
Delivery Cost Approximations for
Dynamic Time Slot Pricing

Author
F.R. Akkerman

Examination Committee

University of Twente
Dr.ir. M.R.K. Mes

Dr.ir. E.A. Lalla-Ruiz

ORTEC
Dr. T.R. Visser

https://www.utwente.nl/en/
https://ortec.com/en

Management Summary

This research is conducted at ORTEC, a Dutch software and consultancy company. ORTEC is
the leading supplier of mathematical optimization software and advanced analytics for, amongst
others, workforce planning and vehicle routing. In the past two decades, package home delivery
has been a thriving business area. We focus on attended home delivery (AHD), for which it is
necessary that the customer is at home during delivery. Many companies offer their customers
time slots for delivery, to provide high customer service and prevent costly delivery failures.
AHD is needed for security reasons, in case of perishable goods, large packages, or when services
are performed. The costs for offering time slots are often double compared to standard home
delivery services (Yrjölä, 2001).

We focus on dynamic pricing of time slots. To influence customers to choose a time slot
that is cheaper for the company, i.e., time slots that represent less operational delivery time
and travel distances, companies often give incentives (discounts) or penalties (delivery charges)
dependent on the costs of a time slot. The main focus of this thesis is on determining the costs
of a time slot and adjusting time slot pricing accordingly. Typically, the costs of time slots are
determined using (static) methods that are not fully able to predict the costs of a time slot
correctly. The prediction of costs is not straightforward, since we do not know in advance the
exact costs of adding a customer to a time slot. This difficulty is caused by several factors: (i)
the dynamic nature of time slotting, i.e., the decision to insert a customer in a specific time
slot will decrease the capacity and therefore influence the decision for the next customer, (ii)
the uncertain nature of customer arrivals, i.e., it is unknown where and how much customers
will arrive and (iii) the routing of vehicles to serve customers cannot be determined before all
customer orders have been booked. We use a cost approximation method that uses machine
learning regression models (random forests and neural networks) and a limited set of features to
predict the costs of adding a customer to a certain area-time slot combination (ATC). Also, we
present a rudimentary time slot incentive policy that can be used to test our cost approximation
model.

As common for time slotting research, we use discrete-event simulation to validate our
results. We simulate the booking horizon for a single delivery day, i.e., customers arrive and
book a time slot during a horizon of several days, but customers always choose the time slots on
the same delivery day. We use several different case studies for testing our approach: instances
with differing customer location patterns, constraints and sizes. Also, we test our approach on
a case with actual customer data from a large European e-grocery retailer.

Our results show that time slot incentives have added value for practice. In a hypothetical
situation where customers are infinitely sensitive to incentives, we can plan 6% more customers
and can decrease the per-customer travel costs by 11%. Furthermore, we show that our machine
learning model (random forests) works especially well when customer locations are heavily
clustered or when the area of operation is sparsely populated.

For a case of a European e-grocery retailer with less flexible customers, we show that we
can save approximately 6% in per-customer travel costs, and plan approximately 1% more
customers when using our time slot incentive policy. Figure 1 shows an overview of the effect of
using dynamic time slot prices against using no time slot pricing. A larger area indicates better

I

performance. We see that with the use of time slot pricing, there is more room for customers
and a similar number of time slots can be offered on average. The costs, expressed in travel
time, waiting time and distance per customer, are significantly lower, although it should be
noted that the waiting times are relatively low compared to the travel times.

We recommend to implement dynamic time slot incentive methods to save costs. However,
further research needs to be conducted in customer behavior patterns and time slot incentive
algorithms. We suggest to look at (deep) reinforcement learning policies that can learn a policy
using Monte Carlo simulation. Difficulties that have to be overcome can be mainly found in
the training procedure of models. Also, generic reinforcement learning models will need to be
able perform in a variety of different cases, which might be difficult for specific instances. The
eventual cost approximation influences the incentive policy, and in turn the incentive decisions
influence the cost approximation. A reinforcement learning model could be valuable for learning
this explicit relationship.

Planned customers %Avg. feasible TS

Waiting time/customer

Travel time/customer

Distance/customer

20.0

40.0

60.0

80.0

100.0

1.4

2.8

4.2

5.6

7.0

0.08
0.06

0.04
0.02

0.0

5.7

5.3

4.9

4.5

4.1

3.86
3.52

3.18
2.84

2.5

No time slot incentives Random forests with time slot incentives

Figure 1: Radar chart for the performance of the simple incentive policy based on
random forests and the situation without incentives, a larger area indicates better
performance, results from a realistic case using 2 replications.

II

Preface

I owe a debt of gratitude to the people that made this thesis possible. I enjoyed every minute
of my time at ORTEC and therefore want to thank everyone at the Math Innovation Team for

making me feel part of the company. In special, I want to thank Thomas. His expertise,
passion and enthusiasm for time slotting encouraged me to strive for a great thesis. I enjoyed

our many talks and appreciate all the time he spend on this project. I would also like to thank
Nathan for his help with the simulation tool, some of the plots in this thesis, and the insights

he provided into the time slotting experiments he and Thomas did. Finally, I would like to
thank Leendert for giving me the opportunity to do my thesis at ORTEC.

During the thesis I was advised by my supervisors from the University of Twente, Martijn and
Eduardo. Their feedback and good ideas improved the quality and lead to more interesting
insights. Also, I would like to thank them both for all the opportunities and the trust they

put in me the last years when I was TA at their courses or other projects. I know for sure that
I would not have learned as much without them.

Fabian Akkerman, April 2021.

III

Contents

Management Summary I

Preface III

Abbreviations VI

1 Introduction 1
1.1 About ORTEC . 1
1.2 Attended Home Delivery and Time Slotting . 1
1.3 Problem Statement and Motivation . 3
1.4 Research Objective and Research Questions . 4
1.5 Ethical Considerations . 6
1.6 Research Outline . 6

2 Research Context 7
2.1 Time Slotting Business Processes . 7
2.2 ORTEC’s Current Software Solutions . 9
2.3 E-grocery Retailer Case . 12
2.4 Conclusions . 12

3 Literature 13
3.1 Vehicle Routing with Time Windows . 13
3.2 Attended Home Delivery and Time Slotting . 15
3.3 Time Slot Allocation and Incentives . 18
3.4 Customer Choice Modelling . 21
3.5 Transportation Cost Approximation . 23

3.5.1 Heuristic Functions for Approximating Transportation Distance 23
3.5.2 Seed-based Approximations for Transportation Costs 24
3.5.3 Regression Models for Approximating Transportation Costs 25

3.6 Solution Validation . 28
3.7 Conclusions and Research Contributions . 28

4 Problem Formulation 30
4.1 Problem Characteristics . 30
4.2 Customer Choice Model . 31
4.3 Determining the Downstream Costs . 32
4.4 Conclusions . 32

5 Solution Approach 33
5.1 Insertion Costs as Transportation Costs Approximation 33
5.2 Regression Based Transportation Costs Approximation 33

5.2.1 Features for Predicting Transportation Costs 34

IV

5.2.2 Random Forests . 36
5.2.3 Neural Networks . 37
5.2.4 Obtaining Training Data . 37

5.3 Simple Incentive Policy . 38
5.4 Conclusions . 38

6 Simulation Model and Experimental Design 39
6.1 Simulation Model Description . 39
6.2 Instance Settings . 40

6.2.1 Synthetic Instances . 40
6.2.2 European E-grocery Retailer Instances . 42

6.3 Experimental Design . 43
6.3.1 Experiment 1 . 43
6.3.2 Experiment 2 . 43
6.3.3 Experiment 3 . 43

6.4 Conclusions . 44

7 Computational Experiments and Results 45
7.1 Routing Costs Approximations . 45

7.1.1 Regression Models for Cutoff Observations 45
7.1.2 Regression Models for Intermediate Observations 47

7.2 The Potential of Time Slot Pricing . 50
7.2.1 Synthetic Case Experiments . 51
7.2.2 Single Vehicle Instance Experiments . 53
7.2.3 Iterative Predictive Model Improvement 54

7.3 Time Slot Pricing Policy Experiments . 55
7.4 European E-grocery Retailer Case Experiments 58
7.5 Joint Cost Approximation with Random Forests and Insertion Costs 60
7.6 Conclusions . 62

8 Conclusions and Recommendations 63
8.1 Conclusions . 63
8.2 Recommendations and Further Research . 66

References 68

Appendices 74

A Business Process with the Solution Approach 75

B Discrete-event Simulation Model 76
B.1 Simulation Model Elements . 76
B.2 Simulation Model Input Data . 78

C Hyperparameters for Random Forests and Neural Networks 79

D Feature Importance Analysis 80

E Additional Experimental Results 82

V

Abbreviations

ADP

AHD

ATC

MNL

OT

ORS

OTSS

VRP

VRPTW

Approximate Dynamic
Programming

Attended Home De-
livery

Area-Time slot com-
bination

Multinomial logit choice
model

ORTEC Technology

ORTEC Route Opti-
mization Service

ORTEC Time Slot-
ting Service

Vehicle Routing Problem

Vehicle Routing Problem
with Time Windows

A solution technique for solving complex, discrete-
time, multistage stochastic control processes.

A delivery type for which the customer needs
to be home to receive the goods or service.

An aggregation structure that groups customers
by their location and chosen time slot.

A parametric choice model based on utility the-
ory.

The software development department of OR-
TEC.

An ORTEC cloud product used for vehicle routing.

An ORTEC cloud product used for time slot-
ting.

A combinatorial optimization problem for find-
ing the best routes for a fleet of vehicles to deliver
to a set of customers.

A variant of the VRP that includes time win-
dows for deliveries.

VI

Chapter 1

Introduction

First, the company at which the research is conducted is introduced in Section 1.1. Second, the
research topic is introduced in Section 1.2, next the problem statement and motivation from
a business perspective are explained in Section 1.3, and the research objective and research
questions are stated in Section 1.4. We discuss the ethical considerations for this research in
Section 1.5. Finally, the research approach and structure of this thesis are outlined in Section 1.6

1.1 About ORTEC

This research is conducted at ORTEC, which is a Dutch software and consultancy company
operating around the world. ORTEC is the leading supplier of mathematical optimization soft-
ware and advanced analytics. The company has over a 1000 employees and is based in 13
countries. The main fields in which ORTEC is active are marketing, sales, planning & fore-
casting, warehousing, asset management, workforce scheduling, strategy and routing & loading
(ORTEC, 2020a).

The graduation project takes place at the Math Innovation Team of ORTEC, which is part
of the ORTEC Technology (OT) business unit. OT is the software development department of
ORTEC. The software solutions developed at OT can be divided into two groups: the goods
supply chain and the service supply chain. The goods supply chain contains software solutions
for, amongst others, vehicle routing, supply chain design and service planning. The service
supply chain contains products for workforce planning and scheduling. Aside from these two
product groups, OT also develops tailor made solutions for specific customers (ORTEC, 2020b).

The OT department is assembled by several units or “squads”, which often have a single task
or goal. The Math Innovation Team has as goal to reduce the time-to-market, i.e., the time it
takes from developing a product until it becomes available for commercial use, of mathematical
innovations with measurable customer impact. To reach their goal, the Math Innovation Team
explores new innovations, validates innovations for small customer cases, proves applicability by
doing larger projects at multiple customers, and builds products together with other OT-teams
(ORTEC Math Innovation Team, 2020).

Most current projects of the Math Innovation Team are focused on vehicle routing software.
ORTEC has vehicle routing solutions for many kinds of tactical and operational planning prob-
lems and for different types of businesses. This research will revolve around the ORTEC Time
Slotting Service (OTSS) and the ORTEC Route Optimization Service (ORS), which will be
further explained in the next sections.

1.2 Attended Home Delivery and Time Slotting

During the last two decades, many e-commerce initiatives have driven the demand for package
delivery services. Variations of business-to-consumer (B2C) business models have sparked op-

1

portunities for marketing and customer service. One of the ultimate value-adding services is
last-mile delivery, the delivery of packages to the customer’s front door (Campbell and Savels-
bergh, 2005). Home delivery services present big challenges for retailers, service providers, and
logistics companies. Logistics needs to be organized in a way that is efficient, profitable, and
satisfies the customers’ wishes, while dealing with stochastic customer arrivals.

For this research, we focus on attended home delivery (AHD), for which it is necessary that
the customer is at home at the delivery moment. AHD might be needed for security reasons
(e.g., high value goods), perishable goods (e.g., groceries), physically large goods (e.g., home
appliances), or because services are performed (e.g., product installation) (Agatz et al., 2008).
Many companies that use AHD services provide their customers with time slots for choosing the
delivery moment. Delivery time slots are offered to provide a high customer service and prevent
costly delivery failure. When delivery has failed, the goods have to be offered for delivery on a
different moment, which will result in additional storage, transportation and planning costs. In
case of perishable goods, the costs of a delivery failure are even higher, since the goods may be
spoiled before the next delivery opportunity. Early studies showed that the costs of AHD are
often double the cost of unattended delivery (Yrjölä, 2001).

We focus on the process of offering time slots to customers. The ordering process, from a
customer viewpoint, is shown in Figure 1.1.

Figure 1.1: Customer ordering process (customer perspective).

First, the customer selects products or services in the online environment of the retailer.
Some retailers may have a minimum ordering quantity for home delivery. When the customer
is finished selecting products or services, he or she needs to indicate the delivery location.
This may be done by first logging in on the personal customer account, or alternatively by
only indicating the customer address or postal code. Some retailers require the customer to
first sign in, before the customer can start selecting products. In that case step 1 and step 2 in
Figure 1.1 are swapped. In step 3, the grocery retailer offers delivery time slots to the customer,
possibly depending on the customer location. The possibilities for the design of the time slot
offering will be discussed in Chapter 3. After the customer has selected a delivery time slot
and has completed the order (step 4), the order is confirmed and delivered in step 5. In the
past, some retailers offered to first select a time slot before starting the ordering process, so
time slotting decisions had to be made without customer information (e.g., location and order
quantity). Since this limits the possibilities for solution methods, the selection of time slots
before ordering is neglected for this study.

Figure 1.2 shows how a time slots could be presented to the customer. In this example, a
customer can choose a delivery moment on four days. The time slot on Wednesday is wide and
has an “eco” symbol, to indicate it is an environmentally friendly option, since wider time slots
allow more efficient routing. Notice that the time slots on Thursday are narrower and overlap.
Friday’s time slots are full, so no new customer booking can be done.

The time slots have different prices, as part of the company’s pricing policy. Time slot
pricing policies are intended to steer customer behavior towards time slots that are better for
the company, i.e., these time slots represent lower transportation costs. By using incentives or

2

Figure 1.2: Example of a time slot customer interface.

penalties, a company can influence customer behavior in choosing a time slot. By influencing
customer behavior, it is possible to reduce operational costs. The reduction of costs can be
done by, e.g., smoothing the demand patterns or the geographical spread of customers over
time to reduce demand peaks (Agatz et al., 2008), reducing vehicle routing distance or time,
and reducing the required fleet size.

Although much research has been conducted on time slot allocation, i.e., the offering of only
a subset of the feasible time slots, this study will consider the situation in which always all
feasible time slots are offered, since this is common practice for all ORTEC’s customers.

1.3 Problem Statement and Motivation

It is challenging to make effective time slot offering decisions. First, the software solution needs
to use the currently available information, like the current schedule and remaining capacity, and
the new incoming information, like the new customer’s order size and location, to check what
time slots are still available for offering. Second, the software needs to calculate the costs of in-
serting a new customer into a route, to obtain the cheapest options. Third, the software solution
needs to record, store and update all current information after the customer made a choice for
a time slot. Fourth, the time slot bookings need to be converted to vehicle routing schedules.
The problem is further complicated by uncertain customer arrivals and customer behaviour.
Especially since the vehicle routing problem (VRP) is an NP-hard combinatorial optimization
problem, meaning that realistic instances can only be solved using heuristics (Cordeau et al.,
2007). Since the VRP is NP-hard, and customers demand fast working online services, the
time slots need to be offered quickly and cannot be determined using exact approaches. Recent
research suggests that each 100-millisecond delay in the load time of websites can decrease sales
conversion by 7% (Akamai, 2017).

Although there is no time to do many calculations before offering a time slot, it is crucial
that the time slot offering methods takes the cost factors into account, consisting of, e.g., fuel,
salary, vehicle rent and emissions. In addition, the opportunity costs can be considered, which
are the cost of offering a time slot now compared to saving time slots for later, for potentially
more profitable customers (Yang et al., 2016). A method that does not consider cost factors may
yield longer vehicle routes, peak demand at popular times, and many idle vehicles at unpopular
times (Yang et al., 2016).

ORTEC wants to research possibilities for improving their current time slotting service,

3

which is further explained in Chapter 2. Home delivery is an industry with small profit margins,
but with a huge growth potential. Therefore, ORTEC wants to develop their home delivery
services by, amongst others, providing dynamic time slotting solutions for retailers (ORTEC,
2020a). The current time slotting service of ORTEC uses an insertion cost calculation for
determining the cost of adding a new customer to a certain time slot. These insertion cost are
based on the additional distance, time, or setup costs paid for adding a new visiting location
to existing or new routes. These insertion costs can be inaccurate and vary between under
-or overestimating the actual costs of inserting a customer. It should be noted that there is a
significant difference between time slot bookings and vehicle routes. When a customer is added
to a certain time slot, it means that an additional location is added to the Vehicle Routing
Problem with Time Windows (VRPTW), further explained in Chapter 3. It is possible that
one vehicle route in the VRPTW-solution serves customers from different time slots. Also it is
possible that customers in the same time slot are served by different vehicles (Agatz et al., 2008).
The difference between time slot bookings and the VRPTW solution is caused by constraints on
vehicle capacity and time windows. This depends on several factors, e.g., order size, customer
location, vehicle capacity, time slot design, and the current routing schedule. Hence, the costs
of inserting a customer into a time slot also depends on these factors.

Although ORTEC currently does not provide a service for determining the best pricing for
time slots, most retailers that use ORTEC services do have some price differentiation between
time slots. This price differentiation can be based on static rules as implemented by the retailers
themselves, or it may be dynamically based on the insertion costs per time slot. However, if the
cost approximation is inaccurate, wrong pricing decisions might be made, resulting in higher
operational costs. In practice, time slot prices are used to stimulate customer behavior, but
are never fully cost-effective, i.e., the costs of transportation are never covered by the fee that
customers pay. The time slot pricing methodology is a relevant topic for ORTEC since it can
be an opportunity to deliver better service to their retailing customers and help them to save
costs.

Summarizing, the core problem, the difference between norm and reality, can be stated as
follows. Currently, the estimated costs of visiting a customer in a certain time slot are based
on relatively simple methods returning insertion costs that are not reflecting the actual sit-
uation. Because of this, the operational decisions are made based on unreliable information,
which results in higher transportation costs. Also, time slot pricing policies are not consid-
ered by ORTEC, which means that possible opportunities for lowering transportation costs are
neglected.

1.4 Research Objective and Research Questions

The research objective can be stated as follows:

“Develop and validate an automatic method that approximates the costs of inserting
a customer into a time slot. Furthermore, to explore the potential of methods that
direct customers using a pricing policy, utilize approximations to identify time slots
that yield lower transportation costs for the company. The method should consider
routing costs, practical requirements and constraints. The method should be able to
dynamically adapt to the situation and should be fast enough.”

Although data from current ORTEC customers will be used to validate the proposed method,
it will be required for the model to be applicable to a broad range of cases. The solution method
needs to be flexible to cope with different time slotting designs and pricing policies. The method
needs to be fast in an online setting and should estimate the costs of offering a certain time slot
as accurate as possible. To achieve this objective, several research questions and sub-questions
need to be answered, as stated below.

4

First, we need to find out how the current time slotting implementation of ORTEC works.
This is needed to understand the practical demands for a solution method and to use the current
situation as a benchmark.

1. How does the current ORTEC time slotting solution work?

2. What are the practical considerations and constraints for a new time slotting method and
pricing policy?

Next, we study literature to find out the current standing of scientific research in vehicle
routing, attended home delivery, time slotting and dynamic pricing. Additionally, we need to
find out how delivery costs and revenues can be estimated, how customer behavior is modelled,
and what methods can be used to solve the dynamic pricing problem.

3. How is time slotting and dynamic pricing jointly treated in literature?

(a) What is the problem structure of vehicle routing problems with time windows?

(b) What solution methods are applied to time slot allocation and pricing for attended
home delivery in literature?

(c) How is customer behavior on time slotting decisions modelled in literature?

(d) How can transportation costs be estimated?

Next, we need to consider what method can best be applied to ORTEC’s situation.

4. What cost approximation and dynamic pricing method can be applied to our case study?

(a) What steps need to be taken in the method?

(b) How can the method fulfill the practical requirements?

We need to validate our results. We need to find out how we can validate our model, and
finally we need to show the performance of our model.

5. How can our cost approximation and dynamic pricing models be tested?

(a) How can our cost approximation models be validated?

(b) How can the customer behaviour be modelled?

(c) How can available data be used in a simulation model?

(d) How can our dynamic pricing model be compared to the current situation?

6. How well does our model perform compared to the current situation in different experi-
mental settings?

Finally, we need to do recommendations to ORTEC and give the theoretical and practical
insights and implications of our research.

7. What are the practical and theoretical implications of our research?

(a) What is the contribution of our research to theory?

(b) What are the practical implications of our research?

(c) What can be recommended to ORTEC on the basis of our research?

5

1.5 Ethical Considerations

Influencing individuals’ choices to reduce business costs might be perceived as unethical. The
use of automated methods to influence behaviour is a sensitive topic in society. When automated
methods make their decision based on customer information, e.g., their place of residence and
order value, discriminating business decisions might be made. First, we want to stress that
we do not intend to conduct unethical research or to support unethical behaviour. We are
aware that it might be perceived unfair to base customer offerings and time slot prices on
customers’ place of residence or order value. Nevertheless, the place of residence has major
influence on transportation costs and therefore it could be considered fair to base prices on
delivery addresses. Regardless ethical concerns, we believe that our research is beneficial for
business as well as consumers, since savings in transportation costs can result in lower prices for
customers, and faster service. Second, we do not study customer behaviour directly, since we
focus on the business decisions that can help to decrease costs, improve customer service and
decrease environmental impact. We study how time slot offering and pricing can potentially
decrease costs, but we do not suggest in any way that all methods we test are directly applicable
to practice. Finally, we want to indicate that some methods we test might be rejected by
business because of ethical concerns, but this does not mean that our research is pointless:
the analysis and methods might give more insight and can help to benchmark and develop
alternative methods.

1.6 Research Outline

To solve the research problem and reach the research objective, the research questions as stated
in the Section 1.4 need to be answered. We outline our research methodology and the structure
of the remainder of this thesis.

In Chapter 2, we answer the questions related to the current context and practical require-
ments for our solution method. In this chapter the currently in place software solutions of
ORTEC are explained, as well as the underlying business processes. Also, the general setting of
our case study about e-grocery retailing is introduced. Information about the research context
is obtained using informal interviews. The research questions related to current literature are
answered in Chapter 3. We discuss the vehicle routing problem with time windows (VRPTW),
and discuss the state-of-the-art time slotting literature. Next, methods for approximating trans-
portation costs are discussed. Also, our contributions to scientific literature are outlined at the
end of this chapter. In Chapter 4, we give a formal problem formulation and outline our method
for modelling customer behavior. In Chapter 5, the research questions related to our solution
approach are answered. We present an approach to approximate delivery costs per time slot
using several regression methods. Also, we propose a simple incentive policy that can be used
to test our time slot cost approximation. The set of research questions dealing with solution
validation using our simulation model are answered in Chapter 6. Also, the experimental design
is outlined in this chapter. The final research questions, dealing with the performance of our
proposed method, are answered in Chapter 7. In this chapter the experimental results are stated
and explained. Our research methodology entails experiments with realistic instances that are
based on several different case study scenarios, based on e-grocery retailer data. We obtain
and validate our experimental results using discrete-event simulation. Finally, in Chapter 8, we
discuss the results, draw conclusions from our research and make final recommendations. Also,
we state the limitations and contributions of our research and discuss future research directions.

6

Chapter 2

Research Context

In this chapter, the research context is given. In Section 2.1 the business processes of ORTEC’s
customers using time slotting services are outlined. Next, in Section 2.2, the software solutions
currently in use by ORTEC are described and in Section 2.3, the case studies used for this
research are explained. Finally, in Section 2.4, the research questions related to this chapter are
answered in a summarizing conclusion.

2.1 Time Slotting Business Processes

The business processes underlying the customer order process may differ per retailer. Figure 2.1
depicts the customer order process as common for the retailers using the ORTEC Time Slotting
Service (OTSS). The figure shows the timeline for both the customer perspective and business
process perspective. Not all possible underlying business processes are depicted, the focus is on
ORTEC software that supports the various decisions during the customer order and delivery
process. See Section 1.2 and Figure 1.1 for a full explanation of the ordering process from a
customer perspective. Summarizing, the customer order process begins with the customer filling
the online basket. After finishing shopping, the customer logs in to his/her account or fills in
the postal code of the delivery address. The customer is offered several time slots for delivery.
Next, the customer chooses a time slot and finishes the ordering process. Finally the order is
delivered at the home address of the customer within the selected time slot.

The two depicted software solutions that aid the decision making process are the ORTEC
Time Slotting Service (OTSS) and the ORTEC Route Optimization Service (ORS). As soon as
the customer indicated the delivery location (step 2), the OTSS will receive a request for a time
slot offer. Using the customer information (location and basket content) and the current state
of the schedule (currently planned customers and remaining vehicle capacities) the OTSS will
offer the available time slots to the customer. Time slot availability is based on feasibility of the
solution concerning vehicle capacity and time window constraints. Aside from the feasibility
calculation, the OTSS makes a quick calculation of the costs of inserting the new customer in
all temporal routes. These temporal routes are called a “state” in the figure. OTSS constructs
temporal routes to approximate the transportation costs and check feasibility. These routes are
constructed with a simple and fast algorithm, and are therefore far from optimal. The routes
that are constructed by OTSS contain only the customers that booked a time slot up to the
moment of the optimization requests, i.e., do not contain all customers that need to be delivered
on the delivery day. After the cutoff time, which is the time after which no more new customer
arrivals can come in for a delivery day, the final routes are constructed with a more advanced
routing algorithm that is closer to the optimum.

After the customer choice (step 4), the OTSS will update the current state with the new
customer. OTSS uses a cheapest insertion algorithm (described in Section 2.2), which ensures
fast runtimes. To get more reliable results from the cheapest insertion algorithm, the current

7

Figure 2.1: Customer ordering process (business process perspective).

state needs to be optimized and updated regularly to better reflect the actual routing costs.
Therefore, during the day, the current (not final) vehicle routing schedule is optimized and
updated using a request to ORS for obtaining an intermittent vehicle routing schedule. These
requests can be triggered by time (e.g., optimize the schedule every 15 minutes), customer
arrivals (e.g., optimize the schedule every 20 incoming customers) or based on some other
indicator (e.g., vehicle capacity related). This optimization request to ORS is done to improve
the schedule and to prevent the time slots to reach their capacity limit too early, resulting in
customer rejection (see Section 2.2 for a full explanation). After the cutoff time ORS is ran one
last time to make the final vehicle routing schedule.

Figure 2.2: Time slot booking and execution horizon.

In practice, customers can choose between several delivery days and between different time
slots on these days. In most time slotting literature, however, only a single delivery day is
considered. That means, it is is assumed that the customer decision of choosing a time slot
is independent from time slots on alternative delivery days (Yang et al., 2016). Often this
assumption is needed to calibrate solution methods. In Figure 2.2, the horizon of a time slot
booking process is depicted. At t = 0 the first customers can book a time slot for a single
delivery day after the booking horizon. Customers can book a time slot until the cutoff time at
time T . After the cutoff time, a final routing schedule is constructed and executed. To limit the
scope of this research and decrease computational efforts, we also only consider a single delivery
day.

8

2.2 ORTEC’s Current Software Solutions

In this section, we discuss the workings of the two main software solutions used for time slotting:
OTSS and ORS. We start with explaining the main service, namely the time slotter (OTSS).
Next, we explain the general working of ORS.

ORTEC Time Slotting Service

OTSS is called when time slots needs to be offered or when a choice for a time slot has been
made and needs to be booked. When a time slot offer is requested, OTSS first calculates
which current vehicle routes are feasible for insertion. An insertion into an existing route is
feasible when (i) the vehicle capacity is sufficient to add the respective customer order, and
(ii) the customer, and all already booked customers, can be served within their indicated time
windows. For the capacity calculation, both order volume and order weight can be considered.

Figure 2.3a: Example of cheapest insertion with time slots: initial situation.

Figure 2.3a, Figure 2.3b, and Figure 2.3c show a simplified example of a time slotting
instance and two possible new insertions. Figure 2.3a shows two current vehicle routes. The
orange route serves customers that have chosen a time window from 9:00 to 10:00, the green
route serves customers that have chosen a wider time slot, from 9:00 to 11:00. The numbers
indicated at the arrows are the travelling times between locations in minutes. The grey node
is the central depot, the starting and ending point of the vehicle routes. We assume that both
vehicles start their route at 9:00 and incur 1 minute of delivery time at each customer. In
Figure 2.3a we see that a new customer has arrived. In this case, OTSS first needs to consider
which time slots are feasible to offer to this customer. For this example we assume that both
vehicles still have enough capacity to add the customer order.

First, as shown in Figure 2.3b, the insertion of the customer into the orange route is consid-
ered. We see that the current final customer in the orange route is served at 9:59, (55 minutes
travel time, 4 minutes delivery time). The addition of the new customer would mean that this
customer would be served at 10:04 (4 minutes additional travel time, 1 minute service time).
Therefore the insertion into the orange route can only be feasible if the route would be altered
such that the new customer is served before 10:00, which might result in a delivery outside the
time slot for an already booked customer.

The second option, as shown in Figure 2.3c, is inserting the new customer in the green
route. The current final customer of the green route is served at 9:56 (52 minutes travel time,
4 minutes delivery time). The new customer insertion would mean that the customer can be
served at 10:07 (10 minutes additional travel time, 1 minute additional delivery time), meaning
that the green time slot is feasible. Cheapest insertion returns all feasible time slots, in this

9

Figure 2.3b: Example of cheapest insertion with time slots: first insertion option.

case only the green time slot, and the insertion costs, i.e., the increase in distance, time and
fixed costs. For the green route this means that the total increase in time by adding the new
customer is 15 minutes (∆15 minutes). When a new route is started for the customer, fixed
costs are also returned by OTSS, these are the “startup costs” for a new route.

Figure 2.3c: Example of cheapest insertion with time slots: second insertion option.

For illustrative purposes, we only consider adding the new customer at the end of the vehicle
routes. In reality, cheapest insertion can insert customers in any place in the route, also between
two existing customers. Cheapest insertion has to consider many routes and has to decide where
the new customer can be inserted into a respective route based on the cheapest insertion place,
i.e., the feasibility check is a complicated process. It should be noted that the information
needed for the insertion calculation, e.g., the distance and time addition, is also done online by
calling the maps service used by ORTEC.

After the feasibility and insertion costs calculation, the customer can be offered a set of
available time slots. As soon as the customer confirms a time slot for delivery, this choice is
booked in OTSS and the vehicle routing schedule is updated with the new insertion.

Cheapest insertion is a simple, fast and intuitive algorithm that always makes greedy deci-
sions. This means that the algorithm makes the best choice at that point in time, i.e., inserting
a customer in an existing route in such a way that the distance and time is increased the least
as possible. A disadvantage of greedy algorithms is that they often do not produce a close-to-
optimal solution. A simplified example of a greedy VRP-solution is shown in Figure 2.4a. The

10

figure shows two vehicle routes, starting at two different depots. One vehicle can at most serve
four customers. Therefore, when a new customer comes in (node 5), it can only be served by
the green vehicle, since the orange vehicle has already reached its capacity.

Figure 2.4a: Example of a greedy cheapest insertion VRP-solution.

It is easy to see that a better solution exists than currently displayed, as shown in Figure 2.4b.
When node 4 is removed from the orange route and inserted in the green route, capacity becomes
available to insert node 5 into the orange route, yielding a more efficient routing schedule.
However, the greedy cheapest insertion only concerns the addition of the new customer (node
5) into the current schedule, not the re-optimization as can be obtained from ORS. For this
example, cheapest insertion, as shown in Figure 2.4a, costs 18 distance units more than the
alternative routing as shown in Figure 2.4b.

Figure 2.4b: Example of an alternative VRP-solution.

ORTEC Route Optimization Service

When only cheapest insertion is used for making intermittent routes, the vehicle routes would
quickly become too inefficient and time slots would become full too early in the booking horizon.
That is why intermittent optimization calls are done to ORS, the vehicle routing solution of
ORTEC. Figure 2.4b shows the result of such an intermittent re-optimization. ORS uses a
large collection of tunable algorithms, mainly constructive heuristics and metaheuristics (see
Section 3.1), to optimize vehicle routes. The call to ORS can be triggered by several parameters,
e.g., time (call ORS every 15 minutes), incoming customers (call ORS every 20 customers) or
other parameters. Such an ORS optimization can take a long time. During the calculation
time, new customers can arrive. So, as soon as ORS is done, the current OTSS vehicle routing
schedule, based on the previous schedule including cheapest insertions of new customers, and the
ORS routing schedule, a new routing schedule that lacks the new insertions, need to be merged.
This merged schedule is the new OTSS routing schedule on which the new insertions will be
based. For the merging of these two schedules, several different strategies exist, e.g., calling

11

ORS again when there is a difference between the two schedules or doing a cheapest insertion
of the conflicting customers into the new ORS routing schedule. More merge strategies can be
found in Cederhout (2020). ORS is also called one final time when no new customers can arrive
and the final vehicle routing schedule needs to be constructed.

2.3 E-grocery Retailer Case

One of the main contemporary application areas of time slotting is e-grocery retailing, i.e.,
offering the possibility to order groceries online and delivering them at home. The reason
that grocery retailers use time slots for delivery is that the goods are often perishable, so a
failed delivery can be costly. E-grocery-specific elements are the delivery duration, customer
dispersion, the fleet structure and capacity, depot locations and structure, and the relevance
of time slot offering. The delivery duration, the time between arrival at and departure from
a delivery address, is typically somewhere between 5 and 15 minutes. Customers are often
dispersed over a larger region containing cities and rural areas. In cities, the customers are
heavily clustered, in rural areas the customer locations are more dispersed. Grocery retailers
typically have a heterogeneous fleet, with smaller vehicles used for cities and larger vehicles for
rural areas. Often there is a single large depot, sometimes supported by several satellite hub
locations. Finally, there is a difference between e-grocery retailers’ time slot offering policy:
price-competing retailers offer a limited number of time slots to their customer to save costs,
while other retailers prefer to offer high customer service by offering as much time slots as
possible. We study the second case, where supermarkets offer multiple time slots but try to
steer customer behavior with dynamic pricing policies.

Although there are some case-specific elements, our research is aimed at obtaining general
solution methods and insights, and will not be limited to e-grocery retailers, but more general
applicable to vehicle routing problems with time windows.

2.4 Conclusions

In this chapter, we introduced the general business process of a customer ordering process with
time slots. We showed the horizon used for time slot bookings and introduced a limitation
to our research by only considering a single delivery day. We explained how the two ORTEC
products (OTSS and ORS) are integrated in the time slotting process and we elaborated on the
inner working of both software solutions. We explained the general idea of cheapest insertion
for VRPTWs and discussed the advantages and disadvantages of this approach. Finally, we
introduced the e-grocery retail case we study for this research and explained the case-specific
elements. Also, we stressed that our research is not limited to e-grocery retail, i.e., our methods
and results can be used more generally for vehicle routing problems with time windows.

12

Chapter 3

Literature

In this chapter, the research questions regarding the current scientific literature are answered.
First, the vehicle routing problem with time windows is introduced in Section 3.1. Next, the
attended home delivery and time slotting literature is reviewed in Section 3.2. Then, the
time slot pricing literature is treated in Section 3.3 and the modelling of customer behavior
regarding the choice of time slots is reviewed in Section 3.4. Section 3.5 treats the different cost
approximation approaches found in scientific literature. In Section 3.6 we briefly introduce our
chosen validation technique. Finally, the research questions related to this chapter are answered
and the contributions to scientific literature are stated at the end of this chapter in Section 3.7.

3.1 Vehicle Routing with Time Windows

The vehicle routing problem (VRP) is concerned with the scheduling of vehicle routes, while
adhering to vehicle capacity constraints and timing demands. The common objective for most
VRPs is the minimization of transportation costs and maintaining a required service level. For a
review and taxonomy of the existing scientific literature about VRPs, we refer to Bektas (2006),
Braekers et al. (2016) and Konstantakopoulos et al. (2020). Since attended home delivery with
time slots requires delivery to take place in a specified time interval, we consider a variant of the
VRP, the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a popular
generalization of the VRP with as objective to plan vehicle routes at minimal transportation
costs, starting and ending at a central depot. There is a given fleet of vehicles and customer
demand is known upfront. Each customer is assigned once to a vehicle, and vehicle capacities
must be taken into account. Braekers et al. (2016) classify the VRPTW into customer re-
stricted VRPTW, depot restricted VRPTW and vehicle restricted VRPTW. We only consider
the customer restricted variant, which means that delivery to customers must be within the
boundaries of the earliest and the latest time of a time window. Time windows can be hard,
meaning that delivery must always occur within the indicated time window, or soft constraints
can be used to allow for some slack in the delivery time, possibly against some penalty. Prac-
tical applications, other than attended home delivery, are amongst others, deliveries to banks,
postal services and restaurants, school bus routing and security patrol services (El-Sherbeny,
2010). Again, there are extensions on the VRPTW, e.g., the periodic VRPTW (PVRPTW)
which considers a cyclical planning horizon, or the multi-depot VRPTW (MDVRPTW), which
includes multiple depots from which vehicles can start and end their routes. Most exact VRP
formulations can be classified as flow-formulations, for which the costs of going from vertice i to
vertice j are minimized, given a set of constraints, and set-partitioning formulations, for which
subsets of feasible routes are selected that satisfy all constraints and minimize transportation
costs (Munari, 2016).

We first state the most basic formulation of the capacitated VRP and then extend it to
include time windows. We only state the flow formulation since it is most accessible. The

13

formulation is based on Munari (2016). The binary decision variable xij takes on the value 1
if the route goes from customer i to j directly, for i, j ∈ N , where N = C ∪ {0, n + 1}. N are
all vertices associated to the customers in C and the depot vertices 0 and n + 1. We use two
vertices to represent the same single depot at which all vehicle routes start and end. Also, yj is
a continuous decision variable corresponding to the cummulated demand on a route that visits
vertice j ∈ N up to the visit of j.

minimize
n+1∑
i=0

n+1∑
j=0

cijxij (3.1)

s.t.

n+1∑
j=1
j 6=i

xij = 1, ∀i = 1, . . . , n, (3.2)

n∑
i=0
i 6=h

xih −
n+1∑
j=1
j 6=h

xhj = 0, ∀h = 1, . . . , n, (3.3)

n∑
j=1

x0j ≤ K, (3.4)

yj ≥ yi + qjxij −Q(1− xij), ∀i, j = 0, . . . , n+ 1, (3.5)

di ≤ yi ≤ Q, ∀i = 0, . . . , n+ 1, (3.6)

xij ∈ {0, 1}, ∀i, j = 0, . . . , n+ 1. (3.7)

The objective function 3.1 minimizes the transportation costs, calculated by multiplying
the cost of traversing an edge (cij) with the binary decision variable xij . Constraints 3.2
make sure that all customers are visited exactly once. Constraints 3.3 are flow preservation
constraints, meaning that an incoming vehicle to vertice h ∈ N must also depart from this
vertice. Constraints 3.4 limit the maximum number of routes to the number of vehicles K.
Both Constraints 3.5 and Constraints 3.6 guarantee that the vehicle capacity is not exceeded.
Constraints 3.5 are also subtour elimination constraints. Subtours are cyclical routes that do
not pass through the depot, i.e., yield infeasible solutions. Many formulations exist for the
subtour elimination constraint, Constraints 3.5 and Constraints 3.6 have as advantage that the
model has a relatively low number of constraints in terms of the number of customers, but as
disadvantage that the lower bound of the relaxation is relatively weak in comparison with other
formulations (Munari, 2016).

To extent this capacitated-VRP formulation to also include time windows, we need to add
more constraints. Let a time window be expressed by the time interval [wαi , w

b
i]. The delivery

at vertice i ∈ N cannot occur earlier than wαi nor later than wbi . To each edge (i, j) we assign
a travel time tij . Also, we consider the fact that delivery cannot be done instant, i.e., it takes
some time si to deliver the package after arrival at vertice i. We introduce a new continuous
decision variable wi, being the time of arrival at vertice i ∈ N . We add the following constraints
to 3.1 to 3.7:

wj ≥ wi + (si + tij)xij −Mij(1− xij), ∀i = 0, . . . , n; ∀j = 1, . . . , n+ 1, (3.8)

wai ≤ wi ≤ wbi , ∀i = 0, . . . , n+ 1. (3.9)

Constraints 3.8 ensure that travel time and delivery time are correctly calculated, with Mij

being a large value (Mij = max{wbi −wαj , 0}). Constraints 3.9 than ensure that delivery is done
within the indicated time window.

14

This exact formulation can be suitable for understanding the problem structure of the
VRPTW. Solving the exact formulation is not possible, since the VRPTW is NP-hard (Lenstra
and Kan, 1981). This means that the exact formulation as stated above, cannot be solved to
optimality for realistic instances and we must revert to approximate methods that obtain a
sub-optimal solution. Konstantakopoulos et al. (2020) classify the VRP-heuristics in construc-
tive heuristics, two-phase heuristics and local improvement heuristics. Constructive heuristics
start with an empty solution, and step-by-step construct a complete solution using some set
of decision rules at each iteration, a well-known example is the “Clarcke and Wright savings
algorithm” (Clarke and Wright, 1964). Two-phase heuristics for VRPs first construct a solution
for a simplified problem, then the first solution is adapted in the second phase to adhere to
the problem characteristics. An example of this is the “Route-First-Cluster-Second” heuristic,
which first constructs a giant tour for a single vehicle, and than splits this tour into feasible
routes for multiple vehicles (Prins et al., 2014). Finally, a local improvement heuristic makes
small adaptations to an initial solution to reduce costs. An example of a local improvement
procedure is 2-opt, which is the swapping of two edges that cross each other (Croes, 1958).

Aside from the heuristics category, Konstantakopoulos et al. (2020) distinguishes meta-
heuristics, which are advanced methods used to find, generate or select a subset of solutions to
try to find the best. Metaheuristics are then classified into several categories. First, local search
is a method that explores the solution space by moving to promising solutions in a neighbor-
hood. Examples are simulated annealing (Osman, 1993), tabu search (Montané and Galvão,
2006) and variable neighborhood search (Kuo and Wang, 2012). Second, population search is
a method that aims to generate a new solution from a set of solutions by combing and pairing
existing solutions, or by making solutions cooperate through a learning process, examples are
the genetic algorithm (Baker and Ayechew, 2003), particle swarm optimization (Goksal et al.,
2013) and ant colony optimization (Bell and McMullen, 2004).

3.2 Attended Home Delivery and Time Slotting

In Section 1.2, we already introduced attended home delivery (AHD) and time slotting. In this
section, we give an overview of the state-of-the-art scientific literature in the field and we make
a classification of the literature based on distinctive characteristics of the problems and solution
methods.

In the seminal work on AHD by Campbell and Savelsbergh (2005) the, at that time, current
practice in time slotting is explained. This practice uses a fixed number of bookings per time
slot, based on fleet size and historic delivery times. When the time slot is booked up to its
capacity, it is no longer presented as an option. Customers can choose all available time slots,
regardless their order or home address. Campbell and Savelsbergh (2005) note that future
models can improve the home delivery profitability by (i) dynamically determining whether a
delivery can still be accommodated based on already existing routes and the new customer’
location, and (ii) by considering the opportunity costs associated with accepting a customer, in
view of possible later customer arrivals that are more profitable. After 2005, AHD received more
attention. In a recent scientific literature review by Snoeck et al. (2020), the current standing
of the field is summarized. They categorize the scientific literature based on four criteria: (i)
control policy, (ii) decision time frame, (iii) routing model and (iv) customer choice model. The
control policy (i) is the way a retailer controls the demand flow. This can be done using a
pricing policy, i.e., differentiating prices per time slot to steer demand to certain time slots, or
by using a quantity policy, which means that time slots can be closed for booking (Snoeck et al.,
2020), the control policies will be discussed in Section 3.3. The time frame (ii) can be static
or dynamic. Static decisions, in contrast to dynamic decisions, do not depend on real-time
data. The criteria for the routing model (iii) concerns the algorithms that are used for the final
routing of vehicles. Because of the problem characteristics, most scientific literature uses VRP

15

heuristics, as briefly discussed in Section 3.1. Finally, the customer choice model (iv) is the
way the modelled customer responds to the decision making. Customer choice models will be
further discussed in Section 3.4.

The strategic and tactical decisions regarding attended home delivery and time slotting can
be, amongst others, about the fleet size, area of operation or time slot design. Most literature
deals with a predefined number of time slots, with certain width and overlap. For instance, in
Hernandez et al. (2017), a time slot schedule for a geographical zone must be selected using a
tactical routing plan based on approximations. The tactical routing is only an approximation of
the operational routing decision, but it can be a good way to select the best time slotting design.
Building on earlier work by Agatz et al. (2011), Klein et al. (2019) present a mixed-integer linear
programming formulation to anticipate delivery costs. They also include differentiated pricing
for each time slot and model customer behavior to make the best tactical time slotting decision.

We do not consider the strategic and tactical decision making any further, and focus on
operational decision making, since operational settings demand the most from dynamic models.
First, we examine the problem structures used in case studies and numerical experiments. Most
scientific research applies a conceptual model or framework, where the reality is often drastically
simplified. Our literature review will help to get to know more about the differences between
our case study and the case studies in scientific literature. In Section 3.3 the selected literature
is examined for time slot allocation and incentives, and in Section 3.4 the used customer choice
models are described.

We use the following classification elements for the problem structure: (i) delivery horizon
length, (ii) customer arrival process, (iii) demand generation, and (iv) time slot design. The
delivery horizon length (i) indicates how many days a customer can choose for delivery. The
customer arrival process (ii) can be modelled using different probability distributions or can be
based on historical data. The order generation (iii) is the way the orders (e.g., quantity, location
or time slot) are generated. The time slot design (iv) indicates what width and possible overlap
is considered by the authors. See Table 3.1 for the classification.

In Asdemir et al. (2009), a model is presented, but no numerical experiments are conducted.
The model allows for a flexible horizon, but does not consider days of the week, nor season-
ality. The customer arrival process is modelled using a non-homogeneous Poisson process via
uniformization, as inspired by scientific work in revenue management in the airline industry
(see Lee and Hersh (1993)). The order size is uniform among all customer classes. Campbell
and Savelsbergh (2006) test their models on fictitious cases for which customers are uniformly
scattered on a 60 × 60 grid. The time slots are for a single day while experiments are done
with various widths of non-overlapping time slots. Customer arrivals are uniformly distributed
between 0 and the cutoff time T . Vehicle capacity is not considered a restraining factor, since
this is often the case in practice, where the time windows are the biggest constraint (Campbell
and Savelsbergh, 2006). In Cleophas and Ehmke (2014), a computational study is conducted
based on the metropolitan area of Stuttgart, which is divided in nine areas with varying pop-
ulation sizes that can choose between eight time slots. Demand is drawn from the normal
distribution and is dependent on the area and the average income in those areas. There is
a fixed number of vehicles (four); capacity is estimated with vehicle routing experiments. In
a study that also considers metropolitan areas (Ehmke and Campbell, 2014), different travel
time patterns are considered to model congestion in the morning peak-hours. There are three
available vehicles, without capacity restrictions. Demand for the eight non-overlapping time
slots is uniform, and for another experiment there is a demand peak for some time slots. Note
that both Cleophas and Ehmke (2014) and Ehmke and Campbell (2014) model demand for
time slots using a customer choice model, as further explained in Section 3.4. In Klein et al.
(2018), 12 areas are served by a single central depot, at which the set of 1000 customers can
arrive randomly, one at the time, and the size of demand is defined using the number of order
totes. The fleet size is varied in the experiments and the capacity is the same for every vehicle.

16

Table 3.1: Classification of operational AHD and time slotting literature: problem
structure.

Authors
Delivery
horizon

Customer
arrival process

Order
generation

Time slot
design

Asdemir et al.
(2009)

Flexible N/A Uniform N/A

Campbell and
Savelsbergh
(2006)

Single-day Uniform -
Non-overlapping,
1 or 2-hour width

Cleophas and
Ehmke (2014)

- N/A
Area-based,
normal dist.

8 time slots

Ehmke and
Campbell (2014)

Single-day N/A
Uniform,

Demand peaks

8 Non-overlapping,
1-hour width

time slots

Klein et al. (2018) Single-day Random
General dist.
of nr. of totes
i ∈ {1,. . . ,10}

4 Non-overlapping,
2-hour width

time slots

Yang et al. (2016) Single-day
Time-dependent
Poisson arrivals

Normal dist.
27 Partly-overlapping,

1-hour width
time slots

Yang and Strauss
(2017)

Single-day
Homogeneous

Poisson arrivals

General dist.
of nr. of totes
i ∈ {1,. . . ,10}

17 Non-overlapping,
1-hour width

time slots

Although the delivery time slots are all in a single day, the booking horizon covers a longer
period. Yang et al. (2016) test their model on a realistic case, for which bookings on a single
day arrive as early as 22 days in advance, with most bookings coming in the last three days
before the cutoff time. Cancellation and re-scheduling is neglected. The number of vehicles at
the single depot is varied, but vehicle capacity is homogeneous. The order quantity (number
of totes) is drawn from the normal distribution, with mean and standard deviation obtained
from historic data. They model the arrivals as a time-dependent Poisson process, and note that
it may be an interesting future research direction to consider the dependence of delivery days.
In a follow-up study, Yang and Strauss (2017) use the same data set, but the arrival process
and vehicle capacity is modelled differently. The order quantity is again expressed in number
of totes but not drawn from the normal distribution but from geographical data.

Summarizing, we see that many different problem aspects are considered in scientific lit-
erature. Over the years, problem instances have become more realistic and less limitations to
generalizability are present. However, still many aspects of reality are neglected, e.g., longer
planning horizons, multiple depot problems, different time slot designs, and complexities in
geographical data. There is still a large difference between the problem complexity and realism
in comparison with other research fields, e.g., the rich vehicle routing problem (Caceres-Cruz
et al., 2014). We see that the problem formulations mostly consider the time slot allocation and
incentives decisions, based on approximation of transportation costs. The time slot design and
the effect of it on the results is less studied. Nevertheless, time slot design has a large influence
on both operational revenues as customer satisfaction, since offering many options and short
time windows is associated with high customer satisfaction (Agatz et al., 2008).

In the next section, we examine the used time slot allocation and incentive policies used in
scientific literature.

17

3.3 Time Slot Allocation and Incentives

Time slot allocation and incentive literature has similarities with the literature concerning
revenue management. Revenue management can be defined as the activities related to managing
demand for products or services (van Ryzin and Talluri, 2005). Originated in the airline industry,
revenue management is used to offer different categories of tickets and dynamically controlling
the offered quantity of each ticket-segment to maximize profits (Snoeck et al., 2020). This
process is closely related to time slotting, since the retailers face a heterogeneous market with
limited flexibility in capacity. Also, the prices and product availability (time slots) can be
changed to increase profits. However, Snoeck et al. (2020) notice three differences between
airlines and retailers. First, the retailers sell both a physical product (e.g., groceries) and a
service (delivery within a time slot). The product order characteristics have an influence on
time slot capacity and profits. Second, the customer location and the other customers’ location
influence the operational costs. And third, customer choice models (see Section 3.4) can be
better fitted to data since customers that request a time slot often also commit to buying,
while customers buying airline tickets often check multiple prices at different providers before
committing to a buy (Snoeck et al., 2020).

The field of AHD is typically divided into the following categories: static time slot allocation,
dynamic time slot allocation, differentiated pricing, and dynamic pricing (Agatz et al., 2013;
Yang et al., 2016; Klein et al., 2019). These classes are shown in Table 3.2. Time slot allocation
can be summarized with the question: “which time slots should we offer to a customer?” and
time slot pricing can be stated as: “which time slots should we incentivize and which should be
penalized?”.

Table 3.2: Classification of revenue management in AHD (Agatz et al., 2013; Yang
et al., 2016; Klein et al., 2019).

Time slot allocation Time slot pricing

Static (Offline) Differentiated slotting Differentiated pricing

Dynamic (Online) Dynamic slotting Dynamic pricing

Static methods use forecast data or static rules and can be used to make strategic and tactical
decisions, e.g., decide on the number of slots and the width of the slots. For differentiated
allocation, the goal is to find which time slots to offer to which delivery area, e.g., certain
low-populated areas might be offered less time slots, which is a tactical decision. Differentiated
pricing tries to find the best static price policy to influence customer behavior. The decisions for
a static pricing policy are not taken in real-time, meaning that pricing rules are either completely
static and based on historic data, or they do include some rules based on, for instance, customer
order value and location. Static methods can also be called “offline”, which means that the
computational efforts are not incurred during the decision making process (Powell and Ryzhov,
2013). When time slot allocation and pricing happens online, during the decision making, it
is called dynamic. The decisions that are made in real-time have as advantage that they can
be adapted to the current situation and do not fully rely on static rules. Dynamic decisions
can consider real-time information about the customer and the current schedule to make better
decisions. It also opens the possibility to consider opportunity costs, which are, to recall, the
cost of offering a time slot now compared to saving time slots for future, potentially more
profitable customers (Yang et al., 2016). However, the use of dynamic methods is limited by
the computational time, since customers demand a fast working website, the time slot allocation
and pricing cannot take too long. It should be noted that there is a difference between time
slot allocation and feasibility checks. Time slot allocation and feasibility checks have a similar
question to answer (“which time slots should be offered to a customer?”), but while for time slot
allocation this may mean that certain time slots that still have capacity are closed for certain

18

customers, the feasibility check only concerns the question if a time slot can handle the new
customer, regarding vehicle capacity and time windows. Before inserting a customer into an
existing route, a feasibility check is always necessary.

We return to scientific literature to examine the time slot allocation and incentive methods
that are used. Our classification will be based on (i) the slot allocation method, (ii) the slot
incentive method, if applicable, and (iii) the objective variables of the algorithms. See Table 3.3
for the classification.

Table 3.3: Classification of operational AHD and time slotting literature: slot
allocation, incentive method and objective.

Authors
Slot allocation

method
Slot incentive

method
Objective

Asdemir et al.
(2009)

Feasibility check
Dynamic,

Markov decision
process model

Maximize
net benefit

Campbell and
Savelsbergh
(2006)

Heuristic
feasibility check

Dynamic
LP-based model

Maximize
total profits

Cleophas and
Ehmke (2014)

Dynamic,
ESMR

N/A
Maximize value

of orders

Ehmke and
Campbell (2014)

Static/Dynamic,
I1 insertion heuristic

N/A
Maximize the number
of accepted requests

Klein et al. (2018) Feasibility check
Dynamic,

MILP-model for
opportunity costs

Maximize profits

Yang et al. (2016)
Heuristic

feasibility check
Dynamic,

opportunity costs, SDP
Maximize profits

Yang and Strauss
(2017)

Feasibility check Dynamic Maximize profits

In Asdemir et al. (2009), a Markov decision process model is proposed that dynamically
adjusts the delivery charges per customer. The optimal prices are calculated based on an “equal
profit” policy, meaning that the retailer gains the same profit in the remaining booking horizon,
regardless the customer choice. Delivery prices can change based on order size, depending on the
time left in the booking horizon. The allocation method offers all time slots, only restricted by
capacity constraints. The objective function maximizes net benefit, also concerning opportunity
costs. Campbell and Savelsbergh (2006) develop a model that dynamically determines feasibility
of a time slot insertion. This model uses a combination of insertion heuristics and randomization
to determine a feasible schedule. Next, the allocation and size of incentives are determined using
a linear programming model which maximizes the profits related to time slot offerings, meaning
the total revenue minus incentive and delivery costs. The authors conclude the following from
their research: (i) incentive schemes can substantially reduce costs, (ii) performance of incentive
schemes can be improved using intelligent methods, (iii) incentives may reduce walkaways (lost
sales), (iv) it is sufficient to provide incentives to only few slots (≤ 3), (v) an increase in time
slots triggers the need for more sophisticated incentive schemes, (vi) it is easier to persuade
customers to choose a wider time window than to let them choose a specific time slot, and
finally (vii), the use of incentives can be critical already in the early stages of making a routing
schedule (Campbell and Savelsbergh, 2006). In Cleophas and Ehmke (2014), the offering of time
slots to customers is dynamically determined using the order value. The used method is called
“Estimated Marginal Seat Revenue heuristic”, also called EMSR, as described by Belobaba
(1987). EMSR determines buckets for order values and allocates time slots accordingly, i.e.,

19

customers with a high order value, falling in a high-value bucket, will get more time slot offers
than customers with low order value. The objective is to maximize the expected value of orders,
given transport capacities. The authors do not consider the steering of customer behavior with
time slot incentives. Ehmke and Campbell (2014) also do not consider incentives. They define
both static as dynamic approaches to determine the time slot allocation to maximize the number
of accepted time slot requests. The static methods uses capacity restrictions and a static rule
that takes into account the time windows in which a delivery must be feasible. The dynamic
method uses expected, dynamically determined, travel times. They expand this method to
also have a buffer for lateness and consider stochastic travel times. Their insertion heuristic is
a time-dependent adaptation to the well-known I1 insertion heuristic (Solomon, 1987). Klein
et al. (2018) use a mixed-integer linear programming model which is integrated in a widely
used dynamic programming model for AHD (Yang et al., 2016). Their MILP-model maximizes
expected profits and is used as an approximation of opportunity costs. The time slots availability
is checked, but time slots are always offered when capacity allows it.

The often cited dynamic programming model as described in Yang et al. (2016), is the
proposed “de facto” framework for dynamic pricing. After doing a heuristic feasibility check,
based on Campbell and Savelsbergh (2006), the insertion costs are calculated. Their pricing
solution is dynamic, but for practical reasons it does not differentiate between customers that
choose the same time slot and have the same location and order value. They develop two policies,
one only considering the current insertion costs, the other also including the opportunity costs.

Their approximate dynamic programming (ADP) model aims to find an optimal price vector
for time slots offered to a single customer that arrives in period t. The time periods t are
assumed to be small enough such that only one customer can arrive during it. The delivery
region is divided in non-overlapping sub-areas a ∈ A. The vehicle fleet can be homogeneous or
heterogeneous and is based at a single or multiple depots. The single delivery day is divided
in potentially overlapping time slots s ∈ S. The booking horizon consists of T periods (equal
to the number of arriving customers) and ends after the cutoff time. Order sizes are assumed
to be uniform. The profit r per customer is known before incentive decisions are made. These
profits are often obtained from historic data (Yang et al., 2016). The occurrence probability
that an order arrives from area a in time t is expressed with λta. The state space St,a,s contains
the number of customer orders on time t, that need to be delivered in area a, in time window
s. The decision to make is twofold: first the available (i.e., feasible) time slots to offer to a
new customer need to be found, and next each available time slot needs to get a price. The
feasibility check is ignored for now, since most research uses a separate feasibility check to
limit the ADP-algorithm decision space. So, in our further notation we assume that all time
slots in S are feasible. Therefore, the decision xt is a vector of dynamically determined prices,
often chosen from a discrete list. The single price element in the decision vector is indicated
with xts. Negative prices represent discounts or incentives. The delivery costs are determined
using differing methods, in Yang et al. (2016) a Daganzo-formula is used to obtain the delivery
costs and in Klein et al. (2018) a seed-based approximation is applied. The delivery costs
are expressed with C(St, xt). The exogenous information Wt+1 is the chosen time slot by a
customer, given the presented price vector. The probability that a customer selects a time slot
s is expressed with Ps and is dependent on the state St and decision xt. The Bellman-equation
maximizes benefits:

Vt(St) = max
xt∈X

(∑
a∈A

λta
∑
s∈S

Ps(xt)
[
r + xts −

(
Vt+1(St)− Vt+1(St + 1as)

)]
+ Vt+1(St)

)
. (3.10)

The unit vector 1as indicates the addition of a single customer to ATC-pair (a, s). The term
(Vt+1(St)− Vt+1(St + 1as) represents the opportunity costs of adding the new customer (Yang
et al., 2016). The optimal pricing policy that solves the Bellman-equation is given by:

20

x∗t = argmax
xt

∑
s∈S

Ps(xt)
[
r + xts −Otas

]
, (3.11)

where Otas is a separate expression for the opportunity costs, incurred when adding the
customer arriving on time t in area a to time slot s, which need to be approximated too (Klein
et al., 2019). For more information about approximate dynamic programming, we refer to
Powell (2007), Mes and Perez Rivera (2017) and Sutton and Barto (2018).

Yang et al. (2016) showed that dynamic pricing methods that do not take future expected
demands (i.e., opportunity costs) into account can produce worse results than static pricing
methods (Yang et al., 2016). In a later work, Yang and Strauss (2017), expanded their model
to use an area-specific cost estimation as input for an approximate dynamic programming
approach. They show that the decomposition into smaller areas can successfully decrease com-
putational efforts and estimate the costs.

Apart from monetary penalties or incentives, retailers can offer different type of incentives,
like bonus points or, “green-labels”, that indicate the environmentally best choice. The effect
of these “green” options is studied in Agatz et al. (2020). They show, with a combination of
experiments with volunteers and simulation techniques, that green labels are an effective tool
to steer behavior, especially for environmental-conscious individuals. The green labels remain
effective when used together with price incentives, and the effectiveness remains when time slots
are wider.

Summarizing, we see that the selected literature chooses exclusively between time slot al-
location and time slot incentives. In the literature that only concerns incentives, it is often
stated that the closing of time slots for certain customers (i.e., time slot allocation) is a method
that results in lost sales and customer dissatisfaction (Asdemir et al., 2009). In literature that
concerns incentives, dynamic pricing is perceived as the better method, since it can balance the
trade-off between lost sales and profits. Also, we see that the topic of cost approximation, being
opportunity costs or transportation costs, is much studied. We recognise two different options
for dynamic pricing solutions: (i) approximate the costs of a time slot and use this as basis for
setting time slot prices (Campbell and Savelsbergh, 2006), or (ii) optimize the time slot prices,
such that the behavior of customers is nudged optimally, like is done in the ADP-model of Yang
et al. (2016). Most research focuses on maximizing the (expected) profits, although maximizing
the number of accepted requests is also considered. We further consider transportation cost
approximation literature in Section 3.5.

In the next section, we discuss customer choice models.

3.4 Customer Choice Modelling

The scientific field of customer choice models is widely spread. Discrete choice models are
nowadays used in many fields for which some customer choice needs to be modelled, e.g., in
transportation, housing, energy, and marketing (Train, 2009). A discrete choice model is a
behavioral model that contains a choice set, the options to choose from, a certain probability
for each choice option, and a certain customer utility, i.e., benefit (Train, 2009). Discrete choice
models can be categorized as parametric, non-parametric, or multi-stage (Strauss et al., 2018).
Parametric models are the most used category. These type of models use utility theory, which is
based on utilities given to each choice alternative, and assumes that customers always maximize
their utility (Train, 2009; Strauss et al., 2018). Although these models are widely used, they
have as weakness that the customer choice is captured in a function, that might not correctly
follow the actual choice behavior (Strauss et al., 2018). As an alternative to parametric models,
non-parametric models mostly use choice-rankings. A ranking of all alternatives is made, and
the customer chooses the available option with the highest ranking. Rankings are often based

21

on customer types or customer segments. Finally, multi-stage models use a “consider-then-
choose” strategy, for which the modelled customer first make a consideration set, after which
they choose from the available alternatives (Strauss et al., 2018).

In the remainder of this section, we examine scientific literature and describe the currently
in use customer choice models in more detail. See Table 3.4 for an overview of the used customer
choice models.

Table 3.4: Classification of operational AHD and time slotting literature: customer
choice model.

Authors Customer choice model

Asdemir et al.
(2009)

Multinomial logit

Campbell and
Savelsbergh
(2006)

Exogenous probability

Cleophas and
Ehmke (2014)

Exogenous probability

Ehmke and
Campbell (2014)

Exogenous probability

Klein et al. (2018) Multinomial logit

Yang et al. (2016) Multinomial logit

Yang and Strauss
(2017)

Multinomial logit

Asdemir et al. (2009) use a logit choice model, as has become the common method in later
works. The multinomial logit (MNL) choice model assumes that the entire customer population
can be described with a set of parameters β (Strauss et al., 2018). The utility of alternative j
for a customer is expressed with:

Uj = uj + εj , (3.12)

for which uj is a deterministic component that can be influenced, and εj is a random, i.i.d.
variable that follows a Gumbel distribution with a mean of zero and variance of µ2π2/6 with
µ > 0 (Yang et al., 2016; Strauss et al., 2018). The deterministic part follows a linear function:

uj = β0 + βs + βd, (3.13)

where β0 is the base utility across all options, βs is the utility associated with the time slot
itself, and βd is the utility sensitivity to the incentive (Yang et al., 2016). The values for β need
to be fitted to actual customer segment data. A customer is assumed to always maximize its
utility, i.e., choose the highest Uj . Yang et al. (2016),Yang and Strauss (2017) and Klein et al.
(2018) use a similar customer choice model. As a recent alternative to the MNL choice model,
Klein et al. (2019) use a non-parametric rank-based model to model customer choice, for which
customers have a ranking for all alternatives and choose the best ranking available alternative.
More simple models use probabilities that can be manually adjusted, but in general these
methods do not use incentives (Cleophas and Ehmke, 2014; Ehmke and Campbell, 2014), or
they use a more advanced methodology to adjust probabilities according to incentives (Campbell
and Savelsbergh, 2006). In Campbell and Savelsbergh (2006), the probability pti a customer i
will select a time slot t is linked to the (size of) incentive B. To compensate for an increase
of certain probabilities due to incentives, the probabilities of selecting non-incentive time slots

22

decrease. The authors mention, that from practical experience, even small incentives can change
customers’ selection of delivery windows.

Summarizing, we see that most recent literature uses relatively simple parametric models
that can be based on actual data. Rank-based models are used also. The more simplistic
probabilistic models, that are easy to set up and to tune, are not that common anymore,
largely because of the necessary assumptions and complicated method to make these models
adaptive to incentives.

3.5 Transportation Cost Approximation

As Snoeck et al. (2020) recognised, attended home delivery literature can also be categorised
on the method for including routing costs. Most literature uses the costs resulting from explicit
routing decisions, often obtained from a heuristic, since the VRPTW is NP-hard (Campbell
and Savelsbergh, 2006; Cleophas and Ehmke, 2014; Ehmke and Campbell, 2014; Yang et al.,
2016). Alternatively, an approximation of the routing costs, without making explicit routing
decisions, can be used, e.g., with Daganzo-approximation (Robuste et al., 1990) or a seed-based
approximation method (Klein et al., 2018, 2019). In this section, we describe several different
cost approximation methods, stemming from both AHD-literature as literature from other fields
of research. Many authors of AHD-literature try to obtain a computationally fast approximation
of the (transportation) costs and revenues for inserting a newly arrived customer in a time slot.
As described in Chapter 2, transportation costs can be expressed in driving distance, number
of used vehicles, time to deliver all customers, and many more costs indicators.

In Section 3.5.1, we discuss some well-known heuristic functions for approximating routing
costs without solving a TSP or VRP. In Section 3.5.2 a seed-based method and its application
to an AHD problem is described. Finally, in Section 3.5.3, the theory behind regression models
and their potential for AHD is explained.

3.5.1 Heuristic Functions for Approximating Transportation Distance

In TSP and VRP research, various simple heuristic functions have been developed to approx-
imate, mostly, travel distances. One of the first studies that used a distance approximation
(Beardwood et al., 1959), recognised that for an instance with n customers and a convex area
A, the length of a tour can be approximated with:

TSP distance ≈ c
√
nA, when n→∞, (3.14)

with c being a constant. Other TSP distance approximations were developed by, amongst
others, Christofides and Eilon (1969); Chien (1992); Hindle and Worthington (2004). These
authors identified the importance of including the shape or size of the area of operation. They
used different methods for including parameters for the area, e.g., fitting the smallest rectangle
that covers all customer (Chien, 1992) or by looking at the densities of customers in sub-areas
(Hindle and Worthington, 2004).

VRP distance-approximations are more complex than for the TSP, since these need to
consider multiple vehicles and vehicle capacities. The distances between customers and the
depot (Webb, 1968), standard deviations of coordinates and distances between customers and
the center of the area A (Çavdar and Sokol, 2015), and capacities of vehicles (Eilon et al.,
1974), are used as parameters for VRP distance approximation. A well-known approximation
of routing costs is Daganzo-approximation. The formula gives a fairly accurate estimate of the
distance of a vehicle routing problem (Robuste et al., 1990). The equation is shown below:

VRP distance ≈ [0.9 +
kN

C2
] ·
√
AN, (3.15)

23

where k is an area shape constant, N the number of customers, C the maximum number of
customers a vehicle can serve, and A is the area size. In a later work, time window constraints are
considered by partitioning the time horizon in periods and aggregating customers in rectangles
(Daganzo, 1987). One of the more recent works on VRP distance approximation by Figliozzi
(2008) improved the approximation with the following formula:

VRP distance ≈ bn−m
n

√
An+m2r, (3.16)

with b being a constant estimated with linear regression, n the number of customers, m the
number of vehicles, and r being the average distance between customers and the depot.

3.5.2 Seed-based Approximations for Transportation Costs

A much used method in attended home delivery, is to approximate routing costs on a seed-based
scheme. Seed-based schemes partition routing costs in two separate costs: depot-to-seed costs
and seed-to-customer costs. Seeds are conceptual sub-depots, from where customers are served.
A graphical representation of the seed-structure is shown in Figure 3.1.

Figure 3.1: Example of a seed-based structure.

The advantage of this structure is that only the distance from the seed to the customer
needs to be determined, depending on the seed-area a customer is assigned to. Agatz et al.
(2011) present an integer program, based on a seed-based approach, that determines what
time slots to offer in each zip-code, which is a tactical decision and therefore not applicable to
our problem. In Klein et al. (2018), a seed-based scheme is used for the operational problem
of assigning incentives to time slots. They model delivery costs with a seed-based approach
that anticipates future demand management, by making forecasts about the residential areas
of expected customers. Their model aggregates customers by “area-time slot combinations”
(ATC), represented by the tuple (a, s), for each area a ∈ A and time slot s ∈ S. Since it is
unknown where future customers will be located, they use historical data to obtain the expected
seed-to-customer distance ďvas for each vehicle v ∈ V. The distance ďvas is the average distance
between the seed in (a, s) and the historical customers in pre-defined area a. Secondly, the
vehicle needs to drive once from the central depot to the first seed, which is called the depot-to-
seed distance d̂vas (Klein et al., 2018). The seed locations are made more accurate by dynamically
adjusting the seed location according to already booked customers. A graphical reprsentation
of their approach, including the time slot aspect, is shown in Figure 3.2, for a more elaborate
explanation we refer to Klein et al. (2018).

Figure 3.2 shows an illustration for the ATC-structure, for illustrative purposes only showing
for a single vehicle, four sub-areas, and two time slot options. Areas 1, 2 and 3 show the already

24

Figure 3.2: Example of a seed-based structure for area-time slot combinations as
described in Klein et al. (2018).

accepted and booked customers, in Area 4 no customers have been booked yet. This shows that
the seed is initially based on historic data (Area 4), but is adapted as soon as new customers have
been booked (Areas 1, 2 and 3). Area 2 contains customers from both time slot 1 as time slot
2, so it has two separate seeds, for (a, s)-pairs: {(2, 1), (2, 2)}. The tour, as shown in Figure 3.2,
follows the shortest path from depot-to-seed, next from seed-to-seed, and finishing by one seed-
to-depot distance. To incorporate future demand, the number of expected customers from each
area a that chooses time slot s is determined by assuming probabilities that a customer chooses
a certain time slot s. These expected number of requests for delivery at (a, s) are multiplied by
the seed-to-customer distances and the corresponding seed-to-seed, depot-to-seed, and seed-to-
depot distances are added, which results in the total expected delivery distance.

3.5.3 Regression Models for Approximating Transportation Costs

Regression models, e.g., linear regression, random forests or neural network regressors, are
statistical learning methods that can be used to predict quantitative responses. For linear
regression, we try to predict the value of observation yn of the target variable, based on a set
of features {xn1 , xn2 , . . . , xnI }. We try to estimate feature coefficients that solve:

min
β

n∑
k=1

(
yk − (β0 +

I∑
i=1

βix
k
i)

)2

, (3.17)

where the feature coefficients β, are constants that are estimated with the regression model.
The parameter β0 is called the intercept, and represents the bias of the model (James et al.,
2013). Bias is an offset for all predictions we make. The features used to predict the target can
be numerical or categorical. Categorical features have multiple levels, called dummy variables.
The linear regression method is simple to implement, but can only approximate linear relation-
ships between features and the target.

Decision trees is a method that splits data into separate leaves by means of sequential
binary decisions (James et al., 2013). A regression decision tree is build in (roughly) two steps:
(i) divide the feature space, i.e., all possible values for {xn1 , xn2 , . . . , xnI }, in J non-overlapping
regions R1, R2, . . . , RJ , and (ii) for every observation that falls in region Rj we make the same
prediction, which is the mean of the observations in region Rj . The goal for a decision tree
algorithm is to find a set of regions R that predict with the lowest error. Although decision trees

25

can better handle non-linear relationships between features and the target, the performance of
decision trees is lacking in comparison with other regression models (James et al., 2013).

Random forests is an algorithm that builds multiple decision trees. Every time a region split
is considered, a random sample of m features is considered as split candidates from the full set
of features X. The number of features m considered for a split is typically ∼ √p, although this
can be tuned (Breiman, 2001). The selection of features ensures that the strongest features are
not always in the top splits of the decision trees, instead it gives more chance to weaker features.
The process of selecting different subsets of features and ensuring that trees do not resemble
each other too much, is called decorrelating (James et al., 2013). The advantage of random
forests over linear regression and decision trees is that it can handle non-linear relationships,
is harder to overfit on training data, can report feature importance, and is robust to outliers
(Elith et al., 2008).

Artificial neural networks are a popular learning technique that simulate the biological learn-
ing mechanisms as found in the human brain, with as important property that they can be used
in a supervised setting and an (semi-)unsupervised setting (Aggarwal, 2018). Further benefits
opposed to other methods are the ability to handle nonlinear relationships and the adaptivity
to new data (Haykin, 1998). In the language of the field, neural networks consist of three com-
ponents: (i) an input layer receiving external data, (ii) hidden computation layers, and (iii) an
output layer that produces the final output. Each node in these layers is called a neuron or
perceptron. The output of a neuron is the input of another neuron in the network. Neurons can
have multiple inputs and outputs (Aggarwal, 2018). A graphical representation of a three-layer
neural network is shown in Figure 3.3.

Figure 3.3: Schematic overview of a three-layer artificial neural network.

The input signal Xn can be a set of feature values that is communicated to the input layer.
There are I(1) features as input to the model. Inside a neuron, inputs are multiplied by weights
and summed, as shown in the equation below.

Y
(2)
j =

∑
i∈I(1)

w
(1)
ij X

(1)
i , j ∈ I(2), (3.18)

where the input layer produces J = |I(2)| outputs, I(1) is the set of inputs in the first layer

(feature values) and Y
(2)
j are the inputs to a nonlinear activation function that may decrease or

magnify the input. The weights w
(1)
ij for layer (1) are multiplied with the individual neuron input

26

values X
(1)
j (Powell, 2007). An example of such an activation function is a logistics function:

σ(y) =
1

1 + e−βy
, (3.19)

where β is used for scaling. The logistics function σ(y) is shown in Figure 3.4.

Figure 3.4: Logistics function for nonlinear behavior in artificial neural networks.

This function introduces nonlinearity in the signal to the next neuron and layer. So, the
calculation with the logistics function is expressed as:

X
(2)
i = σ(Y

(2)
i), i ∈ I(2). (3.20)

X
(2)
i is used as input to the second layer. In the second layer, the following computation is

done:
Y

(3)
j =

∑
i∈I(2)

w
(2)
ij X

(2)
i , j ∈ I(3). (3.21)

The resulting output is used in the output layer to compute a single output:

f =
∑
i∈I(3)

w
(3)
ij X

(3)
i . (3.22)

The logistics function is only an example of an activation function. Activation functions can
take many forms, but are usually logistic, hyperbolic tangent or rectified linear (Haykin, 1998).
When training an artificial neural network, the weights wij are initialized randomly. During the
training phase, predictions are done after which errors between predictions and actual values
are calculated and used to update the weights to minimize the error. Weights are usually
updated until the error drops below a predefined threshold (Aggarwal, 2018). When tuning
a neural network, many choices need to be made considering, amongst others, the number of
layers, nodes per layer, error-penalties, activation-layer functions, and step-size. This large
array of hyperparameters and settings potentially introduce problems with stability (Haykin,
1998; Aggarwal, 2018).

The use of regression models for predicting transportation costs, e.g., travel distance or time,
based on customer statistics, i.e., customer location and customer demand, without solving a
vehicle routing problem is shown in Nicola et al. (2019). They use, amongst others, features for
the number of customers, average distance between customers, average distance from customers
to the customer centre of mass (centroid), and the variance of coordinates to describe TSP
and VRP instances. They test their linear regression models on Solomon instances (Solomon,
1987), and show that vehicle routing distance can be approximated with high accuracy. They

27

also present features related to time windows, e.g., sum and variance of time window length
and overlap, and show the value of including time window related features in their regression
model (Nicola et al., 2019).

Summarizing, we showed different methods to approximate the cost of transportation. First
we showed simple heuristic formulas, like Daganzo-approximation (Robuste et al., 1990). Next
we showed how seed-based schemes can assist in making better predictions for vehicle routing
distance and service time. We showed how linear regression and neural networks work and how
they can help to predict routing costs.

3.6 Solution Validation

An often used validation method in operations research, including time slotting research, is
simulation (Campbell and Savelsbergh, 2005; Cleophas and Ehmke, 2014; Ehmke and Camp-
bell, 2014; Yang et al., 2016; Klein et al., 2018). Simulation is a technique used to validate
(mathematical) models in complex environments that cannot be solved exactly (Law, 2015).
A simulation imitates (part of) a system or real-world process over time. A simulation model
is often composed of a set of assumptions and abstractions of reality. Simulation models can
help to study sub-systems, effects of changes in systems, and the interaction between variables
and inputs. Also, simulation models are a device to verify the performance of mathematical
models (Banks et al., 2010). However, simulation techniques also have disadvantages. It can
be hard to make conclusions about models when randomness causes differences in performance,
and the real-world can be too complex to model, causing oversimplified simulation models and
less useful results (Pegden et al., 1995).

Discrete-event simulation is a simulation type that only concerns the change of the system
model on discrete time steps. These points in time are events that might change the state
of the system. A discrete-event simulation model consist of, amongst others, a system state,
a simulation clock, events, an initialization routine, and randomness generators (Law, 2015).
Because parts of our problem are NP-hard, and our system is highly complex and affected by
stochasticity (e.g., customer behavior), we choose to use simulation for validating our solution
methods. See Chapter 6 for the description of our simulation model.

3.7 Conclusions and Research Contributions

In this chapter we studied the scientific literature about vehicle routing, attended home delivery
and costs approximation. We introduced the VRPTW and showed both an exact formulation
and some heuristic approximations. We scoped the AHD-literature to evaluate the different
problem characteristics and models used.

AHD is still a developing field of research. In recent years, more and more realistic problem
aspects have been considered. However, many studied problems are still abstract and have
many assumptions and limitations. Amongst others, limitations are still present in horizon
lengths, VRP-characteristics, time slot designs, and geographical data. When real-world data is
used, still many abstractions from reality are used considering customer behavior and VRPTW-
settings. We found that the time slotting literature is divided into two fields: a field that only
looks at time slot allocation methods and a field that looks at time slot incentive methods.
Most authors that study incentives focus on the approximation of transportation costs. Most
solution methods have as objective to maximize profits, although maximizing the number of
booked customers is also used. When using profits as objective, approximations need to be
made for both the revenues and the costs. Customer choice models come in many forms, but in
AHD mostly the multinomial logit choice model is used, that requires customer behavior data
to get a good fit. Early time slotting literature uses probabilistic models and non-parametric
rank-based models. We found different options for approximating transportation costs, ranging

28

from simple rules to regression models. We recognise the following two options for dynamic
pricing research: (i) estimate the costs of a time slot and use this as basis for setting time
slot prices, or (ii) optimize the time slot prices, such that the behavior of customers is nudged
optimally. For our solution method, we focus on approximating the costs of transportation, and
combine this with simple incentive models and a novel customer choice model.

The contributions of this thesis to existing scientific literature are (i) the application of
regression models for approximating downstream transportation costs instead of the currently
in use heuristic methods, (ii) a novel parametric rank-based method for modelling customer
behavior that, compared to the currently in use multinomial logit choice model, does not require
behavioral data and requires less computations, (iii) the application of our solution approach
and customer choice model to a realistic time slotting case using costs approximations and a
limited set of basis functions, and (iv) the application of a commercial vehicle routing solver
and time slot allocation software to our case.

29

Chapter 4

Problem Formulation

In this chapter, we give a formal problem formulation of the time slot pricing problem we
consider. First, we state the complete problem formulation and introduce all notation in Sec-
tion 4.1. Next, we introduce a parametric rank-based customer choice model in Section 4.2. In
Section 4.3, we describe the method we use for determining per-customer transportation costs.
We end this chapter with a summarizing conclusion in Section 4.4.

4.1 Problem Characteristics

In this section, the notation of all variables, parameters and sets is introduced, based on the
formulation in Visser et al. (2019). We adhere to the order process as perceived by a customer.
This process consists of three steps: (i) customer arrival, (ii) time slot offering, and (iii) time
slot selection and confirmation. During a certain period, customers place orders at a retailer,
after which the customers are offered a time slot for delivery. As common in these type of
problems, we specify this period as [0, T], for which 0 is the first time a customer can place an
order and T is the so-called “cutoff time”, which is the last moment a customer can place an
order. After time T , the final delivery schedule is made for a single day or daypart, by solving a
VRPTW using a set of constructive heuristics and metaheuristics. The customer arrival times
are unknown upfront. A customer i is part of the set of customers C, i.e., i ∈ C. Customer
arrivals can happen at any time in the horizon [0, T], we indicate the time of arrival of customer
i as ti. Customer orders have a certain size, for example indicated by weight or volume, qi. The
order quantity qi is also unknown upfront. Each customer has a delivery service duration, i.e.,
the time it takes for the deliverer, after arrival at the address, to hand over the package. The
service duration is indicated with li. The expected delivery duration can be estimated with a
fixed time component and a variable time component that is dependent on the order quantity
qi.

After the customer arrival, the customer needs to be offered a set of time slots for delivery.
We consider a single day of delivery time slots, these are all part of the set T , with the earliest
time slot beginning after T . A subset of T is offered to a customer, depending on feasibility
and the offering policy. Time slots in s ∈ T can be of differing length and can be overlapping
or non-overlapping. The individual time slot duration is denoted with [as, bs].

The calculation time, needed to calculate the feasibility and costs of offering certain time
slots, is called the algorithmic time zi. This time is dependent on the used algorithms and
problem size. After the offer is made to the customer i, he/she needs to make a decision, which
will take some time di. So, at time ti + zi + di, we know what choice the customer made. The
set of offered time slots is denoted Si, so that Si ⊆ T . s is a single element in this set, i.e.,
s ∈ Si. Each time slot that is offered, gets a certain incentive to steer customer behaviour. We
consider incentives on a continuous scale, part of the incentive set G. The incentives can be
dynamically determined, and differ per time slot. The incentive given to a certain time slot

30

is Gs. The incentives G are decimal numbers on the domain [−1, 1], with a negative number
indicating a penalty, and a positive number indicating an incentive.

During the calculation time zi, we need to determine (i) which time slots are feasible to
offer, concerning both vehicle capacities as well as time window constraints and (ii) we need to
determine the costs of offering a certain time slot.

We call the set of customers that accepted a time slot and need to be planned C′. The
directed graph G = (V, E) models the system where vertices V = C′ ∪ D consist of the set of
customers C′ and the set of depots D. Each customer i ∈ C′ can be served from every depot
in the set D. The travel time on edge (i, j) ∈ E can be expressed with τi,j . A single depot
d ∈ D has a fixed number of vehicles Ld available for delivery. The fleet is homogeneous and a
vehicle has a capacity of H. To make a delivery, a vehicle has to visit the vertice along a route.
A vehicle route always ends at the same depot it started. For the planning of vehicle routes,
we consider three constraining factors: (i) the vehicle capacity H cannot be exceeded, (ii) the
vehicle routes must start and finish in the interval [ad, bd], dependent of depot d, and (iii) the
delivery of customers must be done within their selected time slot. A vehicle can only leave
from a customer i after the full service duration li.

4.2 Customer Choice Model

For mimicking customer behavior, i.e., reacting on time slot incentives, we develop a rank-
based choice model with a utility theory scoring component. We model customer preference as
follows: a customer has a ranking for all time slots, i.e., the first preferred time slot is ranked
highest and the least preferred time slot is ranked lowest, as is normal for rank-based models
(see Section 3.4). The model combines two models found in literature; a rank-based model and
a parametric utility theory model. The ranking of time slots is based on scores and therefore
the ranking can be influenced by incentives, similar to models based on utility theory, e.g., the
multinomial logit model (see Section 3.4).

Each customers gives “base scores” to all time slots, expressed with Ki ⊆ T . For our
experiments we use a preference list that entails all time slots, i.e., |Ki| = |T |. We model
different types of customers. Some customers can be seen as “rigid”, and others are perceived
more “sensitive” to incentives. The level of incentive sensitivity per customer is expressed with
fi, which is a continuous parameter on the scale [0, 1], with 0 being rigid and 1 sensitive. The
incentive effectiveness is directly related to the incentive sensitivity parameter fi of a customer.
We do not know the customer incentive sensitivity upfront.

We define the number βs as the base score of a time slot s, with βs on the domain [1
|Ki| , 1],

with |Ki| being the cardinality, the number of time slots in the base preference list of customer
i. The assignment of scores to time slots is done in a decreasing fashion, i.e., the first preference
gets the highest score (1), and the last preference gets the lowest score (1

|Ki|). The lowest

possible score is 1
|Ki| instead of 0 because this prevents problems when there are only few time

slots and the difference in base score is too large for incentives to have any effect. The equation
for determining base scores βi,s is given by:

βi,s =
|Ki| − ki,s + 1

|Ki|
, (4.1)

where βi,s is the base score for time slot s of customer i, |Ki| is the number of time slots
in the preference list of customer i, and ki,s is the randomly drawn ranking of time slot s for
customer i, where the ranking is an integer number ks ∈ {1, 2, . . . , |Ki|}. We can influence the
ranking of the base preferences using incentives. The incentive decision needs to be made for
all feasible time slots. The incentives we can give are indicated with Gs, and are continuous
numbers with Gs on the domain [−1, 1]. A negative incentive can be interpreted as a penalty.
The incentives are multiplied with the customer incentive sensitivity fi, and then added to the

31

base preference scores. Then, the list is re-ordered from high to low and the customer chooses
the highest ranking time slot that is offered, as common for utility theory models. The total
score of a time slot for a customer is expressed with Us and is calculated using Equation 4.2.

Ui,s = βi,s + fi · Gs. (4.2)

4.3 Determining the Downstream Costs

To obtain the routing costs per customer, we need to do some transformations with routing data.
We use a method we call “half-edge partitioning” (HEP) that can be applied to most VRP and
VRPTW solutions. HEP, as illustrated in Figure 4.1, is a simple method that allocates half of
the time needed to travel an edge to the customer from which the edge departs, and the other
half to the customer at which the edge arrives.

Figure 4.1: Example of cost allocation to customers with half-edge partitioning.

The edges that depart from and arrive to the depot are partially allocated to their arriving
and departing customer, respectively. The other half of these depot edges are equally divided
over all customers. The routing costs, expressed in travel time, of a single customer c served by
a vehicle that serves a set of customers C′, can be expressed with:

Travel time of customer c =
1

|C′|
(0.5td,f + 0.5tl,d) + 0.5ti,c + 0.5tc,j , (4.3)

with ti,j being the travel time in the final routing schedule on edge (i, j). The depot is
indicated with d, and customer f and customer l are the first and last customer of a vehicle
route, respectively. For the example in Figure 4.1, the costs attributed to customer a are:
1
3(0.5ta,d + 0.5tb,d) + 0.5ta,d + 0.5ta,c which equals: 1

6 ta,d + 1
6 tb,d + 1

2 ta,d + 1
2 ta,c. The sum of all

travel times over all customers and vehicles will again return the total travel time as from the
original VRP-schedule. The advantage of HEP is that it uses the actual edge travelling costs,
i.e., road network distance and time, and does not neglect the use of multiple vehicles. Also,
the method can easily be applied to multi-depot instances.

4.4 Conclusions

In this chapter, the formal problem formulation with all notation was introduced. We explained
all decisions that need to be made for a solution method. We proposed a parametric rank-based
model that can be used to test time slot pricing policies but does not require customer behavior
data. Finally, we showed how we determine the costs per customer using half-edge partitioning.

32

Chapter 5

Solution Approach

In this chapter, our solution approach is explained. First, we explain our benchmark method for
approximating transportation costs using cheapest insertion in Section 5.1. Next, we explain our
main method for approximating transportation costs using regression models in Section 5.2. In
Section 5.3, we show a simple policy that can be used to translate predicted transportation costs
into time slot incentives. We close this chapter with a summarizing conclusion in Section 5.4.

From our review of scientific literature in Chapter 3, we concluded that there are two possible
options for a solution method: (i) approximate the costs of a time slot and use this as basis for
setting time slot incentives, or (ii) optimize the time slot incentives, such that the behavior of
customers is nudged optimally. For our solution approach we focus on the first option, namely
the cost approximation. An overview of our solution approach fitted to the current business
process as depicted before in Figure 2.1, can be found in Appendix A.

5.1 Insertion Costs as Transportation Costs Approximation

As explained in Chapter 2, cheapest insertion costs is a common method used for time slotting.
We apply cheapest insertion as cost approximation method and benchmark for our method
explained in Section 5.2. The idea of cheapest insertion is relatively simple; during the booking
horizon, we keep track of a preliminary routing schedule that contains all booked customer orders
up to the respective moment. This preliminary routing schedule is sequentially constructed
using cheapest insertion, and periodically re-optimized (after every 20th customer arrival) using
the vehicle routing software in ORS. When a new customer arrives, the cheapest insertion
algorithm calculates how much it would cost, in terms of travel time, to add the new customer
to a vehicle route. The cheapest insertion algorithm returns the costs of insertion for every
feasible time slot. These costs differ per time slot since vehicles that serve customers in the
same time window may be close by, or alternatively have to make a detour. Cheapest insertion
is simple, fast and dynamic, since it uses all current customer information for estimating costs.
The disadvantage is that it is greedy, i.e., it makes the best decision at a point in time but
cannot make a forecast about future customers. For a more elaborate explanation of cheapest
insertion and its advantages and disadvantages, we refer to Section 2.2.

5.2 Regression Based Transportation Costs Approximation

In this section, we present our solution method. For this method, we determine the costs
of a customer insertion, using regression models with a limited set of features. Opposed to
insertion costs, we try to estimate the future, downstream costs of a decision. We explain our
model structure and features in Section 5.2.1. In Section 5.2.2 and Section 5.2.3 we explain the
application of random forests and neural networks, respectively. Finally, we explain how we
obtain data for training our model in Section 5.2.4.

33

5.2.1 Features for Predicting Transportation Costs

In this section, we present several features or basis functions to predict the final routing costs.
It might be difficult to predict the routing costs of individual customers because of high variance
of customer locations, that is hard to explain using single-location-based features. Ultimately,
we are interested in predicting the costs of inserting a customer in a certain time slot s. That is
why we group customers together and predict the average costs of a group. Based on a collection
of historical data, obtained from running multiple simulations with different customers, we can
partition the area of operation in smaller spatial areas (a ∈ A). The exact partitioning of an
area of operation can be highly instance specific because of specific attributes, e.g., customer
dispersion, natural borders like rivers or forests and abstract borders stemming from legislation
or business rules. Therefore, we give a simplified example of an area partition. Figure 5.1 shows
an example of historic customer order data. Inside an area, we can aggregate customers based
on their time slot choice, s ∈ S. Figure 5.1 shows that customers chose between two time slots.
The area of operation has been divided in four spatial areas.

Figure 5.1: Aggregation areas of an historic instance.

For this example, seven area-time slot combinations (ATCs) can be recognised: {(1, 2), (2, 1),
(2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}. For each of these pairs, we aggregate customer and routing
information. The following information of an ATC is stored: customer locations expressed in
latitude and longitude, customer order volume expressed in kilograms, and the routing costs
per customer. Aggregation-based features give a synopsis of the characteristics of an area and
time slot cluster (ATC) a customer is in. We use cheapest insertion to check what time slots are
feasible to offer. The feasibility check using cheapest insertion is further explained in Section 2.2.
For every feasible time slot option, we calculate the feature values before and after the potential
insertion of the new customer, to obtain the expected increase in routing costs. All features are
summarized in Table 5.1. First we explain the location features.

We calculate the mean and variance of bearings between customers and the depot. The
bearing between the depot d and customer c, βd,c, is the angle between the straight line con-
necting the two points and the north-south line of the earth. Figure 5.2 illustrates the feature.
The bearing is calculated with the following equations:

x = cos (latc) · sin (∆(lond, lonc)), (5.1)

y = cos (latd) · sin (latc)− sin (latd) · cos (latc) · cos (∆(lond, lonc)), (5.2)

βd,c = arctan (x, y). (5.3)

34

Figure 5.2: The bearing between the depot and a customer.

This feature can be instance specific since the dispersion of customers and the depot location
relative to the customer locations vary among different problem instances.

The second location feature is the euclidean distance from the ATC-centroid location to
the depot from which the customer is served. This distance is calculated with the haversine
formula, as based on the law of haversines for determining distances between points on a sphere
(Brummelen, 2013). The haversine distance between depot d and customer c is calculated with:

Haversine = 2r arcsin

√
sin2

(latd − latc
2

)
+ cos(latd) cos(latc) + sin2

(lond − lonc
2

)
, (5.4)

where r is the radius of the sphere, the earth radius is by approximation 6378 kilometers, and
lat and lon are the latitude and longitude of an address, respectively.

Aside from location based features, we use the number of customers in an ATC as feature.
The time slot specific features are calculated over the area, but not over specific time slots,
i.e., the features summarize information of all time slots in area a. These features are: the
number of time slots that have been booked in area a, the distance in hours between the first
and last booked time slot in area a, and the variance of the time slot population in area a, e.g.,
if TimeSlot1 has 0 booked customers in area a, TimeSlot2 20 and TimeSlot3 34, the variance

is: σ2 = (0−µ)2+(20−µ)2+(34−µ)2
3 ≈ 194.7, with µ = 18. Even though these three features are

calculated over a group of time slots, the features are useful to capture differences between time
slots, e.g., when a customer is booked in TimeSlot1, the new time slot population variance will
become 182.9, while the addition of the potential customer to TimeSlot2 will result in a new
variance of 196.2.

We also define two new categorical features, one indicating the time slot s and the other
indicating the area a. Categorical features often need to be transformed before they can enter a
regression model. The most common method for transforming is called dummy encoding which
means that each level of the categorical feature is encoded into a separate binary feature. For
example, if we have two time slots and two areas in an instance, we would have the following
binary features: TimeSlot1, Timeslot2, Area1, and Area2. When a feature is set to “1”, it
means that the customer falls in the respective ATC. Summarizing, we show the eleven features
in Table 5.1, including the partition of data we use for calculating the feature values.

Since we use a forecast of the transportation costs to make time slot incentive decisions, we
expect a cyclical effect; the cost approximation affects the time slot incentives, and the given
incentives in turn affect the (performance of) the cost approximation. Models like ours influence
the decision making and therefore have to be applied in situations that are different compared
to the initial training data set.

35

Table 5.1: Summary of features used for the regression models.

Feature Feature description Data partition

Days untill the cutoff time
(F1)

The number of days
left at the arrival
of the customer

until the cutoff time

N/A

Number of customers in
ATC (F2)

The number of
customers accepted in the ATC

ATC

Haversine distance from
ATC centroid to depot (F3)

The distance from
the centroid of all

accepted customers in
ATC to the depot

ATC

Average distance between
customers in an ATC (F4)

The average distance
between all accepted
customers in ATC

ATC

Variance customer-depot
bearing (F5)

The variance of the bearings
between the customers
in ATC and the depot

ATC

Average customer-depot
bearing (F6)

The mean of the bearings
between the customers
in ATC and the depot

ATC

Area ID (F7)
Binary vector

indicating the area
A

Time slot ID (F8)
Binary vector

indicating the time slot
S

Variance of time slot
population (F9)

The variance of the number
of accepted customers per

time slot in area a ∈ A
a ∈ A

Time slot distance (F10)

The distance measured in
time slots between the
first and last populated
time slot in area a ∈ A

a ∈ A

Number of time slots (F11)
The number of booked

time slots in a ∈ A a ∈ A

5.2.2 Random Forests

Because of the transformation of our data using the ATC-structure, the relationship between
our feature values and the target becomes non-linear. Therefore, we do not consider the most
simple prediction model, linear regression, for this study. Random forests can handle non-linear
relationships between features and the target. After a feature importance analysis and the
subsequent feature selection using the Boruta algorithm (see Appendix D), we tune our model
using exhaustive grid search, i.e., automatically testing many different settings for hyperparam-
eters. Tuning models is intended to improve predictive performance and prevent overfitting to
the training data. We tune the hyperparameters as summarized in Table 5.2.

36

Table 5.2: Summary of random forests hyperparameters.

Hyperparameter Hyperparameter description

Number of trees The number of trees in the forests

Split criterion
The function to measure split quality

(MAE or MSE)

Max. tree depth The maximum depth of the tree

Min. samples for splitting
The minimum number of samples

required to split a node

Min. samples for terminal node
The minimum number of samples needed

to be at the terminal (leaf) node

Max. features for splitting
The maximum number of features

considered when making a split

5.2.3 Neural Networks

As a second prediction model, we utilize multi-layer perceptrons, i.e., neural networks. Neural
networks might show different predictive performance, and therefore are also tested aside from
random forests. Since it is difficult to obtain feature importance scores when using neural
networks, we do not consider a feature selection method and always use all features. We can
tune the hyperparameters, which are summarized in Table 5.3.

Table 5.3: Summary of neural network hyperparameters.

Hyperparameter Hyperparameter description

Number of hidden layers
The number of hidden layers

in the neural network

Number of nodes per hidden layer The number of neurons per layer

Activation function
The function that activates

the hidden layer(s)

Initial Learning rate The initial weight updating rate

Learning rate
The method used for updating

the learning rate

L2 penalty The L2 regularization penalty

5.2.4 Obtaining Training Data

As further explained in Chapter 6, we use a simulation model to test different models and
policies. To train our models, we need to obtain data. We do this by generating a separate set
of instances and running full simulations on these. For these training instances, we do not use
any nudging policy, i.e., customers choose the offered time slot that has the highest base score
βs.

We obtain the following data after a simulation run: (i) a final VRPTW-schedule, (ii) all
customer locations, and (iii) the time slots chosen by customers. We use the final routing
schedule to reflect the downstream transportation costs, opposed to the greedy insertion costs
that only estimates the costs at the time of insertion. In most cases, we use a method where the
feature values, calculated over an ATC-cluster, are stored after every new customer booking,
i.e., the number of ATC data points available for training is equal to the number of booked
customers. As further illustrated in Chapter 7, we can also obtain data using only the final
routing schedule, i.e., we have a single data point for each ATC-cluster, that contain all booked
customers after the cutoff time.

37

5.3 Simple Incentive Policy

In this section we present a simple incentive policy that can use time slot cost approximations
and a tunable parameter as input, and give an incentive, on the domain [−1, 1] as output. The
main idea of this policy is that we give incentives based on the approximated costs associated
with a time slot s, relative to the estimated costs of all other time slots S. After obtaining a
cost approximation for all feasible time slots, the set S ⊆ T , we first calculate the mean CS and
standard deviation σCS of the predicted costs over all feasible time slots. Next, we calculate
the difference between the predicted costs for time slot s and the mean estimated costs over all
time slots S:

ĉs = −1 ·
(
cs − CS

)
. (5.5)

We multiply with −1 to give higher incentives to low costing time slots and vice versa. Next,
we use a tunable parameter W multiplied with the standard deviation σCS to control how much
standard deviations distance from the mean ĉs is considered large, and adjust the magnitude of
incentives accordingly. In our experiments we use different levels for the parameter W . In case
that WσCS � ĉs, we cap the incentives to remain in the domain [−1, 1]. When the costs for all
the time slots are the same, i.e., σCS = 0, no incentives are given:

Incentive for time slot s =

0, if σCS = 0,

−1, if ĉs
WσCS

≤ −1,
ĉs

WσCS
, if− 1 < ĉs

WσCS
< 1,

1, if ĉs
WσCS

≥ 1.

(5.6)

5.4 Conclusions

In this chapter, we explained our proposed solution approach. First we explained the use of
insertion costs as cost approximation. Next, we presented our regression model with a limited
set of features based on ATC-clusters. We explained the two regression methods (random forests
and neural networks) we use and showed the different hyperparameters that need to be tuned.
We explained how we we obtain data to train our models on. Finally, we showed a simple
incentive policy that can use time slot cost approximations to determine time slot incentives,
in combination with our proposed customer choice model.

38

Chapter 6

Simulation Model and Experimental
Design

In this chapter the validation method, a discrete-event simulator, is described and our exper-
imental design is explained. The simulation model is used to validate our different solution
methods and test their settings. First, in Section 6.1 the discrete-event simulation model is
described. Next we explain the instance settings in Section 6.2 and experimental design in
Section 6.3. Finally, we state a conclusion related to this chapter in Section 6.4.

6.1 Simulation Model Description

We use a simulation model that mimics customer behavior and integrates all ORTEC time
slotting services, i.e., OTSS for time slot allocation and ORS for routing. The simulation model
is built in C# and maintained by the ORTEC Math Innovation Team. All cost approximation
models have been trained using the Python Scikit-learn library (Pedregosa et al., 2011) and are
loaded in C# using the ONNX standard artificial intelligence format (Bai et al., 2019). For a
detailed description of all events and data in the simulation model, we refer to Appendix B.
The simulation model is based on the model as described in Visser et al. (2019).

Some abstractions are made to limit the scope of this research. In general, we decided to
simulate a single delivery day, limit customer behavior options, and limit the booking horizon.

The goal of the simulation model is (i) to tune the regression models and find the best settings
for hyperparameters, (ii) compare our solution methods, and (iii) give insight in incentives and
customer behavior patterns, and their effect on the overall performance. The fleet and depot
characteristics, customer order size, delivery location and arrival time are directly derived from
retailer data. Customers’ behavioral aspects are limited for our simulation study. In reality,
retailers offer the possibility to change the basket content (add or remove products) after the
time slot booking. This is not possible in our simulation. Also, our customer choice model (see
Section 4.2) is limited to specific customer behavior, which deviates from reality.

We define three key moments in the simulation horizon: (i) the start of the booking horizon
at t = 0, (ii) the end of the booking horizon (cutoff time) at t = T and (iii) the route execution.
See Figure 6.1 for a timeline of a simulation run. For our experiments we vary the length of
the booking horizon, depending on the retailer data, and we always plan for a single execution
day, with a varying time slot structure.

The general event structure of the simulator follows the following events: (i) a customer
arrives and requests a time slot offering, (ii) a feasibility check for every time slot is done using
cheapest insertion and the feasible time slots are offered to the customer, (iii) the customer
chooses a time slot, (iv) the customer choice is recorded in the system. ORS is called after every
20th customer arrival to update the intermediate routing schedule, and after the simulation to
obtain the final routing schedule. See Appendix B for the full model description.

39

Figure 6.1: Timeline of the simulation booking and route execution period.

6.2 Instance Settings

In this section, we describe the two different instance sets used for our experiments. First,
we describe the synthetic case, which is based on generated data, in Section 6.2.1. Next, we
describe the case based on an European e-grocery retailer in Section 6.2.2.

6.2.1 Synthetic Instances

The main sets of experiments is conducted on generated data (synthetic case), based on the
general structure of a home delivery retailer. For these instances, we use a single depot with
a fleet of 20 vehicles. Customer locations are generated using two different methods: random
scattering (R) and random clustering (RC). For the random instances, locations are randomly
drawn in a radius of 50 kilometers from the depot. For the random clustered instances, customers
are assigned to one of eight randomly drawn cluster locations within 50 kilometer of the depot
and assigned to a cluster with an 80% chance, or are randomly scattered 50 kilometer of the
depot with a 20% chance. The retailer offers six different, non-overlapping time slots of 2-hour
width. The intensity of customer arrivals during the booking horizon of 21 days is generated
using historic customer arrivals obtained from an European e-grocery retailer. See Figure 6.2
for an example of arrival intensities on a horizon of 21 days with 15 minute bin widths.

0 3 6 9 12 15 18 21
0

0.2

0.4

0.6

0.8

1

Booking horizon (days)

F
re

q
u

en
cy

cu
st

om
er

a
rr

iv
al

s
(s

ca
le

d
)

Figure 6.2: Example of a booking horizon with customer arrivals as used for gen-
erating instances.

Customers have a base preference list that entails all six time slots, i.e., customers can be
nudged to every time slot that is feasible. We use two different settings for fleet capacities: one
where there are no constraints on capacity, i.e., the main limiting factor for accepting a customer

40

are the time slots (T), and a setting where a vehicle has been limited to serve 25 customers
(C). For all instances, 750 customers arrive during the 21 days. Table 6.1 summarizes the four
different instance types.

Table 6.1: Summary of instance settings for the synthetic case study.

Instance aspect R-T R-C RC-T RC-C

Number of customers 750 750 750 750

Fleet size 20 20 20 20

Vehicle capacity (customers) N/A 25 N/A 25

Location generation Random Random
Random
clustered

Random
clustered

Number of Clusters N/A N/A 8 8

Cluster radius N/A N/A 8 km 8 km

Clustering probability N/A N/A 0.8 0.8

Number of time slots in base lists K 6 6 6 6

Number of ATC areas a 8 8 8 8

Booking horizon length (days) 21 21 21 21

The area of operation has been divided in 8 area clusters, using a structure where the area
is divided in a 2× 4 grid. Figure 6.3 shows the operation areas with an example of a customer
region structure. For all instances we determine the customer regions upfront and always use
the same area of operation for training and testing the models.

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

52.4

52.6

52.8

53.0

53.2

Figure 6.3: Example of the area of operation for the synthetic case with different
colors for every customer region, source of background map: maps.stamen.com.

Figure 6.4 shows an example of a vehicle routing schedule after a simulation run on the
synthetic case. Road network distances and times are used, but for illustrative reasons the
direct arcs are plotted, excluding the depot arcs.

As variant on this larger case, we also conduct experiments with a single vehicle instance that
serves 60 customers. This instance, as further explained in Chapter 7, has a similar structure
to the synthetic instances, but the area of operation is smaller.

41

−3.0 −2.5 −2.0 −1.5 −1.0

52.4

52.6

52.8

53.0

53.2

Figure 6.4: Example of a routing schedule for the synthetic time slotting case,
source of background map: maps.stamen.com.

6.2.2 European E-grocery Retailer Instances

As an additional case study, we conduct experiments on an actual customer case with data
from a large European e-grocery retailer. The main differences with the synthetic case, as
summarized in Table 6.2, are that customer locations are no longer generated but are derived
from actual customer data, the seven time slots overlap, and there are multiple depots (4) with
differing fleet sizes. For the individual instances, we use order data obtained from the same day
of the week, to prevent seasonality differences. The fleet is heterogeneous in terms of vehicle
capacity and driving speed. The retailer offers five overlapping time slots of 2-hour width, and
two time slots of 4 and 5 hour width, respectively. Customers arrive on a booking horizon of 9
days. Because of excessive computational efforts and therefore long simulations, only a limited
set of replications will be used for the European e-grocery retailer case.

Table 6.2: Summary of instance settings for the European e-grocery retailer case
study.

Instance aspect European e-grocery retailer

Number of customers ∼ 2000

Fleet size 77

Number of vehicles per depot (50, 13, 7, 7)

Number of time slots in base lists K 7

Number of ATC areas a 6

Booking horizon length (days) 9

Since some of our features are calculated with the depot location, but we do not know
upfront which depot serves a customer area, we always use the main depot for feature value
calculations.

42

6.3 Experimental Design

We can divide our experiments in three parts: (i) test our cost approximation model and the
potential of dynamic pricing in combination with our cost approximation model (Section 6.3.1),
(ii), show the true effect of dynamic time slot pricing with our cost approximation model and
simple incentive policy (Section 6.3.2), and (iii) test our method on real data from the European
e-grocery retailer (Section 6.3.3).

6.3.1 Experiment 1

For experiment 1, we start with generating routing and time slotting realization data using our
simulation model and the synthetic instances. All simulation runs used for training our models
do not use any form of incentives, i.e., customers choose the time slot with the highest base
preference. Next, we test different regression models, as introduced in Chapter 5.

We use a particular experimental setting for the second part of experiment 1: we model
infinitely sensitive customers, i.e., customers that always choose the time slot we give the highest
incentive. For this experiment, we use two different settings: in the first experiment, we offer
the cheapest time slot to a customer, and in a second experiment, we offer the most expensive
time slot to a customer. This way, we can evaluate the accuracy of the model in predicting the
cheapest and most expensive time slots and can show the potential of giving incentives. We
compare two methods for approximating the costs of time slots: cheapest insertion based on a
preliminary constructed route and our regression model. To give a complete comparison, we use
two benchmark methods: first, we show the performance on the same instances without time
slots, i.e., a situation where we can serve customers during the whole day, without the time
window restriction. Next, we show a benchmark where time slots do not get any incentive, as is
also used for obtaining training data, i.e., customers select the offered time slot that is highest
on their preference list. We report for four different instance types: (i) randomly scattered with
time restriction (R-T), (ii) randomly scattered with capacity restriction (R-C), (iii) randomly
clustered with time restriction (RC-T), and (iv) randomly clustered with capacity restriction
(RC-C).

6.3.2 Experiment 2

For experiment 2, we test our simple incentive policy (see Section 5.3) on the synthetic case.
We use different levels for the tunable parameter (W ∈ {0.5, 1, 1.5, 2}) to find the best value.
A higher value for W means that the incentive policy is less sensitive for large deviations of the
cost prediction. The incentive policy is tested only on the random clustered instances, in both
the time constrained and capacity constrained variant (RC-T and RC-C). For the customer
incentive sensitivity f , we use a fixed value of 1. By using an incentive sensitivity of 1, we
model customers that are always sensitive to incentives, i.e., the incentives always have an
effect. However, opposed to the “infinite” sensitivity in experiment 1, the time slot with the
highest incentive is not necessarily always chosen, since the base scores, before incentives, have
influence on the eventual time slot choice. The goal of this experiment is to test our proposed
solution method on a more realistic case where the policy needs to give multiple incentives to
time slots and has to identify the relationship between time slots, instead of only finding the
cheapest or most expensive time slot as for experiment 1.

6.3.3 Experiment 3

Finally, for experiment 3, we conduct experiments on the European e-grocery retailer case.
We first conduct an experiment where the cheapest and most expensive time slot, according to
cheapest insertion and our proposed regression model respectively, are nudged with an infinitely

43

flexible customer, similar to experiment 1. Next, we test our regression model and the cheapest
insertion costs using the simple incentive policy, as tested for experiment 2. Again, we use
different levels for the tunable parameter (W ∈ {0.5, 1, 1.5, 2}) to find the best value. Finally,
we propose a cost approximation method that combines our regression model and the insertion
costs method and show the performance on the European e-grocery retailer case.

6.4 Conclusions

In this chapter, we introduced our solution validation method, namely a discrete-event simula-
tion model. We explained the settings for the two different instance types, i.e., the synthetic
case and the European e-grocery retail case, we use for our experiments. Finally, we discussed
the three experiments we conduct, aimed at testing our regression model and obtaining insights
about dynamic pricing for time slotting.

44

Chapter 7

Computational Experiments and
Results

In this chapter, the results of our three experiments are presented. In Section 7.1, we show
the design and performance of several variants of our regression model on validation data, i.e.,
without simulation validation. In Section 7.2, we show the performance of cheapest insertion and
the regression models on several simulation runs, in the extreme situation with infinitely flexible
customers (experiment 1). Also, we show a method for improving approximation models. Next,
in Section 7.3, we show the performance of cheapest insertion and the regression model on a more
realistic situation with our simple incentive policy (experiment 2). We show the performance of
the approximation models on the European e-grocery retailer case in Section 7.4 (experiment
3). Based on our findings, we conduct an additional experiment. In Section 7.5, we use a cost
approximation policy that combines our regression model with the insertion costs. We close
this chapter with a summarizing conclusion in Section 7.6.

7.1 Routing Costs Approximations

In this section, we test our regression models on the validation data, i.e., data that is left
out before training the models. This section is structured as follows: first, we test our model
on the final situation in Section 7.1.1, i.e., we train and validate on the situation as observed
after cutoff time T when all customers have arrived. Although this situation is unrealistic
since in reality the model needs to make predictions with fewer customers, it gives indication
of the predictive potential of the model. Next, in Section 7.1.2, we train and evaluate on the
intermediate situation, during a simulation run, i.e., the situation as observed between time
0 and cutoff time T , when only a subset of customers have arrived. We report the adjusted
R2, which is a statistic that indicates the goodness-of-fit of a model and indicates overfitting.
The R2 is adjusted for the number of features in a model. Next, we report the relative mean
absolute error (rMAE) and relative root mean squared error (rRMSE), as calculated by:

rMAE =
1
N

∑N
i=1 |Predictedi −Actuali|

Actual
· 100%, (7.1)

rRMSE =

√∑N
i=1(Predictedi−Actuali)2

N

Actual
· 100%. (7.2)

7.1.1 Regression Models for Cutoff Observations

In this section, we subsequently evaluate the random forests regression (RFR) and neural net-
works (NN) models on the synthetic case in both the randomly scattered situation (R) as the

45

randomly clustered setting (RC), see Section 6.2. All the hyperparameters are tuned using
5-fold cross validation grid search and summarized in Appendix C. The training data after the
cutoff contains less features, because the static situation causes some features to have lower
value, e.g., the number of time slots that are booked in an area a ∈ A is always the same, since
all time slots are always booked in all areas.

Table 7.1 shows the performance of our model on the training set (in sample) and validation
set (out of sample) for randomly scattered instances (R) of the synthetic case. The R2 is
relatively high on both the training and validation data set. The relative MAE and RMSE on
the validation set is small enough for our purposes, both for random forests as neural networks.

Table 7.1: Model performance on cutoff observations for the randomly scattered
synthetic instances (R).

Statistic RFR (i) NN

Number of Features 8 8

Adjusted R2 (in sample) 0.988 0.957

rMAE (in sample) 2.5% 4.8%

rRMSE (in sample) 3.2% 6.2%

Adjusted R2 (out of sample) 0.888 0.868

rMAE (out of sample) 7.6% 8.1%

rRMSE (out of sample) 9.7% 10.6%

The performance of our models on the randomly scattered instances (RC) is shown in
Table 7.2. The performance is similar or slightly higher compared to the performance on
the (R) instances. Again, we do not observe overfitting and the rMAE and rRMSE are small
enough for our purposes.

Table 7.2: Model performance on cutoff observations for the randomly clustered
synthetic instances (RC).

Statistic RFR (i) NN

Number of Features 8 8

Adjusted R2 (in sample) 0.987 0.943

rMAE (in sample) 2.5% 5.1%

rRMSE (in sample) 3.2% 6.6%

Adjusted R2 (out of sample) 0.907 0.853

rMAE (out of sample) 6.6% 7.9%

rRMSE (out of sample) 8.3% 10.5%

Figure 7.1 shows the actual driving time for serving all customers in an ATC compared
with the predicted driving time, predicted on the validation set. For every prediction, we show
a confidence interval that indicates how certain we can be for a prediction to be correct by
estimating the standard error of a prediction using bootstrap estimates. This estimate of the
standard error is calculated with a variance estimate, called the unbiased infinitesimal jackknife:

V̂∞IJ =
N∑
i=1

Cov∗
(
N∗i , t

∗(x)
)2
, (7.3)

where we calculate the covariance between N∗i , the number of times the ith training example

46

appears in a bootstrap sample, and t∗(x), the random forests prediction (Efron, 2014). So, the
error term gives us an idea on how much a prediction would change if the model were trained
on a different data set. More information about the calculation of the confidence intervals for
random forests can be found in Wager et al. (2014) and Polimis et al. (2017). Both the model
for the random (R) instances as the randomly scattered (RC) instances show good predictive
performance, i.e., following the diagonal prediction-observation line well. The confidence in-
tervals for the RC instances are somewhat larger than for the R instances, so the model is
less confident about its prediction. The case where the error bars do not cross the diagonal
prediction-observation line indicates there is residual noise in the data that cannot be explained
by the random forests (Wager et al., 2014).

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

Figure 7.1: Unbiased standard errors for the R (left) instances and RC (right)
instances on the cutoff time data for the ATC driving time in minutes, predicted
with random forests.

7.1.2 Regression Models for Intermediate Observations

In this section, we again consider the R and RC instances of the synthetic case and show perfor-
mance of both random forests (RFR) and neural networks (NN). However, now we consider a
data set obtained during the booking horizon [0, T]. In this situation, sometimes only a subset
of the complete set of customers has arrived. Still, we train to predict the final routing costs.
This way of evaluating allows us to show the performance of our model as it would be during
a simulation run, when indeed the ATC-clusters still contain only few (or no) customers. We
store feature values of an ATC-cluster, used for training our model, after every new arrival of a
customer, i.e., the number of data points we can train or validate on is equal to the number of
customers that were booked. Therefore, the same downstream routing costs for an ATC-cluster
are associated with different feature values, since more customers are added to an ATC during
the booking horizon. This effect is illustrated in Figure 7.2.

We deal with this problem by splitting up the training data in time aggregations and training
separate models for each time aggregation. The booking horizon for the synthetic instances (see
Section 6.2) is 21 days. Because we need enough data to train on, we decide to split up the
training data in three separate sets, i.e., each time aggregation lasting 7 days. Figure 7.3
summarizes the data sets we train our different models on. RFR (i) is the model trained on the
final routing schedule, RFR (ii) is trained on observations from the complete booking horizon,
where we store the feature values after every new customer booking, and RFR (iii) is trained
on partitions of the booking horizon, again with data obtained by storing feature values after
every new customer booking.

We compare the average performance of the model trained on all 3 weeks combined (RFR

47

Figure 7.2: Timeline illustrating the problem of associating final routing costs with
different feature values.

Figure 7.3: Structure for partitioning the booking horizon to obtain data from a
simulation run for the three different random forests regression (RFR) models.

(ii)) with the separate 7-days model (RFR (iii)). Table 7.3 shows the performance on the R in-
stances. We observe a large drop in performance for all models in comparison with Section 7.1.1.
The in sample performance is still relatively good, with the random forests outperforming neu-
ral networks. This might be caused by the limited size of the neural network and the used
L2 penalty for preventing overfitting, see Appendix C. Nevertheless, the performance of neural
networks on the validation data (out of sample) is similar to random forests. When comparing
the models trained on the complete horizon with the models trained on partitions of the horizon,
we observe small differences, slightly favoring the model trained on partitions of the horizon
(RFR (iii)).

Table 7.4 shows the performance of the models on RC instances. The performance is similar
to the models trained and validated on R instances. We observe that the RFR (ii) model
performance on in sample data is similar to the out of sample data. RFR (iii) however, does
show a large drop in performance when tested on out of sample data. This might be caused by
the lower amount of data that is used for RFR (iii), since the data is split in three partitions,
which causes an overfitted model.

Figure 7.4 shows the unbiased standard errors for the two proposed models on the R in-

48

Table 7.3: Model performance on intermediate observations for the randomly scat-
tered synthetic instances (R).

Statistic RFR (ii)
RFR (iii)

(3 model avg.)
NN

NN
(3 model avg.)

Number of Features 11 11 11 11

Adjusted R2 (in sample) 0.723 0.901 0.71 0.691

rMAE (in sample) 13.9% 5.9% 18.1% 17.2%

rRMSE (in sample) 16.2% 7.6% 22.3% 21.2%

Adjusted R2 (out of sample) 0.576 0.512 0.523 0.530

rMAE (out of sample) 16.1% 14.5% 18.6% 17.1%

rRMSE (out of sample) 21.3% 19.5% 24.1% 21.5%

Table 7.4: Model performance on intermediate observations for the randomly clus-
tered synthetic instances (RC).

Statistic RFR (ii)
RFR (iii)

(3 model avg.)
NN

NN
(3 model avg.)

Number of Features 11 11 11 11

Adjusted R2 (in sample) 0.623 0.898 0.67 0.673

rMAE (in sample) 12.9% 6.0% 18.8% 17.6%

rRMSE (in sample) 16.6% 7.9% 24.5% 22.9%

Adjusted R2 (out of sample) 0.638 0.593 0.592 0.530

rMAE (out of sample) 17.5% 14.8% 19.1% 17.5%

rRMSE (out of sample) 22.4% 19.7% 24.6% 22.4%

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

Figure 7.4: Unbiased standard errors for the R instances on the intermediate obser-
vations for the ATC driving time in minutes, predicted with random forests using
a single model (left) and separate models for time intervals (right).

stances. On the left, the performance of the random forests trained on the complete data set
is shown. We observe that the random forests has large prediction errors. Also, the error bars
indicate that the model is reasonably confident about its prediction, disregarding some outliers.
This is caused by the effect we discussed before and illustrated in Figure 7.2, the way we train

49

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

0 200 400 600

0

200

400

600

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

Figure 7.5: Unbiased standard errors for the RC instances on the intermediate
observations for an ATC in minutes, predicted with random forests using a single
model (left) and separate models for time intervals (right).

our data causes much residual noise that cannot be explained by the model. The model per-
formance shown on the right, the model trained on partitions of the horizon, seems to follow
the data somewhat better. For the RC instance type we see similar results, as depicted in
Figure 7.5.

We can show the contribution of individual features by calculating feature importance scores.
We show this analysis using the Boruta algorithm in Appendix D.

Summarizing, we showed three different ways to train our model: on cutoff observations
(RFR (i)), on data obtained during the complete booking horizon (RFR (ii)), and with different
models for partitions of the booking horizon (RFR (iii)), see Table 7.5. We showed that random
forests and neural networks have a similar performance. To ease the presentation, we decide to
further only report the performance of the random forests model.

Table 7.5: Summary of random forests regression models.

Model Description Data for training

RFR (i)
Random forests model only

trained on the data observed
after the cutoff time

ATC-clusters obtained from
the final routing schedule

RFR (ii)
Random forests model trained on

the data observed
during the simulation horizon [0, T]

ATC-clusters observed after
every new customer booking

RFR (iii)

Separate random forests models
trained on data as

observed during partitions of
the booking horizon [0, T]

ATC-clusters observed after
every new customer booking,
partitioned in three data sets

based on time of arrival

7.2 The Potential of Time Slot Pricing

In this section we test our regression models during a simulation run. This section is related to
the second part of experiment 1 (see Section 6.3). First, we test our models on the synthetic
case in Section 7.2.1, next we show the performance of our model on a special variant of the

50

synthetic case with only a single vehicle in Section 7.2.2. Finally, in Section 7.2.3 we show a
methodology for improving approximation models in an iterative fashion.

7.2.1 Synthetic Case Experiments

Because the results for the randomly scattered instances (R) are similar to the randomly clus-
tered instances (RC), we report the results for the randomly scattered instances (R) in Ap-
pendix E, for the R-T setting in Table E.1 and for the R-C setting in Table E.2. We report
seven different statistics: (i) the percentage of all customers that could be planned and served,
(ii) the average number of time slots that were feasible to offer to a customer, (iii), the per-
centage of customers that were nudged to a different time slot than their first preference, (iv)
the average absolute difference in ranking between the time slot that was chosen and the time
slot that was first on the customer preference list, (v) the average travel time per customer in
minutes, (vi) the average waiting time per customer in minutes, and (vii) the average travel
distance per customer in kilometers. Both the travel time and travel distance are calculated
with actual road network costs, as obtained from ORS. Traffic congestion has not been ac-
counted for in calculating travel times. For all statistics, we show the average and the standard
deviation (±) over 5 replications. Waiting time is reported because it is an essential element of
VRPTWs: potentially, driving times can be low, but the driver has to wait because the arrival
at the customer is too early.

Table 7.6 shows the results for the RC instance in a time constrained setting. First, we
observe a large difference between the results for a setting with and without time slots. The ad-
dition of time slots, disregarding incentives, causes a decrease of the number of served customers
of 19.9% and an increase in travel time, waiting time and distance per customer of 93.6%, 89.5%
and 52.5%, respectively.

Table 7.6: Simulation run statistics on the randomly clustered instances with a
time restriction (RC-T), using 5 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No TS 100% ±0% N/A N/A N/A 9.02 ±0.03 0.38 ±0.03 6.94 ±0.06

No
incentive

80.1% ±0.5% 4.3 ±0.04 N/A N/A 17.46 ±0.2 0.72 ±0.06 14.62 ±0.2

IC
Cheap

84.9% ±1.0% 4.8 ±0.06 80.1% ±1.5% 2.5 ±0.09 15.70 ±0.4 0.65 ±0.1 13.15 ±0.4

IC
Expensive

76.6% ±1.0% 3.4 ±0.16 83.0% ±0.4% 2.6 ±0.03 18.80 ±0.4 0.69 ±0.02 15.90 ±0.4

RFR (i)
Cheap

79.9% ±1.1% 3.7 ±0.03 73.8% ±1.6% 1.4 ±0.06 17.44 ±0.37 0.59 ±0.04 14.69 ±0.44

RFR (i)
Expensive

78.6% ±1.1% 3.1 ±0.03 76.0% ±1.3% 2.0 ±0.06 17.79 ±0.31 0.56 ±0.03 15.23 ±0.36

RFR (ii)
Cheap

79.9% ±1% 3.4 ±0.1 75.9% ±2.4% 1.6 ±0.05 17.47 ±0.31 0.60 ±0.06 14.77 ±0.31

RFR (ii)
Expensive

79.4% ±0.9% 3.4 ±0.05 74.6% ±1.2% 1.7 ±0.05 17.65 ±0.29 0.57 ±0.05 15.05 ±0.21

RFR (iii)
Cheap

84.2% ±1.0% 4.8 ±0.03 78.4% ±1.2% 2.4 ±0.07 15.68 ±0.3 0.64 ±0.04 14.25 ±0.4

RFR (iii)
Expensive

66.2% ±0.9% 4.7 ±0.03 80.3% ±1.2% 2.5 ±0.07 18.01 ±0.3 0.71 ±0.08 15.99 ±0.4

The performance of the insertion costs (IC) show us that the addition of an incentive strat-
egy has added value. Compared with the strategy without incentives, we see that 6% more

51

customers could be served and the travel time and distance per customer decreased with 11.2%.
Comparing the different incentive strategies, we observe that RFR (i) and RFR (ii) show sim-
ilar performance, which is structurally lower compared to the incentive strategy based on the
cheapest insertion costs (IC). The number of planned customer and the average number of fea-
sible time slots is somewhat lower compared to the cheapest insertion costs and do not show
any improvement over a strategy without incentives. The same goes for the travel time and
distance. Remarkably, the percentage of customers that were nudged to a different time slot
than their first preference is significantly lower for the RFR models compared with the cheapest
insertion costs model. It seems that although the RFR models yield a more reliable estimation
of routing costs, the cheapest insertion costs are more extreme and result in a more aggressive
incentive strategy. Also, the difference between the nudging of a cheap time slot compared with
nudging an expensive time slot is low, indicating that the random forests model prediction is
off. The RFR (iii) model does show a large difference between the cheap and expensive model,
with a similar percentage of booked customers and operating costs compared to the IC-based
model.

Figure 7.6 shows the prediction errors of the three models over the booking horizon. A
negative error indicates a too low prediction, a positive error a too high prediction. The errors
are robustly scaled to better compare outcomes. The shaded area shows the actual errors, the
line is the moving average (window = 5). We see that all models move around the zero error line.
At the begin of the horizon, RFR (i) shows high errors, probably caused by the structure of the
training data that does not contain empty ATC-clusters. RFR (ii) and RFR (iii) seem to have
comparable performance, but in the final week before the cutoff time, RFR (iii) performance
drops and shows large outlying errors, after which it improves again towards the cutoff time.
This drop in performance is possibly caused by the increase of deviation and noise in the third
week training data, caused by the effect of an (almost) full schedule, inducing more customer
rejections.

0 50 100 150 200 250 300 350 400 450 500 550 600

−10

−8

−6

−4

−2

0

2

4

Booked customers in order of arrival

R
ob

u
st

sc
al

ed
p

re
d

ic
ti

on
er

ro
rs

RFR (i) RFR (ii) RFR (iii)

Figure 7.6: Robust scaled prediction errors for a single replication of the three
RFR models on the RC-T case.

Table 7.7 shows the performance of the models on the capacity constrained instances. Since
the fleet capacity for this instance type is intentionally set lower than there is capacity with solely
time window restrictions, we see that all models have a similar number of planned customers,
i.e., the main difference with the time constrained instance is that the number of customers that
can be served is lower. We observe that the random forests models now show higher performance

52

Table 7.7: Simulation run statistics on the randomly clustered instances with a
capacity restriction (RC-C), using 5 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No TS 66.7% ±0% N/A N/A N/A 12.0 ±0.09 0.56 ±0.07 9.66 ±0.14

No
incentive

66.6% ±0.1% 3.8 ±0.01 N/A N/A 21.74 ±0.14 3.31 ±0.26 16.28 ±0.18

IC
Cheap

65.9% ±0.4% 3.9 ±0.01 81.3% ±1.8% 2.5 ±0.1 21.81 ±0.28 1.81 ±0.41 15.36 ±0.46

IC
Expensive

66.3% ±0.3% 3.2 ±0.1 82.5% ±0.8% 2.5 ±0.1 21.48 ±0.25 4.37 ±0.21 17.52 ±0.39

RFR (i)
Cheap

66.6% ±0.1% 3.4 ±0.03 72.3% ±2.5% 1.2 ±0.06 20.72 ±0.18 1.06 ±0.33 16.76 ±0.37

RFR (i)
Expensive

66.6% ±0.1% 2.9 ±0.04 73.3% ±0.8% 2.0 ±0.08 19.70 ±0.30% 1.86 ±0.22 16.65 ±0.48

RFR (ii)
Cheap

66.6% ±0.1% 3.1 ±0.06 76.9% ±2.2% 1.6 ±0.05 20.85 ±0.31% 1.15 ±0.07 16.88 ±0.14

RFR (ii)
Expensive

66.6% ±0.1% 3.1 ±0.04 74.4% ±0.9% 1.5 ±0.02 19.98 ±0.15% 2.01 ±0.41 16.71 ±0.20

RFR (iii)
Cheap

66.6% ±0.1% 3.2 ±0.03 79.4% ±1.2% 2.5 ±0.07 24.78 ±0.3 1.01 ±0.31 15.37 ±0.4

RFR (iii)
Expensive

66.6% ±0.1% 3.1 ±0.03 81.3% ±1.2% 2.4 ±0.07 24.83 ±0.3 1.11 ±0.37 15.93 ±0.4

compared to the cheapest insertion costs method. We observe that RFR (i) and RFR (ii) now
perform significantly better compared to IC and RFR (iii). Remarkably, we observe that the
travel times for all models that nudge the cheapest time slot are higher than for nudging the
most expensive time slot, which again is compensated by lower waiting times. The average
distance travelled per customer is lowest for the IC and RFR (iii) model.

7.2.2 Single Vehicle Instance Experiments

From the previous experiments, we notice that our proposed solution method performs consid-
erably better on the capacity constrained case.

Table 7.8: Simulation run statistics on the single vehicle, randomly scattered in-
stances with a time restriction (R-T), using 10 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive

37.3% ±3.9% 1.6 ±0.3 N/A N/A 26.47 ±3.4 1.96 ±1.2 22.25 ±3.6

IC
Cheap

38% ±1.3% 1.3 ±0.07 73.3% ±0.05% 2.6 ±0.2 25.30 ±0.7 1.68 ±0.3 21.63 ±0.9

IC
Expensive

31.7% ±2.4% 1.4 ±0.2 72.2% ±0.1% 2.5 ±0.2 32.70 ±3.1 2.30 ±0.6 29.19 ±3.35

RFR (ii)
Cheap

39.7% ±1.9% 1.7 ±0.2 77.2% ±0.09% 2.3 ±0.2 23.58 ±0.79 1.30 ±0.7 20.27 ±0.84

RFR (ii)
Expensive

37% ±2.4% 1.7 ±0.1 72.2% ±0.09% 2.3 ±0.7 26.43 ±3.85 1.53 ±0.9 21.72 ±3.84

53

This might has to do with the following: when fewer customers can be served but the area of
operation is the same, distances and travel times between customers will be higher. The impact
of a customer choosing a time slot might be larger when at that time of the operation no vehicle
is close by, and a large detour will be needed. To review this observation somewhat further, we
generate new synthetic instances where the fleet size is reduced to a single vehicle, the area of
operation is reduced by 50% and the number of arriving customers is reduced to 60. We only
run a single instance type, namely the random scattered instance with a time restriction (R-T).
Table 7.8 shows the results over 10 replications. We only show results for the RFR (ii) model.
We observe that the RFR model now significantly improves in terms of travel times, compared
with the situation without incentives (12.3%) and the IC model (7.3%). The same results are
reflected by the waiting time and traveled distance.

7.2.3 Iterative Predictive Model Improvement

Since our models are all trained on a training data set where no time slot nudging is done,
the models are fitted to a different situation than the situation we simulate and test on. So,
iterative retraining the model on the new obtained data, with nudging, might be an opportunity
to improve the (predictive) performance of our models. This process of improving a model using
new data is illustrated in Figure 7.7.

Figure 7.7: The process of obtaining data, training a predictive model, applying it
in a simulation, and retraining it using the simulation data.

We retrain the RFR (ii) model on the data obtained from the simulation, and test it again
on new generated instances of the random clustered, time constrained (RC-T) case, since on
this case the RFR model performance was the lowest. We observe an improvement in predictive
performance after the first iteration of the procedure as depicted in Figure 7.7.

This is reflected in an increased adjusted R2 and a prediction that follows the actual costs
somewhat better, as illustrated in Figure 7.8. Figure 7.9 shows the percentage of customers
that were planned (left) and the summed travel time and waiting time (right) among two
iterations of the feedback loop, for both the situation where the cheapest and most expensive
time slot is nudged with ultimately flexible customers. We observe that after retraining the
model, the predictive performance increases, since the model that nudges the cheapest time
slot can plan more customers and needs less operating time, while the model that nudges the
most expensive time slot shows an opposite effect. After a single iteration of the feedback loop
shown in Figure 7.7, it seems that the model has converged. Nevertheless, the performance of
this improved model is still lower compared to the model based on cheapest insertion costs.

We conducted an additional experiment where the random forests models are trained on
the cheapest possible situation, without time slots (No TS). For more information about the
training procedure and the results of this experiment, we refer to Appendix E.

54

0 200 400 600 800

0

200

400

600

800

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

Figure 7.8: Unbiased standard error for the RC instances on the intermediate
observations for an ATC in minutes, predicted with random forests trained after
the first iteration of the feedback loop.

0 1 2

79%

80%

81%

82%

Iteration

P
ec

en
ta

ge
of

cu
st

o
m

er
s

p
la

n
n

ed

Nudge cheapest RFR (ii)

Nudge most expensive RFR (ii)

0 1 2

17.5

18

18.5

Iteration

T
ra

ve
l

+
w

a
it

in
g

ti
m

e
p

er
cu

st
o
m

er
(m

in
)

Nudge cheapest RFR (ii)

Nudge most expensive RFR (ii)

Figure 7.9: Performance of random forests (RFR (ii)) over 2 iterations of the
feedback loop using 5 replications on the RC-T instances.

7.3 Time Slot Pricing Policy Experiments

In this section, we test our cost approximation model for a more realistic case where multiple
time slots can be nudged. We test our RFR model using the simple incentive policy as explained
in Section 5.3 and compare it with the cheapest insertion costs as cost approximation.

We tune our incentive policy with different levels of the parameter W . A higher value for
W means that the incentive policy is less sensitive for large deviations of the cost prediction,
i.e., the incentive policy is less aggressive. We only show results of the RFR (ii) policy on the
RC time constrained and capacity constrained cases, since this model seemed to perform best
and is easiest to train. We trained the model on data obtained from the situation without time
slot incentives.

Table 7.9 shows the results for the time constrained case. We observe that the performance
for both IC and RFR is roughly in-between the performance of nudging the cheapest and most

55

expensive time slot, respectively. Again, IC shows better performance than RFR, looking at
the percentage of planned customers, operating time and travel distance. For both IC and RFR
the best value for W seems to be 1. The most remarkable difference between the results of
experiment 1 is the percentage of nudged customers.

Table 7.9: Simulation run statistics for the incentive policy for the randomly clus-
tered instances with a time restriction (RC-T) for different levels of tuning param-
eter W , using 5 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive

80.1% ±0.5% 4.3 ±0.04 N/A N/A 17.46 ±0.2 0.72 ±0.06 14.62 ±0.2

IC
(W = 0.5)

83.6% ±0.8% 4.6 ±0.06 52.9% ±2.1% 1.3 ±0.03 16.17 ±0.27 0.86 ±0.11 13.22 ±0.30

IC
(W = 1)

85.5% ±0.9% 4.7 ±0.06 58.2% ±0.9% 1.4 ±0.02 15.54 ±0.29 0.91 ±0.12 12.49 ±0.19

IC
(W = 1.5)

84.5% ±0.7% 4.7 ±0.02 59.5% ±1.1% 1.5 ±0.04 15.93 ±0.26 0.93 ±0.06 13.01 ±0.28

IC
(W = 2)

84.6% ±0.5% 4.7 ±0.04 58.1% ±3% 1.4 ±0.04 15.82 ±0.21 0.99 ±0.1 12.82 ±0.34

RFR
(W = 0.5)

80.2% ±0.5% 4.0 ±0.08 60.6% ±1.8% 1.4 ±0.04 17.46 ±0.24 0.84 ±0.04 14.56 ±0.29

RFR
(W = 1)

81.9% ±0.5% 4.0 ±0.05 66.5% ±2.5% 1.6 ±0.05 16.89 ±0.18 0.86 ±0.07 14.03 ±0.28

RFR
(W = 1.5)

81.7% ±0.8% 4.0 ±0.07 66.2% ±1.9% 1.7 ±0.04 16.98 ±0.26 0.89 ±0.07 14.0 ±0.3

RFR
(W = 2)

80.9% ±0.8% 4.0 ±0.1 60.6% ±3.7% 1.4 ±0.1 17.21 ±0.27 0.81 ±0.07 14.35 ±0.34

For experiment 1, the nudging based on insertion costs is more “active” than RFR, i.e., a
higher percentage of customers is nudged to a different time slot. For experiment 2, this is effect
is inverted, although the differences are relatively small. Table 7.10 shows the results for the
capacity constrained case. Again, W = 1 seems to be the best value for both IC and RFR. Both
IC and RFR perform significantly worse compared to the nudging based on the most expensive
time slot (experiment 1). Although the travel distance is somewhat lower, the travel time and
especially the waiting time is much longer. IC performs slightly better compared to RFR.

Because RFR shows somewhat lower performance compared to IC, it might be effective to
retrain the RFR model on realization data (see Section 7.2.3). We use the data obtained from
the W = 1 experiment to retrain our model, and show performance on a different data set for
both the time and capacity constrained case in Table 7.11.

Our RFR model improved significantly and now shows better performance than the cheapest
insertion costs method. Compared with the situation without incentives we save 6.9% and 1.5%
in travel time, for the time constrained and capacity constrained case, respectively.

In Figure 7.10 we depict the average absolute incentive that was given to all time slots, the
line is a moving average (window = 15). This figure indicates how much difference between
time slots, in terms of costs, is recognised by the cost approximation policy. We only show the
capacity constrained case, since the time constrained case shows similar results. It becomes
visible that our RFR model returns less erratic costs approximations between time slots in
comparison with the insertion costs (IC) method, since the IC method covers a broader range
for the average absolute incentive. Additionally, we observe that insertion costs sometimes does
not recognise any difference between time slots, resulting in no incentives. At the end of the

56

Table 7.10: Simulation run statistics for the incentive policy for the randomly
clustered instances with a capacity restriction (RC-C) for different levels of tuning
parameter W , using 5 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive

66.6% ±0.1% 3.8 ±0.01 N/A N/A 21.74 ±0.14 3.31 ±0.26 16.28 ±0.18

IC
(W = 0.5)

66.4% ±0.4% 3.9 ±0.02 54% ±2.4% 1.2 ±0.06 22.0 ±0.13 4.53 ±0.25 15.3 ±0.31

IC
(W = 1)

66.6% ±0.07% 3.9 ±0.02 58.6% ±2% 1.3 ±0.06 21.93 ±0.13 4.77 ±0.24 14.98 ±0.28

IC
(W = 1.5)

66.5% ±0.3% 3.9 ±0.01 57.8% ±3.9% 1.3 ±0.06 22.0 ±0.22 4.69 ±0.34 15.16 ±0.23

IC
(W = 2)

66.6% ±0.1% 3.9 ±0.01 58.2% ±3.3% 1.3 ±0.06 22.0 ±0.16 4.71 ±0.31 15.14 ±0.24

RFR
(W = 0.5)

66.6% ±0.1% 3.7 ±0.03 60.8% ±1.4% 1.3 ±0.03 22.82 ±0.21 4.60 ±0.21 16.16 ±0.23

RFR
(W = 1)

66.7% ±0% 3.7 ±0.03 66.3% ±1.8% 1.5 ±0.04 22.78 ±0.13 4.81 ±0.34 15.96 ±0.36

RFR
(W = 1.5)

66.6% ±0.1% 3.6 ±0.06 66.1% ±2.3% 1.6 ±0.08 22.9 ±0.14 5.18 ±0.15 15.64 ±0.29

RFR
(W = 2)

66.6% ±0.1% 3.6 ±0.02 61.3% ±2.9% 1.4 ±0.1 22.9 ±0.16 4.97 ±0.32 15.76 ±0.48

Table 7.11: Simulation run statistics for the incentive policy for the randomly
clustered instances with a time (RC-T) or capacity restriction (RC-C) for W = 1
and a retrained regression model, using 5 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive
(RC-T)

80.1% ±0.5% 4.3 ±0.04 N/A N/A 17.46 ±0.2 0.72 ±0.06 14.62 ±0.2

RFR
(RC-T retrained)

(W = 1)
81.6% ±1.6% 4.0 ±0.06 65.8% ±2.5% 1.6 ±0.1 16.25 ±0.53 0.60 ±0.1 13.52 ±0.57

No
incentive
(RC-C)

66.6% ±0.1% 3.8 ±0.01 N/A N/A 21.74 ±0.14 3.31 ±0.26 16.28 ±0.18

RFR
(RC-C retrained)

(W = 1)
66.6% ±0.07% 3.7 ±0.04 65.3% ±2.3% 1.5 ±0.08 21.42 ±0.35 3.60 ±0.53 15.86 ±0.58

booking horizon, both RFR and IC converge to a situation where incentives need to be capped
to stay in the domain [−1, 1], or there is no significant cost difference between time slots, so
the incentive is zero. When incentives are capped, the incentives are as high as possible and
have the most influence on the time slot choice. This effect is caused by the decreased capacity,
i.e., less time slots are feasible to offer and therefore the standard deviation of time slot costs
decreases too, causing high incentives that need to be capped to stay in the domain [−1, 1].
Later, the incentives become zero because only a single time slot can be offered.

57

0 50 100 150 200 250 300 350 400 450 500 550 600

0

0.2

0.4

0.6

0.8

1

Booked customers in order of arrival

A
ve

ra
ge

a
b

so
lu

te
ti

m
e

sl
ot

in
ce

n
ti

ve

RFR (W = 1) IC (W = 1)

Figure 7.10: Average absolute incentive over all feasible time slots during the
booking horizon, given by random forests (RFR) and the insertion costs method
(IC), for a single replication of the capacity constrained case.

7.4 European E-grocery Retailer Case Experiments

In this section, we show the results of experiment 3, where we test our regression model on
a real case derived from data of a large European e-grocery retailer. We first train our RFR
model on simulation runs without any nudging. We observe that the model performance on the
validation set is better in comparison with the model trained on the synthetic case. Probably
this has to do with the heavy clustering of customers for the European e-grocery retailer case.
This higher performance is illustrated in Figure 7.11. It becomes visible that a subset of the
customers is “expensive”, e.g., far away from the serving depot. The largest set of customers is
close to the depots and therefore less expensive.

0 500 1,000 1,500

0

500

1,000

1,500

Actual ATC driving time

P
re

d
ic

te
d

A
T

C
d

ri
v
in

g
ti

m
e

Figure 7.11: Unbiased standard error for the European e-grocery retailer instances
for an ATC in minutes, predicted with random forests.

58

Although the error bars indicate that the model is not completely certain about its predic-
tion, it seems that the model follows the prediction-observation line well. Most error bars cross
the diagonal prediction-observation line, indicating that the model does not suffer a lot from
residual noise in the data.

Table 7.12 shows the results of the first part of experiment 3, where we nudge infinitely
flexible customers to the cheapest and most expensive time slot, respectively. Note that for
these instances there are seven time slots available, opposed to the six time slots used for the
previous experiments. We report the same statistics as before using 2 replications. We observe
from the No TS experiment that we cannot plan more than 81.1% of the customers due to vehicle
capacity restrictions. The addition of time slots causes an increase of travel time and travel
distance of 34.5% and 33.9%, respectively. We observe that IC and RFR both can plan more
customers when nudging the cheapest time slot, compared to the situation without incentives.
IC saves 15.7% in travel time and 15.0% in distance per customer, compared with the situation
without incentives. RFR improves slightly less compared with the situation without incentives;
it saves 7.3% in travel time and 11.2% in distance per customer.

Table 7.12: Simulation run statistics for the European e-grocery retailer case, using
2 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
TS

81.1% ±0.2% N/A N/A N/A 4.18 ±0.02 0 ±0 2.53 ±0.02

No
incentive

80.4% ±0.04% 5.6 ±0 N/A N/A 5.62 ±0.02 0.03 ±0.01 3.39 ±0.05

IC
Cheap

81.1% ±0.2% 5.7 ±0.01 85.6% ±0.7% 3.0 ±0.03 4.74 ±0.10 0 ±0 2.88 ±0.07

IC
Expensive

80.2% ±0.3% 5.2 ±0.02 85.2% ±0.06% 3.0 ±0.02 6.23 ±0 0.02 ±0.01 3.91 ±0.04

RFR
Cheap

81.0% ±0.2% 5.6 ±0.02 86.8% ±0.6% 3.0 ±0.02 5.21 ±0.06 0.02 ±0.01 3.01 ±0.01

RFR
Expensive

80.4% ±0.2% 5.5 ±0 86.8% ±0.3% 3.0 ±0.01 6.07 ±0.05 0.07 ±0.03 3.91 ±0.11

Table 7.13 shows the results for the simulation runs of the European e-grocery retailer case
using our simple incentive policy. The results for this experiment are similar to the results of ex-
periment 2. The incentive policy improves in comparison with the situation without incentives.
In comparison with the best performing incentive policy setting, we see 0.7% more planned
customers, 6.2% less travel time and 5.3% less traveled distance per customer. Waiting times
are low and the differences between waiting times are insignificant. Again, IC shows somewhat
better performance on most statistics, but RFR seems to be the more “active” policy with
more nudging and more absolute changes of time slots. The difference between RFR and IC in
terms of the percentage of customers that were nudged, seems to be larger than observed for
experiment 2. The differences between values for W are small, W = 1 seems to be the best
value overall. Although the predictive performance (see Figure 7.11) increased significantly,
we do not see a similar performance improvement, indicating that only predicting downstream
costs might not be enough for an effective incentive policy. The performance might be better
when we make adaptations to our generic model to account for the increased complexity; the
instances are multi-depot with an heterogeneous fleet and overlapping time slots.

59

Table 7.13: Simulation run statistics for the incentive policy for the European e-
grocery retailer case for different levels of tuning parameter W , using 2 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive

80.4% ±0.04% 5.6 ±0 N/A N/A 5.62 ±0.02 0.03 ±0.01 3.39 ±0.05

IC
(W = 0.5)

80.6% ±0.4% 5.6 ±0.03 42.2% ±0.2% 0.7 ±0.02 5.24 ±0.01 0.002 ±0 3.18 ±0.01

IC
(W = 1)

80.5% ±0.3% 5.6 ±0.02 45.4% ±0.9% 0.8 ±0.03 5.25 ±0.02 0.02 ±0.01 3.15 ±0

IC
(W = 1.5)

81.0% ±0.1% 5.6 ±0.01 45.0% ±0.3% 0.8 ±0 5.27 ±0.07 0.01 ±0 3.22 ±0.04

IC
(W = 2)

81.0% ±0.3% 5.7 ±0.03 43.3% ±1.3% 0.8 ±0.01 5.27 ±0.07 0.01 ±0 3.21 ±0.08

RFR
(W = 0.5)

80.5% ±0.08% 5.4 ±0.04 70.2% ±0.2% 1.8 ±0.2 5.92 ±0.21 0.03 ±0.03 4.04 ±0.29

RFR
(W = 1)

81.0% ±0.6% 5.5 ±0.09 75.1% ±1.0% 2.2 ±0.05 5.84 ±0.17 0.08 ±0.05 3.96 ±0.24

RFR
(W = 1.5)

80.8% ±0.6% 5.5 ±0.1 76.2% ±0.2% 2.2 ±0.04 5.99 ±0.09 0.05 ±0.03 4.20 ±0.04

RFR
(W = 2)

80.7% ±0.6% 5.5 ±0.1 74.2% ±1.0% 2.1 ±0.01 5.93 ±0.28 0.06 ±0.03 4.14 ±0.16

7.5 Joint Cost Approximation with Random Forests and Inser-
tion Costs

As we observed in the previous experiments, our RFR models often fail to outperform the
insertion costs method (IC). We noted that the insertion costs sometimes results in a more
aggressive strategy, caused by the more erratic nature of cheapest insertion. However, cheapest
insertion is, as explained in Chapter 2, a method with high prediction errors. In this section,
we propose a model that combines the insertion costs and our RFR model for estimating costs.
This model is applied as follows: the first half of the booking horizon, we use the insertion
costs as cost approximation method, in the second half of the the horizon, we use our RFR
model as cost approximation, containing the cheapest insertion costs as new feature. The
reasoning behind this as follows: in the first half of the booking horizon, most time slots have
enough capacity to insert all customers, so nudging might be less important. Additionally, we
observed that our regression model shows higher prediction error at the begin of the booking
horizon, and insertion costs is only reliable as feature later in the booking horizon. Therefore,
we only use the random forests model in the second half of the booking horizon. In order
to use the insertion costs as feature, which are calculated per customer-time slot, we need to
calculate the other features over single customer-time slot combinations as well, instead of the
ATC structure as used before, i.e., we train our regression model on individual customers. We
do this by defining ATC areas that are small enough so that they can only contain a single
customer, i.e., |A| = |C|. Further, we use the same features as used for RFR (ii), with some
adaptations for the application to a single-customer area a ∈ A. We train on data obtained in
the second half of the booking horizon. The performance for three different settings is shown:
nudging an infinitely sensitive customer to the cheapest or the most expensive time slot, and
nudging a customer with incentive sensitivity f = 1 using our simple incentive policy with
W = 1. The results of the experiments for these three settings are shown in Table 7.14. It
seems that the combined strategy is not better at recognising the cheapest and most expensive

60

time slot, since we did not improve compared to the previously used setting (see Table 7.12), in
terms of travel costs or the percentage of planned customers. However, when we use the joint
cost approximation model for giving incentives to multiple time slots with our simple incentive
policy, we can improve, with slightly less travel and waiting time and a higher percentage of
planned customers, compared to the best performing strategy shown in Table 7.13. Compared
to the situation without incentives we save 7.1% in travel time per customer and 5.6% in travel
distance per customer. Additionally, we can plan 0.7% more customers.

Table 7.14: Simulation run statistics for the European e-grocery retailer case with
the combined cost approximation, using 2 replications.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No
incentive

80.4% ±0.04% 5.6 ±0 N/A N/A 5.62 ±0.02 0.03 ±0.01 3.39 ±0.05

IC & RFR
Cheap

80.7% ±0.1% 5.6 ±0 85.2% ±0.8% 3.0 ±0.02 5.32 ±0.06 0.03 ±0.02 3.29 ±0.08

IC & RFR
Expensive

80.4% ±0.2% 5.2 ±0.05 86.2% ±1.3% 3.0 ±0.02 5.99 ±0.10 0.02 ±0 3.78 ±0.12

IC & RFR
simple policy

(W = 1)
81.0% ±0.3% 5.6 ±0.02 58.7% ±0.1% 1.4±0.02 5.22 ±0.03 0.02 ±0 3.20 ±0

Figure 7.12 depicts the average absolute incentive that was given to all time slots, the line is
a moving average (window = 15). This figure indicates how much difference between time slots,
in terms of costs, is recognised by the joint cost approximation policy. The vertical dotted line
shows the moment on the booking horizon where the switch from the insertion costs policy to
the joint model is made.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

0.2

0.4

0.6

0.8

1

Model switch

Booked customers in order of arrival

A
ve

ra
ge

ab
so

lu
te

ti
m

e
sl

o
t

in
ce

n
ti

ve

RFR & IC (W = 1)

Figure 7.12: Average absolute incentive over all feasible time slots during the
booking horizon, given by a joint cost approximation strategy of first only insertion
costs, and later a random forests model, including insertion costs as feature, for a
single replication of the European e-grocery retailer case.

61

We observe that the incentives given with insertion costs (first part of horizon) are mostly
between two bounds, with many observations in the middle, i.e., often incentives with similar
magnitude are given. Also, we sometimes see that no difference between time slots is recognised,
and no incentive is given. After the model switch, we still observe that incentives are roughly
between two bounds, but the average incentives are less centred around one mean, i.e., more
spread and slightly more erratic.

7.6 Conclusions

In this chapter, we showed the computational results of our three experiments. First, we showed
the performance of our regression model on validation data. Next, we applied our regression
model to a case where infinitely flexible customers are nudged to the cheapest or most expensive
time slot. We showed the relevance of time slot research and the added value of dynamic time
slot pricing. Also, we showed in what situations our regression model performs the best. Next,
we applied the regression model and showed the performance on real case data from an European
e-grocery retailer. Finally, we showed the performance of a joint cost approximation model that
combines insertion costs with random forests regression.

62

Chapter 8

Conclusions and Recommendations

In this chapter, we summarize our results, draw conclusions and make recommendations. In
Section 8.1 we state our main findings, answer our research questions and discuss the results
and limitations. Next, in Section 8.2 we do recommendations to ORTEC based on our findings
and discuss opportunities for further research.

8.1 Conclusions

For this research, we explored the possibilities for improving time slot solutions in terms of
transportation costs. Our main focus was finding methods that can approximate the costs of
adding a customer to a time slot, and subsequently we studied the effects of dynamic pricing
based on these cost approximations.

To model customer behavior without the need of a behavioral study, we developed a para-
metric rank-based customer choice model for which we can influence the ranking of time slots
by giving incentives or penalties. We developed a simple incentive policy to test our customer
choice model and time slot cost approximation.

Our solution approach for approximating costs of time slots is centred around the pre-
diction of downstream transportation costs using regression models. To improve prediction
and reduce noise, we aggregated customers in area-time slot combination (ATC) clusters, after
which we trained regression models to predict the travel times to serve an ATC-cluster. To
train our model, we divided the downstream travel time over all customers using a method
we call “half-edge partitioning”. We used a limited set of features as input for our regression
models. Examples of these features are: the number of customers in an ATC, the number of
days between customer arrival and the end of the horizon, the distance between the depot and
the ATC-centroid, the variance of the angles between customers in an ATC and the depot and
the average distance between customers in an ATC. We showed the results for both random
forests and neural network regression models for this research.

For validation, we used a discrete-event simulation model that simulates the complete book-
ing horizon for time slot booking on a single delivery day. The model is based on the model as
presented in Visser et al. (2019).

We tested our proposed solution on two different cases. First, we ran several experiments
with a synthetic case, i.e., a case with generated data in different spatial variants and using
both a time constrained variant and a capacity constrained variant. For the second case, we
used data from an European e-grocery retailer.

We answered our research questions by means of three experiments. First, we studied the
performance of both random forests and neural networks on a validation set of the synthetic
case. We found that our model performs well on static data, i.e., a model that is trained and
tested on data after the end of the booking horizon. However, during the booking horizon the
feature values take different values, e.g., when there are still few customers in an ATC-cluster.

63

When testing on the complete horizon, our regression model performance dropped. We proposed
a method that splits the booking horizon in partitions, on which different regression models can
be trained. We showed that this method potentially performs better, but requires more data
and can be more sensitive to noise. Since random forests and neural networks performed similar,
we only displayed the performance of random forests for further experiments.

In the second part of experiment 1, we showed the performance of our proposed models on
a hypothetical case where customers are infinitely flexible and always go to the time slot we
give an incentive to, either the cheapest or most expensive. We compared our three proposed
random forests models (RFR) with the cheapest insertion costs (IC) method as currently in use
by the ORTEC Time Slotting Service. First, we demonstrated the relevance of time slotting
research. When we compared the situation without time slots, i.e., customers can be planned the
whole day, with the situation with time slots, we saw a decrease of the percentage of customers
that can be served (∼ 20%), and an increase in travel time, waiting time and distance per
customer of 93.6%, 89.5% and 52.5%, respectively. Second, we showed the importance of time
slot pricing. When giving incentives, we can plan 6% more customers and decrease travel time,
waiting time and distance per customer by 11% compared to the situation without incentives.
Our random forests model often performed similar or worse compared to the insertion costs
method. We observed that especially for the capacity constrained variant, where less customers
can be planned, our model trumps the insertion costs method. When there are many customers,
and all ATC-clusters are populated, the effect of a time slot incentive policy is relatively small.
However, when the area of operation is more sparsely populated, the effect of adding a customer
to a time slot may be larger, since a vehicle might has to do a large detour. To further illustrate
this, we conducted an additional experiment with a fleet consisting of a single vehicle, serving
a smaller area. With this additional experiment we confirmed our general idea and showed
the value of our model: our model can serve a similar number of customers compared to the
insertion costs method, but reduces the travel time per customer by 7.3% and the distance
travelled per customer by 6.3%.

Next, we showed an iterative method for improving prediction models. We trained all our
models on data without nudging. During the simulation, we did nudge customers. Therefore,
there is a difference between the training environment and the application environment. We
propose a model that obtains data and retrains predictive models in an iterative fashion. In
our experiment, we showed the potential of this method. We showed a significant increase in
prediction quality (R2) and an increase in performance in terms of percentage of customers that
can be planned (+3.1%) and travel and waiting time (-4.2%).

For experiment 2, we conducted tests for a more realistic configuration where multiple time
slots are offered and need to get an incentive according to the cost approximation method. We
used our simple incentive policy to test how good our regression model could predict the cost of
a time slot relative to other time slots. We observed that the performance of both the insertion
costs method and our random forests model is roughly in-between the performance of nudging
the cheapest and most expensive time slot, respectively. However, after applying our iterative
model improvement framework, we observed an improvement and we could match or improve
compared to the cheapest insertion costs method. We also showed that our model returns less
erratic costs predictions in comparison with IC, as the incentives cover a smaller range of values
during the complete booking horizon.

For experiment 3, we tested our regression model and simple incentive policy on the Eu-
ropean e-grocery retailer case. This case is larger in terms of customers and fleet, and has a
distinct customer dispersion. Also, the instances for this case have multiple depots and use a
heterogeneous fleet. In the situation with infinitely flexible customers, IC could save in travel
times (−15.7%) and distance (−15.0%) per customer, while planning slightly more customers
compared to the case without incentives. Our regression model planned a similar number of
customers, and saved 7.3% in travel time and 11.2% in distance per customer, respectively.

64

For the second part of experiment 3, we showed performance using our simple incentive policy.
We observed an increase in the number of planned customers (+0.7%) and a significant saving
in travel time per customer (−6.2%) and distance travelled per customer (−5.3%), compared
with the situation without incentives. Also, our RFR model is more “active” in nudging, i.e.,
more customers are nudged to a different time slot and are nudged further away from their first
preference, compared to the insertion costs policy. Although our RFR model showed better
predictive performance on the case in comparison with the synthetic case, we did not see a sim-
ilar improvement in terms of operational costs. This indicates that only predicting operational
downstream costs might not be enough as input for an effective incentive policy.

Finally, we proposed a new cost approximation model that combines cheapest insertion and
our random forests model. In the first part of the booking horizon this joint model only uses
cheapest insertion costs, in the second part of the booking horizon it uses random forests with
cheapest insertion as new feature. This joint random forests model does not calculate feature
values over ATC-clusters as before, but calculates over single customer-time slot combinations.
Especially in the configuration for which we use our simple incentive policy, we saw an improve-
ment compared to solely using the IC or RFR model. We could plan 0.7% more customers and
save 7.1% in travel times, compared to the situation without incentives.

We only studied the effect of our solution approach on a single delivery day. Therefore, we
made the assumption that customer time slot choice is independent from offerings on different
delivery days. In practice, this is probably not the case. Also, we modelled customer behavior
in a practical but simplistic way. Customers received an incentive sensitivity score of 1 for most
experiments, which means that we assumed that customers are always fully sensitive to time
slot incentives. In reality, some customers might be indifferent to incentives. Customer behavior
was limited further, since in reality customer behavior might be more complex and cannot be
captured by a parametric rank-based model. Because of these limitations, we cannot be certain
of the actual effects of time slot incentives. We only showed the potential effect for a best-case
scenario where customers are fully cooperative. With our European e-grocery retailer case, we
showed a realistic case, in terms of customer data and fleet and depot structure. However, the
way we chose to divide downstream costs over customers (half-edge partitioning) further limits
our results, since a different method might render different performance.

We can conclude that dynamic time slot pricing has added value for time slotting. Significant
potential savings can be made when an effective incentive strategy is used. Our regression model
performs well, especially for instances with clustered customers or sparsely populated areas.
We observed that in most cases, our regression model struggles to generalize far away from the
training data. As already mentioned in related work (Yang et al., 2016; Klein et al., 2018), only
considering the transportation costs as input for an incentive strategy restrains the potential of
dynamic pricing. Although downstream transportation costs are an important factor, delivery
revenues are important too. When a customer is planned for a time slot, opportunity costs are
incurred, since the capacity for future customers is decreased. This is especially relevant when
the fleet capacity is reaching its limits at the end of the booking horizon. Although we study
the correlation between customer time slots and downstream costs, there is a lacking causality
between giving incentives and downstream costs. Hence, the dynamic nature and complexity
of time slotting causes a disconnect of our time slot cost approximation, time slot incentive
policy and the final downstream costs. Our rudimentary incentive policy fails to capture the
full potential of a time slot pricing policy, when comparing with the performance of nudging
the cheapest time slot with an infinitely flexible customer. In Section 8.2 we further discuss this
issue and possible further research.

Summarizing, the contributions of this thesis to existing scientific literature are: (i) our cost
approximation regression model that can be used for estimating the costs of time slots and can be
applied to general VRPTW problems where customer selection is required, (ii) the application
of our regression model to the attended home delivery case, (iii) the rank-based customer choice

65

model that combines a ranking-based choice model with a utility theory approach, and (iv)
the application of a commercial vehicle routing solver and time slot allocation software to our
problem. Our contributions to practice are: (i) the results that show the potential of dynamic
pricing for time slotting, and (ii) the practical implications of using regression models for time
slotting, e.g., the way we use data for training, the features we use, and how we evaluate our
models.

8.2 Recommendations and Further Research

Based on the conclusions of this research, we formulate several recommendations to ORTEC.
Furthermore, we point to several subjects for further research.

With our experiments, we showed that giving incentives can potentially decrease costs, and
therefore we advice to implement a time slot incentive policy. We showed that the currently in
use insertion costs method has its limitations, but can be used as a basic cost approximation
policy. On the short-term, if a dynamic pricing policy needs to be implemented, we recommend
to use the insertion costs method as main input for an incentive policy. Most retailers have
their own business logic and time slot pricing policy that can be linked to the insertion costs
calculation. However, the insertion costs returns highly erratic costs approximations, therefore
it might not be the best method to directly link it to an incentive policy.

On the longer-term, we believe it is beneficial to use a different method than insertion costs
as input for an incentive policy. We showed a possible way to combine insertion costs with a
machine learning model, which could be an interesting first step towards a more advanced cost
approximation model. However, more research needs to be conducted to find an appropriate
method. Our regression model can be a starting point for more advanced methods. It will be
necessary to obtain more information from retailers about customer behavior and preferences
in terms of the balance between transportation costs and service levels. The importance of
incentives during the booking horizon may vary, e.g., incentives may only be important at the
last few days before the cutoff time. This needs more research. Also, the cost approximation
method needs to be able to deal with complex settings, e.g., overlapping time slots. Regardless
the method, we advice to review ethical concerns related to influencing customer behavior,
before implementing an automated dynamic time slot incentive policy.

It could be interesting for ORTEC to look at methods that integrate cost approximations
and time slot incentives in a single solution algorithm. Although advanced algorithms for each
separate part can help to decrease costs and increase service levels, as shown in this thesis,
it seems that more savings can be made, in terms of both operational as computational costs,
when algorithms are integrated. As example, for our research we separated the two components,
i.e., the cost approximation method is used as decision support for a separate incentive policy.
However, it might be beneficial to change this two-phase approach to a single-phase approach,
by developing an algorithm that can use a new customer arrival as input, and give time slot
incentives as output.

Further research can be done on several topics. First, we neglected to elaborate on the
aggregation structure used for aggregating customers in spatial areas. We used a method that
produced acceptable aggregation areas, but we did not study different aggregation structures,
nor did we develop an automatic method for aggregating areas. Nevertheless, the way customers
are assigned to areas has major influence on the performance of cost predictions. Therefore,
further research could be done into area aggregation techniques, e.g., using adaptive grids
that automatically identify customer clusters. The definition of downstream costs is another
interesting aspect that requires more research, since the half-edge partitioning method we used
might be improved to consider more than only travel time or distance.

As mentioned, we observed that for our approach there is a disconnect between costs ap-
proximation, the incentive policy and the (downstream) costs. A method that integrates these

66

three aspects could be beneficial. The effects of pricing decisions cannot be easily observed and
are hard to capture in a standard Bellman-equation with direct and future costs. The use of
Monte Carlo simulation in combination with (deep) reinforcement learning methods could be an
interesting path for further research. A policy based method could be learned to give incentives
by doing many Monte Carlo simulations. Difficulties that have to be overcome can be mainly
found in the training procedure, since the computational costs are high and customer behavior
modelling is complex. Also, reinforcement learning models will need to be able to generalize
far away from their training data, which might be difficult for specific instances. The eventual
cost estimation influences the incentive policy, and in turn the incentive decisions influence the
cost estimates during the booking horizon. A reinforcement learning model could be valuable
for learning this explicit relationship.

67

References

Niels Agatz, Ann Melissa Campbell, Moritz Fleischmann, and Martin Savelsbergh. Chal-
lenges and opportunities in attended home delivery. In Bruce Golden, S. Raghavan, and
Edward Wasil, editors, The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, pages 379–396. Springer US, Boston, MA, 2008. ISBN 978-0-387-77778-8. doi:
10.1007/978-0-387-77778-8-17.

Niels Agatz, Ann Campbell, Moritz Fleischmann, and Martin Savelsbergh. Time slot manage-
ment in attended home delivery. Transportation Science, 45(3):435–449, 2011. ISSN 00411655,
15265447.

Niels Agatz, Ann Campbell, Moritz Fleischmann, Jo Nunen, and Martin Savelsbergh. Revenue
management opportunities for internet retailers. Journal of Revenue & Pricing Management,
12:128–138, 03 2013. doi: 10.1057/rpm.2012.51.

Niels Agatz, Yingjie Fan, and Daan Stam. Going green: the effect of green labels on delivery
time slot choices. ERIM report series research in management Erasmus Research Institute of
Management, (ERS-2020-009-LIS), July 2020. URL http://hdl.handle.net/1765/128912.

Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, Cham, 2018. ISBN 978-3-
319-94462-3. doi: 10.1007/978-3-319-94463-0.

Akamai. Akamai online retail performance report: Milliseconds are critical.
https://www.akamai.com/uk/en/about/news/press/2017-press/ akamai-releases-spring-
2017-state-of-online-retail-performance-report.jsp, 2017.

Kursad Asdemir, Varghese S. Jacob, and Ramayya Krishnan. Dynamic pricing of multiple home
delivery options. European Journal of Operational Research, 196(1):246 – 257, 2009. ISSN
0377-2217. doi: 10.1016/j.ejor.2008.03.005.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onnx, 2019.

B.M. Baker and M.A. Ayechew. A genetic algorithm for the vehicle routing problem. Computers
and Operations Research, 30(5):787–800, 2003. doi: 10.1016/S0305-0548(02)00051-5.

J. Banks, J. S. Carson, B. L. Nelson, and D. Nicol. Discrete-Event System Simulation. Prentice
Hall, 5 edition, 2010. ISBN 0136062121.

Jillian Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many points.
Mathematical Proceedings of the Cambridge Philosophical Society, 55(4):299–327, 1959. doi:
10.1017/S0305004100034095.

T. Bektas. The multiple traveling salesman problem: An overview of formulations and solution
procedures. Omega, 34(3):209–219, 2006. doi: 10.1016/j.omega.2004.10.004.

68

http://hdl.handle.net/1765/128912
https://github.com/onnx/onnx
https://github.com/onnx/onnx

J.E. Bell and P.R. McMullen. Ant colony optimization techniques for the vehicle routing prob-
lem. Advanced Engineering Informatics, 18(1):41–48, 2004. doi: 10.1016/j.aei.2004.07.001.

Peter Belobaba. Air travel demand and airline seat inventory management. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, 1987.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering, 99:300 – 313,
2016. ISSN 0360-8352. doi: 10.1016/j.cie.2015.12.007. URL http://www.sciencedirect.

com/science/article/pii/S0360835215004775.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN 0885-6125. doi:
10.1023/A:1010933404324.

Glen Van Brummelen. Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry.
Princeton University Press, 2013. ISBN 9780691148922.

J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A.A. Juan. Rich vehicle routing problem:
Survey. ACM Computing Surveys, 47(2), 2014. doi: 10.1145/2666003.

Ann Campbell and Martin Savelsbergh. Incentive schemes for attended home delivery services.
Transportation Science, 40:327–341, 08 2006. doi: 10.1287/trsc.1050.0136.

Ann Melissa Campbell and Martin W. P. Savelsbergh. Decision support for consumer direct
grocery initiatives. Transportation Science, 39(3):313–327, 2005. doi: 10.1287/trsc.1040.0105.

Quinten Cederhout. The impact on the final delivery schedule of different procedures that handle
arriving customers during route optimization in a real-time dynamic time slot management
system. Master’s thesis, Delft University of Technology, 2020. URL http://resolver.

tudelft.nl/uuid:08b61211-bfd7-4630-81a0-2b5595a69f0c.

T. Chien. Operational estimators for the length of a traveling salesman tour. Comput. Oper.
Res., 19:469–478, 1992.

Nicos Christofides and S. Eilon. Expected distances in distribution problems. Journal of the
Operational Research Society, 20:437–443, 1969.

G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research, 12(4):568–581, 1964. doi: 10.1287/opre.12.4.568.

Catherine Cleophas and J. Ehmke. When are deliveries profitable? Business & Information
Systems Engineering, 6:153–163, 2014.

Jean-François Cordeau, Gilbert Laporte, Martin W.P. Savelsbergh, and Daniele Vigo. Chapter 6
vehicle routing. In Cynthia Barnhart and Gilbert Laporte, editors, Transportation, volume 14
of Handbooks in Operations Research and Management Science, pages 367–428. Elsevier, 2007.
doi: https://doi.org/10.1016/S0927-0507(06)14006-2.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):
791–812, 1958. ISSN 0030364X, 15265463.

Carlos F. Daganzo. Modeling distribution problems with time windows: Part i. Transportation
Science, 21(3):171–179, 1987. doi: 10.1287/trsc.21.3.171. URL https://doi.org/10.1287/

trsc.21.3.171.

Bradley Efron. Estimation and accuracy after model selection. Journal of the American Sta-
tistical Association, 109(507):991–1007, 2014. doi: 10.1080/01621459.2013.823775.

69

http://www.sciencedirect.com/science/article/pii/S0360835215004775
http://www.sciencedirect.com/science/article/pii/S0360835215004775
http://resolver.tudelft.nl/uuid:08b61211-bfd7-4630-81a0-2b5595a69f0c
http://resolver.tudelft.nl/uuid:08b61211-bfd7-4630-81a0-2b5595a69f0c
https://doi.org/10.1287/trsc.21.3.171
https://doi.org/10.1287/trsc.21.3.171

Jan Fabian Ehmke and Ann Melissa Campbell. Customer acceptance mechanisms for home
deliveries in metropolitan areas”. European Journal of Operational Research, 233(1):193 –
207, 2014. ISSN 0377-2217. doi: 10.1016/j.ejor.2013.08.028.

S. Eilon, C. D. T. Watson-Gandy, N. Christofides, and R. de Neufville. Distribution
management-mathematical modelling and practical analysis. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-4(6):589–589, 1974. doi: 10.1109/TSMC.1974.4309370.

Nasser A. El-Sherbeny. Vehicle routing with time windows: An overview of exact, heuristic and
metaheuristic methods. Journal of King Saud University - Science, 22(3):123 – 131, 2010.
ISSN 1018-3647. doi: 10.1016/j.jksus.2010.03.002.

J. Elith, J. R. Leathwick, and T. Hastie. A working guide to boosted regression trees. Journal of
Animal Ecology, 77(4):802–813, 2008. doi: https://doi.org/10.1111/j.1365-2656.2008.01390.x.

Miguel Andres Figliozzi. Planning approximations to the average length of vehicle routing
problems with varying customer demands and routing constraints. Transportation Research
Record, 2089(1):1–8, 2008. doi: 10.3141/2089-01. URL https://doi.org/10.3141/2089-01.

F.P. Goksal, I. Karaoglan, and F. Altiparmak. A hybrid discrete particle swarm optimization
for vehicle routing problem with simultaneous pickup and delivery. Computers and Industrial
Engineering, 65(1), 2013.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, USA, 2nd
edition, 1998. ISBN 0132733501.

Florent Hernandez, Michel Gendreau, and Jean-Yves Potvin. Heuristics for tactical time slot
management: a periodic vehicle routing problem view. International Transactions in Opera-
tional Research, 24(6):1233–1252, 2017. doi: 10.1111/itor.12403.

A Hindle and D Worthington. Models to estimate average route lengths in different geographical
environments. Journal of the Operational Research Society, 55(6):662–666, 2004. doi: 10.
1057/palgrave.jors.2601751. URL https://doi.org/10.1057/palgrave.jors.2601751.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Sta-
tistical Learning: with Applications in R. Springer, 2013. URL https://faculty.marshall.

usc.edu/gareth-james/ISL/.

Eoghan Keany. Boruta-shap: Borutashap. Nov 2020. doi: 10.5281/zenodo.4247618.

Robert Klein, Jochen Mackert, Michael Neugebauer, and Claudius Steinhardt. A model-based
approximation of opportunity cost for dynamic pricing in attended home delivery. OR Spec-
trum, 40:969 – 996, 12 2018. doi: 10.1007/s00291-017-0501-3.

Robert Klein, Michael Neugebauer, Dimitri Ratkovitch, and Claudius Steinhardt. Differentiated
time slot pricing under routing considerations in attended home delivery. Transportation
Science, 53(1):236–255, 2019. doi: 10.1287/trsc.2017.0738.

G.D. Konstantakopoulos, S.P. Gayialis, and E.P. Kechagias. Vehicle routing problem and re-
lated algorithms for logistics distribution: a literature review and classification. Operational
Research, 2020. doi: 10.1007/s12351-020-00600-7.

Y. Kuo and C.-C. Wang. A variable neighborhood search for the multi-depot vehicle routing
problem with loading cost. Expert Systems with Applications, 39(8):6949–6954, 2012. doi:
10.1016/j.eswa.2012.01.024.

70

https://doi.org/10.3141/2089-01
https://doi.org/10.1057/palgrave.jors.2601751
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://faculty.marshall.usc.edu/gareth-james/ISL/

Miron B. Kursa and Witold R. Rudnicki. Feature selection with the boruta package. Journal
of Statistical Software, 36(11):1–13, 2010. ISSN 1548-7660. doi: 10.18637/jss.v036.i11.

Averill M. Law. Simulation Modeling & Analysis. McGraw-Hill, New York, NY, USA, 5 edition,
2015.

Tak C. Lee and Marvin Hersh. A model for dynamic airline seat inventory control with multiple
seat bookings. Transportation Science, 27(3):252–265, 1993. ISSN 00411655, 15265447.

J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling problems.
Networks, 11(2):221–227, 1981. doi: 10.1002/net.3230110211.

Martijn R.K. Mes and Arturo Eduardo Perez Rivera. Approximate dynamic programming
by practical examples. In Richard Boucherie and Nico M. van Dijk, editors, Markov De-
cision Processes in Practice, number 248 in International Series in Operations Research
& Management Science, pages 63–101. Springer, mar 2017. ISBN 978-3-319-47766-4. doi:
10.1007/978-3-319-47766-4 3.

F.A.T. Montané and R.D. Galvão. A tabu search algorithm for the vehicle routing problem
with simultaneous pick-up and delivery service. Computers and Operations Research, 33(3):
595–619, 2006. doi: 10.1016/j.cor.2004.07.009.

Pedro Augusto Munari. A generalized formulation for vehicle routing problems. ArXiv,
abs/1606.01935, 2016.

D. Nicola, R. Vetschera, and A. Dragomir. Total distance approximations for routing solutions.
Computers & Operations Research, 102:67 – 74, 2019.

ORTEC. About ORTEC, 2020a. URL https://ortec.com/en-us/about-us. [Online; accessed
29-July-2020].

ORTEC. ORTEC Technology general onboarding information, 2020b.

ORTEC Math Innovation Team. Math innovation team, why, what and how, 2020.

I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle rout-
ing problem. Annals of Operations Research, 41(4):421–451, 1993. doi: 10.1007/BF02023004.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

C. Dennis Pegden, Randall P. Sadowski, and Robert E. Shannon. Introduction to Simulation
Using SIMAN. McGraw-Hill, Inc., USA, 2nd edition, 1995. ISBN 0070493200.

Kivan Polimis, Ariel Rokem, and Bryna Hazelton. Confidence intervals for random forests in
python. Journal of Open Source Software, 2(1), 2017.

Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality
(Wiley Series in Probability and Statistics). Wiley-Interscience, USA, 2007. ISBN 0470171553.

Warren B. Powell and Ilya O. Ryzhov. Optimal Learning and Approximate Dynamic Program-
ming, chapter 18, pages 410–431. John Wiley & Sons, Ltd, 2013. ISBN 9781118453988.

C. Prins, P. Lacomme, and C. Prodhon. Order-first split-second methods for vehicle routing
problems: A review. Transportation Research Part C: Emerging Technologies, 40:179–200,
2014. doi: 10.1016/j.trc.2014.01.011.

71

https://ortec.com/en-us/about-us

Francesc Robuste, Carlos F. Daganzo, and Reginald R. Souleyrette. Implementing vehicle
routing models. Transportation Research Part B: Methodological, 24(4):263 – 286, 1990.

Witold R. Rudnicki, Marcin Kierczak, Jacek Koronacki, and Jan Komorowski. A statistical
method for determining importance of variables in an information system. In Salvatore Greco,
Yutaka Hata, Shoji Hirano, Masahiro Inuiguchi, Sadaaki Miyamoto, Hung Son Nguyen, and
Roman S lowiński, editors, Rough Sets and Current Trends in Computing, pages 557–566,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-49842-1.

André Snoeck, Daniel Merchán, and Matthias Winkenbach. Revenue management in last-mile
delivery: state-of-the-art and future research directions. Transportation Research Procedia,
46:109 – 116, 2020. ISSN 2352-1465. doi: 10.1016/j.trpro.2020.03.170. The 11th International
Conference on City Logistics, Dubrovnik, Croatia, 12th - 14th June 2019.

Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254–265, 1987. doi: 10.1287/opre.35.2.254.

Arne K. Strauss, Robert Klein, and Claudius Steinhardt. A review of choice-based revenue
management: Theory and methods. European Journal of Operational Research, 271(2):375 –
387, 2018. ISSN 0377-2217. doi: 10.1016/j.ejor.2018.01.011.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Kenneth E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2
edition, 2009. doi: 10.1017/CBO9780511805271.

Garrett J. van Ryzin and Kalyan T. Talluri. An Introduction to Revenue Management, chapter
Chapter 6, pages 142–194. INFORMS tutorials in Operations Research, 2005. doi: 10.1287/
educ.1053.0019.

Thomas Visser, Niels Agatz, and Remy Spliet. Simultaneous customer interaction in online
booking systems for attended home delivery. Technical Report ERS-2019-011-LIS, ERIM
report series research in management Erasmus Research Institute of Management, October
2019. URL http://hdl.handle.net/1765/120585.

Stefan Wager, Trevor Hastie, and Bradley Efron. Confidence intervals for random forests: The
jackknife and the infinitesimal jackknife. Journal of machine learning research : JMLR, 15:
1625–1651, 05 2014.

M. H. J. Webb. Cost functions in the location of depots for multiple-delivery journeys. Journal
of the Operational Research Society, 19(3):311–320, 1968. doi: 10.1057/jors.1968.74. URL
https://doi.org/10.1057/jors.1968.74.

Xinan Yang and Arne Strauss. An approximate dynamic programming approach to attended
home delivery management. European Journal of Operational Research, 263:935–945, 06 2017.
doi: 10.1016/j.ejor.2017.06.034.

Xinan Yang, Arne K. Strauss, Christine S. M. Currie, and Richard Eglese. Choice-based demand
management and vehicle routing in e-fulfillment. Transportation Science, 50(2):473–488, 2016.
doi: 10.1287/trsc.2014.0549.

Hannu Yrjölä. Physical distribution considerations for electronic grocery shopping. International
Journal of Physical Distribution and Logistics Management, 31(10):746–761, 2001. ISSN 0960-
0035.

72

http://hdl.handle.net/1765/120585
https://doi.org/10.1057/jors.1968.74

Bahar Çavdar and Joel Sokol. A distribution-free tsp tour length estimation model for random
graphs. European Journal of Operational Research, 243(2):588 – 598, 2015. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2014.12.020. URL http://www.sciencedirect.

com/science/article/pii/S0377221714010212.

73

http://www.sciencedirect.com/science/article/pii/S0377221714010212
http://www.sciencedirect.com/science/article/pii/S0377221714010212

Appendices

74

Appendix A

Business Process with the Solution
Approach

Figure A.1 shows the complete business process with ORTEC software, as depicted before in
Figure 2.1. In the orange box, we indicate how our solution approach, cost approximation and
time slot incentives, is fitted inside the current process. After a feasibility check by the ORTEC
Time Slotting Service (OTSS) a cost approximation is done for all feasible time slots, and all
feasible time slots are given an incentive. Next, the time slots are returned to the customer,
who can make a choice for the delivery moment.

Figure A.1: Customer ordering process (business process perspective) including
our solution approach.

75

Appendix B

Discrete-event Simulation Model

In this chapter we show the practical elements of the discrete-event simulation model in more
detail. In Section B.1 we elaborate on the vital elements of the simulation model and in
Section B.2 we describe the simulation input data.

B.1 Simulation Model Elements

The discrete-event simulation consist of several key elements. In this section, we discuss the
vital elements: the system state, event structure, simulation clock, and event routine.

An event can be defined as an instantaneous occurrence that might change the state of a
system (Law, 2015). We summarize all possible events and their potential effect on the system
state in Table B.1.

Table B.1: Summary of all events in the time slot simulation tool.

Event Event description

TSOfferRequestEvent
Customer arrives, call OTSS for

insertion feasibility and costs

TSOfferResponseEvent
Customer chooses a delivery

time slot or leaves system

TSBookingRequestEvent
Request a new customer

booking in OTSS

TSBookingResponseEvent
Book new customer or

return a blocking of the customer

TSBookingApplyEvent
Update OTSS state with

new customer and check if a
new ORS call should be started

RouteOptimizationRequestEvent
Request a new intermittent

ORS optimization

RouteOptimizationResponseEvent
Obtain new routing schedule

from ORS after a call

RouteOptimizationApplyEvent
Apply the ORS schedule to OTSS,

deal with conflicts if applicable

FinalRouteOptimizationEvent
Call a final ORS optimization

after the cutoff time

The system state is defined as all variables that are used to describe the system at a certain
point in time (Law, 2015). Our system state consists of (i) all currently arrived and booked
customers including all their customer characteristics as booked in the ORTEC Time Slotting

76

Service (OTSS), (ii) all (intermittent) routing schedules as constructed by OTSS or the ORTEC
Route Optimization Service (ORS), and (iii) all other performance indicators tracked during
the simulation. As becomes apparent from Table B.1, the simulation model interacts with the
two ORTEC products (OTSS for time slotting and ORS for routing). We describe the differ-
ent events following the simulation flowchart, as shown in Figure B.1. Also see Figure 2.1 for

Figure B.1: Flowchart of the discrete-event simulator.

a business process view of the customer order process. The first event, a TSOfferRequest, is
triggered when a new arrived customer requests a time slot. A call is made to OTSS to obtain
all feasible time slots and the corresponding insertion costs. No system state changes are made
yet. The TSOfferResponse event is a customer choice related event, since it records the choice
of the customer: choose one of the offered time slots, or leave the system without choosing a
time slot. When the customer leaves the system without a choice, the next event (triggered
by the simulation clock) is a new customer arrival or the end of the booking horizon. When

77

the customer accepted a time slot, a new booking in the OTSS is requested (TSBookingRe-
quest), which in turn triggers a TSBookingApply, in this event the OTSS state is updated with
a new customer booking. If trigger criteria are met (e.g., trigger every 20th customer), the TS-
BookingApply event in turn triggers a new RoutoptimizationRequest event. The current OTSS
state (all booked customers) are send to ORS and a new optimized schedule is constructed
and obtained after a RouteOptimizationResponse event. An ORS call can, certainly when the
VRPTW instance is large, take a long time. In practice, an ORS request can take up to 45 min-
utes. During this time, new customers might have arrived and have been booked in the OTSS
state. When ORS is finished, the OTSS state needs to be merged with the ORS schedule. For
more information about this merge procedure, we refer to Cederhout (2020). Depending on
the model settings, a RouteOptimizationRequest can be triggered by the simulation clock, i.e.,
when the settings for a trigger are time related and not related to new customer arrivals.

Only when no new customer can arrive, after the cutoff time, the final route optimization
event is triggered. After this event, the definitive routing plan is obtained and the simulation
ends. Although the events in Figure B.1 have been catagorized to OTSS-related or ORS-
related, this does not mean that events are solely executed by ORS or OTSS. For instance, a
RouteOptimizationApply event is triggered by a newly obtained ORS schedule, but is executed
by OTSS. Note that OTSS keeps track of its own routing schedule, constructed using cheapest
insertion, see Chapter 2 for the full explanation.

B.2 Simulation Model Input Data

The input data for the simulation tool consist of two different structures: a configuration file and
an instance file. The configuration file sets the settings for ORS and OTSS. This file contains
a distinct “recipe” of heuristics and/or metaheuristics that are used to obtain an optimized
routing schedule. Also, the external trigger, if any, and merge strategy are defined in this
structure (see Figure B.1).

The instance file structure contains all information needed for a simulation run. This in-
cludes a list of the following four elements: (i) the start and end time of the simulation, (ii) all
data related to a region of operation (we only consider a single region per simulation). This
information consists of the regional depot coordinates and the available time slots in the re-
spective region. The third element (iii) consist of all routing information. For the homogeneous
fleet, the following data is stated: earliest start and finish time of the drivers, capacities (for
different type of products), costs per distance unit, costs per hour of operation, startup costs of
a vehicle, the start and finish location (depot), speed factor, and allowed slack before or after the
earliest start and finish time in minutes. Finally, the fourth element (iv) are all customers and
their characteristics. For this simulation, most random customer data is generated before the
simulation. A customer entity consist of the customer location, order quantities (of all different
product types), service time duration in seconds, offer request time (event time), time needed
to select a time slot, and region identification code. Included in our customer choice model, a
customer also has a list of time slot preferences, listed in descending order, from highest base
score to lowest base score. The order of this list can be internally altered by time slot incentives,
depending on the customer incentive sensitivity (see Section 4.2).

78

Appendix C

Hyperparameters for Random
Forests and Neural Networks

Table C.1: Random forests hyperparameters found by exhaustive grid search with
5-fold cross validation (N is the total number of features).

Model ID
Number of

trees
Split

criterion
Max.

tree depth
Min. samples
for splitting

Min. samples
for terminal node

Max. features
for splitting

RFR (i) R 1000 MSE 20 2 1 N

RFR (i) RC 1000 MSE 20 3 1 N

RFR (ii) R 1000 MSE 15 5 3
√
N

RFR (ii) RC 1000 MSE 17 5 3
√
N

RFR (iii) R 1000 MSE 11 5 2 log(N)

RFR (iii) RC 1000 MSE 13 2 3 log(N)

RFR (ii) 1 vehicle 1000 MSE 19 2 1 N

RFR European
retailer

1000 MSE 10 3 2
√
N

RFR & IC
European retailer

1000 MSE 12 2 1 N

Table C.2: Neural networks hyperparameters found by exhaustive grid search with
5-fold cross validation.

Model ID
Number of

hidden layers
Number of nodes
per hidden layer

Activation
function

Weight
optimization

solver

Initial Learning
rate

Weight
updating

L2 penalty

R 2 (10,10) ReLU
Stochastic

gradient descent
0.001 Constant 0.0001

RC 2 (10,10)
Hyperbolic

tangent
Adam 0.001 N/A 0.0001

79

Appendix D

Feature Importance Analysis

Reporting feature scores directly is unreliable since the randomness in random forests can cause
large variances in feature importance scores. In random forests, the importance score for all
features is calculated using a Z score. To find feature importance, we cannot use this Z score
directly, as it is not directly related to the statistical significance of feature importance since
its distribution is not N(0, 1) (Rudnicki et al., 2006). Therefore, we use the Boruta method for
feature selection, which uses an iterative procedure of copying features and randomizing them to
remove the correlation with the target. These new features are called “shadow features”. The
Boruta algorithm compares the performance of features with shadow features and calculates
statistically significant Z scores. For a complete explanation of the Boruta algorithm, we refer
to Kursa and Rudnicki (2010).

D
ay

sU
n
ti

ll
C

u
to

ff
(F

1)

N
u

m
b

er
O

fC
u

st
om

er
s

(F
2)

C
en

tr
oi

d
T

oD
ep

ot
D

is
ta

n
ce

(F
3)

A
v
gD

is
tC

u
st

om
er

s
(F

4)

V
ar

D
ep

ot
C

u
st

om
er

B
ea

ri
n

g
(F

5)

A
v
gD

ep
ot

C
u

st
om

er
B

ea
ri

n
g

(F
6)

A
re

aI
D

(F
7)

T
im

eS
lo

tI
D

(F
8)

V
ar

T
S

P
op

u
la

ti
on

(F
9
)

D
is

tT
S

(F
10

)

N
u

m
b

er
O

fT
S

(F
11

)

10−1

100

F
ea

tu
re

im
p

or
ta

n
ce

Z
-S

co
re

D
ay

sU
n
ti

ll
C

u
to

ff
(F

1)

N
u

m
b

er
O

fC
u

st
om

er
s

(F
2)

C
en

tr
oi

d
T

oD
ep

ot
D

is
ta

n
ce

(F
3)

A
v
gD

is
tC

u
st

om
er

s
(F

4)

V
ar

D
ep

ot
C

u
st

om
er

B
ea

ri
n

g
(F

5)

A
v
gD

ep
ot

C
u

st
om

er
B

ea
ri

n
g

(F
6)

A
re

aI
D

(F
7)

T
im

eS
lo

tI
D

(F
8)

V
ar

T
S

P
op

u
la

ti
on

(F
9)

D
is

tT
S

(F
10

)

N
u

m
b

er
O

fT
S

(F
11

)

10−1

100

F
ea

tu
re

im
p

or
ta

n
ce

Z
-S

co
re

Figure D.1: Feature importance scores (Z-scores) from the Boruta algorithm with
Shapley values as internal importance measure using 25 trials, plotted on a loga-
rithmic scale. For both the R instances (left) and the RC instances (right), trained
on the full booking horizon

80

We use a variant of the Boruta algorithm that uses Shapley values as internal importance
measure, as using this statistic aids the process of finding global feature importance (Keany,
2020). Since we do not observe significant differences between the model trained on the complete
booking horizon and the models trained on separate parts of the booking horizon, we only report
the feature importance scores for the model trained on the complete booking horizon, for both
the R and RC instances. Figure D.1 shows the feature importance scores. We observe that
almost all features have high importance. Feature 10 (distance between booked time slots in
an area) and Feature 11 (number of time slots booked in an area) show lower scores. The
feature importance for both the area and time slot dummy features (F7 and F8) deviate, this is
caused by the vector structure of these features, i.e., certain areas or time slots might be more
important than others. For the R instances, the feature importance for Feature 7 and Feature
8 shows a larger deviation than for the RC instances, probably caused by the scattered nature
of the R instance type. We conclude that we can leave all features in the model, since F10 and
F11 still show high enough importance to have added value for the prediction.

81

Appendix E

Additional Experimental Results

Table E.1 shows the results of experiment 1 for the randomly scattered customers case with time
constraints. The results are similar to the RC case: cheapest insertion (IC) performs slightly
better than all RFR models. RFR (iii) seems the obtain the best results, with the lowest travel
time and the largest difference between the cheapest and most expensive time slot nudging
procedure.

Table E.1: Simulation run statistics on the randomly scattered instances with a
time restriction (R-T).

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No TS 100% ±0% N/A N/A N/A 9.06 ±0.11 0.38 ±0.05 6.97 ±0.12

No
incentive

79.9% ±0.7% 4.3 ±0.02 N/A N/A 17.61 ±0.29 0.74 ±0.05 14.83 ±0.33

IC
Cheap

85.1% ±0.9% 4.8 ±0.1 79.9% ±0.8% 2.5 ±0.02 15.69 ±0.29 0.65 ±0.09 13.13 ±0.29

IC
Expensive

76.3% ±0.3% 3.3 ±0.1 81.6% ±1.7% 2.5 ±0.01 18.91 ±0.13 0.59 ±0.07 16.11 ±0.11

RFR (i)
Cheap

79.9% ±1.5% 3.7 ±0.1 75.9% ±2.3% 1.3 ±0.06 17.40 ±0.56 0.54 ±0.07 14.70 ±0.47

RFR (i)
Expensive

79.0% ±1.2% 3.1 ±0.1 73.2% ±2.8% 2.1 ±0.1 17.74 ±0.50 0.53 ±0.07 15.12 ±0.61

RFR (ii)
Cheap

79.9% ±1.6% 3.4 ±0.1 73.9% ±2.1% 1.6 ±0.1 17.53 ±0.54 0.53 ±0.04 14.96 ±0.49

RFR (ii)
Expensive

79.9% ±1.2% 3.4 ±0.1 75.5% ±2.1% 1.7 ±0.1 17.76 ±0.45 0.54 ±0.06 15.19 ±0.44

RFR (iii)
Cheap

76.6% ±0.1% 3.1 ±0.03 79.4% ±1.2% 2.2 ±0.07 16.34±0.3 0.64 ±0.07 15.37 ±0.4

RFR (iii)
Expensive

76.6% ±0.1% 3.0 ±0.03 79.3% ±1.2% 2.3 ±0.07 18.63 ±0.3 0.71 ±0.09 16.73 ±0.4

Table E.2 shows the results for the randomly scattered instance with a capacity restric-
tion. Similar to the RC instances, RFR shows structural better performance than the cheapest
insertion costs. RFR (i) and RFR (ii) seem to obtain the best cost approximation.

82

Table E.2: Simulation run statistics on the randomly scattered instances with a
capacity restriction (R-C).

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

No TS 66.7% ±0% N/A N/A N/A 11.81 ±0.15 0.44 ±0.05 9.58 ±0.13

No
incentive

69.6% ±0.5% 4.1 ±0.03 N/A N/A 25.74 ±0.22 8.0 ±0.5 15.59 ±0.40

IC
Cheap

69.6% ±0.4% 4.1 ±0.01 82.9% ±1.3% 2.5 ±0.04 24.79 ±0.22 4.9 ±0.3 15.20 ±0.15

IC
Expensive

69.7% ±0% 3.8 ±0.03 83.1% ±1.1% 2.5 ±0.1 23.52 ±0.19 7.5 ±0.22 16.51 ±0.11

RFR (i)
Cheap

70% ±0% 3.9 ±0 74.2% ±0.8% 1.1 ±0 23.99 ±0.29 2.22 ±0.66 16.15 ±0.22

RFR (i)
Expensive

70% ±0% 3.5 ±0 72.1% ±1.8% 1.9 ±0.01 19.72 ±0.44 5.58 ±0.48 15.61 ±0.47

RFR (ii)
Cheap

70% ±0% 3.7 ±0 71.7% ±2.2% 1.3 ±0.08 21.85 ±0.53 4.26 ±0.51 15.62 ±0.38

RFR (ii)
Expensive

70% ±0% 3.7 ±0 77.3% ±1% 1.6 ±0.03 21.98 ±0.88 4.40 ±1.07 15.65 ±0.46

RFR (iii)
Cheap

70% ±0.1% 3.7 ±0.03 79.4% ±1.2% 2.6 ±0.07 22.74 ±0.3 4.28 ±0.45 14.34 ±0.4

RFR (iii)
Expensive

70% ±0.1% 3.5 ±0.03 81.3% ±1.2% 2.7 ±0.04 23.94 ±0.3 4.74 ±0.84 16.93 ±0.4

Table E.3 shows the results of the model when retrained on the case without time slots.
To obtain feature values per time slot, we projected time slots on the routing schedule, e.g.,
customers that are served between 10:00 and 12:00 are assigned to that specific time slot, after
which we can train our model on calculated feature values. The results of this approach show a
slight improvement, but retraining the model again on actual realization data (see Section 7.2.3)
seems to be of more value.

Table E.3: Simulation run statistics for the RFR (ii) model trained on data obtained
from the lowest cost situation without time slots.

Offer
Strategy

Planned
customers

(%)

Avg. number
of feasible TS

Nudged
customers

(%)

Avg. TS
change
(abs)

Travel
time/

customer
(min.)

Waiting
time/

customer
(min.)

Distance/
customer

(km)

RFR (ii)
Cheap

80% ±0.7% 4.2 ±0 72.2% ±1% 2.5 ±0.03 17.33 ±0.16 0.46 ±0.07 14.76 ±0.25

RFR (ii)
Expensive

79.9% ±0.6% 2.9 ±0 73.3% ±1% 2.5 ±0.03 17.46 ±0.23 0.68 ±0.09 14.6 ±0.25

83

https://www.utwente.nl/en/
https://ortec.com/en

	Management Summary
	Preface
	Abbreviations
	Introduction
	About ORTEC
	Attended Home Delivery and Time Slotting
	Problem Statement and Motivation
	Research Objective and Research Questions
	Ethical Considerations
	Research Outline

	Research Context
	Time Slotting Business Processes
	ORTEC's Current Software Solutions
	E-grocery Retailer Case
	Conclusions

	Literature
	Vehicle Routing with Time Windows
	Attended Home Delivery and Time Slotting
	Time Slot Allocation and Incentives
	Customer Choice Modelling
	Transportation Cost Approximation
	Heuristic Functions for Approximating Transportation Distance
	Seed-based Approximations for Transportation Costs
	Regression Models for Approximating Transportation Costs

	Solution Validation
	Conclusions and Research Contributions

	Problem Formulation
	Problem Characteristics
	Customer Choice Model
	Determining the Downstream Costs
	Conclusions

	Solution Approach
	Insertion Costs as Transportation Costs Approximation
	Regression Based Transportation Costs Approximation
	Features for Predicting Transportation Costs
	Random Forests
	Neural Networks
	Obtaining Training Data

	Simple Incentive Policy
	Conclusions

	Simulation Model and Experimental Design
	Simulation Model Description
	Instance Settings
	Synthetic Instances
	European E-grocery Retailer Instances

	Experimental Design
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions

	Computational Experiments and Results
	Routing Costs Approximations
	Regression Models for Cutoff Observations
	Regression Models for Intermediate Observations

	The Potential of Time Slot Pricing
	Synthetic Case Experiments
	Single Vehicle Instance Experiments
	Iterative Predictive Model Improvement

	Time Slot Pricing Policy Experiments
	European E-grocery Retailer Case Experiments
	Joint Cost Approximation with Random Forests and Insertion Costs
	Conclusions

	Conclusions and Recommendations
	Conclusions
	Recommendations and Further Research

	References
	Appendices
	Business Process with the Solution Approach
	Discrete-event Simulation Model
	Simulation Model Elements
	Simulation Model Input Data

	Hyperparameters for Random Forests and Neural Networks
	Feature Importance Analysis
	Additional Experimental Results

