
Faculty of Electrical Engineering, Mathematics &
Computer Science

Department Applied Mathematics
Stochastic Operations Research

Approximate Dynamic Programming
with Adaptive Multivariate Simplex Splines

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Author
Maike C. de Jongh

Supervisors
Dr.ir. A. Braaksma

Prof.dr. R.J. Boucherie

Graduation Committee
Dr.ir. A. Braaksma

Prof.dr. R.J. Boucherie

Dr. F.H.C. Bertrand

Dr.ir. M.R.K. Mes

March 23, 2021

Abstract

Large-scale Markov decision processes (MDPs) typically suffer from the curse of

dimensionality, which renders exact solution methods intractable. For such problems,

we rely upon approximate dynamic programming (ADP) techniques. A fundamental

element of approximate dynamic programming is value function approximation. This

research presents a value function approximation architecture that is based on adaptive

multivariate simplex splines. Their linearity in the parameters and the fact that they are

easily evaluated and adapted on a local basis renders these functions suitable candidates

for this purpose. The approximation power of a multivariate simplex spline depends

to a great extent on the triangulation on which it is defined. Our main contribution

is a procedure that adaptively refines this triangulation in regions of the state space

that require a more accurate value function approximation. This procedure is integrated

into an ADP framework. The result is a method that can be applied to any MDP with a

continuous (or large discrete) state space and finite discrete action space without the need

of any preadjustment of the splines based on problem-specific knowledge. The method is

tested on a problem of balancing an inverted pendulum. For this problem, the performance

of our algorithm is not far behind that of a problem-specific method. The results indicate

that multivariate simplex splines have high potential as value function approximators in

an ADP context.

Preface

With this thesis, I conclude my time as a student at the University of Twente. It is meant

to be the crowning achievement of 5.5 years of hard work and dedication. The pages

that lie before you are the result of an adventure that lasted almost 8 months. From the

solitary confinement of my student room, I made a voyage that took me along a wide

variety of different aspects of both approximate dynamic programming and the theory of

splines. As is inherent to any adventure, there have been moments of dazzling elation and

moments of deep despair. I have felt lost in the dense woods of literature on approximate

dynamic programming. I have struggled to move forward along dead-end roads, only

finding myself forced to return. But all moments of hardship were made worthwile by the

excitement of pursuing unexplored paths, by the joy and pride induced from reaping the

first fruits of my newly planted tree and by the view over an empty plain, waiting to be

seeded. For there is, I think, a lot of unexplored potential in simplex spline value function

approximation.

Several people ought to be mentioned who have been of value and of guidance to me

along my way. First of all, a big word of thanks goes out to Aleida Braaksma, my daily

supervisor, who followed every single step of the process. Although we have never seen

each other in person throughout the entire course of the project, we have spent many

hours discussing online. Your critical view and detailed feedback has been of great value

to me. And also, not to be forgotten, thank you for granting me access to your laptop.

Furthermore, I would like to thank Richard Boucherie for various thought-provoking dis-

cussions, which have provided me with many valuable insights, and also, of course, for

drawing my attention to the splines.

In addition, my gratitude goes out to my parents and my sister, for all your support and

unfaltering faith in me.

Also, I am deeply grateful to Dave, for the use of your laptop, for our refreshing conver-

1

ADP with adaptive multivariate simplex splines M.C. de Jongh

sations, but most of all for your unwavering support and love.

Additionally, I owe a word of thanks to Jan-Kees van Ommeren for lending me three

additional laptops.

Finally, I would like to thank Fleurianne Bertrand and Martijn Mes for taking the time

and effort to read and assess my work.

2

Contents

1 Introduction 10

2 Literature and preliminaries 13

2.1 The curse of dimensionality and approximate dynamic programming 13

2.1.1 Value function approximation . 15

2.2 Splines . 16

2.2.1 Univariate splines . 17

2.2.2 Multivariate splines . 18

2.2.2.1 Tensor product splines . 19

2.2.2.2 Thin plate splines . 20

2.2.2.3 Polyhedral splines . 20

2.2.2.4 Multivariate simplex splines 22

2.2.3 Splines in the context of Markov decision theory 22

2.2.4 Recursive least squares approximate policy iteration 23

2.3 Conclusion literature review . 25

3 Multivariate simplex splines 27

3.1 Introduction to multivariate simplex splines 27

3.1.1 The simplex . 27

3.1.2 Barycentric coordinates . 28

3.1.3 Bernstein basis polynomials . 30

3.1.4 The B-form . 31

3.1.5 The B-coefficient net . 32

3.1.6 Simplex splines on triangulations 32

3.1.7 The B-net orientation rule . 35

3.1.8 Smoothness constraints . 38

3

ADP with adaptive multivariate simplex splines M.C. de Jongh

3.2 Multivariate simplex splines as modelling tools 43

3.2.1 Geometric model structure selection 43

3.2.1.1 Triangulations . 43

Simplex metrics . 43

Type I/II triangulations . 45

Delaunay triangulations . 47

3.2.1.2 Triangulation optimization 48

Geometric triangulation optimization methods 49

Data-dependent triangulation optimization methods 50

Triangulation optimization for value function approximation 51

3.2.2 Polynomial model structure selection 52

3.2.3 Estimation of the B-coefficients . 52

3.2.3.1 Discrete least squares . 52

3.2.3.2 Generalized least squares 53

3.2.3.3 Recursive least squares . 55

4 Approximate dynamic programming with adaptive multivariate simplex

splines 58

4.1 The triangulation refinement procedure . 58

4.1.1 Refinement criteria . 61

4.1.1.1 Maximum value difference and value variance 61

4.1.1.2 Visitation frequency . 62

4.1.1.3 Error contribution . 65

4.1.2 Refinement direction . 73

4.2 Dynamic programming with simplex splines 74

4.2.1 Analysis simplex spline dynamic programming 76

4.3 Recursive least squares approximate policy iteration with simplex splines . 81

4.3.1 Alternative approach for linear simplex splines of continuity order 0 83

4.3.2 Analysis recursive least squares approximate policy iteration with

simplex splines . 85

5 Case studies 86

5.1 Three-dimensional water reservoir problem 86

5.1.1 Performance on a fixed balanced triangulation 87

5.2 Inverted pendulum . 91

4

ADP with adaptive multivariate simplex splines M.C. de Jongh

5.2.1 Performance on a fixed, balanced triangulation 93

5.2.2 Performance of the triangulation refinement procedure 96

5.3 Remarks on the implementation . 101

5.3.1 Computing the transition probabilities 101

5.3.2 Computing the region transition probabilities 102

6 Conclusions and recommendations 103

6.1 Conclusions . 103

6.2 Recommendations . 106

5

List of symbols and abbreviations

MDP - Markov decision process.

S - State space.

A - Action space.

F - Markovian transition model.

C - Cost function.

γ - Discount factor.

D - Initial state distribution.

T - Horizon.

π - Policy.

V π - State value function corresponding to policy π.

Qπ - State-action value function corresponding to policy π.

V ∗ - Optimal state value function.

Q∗ - Optimal state-action value function.

π∗ - Optimal policy.

φ(x) - Basis function or feature.

M - Bellman operator.

V - Space of value functions.

t - Knot vector.

Bi,k - ith spline basis function of a B-spline of order k.

ψ(x) - Radial basis function.

Bt(x|X) - Polyhedral spline of n-dimensional polyhedron t ∈ Rn+s and

canonical projection X of vertices of t onto Rs.

volk(A) - k-dimensional volume of set A.

M - Sample path length.

W - Random information.

6

ADP with adaptive multivariate simplex splines M.C. de Jongh

vi - Vertex of simplex.

Vt - Set of vertices of simplex t.

b(x) - Barycentric coordinates of point x.

At - Normalized simplex vertex matrix of simplex t.

κ - Multi-index.

d̂ - Total number of permutations of multi-index κ of dimension n and 1-norm d.

Bd
κ(b) - Bernstein basis polynomial of degree d and multi-index κ.

ctj - Vector of B-coefficients belonging to simplex tj.

Bd
tj

(b) - Vector of Bernstein basis polynomials belonging to simplex tj.

T - Triangulation.

Srd(T) - Space of all spline functions s of degree d and continuity order Cr

on a triangulation T .

δjk(x) - Simplex membership operator.

Dtj(x) - Per-simplex diagonal membership matrix.

D(x) - Full-triangulation membership matrix.

srd(x|c) - Simplex spline of degree d and continuity order Cr defined

on a triangulation T .

c̆t - Sorted vector of vertex B-coefficients.

t̃ij - Edge facet of simplices ti and tj.

ṽij - Out-of-edge vertex of simplex ti of edge facet t̃ij.

M(j, κ) - Tuple function that generates multi-indices.

ρ(vi) - Rank function that returns the rank of vertex vi within a certain simplex t.

H - Smoothness matrix.

E - Number of edges of triangulation.

SRLC - The location of the center and the radius of the circum(hyper)sphere

of a simplex.

SRSC - The ratio between the radius of the circum(hyper)shpere and the shortest ridge

of the simplex.

SMA - The minimum angle between two ridges of the simplex.

SDP - The number of data points contained by the simplex.

PT - Metric to assess the quality of a triangulation T .

7

ADP with adaptive multivariate simplex splines M.C. de Jongh

PSLG - Planar straight-line graph.

CDT - Constrained Delaunay triangulation.

HCI - Hypercube-Convex hull-Intersection.

LOP - Local Optimization Procedure.

DLS - Discrete least squares.

JDLS(c) - Cost function discrete least squares method.

KKT - Karush-Kuhn-Tucker.

GLS - Generalized least squares.

Σ - Residual covariance matrix.

JGLS(c) - Cost function generalized least squares method.

r - Residual vector.

ECRLS - Equality constrained recursive least squares.

JECRLS(c) - Cost function equality constrained recursive least squares method.

ĉ - Recursive least squares estimator of the B-coefficients.

Z - Orthogonal projector onto the null-space of H.

P - Parameter covariance matrix estimate.

η(ai) - Maximum value difference of region ai.

ζ(ai) - Value variance of region ai.

θ(ai) - Visitation frequency of region ai.

P π(at+1
j |ati) - Region transition probability from region ati to region at+1

j under policy π.

Aπ - Matrix of region transition probabilities induced by policy π.

ε(s) - Error estimate in a state s ∈ S.

ε(ai) - Local error estimate of region ai.

pπk(ai|aj) - k-step region transition probabilities.

ξπ(ai, aj) - Influence of region ai on region aj under policy π.

µ(ai) - Error contribution of region ai.

Smax(t) - Maximum storages of water reservoirs at time t.

m - Desired amounts of water in water reservoirs.

C(t) - Cost coefficients for water reservoirs.

q(t) - Inflows into water reservoirs at time t.

8

ADP with adaptive multivariate simplex splines M.C. de Jongh

θ̇(t) - Angular velocity of the inverted pendulum.

θ̈(t) - Angular acceleration of the inverted pendulum.

g - Gravitational acceleration.

l - Length of the pendulum.

θ - Angle of the pendulum with respect to vertical axis.

h - Discretization step size paramter.

θ̇max - Maximum angular velocity of the inverted pendulum.

9

Chapter 1

Introduction

Problems that involve sequential decision making under uncertainty arise in a wide variety

of settings, for example inventory management, healthcare scheduling or control of heat-

ing systems. Such problems are typically modeled as a Markov decision process (MDP).

Unfortunately, real-life MDPs often suffer from the curse of dimensionality, which renders

exact solution methods intractable. For such complicated, large-scale problems, we rely

upon approximate dynamic programming (ADP) techniques to find a sufficiently good

solution without the need of huge computational efforts. This research focuses on MDPs

with a continuous (or very large) discrete state space and a finite discrete action space.

One of the fundamental elements of approximate dynamic programming is value func-

tion approximation. Various approximation architectures have been developed over the

past decades, which can be roughly distinguished into parametric and nonparametric

models. Parametric models are easy to use and allow for the application of efficient and

transparent learning methods. They are only effective, however, if they provide a good

representation of the state space. Designing such a representation may be a challenging

task. Nonparametric models circumvent this difficulty and can achieve a high approxima-

tion accuracy. This comes with the downside that they are typically intransparent and

not easy to use.

In this thesis, we investigate the use of splines as value function approximators. Splines

are functions that consist of multiple polynomial pieces. This piecewise nature suggests

that these functions might achieve a higher approximation power and greater flexibility

than functions that consist of only one piece. The goal of this project is reflected in the

10

ADP with adaptive multivariate simplex splines M.C. de Jongh

following research question:

Are splines suitable candidates for value function approximation and how can we design

an ADP framework that exploits their flexibility?

In answering this question, we let ourselves be guided by the following subquestions:

1. Which type of splines is most suitable for value function approximation?

2. How can we identify “important” regions of the state space, that is, regions that

require the most accurate value function approximation?

3. How can we adapt the splines in such a way that they provide a more accurate

approximation in regions where this is required?

4. How can we integrate such an adaptive procedure into an ADP framework?

5. How well does the resulting ADP algorithm based on adaptive splines perform?

The structure of this thesis is as follows:

in Chapter 2, we give an overview of relevant literature on value function approxima-

tion and on splines. We discuss several different types of multivariate splines and argue

that the multivariate simplex spline is, in our view, the most suitable candidate for value

function approximation. Furthermore, we examine earlier use of splines in the context

of Markov decision theory. In addition, we briefly explain the recursive least squares ap-

proximate policy iteration (RLS API) algorithm described by Powell (2011), into which

we will embed our adaptive procedure.

Chapter 3 provides an extensive overview of the theory on multivariate simplex splines.

Furthermore, we discuss various methods through which multivariate simplex splines can

be used as modelling tools.

The approximation power of a multivariate simplex spline depends to a great extent on

the triangulation on which it is defined. In Chapter 4, we develop our main contribution,

which is a procedure that adaptively refines this triangulation in regions of the state space

that demand a more accurate value function approximation. We first embed this proce-

dure into the renowned backward dynamic programming algorithm. Then, we integrate

the method into the RLS API algorithm described in Chapter 2.

In Chapter 5, we test our algorithms on two case studies: a problem of controlling the

11

ADP with adaptive multivariate simplex splines M.C. de Jongh

water flows in a system of water reservoirs and a problem of balancing an inverted pendu-

lum. The simplex spline dynamic programming algorithm proves to be extremely time-

consuming and not suitable for practical use. The simplex spline RLS API algorithm, on

the other hand, achieves good results, which demonstrate the advantage of the triangu-

lation refinement procedure over a fixed, balanced triangulation. Also, the performance

is shown to be not far behind that of a problem-specific method. Moreover, we foresee

possibilities for considerable futher performance improvement through modifications of

both the algorithm itself and its implementation.

Finally, Chapter 6 presents our conclusions and some ideas on the improvement of our

methods.

12

Chapter 2

Literature and preliminaries

In this chapter, we give an overview of the relevant literature on approximate dynamic pro-

gramming, with an emphasis on value function approximation, and the theory of splines.

Furthermore, we introduce the recursive least squares approximate policy iteration (RLS

API) described by Powell (2011), into which we integrate our methods at a later stage.

2.1 The curse of dimensionality and approximate dy-

namic programming

This research studies Markov decision processes with a continuous (or large discrete)

state space and a finite discrete action space. Such a Markov decision process (MDP) is

commonly written as a tuple (S,A,F , C, γ,D), where S denotes the state space of the

process, A is the set of possible actions, F the Markovian transition model, C a cost

function, γ ∈ (0, 1] a discount factor and D the initial state distribution. Here, F(s, a, s′)

is the probability density function that specifies the probability of a transition from a

state s to a region S ′ ⊆ S after taking action a:∫
S′

F(s, a, s′)ds′ = P (st+1 ∈ S ′|st = s and at = a). (2.1)

Furthermore, C(s, a) is the cost induced after taking action a in state s.

A Markov decision process is a discrete-time process: it starts at time t = 0 in some state

s0 ∈ S drawn from distribution D. At each time step t, the process is in a certain state

st and the decision maker selects an action at ∈ A. The next state st+1 is determined by

13

ADP with adaptive multivariate simplex splines M.C. de Jongh

the transition model F(st, at, s
′) and the cost Ct follows from the cost function C(st, at).

The horizon T is the number of time steps of each run of the process and is frequently

infinite. A full run of the process over T timesteps is called an episode and is represented

by a sequence of states, actions and costs: (s0, a0, C0, s1, a1, C1, ..., sT , aT , CT , sT+1). The

goal of the decision maker is to choose actions in such a way that the so-called expected

total discounted cost is minimized. This quantity is given by

E(C0 + γC1,+γ
2C2 + γ3C3 + ...+ γTCT |S0 = s), (2.2)

where s is drawn from D.

A policy is a rule that dictates the decisions of the decision maker. A deterministic

policy is a mapping π : S → A that selects a single action for each state s ∈ S. A stochas-

tic policy is a mapping π : S → Ω(A), where Ω(A) denotes the set of all probability

distributions over A. In this case π(a|s) represents the probability of choosing action a in

state s under policy π. A policy π is called stationary if it does not change over time, that

is, πt = π, ∀t = 0, 1, ..., T . The optimal policy π∗ is a policy that minimizes the expected

discounted costs obtained by following this policy from any state s ∈ S. For every MDP,

there exists at least one stationary and deterministic optimal policy. (Puterman, 1994).

The quality of a policy π can be expressed by means of a value function, which rep-

resents the expected costs induced by the policy for a certain initial situation. The state

value function V π(s) denotes the expected costs under policy π when the process starts

in state s:

V π(s) = Eat∼π;St∼F ;Ct∼C(
∞∑
t=0

γtCt|S0 = s). (2.3)

Similarly, the state-action value function Qπ(s, a) denotes the expected costs when the

process starts in state s and the decision maker selects action a and then follows policy

π:

Qπ(s, a) = Eat∼π;St∼F ;Ct∼C(
∞∑
t=0

γtCt|S0 = s, a0 = a). (2.4)

The optimal value functions V ∗ and Q∗ are the value functions V π∗ and Qπ∗ that belong

14

ADP with adaptive multivariate simplex splines M.C. de Jongh

to any optimal policy π∗. The optimal value function can be found by solving the Bellman

equations :

Vt(st) = max
at∈At

(
Ct(st, at) + γ

∫
S
F(st, at, s

′)Vt+1(s
′)ds′

)
, t = 0, 1, ..., T. (2.5)

For infinite horizon MDPs, the Bellman equations reduce to

V (s) = max
a∈A

(
C(s, a) + γ

∫
S
F(s, a, s′)V (s′)ds′

)
. (2.6)

The operator M : V → V , where V denotes the space of value functions, defined by

MV (s) = max
a∈A

(
C(s, a) + γ

∫
S
F(s, a, s′)V (s′)ds′

)
(2.7)

is called the Bellman operator. For any initial value function V0, the optimal value function

can be computed by iteratively applying the Bellman operator:

Vk =MVk−1, k = 1, 2, ... (2.8)

Unfortunately, real-life problems are often too complicated to find an exact solution to the

optimality equations. The state and/or action spaces are in many cases simply too large,

such that computing the value function requires a huge amount of computation time, data

and memory space. For such problems, we rely upon approximate dynamic programming

techniques to find a solution that is reasonably close to the optimal value function. Powell

(2011) provides a detailed overview of approximate dynamic programming methods. In

this research, we focus on MDPs with a continuous (or huge discrete) state space and a

finite discrete action space.

2.1.1 Value function approximation

One of the fundamental elements in the field of approximate dynamic programming is

value function approximation. Various methods to approximate the value function were

developed by Bellman (1957). One of the most popular ones is state aggregration (Bell-

man, 1957). Here, the states are divided into several groups and one value is assigned to

each of the groups.

Another way to approximate a value function is by means of a parametric model. The

15

ADP with adaptive multivariate simplex splines M.C. de Jongh

most popular choice is a linear model, since it allows for the use of linear regression tech-

niques to learn the parameters. In this case, the value function approximation is of the

form

V̂ (s|w) =
m∑
i=1

wiφi(s), s ∈ S. (2.9)

where wi, i = 1, ...,m are the parameters and φi : S → R, i = 1, ...,m are the so-called

basis functions or features. Parametric models are powerful approximators, since they

allow for the use of efficient and transparent learning methods. However, these methods

are only effective if the parametric model provides a good representation of the state

space. Designing such a model may be a challenging endeavour. The features are mostly

constructed by hand, using knowledge of the specific problem (for example, Gabillon et

al., 2013). Various methods have been proposed that automatically construct a feature

representation, without using knowledge of the problem (Barreto et al., 2018; Grover and

Leskovec, 2016; Lehnert and Littman, 2019; Madjiheurem and Toni, 2019, Mahadevan,

2005; Mahadevan, 2010). These methods, however, are generally cumbersome and do not

always perform well. Other examples of possible basis functions are polynomials (Bellman

et al., 1963; Schweitzer and Seidmann, 1985), splines (Trick and Zin, 1997, Chen et al.,

1999), the Fourier series (Konidaris and Osentoski, 2011), wavelets (Mahadevan et al.,

2005) and radial basis functions (Sutton and Barto, 2018).

Nonparametric models circumvent the difficulty of constructing a suitable parametric

state space representation and can achieve a great modelling accuracy. These advantages

however, do come with a downside. Nonparametric models are typically intransparent

and not easy to use. Each comes with its own complications. Examples of nonparametric

approaches that have been used to solve MDPs are support vector machines (Tang, 2013),

decision trees (Pyeatt and Howe, 1998) and neural networks (Coulom, 2002).

2.2 Splines

This research studies the use of splines as value function approximators. A spline can

be described as a function that consists of multiple polynomial pieces which satisfies

certain predefined continuity conditions between the pieces. This piecewise nature renders

splines much more powerful modelling tools than functions that consist of only one piece.

16

ADP with adaptive multivariate simplex splines M.C. de Jongh

Moreover, it allows for local model adaptation and efficient computational schemes. In

this section, we investigate some popular types of splines, which might come of use in the

context of Markov decision theory.

2.2.1 Univariate splines

The concept of a spline dates back to the middle-ages, where it was used in the design

of bows and hulls of ships (de Boor, 1978). Nowadays, splines are used in a wide variety

of fields, like system identification (Karagoz and Batselier, 202), medical imaging (Unser,

2002) and car design (Xue and Zhou, 2014).

The theory of one-dimensional splines, centering on the popular univariate B-spline, is

advanced and considered fully developed (Cox, 1972; de Boor, 1972; de Boor, 1976). A

univariate spline f maps a certain interval [a, b] to the set of real numbers: f : [a, b]→ R.

The pieces of a spline are defined on ordered subintervals of the interval [a, b]. These

subintervals are determined by the knot vector t = (t0, ..., tm), which satisfies

a = t0 ≤ t1 ≤ ... ≤ tk−1 ≤ tm = b,

[a, b] = [t0, t1] ∪ [t1, t2] ∪ ... ∪ [tm−1, tm].
(2.10)

On each subinterval [ti, ti+1], we define a polynomial Pi : [ti, ti+1]→ R:

f(t) =



P0(t) if t0 ≤ t < t1

P1(t) if t1 ≤ t < t2
...

...

Pm−1(t) if tk−1 ≤ t ≤ tm.

(2.11)

Univariate splines are typically written in the form of a B-spline or basis spline. The

advantage of this form is that it has minimal support with respect to a certain degree,

smoothness and domain partition. It is uniquely determined by a knot vector and a

corresponding sequence of coefficients. A B-spline of order k has the following form:

p(x) =
N∑
i=1

Bi,k(x)ci, (2.12)

where N is a positive integer, c1, c2, ..., cN are coefficients and Bi,k is a polynomial of degree

17

ADP with adaptive multivariate simplex splines M.C. de Jongh

k− 1 called a basis function. To distinguish these functions from the basis functions used

for value function approximation in the ADP context, we will refer to them as spline basis

functions. For a given knot vector t = (t0, ..., tm), the unique basis functions of order k

satisfy

Bi,k(x) =

0 if x < ti or x ≥ ti+k

nonzero otherwise∑
i

Bi,k(x) = 1 for all t0 < x < tm

(2.13)

Spline basis functions can be constructed by means of the Cox-de Boor recursion formula:

Bi,1(x) =

1 if ti ≤ x < ti+1

0 otherwise,
(2.14)

Bi,k+1(x) := ωi,k(x)Bi,k(x) + [1− ωi+1,k(x)]Bi+1,k(x), (2.15)

where

ωi,k(x) :=


x− ti
ti+k − ti

if ti+k 6= ti

0, otherwise.
(2.16)

A B-spline of order k is a polynomial function of degree k−1 that is continuous at each of

the knots. When all knots are distinct, the first k − 2 derivatives are continuous as well.

When r knots coincide, only the first k − r − 1 derivatives are continuous at that knot.

2.2.2 Multivariate splines

The B-spline is an elegant and powerful tool in univariate spline theory. Generalizing the

B-spline to multiple dimensions, however, is not trivial and still object of research. Various

types of multivariate splines have been developed, each with their own properties, but

none of these truly generalize the univariate B-spline. De Boor and Ron (1990) wrote the

following about this problem: “The generalization of univariate polynomial interpolation

to the multivariate context is made difficult by the fact that one has to decide just which

of its many nice properties to preserve, as it is impossible to preserve them all.”

18

ADP with adaptive multivariate simplex splines M.C. de Jongh

In this section, we discuss the most popular types of multivariate splines which possess

at least some of the advantages of the univariate B-spline: the tensor product spline, the

thin plate spline, the polyhedral spline and the simplex spline. Also, we discuss some

earlier works on splines in the context of Markov decision theory.

2.2.2.1 Tensor product splines

The first attempt to lift the univariate B-spline to higher dimensions was made in 1959 by

the mathematician Paul de Casteljau, who worked for car manufacturer Citroën (Farin,

2002). He invented a method that uses Bernstein polynomials defined on rectangular or

triangular patches to fit smooth surfaces in two dimensions, which would form the basis

of the multivariate simplex spline. The method of de Casteljau was kept secret by Citroën

and reinvented in a slightly different form by Pierre Étienne Bézier in 1971, who based his

work on what we now call Bézier curves and Bézier patches (Bézier, 1971). These rectan-

gular patches paved the way for the widely used multivariate tensor product splines (TPS).

Tensor product splines are easily constructed by simply taking the tensor product of

a number of univariate spline functions. The following bivariate tensor product spline for

example, is a tensor product of two univariate B-splines:

f(x, y) =
r∑
i=1

s∑
j=1

Bi,v(x)Bj,w(y)cij, (2.17)

where r and s denote the number of spline basis functions of the two B-splines, c ∈ Rr×s

is a coefficient matrix and Bi,v and Bj,w are spline basis functions of orders v and w

respectively. This can easily be generalized to a tensor product B-spline of dimension n:

f(x) =

r1∑
i1=1

r2∑
i2=1

· · ·
rn∑
in=1

Bi1,v1(x1)Bi2,v2(x2) · · ·Bin,vn(xn)ci1i2···in

=
n∏
j=1

rj∑
ij=1

Bij ,vj(xj)ci1i2···in ,

(2.18)

where c ∈ Rr1×r2×···×rn is an n-dimensional array of coefficients and Bij ,vj is a basis func-

tion of order vj for j = 1, 2, ..., n.

19

ADP with adaptive multivariate simplex splines M.C. de Jongh

The main advantages of tensor product splines are their computational simplicity and

efficiency. They are widely used for applications in computer-aided design (Dokken et al.,

2018). A major disadvantage is their dependence on rectangular domains, which renders

them unsuitable to model scattered datasets (de Visser, 2011).

2.2.2.2 Thin plate splines

The desire to model real-life physical datasets gave rise to the development of the so-called

thin plate spline. These splines are constructed by minimizing an energy integral. A thin

plate spline is a linear combination of radial basis functions (RBFs) centered at the data

points themselves. Hence, the number of basis functions of a thin plate spline equals the

number of data points:

f(x) =
N∑
j=1

ψj(x)cj, (2.19)

where ψj(x) are radial basis functions and c ∈ RN is a vector of coefficients.

Contrary to tensor product splines, thin plate splines are capable of modelling scattered

data. However, this goes hand in hand with extreme computational inefficiency. After

all, the basis functions of a thin plate spline are non-local, which means that they all

contribute to each point on the spline. Hence, both the construction and the evaluation

of a thin plate spline requires evaluation of each of its basis functions.

2.2.2.3 Polyhedral splines

In the 1980’s, multivariate splines received a lot of attention from the academic world and

great innovations took place. A breakthrough was the development of the polyhedral spline

(de Boor, 1987; de Boor, 2000), which was regarded as the “true” generalization of the

univariate B-spline. A polyhedral spline is constructed by projecting a multidimensional

polyhedron in Rn+s onto a lower dimensional plane in Rs. The value of the polyhedral

spline at a certain point corresponds to the volume of the slice of the polyhedron that is

projected onto this point.

Let t ∈ Rn+s be an n-dimensional polyhedron and let X ⊂ Rs be the canonical projection

of the set of vertices of t onto Rs. A canonical projection of a point p = (p1, p2, ..., ps+n) ∈
Rn+s onto Rs is defined as p|Rs = (p1, p2, ..., ps). The elements of X serve as the knots of

the spline in Rs. Now, the polyhedral spline Bt(x|X) is defined as follows:

20

ADP with adaptive multivariate simplex splines M.C. de Jongh

Bt(x|X) :=
voln(p ∈ t : p|Rs = x)

voln+s(t)
, x ∈ Rs, (2.20)

where volk(A) denotes the k-dimensional volume of a set A. This function has degree

n. The degree of a polyhedral spline can be increased by choosing polyhedrons of higher

dimensions.

Figure 2.1 shows an example of the construction of a polyhedral spline (de Visser, 2011).

Figure 2.1: Construction of a polyhedral spline (de Visser, 2011)

Here, t is a tetrahedron in R3 with vertices v0, v1, v2 and v3, which is projected onto R.

This implies that the resulting polyhedral spline is univariate and has degree 2. The knots

are the projections of the vertices of t onto R, so X = {v0|R, v1|R, v2|R, v3|R}.

Despite their grand entrance, the polyhedral spline only enjoyed a short period of popular-

ity. Although they are mathematically elegant, they have proved to be hard to construct

and evaluate, very inefficient and thus almost impossible to use in practice (Goodman,

1990).

21

ADP with adaptive multivariate simplex splines M.C. de Jongh

2.2.2.4 Multivariate simplex splines

While most eyes were directed to the polyhedral spline, a small number of mathematicians

worked on the development of another type of multivariate spline, based on the triangular

patches invented by de Casteljau (Farin, 2002). Each piece of this spline is defined on

one of these patches, or simplices. Together, the simplices form a so-called triangulation.

The pieces are tied together through certain predetermined continuity constraints.

The new spline became known as the multivariate simplex spline. Its two-dimensional

version first appeared in 1986 in a paper by Farin (Farin, 1986). Its general formulation

in the so-called B-form was presented one year later by de Boor (1987). The theory on

simplex splines was further developed by Lai and Schumaker (Lai, 1996; Lai, 1997; Lai

and Schumaker, 1997; Lai and Schumaker, 1998; Lai and Schumaker, 2001). The mul-

tivariate simplex spline was received with scepticism. The concept of the knot, which

plays a fundamental role in the theory of univariate B-splines, is completely absent. Also,

it was feared that the dependence on the triangulation would render simplex splines in-

flexible. These concerns made that the multivariate simplex spline has mainly existed

in the shadow of other types of multivariate splines and has not been widely used for

applications.

Despite its lack of popularity however, the multivariate simplex spline proved to be a

powerful modeling tool, which can achieve a high approximation power and great com-

putational efficiency. Against the expectations, the simplex spline actually proved to be

very flexible. After all, there exists a wide variety of triangulations, each with their own

properties. Moreover, a triangulation can easily be refined or simplified locally depending

on the complexity of the data. Based on these properties, we consider the multivariate

simplex spline the most suitable candidate for value function approximation. In Chapter

3, we discuss the multivariate simplex spline in more detail.

2.2.3 Splines in the context of Markov decision theory

Splines have sofar not been widely used in the context of Markov decision processes. Trick

and Zin (1997) developed a method that uses univariate cubic splines as value function

approximators. This method, however is only applicable to one-dimensional state spaces.

Johnson et al. (1993) used tensor product splines to solve a stochastic 4-dimensional

water supply reservoir problem. This approach, however, is computationally burdensome

for higher dimensional state spaces: the number of discretization points necessary for this

22

ADP with adaptive multivariate simplex splines M.C. de Jongh

approximation grows exponentially with the number of state variables (O(4n)). Chen

et al. (1999) addressed this issue by using the multivariate adaptive regression splines

(MARS) algorithm. This procedure, introduced by Friedman (1991), consists of three

parts: first of all, a forward stepwise algorithm selects a number of spline basis functions.

Then, a backward stepwise algorithm deletes basis functions that cause overfitting. Fi-

nally, a smoothing method is applied to provide the approximation with a suitable degree

of continuity.

Although the MARS approach paves the way for spline approximations for higher dimen-

sional state spaces, the tensor product splines of Johnson et al. (1993) have proved to be

more efficient for state spaces with dimension less than five.

Both the tensor product spline method of Johnson et al. (1993) and the MARS approach

of Chen et al. (1999) were designed to be used in combination with the backward dynamic

programming algorithm. They have, to our knowledge, not been integrated into an ADP

framework sofar. Whereas tensor product splines can probably be used as value function

approximators in an ADP algorithm, the MARS approach is a non-parametric technique,

which renders it not easy, if not impossible, to use this method in an ADP context.

2.2.4 Recursive least squares approximate policy iteration

The goal of approximate dynamic programming is not only to accurately approximate the

value function of a fixed policy, but also to improve this policy. Powell (2011) discusses

several methods that simultaneously learn an accurate value function approximation and

identify a close to optimal policy. In this thesis we use the RLS API algorithm (Powell,

2011) as a framework for our value function approximation methods. According to Powell

(2011), this algorithm “represents the most natural extension of classical policy iteration

for infinite horizon problems” (Powell, 2011). We expect that our methods can also be

used in combination with other ADP approaches. In this section, we give a brief overview

of the original RLS API algorithm as described by Powell (2011).

The RLS API algorithm makes use of a linear value function approximation of the form

of expression (2.9), that is,

V̂ (s|w) =
m∑
i=1

wiφi(s), s ∈ S. (2.21)

23

ADP with adaptive multivariate simplex splines M.C. de Jongh

The algorithm starts off with an initial parameter vector w0 and an initial policy π0 that

is the greedy policy with respect to the value function approximation V̂ (s|w0). Then, it

alternately takes a walk through the state space to find a better value function approxima-

tion and updates the policy to the greedy policy of the thus obtained new approximation.

Suppose that after iteration k− 1, we have a parameter vector wk and a policy πk which

is greedy with respect to the value function approximation V̂ (s|wk). We start iteration k

by initializing value function parameters w0
k as wk and randomly choosing an initial state

sk,0. From this state, we follow a sample path

(sk,0, a0, C0, sk,1, a1, C1, sk,2, ..., aM−1, CM−1, sk,M) of length M , where the actions are cho-

sen according to policy πk and Ci denotes the costs induced after taking action ai from

state sk,i, i = 0, 1, ...,M − 1. For each step of the sample path, we compute

δj = φ(sk,j)− γφ(sk,j+1). (2.22)

The value function parameters wj
k are now updated according to the recursive least squares

procedure, which is specified by the following set of equations:

εj+1 = Cj − δTj wj
k,

Bj+1 = Bj −
Bjφ(sk,j)δTj B

j

1 + δTj B
jφ(sk,j)

,

wj+1
k = wj

k +
εj+1Bjφ(sk,j)

1 + δTj B
jφ(sk,j)

, (2.23)

where the matrix B0 is initialized as εI for a small constant ε.

After following the sample path, the global value function parameters are updated as

wk+1 = wM
k and policy πk+1 is chosen to be the greedy policy with respect to the value

function approximation V̂ (s|wk+1). An overview of the RLS API algorithm is given in

Algorithm 1. For MDPs with a discrete state space, it has been shown to converge by

Bradtke and Barto (1996). Ma and Powell (2009) extended these results to MDPs with

continuous state spaces.

For finite horizon problems, a similar version of the RLS API algorithm applies (Powell,

2011).

24

ADP with adaptive multivariate simplex splines M.C. de Jongh

Algorithm 1: Recursive least squares approximate policy iteration

Input: An infinite horizon Markov decision process (S,A,F , C, γ,D), a linear

value function approximator V̂ : S × Rm → R as given by expression

(2.21), sample path length M .

Initialize: Initialize parameter vector w0 arbitrarily, for example w0 = 0. Let π0

be the greedy policy with respect to V̂ (s|w0).

for k = 0, 1, ... do

Arbitrarily choose initial state sk,0.

Initialize w0
k = wk.

for j = 0, 1, ...,M − 1 do

Sample random information W j+1.

Choose action aj according to policy πk.

Compute next state sk,j+1 after taking action aj from state sk,j and

observing W j+1.

Compute costs Cj induced by taking action aj from state sk,j and

observing W j+1.

Compute δ as given by expression (2.22).

Compute wj+1
k by the recursive least squares procedure (2.23).

end

Let wk+1 = wM
k and let πk+1 be the greedy policy with respect to V̂ (s|wk+1).

end

2.3 Conclusion literature review

In this chapter, we gave an overview of the literature on several topics that are relevant

to our research. In Section 2.1.1, we discussed various approaches that have been de-

signed to approximate the value function. These approaches can be roughly distinguished

into parametric models and nonparametric models. The advantage of parametric models

is that they are easy to use and allow for the use of efficient and transparent learning

methods. On the other hand, it may be challenging to design the model in such a way

that it provides a good representation of the state space. Nonparametric models do not

suffer from this difficulty and can achieve great accuracy. They are, however, typically

intransparent and not easy to use.

25

ADP with adaptive multivariate simplex splines M.C. de Jongh

In Section 2.2, we discussed some popular types of splines that could potentially be

used as value function approximators. Also, we gave an overview of earlier works that

use splines in the context of Markov decision theory. These approaches are all designed

to be used in combination with backward dynamic programming. The most promising of

these methods, the MARS approach, is a non-parametric technique and therefore prob-

ably not suitable to be integrated into an ADP framework. We considered four types of

multivariate splines that could potentially be used as value function approximators in an

ADP algorithm: the tensor product spline, the thin plate spline, the polyhedral spline

and the multivariate simplex spline. The tensor product spline is computationally effi-

cient and easy to use. However, it is very inflexible and not capable of handling scattered

datasets. Thin plate splines do have this ability, but this comes at the price of extreme

computational inefficiency. The polyhedral spline also proved to be inefficient and hard

to use. The multivariate simplex spline, on the other hand, is a powerful modelling tool.

It can achieve a high approximation power and great computational efficiency. The fact

that it is linear in its parameters, allows for the use of the efficient learning techniques

that are used for linear parametric models. Moreover, the fact that it is defined on a

triangulation renders the simplex spline very flexible. After all, there exists a wide va-

riety of triangulations which are easily refined or simplified on a local basis. This is a

big advantage of the multivariate simplex spline over other parametric models. Finally,

like nonparametric models, simplex splines do not involve the design of a suitable state

space representation for a specific problem. These characteristics render them potentially

strong value function approximators.

To our knowledge, we are the first to present a value function approximation architec-

ture that is based on adaptive multivariate simplex splines. Our main contribution is a

method that exploits the flexibility of these functions. This method adaptively refines

the triangulation on which the simplex splines are defined in regions of the state space

that require a more accurate value function approximation. The triangulation refinement

procedure is first integrated into the basic backward dynamic programming algorithm.

Then, we embed it into the RLS API algorithm dicussed in Section 2.2.4.

26

Chapter 3

Multivariate simplex splines

This chapter provides an overview of the relevant theory on multivariate simplex splines.

Furthermore, we discuss several methods that are used to construct simplex spline models.

3.1 Introduction to multivariate simplex splines

3.1.1 The simplex

At the basis of the multivariate simplex spline lies the concept of a simplex, a geometric

entity that is established by a set of non-degenerate vertices.

Definition 3.1.1. (Non-degenerate vertices)

Let Vt = (v0,v1, ...,vn), vi ∈ Rn+k, k ≥ 0 be a tuple of n+1 vertices. This set of vertices

is called non-degenerate if its convex hull has dimension n.

Definition 3.1.2. (Simplex) (Lai and Schumaker, 2007)

Let Vt = (v0,v1, ...,vn), vi ∈ Rn+k, k ≥ 0 be a tuple of n + 1 non-degenerate vertices.

The n-dimensional polytope that is the convex hull of these vertices is called a simplex.

Simplices of dimension higher than 3 are hard to visualize. Figure 3.1 shows the projec-

tions of the regular simplices of dimensions 0 to 15 onto the two-dimensional plane (de

Visser, 2011). A simplex is regular if the distance between vi and vj is the same for any

pair of vertices vi, vj.

27

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 3.1: Projections of the regular simplices of dimensions 0 to 15 onto the two-
dimensional plane (de Visser, 2011).

A nice property of a simplex is that its faces, or the convex hulls of the nonempty subsets

of the vertices, are simplices themselves of lower dimensions.

3.1.2 Barycentric coordinates

Each point x in n-dimensional Euclidean space can be written in terms of the vertices of

an n-simplex.

Definition 3.1.3. (Barycentric coordinates) (Lai and Schumaker, 2007)

Let the simplex t be defined by the vertices v0,v1, ...,vn ∈ Rn. Any point x = (x1, x2, ..., xn) ∈

28

ADP with adaptive multivariate simplex splines M.C. de Jongh

Rn corresponds to a barycentric coordinate b(x) = (b0, b1, ..., bn) ∈ Rn+1 with respect to t,

through the following relation:

x =
n∑
i=0

bivi,
n∑
i=0

bi = 1. (3.1)

The barycentric coordinates of a point x ∈ Rn can easily be derived using the normalized

simplex vertex matrix.

Definition 3.1.4. (Normalized simplex vertex matrix)(de Visser, 2011)

Let the simplex t be defined by the vertices v0,v1, ...,vn ∈ Rn. The normalized simplex

vertex matrix that belongs to this simplex is given by

At = [v1 − v0,v2 − v0, ...,vn − v0]. (3.2)

The following derivation shows the relation between the normalized simplex vertex matrix

of a simplex t defined by the vertices v0,v1, ...,vn ∈ Rn and the barycentric coordinates

of a point x ∈ Rn:

x =
n∑
i=0

bivi

= b0v0 +
n∑
i=1

bivi

= (1−
n∑
i=1

bi)v0 +
n∑
i=1

bivi

= v0 +
n∑
i=1

bi(vi − v0). (3.3)

This implies

x− v0 =
n∑
i=1

bi(vi − v0) = Atb
T . (3.4)

Hence,

bT = A−1t (x− v0). (3.5)

29

ADP with adaptive multivariate simplex splines M.C. de Jongh

3.1.3 Bernstein basis polynomials

A simplex spline is constructed from a number of so-called Bernstein polynomials which

are each defined on their own simplex. In order to define a Bernstein polynomial, we first

introduce the concept of a multi-index.

Definition 3.1.5. (Multi-index) (de Visser, 2011)

A multi-index κ of dimension n is a tuple κ := (κ0, κ1, ..., κn) ∈ Nn+1. Its 1-norm satisfies

|κ| = κ0 + κ1 + ...+ κn = d, d ≥ 0 (3.6)

and its factorial is given by

κ! = κ0!κ1! · · ·κn!. (3.7)

The total number of permutations of κ can be shown to be (De Boor, 1987)

d̂ =

(
d+ n

d

)
=

(d+ n)!

n!d!
. (3.8)

Multi-indices can be used among others to simplify the multinomial theorem:

(b0 + b1 + ...+ bn)d =
∑

κ0+κ1+...+κn=d

d!

κ0!κ1! · · ·κn!
bκ00 b

κ1
1 · · · bκnn =

∑
|κ|=d

d!

κ!
bκ. (3.9)

Using the concept of a multi-index, we define the Berstein basis polynomials, which are

the building blocks of the Berstein polynomials.

Definition 3.1.6. (Bernstein basis polynomials)

The Bernstein basis polynomial of degree d and multi-index κ is defined as:

Bd
κ(b) :=

d!

κ!
bκ. (3.10)

Combining expressions (3.9) and (3.10) yields

(b0 + b1 + ...+ bn)d =
∑
|κ|=d

Bd
κ(b). (3.11)

Now, suppose that b is a barycentric coordinate. From expression (3.1), it then follows

that

30

ADP with adaptive multivariate simplex splines M.C. de Jongh

∑
|κ|=d

Bd
κ(b) = 1. (3.12)

This property is called the partition of unity of the Bernstein basis polynomials: at every

location within a simplex, the Bernstein basis polynomials sum up to 1.

A Bernstein polynomial is a linear combination of Bernstein basis polynomials.

3.1.4 The B-form

In 1987, de Boor discovered that each polynomial can be written uniquely as a linear

combination of Bernstein basis polynomials, the so-called stable local basis property. Such

an expression is called the B-form of a polynomial.

Theorem 1. (B-form) (de Boor, 1987)

Any polynomial p(x) of degree d can be written in the following form:

p(x) =
∑
|κ|=d

cκB
d
κ(b(x)). (3.13)

This is expression is called the B-form of p(x). The coefficients cκ are called the B-

coefficients. A polynomial written in B-form is also called a simplex polynomial.

In order to formulate the concept of a simplex spline, it is convenient to express the

B-form in its vector form (de Visser et al., 2009). This vector form consists of a vector

of B-coefficients and a vector of Bernstein basis polynomials. To make sure that a B-

coefficient is matched to the right basis polynomial, an ordering of the multi-index κ is

necessary. Lai and Schumaker (2007) introduce a lexicographic sorting order:

κd,0,0,...,0 > κd−1,1,0,...,0 > κd−1,0,1,0,...,0 > ... > κ0,...,0,1,d−1 > κ0,...,0,0,d. (3.14)

Now, we can construct vectors of the B-coefficients and the basis polynomials belonging

to a simplex tj according to this sorting rule:

ctj := [ctjκ]|κ|=d ∈ Rd̂×1, Bd
tj

(b) := [Bd
κ(b)]|κ|=d ∈ R1×d̂. (3.15)

The B-form of equation (3.13) in vector form for simplex tj is defined as

31

ADP with adaptive multivariate simplex splines M.C. de Jongh

p(x) = Bd
tj

(b(x)) · ctj . (3.16)

The Bernstein basis polynomials are the building blocks of multivariate simplex splines.

A multivariate simplex spline of dimension n and degree d on a single simplex t is defined

as:

p(x) =
∑
|κ|=d

cκB
d
κ(b(x)), (3.17)

where b(x) ∈ Rn+1 is the barycentric coordinate of the point x ∈ Rn with respect to t.

3.1.5 The B-coefficient net

One of the most powerful features of simplex splines in B-form lies in the fact that the

B-coefficients have a spatial representation. The barycentric coordinates of a B-coefficient

ck in a certain simplex are given by

b(cκ) =
κ

d
, (3.18)

where

d = |κ|. (3.19)

Figure 3.2 shows the spatial locations of the B-coefficients of a polynomial of degree 4 in

a 2-dimensional simplex. The density of the B-net is higher for polynomials with a higher

degree.

This spatial structure of B-coefficients is called the B-coefficient net, or B-net. It is

convenient since it allows for local adaptation of the model by only modifying the B-

coefficients in a particular region. Also, it greatly simplifies expressions of continuity

between simplices.

3.1.6 Simplex splines on triangulations

Usually, simplex splines are defined on multiple different simplices. A smart combination

of simplices can provide a simplex spline with great approximation power. Such a combi-

nation of simplices must satisfy a number of constraints, among others to ensure that the

32

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 3.2: B-net of a polynomial of degree 4 in a 2-dimensional simplex

resulting simplex polynomials are continuous between neighbouring simplices. A valid set

of simplices is called a triangulation.

Definition 3.1.7. (Triangulation) (Lai and Schumaker, 2007)

A triangulation T is a partition of a domain in a set of J non-overlapping simplices:

T ≡ ∪Ji=1ti, ti ∩ tj ∈ {∅, t̃}, ∀ti, tj ∈ T , i 6= j, (3.20)

where t1, t2, ..., tJ are simplices of dimension n and t̃ is a simplex of dimension less than

n. If t̃ has dimension n− 1, then it is called an edge facet.

Figure 3.3 shows an example of a valid and an invalid triangulation.

An extensive overview of different types of triangulations is given by Lai and Schumaker

(Lai and Schumaker, 2007).

The space of all spline functions defined on a certain triangulation T is called a spline

space.

33

ADP with adaptive multivariate simplex splines M.C. de Jongh

(a) Valid triangulation

(b) Invalid triangulation

Figure 3.3: Examples of a valid and an invalid triangulation

Definition 3.1.8. (Spline space) (Lai and Schumaker, 2007)

The spline space Srd(T) is the space of all spline functions s of degree d and continuity

order Cr on a triangulation T :

Srd(T) := {s ∈ Cr(T) : s|t ∈ Pd,∀t ∈ T }, (3.21)

where Pd denotes the space of all polynomials of degree d.

Lai and Schumaker (2007) present a metric to quantify the approximation power of a mul-

tivariate simplex spline space. Also, they show that the approximation power is inversely

proportional to the length of the longest edge in the triangulation.

To define a multivariate simplex spline of a certain degree d and continuity order Cr on

a triangulation T consisting of J simplices, de Visser et al. (2009) introduces a simplex

membership operator:

δjk(x) =

0 if j 6= k(x)

1 if j = k(x),
, for j = 1, ..., J, (3.22)

34

ADP with adaptive multivariate simplex splines M.C. de Jongh

where k(x) is the simplex containing point x. This operator allows for the definition of

the per-simplex d̂× d̂ diagonal membership matrix:

Dtj(x) = [(δj,k(x))q,q]
d̂
q=1 ∈ Rd̂×d̂. (3.23)

The full-triangulation membership matrix D(x) is a block diagonal matrix with blocks

Dtj(x):

D(x) = [(Dtj(x))j,j]
J
j=1 ∈ R(J ·d̂)×(J ·d̂). (3.24)

This membership matrix paves the way for a formal definition of the multivariate simplex

spline.

Definition 3.1.9. (Multivariate simplex splines) (de Visser, 2011)

A multivariate simplex spline of degree d and continuity order Cr defined on a triangulation

T consisting of J simplices is given by

srd(x|c) = Bd(x)T ·D(x) · c, x ∈ Rn, (3.25)

where

Bd(x) = [Bd
t1

(b(x)),Bd
t2

(b(x)), ...,Bd
tJ

(b(x))]T ∈ R(J ·d̂)×1 (3.26)

and

c = [ct
T
1 , ct

T
2 , ..., ct

T
J]T ∈ R(J ·d̂)×1. (3.27)

3.1.7 The B-net orientation rule

Expression (3.18) describes the spatial structure of the B-coefficients within a simplex.

But since there are (n+ 1)! different orderings of the vertices, there are as many possible

ways to orient the B-net. Hence, extending our view to an entire triangulation requires

a systematic way of orienting the B-nets that belong to different simplices. To define

such an orientation rule, we assign to each vertex a globally unique index. We call the

B-coefficients that are located at the vertices vertex B-coefficients. Let

{c̆t(ω·d)}|ω|=1 ⊂ {ctκ}|κ|=d (3.28)

35

ADP with adaptive multivariate simplex splines M.C. de Jongh

denote the set of vertex B-coefficients of a B-form polynomial of degree d on a n-simplex

t. Sorting these coefficients in a lexicographic way yields the following vector:

c̆t = [{c̆t(ω·d)}|ω|=1] ∈ Rn×1. (3.29)

Now, the B-net should be oriented in such a way that the sorting order of a vertex B-

coefficient corresponds to the sorting order of its vertex. This system is called the B-net

orientation rule.

Definition 3.1.10. (The B-net orientation rule) (de Visser, 2011)

Let every n-simplex t in a triangulation T be described by a tuple

Vt := (vp0 ,vp1 , ...,vpn) ∈ Rn×k, k ≥ 0 (3.30)

of vertices with

p0 > p1 > ... > pn. (3.31)

Let the set VB be defined as follows:

VB = {(cd,0,0,...,0,vp0), (c0,d,0,...,0,vp1), ..., (c0,0,0,...,d,vpn)}. (3.32)

The B-net orientation rule states that

{(c̆ti,vpi)}ni=0 = VB, ∀t ∈ T , (3.33)

where c̆ti is the vector of vertex B-coefficients from expression (3.29).

Example 1.

Figure 3.4 shows simplices ti, tj and tk on which polynomials of degree 2 should be defined.

36

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 3.4: Simplices ti, tj and tk.

The ordering of the vertices is as follows:

v0 > v1 > v2 > v3 > v4. (3.34)

For this ordering, the B-net orientation rule states for simplices ti, tj, tk respectively:

{(c̆tim,vpm)}2m=0 = {(cti2,0,0, v0), (c
ti
0,2,0, v1), (c

ti
0,0,2, v3)}

{(c̆tjm,vpm)}2m=0 = {(ctj2,0,0, v1), (c
tj
0,2,0, v3), (c

tj
0,0,2, v4)}

{(c̆tkm,vpm)}2m=0 = {(ctk2,0,0, v1), (c
tk
0,2,0, v2), (c

tk
0,0,2, v4)}.

(3.35)

The resulting B-net is shown in Figure 3.5.

37

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 3.5: B-nets oriented according to the B-net orientation rule.

3.1.8 Smoothness constraints

Since it is a linear combination of continuous functions, the spline function srd(x|c) is

obviously continuous on a single simplex. To attain the desired degree of continuity

between different pieces of the spline, we impose so-called smoothness constraints on the

B-coefficients. To formulate these constraints, the B-coefficients of different polynomial

pieces are related through equations called the continuity conditions. Recall that an

(n − 1)-dimensional simplex t̃ that is the intersection of two n-dimensional simplices ti

and tj is called an edge facet. Two simplices are called neighbouring simplices if they

share a (unique) edge facet. Between B-form polynomials pti and ptj defined on two

neighbouring simplices ti and tj there is said to be continuity of order Cr if each of their

directional derivatives up to order Cr is equal over their entire edge facet t̃ij, or

Dm
u (pti)(b(x)) = Dm

u (ptj)(b(x)) ∀x ∈ t̃ij, m = 0, 1, ..., r (3.36)

for each directional vector u ∈ Rn. The following constraints were formulated by Lai and

38

ADP with adaptive multivariate simplex splines M.C. de Jongh

Schumaker (2007):

cti(κ0,κ1,...,κn−1,m) =
∑
|ω|=m

c
tj
(κ0,...,κn−1,0)+ω

Bm
ω (ṽij), 0 ≤ m ≤ r, ti 6= tj, (3.37)

where ω ∈ Rn+1 is a multi-index and ṽij is the unique vertex of ti which is not on the

edge facet t̃ij. Such a vertex is called an out-of-edge vertex.

As mentioned in Section 3.1.5, the spatial representation of the B-coefficients is very

convenient for the formulation of the continuity conditions. It gives rise to a principle

called the structure of continuity. This principle is illustrated in Figure 3.6, which shows

the structures of continuity of order C0, C1, C2 and C3. For example, the conditions for

continuity of order C2 between simplices ti and tj for B-coefficient cti022 involves the B-

coefficients c
tj
220, c

tj
130, c

tj
040, c

tj
031, c

tj
022, c

tj
121. The latter coefficients are called the continuity

body B-coefficients and the coefficient on the left-hand side of the continuity condition

is called the continuity point B-coefficient. Together, they form the green diamond-like

shape in Figure 3.6.

Figure 3.6: Structure of continuity of order C0, C1, C2 and C3 (de Visser, 2011).

There is one fundamental downside to the formulation of the continuity conditions in

expression (3.37): it is only valid if the B-coefficient that has the lowest lexicographic

sorting order in the simplex, that is c0,0,...,d, is positioned at the out-of-edge vertex. This B-

39

ADP with adaptive multivariate simplex splines M.C. de Jongh

net orientation is called the maximum degree symmetric orientation. Such an orientation

however does not exist for every possible triangulation. De Visser (2011) develops a

general formulation of the continuity conditions that can be applied to B-nets oriented

according to the B-net orientation rule discussed in Section 3.1.7. Figure 3.6 implies

that the constant values 0 or m in the multi-indices should be located at the place of

the only nonzero value in the multi-index of the B-coefficient of the out-of-edge vertex.

Consider for example the condition for continuity of order C3 at the B-coefficient ctk3,0,1

in Figure 3.6. Since the out-of-edge vertex vc has B-coefficient ctk4,0,0, it follows that the

value m = 3 should be placed at the first position of the multi-index. Similarly, because

the B-coefficient c
tj
0,4,0 at the out-of-edge vertex ve has its nonzero element at the second

position, the value 0 in multi-indices of the right-hand side B-coefficients should be located

at the second place.

In order to formalize this system, de Visser (2011) introduces the following tuple function:

M(j, κ) =



(j, κ0, κ1, ..., κn−1)

(κ0, j, κ1, ..., κn−1)
...

(κ0, κ1, ..., j, κn−1)

(κ0, κ1, ..., κn−1, j)


, |Mi(j, κ)| = d−m+ j (3.38)

For j = m, the function M(j, κ) yields all possible multi-indices for the B-coefficient of

the continuity point (the left hand side of expression (3.37)) and for j = 0, we obtain all

multi-indices for the B-coefficients of the continuity body (the right hand side of expres-

sion (3.37)) through M(j, κ) + ω.

To decide upon the right position of the constants m and 0, de Visser (2011) uses a

rank function ρ(vi) that returns the rank of a vertex vi within a certain simplex t based

on the global vertex index. This rank function is given by

ρ(vi) = (n+ 2)−
i∑

j=0

kvj , (3.39)

where

40

ADP with adaptive multivariate simplex splines M.C. de Jongh

kvj =

1 if vj ∈ Vt
0 if vj /∈ Vt.

(3.40)

Using this rank function, the tuple function creates multi-indices in the following way:

κ̄ =Mρ(v)(j, κ), |κ̄| = d−m+ j. (3.41)

The elements of κ̄ are determined by the condition |κ̄| = d −m + j. For two simplices

tf and tg it outputs tuples of multi-indices for the continuity points and the continuity

body:

(Mρ(ṽf,g)(m,κ),Mρ(ṽg,f)(0, κ)) = (κpoint, κbody). (3.42)

This is stated more formally in the following theorem:

Theorem 2. (General formulation of continuity conditions) (de Visser, 2011)

The general formulation of the continuity conditions for continuity of order Cr between

two n-simplices tf and tg with B-nets of degree d which are oriented according to the

B-net orientation rule is the following:

c
tf
Mρ(ṽf,g)

(m,κ) =
∑
|ω|=m

c
tg
(Mρ(ṽg,f)

(0,κ)+ω)B
m
ω (ṽf,g), 0 ≤ m ≤ r, (3.43)

where Mρ(·)(·) is the tuple function from expression (3.38), which uses the rank function

from equation (3.39).

For examples of the use of the general formulation of the continuity conditions, we refer

to de Visser (2011).

The total number of conditions required to achieve continuity of order Cr depends on the

dimension and the degree of a spline function. This number was derived by de Visser

(2011):

Theorem 3. (Number of continuity conditions) (de Visser, 2011)

Let s ∈ Srd(T) be an n-variate spline function. The number Rr of continuity conditions

per edge of the triangulation required to achieve a continuity order Cr is given by

Rr :=
r∑

m=0

(d−m+ n− 1)!

(n− 1)!(d−m)!
. (3.44)

41

ADP with adaptive multivariate simplex splines M.C. de Jongh

The continuity conditions in equation (3.43) can be stored into a matrix H called the

smoothness matrix and thus written as

Hc = 0. (3.45)

Each row of H contains a single condition written in the following form:

−ctfMρ(ṽf,g)
(m,κ) +

∑
|γ|=m

c
tg
(Mρ(ṽg,f)

(0,κ)+γ)B
m
γ (ṽf,g) = 0, 0 ≤ m ≤ r. (3.46)

From Theorem 3, it follows that for continuity order Cr, we have H ∈ R(E·Rr)×(J ·d̂), where

E is the number of edges of the triangulation. The smoothness matrix generally has a

very high sparseness factor and is hardly ever of full rank. This can be attributed to

redundant continuity conditions. The fact that these redunancies also occur between

conditions of different continuity orders renders it very difficult to construct a smoothness

matrix of full rank. De Visser (2011) presents a practical method to create a full (or

almost full) rank smoothness matrix. This approach is based on the condition number of

H. The condition number of a matrix A indicates how accurate an approximate solution

to the system Ax = b can be. If this number is close to 1, then the matrix is said to

be well-conditioned and its inverse can be computed accurately. If the condition number

is very large, then the matrix is called ill-conditioned and probably almost singular. If

the condition number equals infinity, then the matrix is not invertible. To estimate the

condition number, we use the estimator proposed by Hager (1984). To construct the

full rank smoothness matrix, we first initialize H ∈ R1×(J ·d̂) as a matrix with one row

containing a single continuity condition. From this matrix, we create a new candidate

smoothness matric Hc by appending a new condition h. This candidate matrix has the

following form:

Hc =

[
H

h

]
(3.47)

Since the estimator of Hager (1984) requires a square matrix and the candidate matrix is

in general not square, we multiply it by its transpose and make use of the following basic

linear algebra fact to obtain a conservative estimate of the condition number of Hc:

rankHc ≥ rankHcH
T
c . (3.48)

42

ADP with adaptive multivariate simplex splines M.C. de Jongh

Following de Visser (2011), we declare Hc to be singular if its estimated condition number

is larger than 1010. If this is the case, than the continuity condition h is considered redun-

dant and will be dropped. Otherwise, we assume that h is not redundant and set H to

Hc. This process should be repeated until all continuity conditions have been considered.

A spline function with a high continuity order has a high global smoothness, which im-

proves the numerical stability of the estimator for the B-coefficients. However, a high

continuity order goes at the expense of the approximation power of the spline. After all,

imposing continuity conditions on the B-coefficients reduces the degrees of freedom of the

spline function.

3.2 Multivariate simplex splines as modelling tools

Choosing an appropriate simplex spline function to approximate a set of data points

involves selection of a geometric model structure, that is, the triangulation on which the

splines are defined, selection of the polynomial model structure, that is, the degrees and

continuity orders of the splines, and estimation of suitable B-coefficients. In this section,

we discuss each of these components separately.

3.2.1 Geometric model structure selection

3.2.1.1 Triangulations

The approximation power of a simplex spline space depends to a great extent on the

triangulation on which it is defined. In this section, we discuss various metrics that are

used to assess the quality of a triangulation. Also, we introduce some of the most popular

types of triangulations: the Type I/II triangulations and the Delaunay triangulation.

Simplex metrics

Several different metrics have been designed to assess the quality of a simplex. In this

section, we discuss four of them: the location of the center and the radius of the circum-

(hyper)sphere of the simplex (SRLC), the ratio between the radius of the circumsphere

and the shortest ridge of the simplex (SRSC), the minimum angle between two ridges

of the simplex (SMA) and the number of data points contained by the simplex (SDP).

43

ADP with adaptive multivariate simplex splines M.C. de Jongh

The first three of these metrics were described by Shewchuk (2002) and the final one

was introduced by de Visser (2011). Together, these metrics provide a powerful tool to

determine the quality of a simplex. Table 3.1 provides some guidelines in interpreting the

values of the metrics (de Visser, 2011). Here, c denotes the center of the circumsphere of

a simplex t and Rc the radius of this circumsphere and d̂ is given by expression (3.8).

Simplex metric “Good” simplex “Bad” simplex

SRLC c ∈ t, Rc small c /∈ t, Rc large

SRSC SRSC < 2 SRSC ≥ 2

SMA SMA > 14◦ SMA ≤ 14◦

SDP SDP ≥ d̂ SDP < d̂

Table 3.1: Guidelines for interpreting the metrics

A type of simplex that is considered “bad” according to these metrics is the so-called

sliver simplex. Sliver simplices typically have a large circumsphere radius compared to

their shortest ridge and a small minimum angle. They cause non-uniformities in the

approximation power of a simplex spline, which is not desirable. Figure 3.7 shows an

example of a “good” simplex and a sliver simplex.

(a) Good simplex (b) Sliver simplex

Figure 3.7: Examples of a good simplex and a sliver simplex

The SDP has proved to be the most important metric (de Visser, 2011): if only a single

simplex in a triangulation has an insufficient SDP, it is in general not possible to find the

44

ADP with adaptive multivariate simplex splines M.C. de Jongh

B-coefficients of a simplex spline defined on this triangulation.

To assess the quality of the entire triangulation, de Visser (2011) introduced the following

metric, based on the SRSC:

PT :=
1

|T |

|T |∑
i=1

rθi
minvu,vw∈t̃i |vu − vw|

, (3.49)

where rθi denotes the radius of the circum-hypersphere of simplex ti ∈ T , t̃i is an edge

facet of ti and vu and vw are vertices of t̃i.

Type I/II triangulations

Type I and Type II triangulations are simple types of triangulations with the advan-

tage that their simplices are guaranteed to be “good” according to the metrics discussed

in the previous section. These triangulations are constructed by filling each cell of a

multi-dimensional grid with a certain symmetric prototype triangulation. In the two-

dimensional plane for example, a Type I triangulation is created by drawing one diagonal

in each cell of the grid. A Type II triangulation is created by drawing both diagonals.

Examples of Type I/II triangulations in two dimensions are shown in Figure 3.8.

(a) Type I triangulation (32 triangles) (b) Type II triangulation (64 triangles)

Figure 3.8: Type I/II triangulations

45

ADP with adaptive multivariate simplex splines M.C. de Jongh

(a) Type I triangulation of 3-cube (6
tetrahedrons) (b) Type II triangulation of 3-cube

(12 tetrahedrons)

Figure 3.9: Type I/II triangulations of the 3-cube

In three dimensions, a cell of the three-dimensional grid is a 3-cube. Figure 3.9 shows

Type I and Type II triangulations of a 3-cube.

Mara (1976) showed that the number of simplices in a symmetric Type I triangulation

equals n!. Table 3.2 shows the total number of simplices in symmetric Type I and Type

II triangulations of a single n-cube for dimensions 2 up to 8.

n # of vertices n-cube # of simplices Type I # of simplices Type II

2 4 2 4

3 8 6 12

4 16 24 44

5 32 120 210

6 64 720 1236

7 128 5040 8870

8 256 40320 65298

Table 3.2: Number of simplices in symmetric Type I/II triangulations a single n-cube for
dimensions 2 up to 8.

In principle, Type I/II triangulations are straightforward and easy to work with. However,

46

ADP with adaptive multivariate simplex splines M.C. de Jongh

they cause difficulties for dimensions higher than 8. After all, it follows from Table 3.2

that the number of simplices per n-cube grows large for high dimensions. Hence, ensuring

a sufficient SDP value requires a large number of data points.

Delaunay triangulations

Another popular triangulation method is the so-called Delaunay triangulation. It was

designed in 1934 by the Russian mathematician Delaunay (Delaunay, 1934). The major

advantage of the Delaunay triangulation is its flexibility. It has been used as a modelling

tool in various different fields (Schröder and Robach, 1994; Li et al., 2003; de Berg et al.,

2008).

Definition 3.2.1. (Delaunay triangulation)

Let P ∈ Rn be a set of points. A triangulation T of P is called a Delaunay triangulation

if each point in P does not lie in the interior of the circum-hypersphere of any simplex

tj ∈ T . This condition is called the Delaunay condition.

In general, the Delaunay triangulation of a set of points is unique. Figure 3.10 shows a

valid Delaunay triangulation in the two-dimensional plane.

Figure 3.10: Delaunay triangulation in two-dimensional plane

Seidel (1991) showed that a Delaunay triangulation of n points in dimension d consists of

O(ndd/2e) simplices.

47

ADP with adaptive multivariate simplex splines M.C. de Jongh

A nice property of the Delaunay triangulation is the following.

Theorem 4. (Sibson, 1978)

Let P ∈ Rn be a set of points. The minimum angle of the unique Delaunay triangulation

of P is greater than the minimum angle of any other triangulation of P .

The flexibility of the Delaunay triangulation method comes with a downside: it might

yield bad simplices in terms of the discussed metrics, especially at the boundaries of the

domain. Two types of ugly simplices that frequently occur in Delaunay triangulations are

the simplex fan and the sliver simplex. These are illustrated in Figure 3.11. A simplex fan

occurs when there are great differences in the density of the vertices. These differences

cause the simplices to have bad SRLC and SRSC values. Figure 3.11b shows a sliver

simplex at the boundary of the triangulation domain. The radius of its circumsphere is

rather out of proportion.

(a) Simplex fan

(b) Sliver simplex

Figure 3.11: Ugly simplices in Delaunay triangulations

3.2.1.2 Triangulation optimization

Finding the optimal triangulation for a data approximation problem is not a trivial task.

It is a two-fold problem consisting of the placement of the vertices and finding a triangula-

tion given a vertex set. Both are large-scale tasks: positioning N vertices in n dimensions

is a continuous optimization problem involving N ·n variables. Also, the number of possi-

ble triangulations for a given vertex set is extremely large. A lower bound on the number

48

ADP with adaptive multivariate simplex splines M.C. de Jongh

of triangulations in 2 dimensions is proved to be Ω(2.33N) (Aichholzer et al., 2004). Sharir

and Welzl (2006) derived an upper bound of O(43N).

Due to the high complexity of the triangulation optimization problem, most researchers

settle for a reasonably “good” triangulation instead of the optimal one. Developed meth-

ods can be distinguished into geometric optimization methods and data-dependent op-

timization methods. Geometric methods only focus on the triangulation, creating well-

shaped simplices that are generally suitable for data approximation. Data-dependent

methods on the other hand, also take into account the data that are to be approximated.

In this section we give an overview of the most important advancements in triangulation

optimization.

Geometric triangulation optimization methods

Constrained Delaunay triangulation methods Most geometric triangulation

optimization methods are based on the so-called constrained Delaunay triangulation. Re-

call from Section 3.2.1.1 that the Delaunay triangulation has the property that the small-

est angle is maximized. This property renders the Delaunay triangulation suitable for all

kinds of data approximation methods. It ensures that the approximation power is quite

evenly distributed over the domain.

A constrained Delaunay triangulation is defined on a planar straight-line graph (PSLG),

which is an embedding of a planar graph in the plane in such a way that its edges are

mapped to straight line segments. Chew (1989) presents the following definition of a

2-dimensional constrained Delaunay triangulation:

Definition 3.2.2. (Constrained Delaunay triangulation) (Chew, 1989)

A triangulation T is a constrained Delaunay triangulation (CDT) of a PSLG G if each

edge of G is an edge of T and for each remaining edge e ∈ T \ G there exists a circle c

with the following properties:

� The endpoints of e are on the boundary of c.

� If any vertex v of G is in the interior of c, then it cannot be seen from at least one

of the endpoints of e (i.e., if one draws the line segments from v to each endpoint

of e then at least one of the line segments crosses an edge of G).

49

ADP with adaptive multivariate simplex splines M.C. de Jongh

In the context of data approximation, the PSLG is usually taken to be the convex hull of

the data set. Since a CDT defined on a PSLG is likely to contain some “ugly” triangles, it

is usually improved by means of Delaunay refinement algorithms. Important contributions

on this topic were made by Chew (1989), Dey et al. (1991), Mitchell and Vavasis (1992),

Ruppert (1995), Si and Gärtner (2005) and Shewchuk (2001, 2008). Although Shewchuk

(2008) made a start, there is no version for higher dimensions available yet.

The Hypercube-Convex hull-Intersection method The Hypercube-Convex

hull-Intersection (HCI) method (de Visser, 2011) was designed specifically for simplex

splines. It first intersects a Type I/II triangulation with the convex hull of the data

set. Then, it removes the vertices of the triangulation that are outside the convex hull

and retriangulates the area around the boundary with a Delaunay triangulation. Finally,

it is possible to perform a post-processing step to ensure that each simplex contains a

sufficient amount of data points. The HCI triangulation method seems to produce well-

shaped simplices. De Visser (2011) demonstrates this by means of various examples. The

B-coefficients are distributed quite evenly over the domain, such that the approximation

power is roughly homogeneous. This, together with the fact that each simplex contains

enough data points, renders the HCI method very suitable for simplex splines.

Data-dependent triangulation optimization methods

A data-dependent triangulation optimization method would be most suitable for approx-

imation with simplex splines. In this section, we discuss the most important of those

methods.

The Local Optimization Procedure (LOP), proposed by Lawson (1977), optimizes a trian-

gulation in 2-dimensional space with respect to a certain cost function that may incorpo-

rate both information about the triangulation and about the data points. To accomplish

this, it performs edge swaps until it reaches a local minimum of the cost function. The

locations of the vertices do not change during the course of the algorithm. Hence, the

LOP only optimizes a triangulation with respect to a fixed set of vertices.

Vertex insertion algorithms, such as the one presented by Cohen et al. (2012), also mini-

mize a cost function that takes into account both the data points and the simplex shapes.

50

ADP with adaptive multivariate simplex splines M.C. de Jongh

These algorithms consecutively insert vertices and update the triangulation in such a way

that this cost function is reduced as much as possible. In general, this method will not

lead to the globally optimal triangulation. After all, after inserting a vertex, the optimal

locations of the other vertices might have changed.

Although it does not entirely solve the triangulation optimization problem, the method

designed by de Visser et al. (2012) comes closer than any other algorithm. The authors

introduce an interval analogue of simplex splines, called intersplines. These are evaluated

and manipulated using techniques from interval arithmetic. An interval branch-and-

bound algorithm designed for interval functions is used to find the optimal B-coefficients

and vertex coordinates. This approach requires knowledge of the geometry of the Inter-

spline. Since this geometry is so far only determined for univariate or bivariate linear

splines with zero order continuity, the intersplines optimization method works only for

these particular splines.

Although a method that takes the data points into account would be most suitable for ap-

proximation with simplex splines, the development of such methods is still in its infancy.

The methods presented in this section do not lead to the globally optimal triangulation

and work only for particular types of simplex splines.

Triangulation optimization for value function approximation

The application to Markov decision theory demands a different triangulation optimization

approach than the previously discussed methods. After all, rather than closely approx-

imating a set of data points, it is our goal to find an approximation architecture that

allows us to learn the best possible policy. We do not aim to find the most accurate

approximation of the value function, but the approximation that has the highest ability

to imitate the role of the true value function in the decision-making process. Moreover,

in approximating the value function, we generally do not have any information on the

true value function. We can only improve a certain current approximation by using this

approximation itself and information derived from observing the process. In Section 4.1

we present a new triangulation optimization procedure that is specifically tailored to value

function approximation in Markov decision theory.

51

ADP with adaptive multivariate simplex splines M.C. de Jongh

3.2.2 Polynomial model structure selection

As we discussed in Section 3.2.1, selecting a suitable geometric model structure is a chal-

lenging endeavour. Compared to this, polynomial model structure selection is rather

straightforward. Given a triangulation, the simplex spline polynomials are completely

determined by their degrees and continuity orders. Choosing the polynomial degree im-

plies making a tradeoff between high approximation power and computational efficiency.

Cubic splines seem to be the most popular option in applications.

The choice of continuity order also involves a tradeoff, in this case between high ap-

proximation power and numerical stability. Recall from Section 3.1.8 that a high con-

tinuity order provides a spline function with a high global smoothness, which results in

an increased numerical stability of the estimator for the B-coefficients. However, a high

continuity order also goes at the expense of the approximation power of the spline. In

Chapter 5, we will investigate different choices of the degree and continuity order for the

inverted pendulum problem.

3.2.3 Estimation of the B-coefficients

After selecting a suitable triangulation and polynomial model structure, the ultimate form

of the simplex spline is determined by its set of B-coefficients. These coefficients should

be chosen in such a way that the resulting simplex spline approximates a given set of

data points most accurately. Since a simplex spline is linear in its B-coefficients, the most

straightforward way to accomplish this is the discrete least squares method.

3.2.3.1 Discrete least squares

Suppose a data set consists of N points (X,y). These data points are to be approximated

with a simplex spline

srd(x|c) = Bd(x)T ·D(x) · c. (3.50)

Let

W(x) = Bd(x)T ·D(x). (3.51)

The cost function for the discrete least squares method is given by

52

ADP with adaptive multivariate simplex splines M.C. de Jongh

JDLS(c) =
N∑
i=1

(W(xi)c− yi)2, (3.52)

where xi is the ith column of X. Incorporating the continuity constraints yields the

following minimization problem:

minc JDLS(c), subject to Hc = 0. (3.53)

Let the matrix W be defined as

W = [W(x1)
T ,W(x2)

T , ...,W(xN)T]T ∈ RN×(J ·d̂). (3.54)

Using the method of Lagrange multipliers, the minimization problem in (3.53) can be

written as the following Karush-Kuhn-Tucker (KKT) system:[
WTW HT

H 0

][
c

λ

]
=

[
WTy

0

]
(3.55)

Rao (1973) showed that the solution to this system is given by[
c

λ

]
=

[
WTW HT

H 0

]+ [
WTy

0

]
, (3.56)

where [
WTW HT

H 0

]+
(3.57)

is de pseudoinverse of the matrix [
WTW HT

H 0

]
. (3.58)

3.2.3.2 Generalized least squares

De Visser et al. (2009) present a more accurate way to estimate the B-coefficients, based

on the generalized least squares (GLS) method. Suppose the observations (X,y) are

related as follows:

53

ADP with adaptive multivariate simplex splines M.C. de Jongh

yi = srd(xi|c) + ri, i = 1, 2, ..., N, (3.59)

where r is a vector of residual terms and xi is the ith column of X. This expression can

be rewritten as

Y = Wc + r ∈ RN×1, (3.60)

where W is the matrix defined in (3.54). The estimator of the Visser et al. (2009) relies

upon the following assumptions on the residual vector:

E(r) = 0 and Cov(r) = Σ, (3.61)

where Σ ∈ RN×N is the so-called residual covariance matrix. We assume that this matrix

is both nonsingular and positive definite. De Visser et al. (2009) make use of the following

generalized least squares cost function:

JGLS(c) =
1

2
(Y−Wc)TΣ−1(Y−Wc). (3.62)

Incorporating the continuity conditions results in the following equality constrained GLS

optimization problem:

minc JGLS(c), subject to Hc = 0. (3.63)

Like in the discrete least squares approach, we again use Lagrange multipliers to formulate

the problem as a Karush-Kuhn-Tucker system:[
WTΣ−1W HT

HT 0

][
c

λ

]
=

[
WTΣ−1y

0

]
. (3.64)

This system has the following solution (Rao, 1973):[
c

λ

]
=

[
WTΣ−1W HT

H 0

]+ [
WTΣ−1y

0

]
. (3.65)

De Visser et al. (2009) show that the matrix[
WTΣ−1W HT

H 0

]
(3.66)

54

ADP with adaptive multivariate simplex splines M.C. de Jongh

is invertible if each simplex contains a sufficient amount of data points and if the smooth-

ness matrix H is of full rank.

Finding the residual covariance matrix Σ is not a trivial task. De Visser et al. (2009)

propose the following two-stage method: first of all, assume that

Σ = σI (3.67)

for some positive scalar σ. In this case, the system (3.64) reduces to the discrete least

squares system (3.55). Then, expression (3.60) is used to compute the residual vector

r. Using this residual vector, de Visser et al. (2009) estimate per-simplex blocks Σtj ∈
RNj×Nj of the residual covariance matrix in the following way:

Σtj(k, l) =
1

Nj

Nj−k∑
i=1+l

rtj(i− l)rtj(i− l + k), k, l = 1, 2, ..., Nj (3.68)

for j = 1, ..., J . Together, under the assumption that each is nonsingular and positive

definite, these per-simplex blocks form the full-triangulation, block diagonal, residual

covariance matrix:

Σ = [(Σtj)j,j]
J
j=1 ∈ RN×N . (3.69)

Finally, new B-coefficients are estimated using the obtained matrix Σ and expression

(3.65).

3.2.3.3 Recursive least squares

The linearity in the B-coefficients is a convenient property of simplex splines which allows

for the use of linear regression techniques as the ones described in Sections 3.2.3.1 and

3.2.3.2. However, the subjectivity of the B-coefficients to the continuity constraints sab-

otages the use of the recursive least squares procedure as given by expression (2.23). To

enable online adaptation of the simplex spline model, de Visser et al. (2011) developed

an equality constrained recursive least squares (ECRLS) estimator for the B-coefficients.

This estimator allows for efficient adaptation of the model upon the arrival of a new data-

point, circumventing the need for the time-consuming matrix inversions necessary for the

previously discussed least squares methods. In order to integrate simplex spline approxi-

mations into the RLS API algorithm, we replace the recursive least squares equations in

55

ADP with adaptive multivariate simplex splines M.C. de Jongh

expression (2.23) with this equality constrained recursive least squares procedure of de

Visser et al. (2011).

Consider again a data set (X,y) consisting of N points. Let the matrix W contain

the B-forms of the data points as defined in expression (3.54). Let JECRLS(c) be the least

squares cost function

JECRLS(c) = (y−Xc)T (y−Xc) (3.70)

of the B-coefficients c ∈ RJ ·d̂×1. Including the smoothness constraints, we obtain the

following equality constrained least squares problem:

min
c

JECRLS(c), subject to Hc = 0. (3.71)

Instead of the Lagrange multiplier method, which was used to obtain the discrete and

generalized least squares solutions to this problem, the recursive least squares estimator

is obtained by solving (3.71) with the null-space method of Lawson and Hanson (1995).

This yields the following estimator ĉ of the B-coefficients:

ĉ = (WZ)+y, (3.72)

where Z denotes an orthogonal projector onto the null-space of H and is given by

Z = I−H+H. (3.73)

De Visser et al. (2011) define the parameter covariance matrix estimate as

P = (ZXTXZ)+ ∈ RJ ·d̂×J ·d̂. (3.74)

Using properties of the Moore-Penrose pseudoinverse and the fact that Z is symmetric,

expression (3.72) can be rewritten as

ĉ = PXTy. (3.75)

From (3.75), de Visser et al. (2011) derive the following ECRLS estimator for the B-

coefficient vector:

56

ADP with adaptive multivariate simplex splines M.C. de Jongh

L(t+ 1) = P(t)(W(x(t+ 1)))T [1 + W(x(t+ 1))P(t)(W(x(t+ 1)))T]−1,

P(t+ 1) = P(t)− L(t+ 1)W(x(t+ 1))P(t),

ĉ(t+ 1) = ĉ(t) + L(t+ 1)[y(t+ 1)−W(x(t+ 1))ĉ(t)], (3.76)

where x(t + 1) represents the new datapoint. The parameter covariance matrix and the

vector of B-coefficients are initialized as

P(0) = (ZWT (0)W(0)Z)T (3.77)

and

ĉ(0) = P(0)WT (0)y, (3.78)

where W(0) contains the initial datapoints.

57

Chapter 4

Approximate dynamic programming

with adaptive multivariate simplex

splines

In this chapter, we develop a method that uses simplex spline approximation methods

to approximate the value function of a Markov decision process with a continuous state

space and a finite, discrete action space. First of all, we introduce a procedure that refines

the triangulation on which simplex splines are defined in regions of the state space that

demand a more accurate value function approximation. Then, we integrate this procedure

firstly into the backward dynamic programming algorithm and then into the RLS API

algorithm discussed in Section 2.2.4.

4.1 The triangulation refinement procedure

The triangulation on which it is defined has a great influence on the approximation power

of a spline space. Theoretically, we could construct an infinitely fine triangulation that

would yield the most accurate approximation of the value function. This, however, does

not solve the curse of dimensionality. In choosing the triangulation, we must find the

optimal balance between approximation power and computational complexity. Certain

regions of the state space might demand a higher accuracy and thus a finer triangulation,

whereas in other parts, the triangulation can be coarser. In this section, we present a

method that adaptively refines a triangulation during the course of an approximate dy-

58

ADP with adaptive multivariate simplex splines M.C. de Jongh

namic programming algorithm.

We build our triangulation on a partition of the state space into a set of local grids.

The vertices of this triangulation are chosen to be the vertices of the grid cells together

with the midpoints of the grid cells. We triangulate this vertex set with a Delaunay tri-

angulation.

To refine the triangulation, we iteratively refine the underlying grids. Each iteration, we

give each of the grid cells a score based on several refinement criteria. Then, we select

the cell with the highest score and choose a refinement direction, which is simply one of

the n dimensions. We define a refinement along a certain direction as follows:

Definition 4.1.1. (Refinement along a direction)

Let V denote a set of vertices that constitutes a partition of an n-dimensional hyper-

rectangle H into a set of local grids. Let the corresponding grid cells be denoted by

a1, a2, ..., aK . Each grid cell is the convex hull of 2n vertices in the set V. Suppose a grid

cell ai is the convex hull of the vertices in the set {x11, x12}× {x21, x22}× ...×{xn1, xn2},
where xk1, xk2 ∈ V for each k = 1, 2, ..., n. Refining ai along a direction j means adding a

set of 2n−1 new vertices Vnew = {x11, x12}×{x21, x22}× ...×{
xj1 + xj2

2
}× ...×{xn1, xn2}

to V to obtain a new set of vertices

V′ = V ∪Vnew, (4.1)

which constitutes a new partition of the hyperrectangle H into local grids.

Figure 4.1 illustrates the refinement of the cell constituted by the vertex set {1, 2}×{1, 2}
of the grid defined by {0, 1, 2}× {0, 1, 2} along direction 1. We thus obtain the new grids

constituted by the vertices {0, 1} × {0, 1, 2} ∪ {1, 2} × {0, 1} ∪ {1, 1.5, 2} × {1, 2}.
After refining the selected grid cell, we remove the midpoint of the original grid cell

and add the midpoints of each of the new grid cells to the vertex set. Then, we again

triangulate the result with a Delaunay triangulation. The triangulations before and after

the refinement shown in Figure 4.1 are depicted in Figure 4.2.

59

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 4.1: Refining the cell {1, 2} × {1, 2} along direction 1

(a) Triangulation before refinement (b) Triangulation after refinement

Figure 4.2: Triangulations before and after refinement

60

ADP with adaptive multivariate simplex splines M.C. de Jongh

4.1.1 Refinement criteria

In order to decide which cell to refine, we assess each cell according to the following

refinement criteria:

� Maximum value difference.

� Value variance.

� Visitation frequency.

� Error contribution.

The remainder of this section explains each of these criteria in detail. For each of the

criteria, we make a distinction between finite and infinite horizon problems.

4.1.1.1 Maximum value difference and value variance

Regions of the state space on which the value function highly fluctuates or has discon-

tinuities demand for a finer triangulation. We identify such regions using the criteria

maximum value difference and value variance.

Maximum value difference and value variance for finite horizon problems

Let (S,A,F , C, γ,D) be a finite horizon MDP. For each t = 0, 1, ..., T , let {at1, at2, ..., atNt}
denote a partition of the state space, where ati is a Lebesgue-measurable set for each

i = 1, ..., Nt. Let V̂t, t = 0, 1, ..., T denote an approximation of the value function.

Definition 4.1.2. (Maximum value difference and value variance for finite horizon prob-

lems)

The maximum value difference η(ati) and the value variance ζ(ati) of region ati, i =

1, 2, ..., Nt for value function approximation V̂t are defined as follows:

η(ati) = max
stj ,s

t
k∈a

t
i

|MV̂ (stj)−MV̂ (stk)| (4.2)

and

ζ(ati) = Var({M(stj)|stj ∈ ati)}), (4.3)

where M is the Bellman operator of equation (2.7).

61

ADP with adaptive multivariate simplex splines M.C. de Jongh

To estimate the maximum value difference and value variance of a region ati, we randomly

pick M points st1, s
t
2, ..., s

t
M ∈ ati. Let V̂t, t = 0, 1, ..., T again be an approximation of the

value function. The estimates are given by

η̂(ati) = max
i,j∈1,...,M

|MV̂ (sti)−MV̂ (stj)| (4.4)

and

ζ̂(ati) = Var({MV̂t(s
t
1),MV̂t(s

t
2), ...,MV̂t(s

t
M)}). (4.5)

Maximum value difference and value variance for infinite horizon problems

For infinite horizon problems, we use the same regions for each time t = 0, 1, 2, Hence,

we omit the superscripts t in the definitions of maximum value difference and value vari-

ance. Apart from that, the definitions remain the same.

4.1.1.2 Visitation frequency

If a part of the state space is hardly ever reached during the course of the process, refining

the triangulation in this area would be a waste of computational effort. On the other hand,

if a region is frequently visited, errors in the value function approximation will have great

effect on the approximations in other regions. Hence, it will probably be worthwile to

refine this region and thus achieve a more accurate approximation. We let the visitation

frequency of a region be a measure of the amount of time the process spends in this

particular region.

Visitation frequency for finite horizon problems

Let (S,A,F , C, γ,D) be a finite horizon Markov decision process. For each t = 0, 1, ..., T ,

let {at1, at2, ..., atNt} denote a partition of the state space, where ati is a Lebesgue-measurable

set for each i = 1, ..., Nt. Let V̂t, t = 0, 1, ..., T denote an approximation of the value

function. For finite horizon processes, we define the visitation frequency of a region as

the expected number of visits to that region. If we follow the greedy policy with respect

to this value function approximation, note that a region ati is either visited or not during

62

ADP with adaptive multivariate simplex splines M.C. de Jongh

the course of the process. Thus, the visitation frequency θ(ati), or the expected number

of visits to region ati, for this approximation is given by

θ(ati) = 0 · P (ati is not visited) + 1 · P (ati is visited) = P (ati is visited). (4.6)

The probability that a region is visited is easily calculated. First of all, we define the

region transition probabilities.

Definition 4.1.3. (Region transition probabilities)

The region transition probability P π(at+1
j |ati) is defined as the probability that the process

makes a transition from region ati to region at+1
j under a certain policy π.

Definition 4.1.4. (Visitation frequency for finite horizon problems)

The visitation frequency θ(ati) of a region ati, t = 0, 1, ..., T corresponding to value function

approximation V̂t is defined recursively as

θ(a0i) = P (s0 ∈ a0i), (4.7)

or the probability that the initial state lies in a0i , and

θ(ati) =

Nt−1∑
l=1

P π(ati|at−1l)θ(at−1l) for t = 1, ..., T, (4.8)

where π is the greedy policy with respect to V̂t.

Visitation frequency for infinite horizon problems

Let (S,A,F , C, γ,D) be an infinite horizon MDP. For infinite horizon MDPs, we define

the visitation frequency of a region as the expected proportion of time the process spends

in this region. Let {a1, a2, ..., aN} denote a partition of the state space, where ai is a

Lebesgue-measurable set for each i = 1, ..., N . The region transition probabilities are

defined as in Definition 4.1.3 with the superscripts t omitted. Hence, the probability

that the process makes a transition from region ai to region aj under a policy π is given

by P π(aj|ai). Observe that the regions and the region transition probabilities do not

constitute a Markov chain. To approximate the expected number of visits to each of the

regions, we define a Markov chain {Ai, i ≥ 1} with states a1, a2, ..., aN and transition

63

ADP with adaptive multivariate simplex splines M.C. de Jongh

probabilities P π(aj|ai). The expected proportion of time this Markov chain spends in

each of its states is given by its steady state distribution. Let Aπ denote the matrix of

region transition probabilities induced by policy π, that is

Aπ =


P π(a1|a1) P π(a2|a1) . . . P π(aN |a1)
P π(a1|a2) P π(a2|a2) . . . P π(aN |a2)

...
...

.

P π(a1|aN) P π(a2|aN) . . . P π(aN |aN)

 (4.9)

If the Markov chain we defined is ergodic, there exists a unique steady state distribution

θ, which is the probabilistic eigenvector of Aπ. In many real-life situations, however,

this Markov chain will not be ergodic. If this is the case, we slightly alter the chain by

assuming that it randomly jumps to some other state with a small probability δ, a trick

that is also used in the well-known PageRank algorithm (Brin and Page, 1998). The

transition probability matrix of this altered Markov chain is given by

A′π = (1− δ)Aπ + δC, (4.10)

where

C =
1

N


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 . (4.11)

It is easily shown that the altered Markov chain with transition probability matrix A′π is

in fact ergodic.

We approximate the expected proportion of time the MDP spends in a region ai under

policy π with the expected proportion of time the Markov chain {Ai, i ≥ n} spends in

state ai.

Definition 4.1.5. (Visitation frequency for infinite horizon problems)

Let π be a policy. Let Aπ be the matrix of region transition probabilties as given by

expression (4.9). Define a Markov chain {Ai, i ≥ 1} with states a1, a2, ..., aN and transition

probability matrix Aπ. If this Markov chain is ergodic, then the visitation frequency θ(ai)

of a region ai is the ith element of the unique steady state distribution θ of the Markov

chain, which is the unique probabilistic vector that satisfies

64

ADP with adaptive multivariate simplex splines M.C. de Jongh

Aπθ = θ. (4.12)

If the Markov chain is not ergodic, we define the visitation frequency vector as the unique

steady state distribution θ of the altered Markov chain with transition probability matrix

A′π given by expression (4.10).

4.1.1.3 Error contribution

If the value function approximation in a certain region deviates a lot from the true value

function, this can be ascribed to two reasons. First of all, the simplex splines on this

region could fail to yield an accurate model due to an unsuitable triangulation. In this

case, refining the triangulation in this area will probably reduce the approximation error.

Secondly, the poorness of the approximation in this region might be a consequence of er-

rors that propagated from other parts of the state space. The error contribution criterion

estimates to what extent a certain region of the state space contributes to overall approx-

imation errors. In defining this criterion, we again make a distinction between problems

with a finite and problems with an infinite horizon.

Error contribution for finite horizon problems

Let (S,A,F , C, γ,D) be a finite horizon Markov decision process. For each t = 0, 1, ..., T ,

let {at1, at2, ..., atNt} denote a partition of the state space, where ati is a Lebesgue-measurable

set for each i = 1, ..., Nt.

Recall that the optimal value function V ∗t , t = 0, 1, ..., T satisfies

V ∗t+1 =M(V ∗t), (4.13)

where M denotes the Bellman operator. For a certain approximation V̂t of the value

function, we define the error estimate ε(s) in a state s ∈ S as

ε(s) = |M(V̂t(s))− V̂t+1(s)|. (4.14)

Let the local error estimate of a region ati be defined as the mean error estimate of this

region, that is

65

ADP with adaptive multivariate simplex splines M.C. de Jongh

ε(ati) =
1

λ(ati)

∫
ati

ε(s)ds, (4.15)

where λ(ati) denotes the Lebesgue measure of the region ati. To reduce computational

complexity, we estimate the local error estimate by randomly choosing a number of states

s1, s2, ..., sM in region ati and taking the average of the error estimates in these states:

ε̂(ati) =
1

M

M∑
i=1

ε(si). (4.16)

To measure the extent to which errors in the value function approximation at a certain

region of the state space affect the approximation at another part of the state space, we

introduce the notion of influence. In order to formally define the influence, we present

the k-step region transition probabilities.

Definition 4.1.6. (k-step region transition probabilities)

Let the probability that the system makes a transition from ati to at+1
j under policy π be

denoted by P π(at+1
j |ati). The k-step region transition probabilities pπk(at+kj |ati) are defined

recursively as follows:

pπ0 (atj|ati) =

1 if ati = atj

0 else
for t = 0, 1, ..., T, (4.17)

pπ1 (at+1
j |ati) = P π(at+1

j |ati) for t = 0, 1, ..., T (4.18)

and

pπk(at+kj |ati) =

Nt+k−1∑
l=1

pπ1 (at+kj |at+k−1l)pπk−1(a
t+k−1
l |ati) for t = 0, 1, ..., T − k. (4.19)

Now, we define the influence of a region at+ki on a region atj as the expected number of

visits to at+ki from atj using discounted k-step region transition probabilities γkpπk(at+ki |atj),
where 0 < γ < 1 is the discount factor.

Definition 4.1.7. (Influence for finite horizon problems)

Let π be a policy. The influence ξπ(at+ki , atj) of region at+ki on region atj under policy π is

defined as

66

ADP with adaptive multivariate simplex splines M.C. de Jongh

ξπ(at+ki , atj) = γkpπk(at+ki |atj). (4.20)

The influences can be easily computed in a recursive way.

Theorem 5. (Recursive definition of influence for finite horizon problems)

For any regions at+ki and atj, t = 0, 1, ..., T − k, k > 0 and any policy π, we have

ξπ(at+ki , atj) =

Nt+k−1∑
n=1

γpπ1 (at+ki |at+k−1n) · ξπ(at+k−1n , atj) for t = 0, 1, ..., T − k. (4.21)

and for any ati and atj, t = 0, 1, ..., T we have

ξπ(ati, a
t
j) =

1 if ati = atj

0 else.
(4.22)

Proof.

From definitions 4.1.6 and 4.1.7, we obtain

ξπ(ati, a
t
j) = pπ0 (ati, a

t
j) =

1 if ati = atj

0 else
(4.23)

for t = 0, ...T and

ξπ(at+ki , atj) = γkpπk(at+ki |atj)

=

Nt+k−1∑
n=1

γpπ1 (at+ki |at+k−1n)γk−1pπk−1(a
t+k−1
n |atj)

=

Nt+k−1∑
n=1

γpπ1 (at+ki |at+k−1n)ξπ(at+k−1n , atj) (4.24)

for t = 0, 1, ..., T − k, k > 0.

Now, the error contribution of a region should be high if this region has a great influence

on parts of the state space with a high local error estimate.

67

ADP with adaptive multivariate simplex splines M.C. de Jongh

Definition 4.1.8. (Error contribution for finite horizon problems)

Let V̂t be an approximation of the value function and let π be the greedy policy with

respect to this approximation. The error contribution µ(ati) of a region ati for this value

function approximation is defined as

µ(ati) =
t∑

τ=0

1

Nτ

Nτ∑
j=1

ξπ(ati, a
τ
j)ε(a

τ
j). (4.25)

Error contribution for infinite horizon problems

Let (S,A,F , C, γ,D) be an infinite horizon MDP. Let {a1, a2, ..., aN} denote a partition

of the state space, where ai is a Lebesgue-measurable set for each i = 1, ..., N . The local

error estimate of a region ai for a value function approximation V̂ is defined in a similar

way as for the finite horizon case. Recall that the optimal value function V ∗ of the infinite

horizon MDP is a fixed point of the Bellman operator

V ∗ =M(V ∗). (4.26)

For a certain approximation V̂ , the error estimate ε(s) in a state s ∈ S is defined as

ε(s) = |M(V̂ (s))− V̂ (s)|. (4.27)

As in the finite horizon case, the local error estimate of a region ai is defined as the mean

error estimate of this region, that is

ε(ai) =
1

λ(ai)

∫
ai

ε(s)ds, (4.28)

where λ(ai) denotes the Lebesgue measure of the region ai.

As for finite horizon problems, the error contribution of a region is a measure of the

influence of this region on the overall approximation error. Defining the concept of influ-

ence is a bit more involved for infinite horizon MDPs. First of all, we present the infinite

horizon equivalents of the k-step region transition probabilities.

Definition 4.1.9. (k-step region transition probabilities for infinite horizon problems)

Let the probability that the system makes a transition from ai to aj under policy π

68

ADP with adaptive multivariate simplex splines M.C. de Jongh

be denoted as P π(aj|ai). The k-step region transition probabilities pπk(aj|ai) are defined

recursively as follows:

pπ0 (aj|ai) =

1 if ai = aj

0 else
, (4.29)

pπ1 (aj|ai) = P π(aj|ai) (4.30)

and

pπk(aj|ai) =
Nt∑
n=1

pπ1 (aj|an)pπk−1(an|ai) (4.31)

Again, we define the influence of a region ai on a region aj as the expected number of

visits to ai from aj using discounted k-step region transition probabilities γkpπk(ai|aj),
where 0 < γ < 1 is the discount factor.

Definition 4.1.10. (Influence for infinite horizon problems)

The influence ξπ(ai, aj) of region ai on region aj under policy π is defined as

ξπ(ai, aj) =
∞∑
k=0

γkpπk(ai|aj). (4.32)

Computing the influence for infinite horizon problems is more complicated than for the

finite horizon case. The following lemma presents a relation similar to (4.21) for this

situation.

Lemma 1.

For any regions ai and aj and any policy π, we have

ξπ(ai, aj) =


N∑
n=1

γpπ1 (ai|an) · ξπ(an, aj) + 1 if ai = aj

N∑
n=1

γpπ1 (ai|an) · ξπ(an, aj) else.

(4.33)

Proof.

Using the definition of the influence (4.1.10) and the recursive definition of the k-step

region transition probabilities (4.29), (4.30) and (4.31), we obtain

69

ADP with adaptive multivariate simplex splines M.C. de Jongh

ξπ(ai, aj) =
∞∑
k=0

γkpπk(ai|aj)

=
∞∑
k=1

γkpπk(ai|aj) + pπ0 (ai|aj)

=
∞∑
k=0

γk+1pπk+1(ai|aj) + pπ0 (ai|aj)

=
∞∑
k=0

N∑
n=1

γpπ1 (ai, an) · γkpπk(an, aj) + pπ0 (ai, aj)

=
N∑
n=1

γpπ1 (ai, an)
∞∑
k=0

γkpπk(an, aj) + pπ0 (ai, aj)

=


N∑
n=1

γpπ1 (ai|an) · ξπ(an, aj) + 1 if ai = aj

N∑
n=1

γpπ1 (ai|an) · ξπ(an, aj) else.

(4.34)

This lemma paves the way for an iterative definition of the influence for infinite horizon

problems.

Theorem 6. (Iterative definition of the influence for infinite horizon problems)

Let π be a policy. Recursively define

ξπ0 (ai, aj) =

1 if ai = aj

0 else
(4.35)

and

ξπn+1(ai, aj) =


N∑
l=1

γpπ1 (ai|al) · ξπn(al, aj) + 1 if ai = aj

N∑
l=1

γpπ1 (ai|al) · ξπn(al, aj) else.

(4.36)

This iterative process converges to the influence ξπ(ai, aj), that is

lim
n→∞

ξπn(ai, aj) = ξπ(ai, aj). (4.37)

70

ADP with adaptive multivariate simplex splines M.C. de Jongh

Proof.

Let U denote the space of functions that map the set {a1, a2, ..., aN} to R. Let d : U×U →
R be the distance function defined by

d(f, g) = ||f − g||1 (4.38)

for f, g ∈ U . Let A be an operator on the metric space (U, d) defined as

Af(·) =
N∑
l=1

γpπ1 (·|al)f(al) (4.39)

for a function f ∈ U and a policy π. This operator is a contraction operator if there exists

a constant K, 0 < K < 1 such that

d(Af,Ag) ≤ Kd(f, g) ∀f, g ∈ U. (4.40)

We show that A satisfies this condition. For f, g ∈ U we have

d(Af,Ag) = ||Af − Ag||1

=
N∑
i=1

|(Af − Ag)(ai)|

=
N∑
i=1

∣∣∣∣∣
N∑
l=1

γpπ1 (ai|al)(f(al)− g(al))

∣∣∣∣∣
≤

N∑
i=1

N∑
l=1

γpπ1 (ai|al) |f(al)− g(al)|

=
N∑
l=1

γ |f(al)− g(al)|
N∑
i=1

pπ1 (ai|al). (4.41)

Since

N∑
i=1

pπ1 (ai|al) = 1 for l = 1, ..., N, (4.42)

we obtain

71

ADP with adaptive multivariate simplex splines M.C. de Jongh

N∑
l=1

γ |f(al)− g(al)|
N∑
i=1

pπ1 (ai|al) =
N∑
l=1

γ |f(al)− g(al)| = γ||f − g||1. (4.43)

Since 0 < γ < 1, it follows that A is a contraction operator. Using this and Lemma 1, we

obtain

||ξπn+1(·, aj)− ξπ(·, aj)||1 =
N∑
i=1

∣∣ξπn+1(ai, aj)− ξπ(ai, aj)
∣∣

=
N∑
i=1

|Aξπn(·, aj)(ai)− Aξπ(·, aj)(ai)|

= ||Aξπn(·, aj)− Aξπ(·, aj)||1
≤ γ||ξπn(·, aj)− ξπ(·, aj)||1.

Thus,

lim
n→∞

ξπn(ai, aj) = ξπ(ai, aj). (4.44)

Finally, the error contribution is defined in a similar way as for finite horizon problems.

Definition 4.1.11. (Error contribution for infinite horizon problems)

Let V̂ be a value function approximation and let π be its corresponding greedy policy.

The error contribution µ(ai) of a region ai for this approximation is given by

µ(ai) =
1

N

N∑
j=1

ξπ(ai, aj)ε(aj). (4.45)

Defining the influence matrix under policy π as

Ξπ =


ξπ(a1, a1) ξπ(a1, a2) . . . ξπ(a1, aN)

ξπ(a2, a1) ξπ(a2, a2) . . . ξπ(a2, aN)
...

...
. . .

...

ξπ(aN , a1) ξπ(aN , a2) . . . ξπ(aN , aN)

 , (4.46)

72

ADP with adaptive multivariate simplex splines M.C. de Jongh

expression (4.45) can be rewritten as

µ =
1

N
Ξπε, (4.47)

where

µ = [µ(a1), µ(a2), ..., µ(aN)] (4.48)

and

ε = [ε(a1), ε(a2), ..., ε(aN)]. (4.49)

Scoring the cells

After evaluating each of the refinement criteria, we give each cell of the gridded state

space a score using the scoring function

score(ai) = α1η(ai) + α2ζ(ai) + α3θ(ai) + α4µ(ai), (4.50)

for parameters α1, α2, α3, α4. The optimal values of these parameter values are problem

dependent. The cell with the highest score will be selected for refinement.

4.1.2 Refinement direction

After selecting a cell to refine, it remains to decide upon a suitable refinement direction.

In choosing this direction, we aim to limit the number of refinements necessary to find a

sufficiently accurate approximation of the value function.

Let aji1 and aji2 denote the two new cells obtained after refining a cell ai along a certain

direction j, j = 1, 2, ..., n. If cell aji1 exhibits great fluctuations of the value function, has

a high visitation frequency and a high error contribution compared to cell aji2, then we

consider direction j a good refinement direction. After all, through refining along this

direction, we managed to isolate the part of the cell ai that was causing trouble. In the

following iterations, we can focus our attention to cell aji1, whereas aji2 might require no

or few further refinements.

Based on this intuitive idea, we construct the following scoring function for refinement

directions for a cell ai:

73

ADP with adaptive multivariate simplex splines M.C. de Jongh

score(j) = β1
∣∣η(aji1)− η(aji2)

∣∣+ β2|ζ(aji1)− ζ(aji2)|+

β3|θ(aji1)− θ(a
j
i2|+ β4|µ(aji1)− µ(aji2)|.

(4.51)

for parameters β1, β2, β3, β4. We refine the selected cell along the direction with the highest

score.

4.2 Dynamic programming with simplex splines

In this section, we integrate the triangulation refinement procedure into the basic back-

ward dynamic programming algorithm to find a simplex spline approximation of the value

function for finite horizon Markov decision processes.

Let (S,A,F , C, γ,D) be a finite horizon MDP. Algorithm 2 shows the original backward

dynamic programming algorithm for discrete state spaces.

Algorithm 2: Backward dynamic programming

Input: A finite horizon Markov decision process (S,A,P ,R, γ,D) with horizon

T .

Initialize: Initialize VT+1(sT+1) as the final costs for all states sT+1 ∈ S. Set

t = T .

while t ≥ 0 do

Calculate Vt(st) = maxat∈A

(
Ct(st, at) + γ

∑
s′∈S

P (s′|st)Vt+1(s
′)

)
for all st ∈ S.

Decrement t by 1.

end

Instead of the true value function, the simplex spline dynamic programming algorithm

calculates a value function approximation V̂t for each time t = 0, 1, ..., T that is based on

simplex splines defined on a triangulation of the state space. We initialize the triangula-

tion for each time t as a Delaunay triangulation constructed on the smallest hyperrectangle

that covers the state space. Each iteration k of the algorithm roughly consists of two steps:

first, we compute simplex spline approximations V̂ k
t of the value function for each time t

defined on the current triangulations. Then, we refine the triangulations for each time t by

74

ADP with adaptive multivariate simplex splines M.C. de Jongh

the procedure described in Section 4.1. We proceed to explain each of these steps in detail.

Suppose after iteration k, we obtained grid cells ak,t1 , ak,t2 , ..., ak,tNk,t corresponding to a set of

vertices Vk
t for each t = 0, 1, ..., T . For each time t, the corresponding set of local grids is

triangulated with a Delaunay triangulation T kt . We search for a simplex spline of degree

d and continuity order Cr defined on this triangulation which gives rise to the new value

function approximation

V̂ k+1
t (s|ck+1

t) = srd(s|ck+1
t), s ∈ S. (4.52)

We find the B-coefficients ck+1
t of these simplex splines by means of the generalized least

squares method from Section 3.2.3.2. To this end, we need a set of “data points” in the

state space. Recall from Section 3.2.1.1 that each simplex needs to contain at least d̂ data

points for us to be able to calculate the B-coefficients. Hence, for each t = 0, 1, ..., T , we

randomly choose d̂ states sk,tj,1, s
k,t
j,2, ..., s

k,t

j,d̂
in each simplex tk,tj ∈ T kt , which will serve as

these “data points”. We refer to these states as control states. To each of these control

states, we assign a value v(sk,tj,i) using the current value function approximation V̂ k
t (s|ckt),

which is defined on the current triangulations T kt :

v(sk,tj,i) = max
at∈A

(
Ct(s

k,t
j,i , at) + γ

∫
S
F(sk,tj,i , at, s

′)V̂ k−1
t+1 (s′|ck−1t+1)ds′

)
(4.53)

for j = 1, ..., |T kt |, i = 1, ..., d̂ and t = 0, 1, ..., T .

Using the control states and their values, we apply the generalized least squares algorithm

to obtain the B-coefficients of the simplex splines in expression (4.52), securing the new

value function approximations V̂ k+1
t (s|ck+1

t), t = 0, 1, ..., T , s ∈ S.

In the second part of iteration k, we refine the triangulations T kt using the procedure

presented in Section 4.1. For each time t, we compute the score of each grid cell ak,ti ,

i = 1, 2, ..., Nk,t by expression (4.50). After selecting the cell with the highest score for

each time t, we compute the scores of the refinement directions corresponding to these

cells using expression (4.51). Then, for each time t, we refine the cell with the highest

score along the direction with the highest score. Finally, we triangulate the thus obtained

new grids with Delaunay triangulations T k+1
t , t = 0, 1, ..., T .

Once the value function approximation for time T satisfies the condition

75

ADP with adaptive multivariate simplex splines M.C. de Jongh

||V̂ k+1
T (·|ck+1)− V̂ k

T (·|ck)||p < ε (4.54)

for some p ≥ 1 and ε > 0, we stop refining the triangulation and keep the approximation

V̂T (s|ck) fixed during the next iterations. Then, we continue until condition (4.54) is

satisfied for time T − 1 and we stop refining the triangulation for time T − 1. Thus we

proceed until the triangulations for all times t are fixed. Algorithm 3 provides an overview

of the simplex spline dynamic programming algorithm.

4.2.1 Analysis simplex spline dynamic programming

In this section, we show that the simplex spline dynamic programming algorithm converges

and present an error bound on the result.

Theorem 7. (Convergence simplex spline dynamic programming)

Let V̂ k
t (s|ck) = srd(s, c

k) denote the value function approximation after the kth iteration

of the simplex spline dynamic programming algorithm. As k → ∞, the approximation

V̂ k
t (s|ck) converges to the optimal value function V ∗t (s) for each t = 0, 1, ..., T .

Proof.

We prove this theorem by induction over n = T − t.
For n = 0, we have t = T . The function V̂ k

T (s|ck) approximates MVT+1, where VT+1

is a known function containing the final costs. As k → ∞, the triangulation T kT grows

infinitely dense. On an infinitely dense triangulation, the simplex spline approximator

V̂ k
T (s|ck) coincides withMVT+1. Thus, as k →∞, the approximation V̂ k

T (s|ck) converges

to MVT+1 = V ∗T .

Suppose that the theorem holds for n = m, where 0 ≤ m ≤ T − 1. We show that it must

hold for n = m+ 1 as well. For n = m+ 1, we have t = T −m− 1. The function V̂ k
t (s|ck)

approximates MV̂ k
t+1(s|ck). As k → ∞, the triangulation T kt grows infinitely dense. On

an infinitely dense triangulation, the simplex spline approximator V̂ k
t (s|ck) coincides with

MV̂ k
t+1. By the induction hypothesis, the function V̂ k

t+1 converges to V ∗t+1 as k → ∞.

This implies thatMV̂ k
t+1 converges toMV ∗t+1 = V ∗t as k →∞. Hence, the approximation

V̂ k
t (s|ck) converges to V ∗t as k →∞.

Thus, V̂ k
t (s|ck) converges to the optimal value function V ∗t (s) as k → ∞ for each t =

0, 1, ..., T .

76

ADP with adaptive multivariate simplex splines M.C. de Jongh

Algorithm 3: Simplex spline dynamic programming

Input: A Markov decision process (S,A,F , C, γ,D) with finite horizon T .
Simplex spline value function approximators V̂t(s|c) = srd(s, c), s ∈ S for
each t = 0, 1, ..., T .

Initialize: Initialize V0
t as the set of vertices of the smallest hyperrectangle a0,t1

that covers the state space and the midpoint of this hyperrectangle for each
t = 0, 1, ..., T .

Let T 0
t , t = 0, 1, ..., T denote the Delaunay triangulations of these vertex sets.

Initialize vectors of B-coefficients c0t ∈ R(|T 0
t |·d̂)×1 arbitrarily, for example c0t = 0

for each t = 0, 1, ..., T . Initialize k = 0.

Set τ = T .
while τ ≥ 0 do

for t = 0, 1, ..., τ do
for j = 1, 2, ..., |T kt | do

Choose d̂ control states sk,tj,1, s
k,t
j,2, ..., s

k,t

j,d̂
in simplex tk,tj ∈ T kt .

Assign a value v(sk,tj,i) to each control state sk,tj,i using expression (4.53).

end
Use the generalized least squares algorithm to obtain B-coefficients
ck+1
t ∈ R(|T kt |·d̂)×1, constituting V̂ k+1

t (s|ck+1
t), t = 0, 1, ..., T .

end
for t = 0, 1, ..., τ do

Compute score of each grid cell ak,ti , i = 1, 2, ..., Nk,t by expression (4.50).
Choose the cell with the highest score.
Compute score of each refinement direction j = 1, ..., n.
Refine the selected cell along the selected direction, yielding grid cells
ak+1,t
1 , ak+1,t

2 , ..., ak+1,t
Nk+1,t

, constituted by the new vertex set Vk+1
t .

Triangulate the new set of local grids with a Delaunay triangulation,
yielding T k+1

t .
end

if ||V̂ k+1
τ (·|ck+1)− V̂ k

τ (·|ck)||p < ε then

Let V̂τ (s) = V̂ k+1
τ (s|ck+1).

Set τ = τ − 1.
end
Set k = k + 1.

end

77

ADP with adaptive multivariate simplex splines M.C. de Jongh

In order to provide an error bound on the result of the simplex spline dynamic program-

ming algorithm, we make the following assumption:

Assumption 1.

Let 0 ≤ τ ≤ T . We assume that

||V̂ k+1
τ (s|ck+1)− V̂ k

τ (s|ck)||p ≤ ||V̂ k
τ (s|ck)− V̂ k−1

τ (s|ck−1)||p (4.55)

for all k = 1, 2,

From the fact that it converges toMV̂τ+1(s), it follows that the sequence {V̂ k
τ (s|ck), k ≥ 0}

is Cauchy. Hence, for each ε > 0, there exists a positive integer Nε such that for all k > Nε,

we have

||V̂ k
τ (s|ck)− V̂ k−1

τ (s|ck−1)||p < ε. (4.56)

If for some iteration k, the value function approximation V̂ k
τ (s|ck) satisfies condition

(4.54), Assumption 1 implies that k ≥ Nε. It follows that ||V̂ k
τ −MV̂τ+1||p < ε.

Throughout the course of the algorithm, the impact that the refinements have on the

triangulations is likely to decrease. Therefore, the value function approximations will

probably change less and less, which renders Assumption 1 a reasonable assumption.

Theorem 8. (Error bound simplex spline dynamic programming)

Suppose Assumption 1 holds. Let V̂t(s), s ∈ S and t = 0, 1, ..., T , denote the value function

approximation that results from the simplex spline dynamic programming algorithm. Let

V ∗t (s), s ∈ S and t = 0, 1, ..., T , denote the optimal value function. The value function

approximation V̂ k
t (s) satisfies the following error bound:

||V̂ k
t − V ∗t ||p <

T−t∑
i=0

γiε, t = 0, 1, ..., T. (4.57)

Proof.

We prove expression (4.57) by induction over n = T − t.
For n = 0, we have t = T . Since T is the end of the horizon, the sequence V̂ k

T converges

to the actual optimal value function V ∗T . Upon termination of the algorithm, we have

||V̂ k
T − V̂ k−1

T ||p < ε. (4.58)

78

ADP with adaptive multivariate simplex splines M.C. de Jongh

Since the sequence {V̂ k
T , k ≥ 0} converges to V ∗T and satisfies Assumption 1, this implies

||V̂ k
T − V ∗T ||p < ε. (4.59)

Now, suppose (4.57) holds for n = m, where 0 ≤ m ≤ T − 1. We show that it must hold

for n = m+ 1 as well.

For n = m+ 1, we have t = T −m− 1. Upon termination of the algorithm, we have

||V̂ k
t − V̂ k−1

t ||p < ε. (4.60)

Since the sequence {V̂ k
t , k ≥ 0} converges to MV̂t+1 and satisfies Assumption 1, this

implies

||V̂ k
t −MV̂t+1||p < ε. (4.61)

It follows that

||V̂ k
t − V ∗t ||p = ||V̂ k

t −MV̂t+1 +MV̂t+1 − V ∗t ||p
≤ ||V̂ k

t −MV̂t+1||p + ||MV̂t+1 − V ∗t ||p
< ε+ ||MV̂t+1 −MV ∗t+1||p. (4.62)

By the contraction property of the Bellman operator, we obtain

||V̂ k
t − V ∗t ||p < ε+ ||MV̂t+1 −MV ∗t+1||p

≤ ε+ γ||V̂t+1 − V ∗t+1||p. (4.63)

The induction hypothesis now yields

79

ADP with adaptive multivariate simplex splines M.C. de Jongh

||V̂ k
t − V ∗t ||p < ε+ γ||V̂t+1 − V ∗t+1||p

< ε+ γ
T−t−1∑
i=0

γiε (4.64)

=
T−t∑
i=0

γiε.

Thus, expression (4.57) holds for all t = 0, 1, ..., T .

80

ADP with adaptive multivariate simplex splines M.C. de Jongh

4.3 Recursive least squares approximate policy iter-

ation with simplex splines

In this section, we integrate the simplex spline approximation methods and the triangu-

lation refinement procedure into the RLS API algorithm described in Section 2.2.4. We

present the method for infinite horizon problems. To finite horizon problems, a similar

version of the algorithm applies (Powell, 2011). To update the B-coefficient vector, we

replace the recursive least squares procedure given in expression (2.23) by the equality

constrained recursive least squares estimator discussed in Section 3.2.3.3. Learning the

B-coefficients and refining the triangulation happens simultaneously. As in the simplex

spline dynamic programming algorithm, we initialize the triangulation as a Delaunay tri-

angulation of the smallest hyperrectangle that contains the state space. Each iteration k

of the algorithm, we refine the triangulation by the procedure described in Section 4.1.

Then, we choose new B-coefficients in such a way that the simplex spline on the new tri-

angulation resembles the simplex spline we had before the refinement as close as possible.

Finally, we update the B-coefficients in accordance with the RLS API algorithm.

Suppose that after iteration k−1, we have a Delaunay triangulation T k of the state space

corresponding to a set of vertices Vk and a simplex spline value function approximation

V̂k(s|ck), where ck ∈ R|T k|·d̂. First of all, we refine the triangulation by the procedure

of Section 4.1 to obtain the new triangulation T k+1 with vertices Vk+1. Recall that the

triangulation refinement procedure removes one of the vertices of the triangulation and

adds at most 2n−1 + 2 new vertices, where n is the number of dimensions of the state

space. This process might not only affect the configuration of the simplices in the selected

grid cell, but also in surrounding regions of the state space. Hence, it is possible that the

B-coefficients in the vector ck violate the smoothness constraints of the new triangulation.

To ensure a smooth transition between the learning phases of iterations k and k + 1, we

compute a new B-coefficient vector c′k in such a way that the new simplex spline closely

resembles the previous simplex spline that was defined on triangulation T k with coeffi-

cients ck. To this end, we first sample N random states si,1, si,2, ..., si,N in each simplex

ti of T k+1. Then, we compute the values of these states according to the current value

function approximation V̂ (s|ck) en store these values in a vector y ∈ R|T k+1|·N . Finally, we

apply the generalized least squares procedure from Section 3.2.3.2 to the sampled states

and the vector y to find the B-coefficient vector c′k.

After refining the triangulation, we update the vector c′k in accordance with the RLS API

81

ADP with adaptive multivariate simplex splines M.C. de Jongh

algorithm: first of all, we sample a random state from each simplex. For each of these

states, we take a walk of length M through the state space and update the B-coefficients

according to the equality constrained least squares procedure. Thus we obtain the vector

ck+1 ∈ R|T k+1|·d̂|.

An overview of the simplex spline RLS API algorithm is given in Algorithm 4.

Algorithm 4: Simplex spline recursive least squares approximate policy iteration

Input: An infinite horizon Markov decision process (S,A,F , C, γ,D). A simplex
spline value function approximator V̂ (s|c) = srd(s, c), s ∈ S and sample
path length M .

Initialize: Initialize grid cell a01 as the smallest hyperrectangle that contains the
state space. Initialize V0 as the set of vertices of a01 and its midpoint.

Let T 0 denote the Delaunay triangulation of this grid.
Initialize a vector of B-coefficients c0 ∈ R|T 0|·d̂ arbitrarily, for example c0 = 0.

for k = 0, 1, ... do
Refine triangulation T k according to Section 4.1, yielding T k+1 with vertex
set Vk+1.

Use the generalized least squares procedure to obtain c′k.
Initialize c0

k = c′k.
Let π0

k be the greedy policy with respect to V̂ (s|c0
k).

for i = 1, 2, ..., |T k+1| do
Arbitrarily choose initial state sk+1,i,0 in simplex tk+1

i ∈ T k+1.
Initialize ci,0k = cik.
for j = 0, 1, ...,M − 1 do

Sample random information W j+1.
Choose action aj according to policy πik.
Compute next state sk+1,i,j+1 after taking action aj from state sk+1,i,j

and observing W j+1.
Compute costs Cj induced by taking action aj from state sk+1,i,j and
observing W j+1.

Compute ci,j+1
k by the equality constrained recursive least squares

procedure (3.76).
end

Let ci+1
k = ci,Mk .

end

Let ck+1 = c
|T k+1|
k .

end

82

ADP with adaptive multivariate simplex splines M.C. de Jongh

4.3.1 Alternative approach for linear simplex splines of conti-

nuity order 0

For simplex splines of degree 1 and continuity order C0, using the equality constrained

recursive least squares estimator is not necessary. In this section, we present an alterna-

tive formulation for this type of splines. For a linear spline of continuity order C0 that

is written in this form, finding the B-coefficients is an unconstrained optimization prob-

lem, which can simply be solved by means of the original recursive least squares procedure.

Written in the original B-form, a linear simplex spline of continuity order C0 defined on a

triangulation T ≡ ∪Ji=1ti is given by

s01(x) = B1(x)T ·D(x) · c, x ∈ Rn, (4.65)

where

B1(x) = [B1(b(x))t1 ,B
1(b(x))t2 , ...,B

1(b(x))tJ]T ∈ R(J ·d̂)×1, (4.66)

c = [ct
T
1 , ct

T
2 , ..., ct

T
J]T ∈ R(J ·d̂)×1. (4.67)

and D(x) is the membership matrix from expression (3.24).

Recall that each B-coefficient c
tj
κ belonging to a simplex tj ∈ T has a spatial representa-

tion. From Section 3.1.8, it follows that the constraints for continuity of order C0 only

involve the B-coefficients that are located at the vertices of the triangulation. Let Vtj

denote the set of vertices of a simplex tj ∈ T and let V denote the set of all vertices, that

is V = ∪Jj=1Vtj . Finally, let Tvi denote the triangulation formed by the simplices in T of

which vi is a vertex. For linear simplex splines, all B-coefficients of a simplex tj ∈ T are

located at the vertices. Hence, they can be written as c
tj
vi for vi ∈ Vtj . The constraints

for continuity of order C0 state that the B-coefficients at the vertices should be equal to

a common value cvi , or

ctjvi = cvi ∀vi ∈ V, tj ∈ Tvi . (4.68)

Note that the multiindices κ for linear splines have only one nonzero element. Hence,

Bernstein basis polynomials B1
κ(b(x)) of a simplex tj return only the barycentric coordi-

83

ADP with adaptive multivariate simplex splines M.C. de Jongh

nate of x that belongs to the vertex vi that corresponds to the nonzero element of κ. Let

this coordinate be denoted by b
tj
vi(x). Using these coordinates and the new notation of

the B-coefficients, the simplex spline of expression (4.65) can be written as

s01(x) =
∑
t∈T

∑
v∈Vt

btv(x)δtk(x)c
t
v, (4.69)

where δtk(x) is the simplex membership operator from expression (3.22). Interchanging

the summations and using expression (4.68) yields

∑
v∈V

∑
t∈Tv

btv(x)δtk(x)c
t
v =

∑
v∈V

cv
∑
t∈Tv

btv(x)δtk(x). (4.70)

Defining

bv(x) =
∑
t∈Tv

btv(x)δtk(x) (4.71)

results in the following formulation of the simplex spline from expression (4.65):

s01(x) =
∑
v∈V

cvbv(x) = b̂(x)T ĉ, (4.72)

where

b̂(x) = [bv1(x), bv2(x), ..., bv|V|(x)]T ∈ R|V|×1 (4.73)

and

ĉ = [cv1 , cv2 , ..., cv|V|]
T ∈ R|V|×1. (4.74)

Apart from the fact that expression (4.72) directly incorporates the continuity constraints,

it also significantly reduces the number of B-coefficients. For a data set (X,y) consisting

of N points, the problem of finding the B-coefficients is now reduced to the unconstrained

least squares problem

B̂ĉ = y, (4.75)

where

84

ADP with adaptive multivariate simplex splines M.C. de Jongh

B̂ = [b̂(x1), b̂(x2), ..., b̂(xN)]T ∈ RN×|V|. (4.76)

4.3.2 Analysis recursive least squares approximate policy itera-

tion with simplex splines

In this section, we prove the convergence of the simplex spline recursive least squares

approximate policy iteration algorithm.

Theorem 9. (Convergence simplex spline RLS API)

Let V̂ k(s|ck) = srd(s, c
k) denote the value function approximation after the kth iteration

of the simplex spline RLS API algorithm. As k →∞, V̂ k(s, ck) converges to the optimal

value function V ∗(s).

Proof.

Bradtke and Barto (1996) showed that if the true optimal value function V ∗(s) of an

MDP with a discrete state space can be expressed as a linear combination of the selected

features, then the RLS API algorithm converges to V ∗(s). Ma and Powell (2009) extended

this result to problems with a continuous state space. The function V̂ k(s|ck) = srd(s, c) is

defined on the triangulation T k. As k →∞, the triangulation T k grows infinitely dense.

Since each function can be expressed as a simplex spline of degree d and continuity order

Cr defined on an infinitely dense triangulation, the simplex spline RLS API algorithm

converges to the optimal value function.

85

Chapter 5

Case studies

To gain insight into the performance of our methods, we first test the simplex spline

dynamic programming algorithm from Section 4.2 on a problem concerning the control

of water flows in a water supply reservoir system. Then, we test simplex spline RLS API

algorithm on a problem of balancing an inverted pendulum.

5.1 Three-dimensional water reservoir problem

First of all, we test the performance of the simplex spline dynamic programming algo-

rithm on a three-dimensional water supply reservoir problem described by Johnson et

al. (1993). In this problem, three reservoirs are linked together to form a water supply

system. Each period of time, a certain amount of water flows into reservoirs 1 and 2. The

decision maker decides upon the amount of water to release from each of the reservoirs.

The water released from reservoirs 1 and 2 flows into reservoir 3 and the water released

from reservoir 3 flows out of the system. Each reservoir has a maximum capacity and a

desired amount of water at the end of the horizon.

The water reservoir problem can be easily modelled as a Markov decision process with

a continuous, three-dimensional state space S consisting of vectors (s1, s2, s3), where si,

i = 1, 2, 3 denotes the amount of water in reservoir i. Each time period t, an action

a(t) = (a1(t), a2(t), a3(t)) is chosen, where ai(t) denotes the amount of water that is re-

leased from reservoir i. We assume that only integer amounts of liters can be released

from the reservoirs, so the action space A is finite and discrete. Let Smax
i (t) denote the

86

ADP with adaptive multivariate simplex splines M.C. de Jongh

maximum storage of reservoir i at time t and let the inflows to reservoirs 1 and 2 at time

t be denoted by q1(t) and q2(t) respectively. These inflows are independent, uniformly

distributed random variables q1(t) and q2(t), respectively.

The state transition equations are as follows:

s1(t+ 1) = s1(t)− a1(t) + q1(t)

s2(t+ 1) = s2(t)− a2(t) + q2(t)

s3(t+ 1) = s3(t)− a3(t) + a1(t) + a2(t)

(5.1)

where

0 ≤ si(t) ≤ Smax
i (t), i = 1, 2, 3; t = 1, ..., T

Amin
i (t) ≤ ai(t) ≤ Amax

i , i = 1, 2, 3; t = 1, ...T.
(5.2)

The bounds on the decision variables are fully determined by the bounds on the storage

of the reservoirs. The cost function for each period is given by

C[s(t), a(t)] =
∑
i=1,2,3

Ci(t)[ai(t)− 1]2, (5.3)

where Ci(t) are given cost coefficients for reservoir i at time t. Let mi, i = 1, 2, 3 denote

the desired amount of water in reservoir i at the end of the horizon T . The final cost

incurred at the end of the horizon is given by

C[s(t+ 1)] =
∑
i=1,2,3

[si(T + 1)−mi]. (5.4)

The goal in this problem is to minimize the total costs. Following Johnson et al. (1993),

we specify the variables of the problem according to Table 5.1.

5.1.1 Performance on a fixed balanced triangulation

First of all, we attempt to gain some general insight into the performance of simplex

spline value function approximations. To this end, we study the results of the simplex

spline dynamic programming algorithm on a fixed, balanced triangulation. To construct

this triangulation, we cover the state space hyperrectangle by a single grid with cell width

h in each dimension. Figure 5.1 shows the resulting triangulation of the state space for

h = 5.

87

ADP with adaptive multivariate simplex splines M.C. de Jongh

Parameter Value

Smax(t) (12, 12, 12) for all t
m (5, 5, 7)

C(t) (1.1, 1.2, 1.3) for all t
q(t) Independent uniformly distributed random variables

on intervals (0,4) and (0,8) respectively.
T 3

Table 5.1: Specification of the parameters of the water reservoir problem

Figure 5.1: Fixed, balanced triangulation of the state space for h = 5. (The colours in
this figure are just meant to clarify the shape of the triangulation and do not have any
deeper meaning).

88

ADP with adaptive multivariate simplex splines M.C. de Jongh

We compare the results of the simplex spline approximations to the results of the mul-

tilinear approximation and the approximation with tensor product splines, which were

used by Johnson et al. (1993). For the multilinear approximation, we use the same trian-

gulation as the one we use for the simplex splines. The value at a certain state is simply

a linear combination of the values of the vertices of the triangulation, weighted with the

barycentric coordinates of this state with respect to these vertices. For the tensor prod-

uct spline approximation, we use the grid that underlies the triangulation on which the

simplex splines are defined. The concept of a tensor product spline is explained in Section

2.2.2.1.

As a performance measure of a policy, we use the average total costs induced during

the entire process after following this policy. To compute these average total costs, we

construct a set of 50 arbitrarily chosen initial states. For each of these initial states, we

generate a sequence of random information, that is, the value of the vector q for each time

t. Then, we evaluate the total costs for each of these pairs of initial states and sequences

of random information and take the average. For each experiment, we use the same initial

states and the same vectors q. The results are shown in Figure 5.2. The horizontal axis

shows the cell width h and the vertical axis shows the average total costs induced after

following the resulting policy. The corresponding computation times are shown in Figure

5.3.

Figure 5.2 indicates that the performance of simplex splines of degree 1 and continuity

order C0 is similar to the performance of a multilinear approximation and an approxima-

tion with tensor product splines of degree 1 and continuity order C0. Simplex splines of

degree 2 and continuity order C1 achieve the best results and outperform tensor product

splines of the same degree and continuity order. Figure 5.3, however, shows that the

computation times required by the simplex spline approximations is considerably higher

than for the other approximation architectures and grows substantially as the cell width

decreases. These high computation times are due to the fact that a lot of control states are

necessary to apply the generalized least squares procedure, which implies a huge amount

of evaluations of the simplex spline. Because of these high computation times, we seized

the experimentation at this point and consider simplex spline dynamic programming not

suitable for practical use. The results, however, do suggest that simplex splines can per-

form well as value function approximators, if we can limit the amount of evaluations of

the splines.

89

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 5.2: Results of the simplex spline dynamic programming algorithm on a fixed,
balanced triangulation compared to a multilinear approximation and a tensor product
spline approximation for different cell widths h.

Figure 5.3: Computation times corresponding to Figure 5.2.

90

ADP with adaptive multivariate simplex splines M.C. de Jongh

5.2 Inverted pendulum

To test the performance of the simplex spline RLS API algorithm, we study the problem

of balancing an inverted pendulum that is attached to a cart. The weight of this pendulum

is located above the cart, which renders the system unstable. The pendulum ought to be

balanced by applying a torque at the cart. Figure 5.4 shows a schematic picture of the

inverted pendulum problem.

Figure 5.4: Schematic picture of the inverted pendulum problem

The system is governed by the following dynamics:

θ̈(t) =
g sin(θ)− αml(θ̇)2 sin(2θ)/2− α cos(θ)(F + u)

4l/3− αml cos2(θ)
, (5.5)

where θ̈ denotes the angular acceleration of the system, m the mass of the weight, g the

gravitational acceleration, l the length of the pendulum, θ the angle of the pendulum

with respect to the vertical axis, F the torque applied at the pivot point, and u a random

disturbance of this torque. The parameter α is given by α =
1

m+M
, where M denotes

the mass of the cart. These dynamics are approximated using the discrete time Euler’s

approximation:

91

ADP with adaptive multivariate simplex splines M.C. de Jongh

sk+1
1 = sk1 + hsk2

sk+1
2 = sk2 + h

(
g sin(sk1)− αml(sk2)2 sin(2sk1)/2− α cos(sk1)(F + u)

4l/3− αml cos2(sk1)

)
. (5.6)

Here, the pair (s1, s2) approximates (θ, θ̇), where |θ| ≤ π/2 and |θ̇| ≤ θ̇max, and h > 0

is a discretization step size parameter. Hence, the Markov decision process that models

the inverted pendulum problem has state space S = {(s1, s2)||s1| ≤ π/2, |s2| ≤ θ̇max}.
Furthermore, we assume that only torques of -50, 0 and 50 Newton can be applied to

the cart, which yields the action space A = {−50, 0, 50}. The state transition equations

are given by (5.6). The disturbance u of the torque is a uniformly distributed random

variable on the interval (−10, 10). Finally, the process has the following reward function

r(s, F) =

1−max

{∣∣∣∣ s1K1

∣∣∣∣ , ∣∣∣∣ s2K2

∣∣∣∣} , if |s1| ≤ K1 and |s2| ≤ K2,

0 otherwise,

(5.7)

where K1 ≤ π/2 and K2 ≤ θ̇max. The aim of the MDP is to maximize the discounted

rewards over an infinite horizon, with discount factor γ. The parameters are chosen in

accordance with Table 5.2.

Parameter Value

m 2

g 9.81

l 0.5

M 8

h 0.1

θ̇max 7

K1 π/2− 0.5

K2 1.5

γ 0.95

Table 5.2: Specification of the parameters of the inverted pendulum problem

92

ADP with adaptive multivariate simplex splines M.C. de Jongh

5.2.1 Performance on a fixed, balanced triangulation

As for the simplex spline dynamic programming algorithm, we first test the simplex spline

RLS API algorithm for a fixed, balanced triangulation. To construct this triangulation,

we cover the state space hyperrectangle by a grid of cell width π/6 and height 2. Then,

we triangulate the vertex set constituted by the vertices of the gridcells and the midpoints

of the gridcells with a Delaunay triangulation. The result is shown in Figure 5.5

Figure 5.5: Fixed, balanced triangulation

We compare the results of the RLS API algorithm with simplex spline value function

approximation on the triangulation of Figure 5.5 to the results obtained by Lagoudakis

and Parr (2003). The latter use the so-called LSPI algorithm to learn the state-action

value function Q(s, a), which is quite similar to the RLS API algorithm. The main

93

ADP with adaptive multivariate simplex splines M.C. de Jongh

difference is that the LSPI algorithm, unlike the RLS API algorithm, is a model-free

method, that is, it does not make use of the transition probabilities. Instead of simplex

splines, Lagoudakis and Parr (2003) use a set of 10 basis functions for each of the actions

to approximate the value function, amounting to a total of 30 basis functions. Each set

consists of 1 constant and 9 radial basis functions, which are given by

e

||s− µi||2

2σ2 , i = 1, 2, ..., 9, (5.8)

where the µi’s were chosen to be the 9 vertices of the grid {π/4, 0, π/4} × {−1, 0, 1} and

σ2 = 1.

We conduct all experiments in this section in the same manner: each experiment is carried

out 100 times. For each of these runs, we evaluate the policy 10 times after each itera-

tion. As a performance measure of a policy, we use the number of time steps that passes

before the pendulum falls down, when it starts in a balanced position (s = (0, 0)). If the

pendulum stays upright for 3.000 timesteps, which is equivalent to a period of 5 minutes,

we abort the episode and consider it successful. An experiment is considered successful if

it manages to find a policy that leads to a successful episode within 30 iterations and the

performance does not deteriorate over the next 10 iterations.

To assess the quality of an algorithm, we use two performance measures: the proportion

of the experiments that were successful and the average CPU time before a successful

policy was found, which was maintained over the next 10 iterations. If the number of

successful experiments is greater than 40, we also give 95%-confidence intervals for the

computation times based on the results of these experiments. The experiments are run

on a AMD Ryzen 5 PRO 4650U with 8 GB ram.

First, we set out to find a suitable sample size for the LSPI algorithm. To this end,

we examine the performance of the algorithm for several different sample sizes. The

results are shown in Table 5.3.

Table 5.3 shows that a sample size of 12.000 is sufficient to find the desired policy. As

we seem to achieve the best performance with 14.000 samples, we select a sample size of

14.000.

We proceed to select a suitable sample path length for the simplex spline RLS API

94

ADP with adaptive multivariate simplex splines M.C. de Jongh

Sample size Success proportion Mean success time 95% CI for mean success time

500 0 - -
1000 0 - -
5000 0.25 3.1678 [-1.7689, 8.1045]
10.000 0.95 1.0304 [0.8734, 1.1873]
12.000 1.00 0.9940 [0.7255, 1.2625]
14.000 1.00 0.7681 [0.6636, 0.8726]
16.000 1.00 0.9686 [0.8259, 1.1113]
18.000 1.00 1.0131 [0.7075, 1.3187]
20.000 1.00 1.5740 [1.2684 1.8796]

Table 5.3: Results of the LSPI algorithm for different sample sizes

algorithm. To this end, we run the algorithm for several different sample path lengths.

We use simplex splines of degree 1 and continuity order C0 defined on the fixed balanced

triangulation of Figure 5.5. The results are shown in Table 5.4.

Sample path Success proportion Mean success time 95% CI for mean success time

length

1 1.00 56.6017 [53.7539, 59.4496]

2 1.00 62.3884 [58.8571, 65.9198]

3 1.00 65.9482 [64.4077, 67.4887]

4 1.00 63.4551 [62.6832, 64.2270]

5 1.00 54.4207 [49.6266, 59.2149]

6 1.00 85.6815 [84.7159, 86.6471]

10 1.00 78.1120 [73.7872, 82.4368]

Table 5.4: Results of the simplex spline RLS API algorithm on a fixed, balanced triangu-
lation for splines of degree 1 and continuity order C0 for different sample path lengths.

The table shows that the algorithm is able to find a successful policy for each of the

sample path lengths. A sample path length of 5 achieves the best performance. Hence,

for the remaining experiments in this section, we use a sample path length of 5.

Now, we study the results of the RLS API algorithm for splines of several different degrees

and continuity orders, again using the fixed triangulation of Figure 5.5. The results are

95

ADP with adaptive multivariate simplex splines M.C. de Jongh

shown in Table 5.5.

Spline type Success proportion Mean success time 95% CI for

mean success time

d = 1, r = 0 1.00 56.6017 [53.7539, 59.4496]

d = 2, r = 0 1.00 368.9745 [355.2413, 382.7077]

d = 2, r = 1 1.00 224.3646 [211.9566, 236.7726]

d = 3, r = 0 0.93 610.7972 [564.0021, 657.5923]

d = 3, r = 1 1.00 679.9640 [635.9592, 723.9688]

d = 3, r = 2 1.00 585.8786 [529.0829, 642.6743]

Table 5.5: Results of the simplex spline RLS API algorithm on a fixed, balanced triangu-
lation for splines of different degrees and continuity orders

Except for splines of degree 3 and continuity order C0, all spline types achieve a success

proportion of 100 %. For splines of degree 3 and continuity order C0, some of the experi-

ments failed. This is probably due to the fact that splines of higher degree are more prone

to overfitting and the continuity order is too low to provide enough numerical stability.

Splines of type 1 and continuity order C0 decidedly achieve the best results. We continue

to use this type of splines in the experiments to come.

5.2.2 Performance of the triangulation refinement procedure

We proceed to study the performance of the simplex spline RLS API algorithm with

the triangulation refinement procedure. In scoring the directions, we omit the final two

terms of expression (4.51), because they take a long time to compute. Hence, we only

use the criteria that belong to β1 and β2. First of all, we set the parameters to αi = 1,

i = 1, 2, 3, 4 and βi = 1, i = 1, 2. We compare the results of the triangulation refinement

procedure with the performance of two other refinement methods: the gradual refinement

method and the random refinement method. In the gradual refinement method, we refine

a randomly chosen cell from the set of largest cells. Hence, we gradually work towards the

fixed, balanced triangulation of Figure 5.5. In the random refinement method, we simply

refine a random cell along a random direction each iteration. The results for each of the

refinement methods are shown in Table 5.6.

96

ADP with adaptive multivariate simplex splines M.C. de Jongh

Refinement method Succes proportion Mean success time 95% CI for

mean succes time

Triangulation 0.73 48.4889 [29.6171, 67.3607]

refinement

procedure

Gradual refinement 0.91 83.1480 [64.2724, 102.0236]

method

Random refinement 0.52 196.4601 [146.0773, 246.8429]

method

Fixed, balanced 1.00 56.6017 [53.7539, 59.4496]

triangulation

LSPI 1.00 0.7681 [0.6636, 0.8726]

Table 5.6: Comparison of triangulation refinement procedure with gradual and random
refinement methods.

Table 5.6 indicates that the triangulation refinement procedure achieves good results.

When it comes to the mean success time, it outperforms both the other refinement meth-

ods and the algorithm on a fixed, balanced triangulation. Note, though, that the con-

fidence interval for the success time is much narrower for the fixed triangulation. This

implies that the triangulation refinement procedure might be slower in some cases.

The second column shows that the triangulation refinement procedure is not guaranteed to

find the required policy. Only 73% of the experiments were successful. As to the gradual

refinement method, 91% of the experiments resulted into the desired policy, although the

computation times were slightly higher than for the triangulation refinement procedure.

The random refinement method appears to perform poorly: only 52% of the experiments

were successful and the computation times were on average considerably higher than for

the other methods. The LSPI algorithm of Lagoudakis and Parr (2003) outperforms all

versions of the simplex spline RLS API algorithm. Note, though, that the comparison

between these two algorithms is not entirely fair. Firstly, the radial basis functions that

were used by Lagoudakis and Parr (2003) were hand-crafted and specifically chosen for

this particular problem. The simplex splines, on the other hand, were not in any way

predetermined and are suitable for any problem, which is a big advantage of the simplex

spline RLS API algorithm over LSPI.

97

ADP with adaptive multivariate simplex splines M.C. de Jongh

Another downside of the LSPI algorithm is the fact that it learns a state-action value

function instead of a state value function, and thus requires a distinct set of basis func-

tions for each action. For the inverted pendulum problem, which has a very small action

space, this does not cause any trouble. For problems with a larger action space, on the

other hand, we expect a significant increase in computation time.

That the triangulation refinement procedure does not always succeed, we ascribe to two

possible reasons. The first problem is that refining a grid cell does not only affect the

triangulation in this particular cell, but also in other parts of the state space. In many

cases, this effect is limited to only the close neighborhood of the refined cell, but it may

occur that the refinement has a more substantial impact on the triangulation. In areas

different from the selected region, the new triangulation might not be as suitable as the

previous one, which causes the performance to deteriorate. Also, it may be hard to find

a new simplex spline that resembles the one defined on the previous triangulation, which

prevents a smooth continuation of the learning process.

The second problem is that the triangulation refinement procedure tends to construct

simplices that are not “good” according to the metrics discussed in Section 3.2.1.1. As

mentioned in that section, the high flexibility of the Delaunay triangulation comes at the

price of the quality of the simplices. “Ugly” simplices, like simplex fans and sliver sim-

plices, reduce the approximation power of the simplex spline and slow down the process.

Figure 5.6 and Figure 5.7 show two triangulations that resulted from 30 iterations of the

RLS API algorithm with the triangulation refinement procedure. The experiment corre-

sponding to the triangulation in Figure 5.6 was successful, whereas the triangulation in

Figure 5.7 did not yield the desired policy.

In Figure 5.6, the triangulation is most dense at the regions where the pendulum tends to

fall down, namely for angles roughly between −π/2 and -1 and 1 and π/2 and for angular

velocities between -4 and -2 and 2 and 4. This makes sense, as these are the regions

in which the decisions of the decision maker have a crucial impact on the future of the

process.

Compared to the triangulation in Figure 5.6, the triangulation in Figure 5.7 exhibits quite

some “ugly” simplices. Also, the triangulation is very fine in a small region at the right

side of the state space, whereas other possibly important parts are completely neglected.

We suspect that the triangulation yields a value function approximation that is off to such

an extent that the refinement procedure is unable to provide the grid cells with sensible

98

ADP with adaptive multivariate simplex splines M.C. de Jongh

Figure 5.6: Triangulation corresponding to successful experiment

Figure 5.7: Triangulation corresponding to unsuccessful experiment

99

ADP with adaptive multivariate simplex splines M.C. de Jongh

scores. This might cause the algorithm to follow a wrong track.

We proceed to take a closer look at the refinement criteria. We again run the simplex

spline RLS API algorithm with the triangulation refinement procedure, but this time us-

ing only one or two of the refinement criteria. Hence, we set one or two of the αi’s to one

and the remaining ones to zero. The results are displayed in Table 5.7.

α Success proportion Mean success time 95% CI for mean success time

(1, 0, 0, 0) 0.72 25.6123 [21.2919, 29.9327]

(0, 1, 0, 0) 0.77 51.8112 [41.4898, 62.1327]

(0, 0, 1, 0) 0.41 67.8759 [40.6670, 95.0848]

(0, 0, 0, 1) 0.46 43.8625 [27.9841, 59.7409]

(1, 1, 0, 0) 0.76 49.2496 [36.6144, 61.8847]

(1, 0, 1, 0) 0.83 53.9809 [44.4930, 63.4688]

(1, 0, 0, 1) 0.56 55.4102 [40.5228, 70.2977]

(0, 1, 1, 0) 0.78 59.1378 [44.7831, 73.4924]

(0, 1, 0, 1) 0.72 63.8601 [47.9000, 79.8203]

(0, 0, 1, 1) 0.54 63.6690 [48.4460, 78.8920]

(1, 1, 1, 1) 0.73 48.4889 [29.6171, 67.3607]

Table 5.7: Results for combinations of one or two parameters.

It follows from Table 5.7 that the maximum value difference criterion ((α = (1, 0, 0, 0))

performs quite well on its own. It achieves almost the same success proportion as all refine-

ment criteria together and requires considerably less computation time. This is probably

due to the fact that this criterion does not involve the time-consuming computation of

the region transition probabilities and the influences. The value variance (α = (0, 1, 0, 0))

achieves a higher success proportion than all criteria together. The mean success time

is slightly higher than the one that corresponds to α = (1, 1, 1, 1), but the confidence

interval is narrower. This suggests that the algorithm using only the value variance pos-

sibly performs better than the algorithm using all refinement criteria in many cases. A

combination of the maximum value difference and the value variance, (α = (1, 1, 0, 0))

achieves a similar performance. The visitation frequency (α = (0, 0, 1, 0)) and error con-

tribution criteria (α = (0, 0, 0, 1)) perform poorly on their own. Using these criteria, the

100

ADP with adaptive multivariate simplex splines M.C. de Jongh

algorithm succeeded in only 41% and 46% of the cases respectively. Combining the visi-

tation frequency with the maximum value difference or the value variance (α = (1, 0, 1, 0)

or α = (0, 1, 1, 0), respectively), however, proves to result in a high success proportion.

The best performance, in terms of probability of success, is achieved by a combination of

the maximum value difference and the visitation frequency (α = (1, 0, 1, 0)), which yields

a success proportion of 83%. The mean success time of this combination is comparable

to the mean success time that belongs to α = (1, 1, 1, 1). The corresponding confidence

interval, however, is again narrower.

Table 5.7 suggests that the error contribution criterion is not of any benefit to the results

of the triangulation refinement procedure. To determine whether this criterion is truly

useless and to gain more insight in the influence of the remaining criteria, more extensive

experimentation is necessary. Furthermore, as the performance of the criteria is likely to

be problem dependent, the simplex spline RLS API algorithm should also be tested on a

number of different problems.

5.3 Remarks on the implementation

While implementing the simplex spline dynamic programming and simplex spline RLS

API algorithms, we ran into some technical difficulties. In this section, we discuss these

issues and explain how we attempted to solve or circumvent them.

5.3.1 Computing the transition probabilities

Suppose we have a value function approximation V̂ k and a corresponding greedy policy

πk. To find the action we should take according to this policy from a certain state s, we

need to compute the expression

C(s, a) + γ

∫
S
F(s, a, s′)V̂ k(s′)ds′ (5.9)

for each action a ∈ A. It is generally time-consuming to find the exact (or nearly exact)

value of the integral. Therefore, we approximate this term in the following way: first

of all, we construct a partition {A1, ..., AN} of the state space. Then, we compute the

probabilities

101

ADP with adaptive multivariate simplex splines M.C. de Jongh

P (St+1 ∈ Ai|St = s, at = a) =

∫
Ai

F(s, a, s′)ds′. (5.10)

The partition is chosen in such a way that the integral in expression (5.10) is easy to

evaluate. We proceed to pick a random state si ∈ Ai for each i = 1, ..., N . Finally, we

approximate expression (5.9) by

C(s, a) + γ
N∑
i=1

P (St+1 ∈ Ai|St = s, at = a)V̂ k(si). (5.11)

5.3.2 Computing the region transition probabilities

The region transition probability P π(at+1
j |ati), or the probability that the process makes

a transition from a region ati to region at+1
j under a policy π, is given by

P π(at+1
j |ati) =

P π(st+1 ∈ at+1
j and st ∈ ati)

P π(st ∈ ati)
. (5.12)

As this expression is extremely hard to compute, we estimate the region transition prob-

abilities in the following way: we pick a large number of M randomly chosen states in

region ati. From each of these states, we make a transition according to policy π. Let

x be the number of times we end up in region at+1
j after such a transition. The region

transition probability P π(at+1
j |ati) is estimated as follows:

P̂ π(at+1
j |ati) =

x

M
. (5.13)

102

Chapter 6

Conclusions and recommendations

6.1 Conclusions

The aim of this thesis was to study the use of splines in the context of approximate dy-

namic programming. This aim is captured by the following main research question, which

was stated in Chapter 1:

Are splines suitable candidates for value function approximation in ADP and how can

we design an ADP framework that exploits their flexibility?

In this section, we present the main conclusions of our work. In answering the ques-

tion above, we use the five subquestions formulated in Chapter 1 as a guidance.

1. Which type of splines is most suitable for value function approximation?

In Section 2.2, we examined several popular types of multivariate splines that might

come of use in the context of approximate dynamic programming. From our findings,

we concluded that the multivariate simplex spline is most suitable for this purpose. The

fact that it is linear in its parameters, provides the multivariate simplex spline with the

advantages of linear parametric models. Furthermore, it can achieve a high approxima-

tion power and its stable local basis property allows for the use of efficient computational

schemes. Also, the fact that it is defined on a triangulation renders the simplex spline

very flexible. After all, there exists a wide variety of possible triangulations which are

103

ADP with adaptive multivariate simplex splines M.C. de Jongh

easily refined or simplified. These characteristics are big advantages of multivariate sim-

plex splines over other parametric models. Moreover, as nonparametric models, simplex

splines do not involve any preprocessing using problem-specific knowledge. Based on these

findings, we concluded that the multivariate simplex spline is indeed a suitable candidate

for value function approximation.

2. How can we identify “important” regions of the state space, that is, regions that require

the most accurate value function approximation?

3. How can we adapt the splines in such a way that they provide a more accurate value

function approximation in regions where this is required?

In Chapter 4, we designed a method that adaptively refines the triangulation on which

simplex splines are defined in regions of the state space that require a more accurate

approximation of the value function. In this triangulation refinement procedure, a trian-

gulation is built on a partition of the state space into local grids. To refine this trian-

gulation, we iteratively refine these underlying grids. Each iteration, we give each of the

grid cells a score that is meant to quantify the “importance” of this cell. This score is

based on four refinement criteria: the maximum value difference, the value variance, the

visitation frequency and the error contribution. After selecting the cell with the high-

est score, we choose a suitable refinement direction and refine the selected grid cell along

this direction. Finally, we build a new triangulation on the obtained new set of local grids.

4. How can we integrate such an adaptive procedure into an ADP framework?

We integrated the triangulation refinement procedure first of all in the basic backward dy-

namic programming algorithm, giving rise to simplex spline dynamic programming. Then,

we embedded the procedure into the RLS API algorithm described by Powell (2011). To

do so, we replaced the original least squares procedure in this algorithm by an equality

constrained least squares estimator designed by de Visser et al. (2011).

5. How well does the resulting ADP algorithm based on adaptive splines perform?

In Chapter 5, we tested the simplex spline dynamic programming algorithm on a three-

dimensional water reservoir problem and the simplex spline RLS API algorithm on a

104

ADP with adaptive multivariate simplex splines M.C. de Jongh

problem of balancing an inverted pendulum. The simplex spline dynamic programming

algorithm proved to be very time-consuming: it requires a high amount of control states

for each time t, which implies a high amount of evaluations of the simplex spline. We

therefore do not consider this algorithm suitable for practical use and only tested it for a

fixed triangulation.

The simplex spline RLS API algorithm, on the other hand, achieved good results, which

demonstrate the advantage of the triangulation refinement procedure over a fixed, bal-

anced triangulation. The RLS API algorithm with the triangulation refinement procedure

proved to require on average less time to find the desired policy than the algorithm on

a fixed triangulation. Furthermore, the triangulation refinement procedure was shown to

outperform a gradual and a random refinement method.

Although the triangulation refinement procedure proved to reduce the computation time,

the results in Chapter 5 also indicate that it is not guaranteed to succeed. We ascribe

this possiblity of failure to two problems: first of all, refinement of a grid cell might have

a substantial impact on the triangulation in parts of the state space that are not in the

neighborhood of this grid cell. Although the approximation power in the selected area

may have improved, the triangulation in other regions may not be as suitable as the pre-

vious one, which causes the overall performance to deteriorate. Also, it may be difficult to

find a simplex spline on the new triangulation that resembles the previous simplex spline,

which complicates a smooth continuation of the learning process.

The second problem is that the triangulation refinement procedure tends to construct

simplices that are not “good” in terms of the metrics discussed in Section 3.2.1.1. “Ugly”

simplices, like simplex fans and sliver simplices, frequently occur in Delaunay triangula-

tions. These simplices reduce the approximation power of the simplex spline and slow

down the algorithm.

We compared the simplex spline RLS API algorithm to the LSPI algorithm of Lagoudakis

and Parr (2003), which is similar to RLS API, but uses radial basis functions as approxi-

mation architecture. Although, the LSPI algorithm outperformed all versions of the RLS

API algorithm, the performances of these algorithms do not differ too much. Also note

that a downside of LSPI compared to our algorithm is the fact that the radial basis

functions that are used as value function approximators were specifically tailored to the

inverted pendulum problem in advance, whereas the simplex splines do not require any

predetermination based on knowledge of the problem. Another disadvantage of the LSPI

algorithm is the fact that it learns a state-action value function instead of a state value

105

ADP with adaptive multivariate simplex splines M.C. de Jongh

function. This implies that it requires a distinct set of basis functions for each action,

which might cause inefficiency for problems with a larger action space. The RLS API

algorithm, on the other hand, uses the same amount of simplex splines for each possible

size of the action space.

All in all, our findings prove that multivariate simplex splines have great potential as

value function approximators. In answer to our main research question, we developed

a method that shows promise in the context of value function approximation in ADP.

It can be applied to any MDP with a continuous state space and finite, discrete action

space, without any preadjustments of the splines using problem-specific knowledge. For

the inverted pendulum problem, the performance is not far behind that of an algorithm

that was in fact tuned to this problem in advance. Moreover, we see various possibilities

for further improvement of our method. We elaborate on these possibilites in Section 6.2.

6.2 Recommendations

Due to the many time-consuming experiments, we have not been able to test the simplex

spline RLS API as thoroughly as we wanted to. To gain true insight into the triangulation

refinement procedure and the impact of each of the refinement criteria, more experimen-

tation is required. Also, the algorithm should be tested on various other problems, besides

the inverted pendulum problem, and ought to be compared to a wide range of other algo-

rithms, including methods that make use of nonparametric models. Furthermore, we are

convinced that the algorithm has a high potential to achieve better results than the ones

presented in this thesis. In the final weeks of this project, some small modifications to the

algorithm as well as to the implementation brought about considerable improvements of

the computation times. In the remainder of this section, we sketch some ideas that could

lead to an even better performance.

One of the aspects of the simplex spline RLS API algorithm from which there is still, in

our view, a lot to gain, is the transition between different triangulations. As we mentioned

before, the refinement of a grid cell may have a considerable effect on the triangulation

in regions where this is not desirable, which complicates a smooth transition to the next

iteration. In an attempt to smoothen these transitions, constrained Delaunay triangula-

tion methods might come of use, which we briefly discussed in Section 3.2.1.2. We did

106

ADP with adaptive multivariate simplex splines M.C. de Jongh

some quick experiments with these methods, but sofar without success: the ability to fix

a part of triangulation went at the expense of the quality of the simplices. The triangula-

tions we obtained throughout the course of the algorithm were increasingly ugly in terms

of the metrics discussed in Section 3.2.1.1 and did therefore not yield good results. We

do, however, think that this is a worthwile direction of further research. After all, fixing

a part of the triangulation during the transition is not only beneficial for the stability

of the algorithm, but also easens the computation of the coefficients of the new simplex

spline: it might enable us to keep a set of coefficients fixed and only adapt the ones that are

located in the surroundings of the refined grid cell. As the generalized least squares proce-

dure is a time-consuming part of the algorithm, this might save a lot of computation time.

Another aspect of the simplex spline RLS API algorithm that has a negative impact

on its performance is the frequent occurrence of bad simplices, like simplex fans or sliver

simplices. Such simplices decrease the approximation power of the spline and slacken the

speed of the process. Preventing the occurrence of ugly simplices is not an easy task and

is a general problem in the field of triangulation optimization. Perhaps an additional

refinement criterion could be introduced in the refinement procedure that concerns the

quality of the triangulation. Introduction of another criterion, however, also implies an

increase in computation time. Also, the potential of other triangulations than the Delau-

nay triangulation could be investigated.

Another aim of future research could be the design of a triangulation optimization method

that is not based on grids. The reason we based our triangulations on a set of local grids

was the fact that it allowed for an easy definition of “refinement” of a part of the state

space and that grid cells are easy to work with. Also, we hoped to reduce the number

of ugly simplices by positioning the vertices in a somewhat evenly distributed manner.

Other ways of finding suitable locations for new vertices in the state space might yield a

better performance.

In addition, a triangulation optimization method does not need to be limited to addition

of vertices. More sophisticated procedures could be designed that allow for the removal

and/or shifting of vertices.

All in all, triangulation optimization is a challenging endeavour. It has been extensively

studied for the purpose of data approximation and is still an active area of research. In

107

ADP with adaptive multivariate simplex splines M.C. de Jongh

the context of value function approximation in Markov decision theory, the problem is

even more difficult, as the triangulation can only be adapted based on the current ap-

proximation and observation of the process. To our knowledge, this is the first work that

deals with triangulation optimization in the context of value function approximation with

simplex splines. The fact that we obtained quite good results, despite some weaknesses

in our method, is a promise of the great potential of multivariate simplex splines in the

context of approximate dynamic programming.

108

Bibliography

[1] O. Aichholzer, F. Hurtado, and M. Noy. A lower bound on the number of triangula-

tions of planar point sets. Computational Geometry, 29(2):135–145, 2004.

[2] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz,

A. Zidek, and R. Munos. Transfer in deep reinforcement learning using succes-

sor features and generalised policy improvement. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International Conference on Machine Learn-

ing, volume 80 of Proceedings of Machine Learning Research, pages 501–510, Stock-

holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[3] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[4] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation–a new compu-

tational technique in dynamic programming: Allocation processes. Mathematics of

Computation, 17(82):155–161, 1963.

[5] P.E. Bézier. Example of an existing system in the motor industry: the unisurf system.

Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,

321:207 – 218, 1971.

[6] S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference

learning. Machine Learning, 22:33–57, 03 1996.

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

Computer Networks and ISDN Systems, 30(1):107–117, 1998. Proceedings of the

Seventh International World Wide Web Conference.

[8] C. Cervellera and D. Macciò. A novel approach for sampling in approximate dy-

namic programming based on f -discrepancy. IEEE Transactions on Cybernetics,

47(10):3355–3366, 2017.

109

ADP with adaptive multivariate simplex splines M.C. de Jongh

[9] V. Chen, D. Ruppert, and C. Shoemaker. Applying experimental design and regres-

sion splines to high-dimensional continuous-state stochastic dynamic programming.

Operations Research, 47:38–53, 02 1999.

[10] V. C. P. Chen, D. Ruppert, and C.A. Shoemaker. Applying experimental design and

regression splines to high-dimensional continuous-state stochastic dynamic program-

ming. Operations Research, 47(1):38–53, 1999.

[11] L.P. Chew. Constrained delaunay triangulations. In Proceedings of the Third Annual

Symposium on Computational Geometry, SCG ’87, page 215–222, New York, NY,

USA, 1987. Association for Computing Machinery.

[12] A. Cohen, N. Dyn, F. Hecht, and J. Mirebeau. Adaptive multiresolution analysis

based on anisotropic triangulations. Mathematics of Computation - Math. Comput.,

81, 01 2011.

[13] R. Coulom. Reinforcement Learning Using Neural Networks, with Applications to

Motor Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[14] M. Cox. The numerical evaluation of b-splines. Ima Journal of Applied Mathematics,

10:134–149, 1972.

[15] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd

edition, 2008.

[16] C. de boor. On calculating with b-splines. Journal of Approximation Theory, 6(1):50–

62, 1972.

[17] C. de Boor. Splines as linear combinations of b-splines. Approximation Theory II,

01 1976.

[18] C. de Boor. A Practical Guide to Splines, volume 27. 01 1978.

[19] C. de Boor. B-form basics. in: G. farin, editor, geometric modeling: Algorithms and

new trends. SIAM, pages 131–148, 01 1987.

[20] C. de Boor and A. Ron. On multivariate polynomial interpolation. Constructive

Approximation, 6:287–302, 09 1990.

110

ADP with adaptive multivariate simplex splines M.C. de Jongh

[21] C. de Visser. Global Nonlinear Model Identification with Multivariate Splines. PhD

thesis, TU Delft, 07 2011.

[22] C. de Visser, E. Van Kampen, Q. Chu, and J.A. Mulder. Intersplines: A new approach

to globally optimal multivariate splines using interval analysis. Reliable Computing,

17:153–191, 12 2012.

[23] C.C. de Visser, Q.P. Chu, and J.A. Mulder. A new approach to linear regression

with multivariate splines. Automatica, 45(12):2903–2909, 2009.

[24] B. Delaunay. Sur la sphère vide. a la mémoire de georges voronoi. Bulletin

de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na,

(6):793–800, 1934.

[25] T. Dey, C. Bajaj, and K. Sugihara. On good triangulations in three dimensions.

International Journal of Computational Geometry and Applications, 2:431–441, 01

1991.

[26] T. Dokken, V. Skytt, and O. Barrowclough. Trivariate spline representations for

computer aided design and additive manufacturing. Computers and Mathematics

with Applications, 78, 03 2018.

[27] G. Farin. Triangular bernstein-bézier patches. Computer Aided Geometric Design,

3(2):83–127, 1986.

[28] G. Farin. Chapter 1 - a history of curves and surfaces in cagd. In F. Gerald, H. Josef,

and K. Myung-Soo, editors, Handbook of Computer Aided Geometric Design, pages

1–21. North-Holland, Amsterdam, 2002.

[29] J.H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,

19(1):1 – 67, 1991.

[30] V. Gabillon, M. Ghavamzadeh, and B. Scherrer. Approximate dynamic programming

finally performs well in the game of tetris. In Proceedings of the 26th International

Conference on Neural Information Processing Systems - Volume 2, NIPS’13, page

1754–1762, Red Hook, NY, USA, 2013. Curran Associates Inc.

[31] T. N. T. Goodman. Polyhedral Splines, pages 347–382. Springer Netherlands, Dor-

drecht, 1990.

111

ADP with adaptive multivariate simplex splines M.C. de Jongh

[32] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’16, page 855–864, New York, NY, USA, 2016. Asso-

ciation for Computing Machinery.

[33] W.W. Hager. Condition estimates. SIAM Journal on Scientific and Statistical Com-

puting, 5(2):311–316, 1984.

[34] P.J.H. Hulshof, M.R.K. Mes, R.J. Boucherie, and E.W. Hans. Patient admission

planning using approximate dynamic programming. Flexible services and manufac-

turing journal, 28(1):30–61, 04 2016.

[35] S.A. Johnson, J.R. Stedinger, C.A. Shoemaker, Y. Li, and J.A. Tejada-Guibert.

Numerical solution of continuous-state dynamic programs using linear and spline

interpolation. Operations Research, 41(3):484–500, 1993.

[36] R. Karagoz and K. Batselier. Nonlinear system identification with regularized tensor

network b-splines. Automatica, 122:109300, 12 2020.

[37] G. Konidaris, S. Osentoski, and P. Thomas. Value function approximation in rein-

forcement learning using the fourier basis. In Proceedings of the Twenty-Fifth AAAI

Conference on Artificial Intelligence, AAAI’11, page 380–385. AAAI Press, 2011.

[38] M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine

Learning Research, 4:1107–1149, December 2003.

[39] M. Lai. Scattered data interpolation and approximation using bivariate c1 piecewise

cubic polynomials. Computer Aided Geometric Design, 13(1):81–88, 1996.

[40] M. Lai and L. Schumaker. On the approximation power of bivariate splines. Advances

in Computational Mathematics, 9:251–279, 1998.

[41] M. Lai and L. Schumaker. On the approximation power of splines on triangulated

quadrangulations. SIAM Journal on Numerical Analysis, 36, 02 2001.

[42] M. Lai and L. L. Schumaker. Scattered data interpolation using c2 supersplines of

degree six. SIAM Journal on Numerical Analysis, 34(3):905–921, June 1997.

[43] M. Lai and L.L. Schumaker. Spline Functions on Triangulations. Encyclopedia of

Mathematics and its Applications. Cambridge University Press, 2007.

112

ADP with adaptive multivariate simplex splines M.C. de Jongh

[44] Lai, M. Geometric interpretation of smoothness conditions of triangular polynomial

patches. Computer Aided Geometric Design, 14(2):191–199, 1997.

[45] C.L. Lawson. Software for c1 surface interpolation. In R.R. John, editor, Mathemat-

ical Software, pages 161–194. Academic Press, 1977.

[46] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Society for Industrial

and Applied Mathematics, 1995.

[47] A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a classification-based

policy iteration algorithm. In Proceedings of the 27th International Conference on

International Conference on Machine Learning, ICML’10, page 607–614, Madison,

WI, USA, 2010. Omnipress.

[48] L. Lehnert and M.L. Littman. Successor features support model-based and model-

free reinforcement learning. ArXiv, abs/1901.11437, 2019.

[49] X Li, G. Calinescu, P. Wan, and Y. Wang. Localized delaunay triangulation with ap-

plication in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed

Systems, 14(10):1035–1047, 2003.

[50] J. Ma and W.B. Powell. A convergent recursive least squares approximate policy iter-

ation algorithm for multi-dimensional markov decision process with continuous state

and action spaces. In 2009 IEEE Symposium on Adaptive Dynamic Programming

and Reinforcement Learning, pages 66–73, 2009.

[51] S. Madjiheurem and L. Toni. Representation learning on graphs: A reinforcement

learning application. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of

Machine Learning Research, volume 89 of Proceedings of Machine Learning Research,

pages 3391–3399. PMLR, 16–18 Apr 2019.

[52] S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In

Proceedings of the 22nd International Conference on Machine Learning, ICML ’05,

page 553–560, New York, NY, USA, 2005. Association for Computing Machinery.

[53] S. Mahadevan. Representation discovery in sequential decision making. In Proceed-

ings of the National Conference on Artificial Intelligence, volume 3, 01 2010.

113

ADP with adaptive multivariate simplex splines M.C. de Jongh

[54] S. Mahadevan and M. Maggioni. Value function approximation with diffusion

wavelets and laplacian eigenfunctions. In Y. Weiss, B. Schölkopf, and J. Platt, ed-

itors, Advances in Neural Information Processing Systems, volume 18. MIT Press,

2006.

[55] P.S. Mara. Triangulations for the cube. Journal of Combinatorial Theory, Series A,

20(2):170–177, 1976.

[56] S. Mitchell and S. Vavasis. Quality mesh generation in three dimensions. Proceedings

of the ACM Computational Geometry Conference, 12 1999.

[57] W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality (Wiley Series in Probability and Statistics). Wiley-Interscience, USA, 2011.

[58] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, Inc., USA, 1st edition, 1994.

[59] L.D. Pyeatt and A.E. Howe. Decision tree function approximation in reinforcement

learning. Technical report, In Proceedings of the Third International Symposium on

Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models,

1998.

[60] C.R. Rao. Linear Statistical Inference and its Applications. John Wiley & Sons, Inc.,

2nd edition, 04 1973.

[61] J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh gener-

ation. Journal of Algorithms, 18(3):548–585, 1995.

[62] B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist. Approximate

modified policy iteration and its application to the game of tetris. Journal of Machine

Learning Research, 16(49):1629–1676, 2015.

[63] F. Schröder and P. Roßbach. Managing the complexity of digital terrain models.

Computers & Graphics, 18(6):775–783, 1994.

[64] P.J. Schweitzer and A. Seidmann. Generalized polynomial approximations in

markovian decision processes. Journal of Mathematical Analysis and Applications,

110(2):568–582, 1985.

114

ADP with adaptive multivariate simplex splines M.C. de Jongh

[65] H. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the de boor

algorithm for polynomials over triangles. Constructive Approximation, 7:257–279,

1991.

[66] M. Sharir and E. Welzl. Random triangulations of planar point sets. In Proceedings of

the Twenty-Second Annual Symposium on Computational Geometry, SCG ’06, page

273–281, New York, NY, USA, 2006. Association for Computing Machinery.

[67] J. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Com-

putational Geometry, 22:21–74, 05 2001.

[68] J. Shewchuk. General-dimensional constrained delaunay and constrained regular

triangulations, i: Combinatorial properties. Discrete & Computational Geometry,

39:580–637, 03 2008.

[69] J.R. Shewchuk. What is a good linear element? - interpolation, conditioning, and

quality measures. In In 11th International Meshing Roundtable, pages 115–126, 2002.

[70] H. Si and K. Gärtner. Meshing piecewise linear complexes by constrained delaunay

tetrahedralizations. In B.W. Hanks, editor, Proceedings of the 14th International

Meshing Roundtable, pages 147–163, Berlin, Heidelberg, 2005. Springer Berlin Hei-

delberg.

[71] R. Sibson. Locally equiangular triangulations. Computer Journal, 21:243–245, 1978.

[72] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. A Bradford

Book, Cambridge, MA, USA, 2018.

[73] Y. Tang. Deep learning using linear support vector machines. arXiv: Learning, 2013.

[74] M. Trick and S. Zin. Spline approximations to value functions. Macroeconomic

Dynamics, 1:255–277, 1997.

[75] M.A. Unser. Splines: a perfect fit for medical imaging. In M. Sonka and J.M.

Fitzpatrick, editors, Medical Imaging 2002: Image Processing, volume 4684, pages

225 – 236. International Society for Optics and Photonics, SPIE, 2002.

[76] X. Xue and L. Zhou. Compact car-body surface design with t-spline surface. Trans-

actions of Nanjing University of Aeronautics and Astronautics, 31:615–621, 12 2014.

115

