one, which should improve the prediction strength. This is similar to a crime investigation,
e.g. if you have only a single witness then it is hard to determine the perpetrator of this crime.
The witness might be lying or could have memorized things wrongly. Whereas with multiple
witnesses it is very unlikely that they all come up with the same lie or have all memorized
the same thing wrongly. Thus with multiple witnesses it should be easier to determine the
perpetrator. Similarly for the Moldel it sometimes happens that a layer predicts the wrong mol.
It happens for example than an early dropouts suspected the actual mol, the mol characteristic
did not match with those of previousmol players or themol appeared a lot. However in contrast
to the witnesses example, predictions of the layers also shows a certainty level. This adds an
additional dimension to the problem, which can be used to improve the final prediction.

All the layers that are aggregated include the Exam Drop Layer, the Exam Pass Layer, the
Wikipedia Layer and the Appearance Layer. An issue with aggregating these layers is that
these layers cannot make predictions for all seasons. For example the Appearance Layer can
only make predictions starting from season 13, whereas the ExamPass Layer can alreadymake
predictions starting from season 5. To overcome this problem, the prediction of any layer for
an undefined season is defined as the uniform distribution (see Equation 1.1). With this fix it is
ensured that in all seasons every player pi has 4 predictions, even if some layers are undefined
for that season. These predictions for player pi are: ρi,1 of the Exam Drop Layer, ρi,2 of the
Exam Pass Layer, ρi,3 of the Wikipedia Layer and ρi,4 of the Appearance Layer. In the next
sections the following details are discussed regarding aggregation of these predictions:

– In Section 5.2 all different approaches are discussed that could be used to aggregate the
layers. It starts with simple techniques, which includes arithmetic mean, naïve aggrega-
tion and geometric mean. After which a more advanced ensemble learning technique is
discussed, called stacking. The advantages and disadvantages of each of these methods
are discussed as well.

– In Section 5.3 it is discussed which approach has been selected for the Moldel and how
it has been implemented.

– In Section 5.4 it is discussed how the predictions can be adjusted based on social media
analysis. Furthermore the reasoning behind the social media analysis is discussed.
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5.2 Approaches

5.2.1 Arithmetic Mean

A frequently used technique to aggregate multiple predictions is to use the arithmetic mean of
the predictions, i.e. for player pi the mol likelihood ρi is computed as:

ρi =
1

4

4∑
j=1

ρi,j

after which the mol likelihoods ρ1, . . . , ρn are normalized for respective players p1, . . . , pn. The
advantage of this aggregation technique is that it is easy to implement and no additional train-
ing data is needed. Though this method does not provide realistic mol likelihoods, which is
illustrated by the following example:

Example 7. Suppose there are 4 potential mol players Art, Karin, Patrick and Soundos. More-
over the Exam Drop Layer gives Art a mol likelihood of 0.01, whereas Karin, Patrick and Soun-
dos all get amol likelihood of 0.33 by the Exam Drop Layer. Furthermore the Exam Pass Layer,
the Wikipedia Layer and the Appearance Layer are all undecided, i.e. they give all players a
likelihood of 0.25. After using the arithmetic mean as aggregation technique, the following mol
likelihoods are obtained:

Art Karin Patrick Soundos
Mol likelihood 0.19 0.27 0.27 0.27

Table 5.1: Predictions after Arithmetic Mean

What is troublesome about the predictions after arithmetic mean is that Art has a decent likeli-
hood of being the mol whereas the Exam Drop Layer almost excludes Art as mol. And these
kind of predictions are not uncommon for the Moldel, where a player is often given only a very
low mol likelihood by a single layer. In the next aggregation technique lower likelihoods have
more influence on the outcome.

5.2.2 Naïve Aggregation

Likelihoods can also be aggregated using naïve aggregation. Naïve aggregation multiplies all
likelihoods together, i.e. for player pi the aggregated mol likelihood ρi is computed as:

ρi =
4∏

j=1

ρi,j

after which the mol likelihoods ρ1, . . . , ρn are normalized for respective players p1, . . . , pn. The
benefits of naïve aggregation are similar as arithmetic mean in the sense that naïve aggregation
also does not require any training data and is easy to implement as well. But in addition lower
likelihoods have more influence on the outcome, e.g. the mol likelihoods for Example 7 would
have been:

Art Karin Patrick Soundos
Mol likelihood 0.01 0.33 0.33 0.33

Table 5.2: Predictions after Naïve Aggregation

if naïve aggregation was used as technique. And these mol likelihoods are more realistic than
the likelihoods given by the arithmetic mean. Moreover this technique is mathematically justifi-
able as well if:
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1. The predictions are fully accurate, i.e. the prediction of the layer j for player pi is equal to
the probability of being the mol given the data provided to that layer j:

ρi,j = P(pi = Mol | Layer jData )

2. The predictions of the layers are conditionally independent given the identity of the mol,
i.e.

P(Layer 1Data , . . . , Layer 4Data | pi = Mol) =
4∏

j=1

P(Layer jData | pi = Mol)

since aggregation is used to estimate P(pi = Mol | Layer 1Data , . . . , Layer 4Data ) which can be rewritten
with both assumptions as:

P(pi = Mol | Layer 1Data , . . . , Layer 4Data ) =
P(pi = Mol)

P(Layer 1Data , . . . , Layer 4Data )
· P(Layer 1Data , . . . , Layer 4Data | pi = Mol)

=
P(pi = Mol)

P(Layer 1Data , . . . , Layer 4Data )
·

4∏
j=1

P(Layer jData | pi = Mol)

=
P(pi = Mol)

P(Layer 1Data , . . . , Layer 4Data )
·

4∏
j=1

P(Layer jData ) · P(pi = Mol | Layer jData )

P(pi = Mol)

=
P(pi = Mol)

P(Layer 1Data , . . . , Layer 4Data )
·

4∏
j=1

P(Layer jData ) · ρi,j
P(pi = Mol)

=

∏4
j=1 P(Layer jData )

P(Layer 1Data , . . . , Layer 4Data ) · P(pi = Mol)3
·

4∏
j=1

ρi,j

= α ·
4∏

j=1

ρi,j

where α is a constant used to normalize the probabilities over all players. Although it is doubtful
whether both conditions are satisfied. A lot of simplifications have been made in all layers and
there is not enough training data to estimate the mol likelihood in every case, which causes

ρi,j ̸= P(pi = Mol | Layer jData )

Furthermore conditional independence between data of different layers is also not fully justi-
fiable. For example the data for the Exam Drop Layer and the Exam Pass Layer are both
extracted from the same source. So both conditions are unlikely to hold, in which case this
aggregation technique could be very inaccurate. To illustrate this, if the Exam Drop Layer in
Example 7 is aggregated with itself (which is a clear violation of the conditionally independence
principle) then the prediction would be as shown by Table 5.3.

Art Karin Patrick Soundos
Mol likelihood 0.0001 0.3333 0.3333 0.3333

Table 5.3: Predictions after Naïve Aggregation of 2 Exam Drop Layers
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5.2.3 Geometric Mean

An aggregation technique that is also considerable is geometric mean. Geometric mean aggre-
gates the mol likelihoods by:

ρi =
4

√√√√ 4∏
j=1

ρi,j

after which the mol likelihoods ρ1, . . . , ρn are normalized for respective players p1, . . . , pn. The
characteristic of the geometric mean is that low likelihoods havemore influence on the prediction
than for the arithmetic mean, but less than naïve aggregation. In Example 7 the prediction using
geometric mean would have been:

Art Karin Patrick Soundos
Mol likelihood 0.1133 0.2956 0.2956 0.2956

Table 5.4: Predictions after Geometric Mean

The benefits of geometric mean are similar as arithmetic mean and naïve aggregation, i.e.
geometric mean is easy to implement and no additional training data is needed. Though all
these aggregation techniques so far weight layers equally, whereas some layers provide more
reliable predictions. An unequal weighting could thus provide better results.

5.2.4 Stacking

Stacking [25, section 4.4.1] is a general framework rather than a specific method to aggregate
multiple predictions into one prediction that allows unequal weighting. In stacking all the k
individual classifiers, also named the first-level learners, are trained on a data set D:

D = {(x1, y1), . . . , (xn, yn)

where xi is an input vector and yi is the corresponding label. These first-level learners are then
used on a different data set:

D′ = {(x′1, y′1), . . . (x′m, y′m)}

which means that y′1, . . . , y′m in this data set D′ must be predicted by the first-level learners
based on x′1, . . . , x

′
m
1 resulting in a prediction matrix:

y∗1,1 y∗1,2 . . . y∗1,k−1 y∗1,k
y∗2,1 y∗2,2 . . . y∗2,k−1 y∗2,k
...

... . . . ...
...

y∗m−1,1 y∗m−1,2 . . . y∗m−1,k−1 y∗m−1,k

y∗m,1 y∗m,2 . . . y∗m,k−1 y∗m,k


where y∗i,j is an estimate of y′i by the jth classifier. And with this prediction matrix and corre-
sponding actual labels a new data set is constructed:

D+ = {(x+1 , y
′
1), . . . , (x

+
m, y′m)}

The input vector x+i in this data set D+ is defined as the ith row in the prediction matrix, i.e.

x+i = (y∗i,1, y
∗
i,2, . . . , y

∗
i,k−1, y

∗
i,k)

1Note that it is important in this step that y′
1, . . . , y

′
m are not leaked to the first-level learners.
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After this step a new classifierM , called the second-level learner, is trained on data setD+ which
finalizes the training process of the stacking framework. To make predictions using the stacking
framework, you make a prediction with all k individual classifiers for a new vector x− resulting
in predictions (y−1 , y

−
2 , . . . , y

−
m) and you make a prediction with M for (y−1 , y

−
2 , . . . , y

−
m) resulting

in the final prediction label y−. The benefit of stacking is that it is applicable for the Moldel
as well. Though in the framework the same input x1, . . . , xn and x′1, . . . , x

′
n is used by all first-

level learners, whereas in the Moldel different input is used by different layers. Nevertheless
in stacking it is allowed to use different input for every individual classifier. xi and x′i can be
vectors of input vectors instead, i.e.

xi = (xi,1, xi,2, . . . , xi,k) x′i = (x′i,1, x
′
i,2, . . . , x

′
i,k)

This is an advantage over other ensemble learning methods, such as bagging, boosting and
Bayesian model averaging that require the same input to be used by all first-level learners.
Likewise stacking has a benefit over arithmetic mean, naïve aggregation and geometric mean,
since it allows unequal weighting of the predictions and can therefore produce more accurate
predictions. However stacking also has some drawbacks. There is often less training data
available for the layers if stacking is used, because a part of the data is required for training
the second-level learner. To minimize this issue one could use cross validation [26, section
11.2.4], where the data set D is split up in partitions D = D1 ∪ D2 ∪ · · · ∪ Dt such that every
partition Di holds a part of the data. The second-level learner is then trained on every data set
Di, where the layers are trained every time on the data set D \Di. However this solution has
as disadvantage that the total training time compared to arithmetic mean, naïve aggregation
and geometric mean is multiplied by t, where t is the number of partitions. So this solution is
much slower than arithmetic mean, naïve aggregation and geometric mean. The last drawback
of stacking is that responsibilities become vague. Suppose for example that the aggregated
predictions are inaccurate. Is this caused by an inaccurate second-level learner, is this caused
by inaccurate first-level learners or both?

5.3 Current Approach

5.3.1 Second-Level Learner

Despite the disadvantages of stacking, it was used, since it is expected to providemore accurate
predictions than the other aggregation methods. As second-level learner for stacking a Logistic
Regression is taken for which a similar implementation (including stop criterion) as in Section
2.3.4 is used excluding training weights. Thus the mol likelihood ρi for player pi is determined
as:

ρi = σ(z) =
1

1 + e−z

where z is equal to wTxi, w are the trained weights for the logistic regression and xi is the input
encoding of player pi. The selected input encoding for xi is:

xi = (σ−1(ρi,1), σ
−1(ρi,2), σ

−1(ρi,3), σ
−1(ρi,4), σ

−1

(
1

|P+|

)
, 1)T

with σ−1(z) being the logit function which is the inverse of the logistic function σ(z) and is defined
as:2

σ−1(z) = log
(

z

1− z

)
Moreover ρi,1, ρi,2, ρi,3, ρi,4 are the predictions of respectively the Exam Drop Layer, the Exam
Pass Layer, the Wikipedia Layer and the Appearance Layer and |P+| is the number of potential

2An exception to this rule is described in the Exception Handling appendix at A.3.1.
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mol players. The benefit by applying the logit function on the features is that it allows the logistic
regression to take some weighted average of the predictions in a linear space and the benefit
by adding the uniform prediction 1

|P+|
as feature is that the stacking algorithm can decide to

temper the prediction if it is uncertain about the mol. Secondly to temper the predictions an
L2 regularization is applied, which penalizes large training weights. In a normal non-regularized
logistic regression, w is computed by minimizing the log loss (regarding Equation 2.1):

argmin
w

−
∑
x,y∈T

y · ln(σ(wTx)) + (1− y) ln(1− σ(wTx))

In an L2 regularized version the following loss is minimized instead:

argmin
w

−
∑
x,y∈T

(
y · ln(σ(wTx)) + (1− y) ln(1− σ(wTx))

)
+

k∑
i=1

(wi)
2

which prefers smaller training weights over larger training weights. The advantage of a L2 reg-
ularized version is that there is a smaller risk of overfitting and the prediction outcomes will be
more moderate. This is preferred, because only a few seasons so far have been evaluated by
the Moldel.

5.3.2 Training Procedure

Prediction in the Moldel are identified by a pair (s, e) where s is the season number for which the
prediction is made and e is the episode number after which the prediction is made. A prediction
identified by (s, e) is able to use all data from season s up to episode e to determine the mol
likelihood of every player. It is allowed for an identifier to have e = 0 which means that the
prediction is made before the first episode has even been broadcast.3 If the Moldel is evaluated
on an identifier (s′, e′) in the set of all identifiers:

I = {(5, 0), (5, 1), . . . , (11, 10), . . . , (21, 6), (21, 7)}

for which there is data, then the available identifiers for training the second-level logistic regres-
sion are:

I ′ = {(s, e) ∈ I | s ̸= s′}

This set of available identifiers for stacking is narrowed further down to I+, by looking at how
many potential mol players there are in season s′ after episode e′ which is defined as |Ps′,e′ |.
The possible values of |Ps′,e′ | are:

– |Ps′,e′ | ≥ 9, in which case I+ is defined as all identifiers (s, e) in I ′ where there are at least
9 potential mol players in season s after episode e, i.e.

I+ = {(s, e) ∈ I ′ | |Ps,e| ≥ 9}

– |Ps′,e′ | ∈ {7, 8}, in which case I+ is defined as all identifiers (s, e) in I ′ where there are
either 7 or 8 potential mol players in season s after episode e, i.e.

I+ = {(s, e) ∈ I ′ | |Ps,e| ∈ {7, 8}}

– |Ps′,e′ | ∈ {5, 6}, in which case I+ is defined as all identifiers (s, e) in I ′ where there are
either 5 or 6 potential mol players in season s after episode e, i.e.

I+ = {(s, e) ∈ I ′ | |Ps,e| ∈ {5, 6}}
3With e = 0 the prediction is solely based on the Wikipedia layer.

58



– |Ps′,e′ | ≤ 4, in which case I+ is defined as all identifiers (s, e) in I ′ where there are at most
4 potential mol players in season s after episode e, i.e.

I+ = {(s, e) ∈ I ′ | |Ps,e| ≤ 4}

The pairs (s, e) in data set I+ are then used to train the logistic regression. An advantage
of this categorization technique is that the stacking algorithm can temper earlier predictions if
there are still many potential mol players, whereas it can strengthens predictions if there are
only few potential mol players. To train this logistic regression with data set I+, cross validation
is applied (as mentioned at the end of Section 5.2.4). This means that we loop over all identifiers
(s∗, e∗) ∈ I+ (a), train the layers on the remaining seasons S∗ (b) with:

S∗ = {s | ∃e (s, e) ∈ I ∧ s ̸= s∗}

andmake a prediction by all trained layers for identifier (s∗, e∗) (c) which results in the prediction
vector for every potential mol players p∗ ∈ Ps∗,e∗

ρ(s∗,e∗,p∗) = (ρ(s∗,e∗,p∗,1), ρ(s∗,e∗,p∗,2), ρ(s∗,e∗,p∗,3), ρ(s∗,e∗,p∗,4))

where ρ(s∗,e∗,p∗,1) is the prediction of the ExamDrop Layer for player p∗ in season s∗ after episode
e∗ trained on the seasons S∗. Similarly ρ(s∗,e∗,p∗,2) is this prediction by the Exam Pass Layer,
ρ(s∗,e∗,p∗,3) is this prediction by the Wikipedia Layer and ρ(s∗,e∗,p∗,4) is this prediction by the Ap-
pearance Layer. These prediction vectors are then transformed to (d):

ρ′(s∗,e∗,p∗) = (σ−1(ρ(s∗,e∗,p∗,1)), σ
−1(ρ(s∗,e∗,p∗,2)), σ

−1(ρ(s∗,e∗,p∗,3)), σ
−1(ρ(s∗,e∗,p∗,4)), σ

−1

(
1

|Ps∗,e∗ |

)
, 1)

which are all used to train the second-level logistic regression. The pseudocode for the training
procedure is as follows:

Algorithm 2 Stacking Training Procedure
function trainStacker(I+) ▷ I+ are the available identifiers for training the Stacker.
1: D = {} ▷ Start with an empty data set.
2: for (s∗, e∗) ∈ I+ do ▷ Execute step (a).
3: L = array of all untrained layers
4: S∗ = {s | ∃e (s, e) ∈ I ∧ s ̸= s∗} ▷ S∗ are available seasons for training the layers.
5: for l ∈ L do
6: l.train(S∗) ▷ Train layer l on seasons S∗, which is step (b).
7: end for
8: for p∗ ∈ Ps∗,e∗ do
9: ρ′ = [ ] ▷ The input encoding of this player.
10: for l ∈ L do
11: ▷ Make a prediction by layer l for player p∗ in season s∗ after episode e∗,
12: r = l.predict(s∗, e∗, p∗) ▷ which is step (c).
13: ρ′.append(σ−1(r)) ▷ Execute the first part of step (d).
14: end for
15: ρ′.append(σ−1

(
1

|Ps∗,e∗ |

)
, 1) ▷ Execute the second part of step (d).

16: D.append(ρ′ → isMol(p∗))
17: end for
18: end for
19: M = untrained logistic regression
20: M.train(D) ▷ Train the stacker on data set D.
21: return M
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5.3.3 Weakened Training

The Wikipedia Layer unfortunately does not have the benefit of having a variety of data com-
pared to the other layers. Hence the likelihood outcomes of the Wikipedia Layer are regulated,
which means that the outcome mol likelihoods are either 0.079 or 0.117 (see Sections 3.3.4).
The issue with applying stacking on the Wikipedia Layer is that the outcome likelihoods are
either 0.079 or 0.117 of being the mol (see Section 3.3.4). These likelihoods are determined
based on a z-score threshold of 0, whereas the Wikipedia Layer uses a threshold of -0.524 to
divide the players in less likely mol players and more likely mol players. If stacking is directly
applied on the Wikipedia Layer then the likelihood for the less likelymol group is adjusted to the
relative number of mol players (compared to all players) having a z-score smaller than -0.524.
And for the more likely mol group it is adjusted similarly to the relative number of mol players
(compared to all players) having a z-score larger or equal than -0.524. Thus the solution is to
use Weakened Wikipedia Layer in the training phase that classifies all players with a z-score
smaller than 0 as less likely to be the mol and with a z-score larger or equal than 0 as more
likely to be the mol.

5.3.4 Prediction Procedure

After the training procedure, the prediction procedure of the stacking framework is executed.
This happens by training all layers on the identifiers S′ (e), with

S′ = {s | ∃e (s, e) ∈ I ′}

The next step is using these trained layers to make a prediction for identifier (s′, e′) (f), which
results in the prediction vector for every potential mol players p′ ∈ Ps′,e′ :

ρ(s′,e′,p′) = (ρ(s′,e′,p′,1), ρ(s′,e′,p′,2), ρ(s′,e′,p′,3), ρ(s′,e′,p′,4))

These predictions vectors are then transformed similarly as in the training phase to: (g)

ρ′(s′,e′,p′) = (σ−1(ρ(s′,e′,p′,1)), σ
−1(ρ(s′,e′,p′,2)), σ

−1(ρ(s′,e′,p′,3)), σ
−1(ρ(s′,e′,p′,4)), σ

−1

(
1

|Ps′,e′ |

)
, 1)

which is used as input for the second-level logistic regression M to compute the aggregated
mol likelihood for player p′ after episode e′ in season s′ (h). The pseudocode for the prediction
procedure is shown by Algorithm 3.

Algorithm 3 Stacking Prediction Procedure
function predict(S′,M, s′, e′, p′)
1: ▷ S′ are the available seasons for training the layers; M is the trained stacker; s′, e′ and

p′ are respectively the season, the episode and player for which the prediction is made.
2: L = array of all untrained layers
3: for l ∈ L do
4: l.train(S′) ▷ Train layer l on the seasons S′, which is step (e).
5: end for
6: ρ′ = [ ] ▷ The input encoding of player p′
7: for l ∈ L do
8: ▷ Make a prediction by layer l for player p′ in season s′ after episode e′,
9: r = l.predict(s′, e′, p′) ▷ which is step (f).
10: ρ′.append(σ−1(r)) ▷ Execute the first part of step (g).
11: end for
12: return M
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5.3.5 Precomputed Stacking

But there is a major issue with the training phase of this stacking procedure. Training these
layers on season 5 up to 20 for a computer with an Intel Core i7-4710MQ processor and 7.7GB
memory takes:

Layers Exam Drop Layer Exam Pass Layer Wikipedia Layer Appearance Layer
Running Time 6.437s 0.014s 9.610s 1.574s

Table 5.5: Running Time of Layers

Thus running code lines 5, 6, 7 in Algorithm 2 once takes approximately 17.635 seconds, which
is feasible if it only needs to be executed once. However the number of identifiers in I∗, if
season 5 up to 20 are used as training seasons, are 160. So running this stacking procedure
takes around 48 minutes, which is executed every time a prediction is made by the Moldel for a
single identifier. This running time is too large, especially since often new approaches and small
changes are applied to the Moldel, which needs to be quickly evaluated on multiple identifiers
to check if these approaches/changes are beneficial. Hence

– Step (b), i.e. train the layers on the remaining seasons S∗.

– Step (c), i.e. make a prediction by all trained layers for identifier (s∗, e∗) and for all potential
mol player p∗ ∈ Ps∗,e∗ .

are replaced by using a precomputed prediction instead, which uses the seasons of S− for
training the layers, where S− is defined as:

S− = {s | ∃e (s, e) ∈ I ∧ s ̸= s∗}

S− here does unfortunately include the season s′ which is also used to evaluate the Moldel on.
Thus the evaluation of results in Chapter 6 seem better than they actually are which should
generally be avoided in any machine learning framework. However there are two reasons why
S− includes season s′, because:

1. Some layers of the Moldel already have a shortage of training data. For example if the
Moldel is evaluated on season 21 then the Appearance layer trained for the stacking pro-
cedure has only 7 seasons available for training, which could cause inaccuracies in the
predictions of the Appearance layer and thus results in the stacker to have low trust in
the Appearance layer. Using the evaluation season (in this case season 21) as additional
training data for training the Appearance layer in the stacking procedure strengthens the
predictions and thus results in the stacker to have higher trust in the Appearance Layer.

2. Even if the predictions are precomputed, these predictions need to be recomputed when
the implementation of the Moldel is changed. Suppose that the evaluation season s′ is
removed from S− and cross validation is used to evaluate theMoldel, then all precomputed
predictions are configured for 16 different sets of training seasons, where one season is
removed from the range {5, 6, . . . , 20, 21} in addition to the season that is used to train the
stacker. The total number of precomputed predictions in this scenario that needs to be
stored are 2416, which takes around 12 hours to recompute. So by doing this we do not
only require a lot of storage space, but also a lot of computing time, which is infeasible for
a small scale project.

Nevertheless this design choice does not imply any changes to the prediction procedure, i.e.
Algorithm 3 is untouched. Thus season s′ is not used for training the layers in the prediction
procedure. Neither does this design choice imply that the stacker itself is trained with predictions
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from the evaluation season. Code line 2 in Algorithm 2 remains unchanged, which means that
the stackerM is only trained on predictions (s∗, e∗) ∈ I+. The new pseudocode for the training
procedure, when using precomputed predictions, is as follows:

Algorithm 4 Stacking Precomputed Training Procedure
function trainStacker(I+) ▷ I+ are the available identifiers for training the Stacker.
1: D = {} ▷ Start with an empty data set.
2: for (s∗, e∗) ∈ I+ do ▷ Execute step (a).
3: for p∗ ∈ Ps∗,e∗ do
4: ρ′ = [ ] ▷ The input encoding of this player.
5: for l ∈ L do
6: ▷ Get precomputed prediction by layer l for player p∗ in season s∗ after
7: r = l.precomputed(s∗, e∗, p∗) ▷ episode e∗, which uses I− as training data.
8: ρ′.append(σ−1(r)) ▷ Execute the first part of step (d).
9: end for
10: ρ′.append(σ−1

(
1

|Ps∗,e∗ |

)
, 1) ▷ Execute the second part of step (d).

11: D.append(ρ′ → isMol(p∗))
12: end for
13: end for
14: M = untrained logistic regression
15: M.train(D) ▷ Train the stacker on data set D.
16: return M

5.4 Social Media Exclusions

After applying this stacking procedure, we end up with a mol likelihood ρi for every player pi.
But this ρi is not the final mol likelihood of player pi. Before obtaining the final mol likelihood,
players are being excluded as mol with the Social Media Layer. The Social Media Layer is a
layer based on the idea of Jaap van Zessen, which uses big data techniques to exclude players
as mol. This idea dates back to 2014 in which year van Zessen analysed the social media
accounts of ’Wie is de Mol?’ players for season 14 using Buzzcapture [27]. Based on their
activity on Social Media it was found out that season 14 was recorded between 13th of May
and 6th of June in 2013, since most of the players were inactive on social media during that
period. There was one exception to this case, which was Maurice, who was active on social
media starting from the 20th of May. So according to van Zessen, Maurice could not have been
the mol, since Maurice was active on social media from the 20th of May, which was during the
recording period. Thus Maurice should have dropped out during the game show, which turned
out to be true, and the mol never drops out. This simple reasoning was also applicable for the
follow-up seasons of ’Wie is de Mol?’, though it was harder to exclude players asmol, since the
cast of ’Wie is de Mol?’ is aware of this method. Hence early dropouts are mostly inactive on
social media until the recording period is over or let others post things on social media for them.
Nevertheless this idea is used by the Moldel, where players are excluded manually as being the
mol if there is clear evidence that they were not present during the entire recording period of ’Wie
is de Mol?’. What is clear evidence is a bit ambiguous here, but just posts or uploading pictures
on social media is not considered as clear evidence, because these pictures could have been
taken earlier and these posts could have been posted by someone else. Whether evidence is
considered to be clear evidence depends much on insight rather than rules. Examples of clear
evidence that player pi can be excluded as mol are:

– Leaked pictures of the ’Wie is de Mol?’ recording, where player pi is missing.
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– Another television or radio shows that was recorded during the recording period of ’Wie
is de Mol?’ in which player pi participated.

– Evidence that player pi was in the Netherlands during the recording period, since ’Wie is
de Mol?’ is always recorded in foreign countries.

If such evidence is discovered then the mol likelihood ρi of player pi is set to 0. After which all
mol likelihoods are normalized resulting in the final prediction.
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6 RESULTS

How does the Moldel perform in predicting the mol? In Section 6.1 of this chapter is explained
which approach is used to evaluate the Moldel and in Section 6.2 the results of this approach
are presented.

6.1 Approach

The Moldel has a total of 17 seasons with data, which are seasons 5 up to 21. Though unfor-
tunately, seasons 5 up to 8 have too few data to evaluate the Moldel on. Therefore there is a
total of 13 seasons available for evaluating the Moldel. For these 13 seasons it can be decided
whether they should be used as training or validation data, for which there are three general
validation schemes:

Classical Validation The classical validation scheme has a fixed set of training data and a
fixed set of validation data [26, section 11.2.5]. For example the even seasons from 9
to 21 can be used as training data and the odd seasons from this range can be used
as validation data. The benefit of this scheme is that training data is never mixed with
validation data and thus there is a low risk of overfitting. However a major drawback of
this scheme is that there is a shortage of either training data or validation data. This is
especially problematic for the Appearance Layer which makes predictions and can only
use training data starting from season 13.

Strict Validation The strict validation scheme validates the performance of the Moldel on every
season in the range of 9 up to 21 using the seasons before as training data. The benefit of
this scheme is that the performance of the Moldel is realistically evaluated as would have
happened at that time. Moreover ’Wie is de Mol?’ episodes sometimes refer back to the
mol of previous seasons, so with this scheme you prevent information being leaked about
the validation season by the training seasons. Though data gathered about ’Wie is de
Mol?’ by the Moldel for seasons does not contain references back to previous seasons.
Moreover with this scheme there is again a shortage of training data, except for the last
seasons.

Cross Validation The cross validation scheme validates every season in the range of 9 up to
21 using the other seasons and the season from 5 up to 8 as training data [26, section
11.2.4], including seasons that happen later. For example to evaluate season 15, seasons
5 up to 14 and season 16 up to 21 are used as training data. The benefit of this scheme
is that there is no shortage of training data and validation seasons. But a drawback of this
scheme is that cross validation is the most time consuming of all validation schemes.

Based on these benefits and drawbacks, cross validation is chosen as validation scheme to
evaluate the Moldel, since small training samples are the biggest issue of the Moldel. For eval-
uation of the Moldel multiple configurations are evaluated on seasons 9 up to 21, because we
are not only interested in the performance of the entire Moldel, but also in the performance of
individual layers. All these evaluated configurations are shown in Table 6.1, including the lay-
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Full Moldel x x x x x x
Plus Moldel x x x x x
Min Moldel x x x x
Exam Drop x
Exam Pass x
Wikipedia x
Appearance x
Uniform

Table 6.1: All evaluation configurations

ers enabled in these configurations. Note that no layer is enabled in the Uniform configuration,
which assigns an uniform probability to all potential mol players (see Equation 1.1). This con-
figuration is included to represent how well uniform guessing performs and is used to show that
the other configurations perform better than uniform guessing.1

When evaluating these configurations, predictions are obtained which are encoded similar as
in Section 5.3. These predictions are obtained for a set of validation pairs (s, e) ∈ I, where s is
the season for which the prediction is made and e is the episode after which the prediction is
made. And a prediction for a pair (s, e) results in the mol likelihoods ρs,e,p for all p ∈ Ps, where
Ps is the set of all players of season s (including non-potential mol players). Themol likelihoods
as output of these predictions are evaluated using evaluation metrices on groups, where the
predictions are grouped on:

– The number of potential mol players in the range from 10 down to 2, where only the latest
episode e of every season is selected with that number of potential mol players.2

– Episode numbers in the range from 0 to 9, where episode number 0 represents the pre-
diction before the first episode has even been broadcast. For seasons that did not have
exactly 9 episodes before the showdown episode, e.g. season 11 and 21, linear interpo-
lation is used, where episode numbers e in the range from 0 to 9 for season s are rescaled
with function E(s, e) to:

E(s, e) = round
(
e · |Es|

9

)
The round function in this function definition rounds the value to the closest integer and
|Es| is the maximum episode of season s. For example the episode numbers for season
21 with 7 episodes, i.e. |E21| = 7, are mapped to:

{0→ 0, 1→ 1, 2→ 2, 3→ 2, 4→ 3, 5→ 4, 6→ 5, 7→ 5, 8→ 6, 9→ 7}

For choosing the appropriate evaluationmetrices, it should be remarked that they have to handle
the stochastic nature of the Moldel, i.e. the output of the Moldel are not labels, but probabilities.
So confusion matrices, accuracy, precision and recall are not applicable for the Moldel, since

1More about this can be found in Chapter 7 in which it is indeed shown that the Moldel performs significantly
better than uniform guessing.

2In the finals of season 9 there was 1 potential mol player, this result is not included in the grouping.
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these evaluation metrices assume that a label is given as output. The following evaluation
metrices can handle likelihoods rather than labels as output and are therefore used to evaluate
the different configurations:

Log Loss The Log Loss score [28] is the average log likelihood by the Moldel over all actual
labels, which is computed as:

− 1

n

∑
(s,e)∈I

∑
p∈Ps

1(p = Mols) · ln(ρs,e,p) + 1(p ̸= Mols) · ln(1− ρs,e,p)

where Mols is the mol of season s, 1 is the identity function which is equal to 1 if the
condition holds else it is equal to 0 and n is defined as:

n =
∑

(s,e)∈I

∑
p∈Ps

1

A lower Log Loss score implies that the model performs better in classifying both mol
players as non-mol players.

Mol Log Loss TheMol Log Loss is the average log likelihood by theMoldel over allmol players,
which is computed as:

− 1

|I|
∑

(s,e)∈I

ln(ρs,e,Mols)

where |I| is the number of identifiers on which the configurations are evaluated. The
difference between Log Loss and Mol Log Loss is that the average in the Mol Log Loss
is only taken over all mol players, whereas in the Log Loss the average is taken over all
players. A similarity between both scores is that a lower Mol Log Loss score also implies
that the model performs better, but only on mol players.

Concordant-Discordant Ratio To compute the Concordant-Discordant Ratio [28], we first de-
fine the following two sets:

M = {(s, e, p) | (s, e) ∈ I ∧ p = Mols} N = {(s, e, p) | (s, e) ∈ I ∧ p ∈ Ps \ {Mols}}

where M is the set of all identifiers (s, e) combined with a mol player from that season s
andN is the set of all identifiers (s, e) combined with a non-mol player from that season s.
The number of concordant pairs C and the number of discordant pairs D are now defined
as:

C =
∑

(s,e,p),
(s′,e′,p′)
∈M×N

1(ρ̂s,e,p > ρ̂s′,e′,p′) D =
∑

(s,e,p),
(s′,e′,p′)
∈M×N

1(ρ̂s,e,p < ρ̂s′,e′,p′)

where ρ̂s,e,p = |Ps,e| ·ρs,e,p which is done to make likelihoods comparable andM×N is the
Cartesian product between setM andN . The Concordant-Discordant Ratio is defined as:

C

C +D

which is defined as 1/2 if C +D = 0. A higher Concordant-Discordant Ratio means that
themodel is more consistent, i.e. mol players get a higher likelihood than non-mol players.

Mean Mol Likelihood The Mean Mol Likelihood score is the average over all mol likelihoods,
which is computed as:

1

|I|
∑

(s,e)∈I

ρs,e,Mols
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The Mean Mol Likelihood is quite similar to Mol Log Loss, however the Mean Mol Like-
lihood is an arithmetic mean and the Mol Log Loss is equivalent to the geometric mean
over the mol likelihoods. A higher Mean Mol Likelihood score implies a better model.

Mean Mol Rank To compute the Mean Mol Rank, rs,e,p is defined as the rank of the players
likelihood for prediction of season s after episode e. If player p has the highest mol likeli-
hood of all players then rs,e,p = 1, whereas if player p has the lowest mol likelihood of all
players then rs,e,p = |Ps|. In case of ties the rank rs,e,p is defined as the average of the
ranks. An example of ranks is defined below:

Example 8. The respective ranks for the following mol likelihoods are:

Likelihoods 0.1 0.3 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.2
Ranks 5 1 8.5 8.5 5 8.5 5 2.5 8.5 2.5

Table 6.2: Rank example for mol likelihoods

The Mean Mol Rank is computed as:

1

|I|
∑

(s,e)∈I

rs,e,Mols

A lower Mean Mol Rank score means that mol players get a higher likelihood than non-
mol players. The Mean Mol Rank is therefore similar to Concordant-Discordant Ratio,
though in Concordant-Discordant Ratio different predictions are compared which does
not happen in the Mean Mol Rank.

6.2 Evaluation

In this section the outcome of the evaluation metrices, as defined in Section 6.1, are presented
in visual format (the raw format can be found in Appendix E). The visual presentation of the
evaluation metrices shown by Figures 6.1 up to 6.10, which shows all scores of the evaluation
metrices as bar charts sorted per group in increasing/decreasing order. With Figures 6.1 up to
6.10 the different configurations can be compared and their progress can be analysed as the
time passes. 3 Last of all there are three figures included at the end of this section, which show
the best predictions, worst predictions and final predictions of the Full Moldel configuration for
seasons 9 up to 21 as pie charts, where the percentages represent the mol likelihoods. All
potential mol players are displayed in these plots even if their likelihoods are close to zero or
zero (due to Social Media Exclusion), whereas non-potential mol are hidden in these plots. For
more predictions of any configurations for season 9 up to 21 you can visit:4

https://github.com/Multifacio/Moldel/tree/master/results/Thesis%20Results/
Latest%20Thesis%20Results%20(19-03-2021)

3Note that a worse score does not imply that a configuration performs worse than another configuration. Config-
urations are evaluated on a different range of seasons.

4Which also includes predictions where not all layers of that configuration could be used.
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Figure 6.1: Log Loss for configurations grouped by episode number

Figure 6.2: Log Loss for configurations grouped by number of potential mol players
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Figure 6.3: Mol Log Loss for configurations grouped by episode number

Figure 6.4: Mol Log Loss for configurations grouped by number of potential mol players
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Figure 6.5: Concordant-Discordant Ratio for configurations grouped by episode number

Figure 6.6: Concordant-Discordant Ratio for configurations grouped by number of potential mol
players
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Figure 6.7: Mean Mol Likelihood for configurations grouped by episode number

Figure 6.8: Mean Mol Likelihood for configurations grouped by number of potential mol players
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Figure 6.9: Mean Mol Rank for configurations grouped by episode number

Figure 6.10: Mean Mol Rank for configurations grouped by number of potential mol players
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Figure 6.11: Best predictions of Full Moldel (excluding final predictions)
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Figure 6.12: Worst predictions of Full Moldel

Figure 6.13: Final predictions of Full Moldel for seasons 9 up to 12
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Figure 6.14: Final predictions of Full Moldel for seasons 13 up to 21
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7 DISCUSSION

The results presented in Chapter 6 are promising. The scores of the Full Moldel configura-
tion and other non-Uniform configurations shown by Figures 6.1 up to 6.10 are better than the
Uniform configuration. Additionally the Full Moldel, Plus Moldel, Min Moldel and Exam Drop
configurations also show consistency, i.e. the scores of those configurations diverges from the
Uniform configuration as more episodes have been seen or as the number of potential mol de-
creases. Remarkable as well is that the Full Moldel, Plus Moldel and Exam Drop configurations
have a Mean Mol Rank of 1.0 for the finals, see the column for episode 9 in Figure 6.9. This im-
plies that the Moldel has always given the actual mol the highest likelihood in the finals, which
is also confirmed by Figures 6.13 & 6.14. Likewise these configurations and the Min Moldel
configuration gave the mol on average a likelihood higher than 0.5 after episode 8 or with at
most 3 potential mol players, see Figures 6.7 & 6.8.

Furthermore some characteristics of the individual layer configurations, i.e. Exam Drop, Exam
Pass, Wikipedia and Appearance, are also recognizable in the results. For example theWikipedia
configuration has a slight advantage over the Uniform configuration before the first episode has
even been broadcast, but has a lesser advantage over the Uniform configuration compared to
the Exam Drop & Appearance configurations for later episodes. This is expected, because the
Wikipedia Layer is a pre-layer which has all its information available before the first episode
that does not grow when new episodes are broadcast. On the other hand the information by
the Exam Drop and the Appearance layer grows as more episodes are broadcast hence these
configurations become much more accurate than the Wikipedia configuration. It is therefore not
surprising that the Exam Drop configuration has the best scores compared to the other individ-
ual layer configurations, since the Exam Drop layer uses all episodes as data until the finals,
whereas the Appearance layer only uses episodes up to 5 as data. Nevertheless the second
best configuration is the Appearance configuration, which is followed by the Wikipedia configu-
ration. The Exam Pass configuration is the worst performing individual configuration, which is
also understandable since based on its logic one is not much less likelier to be themol when us-
ing a vrijstelling or jokers in the early episodes. Hence the Exam Pass configuration is expected
to start diverging from the Uniform configuration in later episodes. This is confirmed by Figures
6.1 up to 6.10, which show that the score of the Exam Pass configuration starts diverging from
the Uniform configuration after episode 7 or with less than 4 potential mol players.

Thus both the individual configurations, i.e. Exam Drop, Exam Pass, Wikipedia and Appear-
ance, and the advanced configurations, i.e. Full Moldel, Plus Moldel and Min Moldel, perform
quite well. Nevertheless these configurations are nowhere near perfect. This is also illustrated
by Figure 6.12. The Moldel can be completely wrong with some of its predictions and might
have no idea about the mol in early episodes, which is emphasized by Figures 6.1 & 6.3 that
show similar (Mol) Log Loss scores for both the Full Moldel and the Uniform configuration. Fur-
thermore the Mean Mol Likelihood of the Full Moldel configuration before episode 5 is indeed
higher than the Mean Mol Likelihood of the Uniform configuration, however it is also at most 0.2
meaning that the actual mol has a 4 times larger likelihood of not being the mol. Likewise the
Mean Mol Rank after episode 6 for the Full Moldel configuration is around 2 implying that there
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is on average at least one non-mol player with a higher mol likelihood than the actual mol. So
the Moldel also has some drawbacks and therefore it is important to statistical test whether the
Moldel and its layers indeed perform significantly better than uniform guessing.

7.1 Significance Testing

To show that the Moldel and its layers perform significantly better than uniform guessing, the
Plus Moldel and the individual configurations are statistically tested with regard to the Uniform
configuration. For statistical testing, both configurations are evaluated on season 9 up to 21
where the likelihoods given to the actualmol of both configurations are pairwise compared which
are grouped on episode numbers and number of potential mol players, similar as in Chapter
6. For every group the likelihood samples X and Y of both configurations are then compared
using the following tests:

– Paired Student T-Test [29], which is a parametric test that assumes the differences be-
tween both configurations X − Y is independently and normally distributed, i.e.

X − Y ∼ N (µ, σ)

The null hypothesis and alternative hypothesis for this test are respectively:

H0 : µ = 0 H1 : µ > 0

where the null hypothesis represents that both configurations have the same performance
and the alternative hypothesis represents that the first configuration performs significantly
better than the second configuration.

– Log Paired Student T-Test, which is a Paired Student T-Test applied on the logarithm of
the likelihoods in both samples X and Y .

– Wilcoxon Signed Rank Test [30], which is a non-parametric test that assumesX and Y are
independently and identically distributed. This test assigns a rank to every likelihood with
respect to all likelihoods in X and Y , where the lowest likelihood is assigned a rank of 1
and the highest likelihood is assigned a rank of |X|+ |Y |. In case of ties the average of the
tied ranks is assigned to the tied likelihoods. The goal of the Wilcoxon Signed Rank Test
is to check if the mean µX of the ranks ofX is significantly higher than the mean µY of the
ranks of Y . The null hypothesis and alternative hypothesis for this test are respectively:

H0 : µX = µY H1 : µX > µY

where the null hypothesis again represents that both configurations have the same per-
formance and the alternative hypothesis represents that the first configuration performs
significantly better than the second configuration.

The difference between the Paired Student T-Tests and the Wilcoxon Signed Rank Test is that
the former test requires the difference to be normally distributed, whether the latter test does
not require the difference to be normally distributed. Moreover if the normality assumption is
justified then the Paired Student T-Test is stronger than the Wilcoxon Signed Rank Test. Tables
7.1 up to 7.10 contain the results of these tests, i.e. the p-values of these tests. Results in the
tables are green if they pass the test, i.e. have a p-value smaller than or equal to 0.05, and are
red otherwise.
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Episode
Number 0 1 2 3 4 5 6 7 8 9

Paired
Student T 0.166 0.283 0.064 0.098 0.034 0.008 0.010 0.006 <1e-3 <1e-3

Log Paired
Student T 0.265 0.459 0.209 0.339 0.111 0.033 0.048 0.053 <1e-3 <1e-3

Wilcoxon
Sign. Rank 0.084 0.137 0.108 0.137 0.040 0.016 0.016 0.007 0.002 <1e-3

Sample
Size 13 13 13 13 13 13 13 13 13 13

Table 7.1: Plus Moldel versus Uniform p-values grouped by episode number

#Potential
Mol 10 9 8 7 6 5 4 3 2

Paired
Student T 0.501 0.650 0.044 0.075 0.037 0.016 0.003 0.004 0.106

Log Paired
Student T 0.629 0.765 0.091 0.192 0.104 0.070 0.021 0.027 0.238

Wilcoxon
Sign. Rank 0.271 0.455 0.055 0.103 0.064 0.026 0.005 0.006 0.109

Sample
Size 13 12 12 11 13 11 13 9 6

Table 7.2: Plus Moldel versus Uniform p-values grouped by number of potential mol players

Episode
Number 0 1 2 3 4 5 6 7 8 9

Paired
Student T 0.500 0.120 0.016 0.026 0.031 0.004 0.005 0.004 0.004 <1e-3

Log Paired
Student T 0.500 0.130 0.016 0.041 0.048 0.009 0.005 0.004 0.006 <1e-3

Wilcoxon
Sign. Rank 0.500 0.007 0.005 0.040 0.029 0.004 0.003 0.004 0.009 <1e-3

Sample
Size 13 13 13 13 13 13 13 13 13 13

Table 7.3: Exam Drop versus Uniform p-values grouped by episode number

#Potential
Mol 10 9 8 7 6 5 4 3 2

Paired
Student T 0.500 0.181 0.014 0.029 0.027 0.010 0.003 0.004 0.231

Log Paired
Student T 0.500 0.195 0.011 0.044 0.051 0.009 0.002 0.008 0.390

Wilcoxon
Sign. Rank 0.500 0.013 0.007 0.034 0.040 0.007 0.004 0.006 0.156

Sample
Size 13 12 12 11 13 11 13 9 6

Table 7.4: Exam Drop versus Uniform p-values grouped by number of potential mol players
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Episode
Number 0 1 2 3 4 5 6 7 8 9

Paired
Student T 0.500 0.177 0.164 0.294 0.749 0.689 0.420 0.083 0.012 0.029

Log Paired
Student T 0.500 0.192 0.169 0.303 0.795 0.773 0.511 0.123 0.015 0.032

Wilcoxon
Sign. Rank 0.500 0.010 0.211 0.172 0.712 0.751 0.363 0.104 0.020 0.047

Sample
Size 13 13 13 13 13 13 13 13 13 13

Table 7.5: Exam Pass versus Uniform p-values grouped by episode number

#Potential
Mol 10 9 8 7 6 5 4 3 2

Paired
Student T 0.500 0.093 0.186 0.463 0.706 0.378 0.049 0.064 0.049

Log Paired
Student T 0.500 0.102 0.202 0.531 0.755 0.438 0.057 0.073 0.056

Wilcoxon
Sign. Rank 0.500 0.013 0.291 0.688 0.751 0.282 0.073 0.082 0.078

Sample
Size 13 12 12 11 13 11 13 9 6

Table 7.6: Exam Pass versus Uniform p-values grouped by number of potential mol players

Episode
Number 0 1 2 3 4 5 6 7 8 9

Paired
Student T 0.097 0.100 0.096 0.174 0.162 0.117 0.159 0.106 0.195 0.149

Log Paired
Student T 0.165 0.134 0.122 0.234 0.260 0.190 0.212 0.212 0.303 0.255

Wilcoxon
Sign. Rank 0.084 0.084 0.084 0.073 0.108 0.122 0.080 0.066 0.403 0.416

Sample
Size 13 13 13 13 13 13 13 13 13 13

Table 7.7: Wikipedia versus Uniform p-values grouped by episode number

#Potential
Mol 10 9 8 7 6 5 4 3 2

Paired
Student T 0.097 0.016 0.110 0.296 0.136 0.273 0.096 0.057 0.182

Log Paired
Student T 0.165 0.030 0.174 0.385 0.202 0.356 0.142 0.054 0.225

Wilcoxon
Sign. Rank 0.084 0.017 0.117 0.160 0.122 0.183 0.091 0.296 0.165

Sample
Size 13 12 12 11 13 11 13 9 6

Table 7.8: Wikipedia versus Uniform p-values grouped by number of potential mol players

79



Episode
Number 0 1 2 3 4 5 6 7 8 9

Paired
Student T 0.500 0.718 0.074 0.051 0.042 0.027 0.038 0.055 0.045 0.032

Log Paired
Student T 0.500 0.805 0.342 0.208 0.151 0.106 0.153 0.112 0.072 0.093

Wilcoxon
Sign. Rank 0.500 0.271 0.020 0.050 0.043 0.037 0.037 0.066 0.050 0.050

Sample
Size 13 13 13 13 13 13 13 13 13 13

Table 7.9: Appearance versus Uniform statistical test grouped by episode number

#Potential
Mol 10 9 8 7 6 5 4 3 2

Paired
Student T 0.846 0.537 0.131 0.156 0.041 0.039 0.041 0.090 0.068

Log Paired
Student T 0.840 0.714 0.359 0.351 0.134 0.146 0.112 0.184 0.065

Wilcoxon
Sign. Rank 0.083 0.190 0.042 0.186 0.050 0.037 0.050 0.156 0.055

Sample
Size 13 12 12 11 13 11 13 9 6

Table 7.10: Appearance versus Uniform statistical test grouped by number of potential mol
players

7.2 Reflection

Tables 7.1 up to 7.10 show that some tests pass and others fail. For example the Plus Moldel
configuration has a significant better performance than the Uniform configuration starting after
episode 5 (see Table 7.1). Likewise the Exam Drop configuration passes all tests starting after
episode 2, except for the Log Paired Student test for episode 4 (see Table 7.3). Though this is
a good sign, it does not guarantee that the Moldel and the Exam Drop layer provide accurate
predictions for upcoming seasons. Passing a test only implies that the configuration performed
significantly better than the Uniform configuration for the past, which does not imply that the
configuration has any predictive power. First of all, all validation seasons have been used in
designing the Moldel, i.e. if a design failed on the validation seasons then a different design
was used. And by doing so you eventually find an implementation that passes the tests which
does not necessarily perform well for future seasons. Though in the process of selecting a
proper design, simple designs were preferred over complex designs, even if the complex design
had a better performance. Secondly, some hyperparameters are determined based on the
performance on the validation seasons, e.g. the number of bins for the Exam Drop Layer, the
lower/higher likelihood for the Wikipedia layer and the lower cut-off of the Appearance Layer.
This also partially explains why the performance of the configurations are good. Thirdly, for the
implementation of aggregation an approach was chosen which indirectly uses data from the
predict season as train data (see Section 5.3). This could result in more optimistic test results,
however since the prediction season is indirectly used it probably does not influence the test
results a lot. Last of all, the Moldel is open source and hence it is vulnerable to so called
adversary attacks. An adversary attack is that the cast of ’Wie is de Mol?’ might become aware
of this research and edit the episodes such that the Moldel is fooled in believing that another
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player is the mol or that the Moldel has no clue at all. This is not unlikely to happen, because
after the research of van Zessen was published that dropouts were active on Social Media, the
cast of ’Wie is de Mol?’ encouraged all its participants to stay inactive on Social Media until
the recording period was over. So this research might face the same destiny as the research
of van Zessen. A solution for this is to make this project closed source, but then it is hard to
convince others that these predictions are reliable.1 Thus adversary attacks is a weakness that
we unfortunately have to face.

On the other hand there are also a lot of tests that fail. For example the Wikipedia configuration
barely passes any tests (see Tables 7.7 & 7.8). Though this is a bad sign, it does not imply
that the configuration cannot provide accurate predictions for upcoming seasons. It should
be remarked that the sample sizes are quite small to apply tests on which makes it harder to
show that configurations are significantly better than the Uniform configuration compared to
large sample sizes. This also makes it understandable why more tests grouped by number of
potential mol players fail than those grouped by episode number, because the tests grouped
by number of potential mol players have smaller sample sizes. Moreover it explains why the
Exam Drop configuration fails the tests for 2 potential mol players, but passes the tests for 3
and 4 potential mol players. Despite that the Exam Drop layer has more information when
there are only 2 potential mol players, the sample size 6 is too small to conclude that the Exam
Drop configuration performs significantly better than the Uniform configuration. Furthermore
some of these tests fail with a low p-value, e.g. a p-value of 0.060 fails the test, whereas a
p-value of 0.040 passes the test and these p-values are quite similar. Nevertheless there is
some point where one has to draw the line, though we have to keep in mind that some cases
which fail the test are close to passing the test. Also not passing the test does not imply that the
configuration performs worse than the Uniform configuration. On the other hand a large part of
the tests have a p-value lower than 0.500 implying that the configurations perform better than the
Uniform configuration, but unfortunately not significantly. Nonetheless even if all configurations
performed significant better than the Uniform configuration, it is no reason to stop improving
the Moldel. Passing the test only means that the configuration is significantly better than the
Uniform configuration, not that the predictions cannot become more accurate.

1Which is why the WIDM-algorithm discussed at the end of Section 1.2 is not deemed to be reliable.
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8 CONCLUSION

The Moldel performs significantly better than uniform guessing with a p-value smaller than 0.05
(see column ’9’ of Table 7.1). Moreover the Moldel also predicted the actual mol of 2021 with a
likelihood higher than 0.5 in the finals (see Appendix F). However the Moldel is far from perfect
with its predictions and therefore needs more data and further work to improve.

A possibility for improvement is to simplify the design for the Wikipedia layer and to let the Exam
Drop Layer also investigate executies where only part of the players see their screen without
any red screen among them. This was done by the old implementation of the Exam Drop Layer,
but not by the latest. The ExamDrop Layer could then loop over the possible dropouts, compute
a corresponding prediction and take a weighted combination of these predictions. Similarly the
Exam Drop Layer could also try to forecast the next dropout and take a weighted combination
of the predictions with the corresponding forecasted dropout. But most importantly is to develop
new layers to improve the accuracy of the Moldel. A single layer is never able to predict the
mol alone in an early stage due to a lack of data and the nature of layers. Every layer excludes
some players as mol and thus having more layers improves the accuracy of the entire Moldel.
New layers could be:

– The Money Layer, which analyses the relationship between earning money and being
the mol. The mol is expected to earn less money, since the job of the mol is to reduce
the amount of earned money. Thus this layer might be able to exclude certain players as
mol. However the difficulty with this layer is that often not a single player is responsible for
earning an amount of money during an exercise. Instead a group of players is responsible
for earning that amount money, where some of them had a larger contribution than others.

– The Age Layer, which is an idea for a pre-layer that analyses the relationship between
age and being the mol. Although age is probably not a direct criteria on which the cast of
’Wie is de Mol?’ chooses amol. Nevertheless age is related to the energy and experience
of players which might be used as criteria to select a proper mol. Some attempts have
already been made to include the Age Layer in the Moldel. Unfortunately the relationship
between age and being themol was not significant. Therefore this attempt is not discussed
in detail in this thesis.

Moreover this project is currently only dedicated to the discovery of the mol. Another challenge
is to select an optimal strategy for the ’Wie is de Mol?’-app where players can submit points on
players who they suspect to be the mol. In this app all points submit on the players that pass
on to the next episode are doubled and all points submit on the dropout are lost. Deciding how
to spread your points in the ’Wie is de Mol?’-app can be tricky if the Moldel is not yet certain
about the mol. Game theory might be able to deal with this problem, however game theory is
outside the scope of this project.
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A EXCEPTION HANDLING

A.1 Exam Drop Layer

A.1.1. The previous implementation of the Exam Layer also allows executies Ei with possible
dropouts, which happens when only part of the players will see their screen. If there is
no red screen among them, then the other players are considered as possible dropouts,
because one of them would have seen a red screen and thus dropped out if all screens
where revealed. For these cases Dropout(Ei) is defined as the set of all possible dropouts.
Moreover

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

is estimated differently for executies with possible dropouts (see A.1.2.).

A.1.2. There are two important cases which should be taken into account. First of all, in case
executie Ei had only possible dropouts, we estimate

P(Di = Dropout(Ei) | Di−1 = Dropout(Ei−1), . . . , D1 = Dropout(E1), p
′ = Mol)

as
#samples s.t. D′ ∈ Di with p′ = Mol

#samples
whereD′ is a sampled dropout for executie Ei. In this caseD′ is a player rather than a set
of players, since the combination of multiple dropouts and only revealing some screens
has never occurred. Note that the given estimation is equal to the relative number of
samples that represents a possible scenario.

Secondly there could be multiple players that share the lowest score, which is called a tie.
In the game show during a tie the player that took the most time for the test among the
players with the lowest score drops out. What is done in case of a tie is simply select a
player uniform random among the players with the lowest score, because it is almost never
revealed during episodes how much time players took for their test. Thus it is assumed
that every player is equally likely to be the slowest. To illustrate this:

Example 9. Suppose there are 6 players Gijs, Isabelle, Jim, Lottie, Sander and Yvon of
which Yvon is the mol. Furthermore suppose all these players participated in a test for
which the following number of correct answers is sampled:

Player: Gijs Isabelle Jim Lottie Sander Yvon
Correct Answers: 2 8 8 12 8 -

Table A.1: Sampled answers

Moreover suppose that there are 2 dropouts for the corresponding executie. Then Gijs
definitely drops out and among Isabelle, Jim and Sander the second dropout is uniform
randomly selected.
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A.1.3. But every quartet Q = (P1, Q
′, Ak, P2) is ignored if

(a) Player P1 returned back to the game or stayed in the game after his/her red screen
was revealed.

(b) And player P1 has not had a non-voluntary dropout during any executie after executie
E, or we are currently unaware when his next non-voluntary drop out will be.

because it is expected that player P1 changes his strategy after he/she gets a second
chance. Two examples where this situation happened include:

– The dropout of Paul in episode 3 of season 7, who returned back to the game in
episode 4 and eventually became the winner of season 7. In this case any quartet
Q with P1 = Paul and question Q′ answered by Paul during/after episode 4 is not
included in any train data nor used to make any prediction for season 7.

– The revealing of the red screen of Daphne in episode 1 of season 14, who finally
dropped out in episode 4. In this case any quartet Q with P1 = Daphne and question
Q′ answered by Daphne, after her red screen was revealed, is used as training data.
However these quartets Q are not used to make a prediction for season 14 until the
dropout of Daphne during episode 4.

A.1.4. Note that there are seasons in which players dropped out twice, because they returned
back to the game or they stayed in the game after their red screen was revealed (which
is also considered as dropping out). Thus the Drop Episode Number and Drop Executie
are not uniquely defined in some cases. For those exceptional cases the Drop Executie
is defined as the earliest executie that has happened later than the Exam Executie or is
equal to the Exam Executie. Likewise the Drop Episode Number is similarly defined as
the episode number in which the Drop Executie happened. This design choice is made,
because it is expected that player P1 changes his strategy after he/she gets a second
chance.

A.1.5. Remark that |a \ {p}| in the SPP function might be equal to 0 for some answers a. It
happened in the past (although it is very rare) that players filled in a question on only
him/herself or that the answer did not cover any player alive. In those cases we get
undefined values, because division by zero is undefined. When computing the mean,
undefined values are simply ignored, e.g. mean(2,undefined, 4) = 3. In case all values
are ignored, it is treated similarly as if no answers were given by player p, i.e.

SPP(A, p) = |A|
|P | − 1

Ignoring undefined values is a logical decision, because if only the player him/herself or
nobody is covered by the answer then it is unknown who that player actually suspects.

A.2 Wikipedia Layer

A.2.1. Remark that cossim(x′, x+) is undefined if x′ is a zero vector, i.e. x′ = (0, 0, . . . , 0) or x+
is a zero vector, i.e. x+ = (0, 0, . . . , 0). There are two situations when this happens:

– The player for which a prediction is made has a zero vector as input x = (0, 0, . . . , 0).
In that case his/her mol likelihood is equal to 0, i.e. y = 0, because it has never
happened in the past that the mol had a zero vector as input x = (0, 0, . . . , 0).

88



– A player j in the training data has a zero vector as train input, i.e. xj = (0, 0, . . . , 0) in
which xj is ignored in the sum. So theoretically the predicted likelihood y of a player
with encoding x is defined as:

y =

∑
i,xi ̸=0⃗ cossim(x, xi)2 · yi∑

i,xi ̸=0⃗ cossim(x, xi)2

A.2.2. If Tp = 0 then division is undefined, in which case C ′
p(ji) is updated as:

C ′
p(ji)← 0

because if player p did belong to job ji then it was expected that player p also had words
in their Wikipedia page that are linked to job ji. Which is not the case here, since the total
number of words in his/her Wikipedia page is zero, i.e. Tp = 0. Therefore player p gets
the lowest possible job score for ji.

A.2.3. If C ′
p(ji) = 0 then the logarithm is undefined (this exception case always succeeds A.2.2.).

For this case the job feature value C ′
p(ji) is set to the minimum of all other translated &

defined job feature values of the same job, i.e.

C ′
p(ji)← min{ln(C ′

p(ji)) : p ∈ P s.t. C ′
p(ji) ̸= 0}

This rule ensures that players with words linked to a particular job ji always get a larger
C ′
p(ji) value than players without words linked to job ji.

A.2.4. If T ′
p = 0 then the logarithm is undefined. For these cases T ′

p is treated similarly as if that
player p would have exactly 1 word in his Wikipedia page, thus T ′

p in this case is updated
as:

T ′
p ← ln

(
1∑

p+∈Sp
T ′
p+

)

A.3 Aggregation

A.3.1. Note that σ−1(0) and σ−1(1) are undefined, which happens if a layer excludes a certain
player as mol or is fully convinced that a player is the mol. If one of the layer predictions
ρi,j in a training instance is 0 or 1 then that training instance is discarded. If one of the
layer predictions ρi,j for a player pi, whose mol likelihood gets predicted, is 0 then that
player gets assigned a final mol likelihood of respectively 0. Similarly if one of the layer
predictions ρi,j for player pi is 1 then that player gets assigned a final mol likelihood of
respectively 1. Layers of course are not fully reliable, but if a layer gives a player pi a
likelihood of 0 or 1 then it is very certain about that. And normally this situation only
occurs if player pi dropped out in which case a final mol likelihood of 0 is justifiable.
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B ADDITIONAL BINS FOR EXAM DROP LAYER

The number of bins for the ExamDrop Layer is determined by trying all multiples of 2 in the range
from 20 up to 80 as number of bins. For every of these configurations the Exam Drop Layer is
evaluated on seasons 9 up to 21 using the other seasons as training data. This evaluation is
performed by computing the Log Loss (see page 6.1) over all predictions for that season, where
a prediction happens after an episode is broadcast and before the first episode is broadcast.
The Log Loss scores for these configurations are shown in figure B.1.

Figure B.1: Log Loss per Additional Bins

Thus with 50 additional bins the lowest Log Loss score of 0.22798 is obtained and with 40
additional bins the second lowest Log Loss score of 0.22819 is obtained. Having lesser bins is
preferred, hence 40 additional bins are used for the Exam Drop Layer. Remark that by using
this approach the results presented in Chapter 6 might give a more optimistic impression of the
Moldel rather than what the Moldel would actually be. Though 40 additional bins is not a large
amount.
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C WIKIPEDIA LAYER - OLD RESULTS
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D DEPENDENCY OF APPEARANCE VALUES

The appearance values shown in figure 4.2 are not fully independent, because if Ap,e is larger
for some player p in episode e then FCp,e is also larger and so is

∑
p′ FCp′,e. Hence Ap+,e for

another player p+ in the same episode e becomes smaller (assuming FCp+,e does not change).
So there is a dependence between Ap,e and Ap+,e, but this dependence is weak, because the
increase/decrease of FCp,e has relatively a small effect on

∑
p′ FCp′,e. Nevertheless two statis-

tical test are applied to check how strong the relationship between Ap,e and Ap+,e is, which are
the Pearson’s Correlation Test (test for linear relationships) and the Kendall’s Correlation Test
(test for monotonic relationships) [39, pages 9-10, 16-17, 82-84]. Both of these tests return a
value between -1 and 1 where:

– The closer this value is to 1, the stronger these features are correlated in positive direction.

– The closer it is to 0, the weaker these features are correlated.

– The closer it is to -1, the stronger these features are correlated in negative direction.

Applying these tests on all paired combinations of appearance values between two distinct
player p1 and p2 in the same episode results in:

– r = −0.128 for the Pearson Correlation test, which corresponds with a p-value of 3.0·10−9.

– τ = −0.085 for the Kendall Correlation test, which corresponds with a p-value of 3.7 ·10−9.

So there is a relationship between appearance values of the same episode, but it is a weak
relationship with correlation coefficients close to 0. Therefore this dependency is not a severe
violation of the independence assumption for the Mann-Whitney U Test.

Moreover there is also a dependency between the appearance values of the same player for
different episodes, i.e. between Ap,e and Ap,e′ . Players that appear less in episode e are also
more likely to appear less in another episode e′, regardless whether that player was the mol
or not. Therefore Pearson’s Correlation Test and Kendall’s Correlation Test are applied on all
paired combinations of appearance values of the same non-mol player p in different episodes
(of the same season), which results in:

– r = 0.502 for the Pearson Correlation test, which corresponds with a p-value of 3.6 ·10−75.

– τ = 0.360 for the Kendall Correlation test, which corresponds with a p-value of 4.5 · 10−75.

So this is more severe violation of the independence assumption for the Mann-Whitney U Test.
Hence we group all appearance values of the same player together and take the minimum of
these groups, i.e.

Âp = min{Ap,e : e ∈ Ep}
which removes this dependency, however unfortunately it also decreases the sample size of
mol cases X to 9 and the sample size of non-mol cases Y to 81. Applying Mann-Whitney U
Test [15] on this minimum value Âp results in a U value of 180. And this U value corresponds
to a Z-score of -2.475 resulting in a p-value of ≈ 6.667 · 10−3. So the hypothesis of van Hoek
also holds when this dependency is removed.
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E RAW RESULTS

Tables E.1 up to E.10 show the raw evaluation scores rounded up to 3 decimals for season 9
up to 21 of the different configurations as presented in Chapter 6. If a score is bold then this
score was the best score compared to other configurations (for which more than 3 decimals are
taken into account).

Episode Number 0 1 2 3 4 5 6 7 8 9
Full Moldel 0.311 0.306 0.289 0.281 0.258 0.208 0.204 0.163 0.113 0.057
Plus Moldel 0.322 0.315 0.294 0.285 0.264 0.212 0.210 0.185 0.113 0.057
Min Moldel 0.321 0.309 0.289 0.277 0.272 0.224 0.217 0.189 0.126 0.065
Exam Drop 0.325 0.310 0.291 0.274 0.264 0.215 0.203 0.176 0.140 0.082
Exam Pass 0.325 0.314 0.301 0.289 0.283 0.267 0.251 0.228 0.189 0.144
Wikipedia 0.320 0.310 0.298 0.288 0.278 0.260 0.248 0.227 0.200 0.153
Appearance 0.325 0.325 0.297 0.279 0.266 0.244 0.235 0.210 0.178 0.130
Uniform 0.325 0.316 0.303 0.291 0.281 0.264 0.251 0.232 0.203 0.159

Table E.1: Log Loss for configurations grouped by episode number

#Potential Mol 10 9 8 7 6 5 4 3 2
Full Moldel 0.317 0.314 0.284 0.266 0.238 0.197 0.141 0.111 0.104
Plus Moldel 0.327 0.321 0.287 0.274 0.241 0.205 0.164 0.111 0.104
Min Moldel 0.321 0.307 0.281 0.271 0.249 0.215 0.163 0.119 0.126
Exam Drop 0.325 0.310 0.283 0.266 0.238 0.206 0.160 0.122 0.127
Exam Pass 0.325 0.311 0.299 0.287 0.273 0.250 0.218 0.181 0.113
Wikipedia 0.320 0.306 0.297 0.286 0.266 0.248 0.220 0.183 0.128
Appearance 0.335 0.321 0.296 0.282 0.254 0.231 0.202 0.163 0.101
Uniform 0.325 0.314 0.301 0.287 0.270 0.250 0.225 0.191 0.139

Table E.2: Log Loss for configurations grouped by number of potential mol players

Episode Number 0 1 2 3 4 5 6 7 8 9
Full Moldel 2.175 2.124 1.963 1.878 1.666 1.274 1.181 0.886 0.590 0.292
Plus Moldel 2.273 2.206 2.011 1.922 1.729 1.318 1.246 1.025 0.590 0.292
Min Moldel 2.270 2.154 1.963 1.852 1.796 1.416 1.293 1.071 0.672 0.328
Exam Drop 2.303 2.165 1.991 1.837 1.736 1.335 1.223 1.014 0.768 0.428
Exam Pass 2.303 2.197 2.077 1.966 1.908 1.758 1.621 1.416 1.109 0.793
Wikipedia 2.260 2.165 2.048 1.952 1.860 1.701 1.588 1.414 1.182 0.854
Appearance 2.303 2.302 2.049 1.883 1.761 1.572 1.488 1.282 1.029 0.726
Uniform 2.303 2.212 2.096 1.983 1.887 1.736 1.620 1.447 1.200 0.880

Table E.3: Mol Log Loss for configurations grouped by episode number
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#Potential Mol 10 9 8 7 6 5 4 3 2
Full Moldel 2.226 2.192 1.908 1.744 1.491 1.159 0.751 0.582 0.518
Plus Moldel 2.324 2.262 1.940 1.819 1.535 1.235 0.890 0.582 0.518
Min Moldel 2.270 2.135 1.898 1.798 1.616 1.296 0.907 0.619 0.631
Exam Drop 2.303 2.160 1.919 1.761 1.527 1.236 0.915 0.653 0.634
Exam Pass 2.303 2.171 2.061 1.949 1.810 1.604 1.332 1.027 0.564
Wikipedia 2.260 2.124 2.037 1.932 1.759 1.593 1.346 1.046 0.640
Appearance 2.399 2.267 2.037 1.896 1.655 1.454 1.220 0.941 0.505
Uniform 2.302 2.197 2.079 1.946 1.792 1.609 1.386 1.099 0.693

Table E.4: Mol Log Loss for configurations grouped by number of potential mol players

Episode Number 0 1 2 3 4 5 6 7 8 9
Full Moldel 0.622 0.617 0.743 0.746 0.809 0.903 0.909 0.951 0.981 0.997
Plus Moldel 0.563 0.588 0.727 0.733 0.789 0.895 0.902 0.938 0.981 0.997
Min Moldel 0.578 0.642 0.780 0.778 0.784 0.881 0.897 0.928 0.970 0.995
Exam Drop 0.500 0.740 0.781 0.790 0.810 0.896 0.908 0.937 0.968 0.996
Exam Pass 0.500 0.652 0.674 0.709 0.664 0.717 0.788 0.855 0.923 0.953
Wikipedia 0.619 0.663 0.705 0.719 0.751 0.806 0.833 0.864 0.913 0.963
Appearance 0.500 0.520 0.744 0.764 0.809 0.860 0.871 0.902 0.939 0.963
Uniform 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table E.5: Concordant-Discordant Ratio for configurations grouped by episode number

#Potential Mol 10 9 8 7 6 5 4 3 2
Full Moldel 0.562 0.577 0.763 0.786 0.866 0.916 0.962 0.979 0.978
Plus Moldel 0.485 0.556 0.755 0.759 0.855 0.904 0.951 0.979 0.978
Min Moldel 0.578 0.695 0.792 0.779 0.839 0.900 0.948 0.975 0.969
Exam Drop 0.500 0.756 0.808 0.811 0.849 0.905 0.955 0.978 0.972
Exam Pass 0.500 0.674 0.677 0.651 0.711 0.800 0.880 0.929 0.988
Wikipedia 0.619 0.730 0.717 0.725 0.801 0.833 0.902 0.982 0.984
Appearance 0.194 0.566 0.756 0.731 0.841 0.892 0.920 0.946 1.000
Uniform 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Table E.6: Concordant-Discordant Ratio for configurations grouped by number of potential mol
players

Episode Number 0 1 2 3 4 5 6 7 8 9
Full Moldel 0.115 0.121 0.149 0.171 0.203 0.344 0.357 0.480 0.602 0.766
Plus Moldel 0.104 0.113 0.144 0.166 0.193 0.338 0.351 0.455 0.602 0.766
Min Moldel 0.104 0.117 0.144 0.167 0.177 0.298 0.318 0.423 0.572 0.739
Exam Drop 0.100 0.116 0.139 0.165 0.183 0.296 0.322 0.399 0.505 0.672
Exam Pass 0.100 0.112 0.126 0.141 0.149 0.174 0.200 0.248 0.342 0.485
Wikipedia 0.105 0.116 0.130 0.144 0.158 0.185 0.206 0.249 0.316 0.461
Appearance 0.100 0.106 0.137 0.164 0.186 0.227 0.245 0.304 0.383 0.543
Uniform 0.100 0.110 0.123 0.139 0.152 0.177 0.199 0.238 0.308 0.442

Table E.7: Mean Mol Likelihood for configurations grouped by episode number

94



#Potential Mol 10 9 8 7 6 5 4 3 2
Full Moldel 0.109 0.114 0.155 0.188 0.272 0.369 0.534 0.644 0.661
Plus Moldel 0.100 0.108 0.151 0.177 0.267 0.362 0.509 0.644 0.661
Min Moldel 0.104 0.119 0.156 0.180 0.247 0.317 0.485 0.623 0.602
Exam Drop 0.100 0.117 0.150 0.180 0.249 0.317 0.442 0.558 0.580
Exam Pass 0.100 0.114 0.128 0.143 0.164 0.202 0.265 0.361 0.575
Wikipedia 0.105 0.120 0.132 0.146 0.174 0.205 0.262 0.353 0.532
Appearance 0.094 0.110 0.138 0.161 0.205 0.253 0.324 0.433 0.620
Uniform 0.100 0.111 0.125 0.143 0.167 0.200 0.250 0.333 0.500

Table E.8: Mean Mol Likelihood for configurations grouped by number of potential mol players

Episode Number 0 1 2 3 4 5 6 7 8 9
Full Moldel 4.308 4.462 3.462 3.115 2.577 1.923 1.846 1.462 1.231 1.000
Plus Moldel 4.769 4.846 3.615 3.269 2.808 2.000 1.923 1.538 1.231 1.000
Min Moldel 4.731 4.346 3.308 2.846 2.846 2.038 1.654 1.654 1.462 1.154
Exam Drop 5.500 4.692 3.808 3.192 2.769 1.962 1.769 1.577 1.346 1.000
Exam Pass 5.500 4.769 3.923 3.654 3.692 3.385 2.808 2.192 1.808 1.692
Wikipedia 4.769 4.308 3.885 3.731 3.500 3.000 2.731 2.423 2.077 1.692
Appearance 5.500 5.000 3.923 3.731 3.308 2.654 2.423 2.038 1.769 1.500
Uniform 5.500 5.077 4.577 4.154 3.808 3.346 3.038 2.654 2.192 1.769

Table E.9: Mean Mol Rank for configurations grouped by episode number

#Potential Mol 10 9 8 7 6 5 4 3 2
Full Moldel 4.692 4.417 3.167 3.091 2.154 1.727 1.385 1.111 1.167
Plus Moldel 5.231 4.750 3.250 3.364 2.231 1.818 1.462 1.111 1.167
Min Moldel 4.731 3.917 3.375 3.000 2.269 1.636 1.692 1.222 1.333
Exam Drop 5.500 4.667 3.417 3.045 2.308 1.727 1.462 1.111 1.167
Exam Pass 5.500 4.375 3.917 4.045 3.423 2.591 2.000 1.833 1.333
Wikipedia 4.769 4.000 3.917 3.773 3.154 2.818 2.231 1.778 1.333
Appearance 5.885 4.833 3.833 3.864 2.808 2.364 2.000 1.778 1.250
Uniform 5.500 5.000 4.500 4.000 3.500 3.000 2.500 2.000 1.500

Table E.10: Mean Mol Rank for configurations grouped by number of potential mol players
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F FINAL PREDICTION OF SEASON 22

Season 22 is defined as the season that was broadcast in the period from 2 January 2021 up
to 6 March 2021. The prediction after the finals is shown by Figure F.1. Renée turned out to be
the mol of this season.

Figure F.1: Final predictions of Full Moldel for seasons 9 up to 12
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