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MANAGEMENT SUMMARY 

This research is conducted at JDE, production location Utrecht, concerning the rejections on 
the Senseo pad production lines.  
 
JDE is a global coffee & tea company and sells vacuum packed coffee, liquid coffee, beans, 
coffee cups and Senseo pads. It introduced Senseo pads in 2001, in a collaboration with 
Philips. With this introduction, JDE and Philips changed the way the world drinks coffee.  
 
The process of producing Senseo pads consists of three parts; first the pads are made and 
put in product carriers (semi-batches), second the product carriers are weighed (first weighing) 
and either accepted or rejected based on their weight and consecutively the product carriers 
are transported to the bag filling machine. Third, a bag is filled with the right amount of bags 
by emptying the product carriers in a bag, the bag is weighed (second weighing) and based 
on its weight either accepted or rejected. Then the bag is put into a box.  
 
Waste occurs at the two weighing moments caused by rejections and another type of waste is 
overfill, which occurs when too much coffee has gone in a pad.  
In this research, we aim to  

i) Decrease the waste caused by rejections of product carriers and bags; 

ii) Decrease the amount of overfill 

This is done in three ways, first, by optimizing the rejection limits (i.e., how many grams a 
product may be off the norm weight to accept it), second by optimising the built-in weight 
stabilisation system within the production lines, the so called ‘feedback loop’. The feedback 
loop determines the weight of the pads and adjust the weight accordingly. The parameters that 
determine when and how the weight is adjusted are optimised, these are: 
 

• Sample size (number of product carriers weigh to calculate the average weight) 

• Tolerance (amount of grams the average may be beyond the norm, before 

adjusting) 

• Adjustment factor (percent of the weight beyond the norm that should be adjusted) 

• Delay (number of product carriers we should wait before the adjustment is finished)  

Third, rejections are prevented by introducing statistical process control charts to detect when 
the system deteriorates and so when action should be taken to correct flaws in the system.  
 
In 2019, x% of the product carriers (semi-batches within the process) and x% of the bags were 
rejected. That sums up to x product carriers and x bags per year. Rejections occur due to 
weight fluctuations, because there is not enough understanding of how the feedback loop 
works and how the weight itself fluctuates. It is unclear whether the rejection limits and the 
settings of the parameters are set to the best possible values. A better understanding of the 
feedback loop and the actual weight fluctuations should lead to less rejections.  
 
The aim of this research is to decrease these rejection rates by at least 20%. This also brings 
us to the research question: 
 

 “How can JDE decrease the rejection rates within the process by at least 20%?” 
 
To solve this problem, a simulation model was built. With this simulation model, it was possible 
to run experiments without affecting the production lines directly. Since all production lines are 
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fairly similar, the model is representative for all production lines. In this model, sources for 
stochasticity are included. Like, among others, the distribution of pad weight, the distribution 
of the weight of product carriers and the distribution of the inaccuracy of the weighing cell.  
 
In the simulation, the rejection limits and the parameters of the feedback loop were varied in 
experiments.  
 
Resulting in the following recommendations (based on bag of 48 pads): 

• Decrease sample size from 10 to 5 product carriers; 

• Decrease tolerance from 0.7 to 0.1 grams (i.e. as small as possible); 

• Increase adjustment factor from 0.5 to 0.8; 

• Decrease delay from 25 to 12 product carriers (i.e. as small as possible); 

• Change rejection limit for product carriers from -2.0 & +4.0 to +/- 3.3 grams; 

• Change rejection limit for bags from -3.5 & +10.0 to +/- 4.4 grams. 

Resulting in the following improvements (based on bag of 48 pads): 

• Rejection rate product carriers (simulated) decreases by 88%; 

• Rejection rate bags (simulated) decreases by 62%; 

• Costs for reworking decreases by 81%; 

• Expected overfill decreases by 49%. 

The improvements differ per bag size. In Figure 1, the decrease in Coffee in rework costs rate 
is shown per bag size. The weighted average decrease is 35%.  
 

 
FIGURE 1: CHANGE IN COFFEE IN REWORK COSTS RATE FROM INITIAL TO BEST POSSIBLE SETTINGS 

 
In Figure 2, the decrease in overfill of coffee per bag size is shown. The weighted average 
decrease in overfill is 22%.  
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FIGURE 2: DECREASE IN OVERFILL FROM INITIAL TO BEST POSSIBLE SETTINGS 

 
No further redesigns of the production line seems to have a substantial impact on the number 
of rejections. Redesigning or buying a set of product carriers are both possibilities, which can 
result in a decrease in Coffee rework costs rate of maximum 4.4%. However, with this minor 
decrese, the business case seems to be too weak. Though to even further decrease the 
rejections and better control the process, statistical process charts should be introduced and 
policies to act on certain behaviour of the system should be designed. The statistical process 
control charts can help decrease the overfill by 72% and rejections caused by mechanical 
issues can be reduced.  
 
The results we found can be implemented in five phases, such that imperfections in the model 
are taken into account. The five phases are described below: 
 

• Phase 1: Change the parameter settings, but start by using higher values than the 

recommended settings; consult the results of the sensitivity analysis and the 

assumptions described when choosing the values. Monitor the results. 

• Phase 2: Then, gradually set the parameter settings to the recommended values 

and monitor the effects to the system. Start with changing the parameters that have 

the least impact on the results as seen in the sensitivity analysis.  

• Phase 3: Change the rejection limits to the best possible limits obtained and monitor 

the rejections.  

• Phase 4: Implement the settings to other lines and bag sizes while monitoring the 

results.  

• Phase 5: Implement the control charts, starting at one line. Monitor results and 

implement at other lines too.  
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1. INTRODUCTION 
This section introduces the company to provide an idea of its corporate environment and goals. 
In section 1.1 the goals of the company and some of the pillars that it is focusing on. In section 
1.2 the department the research relates to is described. In section 1.3 the overall process of 
producing Senseo pads is then described. In section 1.4 the problem within this production 
process is introduced. Finally, in section 1.5 the research along with the research questions is 
to be answered.  
 

1.1 INTRODUCTION TO JACOBS DOUWE EGBERTS 
In this section, the structure of Jacobs Douwe Egberts (JDE) is described from the highest 
level down to the department to this research relates.  

 

Founding of JDE and general information  

Jacobs Douwe Egberts Peet’s is a coffee, tea and hot-chocolate manufacturer, listed on the 
Amsterdam Stock Exchange (AEX) and its headquarters are located in Amsterdam. The 
company was founded in 1753, in Joure, the Netherlands, where it traded coffee, tea and 
tobacco. Today, JDE owns numerous beverage lines, and they bring many different types and 
brands of beverages to the global market. With an annual turnover of around 7 billion Euros, 
JDE is the world’s largest pure-play coffee and tea group by revenue, serving approximately 
130 billion cups of coffee and tea in 2019 across more than 100 developed and emerging 
countries. With a portfolio of more than 50 leading global, regional and local coffee and tea 
brands, JDE offers an extensive range of products to serve consumer needs across markets, 
consumer preferences and price levels.1   
With around 6% of the global market, JDE is the second biggest player of hot drinks in the 
world, after Nestlé SA (around 17% according to a report by Passport, 2019). The broad range 
of products and brands is one of the characteristics that make JDE a thriving company in the 
relative scattered market of coffee and tea. The company is able to serve multiple non-
homogeneous markets with its global brands such as Senseo, Jacobs and L’Or (Figure 3), 
with its regional brands like Douwe Egberts, Ofçay and Carte Noire and its local brands such 
as Ali, Nova Brasilia and Karat. These scattered brands serving such a non-homogeneous 
markets make it necessary to fit a strategy for separate markets. Besides the multiple brands, 
JDE also sells multiple type of products. There is ground filter coffee, beans, as well as pads 
that were introduced in 2001 under the name Senseo, in addition to the upcoming cups.  

 
 
1 https://www.jdepeets.com/ 

https://www.jdepeets.com/
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FIGURE 3: SOME OF THE BRANDS SOLD BY JDE. 

 
JDE’ strive for operational excellence  

JDE strives for operational excellence by inducing internal competition between production 
sites. Retailers can buy their products at one of the production sites, and the costs of 
production and transport influence the competency of a production location. This internal 
competition gives production sites incentives to innovate and improve their processes, which 
can paradoxically be shared among all production sites after a successful improvement. For 
example, the Senseo production site in Utrecht, the Netherlands is competing with the Senseo 
site in Valasske, the Czech Republic, to serve parts of the same European market.  
In 2016, JDE introduced the Manufacturing Operating System (MOS) project. This project aims 
for operational excellence across all the European production sites. For Utrecht, this means 
that the improved operations should result in a decrease in costs of €x million from 2016 to 
2021. Currently, JDE Utrecht has finished the Extension phase and is working on the Advanced 
phase. This project should contribute among others, to reducing material losses.  
 

1.2 JDE SENSEO PRODUCTION UTRECHT 
In this section, the various sites of JDE in The Netherlands are described. 
 

Head office 

The head office of JDE is situated in Amsterdam, the Netherlands. In Joure, JDE produces 
mainly tea, liquid coffee and freeze-dried coffee. The other production site in the Netherlands 
is located in Utrecht. At this production site, vacuum-packed coffee is produced and packaged 
in the area indicated by ‘Unit 1’. In ‘Unit 2’ in Utrecht, JDE produces around 3.5 billion Senseo 
pads per year.  
 

Senseo department Utrecht 

This research involves ‘Unit 2’ in the Utrecht production site (i.e. the production department of 
Senseo pads). In this unit, there are 11 production lines available, from which normally 10 are 
in operation. One line is preferably not in use, since its equipment differs from that of other 
lines, causing a relatively high risk of failures. The factory starts producing on Sunday night at 
10 p.m. and stops on Friday at 10 p.m., so it produces Senseo pads for five days per week, 24 
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hours a day. The production times are split in three time slots: three different shifts of operators 
take care of one of the time slots of 8 hours per day. 
 
Operators, process engineers and planning  

The group of operators switch their working times every week. Every group has a shift lead. 
Besides these groups, there are other employees who are also essential to the business. 
These include the mechanics who solve mechanical issues and perform maintenance on the 
machines, as well as the process engineers who continuously seek new opportunities to 
increase the efficiency of the machines. Besides the process of pad production, the quality 
department checks among others the quality of the ground coffee and whether finished pallets 
of boxes with customer units meet the weight requirements. There is also a production planning 
department that decides on when to produce what kind of products on what production line. 
The number of units to be produced is determined by a central demand planning team 
operating from the headquarters.  
 
Product variations 

The Senseo production unit in Utrecht produces bags with Senseo pads of eight different sizes, 
namely 16, 18, 32, 36, 40, 48, 54 and 60 pads per bag. The production unit produces over 10 
different blends, a blend being a mix of certain types of coffee beans that are roasted and 
ground in a particular way. In addition, the unit produces pads for several brands, of which 
Senseo, Douwe Egberts, Kanis & Gunnink are the most frequently produced. With these 
combinations, changeovers to different sizes or blends do not occur, or they occur several 
times per day per production line.  
 

1.3 PRODUCTION PROCESS OF SENSEO PADS 
In this section, the overall process of pad production is explained, with an emphasis on the 
moments in which rejections take place. 
 
The process from raw material to packaged product  

The process (see Figure 4) starts with the production of a blend. To finish a blend, the beans 
are roasted, blended with other beans and finally ground. The blend is distributed to the pad 
making machine in the packaging department. In the packaging department, the pads are filled 
with coffee, checked on certain quality measures and finally packed in boxes and the boxes 
are finally stacked on a pallet. 
The quality measures, indicated in Figure 4 are: 
 
1: Check whether there is coffee in the rim of a pad; 
2: Check whether the weight of a full product carrier is within the rejection limits for product 
carriers; 
3: Check whether the header of the bag is correctly folded; 
4: Check whether the weight of a bag is within the rejection limits for bags. 
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FIGURE 4: PROCESS OF PRODUCING SENSEO PADS FROM ROASTING TO PACKAGING. 

 
The filling of pads by the pad making machine and checks on quality  

Number 1: Hopper 
This distribution is done by a screw which distributes the coffee into the hopper of the pad 
making machine (nr 1 at Figure 5). The screw’ speed is controlled using a proportional-integral-
derivative (PID) controller and a laser level sensor.  
 
Number 2 and 3: Dosing drum and Forming drum 
The coffee is sucked out of the hopper by the dosing drum (nr 2 at Figure 5). From the dosing 
drum, it is dropped in a piston of the Forming drum (nr 3 at Figure 5). The pad making machine 
can make up to x pads per minute. This dosing drum which consists of 40 pistons in total, 20 
each on the operator and the machine side. Pads are filled in a volumetric process (i.e. the 
amount of coffee that end up in a pad depends on the volume of the cavity).  
 
Number 4: Pad is sealed 
Just after the pistons are filled with coffee, the pads are sealed (nr 4 at Figure 5). 
 
Number 5: Pad vision control 
Just after the pads are filled, the pads are checked on nine different criteria by a camera (nr 5 
at Figure 5), known as the ‘vision’, (see check nr. 1 in Figure 4). The most common criterion is 
‘coffee in the seal’ (CITS), which indicates the presence of coffee grounds in the rim of the 
pad. A pad may have coffee in the seal up to certain limits; if the amount of coffee in the seal 
exceeds these limits, the pads are rejected.  
 
Number 6: Pad laydown 
Rejected pads are cut and dropped out of the machine. Accepted pads are cut from the filter 
paper, collected in a stack and dropped into a product carrier. This collection and dropping of 
a stack of pads into a product carrier is called the ‘lay-down’ (nr 6 in Figure 5).  
 
Product carrier weight check 
Next, the product carrier is weighed (check nr. 2 in Figure 4). If the product carrier does not 
meet certain weight specifications, it is rejected. Otherwise, it is transported to the location 
where the accepted product carriers are emptied.  
 
Filling the bag 
The bags are filled by emptying product carriers and dropping the pads of that product carrier 
in a tube. Via the tube, the pads end up in the bag. Then the bag is filled. 
 
Folding the header 
After filling the bag, the header of the bag is folded, and the fold is subsequently checked (nr. 
3 in Figure 4). If the fold is accepted, the bag is transported further.  
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Bag weight check 
Then the full bag is weighed and based on its weight either rejected or accepted. This is the 
final check (nr. 4 in Figure 4). Then the bags are processed further and put in a carton box to 
be send to retailers.  
 
The product carrier weighing check and the bag weighing check are the focus of this research.  
 
X 
FIGURE 5: DETAILED PICTURE OF THE PAD MAKING MACHINE. 
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1.4 PROBLEM DESCRIPTION 
This section introduces the problem, the losses caused by the system, the types of losses and 
the severity of the losses.  
 

1.4.1 INTRODUCTION TO THE PROBLEM 

The whole weighing process needs to achieve the goal of having the exact net weight in each 
bag, no more and no less to prevent rejections in the process and overfill in the end. In an ideal 
situation, no rejections of product carriers or bags and no overfilling/underfilling is present in 
the system. Currently, hourly underweighting still occurs as part of the process, as do bag and 
product carriers rejections as well as overfilling. Depending on the bag size, the weight may 
be 3.5-6 grams less than the norm or 9-15 grams above it.  
 
Material losses and reworking 

As shown in Figure 4, the coffee pads are checked at four different checkpoints. The first is 
related to the coffee in the seal, the second check verifies the weight of a product carrier, the 
third evaluates whether the header of the bag and in the fourth is again a weight check to 
ensure that the product meets EU regulations. The rejected pads are reworked (see Figure 6 
for the activities that result in the most reworking). During this reworking process, the filter 
paper is separated from the coffee and the coffee then flows into the supply in the machines.  
This reworking causes losses in terms of materials (see Figure 7), the amount of coffee and 
filter paper is substantial (Figure 8) and can be reduced by decreasing the proportion of 
rejected product carriers and bags (Figure 6).  
 

 
 
FIGURE 6: CAUSES FOR REWORKINGS. 

 

 
FIGURE 7: MAIN MATERIALS USED IN THE PAD PRODUCTION PROCESS. 
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FIGURE 8: YEARLY EXPENDITURES AND LOSSES ON MATERIALS IN PERCENTAGE OF THE TOTAL FOR 2019. 

 
First check: Coffee in the seal  

The first check is executed by the ‘vision’ system, in which around x% of the pads are rejected. 
This accounts for around x% to the total amount of coffee that is reworked. The precise costs 
related to the rejected pads is unknown. Orbons (2018) conducted a study on the causes 
leading to the presence of coffee in the seal. Several causes were found, but they are difficult 
to change, therefore improving the system to reduce the rejections caused by coffee in the 
seal is a challenging task. Therefore, this cause of rejection is excluded from the present 
research.  
 
Second and fourth check: Weight checks 

The second and final checks are both weight related. The second check weighs the products 
carriers and rejects them based on internal limits set by JDE, while the fourth check weighs 
the amount of net coffee in the bag, ensuring that the weight meets EU-regulated 
specifications. The wider the limits for the weight of the product carriers, the higher the 
standard deviation of bags should be. Product carrier and bag rejections accounts for x% of 
the total amount of coffee that is reworked (see Figure 6). These weight checks are to be 
optimized within the scope of this research, i.e. all aspects related to weight are within scope.  
 
Third check: Incorrectly fold bag header  

The third check in the process is whether the header of the bag is correctly folded. This results 
in  0.27% bag rejections, based data from October 2002 from a counter in one of the production 
lines. Although this cause is substantial, we have decided to exclude it from this research, 
since it is self-contained and does not influence the weight. 

1.4.2 PROBLEM CLUSTER 
The problem JDE faces is that according to their ambition, there is too much rework and waste 
caused by rejections in the process of producing pads, indicated as the action problem in 
Figure 9. Rejecting something in the process causes rework. Rework is the process of opening 
a pad and separating the filter-paper and the coffee. The filter-paper is wasted, the coffee is 
supplied to the production lines again and therefore not wasted, but the value of the reworked 
coffee is reduced on average since the reworked coffee should always be of a lower or equal 
quality compared to the coffee it is mixed with.   
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This problem mentioned above has two main root causes indicated in Figure 9, i) the best 
possible limits for when to reject products are unknown and ii) the best possible parameter 
settings in the feedback loop are unknown. 
 

 
FIGURE 9: PROBLEM CLUSTER OF THIS RESEARCH. 

 

1.4.3 CURRENT PERFORMANCE ON THE PROBLEM  
The performance of the system is expressed in the rejection rates of product carriers and bags 
and in over- and overfill compared to the aimed weight of bags.  
 

Rejection rates 

In 2019, an average of x% of the bags were rejected (see Figure 10), which translates into 
around 340,000 bags. On average x% (see Figure 11) or, around 1.4 million product carriers 
were rejected that year. This was not solely due to their weight, also caused by other factors 
such as mechanical issues play a role. When the machine has an error upon the start-up, 
rejections can occur as well. Based the judgment of experts within JDE, the rate of rejects due 
to mechanical issues can be substantial, although, the figure is unknown. This figure may be 
revealed if weight-based rejections can be minimized. Apart from this research, process 
engineers with a mechanical background are responsible for investigating the mechanical 
issues. Therefore, the mechanical issues are beyond the of scope of this study.  
Based on Figure 10 and Figure 11, one interesting observation is that there seems to be a 
seasonal influence in the rate of rejections. The rejections rates of product carriers and bags 
seem to show a similar trend, which seems to increase and decrease for several consecutive 
weeks, indicating seasonality. Although this effect could be present, the process we are further 
exploring here should be able to respond accurately to seasonal influences. In Section 2.3 this 
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is discussed in more detail, there is explained why  the seasonal influences are not taken into 
account.  

 
FIGURE 10: OVERALL BAG REJECTION RATES IN 2019. 

 

 
FIGURE 11: OVERALL PRODUCT CARRIER REJECTION RATES IN 2019. 

 

Underfill and Overfill  

The amount of overfill and underfill are good indicators of the overall system performance, and 
they demonstrate the quality of the pads based on weight. Underfilling is an indication that 
pads have less than 7 grams coffee, while overfilling means that they have more than 7 grams. 
Therefore, if the feedback loop in the system, is functioning properly, the hourly average of the 
bags is expected to be exactly equal to the target weight. Currently, overfilling is limited and 
shows a decreasing trend over the past several years, suggesting that JDE has already 
improved its processes. Over the first half year of 2020, the amount cumulative overfilling is 
nearly zero (see Figure 12), still however, the system can be improved because overfill and 
underfill still occur. Underfilling and overfilling is both present by over 13,000kg of coffee in the 
first half of 2020. Theoretically, if the system functions properly, the average weight should be 
exactly equal to the norm. These numbers are calculated based on the hourly averages of the 
bags compared to the target weight of these bags, multiplied by the number of bags filled in a 
given hour. Overall, we can conclude that the weight can be more stable such that the under- 
and overfill can be decreased.  
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FIGURE 12: ANALYSIS OF UNDERFILLING AND OVERFILLING OVER THE PAST FIVE YEARS. 

 

Costs of wasted materials  

Three types of wastes are caused by rejections of product carriers and bags. When a product 
carrier is rejected, filter paper is wasted and coffee is reworked causing a devaluation. When 
a bag is rejected, additionally wrapping paper is wasted. Based on the yearly expenses of 
2019, on average the filter paper costs €x per pad (total spend on filter paper divided by x 
pads), the wrapping paper costs €x per pad (total spend on wrapping paper divided by x pads) 
and the coffee devaluation costs €x per pad (total value devalued coffee divided by x pads). 
Assuming the rejections rate are also representative for rate of rejected pads, the yearly costs 
related to rejections are as follows (see Table 1): 
 
TABLE 1: COSTS OF WASTE CAUSED BY REJECTIONS. 

Waste (€) Product carrier Bag 

Filter paper   

Wrapping paper   

Devaluated coffee   

Total per type   

Total  

 
Based on these numbers, the business case for eliminating rejections is €x per year. According 
to the judgment of the production engineer at JDE, the estimated rejections caused by weight 
being beyond limits is x-x% of the total rejections, making the business case between €x and 
€x per year, for wasted materials.  

1.4.4 OBJECTIVE OF THIS RESEARCH 
The aim of this research is to decrease the number of product carrier and bag rejections without 
accepting bags where a pad is missing, this results in the following realities and norms: 
 
At this moment, the rejection rate for product carriers is x% (reality), the aimed rejection rate 
for product carriers is 0.6% (norm), which implies a decrease by 20%.  
At this moment, the rejection rate for bags is x% (reality), the aimed rejection rate for bags is 
0.12% (norm), which implies a decrease by 48%.  
 
To make both happen, an objective that serves both aims is introduced, namely the ‘costs of 
rework’. The costs of rejecting a product carrier is set equal to the amount of coffee in the 
product carrier, the costs for filter paper are inherent to its weight. When rejecting a bag, waste 

29,970
36.676

3,477
7,412

-10

-30

-20

-10

0

10

20

30

40

50

60

2016 2017 2018 2019 2020 (Q1+Q2)

K
g 

o
f 

co
ff

ee

T
h

o
u

sa
n

d
s

Year

Underfill, overfill and total overfill of coffee per year

Underfill (Kg)

Overfill (Kg)

Total overfill (Kg)



                              

 

11 

MSc Thesis – Thomas Anton de Koning – 2021 

of the bag itself also comes with a cost. Since rejected bags cause a wastage of wrapping 
paper too, the ‘costs of rework’ of a rejected bag is determined by the amount of coffee in the 
bag, multiplied by 1.62. Since, the material costs per rejected pad are 62% higher with a 
rejected bag.  

1.4.5 CONCLUSION TO THE PROBLEM INTRODUCTION 
The action problem that is tackled in this research is that there are too many rejections causing 
rework. Through optimizing the weight stabilization system and the rejection limits, this should 
be reduced. Since most losses come from product carrier and bag rejections, we focus on 
reducing these rejection rates. Furthermore, as we are focusing on the process side of the 
problem (rather than the mechanical side), we aim to research the settings of the production 
line so as to minimize the number of rejections caused by weight discrepancies.  
 

1.5 RESEARCH APPROACH 
In this section the aim of the research, the scope and the research questions are introduced. 
 

1.5.1 RESEARCH GOAL 

The goal of this research is to improve the weight stabilisation system used within the 
production line of Senseo pads. The system should be improved by optimising the current 
parameters. The results of this research should eventually contribute to stabilising the weights 
of Senseo pads and reducing the rejection rates of product carriers and bags, in addition to 
reducing waste, reworking and overfilling.  
 

1.5.2 RESEARCH SCOPE 

There are several limitations to the scope of this research, which include processing and 
mechanical issues, slight differences per line and differences per blend. These limitations are 
discussed below.  

 

1) We limit ourselves to rejections caused by process errors. Occasional mechanical 

issues are not taken into account. Mechanical issues are for example why too many or 

too few pads are dropped in a product carrier or when the weight changes because of 

a mechanical issue like a change in the power of vacuum suction. 

2) We focus on a single line, that is where the theoretical model of the real system is 

based on. Slight differences per line, e.g. are more or less accurate weighing cell, are 

ignored. The line used is Line 17. There are three reasons to base the research on Line 

17: i) It has a product carrier weighing cell that will also be used by other lines in the 

future. Currently, only Lines 17 and 19 have the latest version of the product carrier 

weighing cell. ii) It is possible to extract more data from production Line 17 and 19 than 

from the other lines. iii) Line 17 produces bags of 48 and 54 pads, for which product 

carriers with the largest number of pads are used and several product carriers are 

needed to fill one bag. Differences should be taken into account while implementing 

the recommendations.  

3) We ignore differences per blend. Different blends can exhibit different characteristics 

that may cause variations in weight. For example, the way in which the beans are 

roasted and ground can influence the density of the coffee. Though, fluctuations in 

weight are assumed to be similar for all blends.  
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1.5.3 RESEARCH QUESTIONS 

In order to achieve the goals mentioned in Section 1.4.4, several research questions are 
introduced that must be answered.  
First, the main research questions is formulated as follows: 
 

“How can JDE decrease the rejection rates within the process by at least 20%?” 
 

Next, several sub-research questions that must be answered to successfully answer the main 
research question were formulated. The sub-research questions are listed below.  
 
To address the first research question, the working of the several processes that are 

incorporated into the production lines are thoroughly explained. Logic flows of the processes 

will be made and it will be determined which characteristics influence the weight by conducting 

experiments on the production line. Then, it is assessed whether these factors can be changed. 

System deteriorations are assessed by looking into the data and on-the-floor interviews. Finally 

the current performance of the system is analysed.  

The answer to this research question is given in Chapter 2. 

 
1. What is the current weighing process and current performance of the system? 

1.1. What are the current rejection rates of the products made? 

1.2. What processes are relevant to the weighing process? 

1.3. What are possible root causes for weight variation? 

1.4. Which factors influence the process of weighing and which one can be changed? 

1.5. What kinds of deteriorations need to be taken into consideration? 

 
To this end, a literature review about how to study systems is conducted, to determine the 

possible ways to study a system that exists and which one is most appropriate for the problem 

at hand. Because of the complexity of the system, we will decide to build a simulation model 

to study the system at hand. Furthermore, the steps to take while building a simulation model 

and the ways to determine the performance of the system are described.  

 

The answer to this research question is given in Chapter 3.  

 

2. How can we model the described system according to the existing literature? 

2.1. How can we model a system according to the literature? 

2.2. What type of model is appropriate to model the current system? 

2.3. How can the results of the system be verified and validated? 

In this research question it is determined how we can build the model. The model is verified 

and validated before beginning the experiments. These experiments are first conducted with 

the parameters in isolation, such that all settings remain as they are except for one parameter 

setting. A small range of possible values remains as a result, and with this small range, design 

of experiments are conducted to find the best possible values by taking interdependency 

between the parameters into account.  

 

The first part of the answer to this research question is given in Chapter 4 and the last part 

about experiments and the best possible settings is given in Chapter 5. 

 

3. How can we redesign the weighing process to decrease variability? 

3.1. What factors and process characteristics should be included in the model? 

3.2. What is the impact of variety within the system on the process objectives? 
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3.3. Given the objectives taken into consideration, what are the best possible settings? 

The last step in optimising the weighing process is to detect when the system is not performing 

properly. Since the built-in systems cannot detect (and so not correct) certain flaws, statistical 

process controls can give insights in a flawed system that can be corrected to prevent 

rejections from happening.  

 

The answer to this research question is given in  Chapter 5.  

 

4. What appropriate measures can be used to control the deterioration of the production 

process? 

4.1. What kind of statistical process control charts are available in the literature? 

4.2. What key performance indicators are relevant for detecting flaws in the weighing 

system? 

4.3. What process control chart is appropriate for tracking the performance of a key 

performance indicator? 

1.6 READER GUIDE 
In this section, the structure of the report is explained. The structure of the report is strongly 
related to the sequence of the research questions. In Table 2, the research questions and 
corresponding chapters are listed.  
 

TABLE 2: RESEARCH QUESTION RELATED TO CHAPTERS IN THIS RESEARCH. 

Research question Chapter  Short description 

1.1 1.4.3 Problem introduction 

1.2 2.1 Process description 

1.3 2.2 Root cause analysis 

1.4 / 1.5 2.3 Stochasticity and characteristics of the system 

2.1 3.2 Ways to study a system 

2.2 3.5 Suitable approach for problem 

2.3 3.7 Performance measures 

3.1 4.1 – 4.5 Inputs, outputs, assumptions, verification and 
validation 

3.2 5.2 Experiments 

3.3 5.3 Sensitivity analyses 

4.1 5.5 Statistic process controls 

4.2 5.5 Key performance indicators 

4.3 5.5 Statistic process controls for JDE 

 

1.7 CONCLUSION OF INTRODUCTION 
In this section the company and the production site in Utrecht which produces Senseo pads 
are introduced. Then the high-over process is described, to fit the problem in the bigger picture. 
The core problem is introduced and its current performances, which has to do with too many 
rejections causing more waste and rework than desired. Based on this problem, research 
questions are defined to solve the problem JDE faces.  
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2. CURRENT SYSTEM ANALYSIS  
This chapter provides a thorough description of the system to be researched. In Section 2.1, 
the processes within the system are described. These processes are relevant for 
understanding the system. In Section 2.2 the root causes for variation in weights are explained. 
In Section 2.3 the influences on variation within the weighing process are explained, to get a 
better understanding of how weight varies.  
 

2.1 WEIGHT-RELATED PROCESSES 
The research problem relates to is rejections based on weight. This section delves deeper into 
the design of the process of weight regulation of the pads, product carriers and bags. 
 

The weighing process & feedback loop 

Making of pads 
First, pads are made and collected in a semi-batch (i.e. product carrier) which is then 
transported to the weighing cell of the product carrier (see Figure 13).  

 
FIGURE 13: PROCESS OF WEIGHT CONTROL  WITHIN THE PRODUCTION OF PADS. 

 
Weighing of product carriers 
Second, the product carrier is weighed (see Figure 13). Depending on the bag size, these are 
semi-batches of the final customer unit, since multiple product carriers typically fill one bag 
(see Table 3). The product carrier containing pads is weighed in a dynamic way (i.e. the 
product carrier is weighed while it moves on the weighing cell). While weighing, several factors 
influence the weight. i) The product carriers have an average weight, which is subtracted from 
the detected weight. The tare (i.e. average weight of the product carriers) is set into the system, 
so the system ignores any fluctuations in the weights of product carriers, in reality, the weights 
do fluctuate, the actual fluctuation is explained  further in Section 0). ii) The product carrier is 
weighed dynamically (such that it is transported and weighed on the weighing cell at the same 
time); therefore, a correction factor is in place to transform the dynamic weight to a static value. 
iii) The weighing cell contains an inaccuracy, because it returns the weight rounded up to even 
decimals (i.e. either .0, .2, .4, .6 or .8). The product carrier is rejected when it does not meet 
the control limits of the weights of pads including the filter paper. These control limits differ 
based on the product carrier size.  
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TABLE 3: PRODUCT CARRIER SIZE AND NUMBER OF CARRIERS THAT FILL ONE BAG (CUSTOMER UNIT). 

Bag size Pads per product 
carrier 

Number of product 
carriers 

16 16 1 

18 18 1 

32 16 2 

36 18 2 

40 20 2 

48 24 2 

54 18 3 

60 20 3 

  
Filling of a bag 
Third, after the product carriers are accepted and emptied, a bag is filled. The net weight of 
the bag is then obtained dynamically. A correction factor is also in place here.  
 
Feedback loop 
Fourth, a feedback loop (see Figure 14) between the pad making machine and the product 
carrier weighing cell is in place. This feedback loop is the main component that is aimed to be 
improved in this research. Weighing is performed for every product. But quality check of 
weighing is done by sampling. At the start of the process, the first 25 product carriers are 
ignored by the feedback loop, then the average weight of the product carriers is determined 
based on 10 samples. If this average weight differs by 0.7 grams compared to the target weight 
of all the pads in the product carrier, the pad making machine receives a pulse (i.e. the 
feedback factor). This pulse should result in an increase or decrease in the weight per product 
carrier by the number of grams from which the last calculated average differs compared to the 
target weight; this is called the ‘feedback factor’. This pulse makes the cavity (see section 1.3) 
smaller or larger (depending on overfilling or underfilling), and the volume of the cavity 
determines the amount of coffee that ends up in a pad. After a correction, the system again 
neglects 25 product carrier measurements, and it then weighs 10 product carriers are used to 
determine the new average weight. 
 

 
FIGURE 14: FEEDBACK LOOP PROCESS BETWEEN PAD MAKING MACHINE AND PRODUCT CARRIER WEIGHING CELL. 

 
This feedback loop is used to determine the current weight of pads, and it takes action to 
stabilise the weight; this action can be disrupted by influences from within or outside the 
process.  
 
 
Product carrier movement 
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One consequence of the design of the feedback loop described above, is that the pads weights 
of two subsequent product carriers are correlated, since, the weight of the filled product carriers 
exhibits a fluctuation (see Figure 16) upwards and downwards within the accepted tolerance 
ranges of 0.7 grams around the target weight. Because the product carrier movement (see 
Figure 15) is designed in such a way that two (or 10, depending on the production line) 
subsequent carriers are directed to the same packaging line, two or three product carriers that 
fill one bag are often (but not always) correlated and therefore could all be underfilled or 
overfilled. Therefore, product carrier weights cannot be assumed to be independent. This is 
one of the major reasons that the system cannot be analysed by a mathematical model alone. 
The literature review in Chapter 3, explains that this is one of the reasons for which a simulation 
model is preferred over a mathematical model.  
 

 
FIGURE 15: PRODUCT CARRIER MOVEMENT FOR LINES 14 TO 19 (LINE 17 INCLUDED). 

 

 
FIGURE 16: EXAMPLE OF FLUCTUATION OF FILLED PRODUCT CARRIER WEIGHT BETWEEN THE TOLERANCES OF +/- 0.7 GRAMS (PHOTO TAKEN FROM LINE 17, 

NOT POSSIBLE TO TAKE A SCREENSHOT). 

 
Conclusion 

With this section, we answered the first research question about the relevant processes. The 
processes described in this chapter are the weighing process itself, the feedback loop and the 
transportation policy.  
 

2.2 ROOT CAUSE ANALYSIS FOR WEIGHT VARIATION 
This section explains the causes for variations in weight. The factors to be explored and 
optimised further in this research are explained.  
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Root causes analysis of the weight variations  

When a bag is rejected based on weight, three scenarios can occur (see the second layer in 
Figure 17). Namely, the bag has too many or too few pads, or the right number of pads are 
present but the weight is incorrect. In Figure 17, a root cause analysis is conducted for the first 
two cases. Either the product carriers were accepted with too many/too few pads, the product 
carriers lost a pad or a pad ended up in another product carrier or bag somewhere in the 
process. In consultation with the production engineers at JDE, losing pads is not considered a 
major cause of imperfections, although pads occasionally fall out of a product carrier. The root 
cause that product carriers are accepted with too many or too few pads could be a flaw in the 
weighing process, which should be further researched. 
When a bag has enough pads but is still rejected by weight, the pad weight is beyond the limits; 
the possible causes of this scenario are shown in Figure 18.  
If there is a discrepancy between the actual weight and the target weight of JDE, there is an 
error in the system. Factors that should not change (such as the weight of the filter paper and 
of the bag foil) could differ from their assumed values. The weights could also be incorrectly 
calibrated. One other explanation is that the material could absorb air moisture, which causes 
the weight of the material to vary over time.  
Another reason for discrepancy in weight is that the feedback loop built into the system is not 
functioning properly. During proper operations, there should be barely any rejections by bag 
weight. On the other hand, if it is not working properly, the feedback factor (i.e. automatic 
correction in grams) is either too low or too high compared to the discrepancy, such that the 
real effect of the feedback factor is unknown and should be assessed.  
If this feedback factor is correct, the feedback loop receives incorrect information on which it 
decides its actions. Several factors could cause this problem to occur: 
 

• The sample size (i.e. number of filled product carriers) on which the system calculates 

the averages may be too small, resulting in low accuracy.  

• The delay is too small, and therefore the calculation of the new average includes 

product carriers on which the last used feedback factor had no influence yet.  

• Another potential source of error in the average calculations is that product carriers 

which should not be included in the calculations have been included. For example, 

when a product carrier is missing a pad because the die-cut failed, the average of the 

product carrier is assessed as too low, although in practice this has a mechanical cause 

instead of a weight-related one.  

• The correction factor could be incorrect. This could be the case if the tare of the product 

carriers is incorrect or if the factor from dynamic to static weight is incorrect.  

• The last option is that the limits set in the system, such as the weights at which a 

product carrier is rejected, are incorrect.  

Conclusion 

In this section, the factors that influence the process of weighing is researched. The conclusion 
is that the feedback loop process has the most influential factors, therefore its parameters are 
chosen as possible changes resulting from this research, so these parameters will be 
researched. Mechanical issues as contamination, imperfect mechanical processes, and 
external factors like humidity are not taken into consideration since these factors can’t be 
changed.  
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FIGURE 17:ROOT CAUSE ANALYSIS BAG WEIGHT VARIATION. 
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FIGURE 18: ROOT CAUSE ANALYSIS OF MEASURED WEIGHTS BEING OFF LIMITS. 
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2.3 VARIATION INFLUENCES WITHIN THE WEIGHING PROCESS 
There are several causes of variation that influence the process of weighing. Since these 
sources of variation are independent from each other, they are researched independently. The 
sources for variation discusses are as follows: 

• Weight distribution of pads 

• Weight distribution of empty product carriers 

• Inaccuracy of product carrier weighing cell 

• Inaccuracy of bag weighing cell 

• Weight distribution of empty bags 

• Volume density distribution of coffee 

• Weight adjustment inaccuracy 

• Weight adjustment delay 

• Trend in weight of product carriers 

• Discrepancy between pad weight of operator- and machine side of the dosing drum 

• Weight disruption at machine start-up 

• Effect of air humidity on rejections  

In “Appendix A: System influences on weight stabilization”, any mechanical improvements to 
stabilize the weight are discussed. Based on that section, the hopper level became more 
stable. Further details can be found in the Appendix.  
 

Weight distribution of pads 

According to internal standards set by the Research and Development department of JDE, a 
pad should weigh 7.183 grams (7.00 grams of coffee and 0.183 grams of filter paper). Based 
on the data on manually weighed pads from operators, in June 2018, on all production lines, 
the weight of pads is normally distributed with a mean of 7.181 and a standard deviation of 
0.151 (see Figure 19). Since this data is based over longer period of time (one month) and 
multiple production lines, this standard deviation is probably overestimated compared to the 
standard deviation within a product carrier or bag. Therefore, the standard deviation used in 
the model in Section 4.1 is set to 0.13 grams.  
Ten Berge (2017) provided thorough researched on the causes and effects of varying pad 
weights. Therefore, this research assumes that it is not plausible to improve the inherent 
performance of the machines in terms of pad weight variation, but it takes the variation in pad 
weight as a given factor.  
 

 
FIGURE 19: PAD WEIGHT DISTRIBUTION, WITH A MEAN OF 7.181 AND A STANDARD DEVIATION OF 0.151 (DATA FROM JUNE 2018). 
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Weight distribution of empty product carriers  

The weights of the product carriers vary. There are around 650 product carriers per line, plus 

two spare sets, this makes 8450 product carriers in total. Since product carriers are shuffled, 

a single product carrier can end up on every line, and which product carriers are placed at one 

line at the same time also differs. Moreover, each product carrier is independent from the 

others. Therefore, the 8450 product carriers can be seen as a population. To test the 

distribution of the product carrier weight, a sample is taken from most lines (excluding Lines 

21 and 22, since they were in maintenance). The weight of the product carriers is normally 

distributed (p-value 0.037) with a mean of 390.4 and a standard deviation of 0.2849 (see Figure 

20).  

 

 
FIGURE 20: WEIGHT DISTRIBUTION OF PRODUCT CARRIERS. 

 

Inaccuracy of product carrier weighing cell  

The cell that weighs the filled product carriers is another source of stochasticity in the process. 

Multiple samples were taken from two different product carriers (light and heavy) on the 

weighing cell of Line 19, and the data points measured were rounded to two decimal places. 

Since Lines 17 and Line 19 have the same weighing cell for product carriers, data from Line 

19 is representative for Line 17 too. The light product carrier weighed 502.30 grams, which is 

similar to a filled product carrier with 16 pads: 

𝐹𝑖𝑙𝑙𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 16 𝑝𝑎𝑑𝑠 = 390.4 + 16 ∗ 7.183 = 505.328 𝑔𝑟𝑎𝑚𝑠.  

 

The heavy product carrier was 570.00 grams, similar to a filled product carrier with 24 pads: 

𝐹𝑖𝑙𝑙𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 24 𝑝𝑎𝑑𝑠 = 390.4 + 24 ∗ 7.183 = 562.792 𝑔𝑟𝑎𝑚𝑠. 

 

The weight obtained is decreased with the set tare of 390.40 grams. When measuring the light 

product carrier, the standard deviation of the weighing inaccuracy is 0.07711 (see Figure 21); 

for the heavy product carrier, the standard deviation is 0.07651 (Figure 22). Both values are 

statistically significant with a p-value of <0.005.  
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FIGURE 21: DISTRIBUTION OF WEIGHING INACCURACY IN PRODUCT CARRIERS (LIGHT). 

   
FIGURE 22: DISTRIBUTION OF WEIGHING INACCURACY IN PRODUCT CARRIERS (HEAVY). 

 
Inaccuracy of bag weighing cell  

The bag weighing cell is another source of stochasticity, since it is not perfectly accurate. To 
determine the accuracy, one bag is weighed many times. One bag of 18 pads and one bag of 
54 pads is used. The standard deviation of the weight for a bag of 18 pads is 0.1317 grams 
(see Figure 23), and that for a bag of 54 pads it is 0.2844 grams (see Figure 24). This difference 
can be explained by the vibrations of the weighing cell, which have more impact on larger 
bags. It is assumed the difference per bag size to be linear, resulting in an increasing standard 
deviation with increasing bag sizes increases (see Figure 26). For this calculation, the standard 
deviation of 18 and 54 pads is used. The numbers in Figure 26 are increased by 14% to be 
used in the model, which represents the standard deviation of empty bags. This is based on 
the ratio between weighing cell inaccuracy and the standard deviation of an empty bag for 60 
pads. For bags with 54 and 60 pads, however, the speed of the transport band of the weighing 
cell is set to a lower pace, therefore, it is assumed that the standard deviation for all bags to 
be higher than that for the bag with 48 pads and equal to that for the bag with 48 pads (i.e. 
0.30 grams; see Figure 26). 
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FIGURE 23: DISTRIBUTION OF THE WEIGHING INACCURACY OF THE BAGS WEIGHING CELL (BASED ON A BAG WITH 18 PADS). 

  
FIGURE 24: DISTRIBUTION OF THE WEIGHING INACCURACY OF THE BAGS WEIGHING CELL (BASED ON A BAG WITH 54 PADS). 

 

Weight distribution of empty bags  

 
FIGURE 25: DISTRIBUTION OF THE EMPTY BAGS (OF 60 PADS). 

 

Variation in the weight of material is a possible cause of rejections of bags. The weight of the 

largest bag (for 60 pads) is measured. The bags have a standard deviation of 0.0436 grams, 

with a p-value of 0.039, see Figure 25. This variation is added to the inaccuracy of the bag 

weighing cell in the model.  
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FIGURE 26: LINEAR CHANGE IN STANDARD DEVIATION OF THE BAG WEIGHING CELL BASED ON THE BAG SIZE. 

  

Volume density distribution of coffee  

The amount of coffee that can fill a cavity depends on the density of the coffee (more precisely, 
the volumetric mass density; also known as specific mass, of a substance is its mass per unit 
volume). With a relatively high volume density, more coffee can be sucked into the cavity, while 
the reverse is true with a low volume density. This causes weight variations of the pads based 
on their volume density. This stochasticity is not directly included in the model, since it is 
indirectly accounted for in the pad weight variation and the sine trend, as explained in Section 
2.6.  
This volume density varies per sample taken from each batch. In 2019, this volume density 
was normally distributed with a p-value of <0.005, a mean value of 716.7 and a standard 
deviation of 7.400 (see Figure 27). From this data, data points below 700 and above 740 are 
taken out of the sample, since they fall outside the internal norms and therefore represent 
unacceptable batches. The variation can be attributed to multiple causes, such as differences 
in humidity between batches, wear of grinding equipment and severity of burnt coffee. Based 
on the data, the standard deviation of the volume density is 1.033% of its norm value. Since 
the coffee gets mixed while it is transported, the density is expected to flow smoothly up and 
down. The variation in this volume density is likewise excluded from the model. It influences 
the variation in product carrier weight, which is part of the trend in product carrier weight (see 
further following sub-section “Trend in product carriers weight”).  
 

  
FIGURE 27: DISTRIBUTION OF VOLUME DENSITY WITHIN BAGS. 
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Weight adjustment inaccuracy  

When the calculated average of the products carriers exceeds the set tolerances, the pad 
making machine receives a signal that is should adjust (or steer) the weight to the norm. This 
signal indicates the number of grams by which the sample is off multiplied by an adjustment 
coefficient. This steering coefficient is expressed in seconds of adjustment signal per gram 
offset from the target. The seconds are translated in the number of spindle rotations (see  
Figure 65). Ideally after adjustment the subsequent measurements of the 10 product carriers 
is exactly equal to the norm; however, the result of this adjustment also includes stochasticity 
(i.e. the average weight after steering is not exactly equal to the norm). It is not clear whether 
the variability in adjustment is caused by inaccurate adjustments to the machine or a variability 
between samples, used to calculate the average.  
Because of this discrepancy, the translation between the weighing cell and the pad making 
machine is verified, this appears to be correct. Therefore, it is assumed in the model that the 
adjustment is correct too, such that discrepancies are caused by the variability in pad weight.  
 

Weight adjustment delay 

Adjustments in weight are made gradually instead of abruptly. This was tested by manually 
forcing the machine to adjust. However, this did not result in reliable data to find the length in 
time of the adjustment. Based on the actual observations and product specifications, it is 
assumed that the spindle adjusts with a constant speed of 1 second per gram of adjustment. 
Most lines produce x pads per minute, or 30 pads per second. Based on this knowledge, it is 
assumed that the adjustment delay to be gradually and the time it takes to adjust is based on 
the number of grams by which the product carrier weight is too high or too low. For example, 

if a product carrier is 2 grams too heavy, the adjustment takes 30 𝑝𝑎𝑑𝑠 ∗
1𝑠𝑒𝑐

𝑔𝑟𝑎𝑚
∗ 2 𝑔𝑟𝑎𝑚𝑠 =

60 𝑝𝑎𝑑𝑠 to implement. 

 

Trend in product carrier weights 

The weights of subsequent product carriers are clearly not random, as can be seen in Figure 
28 whereby the average of three product carriers per bar is shown with no steering activated. 
However, it is difficult to detect any trends from this picture. 
Using several samples of individually weighed product carriers for periods of around half an 
hour, the trend is basically impossible to predict due to randomness. Based on Figure 29, we 
expect to find five periods within 2700 product carriers of 24 pads with an amplitude of 1.2 
grams on a product carrier of 24 pads. Calculating this back to the granularity of a pad, results 

in a period2 of 
2𝜋

2700

5
∗24

= 0.000484814 and an amplitude of  

1.2 𝑔𝑟𝑎𝑚

24 𝑝𝑎𝑑𝑠
= 0.05 𝑔𝑟𝑎𝑚𝑠 𝑝𝑒𝑟 𝑝𝑎𝑑. These values are used as indicator of the sine influence on pad 

weight.  

 
 
2 Formula for the period of a sine function is 𝑃𝑒𝑟𝑖𝑜𝑑 =

𝜋

𝑘
, where k is the number of pads 
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FIGURE 28: TREND OF PRODUCT CARRIERS PER AVERAGE OF THREE CONSECUTIVE PRODUCT CARRIERS (NOTE: THE Y-AXES IS ON THE SAME SCALE, THE X-

AXES DIFFER SLIGHTLY). 

 

 
FIGURE 29: TREND WITHOUT STEERING OF LINE 17. 

 

Discrepancy between pad weight of operator- and machine side of the dosing drum 

One of the causes of variance between pads, is the difference in pad weights between the 
operator and the machine side of the dosing drum (see Figure 30). Among others, pollution in 
the dosing drum is one of the causes (Ten Berge, 2017). According to the data from mid-
October 2020 to the beginning of January 2021, most of the time (83%), the difference lies 
between 0.02 and 0.12 grams on Line 17. Although there seems to be a sine function pattern 
in the data, this could be caused by the varying density of the coffee. Therefore, the difference 
between the operator and the machine side is assumed linear with a slope of 0.00000001852 
grams per pad, making the cycle 0.10/0.00000001852 = 5.4 million pads. At a speed of 1,800 
pads per minute, this represents 50 hours for one cycle.  These assumptions are based on the 
data shown in Figure 31, since the difference varies continuously, the model is simplified to 
the real-world by assuming the numbers given above.  
In the built model, the difference in the mean number of pads between the operator and the 
machine side increases by 0.000001333 with every pad made.  When the differences reaches 
0.12 grams, it is reset to 0.02 grams. Therefore, the assumed difference in dosing does not 
exceed 0.12 grams and remains at least 0.02 grams.  
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FIGURE 30: THE DOSING DRUM HAS TWO TRACKS WHERE PADS ARE MADE, THE MACHINE SIDE AND OPERATOR SIDE (CIRCLES ARE FOR THE INDICATION OF A  

TRACK OF PADS). 

 

 
FIGURE 31: DIFFERENCE IN MEAN OF THE PADS BETWEEN OPERATOR AND MACHINE SIDES OF THE DOSING DRUM. 

 
Weight disruption at machine start-up  

With the initiation of a production line, the weights vary heavily due to a substantial change in 
the amount of coffee in the hopper. When the machine starts, the speed is low at the start and 
increases slowly to the normal speed. When the machine stops, coffee piles up in the hopper, 
and this heavy change causes a large increase in the product carrier weight after a start-up, 
which slowly returns to the norm again. The average weight of the product carriers before and 
after stopping the machine is analysed based on the average of the 20 product carriers before 
the spike. At the 14th product carrier after the start-up, a large and sudden increase in weight 
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occurs (see Figure 32). The average weight of decreases and falls below the norm at the 44th 
product carrier.  
This machine start-up influence is divided into 31 phases (see Table 4), whereby each phase 
accounts for an increase in weight which is assumed to be fixed per pad. This assumption is 
made because only data on the granularity of the product carriers with 24 pads was available. 
For the model, it is calculated back to the granularity of a pad, resulting in the following 
(simplified) phases: 
 
TABLE 4: CHANGE IN WEIGHT PER PAD PER PHASE DURING THE START-UP OF A PRODUCTION LINE. 

Phase Extra weight per pad Number of pads in phase 

1 0.1044 24 

2 0.0463 24 

3 0.0330 24 

4 0.0262 24 

..   

31 0.0001 24 

 

 
FIGURE 32: CHANGE IN WEIGHT AROUND THE START-UP OF A PRODUCTION LINE. 

 
Occurrence of  a production line initiation 
Based on a weekend dataset (the weekend of 12 and 13 December 2020) at line 17, there 
were 80 start-ups over 73,532 product carriers. Assuming that the pad making machine 
produces x pads per minute, this translates into 4.9 start-ups per hour and once every 12.25 
minutes, or, assuming x pads per minute and 24 pads per product carrier, once every 919 
product carriers.    
 

Effect of air humidity in the production hall  on rejections 

Air humidity is one possible cause of periodic fluctuations in the rejection rates noted in Section 
1.4. From May to November 2019, the air humidity was measured multiple times a day. The 
average humidity per week is plotted in Figure 33. It shows a highly variable pattern that 
reaches from around 30% to 60% on a scale of 100%.  
Although this could be a factor of influence, e.g. for the amount of moisture in the filter paper 
and product carriers, it does not seem to have a notable effect on rejection rates. A fitted 
regression analysis was conducted for the effect of air humidity on rejection rates. The R-
squared measure for bags3 is 26.4%, whereas that for the product carriers is 1.1% (see Figure 
34). According to Theisens (2015), a good predictive model should have an R-squared 

 
 
3 The R-squared measure is the fraction of the variability in the data that is explained by the regression model. No 

regression model should be interpreted with an R-squared below 0.7 (Theisens, 2015).  
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measure of over 70%; therefore, it is concluded that air humidity has no substantial influence 
on rejection rates.  
 

 
FIGURE 33: AIR HUMIDITY PER WEEK, GROUPED BY MONTH (AVERAGE OF MULTIPLE MEASUREMENTS PER WEEK). 

 

 
FIGURE 34: REGRESSION PLOT BETWEEN AIR HUMIDITY AND THE REJECTION RATE OF BAGS AND PRODUCT CARRIERS. 

 
 
Conclusion 

In this section, many sources of variation that are inherent to the process are discussed, like 
the variation of pad weight, variation of empty product carriers weight, the accuracy of the 
weighing cells and the variation in weight of empty bags. These sources for stochasticity are 
all implemented in the model built in this study later. Characteristics related to weight like the 
steering accuracy, steering delay, trend in pad weight, differences between operator and 
machine side, start-ups of a production line and the influence of air humidity on the process 
are discussed. Only some of these characteristics are implemented in the model built in this 
study later.  
 

2.4 CONCLUSION ON THE CURRENT SYSTEM ANALYSIS 
Within this section the current system and factors that could have any influence on the 
performance are described. First the root causes were defined, then mechanical factors were 
described to make sure they could be out of scope, sources for stochasticity and other 
characteristics of the behaviour of  the system were described. With this information, there is 
a clear overview and understanding of crucial aspects of this process. 



 

 

30 

 

3. LITERATURE REVIEW 
This chapter, answers the second research question, as to how the problem described 
in the previous chapter should be tackled based on the literature.  
 

3.1 INTRODUCTION 
Several strategies can be used to solve the problem at hand. One is to conduct  research 
on the characteristics of the materials used and the factors that can influence the weight 
of these materials. Another strategy to solve this problem is to optimise the steering 
(adjustment) of the weights. Since this steering is an automated process, slight weight 
changes should be corrected within the automated feedback process. This automatic 
process consists of discrete events that impact the system.  
 

3.2 POSSIBLE WAYS TO STUDY A SYSTEM 
Law (2015) describes multiple ways to study a system (Figure 35). A system is defined to 
be a collection of entities, e.g., people or machines, that act and interact together toward 
the accomplishment of some logical end. In this section, the different ways are compared 
and the most appropriate approach is determined for the problem of interest. 
 

 
FIGURE 35: WAYS TO STUDY A SYSTEM (LAW, 2015). 

 
Experiments with the actual system versus with a model of the system 
According to Law (2015), if it is possible (and cost effective) to physically alter the system 
and then let it operate under the new conditions, it is probably desirable to do so. 
However, this is rarely feasible, because such an experiment would often be too costly or 
disruptive to the system. 
 
Physical model versus mathematical model  
Physical models, like a cockpit disconnected from the airplane to be used in pilot training, 
are not the typically kind of models of interest in operations research and systems 
analysis. Therefore, the vast majority of models built for operations are mathematical, 
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representing a system in terms of logical and quantitative relationships that are then 
manipulated and changed so as to observed how the model reacts, and how the system 
would react.  
 
Analytical solution versus simulation 
Once a mathematical model is built, it must be examined to determine how it can be used 
to answer the questions of interest about the system it is supposed to represent. If the 
model is simple enough, it may be possible to work with its relationships and quantities to 
obtain an exact, analytical solution. A very simple example of a mathematical model is 
the familiar relation 𝑑 = 𝑟𝑡 , where 𝑟 is the rate of travel,  𝑡 is the time spent traveling, and 
𝑑 is the distance travelled. In this example, if the distance to be travelled and the velocity 

are known , then the model to use is 𝑡 = 𝑑/𝑟 as the required time.  This is a very simple, 
closed-form solution obtainable with a piece of paper and a pencil, but some analytical 
solutions can become extraordinarily complex, requiring vast computing resources. If an 
analytical solution to a mathematical model is available and computationally efficient, it is 
usually the preferred approach to studying the model rather than via a simulation. 
However, many systems are highly complex, such that any valid corresponding 
mathematical models are themselves complex, precluding any possibility of an analytical 
solution. In that case, the model must be studied by means of simulation.  
For the analysed system in this research, it is not possible to have numerous thorough 
experiments on the actual system, since the quality norms are strict, and decreasing the 
capacity is not a possibility because then the demand cannot be met. A physical model is 
also not feasible, since there is no spare line to run these experiments on. The 
stochasticity in pad weight, product carrier weight and weighing inaccuracy can be 
captured in an analytical model. Some characteristics, however, cause an analytical 
model to be insufficient, including the queueing policy within lines and the effect of abrupt 
disturbances (i.e. hopper level drops, ceramic filter breaks, too many or too few pads) and 
the trend of the increasing standard deviation of pad weights. A simulation study provides 
more flexibility to assess how the system reacts to such policies and disturbances. 
With this section, research question 2.1 “How can we model a system according to 
literature?” is answered, several options are mentioned and a simulation seems most 
appropriate for the faced problem.  
 
Relevance of simulation 
In the food and pharmaceutical industries, small products that need to meet high EU-
regulations standards in terms of weight are made. Simulation makes it possible to 
reproduce processes virtually to study their behaviour, analyse the impact of possible 
changes and compare different design alternatives without the high costs of experimental 
studies (García et al. 2020). Since products should meet high standards in these 
aforementioned industries, assessing the impact of making changes to the system using 
a simulation does not jeopardise the product quality.  
 
 

3.3 TYPES OF SIMULATION  
There are several ways to simulate processes. Sachidananda et al. (2016) list four such 
approaches in the context of biopharmaceutical manufacturing, namely, mathematical 
programming, stochastic modelling, optimisation and discrete event simulation. This 
section presents examples of these methods and reflects on their effectiveness for the 
situations in which they were used.  
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Usage of a mathematical model for dynamic weighing 
Yang et al. (2018) conducted a research on the precision weighing control of a dynamic 
backfilling weighing system in a coal mine. The dynamic nature of the weighing system is 
similar to the faced problem in this research. Within the process, the materials are 
conveyed by a spiral conveyor to a weighing hopper, and their materials weight is then 
measured by a weighing sensor equipped under the hopper. The real-time weight signal 
is sent to the weighing system. The weight measured by the weighing sensor is further 
increased after the remaining materials fall onto the hopper. When the materials in the air 
have all landed on the hopper, the actual weight is obtained. With the feeding process of 
extra materials, it is crucial to determine when to stop the spiral conveyor so as to obtain 
a precise weight value. A formula is used to represent the conveying capacity flow. The 
actual weight that ends up in the bag is a function of time, speed and other fixed 
parameters. The formula of the actual weight is a time-delayed, uncertain and nonlinear 
model. Yang et al. (2018) propose an adaptive iterative learning control of the weighing 
process. They optimise this adaptive iterative learning by dividing the weighing process 
into three stages. The weight added and detected in the rapid feeding stage is determined 
based on a formula. In the lower feeding stage, the weighing accuracy is improved by 
reducing the speed of the system. The third stage, the prediction feeding stage, estimates 
when the conveyor should stop so as to reach the target weight, which is basically is the 
sum of the weight already detected and the remaining materials that will fall onto the 
weighing hopper when the conveyor stops. The results show that the mathematical model 
improves the weighing accuracy as well as the feeding speed.  
The mathematical model is suitable for solving the problem of Yang et al. (2018) for 
several reasons. First, this model does not take disruptions in the system into account 
(i.e. inaccuracies in the system are constant over time). Second, the relations between 
the characteristics of the system are understood to such a high level of detail that they 
can be represented in an analytical model. Yang et al. (2018) realised this by breaking 
the process down into multiple components that could be represented separately in an 
analytical model.  
 
Usage of stochastic modelling to cope with variability 
One of the most well-known techniques for stochastic modelling is monte carlo simulation, 
a mostly static model that is representative of a system at a particular time (Law, 2015).  

Otsuka and Nagata (2018) used a monte carlo simulation for coping with dimensional 
irregularities in parts caused by machine errors. This is somewhat similar to filling of a 
product carrier based on several parts (the pads). The dimensions of each part are usually 
managed by conventional tolerances determined in the design stage. Tight tolerances 
values result in reduced performance variation along with an increase in the 
manufacturing cost. Otsuka & Nagata’s (2018) research focuses on quality control in the 
design stage, i.e. researching the impact of the tolerances of parts on the performance of 
the final product. The authors assumed the dimensions of the parts are independent of 
one another and the expected dimensions of the final product and their standard deviation 
can be calculated by commonly known formulas of the mean and standard deviation of 
normally distributed parts. Otsuka & Nagata (2018) use a Monte Carlo method to solve 
the research question at hand. This method is applicable because the function of the 
length of all individual parts is linear and the parts dimensions are independent on each 
other, according to the research.  

The monte carlo method is suitable to use for solving the problem of Otsuka and Nagata 
(2018) for several reasons. First, as Otsuka and Nagata (2018) note, the individual parts 
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are linear and the dimensions of the parts are independent. Second, it is assumed that 
the constant variation over time is what makes it a static model (i.e., time does not play a 
role). Hence, there is no trend in the variation of the products and disruptions in the 
process are not taken into account.  

 
Usage of optimisation by optimizing resource usage 
Optimisation is a simulation methodology that aims to optimise processes without making 
fundamental changes to the system. For example, when capacity is lacking and a 
redesign of the process is not a possibility, the only option that remains is to improve the 
scheduling methodology used. Petrides and Siletti (2004) implemented such a solution in 
their study with a biopharmaceutical manufacturer. They attempted to improve the 
scheduling policy of batch processes to avoid having to invest in extra capacity. Using 
software, they simulated the effects of time-variable constraints and batch-to-batch 
variations while using resource constraints. Their experiments were defined by varying 
these constraints. The result of such a simulation is a schedule of batches that seem to 
be optimal for the tasks to be scheduled.  
The optimisation methodology is suitable when the elements to be optimized (in this 
example, the batches) and resources available are known beforehand. The optimal 
sequence of a production plan can then be determined. This method is static and does 
not take disruptions in the process into account.  
 
Usage of discete-event simulation (DES) for process control 
Kern and Manness (1997) used a dynamic simulation to study a bottling line, in which a 
PID controller is used as tuning tool to stabilise the amount of liquid that ends up in a 
bottle. Just as with the faced problem, a certain level should be kept constant. The intent 
of their paper is to support the use of dynamic simulation as a means of gaining basic 
physical understanding and applying simple control techniques. One interesting 
characteristic of the sugar water bottling process is that it is a hybrid process involving 
continuous and discrete event process elements. Sugar water is fed continuously into the 
mix tank, and with the flow rate  is controlled by a PID controller whose objective is to 
regulate the mix tank level. In contrast, the discharge from the mix tank is a pulsed on/off 
flow of sugar water per bottle and the sweetness of the liquid. This model can be seen as 
a discrete-event model, whereby the continuous flow is changing per delta time, and delta 
time is fixed. The event of filling a bottle can be seen as a disruption to the level of liquid 
in the mix tank, since it causes the level to drop abruptly. This is an example of a DES 
study, in which a continuous process needs to remain constant while being disrupted. 
Although no trends are mentioned, the controller should be able to correct for any that 
disrupt the process.  
Antonelli et al. (2018) assess the performance of a manufacturing system using two 
simulation methods: system dynamics simulation (SDS) and DES. The preparation of 
input materials is studied with the help of SDS, while the production line is described with 
DES. System dynamics is a method to change elements of the system, such as a the 
location of a warehouse or the flow that determines the expected input or target output. 
Discrete event simulation is used to gain insights into the behaviour of a system and 
discover unexpected nonconformities by incorporating stochastic effects. In their case 
study, the authors describe the manufacturing of a product that consists of nine process 
steps. An SDS simulation is used to simulate inventories based on among others 
changing demand, unit costs and number of available workers. The simulated demand 
and inventories are inputs to the DES model. The behaviour of the production line is 
simulated by a DES, and several assigning strategies were simulated and analysed. In 
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this case study, DES is used to incorporate stochasticity into the model and consider the 
effect of different service disciplines at the queueing nodes.  
Mathematical, stochastic and optimisation models are examples of static simulation 
models. Law (2015) describes a static simulation model as a representation of a system 
at a particular time, or one in which time simply plays no role. On the other hand, DES 
can be built as a dynamic simulation model that represents a system as it evolves over 
time.  
 

3.4 LINK BETWEEN THE PROBLEM AND THE LITERATURE  
In the central problem of this study, several elements motivate the use of a dynamic model 
instead of a static one, these elements are explained below.  
The first element is that the product carriers that fill one bag are not independent of one 
another. In the event that the system deteriorates and the weight of the subsequently filled 
product carriers is slightly above the lower rejection limits, these filled product carriers 
could end up in the same bag, depending on the transport policy of sending product 
carriers to one or the other filling line.  
The second element is that there is a trend present in the system. The standard deviation 
of pads increases since one side of the tube contaminates faster; therefore, the 
discrepancy between the pad weights between the two sides increases, which in turn 
increases the overall standard deviation of the pads. This trend should be simulated.  
The third element is the fact that disruptions to the process occur. Product carriers can 
be damaged, affecting the estimation of the mean. Pads can be underfilled because the 
hopper level dropped abruptly, causing the system to erroneously adjust the pad weight 
upward. Ceramic filters can also break, causing 1 in 40 pads to be underfilled. The system 
does not automatically respond on these disruptions. A DES can be used to assess 
strategies that take these disruptions into account.  
The fourth element is that there is a correlation between the weights of product carriers. 
Pad weights vary slowly, and subsequent product carriers can be either underfilled or 
overfilled. The transport policy influences which subsequent product carriers ends up in 
one bag.   
Overall, these elements give ample reason to use a DES, which is able to incorporate all 
the elements in the system, whereas the other options are not (see Table 5).  
 
TABLE 5: SUITABILITY OF SIMULATION APPROACH BY SYSTEM ELEMENT. 

Problem 
element 

Mathematical 
modelling 

Stochastic 
modelling 

Optimisation Discrete 
event 

simulation 

Stochasticity ○ ● ● ● 
Trend - ○ ○ ● 
Disruptions - ○ ○ ● 
Policies - - - ● 

 
 
 
 
With this section, research question 2.2 “What type of model is appropriate to model the  
  

●  Can take element into account 
○  Difficult to take element into account, but possible 
-   Unable to take element into account 
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3.5 STEPS IN CREATING A DISCRETE EVENT SIMULATION MODEL 
Sachidananda et al. (2016) define six steps in the DES methodology, while Law (2015) 
describes the 10 steps of a simulation study (see Figure 36). Sachidananda et al.’s (2016) 
steps correspond to Law’s 92015) first two steps. Law’s (2015) further steps include 
validating the model, performing experiments and analysing the results. As these steps 
can better represent the whole process, these they are used as guidance for the study.  
 

 
FIGURE 36: STEPS OF A SIMULATION STUDY. 

 

3.6 PERFORMANCE MEASURES IN A SIMULATION STUDY 
This section describes  three different performance measures for a simulation study. To 
make sure results are reliable, the warm-up period, run length and number of replications 
should be statistically determined.  
 
Warm-up period 

According to Law (2015), if one is trying to determine the long-term or steady-state 
behaviour of a system, then it is generally advisable to specify a warm-up period for the 
simulation, that is, a point in simulated time when the statistical counters are reset (but 
not the state of the system). A warm-up period is thus required when the transient means 
converge toward the steady-state mean. However, if there are enough observations, the 
initial transient observations are “washed out” by the remaining steady state observations.  
In this research problem, the mean value of the pad weights can be set to the target 
weight, and no warmup period would be required. This is because i) the system starts in 
a steady state, ii) it only affects the first batch and iii) if many batches are simulated, the 
first batch will be washed out.  
However, if we choose to start in a non-steady state, it takes one or several batches to 
bring the weight of the pads to the steady state. This should be determined by 
experiments on the model.  
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Run length 

Our model is a non-terminating simulation, i.e. there is no natural event that specifies the 
length of a run. This length should be at least long enough to find statistically confident 
measurements of the objective used as output.  
 
Replications 

According to Law (2015) in order to generate independent replications, each replication 
should use separate sets of different random numbers and the same initial conditions. 
Each replication should also reset the statistical counters.  
With this section, research question 2.3 “How can results of the system be verified and 
validated?” is answered, several options are mentioned and a simulation seems most 
appropriate for the faced problem.  
 

3.7 CONCLUSION OF LITERATURE REVIEW 
This chapter a review of the relevant literature for this research is provided. It started with 
an overview of possible methods to study a system. We then described several ways to 
simulate a system, and we linked the theory to the faced problem and assessed the fit of 
the possible solutions with the problem to make a decision. The decision was made to 
execute a discrete event simulation (DES) study to describe the system at JDE. This is 
mostly driven by the fact that the system that is looked at in this research is too complex 
for an analytical solution. Finally the steps needed to execute a DES were described and 
last the performance measures that are especially relevant for to this DES execution, 
which should be determined later on in this research.   
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4. THE SIMULATION MODEL 
In this chapter, the first question to answer the third research question (see Section 1.5.3) 
is answered. In Section 4.1 the model is described in general and the assumptions in the 
model are listed. In Section 4.2 the inputs, characteristics, outputs and objectives for the 
simulation model are discussed. In Section 4.3, the verification of the model is described. 
In Section 4.4 the performance measures of the model (like the run length) are discussed. 
Finally, in Section 4.5 the model is validated.  
 

4.1 GENERAL DESCRIPTION OF THE MODEL AND ASSUMPTIONS 
The feedback loop system is simulated with Siemens Plant Simulation v.14. This section 
describes the simulation with which the problem is solved, including the inputs, outputs, 
assumptions, characteristics, verification and validation.  
 
Selecting the simulation software 

For selecting the simulation software, criteria from Tewoldeberhan et al. (2003) were used 
to assess a simulation software package. Tewolderberhan et al. (2003) defined criteria 
for assessing the performance on model development, input, output, and user criteria. 
Since the author of this research is familiar with Siemens Plant Simulation v.14, it is 
checked whether that software is sufficient. The criteria on which the software was 
assessed can be found in Appendix B: Selection criteria for simulation software selection. 
Based on the results in the appendix, we conclude that the Siemens Plant Simulation v.14 
software provides all the features we use in this simulation study.  
 

General description 

The overall the model exists of five steps (see Figure 37).  

• First, the pads are made and the product carriers are filled (nr 1 in Figure 37). 

• Second, the weight of the product carriers is checked, and they are then either 

rejected or accepted. Furthermore, the check decides whether the system should 

make any adjustments or not (nr 2 in Figure 37). 

• Third, the accepted product carriers are transported to either Line A or Line B (nr 

3 in Figure 37). 

• Fourth, the right number of product carriers is subsequently emptied into the bag, 

which is transported to the bag weighing cell (nr 4 in Figure 37). 

• Finally, the full bags are weighed and subsequently rejected or accepted, nr 5 in 

Figure 37.  

The simulated data is based on the granularity of a pad, so most aspects are also 
calculated to the granularity of the pads.  
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FIGURE 37: SCREENSHOT OF THE MODEL WITH DESCRIPTIONS OF THE STEPS IN THE PROCESS. 

 

Assumptions  

Some of the mentioned influences on variation in Chapter 2 are simplified in the simulation 
model. These assumptions are mentioned below.  
 
Discrepancy between the operator and machine sides of the dosing drum 
The discrepancy between the weights of pads from the operator and the machine side is 
assumed to increase at a constant rate. When this discrepancy is equal to or higher than 
0.12 it resets to 0.02 again. In reality, the discrepancy changes at a less constant rate, 
and the difference can be higher than 0.12.  
 
Sine function trend 
The sine function trend is assumed based on a dataset of individual product carrier 
weights. The trend of the product carrier weights is divided by the number of pads, which 
yields the amplitude and period of the granularity of a pad. In practice, the amplitude and 
period of the sine function vary. Sometimes, a sine function is not detectable, and other 
times the period is lower or the amplitude higher. Since it is basically impossible to 
simulate such an uncertain trend, these assumptions for the trend are used as 
simplifications.  
 
Accuracy of steering 
The accuracy of steering cannot be accurately determined, since there is stochasticity 
both before and after the steering. Given that the translation from the weighing cell to the 
pad making machine is fully accurate, the steering is assumed fully accurate too. This is 
most probably a simplification, since it is plausible there is a form of imperfection in the 
steering. 
 
Steering delay 
The steering is assumed to have speed of 30 pads per gram and one gram per second. 
This implies that the steering most of the time is fully finished after filling one or two 

1.Making of 

pads and 

PC 

2.Weight 

check of 

PC 

3.Transportation 

of PC 

4.Filling 

of bags 

5.Weight 

check of 

bags 
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product carriers. Though there are also indications that it takes longer. This should be 
taken into account when implementing the results.  
 
Model based on Line 17 
The model is based on Line 17, therefore some characteristics specific for a certain line 
are ignored. This slightly effects the validity for the bag sizes that are not produced on 
Line 17. This can be taken care of in the implementation phase, where settings can be 
adjusted to specific lines.  
 
Linear inaccuracy of bag weighing cell 
In the model, the inaccuracy of the bag weighing cell is assumed to increase linear with 
the number of pads that go in one bag.  

 

4.2 INPUTS, CHARACTERISTICS, OUTPUT AND OBJECTIVES OF THE 

SIMULATION MODEL 
This section, the inputs of the system, characteristics that are built in, outputs that are 
used and finally the objectives to base the performance on are described.  
 

4.2.1 INPUTS  
In this section, the used inputs are described. Several inputs are simplified, this is 
indicated in Table 6. All parameters, values and distributions are based on findings in 
Chapter 2. 
 
Pad weight variations 
The mean weight of the pads is the main input to the model, and it is assumed to be 
constant around the target weight. In reality, sometimes the mean of the pads can deviate 
from the specifications for several days or weeks due to incorrectly calibrated tare 
settings. This is simulated by varying the tare weight.  
The standard deviation of the pad weights is set to an exact value such that the final 
standard deviation of pads is close to the found standard deviation 0.13 grams.  
The weight of the filter paper is assumed to be constant.  
In reality, the discrepancy between the weight of the pads at the operator and machine 
side of the dosing drum increases over time, until the dosing drum is cleaned. The speed 
of this trend is assumed to be constant over time and increases by 0.00001852 grams 
per pad.  
 
Weight checks 
The weight limits for both rejections and average calculations vary per bag size and 
experiment. In reality, these limits are based on a percentage of the target pad weight. In 
reality, this percentage can vary by decimal place. In the model, this is also a percentage 
that, has no limits on decimals, although the experiments are limited to varying one 
decimal place after the period.  
The probability of missing a pad indicates how often a product carrier or bag is missing a 
pad.  
 
Feedback loop 
The feedback loop has multiple experimental variables, which are explained below.  
The sample size determines how many product carriers are weighed to estimate the 
current average.  
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The lower and upper tolerances indicate when the feedback loop is activated. If the 
current average falls outside the upper or lower tolerance limits, the feedback loop is 
activated. These tolerances are expressed as a percentage of the target mean, again to 
one decimal place.  
The steering factor is the severity of the adjustment. If this value equals 1, the weight is 
adjusted with the exact discrepancy between the measured and the target weight. With a 
value of 0.5, the weight is adjusted with half of the difference, and so on.  
The feedback delay indicates how many product carriers are ignored after steering for 
calculating the current average weight of the product carriers.  
 
Transport policy 
The transport policy determines how many subsequent product carriers are send to one 
or the other bag filling line.  
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TABLE 6: INPUT VALUES FOR THE SIMULATION MODEL. 

Model 

step 

Input Simplification of reality Set value 

1 Mean pad weight Yes, assumed to vary around the 

target mean of 7.00 grams.  

7.00 

1 Initial standard 

deviation of pad 

weights 

No 0.13 

1 Weight of filter paper Yes, assumed to be a constant 

weight without standard deviation 

0.183 

1 Difference between 

Operator and Machine 

side 

Yes, assumed to be a constant 

trend that is automatically corrected 

Trend of 1.852e-08 increase 

per pad 

1 Probability of missing 

pads 

Yes, estimated as a constant factor 

on the last pad made 

0.1% probability of missing a 

pad, of which 80% occur in 

product carriers and 20% in 

bags.  

2 Rejection limits 

product carriers 

No Varies 

2 Average calculation 

limits product carriers 

No Varies 

2 Sample size for 

average calculation 

No Varies 

2 Lower and upper 

tolerance limits for 

when to steer 

No Varies 

2 Steering factor Slightly, the standard deviation of 

the effect of the adjustment is 

estimated.  

Varies 

2 Feedback delay No Varies 

3 Transport policy No Either two or 10 consecutive 

product carriers are 

transported to the same bag 

filling line (depending on the 

production line) 

5 Rejection limits bags No Varies 

5 Average calculation 

limits bags 

No Varies 

 

4.2.2 CHARACTERISTICS INCORPORATED INTO THE SIMULATION MODEL 
Several characteristics that have an effect on the system are described, along with their 
behaviour and how they were implemented in the model. These are explained below and 
listed in Table 7. 
 
Stochasticity of the empty product carrier weight 
The weight of the empty product carriers is normally distributed and vary according to a 
certain standard deviation, these weights are independently generated. The details are 
based on the analysis described in Section 2.3.  
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Stochasticity weighing cell accuracy 
The weights obtained by the weighing cells is also normally distributed and vary according 
to a certain standard deviation, these incorrections are independently generated and 
added to the detected weight of the product. The details are based on the analysis 
described in Section 2.3. 
 
Rounding by the weighing cells 
The weighing cells round the detected weights to an even number with two digits. 
Averages are calculated based on these rounded numbers.  
 
Filler adjustments effects 
When the feedback loop is activated, the weight is adjusted. The effect, however, is 
gradually implemented in the machine. In the simulation model, the adjustment starts 
when there is a delay of 12 product carriers or more, since these were already filled before 
the adjustment began. The pad weights gradually increase according to the speed of the 
spindle.  
 
Sine function trend of the pad weights 
The trend of the pad weights is simulated with a sine function that various every 24 
(simulated) hours. A period is used that various according to a normal distribution with 
both a mean and standard deviation of 0.000484814 grams per pad and an amplitude 
that varies according to a normal distribution with a mean and standard deviation of 0.03 
grams per pad.  
 
TABLE 7: TABLE WITH CHARACTERISTICS USED AS INPUT IN THE SIMULATION MODEL. 

Model 

step 

Characteristic Simplification of reality Set value 

1 Stochasticity of empty 

product carrier weight 

No Mean: 390.4 

Standard deviation: 0.285 

2 Stochasticity of 

accuracy of the 

weighing cell 

No Mean: 0 

Standard deviation: 0.077 

2 Rounding of weighing 

cell 

No Rounding on multiples of 0.02 

2 Behaviour of filler 

steering effect 

Yes 30 pads per gram (changes linear) 

2 Sine function trend of 

pad weight 

Yes, varies every 24 

simulated hours 

Period: 

Mean: 0.000484814 per pad 

Standard deviation: 0.000484814 per pad 

Amplitude: 

Mean: 0.03 grams 

Standard deviation: 0.03 grams 

4.2.3 OUTPUTS OF THE SIMULATION MODEL 
There are several outputs of the simulation model, these outputs give indications about 
the performance of the overall system. Not all of them are used as Key Performance 
Indicator to assess the performance of the model.  
 
Total overfill 
The total amount of overfilling is tracked through two objectives: pure overfilling and pure 
underfilling. This is the amount of coffee in a bag compared to the target amount. When 
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there is less coffee in the bag, the difference is known as underfill, while the reverse is 
true for an overfill.   
 
Reworked coffee 
The amount of reworking is based on the product carrier and bag rejections. The coffee 
from the pads in these rejected products are reworked. 
  
Cost of reworked coffee 
Rejecting a bag costs more than rejecting a product carrier. First, there are often more 
pads in a bag than in a product carrier; this factor is already included in the objective 
above. Second, more effort is spent on a bag than on a product carrier, such as in terms 
of transport. Third, when a bag is rejected, the empty bag is also rejected, which costs an 
extra amount of money. Therefore, the costs of rejecting a bag is assumed to be 62% 
higher than rejecting a product carrier, relative to the amount of coffee that is rejected. 
This percentage is based on the average costs per pad per material. The relative costs 
between filter paper costs and wrapping paper costs per pad results in the assumed extra 
costs of 62% for rejecting a bag. An overview of the costs is given in Table 8. 
 
TABLE 8: MATERIAL COSTS PER PAD (FULL-YEAR DATA FROM 2019).  

Material Yearly 
expenses (€) 

Pads 
produced / 
year 

Costs per 
pad (€) 

Costs per pad 
(%) 

Box  

x 

  

Filter paper    

Wrapping paper    

Coffee    

Total  x  100% 

 
Falsely rejected product carriers and bags 
The detected weight depends on the weight of a product carrier and the accuracy of the 
weighing cells. Therefore, a product could be rejected when it should actually be 
accepted. The number of incorrectly rejected product carriers and bags is tracked.  
 
Distributions of pads, product carriers and bags 
The mean and standard deviations of all pads, product carriers and bags is calculated at 
the end of a simulation run. Note that the rejected products are also included in this 
calculation.  
 

4.2.4 OBJECTIVES  
The main objective to optimise is the costs of rework, and this means decreasing the 
rejections rates of product carriers and bags. Reworking is costly because reworked 
coffee is devaluated by €x per kilogram, it requires labour, and it is disadvantageous to 
the quality of the product.  
A secondary objective is the amount of overfilling. Every gram of extra coffee given to the 
customer comes at an additional cost, and underdosing is disadvantageous to the quality 
of the Senseo pads. Since the mean of the pad weights varies around the target mean, 
the total amount of overfilling is expected to be close to zero; therefore the combined 
amount of pure overfilling and pure underfilling is a better indicator of this objective. 
However, this is a secondary objective, which means that this objective will be optimised 
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by the model based on the costs of rework, when making a decision on the best possible 
values, this objective is taken into account.  
Another objective is the probability that a bag with a missing pad is accepted. Internally, 
JDE has decided that this change may not exceed 1%.  
 

4.2.5 OVERVIEW OF THE SIMULATION MODEL STRUCTURE 
The simulation model is fed by inputs, the simulation model works based on the settings 
of these inputs and finally provides outputs with which the overall performance can be 
assessed. A visualization of the inputs, simulation and outputs is shown below in Figure 
38. 
 

 
FIGURE 38: VISUALIZATION OF THE STRUCTURE OF THE SIMULATION MODEL. 

 

4.3 VERIFICATION OF THE MODEL 
In this section the verification of the model is described. The verification is related to 
whether the model does what it should do based on the built-in logic, e.g. like whether 
certain aspects are correctly summed up. Note that this should not be misinterpreted with 
validation, in validation it is checked whether the model is similar to what has been seen 
in reality.  
Our approach to check whether the logic is correctly implemented in the model, all 
generated data was saved into data tables. There is a table with every pad generated, as 
well as, every product carrier filled and every bag that is filled with all their properties. The 
model is verified by cross-checking data points (for all tables containing the data points, 
see Appendix C. The data stored in the lists is presented in Table 9 by granularity.  
 
Example: if the first two product carriers have a coffee weight of 101 and 102 grams, two 
product carriers go into one bag, then the first bag should have a weight of exactly 
101+102=203 grams.  
 
Weight checks 
All combined weights should add up to the correct amount. For the pads list, this means 
that the weight of the pad should equal the total weight of the coffee and the filter paper. 
In the table, the values are rounded to two decimal places, since the filter paper weight is 



                              

 

45 

MSc Thesis – Thomas Anton de Koning – 2021 

0.183 grams, there could be a discrepancy of 0.1 grams between the total weight of a pad 
and the sum of the coffee and filter paper weights.  
In the product carrier list, the link between individual pad weights and product carrier 
weights is first checked. The pads that fill one product carrier should be exactly equal to 
the indicated weights of the pads in the product carrier. Subsequently, the total weight of 
the pad, empty product carrier and weighing cell should add up to the detected weight 
rounded to the closest rounding number possible.  
In the bags list, the weight of pure coffee in the product carriers that fill one bag should 
equal the coffee weight in that bag. The rounded bag weight should equal the sum of the 
coffee weight and the weighing inaccuracy, rounded to the closest possible number.  
 
Rejected product carrier checks 
The rejected products checked for whether they are correctly rejected by the model, 
based on the rejection limits. When a product carrier is rejected, it corresponding number 
should not be present in the bags list.  
 
Transport policy 
The logistics of product carrier transport is checked by tracking which product carriers end 
up in one bag in the bags list. If product carriers are transported to a bag filling line in 
twos, then two consecutive product carriers should end up in the same bag.  
 
Steering delay 
When the steering function is activated, the result of the steering should be delayed by 
12 product carriers, and then the gradually implemented, spread over multiple product 
carriers. In the product carrier list, this is tracked by the mean pad weight at that moment, 
linked the sample size. This verifies that the change in the mean has been simulated 
correctly.  
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TABLE 9: LISTED SIMULATION DATA BY PRODUCT GRANULARITY. 

Pads list Product carrier list Bag list 

Weight of pad Product carrier counter Weight of coffee in bag 

Amount of coffee in pad Pads weight in product carrier Weighing inaccuracy of weighing 

cell 

Weight of filter paper Weight of empty product carrier Rounded bag weight 

Counter of product carrier Weighing inaccuracy of weighing 

cell 

Overfilling 

Side of the dosing drum on 

whichthe pad is made 

Detected weight by the system Underfilling 

Value of the sine correction Status (accepted or rejected) Status (accepted or rejected) 

 Just call indication (correct or 

incorrect status) 

Just call indication (correct or 

incorrect status) 

 Sample size  Number of product carriers in 

one bag 

 Current average of samples Bag number to calculate hourly 

averages 

 Difference between the sample 

size and the nominal weight 

Current hourly average 

 Current mean pad weights on 

operator side 

Missing pad in bag (binary value) 

 Current mean pad weights on 

machine side 

 

 Weight of last pad  

 Missing pad at in product carrier  

(binary value) 

 

 Missing pad in bag (binary value)  

 

4.4 PERFORMANCE MEASURES OF THE MODEL 
In this section the performance measures of the model is described. By statistically 
determining the warm-up period, run length and number of replications it is ensured that 
the found results are reliable.  
 
Warm-up period 
According to Law (2015), a warm-up period is required to make sure that the system is in 
a steady-state. In the modelled system, the mean pad weight decides whether the system 
is in a steady-state. If the mean varies around the targeted average value, all subsequent 
products (i.e.. product carriers and bags) also vary between their target values. In our 
simulation, this is the case from the beginning.  
Two trends influence the mean weight of pads: the sine trend and the discrepancy in pad 
weight between the operator and the machine side of the dosing drum. Both factors are 
initially zero and they vary according to their respective patterns. Both trends having a 
value of zero simultaneously is a scenario that can occur when two cyclic functions vary 
over time, therefore it seems plausible the first bags made already have weight close to 
the target weight. Such that no warm-up period is required for this model. This is 
supported by comparing the average weight of bags in a batch. Figure 39 and Figure 40 
below show the fluctuation in the batch average shown, while in Table 10 presents the 
exact 95% confidence interval. The fluctuation is caused by the sine function and 
randomness on the level of individual pad weight, the feedback loop ensures the average 
weight keeps close to the norm.  
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FIGURE 39: WEIGHT FLUCTUATION OF BAGS WITH 72 PADS, BASED ON BATCHES OF 300 BAGS. 

 

 
FIGURE 40: BAG WEIGHT FLUCTUATION OF BAGS WITH 16 PADS, BASED ON BATCHES OF 300 BAGS. 

 
TABLE 10: BATCH STATISTICS FOR WARM-UP PERIOD DETERMINATION. 

Bag size Average Standard 
deviation 

95% Lower 
bound 

95% Upper 
bound 

72 504.09 0.396 503.31 504.85 

16 111.98 0.106 111.77 112.19 

 

 
Run Length and replications 
The model represents a non-terminating system, since the system never stops by a 
natural event (Law, 2015). Therefore, there is no natural event that specifies the length of 
the run and the measure of performance for such a simulation is a steady state parameter. 
In our model, this parameter is the ‘Coffee in rework costs rate’. This parameter should 
be stable, a steady state can be reached by a small number of replications and a long run 
length or vice versa.  
The bare minimum of the run length is decided by the largest cycle within the process. 
Again, these cycles are the sine function trend of the pad weight and the discrepancy in 
weight between the operator and machine sides of the dosing drum. The cycle of the 
discrepancy between sides is 48,000 pads, whereas the cycle for the sine function trend 
is 24,169 pads. For the smallest bag size of 16 pads, therefore, the run length should be 
at least 3000 bags, and for the largest bag size of 72 pads, this number should be 667 
bags.  
To determine the run length, a bag size of 72 pads is used, because it consists of the 
largest amount of pads per product carrier and three product carriers per bag. Rejecting 
such a bag has the greatest influence on the ‘Coffee in rework costs rate’ objective. 

503,00

503,50

504,00

504,50

505,00
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3
1

0
9

1
1

5
1

2
1

1
2

7
1

3
3

1
3

9
1

4
5

1
5

1

1
5

7
1

6
3

1
6

9
1

7
5

1
8

1

1
8

7A
v

e
ra

g
e

 w
e

ig
h

t

Batch number

Fluctuation of average bag weight (batch of 300 bags)

111,70

111,90

112,10

112,30

1 7
1

3
1

9
2

5
3

1
3

7
4

3
4

9
5

5
6

1
6

7
7

3
7

9
8

5
9

1
9

7
1

0
3

1
0

9
1

1
5

1
2

1
1

2
7

1
3

3
1

3
9

1
4

5
1

5
1

1
5

7
1

6
3

1
6

9
1

7
5

1
8

1
1

8
7

1
9

3

W
e

ig
h

t

Batch number

Fluctuation of average bag weight per batch



                              

 

48 

MSc Thesis – Thomas Anton de Koning – 2021 

Therefore, the objective for a bag of 72 pads will have the slowest convergence rate 
compared to the other bag sizes.  
To determine the best possible combination of run length and number of replications, ten 
different run lengths from 10 to 120 hours with incremental increases were analysed. The 
standard deviation of the Coffee in rework costs rate after n replications is plotted in Figure 
41. At a run length of 10 hours, the standard deviation shows a sharp increasing trend, 
which suggests that the run length is not long enough to obtain a stable output. From 50 
hours onward, the standard deviation remains fairly stable.  
 

 
FIGURE 41: CHANGE IN STANDARD DEVIATION OVER REPLICATIONS PER RUN LENGTH. 

 
For all run lengths, the number of replications based on the relative width of the 
confidence interval, and the relative error were calculated. The error in the found outcome 
is assessed, if the error is small enough, the outcome is highly reliable enough (Law, 
2015) and therefore representative. The relative width should be lower than the relative 
error, one be sure the outcome sure falls within the limits of the relative error. The 
calculation of this so-called relative width is given in Equation 1. The relative error is 
calculated by the formula given in Equation 2. The observed error is calculated based on 
a t-value of 97.5% (1 – α/2) and n – 1 degrees of freedom. There is a sufficient number 
replications when the relative error is lower than the observed error, then the number of 
replications is enough. The relative error is set to 0.04762, based on the formula given in 
Equation 2 and a 𝛾 of 5%. Also, the number of required replications per run length was 
calculated. For a run length of 50 hours onward, fewer than 30 replication are enough. 
For a run length of 70 hours, 10 replications give a sufficient result, which is the most 
efficient balance computing wise between run length and replications in our analysis. 
Based on the results presented in Table 11, the number of replications is set to 10. Table 
12 displays the results of the chi-square test, showing that the 10 replications give 
sufficient prove the output is normally distributed.  
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Equation 1: Relative error of the confidence interval y’ compared to the average X in the equation. 

𝑡𝑛−1,1−∝/2√𝑆2/𝑛

X ̅̅ ̅
<  𝛾′ 

Equation 2: Formula for the relative error. 
𝛾′ =  𝛾/(1 +  𝛾) 
 

TABLE 11: ERROR PER NUMBER OF REPLICATIONS FOR A RUN LENGTH OF 70 HOURS. 

 
 
TABLE 12: CHI-SQUARED TEST WITH 10 REPLICATIONS WITH A RUN LENGTH OF 70 HOURS. 

 
 
Overall, with no warm-up period, a run length of 70 hours and 10 replications, the 
performance of the simulation model on ‘Coffee in rework costs’ is statistically significant.  
 

4.5 VALIDATION OF THE MODEL 
The model is validated in two ways. First, the interaction within the model is checked, see 
Section 4.5.1. This means the interaction between making product carriers and bags. This 
is done by using real-world data of individual product carrier weight. The results are 
expected to be highly similar. Second, data of one month for all bag sizes and all 
granularities were compared to the results of the simulated data, see Section 4.5.2. The 
results are compared based on their mean and their spread, based on box plots.  
 

4.5.1 CHECKING THE INTERACTION WITHIN THE MODEL 
The weights of individual product carriers and bags are logged to a server, and this data 
is used determine the standard deviation of both. The data points from the product 
carriers are used as input for the simulation model. With this input, the standard 
deviation of product carriers should be exactly the same in reality as in the model. The 
bag distribution given by the model, should be close to the distribution of the actual 
bags.  
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Table 13 lists the standard deviation of the product carriers and bags based on the 
individual measurements. The values are similar enough to conclude that the model 
works correctly.  
The standard deviation of the product carriers is determined in exactly the same manner, 
beforehand by using the simulation model. This should be the case since the simulation 
model based the calculation on its predefined input.  
The standard deviation of the bags differs 0.0045 between the real-world data and the 
simulated model. This slight difference may be caused, first, by inaccuracies in the data. 
The calculated standard deviation is not perfectly based on the bags filled by the product 
carriers used as input. This also explains the difference in the mean weights of the bags. 
The real-world dataset is adjusted based on the results of the simulation. Outliers that 
were 6.9 grams above the norm weight or 4.8 grams below the norm weight were deleted 
from the dataset, since these values are statistically <0.0% to occur.  
 

TABLE 13: COMPARISON OF ACTUAL DATA AND SIMULATION MODEL. 

 Standard 
deviation of 
product 
carriers 

Mean of 
product 
carriers 

Standard 
deviation of 
bags 

Mean of 
bags 

Individual 
measurements 

0.7512 172.3871 1.2696 336.4849 

Simulation results 0.7512 172.3889 1.2741 335.9967 

 
Since the individual measurements and results of the simulation model are very similar, 
it may be concluded that the model works just as well as the actual system. 
 

4.5.2 SPREAD OF DATA ON ALL THREE GRANULARITIES 
To check the validity of the model, the results found in real-world data were compared 
with the results of the simulation model. This is done for three granularities – pad, product 
carriers and bags – to ensure that the translation of the input at one stage results in the 
correct output at the subsequent stage.  
In reality, sudden fluctuations in the sine trend happen constantly (i.e. within an hour). In 
our simulation model, the sine function and tare settings are varied every 24 hour, such 
that the simulated results would have more extreme hourly averages than the hourly 
averages found in the actual data. While more extreme fluctuations can also happen in 
reality, they are overshadowed by the normal behaviour of the production line in any given 
hour. Therefore, the simulated data contains more extreme observations, which can have 
a profound influence on the usual parametric data analyses and, as a consequence, lead 
to erroneous conclusions (Carter et al., 2009). Because extreme values are 
overshadowed in real data and not in the simulated data, this statement of Carter et al. 
(2019) applies here too.  
Due to the situation described above, the median and the spread of the real data are 
compared to the simulated results. For this comparison boxplots were used, since we are 
interested in whether the core of the simulated and the real-world data are similar. 
Depending on the objective, either the median, the spread or both were compared (see 
Table 14). The reason changes in the median were ignored is that the median should be 
close to the norm and if that is not the case, something structural is wrong in the 
production line, this is unrelated to the weight stabilization system. The boxplots are 
based on one month of real data and simulated data is based on 200,000 bags.  
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TABLE 14:RELEVANT COMPARISONS PER OBJECTIVE. 

Granularity Median Spread 

Weight of pads No Yes 

Standard deviation of 
pads 

Yes Yes 

Weight of product carriers No Yes 

Standard deviation of 
product carriers 

Yes Yes 

Rejection rate of product 
carriers 

Yes Yes 

Weight of bags No Yes 

Standard deviation of 
bags 

Yes Yes 

Rejection rate of bags Yes Yes 

 
Spread of pad weight  
For the boxplot of pad weight, the median is expected to be close to the target weight of 
7.183 grams (see the grey horizontal line in Figure 42). Since the real data is rounded to 
two decimals, it should be close to 7.18. In the real-world data, the median is a couple of 
centigrams higher or lower than the target value, which can be seen in Figure 42 where 
the lower bar represents the 25th percentile, the upper bar the 75th percentile and between 
these bare is the median. This shows that some production lines were constantly dosing 
too much or too little coffee in this particular month. In the simulated data, it is assumed 
that the average pad weight fluctuates around 7.00 grams; therefore, the median of the 
simulated data is always close to 7.18 grams. The pad weight for, for example, 32 or 54 
pads is higher or lower than the expected mean. The discrepancy can be caused by 
biased weighing by the operator or the production line produced systematically lighter or 
heavier pads. Since the spreads of the real and simulated data are similar, the simulated 
pad weight seems to fluctuate in a similar manner as the real-world pad weight. 
 

 
FIGURE 42: BOXPLOT OF PAD WEIGHT PER BAG SIZE (REAL VERSUS SIMULATED DATA). 
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Spread and median of the standard deviation of the pad weight  
In most analysed data sets, the standard deviation of the pad weights varies at around 
0.13 grams, as can be seen on the data for the bags of 40, 48 and 54 pads (see Figure 
43). In the simulated data it is assumed that the standard deviation varies around 0.13 
grams, although for some bag sizes, the standard deviation was higher in the particular 
month than was analysed. (Note that this is lower than the indicated standard deviation 
of 0.15 grams in Section 2.3, since the short-term standard deviation seems to be lower). 
The spread of the standard deviation seems to be similar in the simulated data and in 
reality. The spread is slightly smaller in the simulated data, because these values are 
based on figures with many decimal places; the real data is based on two decimals, and 
therefore this slightly smaller spread was expected. For bag sizes 16, 32, 36 and 60, the 
standard deviation of pad weight is higher, this is because this data is based on different 
production lines than Line 17. Overall, the standard deviation of the pad weight shows a 
similar pattern in both the simulation model and the actual data.  
 

 
FIGURE 43: BOXPLOT OF STANDARD DEVIATION OF THE PAD WEIGHT PER BAG SIZE (REAL VERSUS SIMULATED DATA). 

 
Spread of the product carrier weight 
The spread of the product carrier weights in the simulated data is similar to that the real-
world (see Figure 44). For product carriers with 20 and 24 pads. For product carriers with 
16 pads, there was no data available, and for those with 18 pads, the actual spread is 
larger than the simulated one. Since the spreads for 20 and 24 pads are very similar, the 
simulated spread seems to be more accurate than the real-world data in that month.  
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FIGURE 44: BOXPLOT OF PRODUCT CARRIER WEIGHT PER PRODUCT CARRIER SIZE (REAL VERSUS SIMULATED DATA). 

 
Spread and median of the standard deviation of the product carrier weight 
The standard deviation of the product carrier weights is consistently higher in the 
simulated data than the real-world data (see Figure 45). The standard deviation derived 
from the actual data is low compared to the theoretical standard deviations of the product 
carriers (based on a standard deviation of 0.1404 grams per pad calculated over several 
months). This theoretically calculated standard deviation excludes the standard 
deviations of the empty product carriers and any inaccuracies in the weighing cell. 
Therefore, it seems to be more plausible that the standard deviation should be higher in 
the long run. Since the median of the standard deviation of the product carrier with 24 
pads is close to the real data value and higher than the theoretically expected standard 
deviation, it seems plausible that the actual standard deviation is often higher than the 
theoretical one. In conclusion, although the standard deviation is higher in the simulated 
model, the simulated values seem to be realistic as sources of stochasticity – such as the 
standard deviation of pad weights and of empty product carrier weights, as well as the 
inaccuracy of the weighing cell.  
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FIGURE 45: BOXPLOT OF PRODUCT CARRIER STANDARD DEVIATION PER BAG SIZE (REAL VERSUS SIMULATED DATA). 

 
Spread and mean of the rejection rate of product carriers  
The rejection rates of product carriers is difficult to compare, since this is influenced by 
the ratio of both missing and extra pads due to machine failures. In reality, this ratio varies, 
and in the simulation it is given as a constant factor. Therefore, the boxplots are not 
exactly the same (see Figure 46). Though, since the simulated median is both above and 
below the real median depending on the bag size, it is assumed the simulated rejection 
rate to be fairly similar to the real data.  
 

 
FIGURE 46: BOXPLOT OF REJECTION RATE OF PRODUCT CARRIERS PER BAG SIZE (REAL VERSUS SIMULATED DATA). 

 
Spread of the bag weights 
The simulated spread of the bag weights is not always similar to the spread observed in 
reality, as shown in Figure 47. For the bags with 32, 36, 48 and 60 pads, the two spreads 
are very similar. For bags with 16, 40 and 54 pads, the spread of the simulated data can 
either be larger, smaller. Since the spread can be either larger, smaller or similar under 
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the same settings, it can be concluded that the data is so prone to randomness that the 
model seems to be fairly close to reality, although the simulated data does not fit perfectly.  
 

 
FIGURE 47: BOXPLOT OF BAG WEIGHT PER BAG SIZE (REAL VERSUS SIMULATED DATA). 

 
Spread and median of the standard deviation of the bags weight 
The simulated standard deviation of the bag weight is sometimes higher and sometimes 
lower than the data to which it is compared, as observed in Figure 48. With standard 
deviation both higher and lower, it is difficult to change the parameter settings such that 
all simulated data always perfectly fits to the real-world data. Furthermore, the expected 
theoretical standard deviation based on the standard deviation of pad weights is 
sometimes very close to the value found in the actual data. It could be the case that the 
line performed exceptionally well in the particular month in which the data was collected 
or that this line performs very well on average compared to Line 17, on which the model 
is based. Therefore, it is assumed that the model does fairly represent the real-world 
situation.  
 

 
FIGURE 48: BOXPLOT OF STANDARD DEVIATION OF BAG WEIGHT (REAL VERSUS SIMULATED DATA). 
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Spread and mean of the rejection rate of bags 
The rejection rate of bags is very similar for bags with 48 and 54 pads in terms of both its 
median and its spread (see Figure 49). For bags with 32 and 36 pads, the median is very 
similar as well, and the spread is smaller. For bags with 16, 40 and 60 pads, the rejection 
rates are lower than those seen in the actual data. Again, this can be explained by the 
ratio of missing and extra pads. Since this figure remains unknown, and the median is 
very similar for many bag sizes, it is assumed that the model represents the real-life 
situation fairly accurately.  
 

 
FIGURE 49: BOXPLOT OF REJECTION RATE OF BAGS PER BAG SIZE (REAL VERSUS SIMULATED DATA). 

 
Conclusion of validation 
Based on the Figure 42 to Figure 49 above, it can be concluded that the results of the 
simulation model does not fit the analysed real-world data perfectly. There are several 
reasons to be confident that the model adequately represents reality still. First, the real 
data will never be fully consistent. Since the production lines are prone to disruptions 
(such as operator interventions) that are not accounted for in the model there will be 
unexpected results that are difficult to model and that cannot be solved through the 
simulation. Second, the model does not take differences between lines into account. The 
model is based on findings from Line 17, which produces bags of 48 and 54 pads; 
therefore, the simulated data best fits the data about 48 and 54 pads, on other bag sizes 
the simulated data may fit less perfectly compared to the real data. Third, the model fits 
the data for the bag size of 48 pads very well. This is a strong indicator that it correctly 
represents a plausible real-world situation. 
In conclusion, the model represents reality well enough to assume that any changes in 
the model have a similar effect in reality, which is the bottom line criterion of a model 
validation.   
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5. EXPERIMENTS 
This chapter answers the third research questions (see Chapter 1.5.3) regarding the 
optimisation of the production system is answered.  
 
First, the simulated current performance of the system is analysed in Section 5.1. Then 
we conduct experiments to find the best possible settings in Section 5.2. The experiments 
are conducted in three phases, every phase consist of multiple steps. In Phase A, the 
rejection limits are statistically calculated. In Phase B, the parameters for the feedback 
loop are optimized. In Phase C, the best possible rejection limits are found, while keeping 
constraints in mind.  
 
The three phases are broken down in steps, listed below: 

A) Statistical calculation of rejection limits 

1. Determine the maximum rejection limits for bags according to EU 

regulations 

2. Calculate the rejection limits for bags based statistically based on assumed 

numbers 

3. Determine the rejection limits for product carriers 

B) Determine the best feedback loop parameter combination  

4. Run design of experiments with wide ranges 

5. Run design of experiments with marginal parameter changes until the best 

possible values have been found 

C) Identify the best possible rejection limits 

6. Run design of experiments around rejection limits found in Phase A. 

These parameter settings to be optimized are:  
For the feedback loop: 

• Sample size  

• Tolerance 

• Adjustment factor (or steering factor) 

• Delay 

For the rejection limits: 

• Lower and upper rejection limits for the product carriers 

• Lower and upper rejection limits for the bags 

Note that in this chapter, the optimization for a bag with 48 pads is described for both 
rejection limits as parameters for the feedback loop. The experiments involve the process 
of packaging a bag with 48 pads, with two product carriers of 24 pads each. Best possible 
settings for other bag sizes are derived from the results for this bag with 48 pads. The 
bag size of 48 pads is chosen because i) the simulation is based on Line 17, which 
produces mainly bags with 48 pads, ii) a bag of 48 pads needs product carriers of 24 pads 
which is the largest size. Therefore the relation between product carrier weight and bag 
weight is maximum. iii) The validation is most reliable for a bag size of 48 pads.  
 
When the best possible settings are found for a bag size of 48 pads, these settings are 
used as starting point for the design of experiments for a larger and smaller bag size. This 
continues, i.e. the best found settings for the bag size of 36 pads are the starting point of 
experiments for one bag size smaller which is 32 pads, et cetera.  
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5.1 CURRENT PERFORMANCE PER BAG SIZE 
To effectively compare the results of the simulation model, first the current performance 
of the model is determined (see Table 15). This is done for all bag sizes, with the initial 
settings as they were before this research was conducted. In this table, there are three 
indicators,  

i) the Coffee in rework costs rate (i.e. rework caused by rejected bags and 

product carriers) 

ii) the overfill (i.e. the amount of extra coffee in a bag compared to the target 

weight) 

iii) the probabilities that a bag is accepted with a missing or an extra pad in it.  

For this research, the costs of rework are most important, the probabilities of accepting a 
bag with a missing pad is a constraint. The overfill and the probability of accepting a bag 
with an extra pad are inherently improved by the other constraints and therefore not used 
as objectives in the experiments.  
 
The results in Table 15 are later compared to the ones obtained after optimising the 
parameter settings at the end of this chapter. 
 
These parameter settings to be optimized are:  
For the feedback loop: 

• Sample size  

• Tolerance 

• Adjustment factor (or steering factor) 

• Delay 

For the rejection limits: 

• Lower and upper rejection limits for the product carriers 

• Lower and upper rejection limits for the bags 

TABLE 15: SIMULATED PERFORMANCE PER BAG SIZE USING THE INITIAL PARAMETER SETTINGS. 

Bag size Coffee in 
rework costs 
rate 
(milligrams 
coffee per pad) 

Total 
overfilling 
(grams) 

Rate of 
accepted 
bags with 
missing pad 

Rate of 
accepted 
bags with 
extra pad 

16 134 -21,150   

18 35 18,354   

32 16 -29,271   

36 42 11,660   

40 69 55,511   

48 140 65,925   

54 124 14,683   

60 58 56,677   

72 114 56,767   
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5.2 EXPERIMENTS 
In this section, the experiments are conducted. There are three phases in which six steps 
are identified. The results of the experiments in these steps are explained in this section.  

Phase A: Identifying the rejection limits based on a statistical analysi s 

In this step, the lower rejection limits (upper rejection limit is not relevant in European law) 
were first calculated based on the European laws on e-marks (related to the weight 
indicated on the product packaging). The rejection limits should at least fall within these 
limits. Then, the appropriate rejection limits for bags were calculated based on the 
standard deviation of pads and given the probability of accepting a bag with a missing 
pad is 1% maximum. Lastly, the appropriate rejection limits for product carriers are 
determined.  
 
Step 1: Rejection limits based on European law 
The numbers in Table 16 show the lower limits of the target weight based on the E-mark 
norms. In the end, the rejection limits should not be larger than these limits. In other words, 
the e-mark limits are lower bounds for the rejection limits in Step 2.  
 
TABLE 16: E-MARK LIMITS PER BAG SIZE. 

Bag size Value on bag 
(grams) 

E-mark norm  
(max. allowed weight 

off target weight) 

E-mark limit 
(min. allowed 

absolute weight) 

E-mark limit 
compared to 
target weight 

16 111 4.5% 106.1 -5.9 

18 125 4.5% 119.4 -6.6 

32 222 9 grams 213.0 -11.0 

36 250 9 grams 241.0 -11.0 

40 277 9 grams 268.0 -12.0 

48 333 3% 323.1 -12.9 

54 375 3% 363.8 -14.2 

60 416 3% 403.6 -16.4 

 
Step 2: Statistically calculated limits for bags 
In this step, the rejection limits for bags are calculated with a fixed mean and standard 
deviation per pad, assuming that all the pads are identical, independent and normally 
distributed. So no simulation was used in this step.  
 
The trade-off here is to make the limits as high as possible to prevent rejections, while on 
the other hand prevent accepting a bag with a missing pad. To calculate the rejections 
rates, a mean pad weight of 7.183 grams including the filter paper is used, a pad mean 
of 7.00 grams excluding the filter paper and a standard deviation of 0.1401 grams (see 
Section 4.2). Together with the production engineer and quality specialist of JDE, it is 
determined that the probability of accepting a bag with a missing pad may be 1% at 
maximum. Based on the expected standard deviation per bag size (i.e. the standard 
deviation of the sum of individually distributed elements, determined by Equation 1.  
 

EQUATION 1: STANDARD DEVIATION OF THE SUM OF NORMALLY DISTRIBUTED ELEMENTS 

√𝜎𝑎
2 +  𝜎𝑏

2 

 
With these assumptions, the best possible rejection limits for bags are as follows (see 
Table 17). Note that all limits fall within the e-mark limits in Step 1.  
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TABLE 17: BEST POSSIBLE REJECTION LIMITS FOR BAGS (STATISTICALLY DETERMINED). 

Bag size Lower limit Lower limit 
below the 
target weight 
(in grams) 

Expected 
rejection 
rate (lower 
bound) 

Probability of 
accepting a 
bag with 
missing pad 

16 106.3 5.7 0.0000% 0.84% 

18 120.4 5.6 0.0000% 0.78% 

32 218.9 5.1 0.0000% 0.75% 

36 247.0 5.0 0.0000% 0.80% 

40 275.1 4.9 0.0000% 0.83% 

48 331.3 4.7 0.0001% 0.84% 

54 373.4 4.6 0.0004% 0.94% 

60 415.6 4.4 0.0026% 0.80% 

72 499.8 4.2 0.0211% 0.90% 

 
It is clear that the statistically calculated rejection limits fall within the range of the 
maximum allowed limits according to EU regulations (E-mark limit). Figure 50 graphically 
shows this.  
 

 
FIGURE 50: E-MARK LIMITS AND STATISTICALLY CALCULATED REJECTION LIMTS FOR BAGS FROM THE NORM VALUE (FOR BAG OF 48 PADS). 

 
Step 3: Product carrier rejection limits 
For product carriers, a trade-off between accepting a product carrier with a missing pad 
and the rejection rate is not so relevant. Since the bag that ends up with an extra or 
missing pad is probably rejected later on. Therefore, the rejection limits for product 
carriers may be as wide as we would like. Though, it should be taken into account that 
wide limits can result in greater fluctuations in bag weight; this point is considered further 
in the experiments when looking for the best possible rejection limits. 
Since we will optimize the rejection limits for product carriers later on, they are set to +/- 
3.5 grams of the target weight. Then, both the probability of rejecting a product carrier 
and the probability of accepting a product carrier with a missing pad are close to 0.0% 
(see Table 18).  

 

TABLE 18: BEST POSSIBLE ESTIMATED REJECTION LIMITS FOR PRODUCT CARRIERS. 

PC size Lower limit Lower limit off 
mean 

Expected 
rejection 
rate lower 
bound 

Probability of 
accepting a PC 
with missing 
pad 

16 111.4 3.5 0.000000% 0.000000% 

18 125.8 3.5 0.000000% 0.000000% 

20 140.2 3.5 0.000001% 0.000001% 

24 168.9 3.5 0.000018% 0.000018% 
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Phase B: Design of experiments to identify the best possible parameter settings 

In this phase, we ran several design of experiments (DOE) to find the best possible 
parameter settings. First, a broad range is used to identify the most promising range of 
values. Minimal incremental changes are then used in subsequent DOEs to find the best 
possible settings.  
 
Preliminary notes 
At the beginning of this phase, the individual parameter settings were optimised while 
keeping the other parameters unchanged. Since this yielded worse results due to 
interaction between the parameters, the optimisation strategy was adapted to running 
DOEs. The results of optimising individual parameter settings can be found in Appendix 
E: One-by-one parameter optimisation. While running these experiments, it became clear 
that a delay of 12 product carriers was best possible. In order to save simulation time, we 
fixed this parameter in the remainder of the experiments.  
 
Note that the experiments explained in this section are related to selecting the best 
possible parameters settings for a bag with 48 pads. The experiments for the other bag 
sizes are included in Appendix G: Results of experiments per bag size. 
 
Explanation of the DOEs 
We ran four DOEs, they are analysed in the remainder of this section and explained as 
follows.  

• First, a short introduction of the DOE is given. 

• Second, the DOE table with settings per parameter is shown. 

• Third, a list with all the experiments resulting from the table in Step 2 is shown, 

with the corresponding results of each experiment. 

• Fourth, the results are analysed by listing the observations made from the main 

effect plot and the interaction plot from the DOE.  

The different parameters are repeated below, for a better understanding:  
Sample size: the number of product carriers that is used to calculate the average weight 
of product carriers.  
 
Tolerances: the maximum allowed discrepancy between the target weight and the 
average weight of product carriers. If the average weight exceeds the target weight by 
more than the tolerance, the feedback loop is activated. 
 
Adjustment factor: the weight is corrected by the discrepancy between the target weight 
and the average weight of product carriers, multiplied by the adjustment factor.  
 
Step 4: Run design of experiments with wide ranges  
In this step, we run a DOE to determine what range of parameter settings seems most 
promising.  
 
First round of DOE, with wide ranges 
In this DOE, the sample size, tolerances and steering factors were changed with the high, 
medium and low settings, based on the bisection method (Wu, 2005). For the bisection 
method, three data points per parameter setting were defined to start with (low, medium 
and high). The low and high values are at least two increments away from the medium 
value. While Wu (2005) uses a numerical approach to determine the starting values, we 
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indicate the plausible values by considering the status quo. Based on logical reasoning, 
the parameter settings were used, listed below in Table 19.  
 
TABLE 19: PARAMETER SETTINGS FOR THE FIRST DOE. 

 Parameters 

Level Sample size Tolerance Adjustment factor 

Low 3 0.2 0.5 

Medium 6 0.5 0.8 

High 12 0.8 1.2 

 
The experiments following from the DOE mentioned above results in the performance on 
the ‘Coffee in rework costs rate’. In this and upcoming DOEs, we will analyse the DOE by 
looking at i) the main effects plot and ii) the interaction plot between the settings of the 
parameters we are considering. The main effects plot can be seen in Figure 51, the 
interaction plot in Figure 52. 
 

 
FIGURE 51: MAIN EFFECTS PLOT PER PARAMETER ON COFFEE IN REWORK COSTS RATE 
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FIGURE 52: MAIN INTERACTION PLOT FOR PARAMETER SETTINGS ON COFFEE IN REWORK COSTS RATE. 

 
Based on these plots, we can conclude that the best possible values lay most close to a 
sample size of 6 product carriers (see point 3 in Figure 52), a tolerance of 0.2 grams (see 
point 1 in Figure 52) and an adjustment factor of 0.8 grams (see point 2 in Figure 52).  
 
Note that further main effects plot, interaction plots and tables with the experiments of this 
chapter are listed in Appendix F: Detailed figures regarding experiments  
 
Step 5: Run design of experiments with marginal parameter changes 
In this step, we ran multiple DOEs where parameters are marginally changed close to the 
indication of the best settings of the previous step.  
 
Second round of DOE, with marginal ranges 
Based on the DOE of the previous round, a DOE was defined as listed below in Table 20. 
So, the experiments are designed around a sample size of 6, around a tolerance of 0.2 
and an adjustment factor around 0.8, these values follow from the first DOE.  
 
TABLE 20: DOE SETTINGS PER PARAMETER FOR THE SECOND ROUND OF DOE. 

 Parameters 

Level Sample size Tolerance Adjustment factor 

Low 5 0.1 0.7 

Mid 6 0.2 0.8 

High 7 0.3 0.9 

 

 
 
 

1 

2 

3 
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Based on the results of the experiments of this second DOE, that were analysed using a 
main effects and interaction plot, the following parameter settings were selected for 
determining their potential, in the next DOE: 

• A sample size of 5, 6 and 7 product carriers; 

• A tolerance of 0.1 and 0.3 grams; 

• An adjustment factor of 0.8 and 0.9 grams.  

Third round of DOE, with marginal ranges 
Based on the DOEs of the second round, another DOE is formulated as listed below in 
Table 21. The sample size varies around 6 product carriers again, the tolerance changes 
between 0.1 and 0.3 grams and the adjustment factor varies between 0.8 and 0.9 grams.  
 

TABLE 21: SETTINGS PER PARAMETER FOR THE THIRD ROUND OF DOES. 

 Parameters 

Level Sample size Tolerance Adjustment factor 

Low 5 0.1  

Medium 6  0.8 

High 7 0.3 0.9 

 
Based on the results of the experiments of this third DOE, that were analysed using a 
main effects and interaction plot, the following parameter settings were selected for 
determining their potential, in the next DOE: 

• A sample size of 4 and 5 product carriers; 

• A tolerance of 0.1 and 0.2 grams; 

• An adjustment factor of 0.9 and 1.0 grams. 

Fourth round of DOE, with marginal ranges 
Based on the DOEs of the third round, we devised the fourth DOE as listed below in 
Table 22. The sample size varies at 4 and 5 product carriers, the tolerance on 0.1 and 
0.2 grams and the adjustment factor on 0.9 and 1.0 grams.  
 

TABLE 22: DOE SETTINGS PER PARAMETER FOR THE FOURTH ROUND OF DOE. 

 Parameters 

Level Sample size Tolerance Adjustment factor 

Low 4 0.1 0.9 

Medium 5 0.2 1.0 

 

This DOE results in four experiments, these experiments with their outcome are listed in 
Table 23. As can be seen from this table, the best possible settings are: 

• A sample size of 5 product carriers; 

• A tolerance of 0.1 grams; 

• An adjustment factor of 0.9 grams. 

These settings results in a ‘Coffee in rework costs rate’ of 23.29 milligram per pad. 
These settings are used in the next phase, where the rejection limits are set to the best 
possible values within the constraints given.  
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TABLE 23: LIST OF EXPERIMENTS IN THE FOURTH DOE; (WITH HIGH, MEDIUM AND LOW PARAMETER SETTINGS). 

Experiment Sample size Tolerance 
Adjustment 
factor 

Coffee in 
rework costs 
rate 

1 4 0.1 0.9 23.37 

2 4 0.2 1.0 24.11 

3 5 0.1 0.9 23.29 

4 5 0.2 1.0 24.35 

 

Phase C: Design of experiments around the best possible rejection limits 

In this phase, the rejection limits were optimised, to ensure that the probability of 
accepting a bag with a missing pad (also known as the ‘missing pad rate’) is no greater 
than 1.0% and secondarily that the ‘Coffee in rework costs rate’ is minimised.  
In these experiments, the best possible parameter settings from Phase B are used. As a 
starting point, the calculated theoretical rejection limits were used. The rejection limits for 
product carriers and bags were varied in two DOEs.  
With the parameter settings found in Phase B, no product carriers with a missing pad 
were accepted, and 2.49% of the bags with a missing pad were accepted. Since the 
internal norm is set to 1% (by JDE), the rejection limits should be widened.  
Step 6: Run design of experiments around rejection limits found in Phase A 
In this step, the rejection rates for product carriers and bags are varied while the 
parameters for the feedback loop remain constant. This step is finished when we found 
settings where the probability of accepting a bag with a missing pad is less than 1%.  
First round of DOE, for rejection limit optimisation 
In the first round of experiments, the ideal range of settings was identified. Therefore, 
tight, wide and plausible limits were used, to find out which limits made most sense. Table 
24 presents the DOE, and Table 33 displays all the resulting experiments from the DOE; 
note that the experiments that are deemed sufficient are marked grey in Table 33. 
 

TABLE 24: SETTINGS FOR THE INDICATION OF THE REJECTION LIMITS. 

DOE 
Rejection limit PC  (+/- 
grams from nominal 
weight) 

Rejection limit bag (+/- 
grams from nominal 
weight) 

1 3.3 4.3 

2 3.5 4.5 

3 3.7 4.7 

 
Based on the results of the experiments of the first DOE on rejection limits, the following 
rejection limits were selected for the next DOE, mostly driven by decreasing the probability 
that a bag with a missing pad is rejected: 

• Product carrier rejection limits of 3.3 and 3.4 grams; 

• Bag rejection limits of 4.4 and 4.5 grams.  

 
Second round of DOE, for rejection limit optimisation 
Based on the outcomes of the previous DOE, the DOE shown in Table 25 was devised. 
The experiments were designed with the rejection limits for the product carriers of 3.3 and 
3.4 grams and the rejection limits for the bags of 4.4 and 4.5 grams.  
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TABLE 25: SETTINGS FOR OBTAINING THE BEST POSSIBLE REJECTION LIMITS. 

DOE 
Rejection limit PC  (+/- 
grams from nominal 
weight) 

Rejection limit bag (+/- 
grams from nominal 
weight) 

1 3.3 4.4 

2 3.4 4.5 

 
This DOE results in four experiments, these experiments with their outcome are listed in 
Table 26. As can be seen, there is one option, for the first time, where the probability of 
accepting a bag with a missing pad is below 1%. Then, as can be seen from this table, 
the best possible rejection limits are: 

• 3.3 grams for product carriers; 

• 4.4 grams for bags. 

These rejection limits result in a ‘Coffee rework costs rate’ of 26.34 milligram per pad 
and a missing pad rate of 0.6%.  
 

TABLE 26: EXPERIMENTS FROM SECOND DOE FOR BEST POSSIBLE REJECTION LIMITS. 

Experiment PC Bag 
Coffee in 
rework costs 
rate 

Missing pad 
rate 

1 3.3 4.4 26.34 0.6% 

2 3.3 4.5 25.35 1.1% 

3 3.4 4.4 25.82 1.4% 

4 3.4 4.5 24.89 1.9% 

 
Conclusion of experiments 
At the end of these experiments, the overall objective ‘Coffee in rework costs rate’ is 
decreased by 81%, from 139.9 to 26.34 milligram per pad. After the Phase A in which the 
rejection limits were statistically calculated, the Coffee in rework costs rate decreased by 
52%. Then in Phase B in which the parameter settings were improved, the Coffee in 
rework costs rate were decreased by 65%. Then in Phase C in which the rejection limits 
were set in such a way that it met the constraint of having at most 1% probability of 
accepting a missing pad increased by ‘Coffee in rework costs rate’ by 13%, because of 
tighter rejection limits. See Figure 53 for the Coffee in rework costs rate per phase and 
see Table 27 for the listed best parameter settings and rejection limits after the 
experiments.  
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FIGURE 53: REWORK IN COSTS RATE  AFTER EVERY PHASE OF EXPERIMENTS 

 
TABLE 27: TABLE WITH BEST POSSIBLE PARAMETER SETTINGS OBTAINED AND REJECTION LIMITS FOR THE PRODUCTION OF BAGS WITH 48 PADS. 

Parameter Best possible setting 

Sample size 5 

Delay 12 

Tolerance 0.1 

Steering factor 0.9 

Product carrier rejection limits +/- 3.3 grams 

Bag rejection limits +/- 4.4 grams 

 

5.3 SENSITIVITY ANALYSIS 
In this section, the last part of the third research question is answered, see Section 1.5.3. 
With the sensitivity analyses the impact of variations in parameter settings, the variation 
of the tare, the transportation policy and the allowed probability of accepting a bag with a 
missing pad are analysed.  
 
With the analysis on parameter settings, the most critically factors for the results were 
found. With the analysis on tare, the impact of correcting a tare regularly on the amount 
of rejections and the overfill (see Section 1.4.3) was analysed  

-52% 

-65% 

+13% 
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Since the transportation policies could differ per line (see Section 2.1), we ran a sensitivity 
analysis on the other transportation policy.  
 
Sensitivity analysis on parameter settings 
When JDE wants to implement the results, it is interesting to know the impact of changing 
a parameter compared to the best possible settings. To give JDE an idea about what 
parameters have most impact on the cost of rework. Therefore, we ran experiments where 
one parameter was changed at a time compared to the best possible settings defined 
earlier.  
 
The parameters were varied by two incremental values below and above the best possilbe 
found setting (sample size and steering factor). The tolerance and delay are already as 
low as possible, so these parameters are increased with three incremental values. This 
results in variations as follows: 
 

- sample size to 3, 4, 6 and 7 product carriers; 

- tolerances to 0.2, 0.3 and 0.4 grams; 

- steering factor to 0.7, 0.8, 1.0 and 1.1 grams; 

- delay to 13 and 14 product carriers.  

The main effects of the different parameter settings are shown in Figure 54. An extensive 
list of experiments and their results can be found in Appendix F: Detailed figures regarding 
experiments.  
 

 
FIGURE 54: INTERACTION PLOT OF PARAMETERS WHEN CHANGING ONE FACTOR AT A TIME 

 
Interestingly, many experiments show results that are very close to the near-best found 
reworking costs of 26.34, it shows that most small changes will barely affect the results. 
It is also interesting that with this sensitivity analysis, even better results than the found 
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best found setting in the latter Section were found (experiments 3, 4 and 9). The impact 
of the settings are as follows: 

• Sample size could be increased, with only a minor increase in Coffee in rework 

costs rate; 

• Tolerances can be increased, but every increase causes and increase in Coffee 

in rework costs; 

• Adjustment factor could be decreased, with only a minor increase in Coffee in 

rework costs rate; 

• Delay has a very large impact on the Coffee in rework costs rate. It should be kept 

minimal; 

• Product carrier rejection limits can easily be varied without much impact; 

• Bag rejection limits have a high impact on the Coffee in rework costs rate. The 

best balance between wide rejection limits and the probability of accepting a bag 

with missing pads is up to JDE.  

Sensitivity analysis on tare optimization 
For this analysis, the tare (the weight of an empty product carrier) was held fully constant 
over the simulation run. In practice, a slight variation always exists. Though, currently the 
tare is checked only occasionally when a problem at the production lines occurs and the 
tare setting could be the problem. Checking whether the tare is correct more regularly 
could impact the number of rejections. Overall, a full constant and correct tare could result 
in a reworking costs rate decrease of 3.3% (see Figure 55). This is only a minor change, 
so this gives barely reason to increase the frequency of checking whether the tare is 
correct. However, the reduces by 72% when having a constant tare. Since overfill and 
underfill seems to balance out currently (see Section 1.4.3) the savings are minimal. 
When only looking at the overfill, which is 26.000 kg per year and the costs of coffee are 
€xper kilo, the savings could add up to around €x per year when the tare is corrected 
frequently. 
 

 
FIGURE 55: IMPACT OF TARE VARIATION ON COFFEE IN REWORK COSTS RATE. 

 
Sensitivity analysis on transport policy 
Since there are lines with a transport policy where two subsequent product carriers go to 
the same bag filling line, then two consecutive product carriers go to the other bag filling 
line, and lines where 10 subsequent product carriers go to the same line. To assess the 
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impact of these differences, an experiment with a transport policy of two and 10 
subsequent product carriers was ran. As can be seen in Figure 56, there is barely any 
impact noticeable. Therefore, the results are reliable for production lines with varying 
transport policies. For this experiment, the best possible settings found in Chapter 5.2 
were used.  
 

 
FIGURE 56: IMPACT OF CHANGED TRANSPORT POLICY ON THE REWORKING COSTS RATE. 

 
Sensitivity analysis on acceptable probability of accepting a bag with missing pad 
and the rejection rate of bags 
JDE could decide to accept less or more bags that accept a missing pad. Accepting less 
bags with missing pads results in more rejected bags. When increasing the rejection 
limits, the rejection rate drops exponentially and the probability of accepting a bag with a 
missing pad increases exponentially, as can be seen in Figure 57.  
For example, increasing the rejection limit from 4.5 to 5 increases the probability of 
accepting a bag with a missing pad with 413% and it decreases the rejection rate with 
27%. Given the costs of rejecting (see Section 1.4.3), a decrease in rejection rate from 
0.11% to 0.08% results in approximately results in a yearly cost saving of €x (given the 
weight rejections are 30% of all rejections). It’s up to JDE whether these cost savings way 
up against the increased probability of accepting a bag with a missing pad.  
 

 
FIGURE 57: CHANGING REJECTION RATE AND PROBAILITY OF ACCEPTING A BAG WITH MISSING PAD UNDER VARYING REJECTION LIMITS 
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5.4 LIST OF BEST POSSIBLE SETTINGS PER BAG SIZE 
To find the best possible settings for the other bag sizes, we started from the settings for 
one bag size larger or smaller. A DOE was executed around the best possible parameter 
settings of that smaller or bigger bag size, if necessary, a second round of DOE was ran. 
The best possible values from the second DOE are assumed to be best possible (and no 
further analyses were conducted with respect to time constraints). With these best 
possible parameter settings, a DOE is was run with rejection limits above, around, or 
below the theoretical limits. The combination that results in the lowest reworking costs 
objective and a probability of accepting a bag with a missing pad below 1% is considered 
the best possible set of values. Table 28 below presents the best possible settings per 
bag size.  
 
TABLE 28: BEST POSSIBLE SETTINGS PER BAG SIZE. 

 Sample 

size 

Delay Tolerance Adjustment 

factor 

PC rej. 

limits  

(+/- 

grams) 

Bag rej. 

limits 

(+/- 

grams) 

16 6 12 0.1 0.7 3.4 4.9 

18 4 12 0.1 0.7 3.4 4.9 

32 3 12 0.1 0.7 3.4 4.9 

36 5 12 0.1 0.7 3.4 4.6 

40 5 12 0.1 0.8 3.3 4.5 

48 5 12 0.1 0.8 3.3 4.4 

54 5 12 0.1 0.7 3.4 4.2 

60 5 12 0.1 0.8 3.6 3.9 

72 5 12 0.1 0.9 3.6 3.9 

 
In general, the sample size is decreased to 3 to 6 product carriers, which means that 3 to 
6 product carriers make up for the inaccuracy of the weighing cell and the stochasticity in 
product carrier weight. It is unexpected that the sample size for a bag of 16 pads is larger 
than the others, although the difference when slightly changing the sample size is minor 
The delay is set as low as possible, which is plausible because of the assumed speed of 
adjusting the weight. The tolerance is set as low as possible too, that seems logical 
because the trend in the simulation model is quite constant and the weight adjusting is 
assumed correct. Then it is expected that a quick steering is preferred. The adjustment 
factor is 0.7 to 0.9, which is expected. Since there is a trend in the model, the weight could 
decrease without the adjustment, therefore it is expected that the adjustment factor is 
slightly below 1.0. The rejection limits for product carriers increased when the product 
carriers increased as well, since it slightly decreased the amount of rejections. The bag 
rejection rates become smaller when the bag size increases. That is as expected since 
the standard deviation of larger bag sizes is higher too. Therefore, the probability of 
accepting a bag with a missing pad increases too when the rejection limits are not 
changed.  
 
The rejection rates for product carrier are decreases for all bag sizes, as shown in Figure 
58. The weighted average decrease is 62%, based on the share of product carriers filled 
per bag size compared to all product carriers filled. Detailed results of the performance 
per bag size is shown in Appendix H: list of results in the initial and best possible situation 
per bag size. 
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FIGURE 58: PERCENTUAL CHANGE IN PRODUCT CARRIER REJECTION RATE FROM INITIAL TO BEST POSSIBLE FOUND PERFORMANCE 

 
The rejection rate for bags are sometimes decreased and sometimes increased, see 
Figure 59. Especially for bag sizes of 60 and 72 pads, the increase is substantial. This is 
caused by the fact that the initial rejection limits were very wide. The weighted average 
increase is 192%, based on the share of a bag size compared to all bags made in 2019.  
 

 
FIGURE 59: PERCENTUAL CHANGE IN BAG REJECTION REATE FROM INITIAL TO BEST POSSIBLE FOUND PERFORMANCE 

 

5.5 CONTROLLING THE DETERIORATION OF THE PRODUCTION 

PROCESS  
This section the fourth and final research question was answered, regarding the 
continuous control of the system to prevent unnoticed flaws during production.  
 
Within this process, two events; were aimed to be prevented; rejections and systematic 
overfills. Rejections apply to both product carriers and bags. Systematic overfills apply to 
the hourly average of the final product, which should be exactly equal to the target weight. 
In this section, the possible role of Statistical Process Control to contribute to the 
mentioned objectives (see Section 1.5) by defining them as Key performance indicators 
(KPIs) is discussed. 
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Statistical Process Control (SPC) was introduced by Walter Shewhart in 1924. Shewhart 
used simple control charts for early detection of process variation. SPC helps to detect 
special cause variation, considering the variation that cannot be explained by common 
causes alone. In other words, the system is working beyond the limits.  
 
Types of control charts 

According to Theisens (2015), there are seven common types of control charts (see 
Figure 60). The most suitable chart to apply on our process depends on the type of data 
to analyse or control. Roughly, there are three charts that are suitable for continuous data 
and four charts suitable for attributive data.  

 
FIGURE 60: TYPES OF CONTROL CHARTS (THEISENS, 2015). 

 

Control chart for Key performance indicators  

The two Key Performance Indicators (KPI) that can and need to be tracked are i) the 
rejection rates of the product carriers and bags and ii) the hourly average weight of the 
bags. With the first KPI, JDE can track when the system is deteriorating and therefore 
performing worse than usual. Detecting issues fast can prevent rejections to occur. With 
the second KPI, JDE can track whether the tare is set accurately (the tare is the average 
weight of product carriers, which is subtracted while weighing the full product carriers).  
When a more accurate tare is set, the overfill can be decreased saving coffee and the 
coffee in rework costs rate could potentially be decreased by 3.3% (see section 0).  
KPI to control rejection rates 
The first KPI, rejection rates, is based on attributive data. Rejected items are counted and 
based on the total production within a time interval, the rejection rate is calculated. Since 
the total production (so sample size) varies every hour, a P-Chart would be suitable to 
use (see Figure 60 for the logic flow). The control limits in a P-chart vary according to the 
sample size. The lower and upper control limits are calculated by the formulas below. The 
rejection rate p represents the average rejection rate over a period of time, this period can 
be longer time and is an indication of the common rejection rate.  
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EQUATION 2: FORMULA FOR CALCULATING THE LOWER CONTROL LIMIT. 

𝐿𝐶𝐿𝑖 =  𝑝 − 3 ∗ √
𝑝(1 − 𝑝)

𝑛𝑖
 

 
EQUATION 3: FORMULA FOR CALCULATING THE UPPER CONTROL LIMIT. 

𝑈𝐶𝐿𝑖 =  𝑝 + 3 ∗  √
𝑝(1 − 𝑝)

𝑛𝑖
 

 

EQUATION 4: FORMULA FOR CALCULATING THE REJECTION RATE. 

 

𝑝 =  𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑚𝑎𝑑𝑒
  

𝑛𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑚𝑎𝑑𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖  
 
KPI to control overfill 
The second KPI, hourly overfill, is based on continuous data. Every hour, one data point 
is added. Although these are actually based on many measurements, the data is available 
in hourly averages, every data point in a control chart is based on one hourly average and 
so one observation (n=1). Since there is always a natural fluctuation in individual weight, 
averages are suitable to track the performance. Therefore, an I-MR chart (Individual / 
Moving-Average chart) is suitable to track the performance on overfill. The control limits 
are normally based on rejection limits, though since observations are averages, JDE 
should define control limits based on for them acceptable variation.  
 
Implementation 

It would be ideal that every production line has the same control limits. Though, since the 
performances can vary per production line, it could be wise to use suitable limits per line 
first. Then, the aim is to make sure every line performs in such a manner that the control 
limits can be as low as possible. Since operators can change settings on the production 
line and take action to bring the processes back in control, it would be beneficial to give 
them access to the control charts and train them to take appropriate action when key 
performance indicators perform beyond control limits.  
 
Tracking the performance on the KPIs mentioned can help to solve issues causing 
rejections and can help to prevent overfill. Control limits should be determined and for a 
successful implementation, operators could be trained to use the control charts.  
 

5.6 REDESIGN OF THE WEIGHING PROCESS 
One of the major sources for stochasticity is the variety in weight of empty product 
carriers. In this section possible ways to reduce this variety are discussed and the impact 
of reducing that variety is analysed.  
 
Ways to reduce the variety on empty product carriers  

Two ways to decrease the impact of the weight variation of product carriers were 
identified. First, a new set of product carriers can be bought that are made of material that 
is less prone to variation. Second, another weighing cell can be installed in the machine, 
then first the empty product carrier is weighed, then the product carrier is filled, then the 
full product carrier is weighed. The costs of these options were not further researched, 
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though it is plausible that the first option, replacing the product carriers will be the cheaper 
option and adding a weighing cell to the production line will be more costly.  
 
Potential impact of a redesign 

The potential impact of a redesign is assessed by comparing the coffee in rework costs 
rate under the best possible settings with product carrier weight variation with the coffee 
in rework costs rate under the best possible settings, but with sample sizes of 1, 2, 3, 4, 
5 and 6 and no weight variation of product carriers. This implies that the option to reduce 
the variety on weight of product carriers is so successful that the variation is fully 
diminished. If this is the case, the coffee in rework costs rate is decreased by 4.4%, see 
Figure 61. Based on the costs of rejecting product carriers, the potential benefit is €x per 
year. Given there are 8450 product carriers which costs €x each, an investment of over 
€x is needed for new product carriers. The investment for a new weighing cell is expected 
to be even higher. It seems not plausible that such an investment in new product carriers 
or another weighing cell is worth it.  
 

 
FIGURE 61: EFFECT OF HAVING NO WEIGHT VARIATION ON EMPTY PRODUCT CARRIERS. 

 

5.7 IMPLEMENTATION PLAN 
 
The best found parameter settings for the feedback loop, the best found rejection limits 
and the control charts can lead to significant less rejections. The rejection limits have most 
effect on the rejections, parameter settings have a lot of effect too. The effect of the control 
charts is more insecure. It depends on the mechanical deteriorations which are not 
researched, and it depends on the varying tare. A constant tare can mainly have a large 
effect on the underfill and overfill.  
 
To seize the potential of the found assumptions, JDE has to implement the findings. These 
findings can be implemented in four phases, driven by the imperfections of the model 
compared to reality. The phases are as follows: 
 

Phase 1: Change the parameter settings, but use higher values than the 
recommended settings; consult the results of the sensitivity analysis and the 
assumptions described when choosing the values. Monitor the results. 
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Phase 2: Set the parameter settings to the recommended values gradually and 
monitor the effects on the system. Start with changing the parameters that have 
the least impact on the results as seen in the sensitivity analysis.  
Phase 3: Change the rejection limits to the best possible limits obtained and 

monitor the rejections.  
Phase 4: Implement the settings to other lines and bag sizes while monitoring the 

results.  
Phase 5: Implement the control charts, starting at one line. Monitor results and 

implement at other lines too.  
 
Every phase counters the assumptions and imperfections of the model.  
 
In the first phase, the parameters for a bag of 48 pads are slightly changed. When slightly 
changing the parameters the effects will be less severe. With this slow change, especially 
the assumptions about the accuracy and speed of adjusting the weight and the 
assumption about the trend can be tested.  
 
In the second phase, the parameters can be set close to or exactly on the recommended 
values. Again, in this phase the assumptions about adjusting the weight and the trend are 
assessed on accurateness. After this phase, the weight should be as stable as possible.  
 
In the third phase, the rejection limits are changed. It could be the case that there are 
more abrupt fluctuations in reality than simulated. Then, the weight of bags vary more in 
reality. So when changing the rejection limits, the rejections should be monitored. If the 
rejection rate is too high according to the process engineer of JDE, the limits can be 
widened.  
 
In the fourth and last phase, the best possible settings can be implemented to other lines 
and other bag sizes too. The lessons learned from the previous phases should be taken 
into account. Subtle differences per line (e.g. a less stable hopper level) could cause 
slightly other best possible parameter settings or rejection limits.  
 
In the fifth phase, the control charts can be introduced. Since limits in the control chart 
can vary between lines and bag sizes, it is recommended to implement a control chart at 
one line first. Then, after monitoring control charts can be designed for all bag sizes and 
production lines.  
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6. CONCLUSIONS & RECOMMENDATIONS 
In this chapter, the main findings of our research are summarised and the main research 
question is answered. The conclusion of this research is formulated, recommendations 
that follow from the findings and limitations of this research are formulated.  
 

6.1 RESEARCH CONCLUSION 
The current process of producing Senseo pads in the JDE production facility in Utrecht 
results in more rejections of product carriers (semi-batches) and bags (final products) 
than desired. Currently, the average rejection rate of product carriers is x% and the 
average rejection rate of bags is x%. To keep rejection rates as low as possible two 
possible actions can be taken: i) optimise the rejection limits and ii) optimise the feedback 
system built into the production line to keep the weight of the pads (and therefore of the 
product carriers and bags) as stable as possible. Both actions were analysed to answer 
the research question, which is formulated as follows: 
 
“How can JDE decrease the rejection rates within the process by at least 20%?” 

 
To answer this question, a simulation model to represent the production line was built. 
For the model, all notable causes of variation were identified and implemented, as well 
as, the logic of processes observed in reality.  
To identify the best possible rejection limits and parameter settings, several design of 
experiments were ran, first, to optimise the parameter settings, then to optimise the 
rejection limits. Two objectives were taken into account to make decisions, i) the ‘Coffee 
in reworks costs rate’ which represents the average milligram of coffee that is reworked 
and the ‘missing pad rate’ which represents the probability that a bag is accepted while 
missing one pad.  
After optimising the rejection limits for product carriers and bags, as well as the parameter 
settings for the feedback loop to produce a bag with 48 pads, the system performance 
improved compared to the initial and best possible simulated results as follows. The 
product carrier rejection rate decreased from x% to x% (-88%) and the bags rejection rate 
from x% to x% (-62%). The reworking costs rate  decreased from 139.9 to 26.34 (-81%) 
and the probability of accepting a bag with a missing pad dropped from x% to x% (-34%). 
Overall, the weighted average product carrier rejection rate decreased by 62% and the 
weighted average bag rejection rate increased by 192%, though the weighted average 
total rework rate decreased by 35%. 
 

6.2 RECOMMENDATIONS, FURTHER RESEARCH AND LIMITATIONS 
Recommendations for dealing with the assumptions made in this research and how to 
implement the results are described below, separated in short- and mid-long term 
recommendations.  
 

Recommendations 

Short term 
Following the optimised rejection limits and parameter settings, we recommend to 
implementing these findings on the factory floor on the short term. However, assumptions 
were made that require caution when implementing the recommendations. These 
assumptions may cause the following effects: i) the steering factor steers is assumed to 
be fully correct (i.e. the exact amount of weight adjusted). If this is not the actual case, the 
steering factor should probably be lower than suggested. ii) The steering is assumed to 
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happen with the speed of 30 pads per gram (i.e. if the machine steers 0.5 gram, it takes 
15 pads) and the steering goes linear. If the actual steering takes longer, the delay should 
be higher than suggested. iii) A varying sine function in the model was used, while this 
sine function is continuous, abrupt changes in weight could occur more frequently. If the 
actual weight changes are more abrupt, the tolerance should probably be higher than 
suggested.  
Besides these assumptions, the sensitivity analysis in Section 5.2 show that several 
parameters have a large impact, while some others have a minor impact on the reworking 
costs rate and the probability of accepting a bag with a missing pad. These sensitivities 
should be taken into account when implementing the solution.  
Based on the assumptions, it is recommended to implement the new settings in phases 
on Line 17, since the model and data are mostly based on findings from this line and for 
a bag size of 48 pads. The phases are described below, in each phase it is up to the 
process engineer at JDE to assess when, how and whether to proceed to the next phase.  
 

Phase 1: Change the parameter settings, but use higher values than the 
recommended settings; consult the results of the sensitivity analysis and the 
assumptions described when choosing the values. Monitor the results. 
Phase 2: Set the parameter settings to the recommended values gradually and 
monitor the effects on the system. Start with changing the parameters that have 
the least impact on the results as seen in the sensitivity analysis.  
Phase 3: Change the rejection limits to the best possible limits obtained and 

monitor the rejections.  
Phase 4: Implement the settings to other lines and bag sizes while monitoring the 

results.  
Phase 5: Implement the control charts, starting at one line. Monitor results and 

implement at other lines too.  
 
Mid-long term 
While this research was conducted, a production engineer at JDE also examined the 
mechanical details of the system. Since many rejections were caused by mechanical 
rather than process issues, diving further into these mechanical problems and analysing 
the ratio between the two types of issues can also result in substantial savings.  
To prevent producing while the system is performing badly, statistical process control 
(SPC) charts should be made in such a way that they could be updated and used quickly. 
It is recommended to use these SPC charts frequently to act upon sudden changes 
quickly.  
 
Further research  

There are several further research options.  
 
Seasonality in the rejection rates 
There are indications that seasonality plays a role in the number of rejections that occur. 
It could be interesting to further research whether this is the case, what the severity is and 
how JDE should act upon changing external conditions.  
 
Effect of a higher target weight 
This research was focused on making sure the weight of pads was as close to 7.00 grams 
as possible. It could also be possible that aiming at a slightly higher weight (e.g. 7.05 
grams), results in less rejections and a slight increase in overfill. This benefits of this 
strategy could be further researched.  
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Machine start-up 
The weight just after a start-up cause a spike in weight for several product carriers. It 
could be further researched how this spike could be prevented or how the weight 
stabilisation system is able to detect this flaw and ignore it by not triggering the steering.  
 
Steering based on slope of the sine trend 
It seems reasonable that with a sine trend, under- or oversteering are both most accurate 
depending on the direction of the weight at the moment of steering. E.g., if the weight is 
increasing while the steering is implemented, the steering factor should probably be 
higher than 1, opposite, if the weight is decreasing already while the steering is 
implemented, the steering factor should probably be lower than 1. The possible effect of 
such a variable steering factor could be further researched.  
 
Use of Statistical Process Control (SPC) Charts 
The optimal usage of SPC charts should be determined, probably by trial and error. The 
frequency of using them depends on the fluctuations of the system, the effort required to 
update and control the charts and the possible benefits. I would recommend to update 
and use them biweekly first, then adapt the frequency based on the observations.  
 

Limitations to the research 

There are several limitations in this research, besides the assumptions made.  
 
Local vs. Global optimum 
During the experimenting to identify the best possible solution, i) the bisection method 
was used to narrow the range of possible solutions. One of the risks of using this methods 
is that we may have discarded the more extreme values in the first round of DOEs, around 
which the parameter settings were optimised. ii) DOEs were executed for the parameter 
settings first, then for the rejection limits. Iterating between optimising the parameters and 
the rejection limits more often could result in better results. Therefore, a risk remains that 
a local optimum was found, instead of a global one.  
 
Expressing multiple objectives in Euros 
In this research, the optimised objective is based on the reworking costs rate. It could be 
interesting to take more objectives into account and express all of them in Euros, to further 
optimize the parameter settings and the rejection limits. Objectives that could be 
considered are, among others, the amount of work for operators, the impact on the 
environment, the possible wear of the system when the machine steers and the overfilling.  
 
Stochasticity in weight of filter paper 
The possible stochasticity of the weight of filter paper is not directly included in the model, 
since there were no resources available to measure this. Though, it is indirectly included 
in the standard deviation of pads.  
 
Effect of air humidity on the weight of product carriers and filter paper 
The possible effect of air humidity on the weight of product carriers, the weight of filter 
paper and the density of the coffee were not measured because of a lack of resources. 
This is one of the possible explanations for the seasonal trend in rejections. This effect is 
ignored in this research.  
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6.3 CONTRIBUTION TO LITERATURE AND PRACTICE 
 
In this section the contribution of this research to both practice as science is discussed. 
 
First it is worth to mention that the conducted research is very specific, it is conducted in 
the food and beverages industry on a production line that was specifically designed for 
JDE. This makes it impossible to apply findings one on one to another situation. Though, 
there are interesting findings to deal with stochasticity, trends and disruptions in a food 
and beverage production line.  
 
No literature was found so specific on how to deal with stochasticity and trends in product 
weight, as this research. This research provides a proof of method to use discrete-event 
simulation to deal with stochasticity, trends and disruptions in order to minimize the 
rejections on a food production line.  
 
Companies that face similar challenges at their production lines can be inspired by this 
research to use a discrete-event simulation. Conducting a similar study will give them 
insights in the relation between stochasticity, weight disruptions and rejection limits, in 
order to prevent waste. When these challenges are addressed, companies should be 
aware that probably the rejection rates have the most influence on the rejection rates. 
 
In general, it was found that stochasticity in the system, in this research mostly caused by 
variations in pad and product carrier weight, can be dealt with by measuring several 
consecutive products and base the performance on its average.  
When having a trend like the sine function in this research, quick steering is preferred and 
measuring the new performance of the system after adjusting the weight should be done 
as quickly as possible.   
 
In practice, for JDE, this research will contribute to having less rejections and so less 
rework. This will be beneficial for the amount of waste of packaging material and coffee. 
JDE already started the implementation of the recommendations, based on the results of 
this research. When all phases of the implementation are finished, the actual impact will 
become clear.  
 
We hope these insights can be used in other production environments where the varying 
weight of a product is monitored and adjusted accordingly as well.   
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APPENDIX A: SYSTEM INFLUENCES ON WEIGHT 
STABILIZATION  

 
This section, aims to minimize influences of the weight by the machine itself, like an 
imperfect dosing drum or unstable hopper level. This should reduce the variation for which 
the feedback loop has to compensate. So it has the purpose to make sure instant 
improvements can be made, not to simulate any of these influences. With this section the 
first part of answering research questions 1.4 in Section 1.5 is provided.  
Several characteristics or settings of the machine can also have an impact on the stability 
of the pad weight: 
 

• Hopper level of the coffee supply 

• Agitator speed within the hopper 

• Vacuum suction of coffee into the tube 

• Spindle for weight adjustment 

Hopper level 

The more stable the coffee level in the hopper, the more constant the pad weights. Figure 
62 compares the hopper levels and averages of three consecutive product carriers. Based 
on the judgment of the production engineer at JDE, the hopper level is considered 
constant, and a direct relation between the varying hopper level and average weights is 
therefore not substantial. This comes with the sidenote that this applies when the 
production line is running, with the start-up of the machine a peak in hopper level causes 
weight variation that is explained in section 2.3.   
In the machine, the speed of the screw that supplies the coffee is controlled by a PID 
controller to keep the hopper level constant. Because of this research, we changed the 
settings of this PID such that the hopper level becomes more constant. The PID controller 
previously adjusted the level of coffee to 485mm (i.e. the distance between the PID 
controller and the coffee), when the coffee level drops below or rises above 55% of the 
target level, the coffee supply speeds up or stops, respectively. This results in fluctuations 
in the hopper level. The target level is changed to 457.5mm (i.e. the aimed level of coffee 
in the hopper is higher), which results in fewer accelerations and stops of the screw and 
therefore a more constant coffee supply. This is a side benefit of this research for 
stabilizing the weights. However, this factor is excluded from the simulation model, since 
it is inherently included in the trend of the pad weights.  
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FIGURE 62: AVERAGE OF 10 (GREEN AND ORANGE) OR 25 (GREY)  PRODUCT CARRIERS AND HOPPER LEVEL (LINE 17, 24-11-2020). 

 

 

 

 

 

 

Agitator speed within the hopper  

The agitator mixes the coffee in the hopper to prevent clumping. The rotation frequency 
of this agitator is set to 500 Hz at default. During tests, the speed of this agitator is varied 
from 100 to 500 Hz by steps of 100 Hz. Figure 63 shows that differences between 
frequencies have no substantial influence on the distribution of the product carrier weight. 
Therefore, this setting is kept constant at the default level. This factor is further excluded 
in this research, since it is inherently included in the pad weight distribution.  
 

 
FIGURE 63: AVERAGE OF 10 OR 25 PRODUCT CARRIERS WITH VARYING AGITATOR SPEED. 

 

Vacuum suction of coffee into the tube 

The coffee is vacuum sucked from the hopper into a piston in the dosing drum. Since it is 
not possible to measure the vacuum power, simple tests were executed to assess the 
impact of changing flows. The flow of the vacuum was varied to assess the impact on the 
pad weight. Just before the spike in Figure 64 (left) , the flow was manually increased 
from the default 80 to 40 litre/minute. In Figure 64 (right), the vacuum was manually 
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dropped from the default 80 to 120 litre/minute. The effect of this vacuum power is not 
researched further, nor is it modelled in the simulation study, due to three reasons. First, 
in both experiments, a spike in weight is detected, due to the change in vacuum power, 
although this spike is corrected by the model very quickly and accurately. Second, based 
on the expert judgement of a process engineer at JDE, we assessed that  a drop or spike 
of 40 litre/minute is unlikely to happen. The third reason to exclude this factor from the 
simulation model, is that a slight variation in vacuum suction power is inherently included 
in the standard deviation of the pad weight as well as the trend that is described later in 
Section 0. As the correction is very accurate, a large drop or spike is unlikely to happen, 
and the variation is indirectly accounted for in the model.  
 

  

 
FIGURE 64: AVERAGE WEIGHT OF THE PRODUCT CARRIERS, WHICH IS INFLUENCED BY CHANGING THE VACUUM PRESSURE FROM 80 TO 120 

LITRE/MINUTE (LEFT) AND 80 TO 40 LITRE/MINUTE (RIGHT) (PHOTOS TAKEN FROM THE DASHBOARD AT THE PRODUCTION LINE, SCREENSHOT WAS NOT 

POSSIBLE). 

 
Spindle for weight adjustment  

The weight is adjusted mechanically by a spindle that rotates a cam, resulting in a 
variation in the of the cavity depth (see Figure 65). The product carrier weighing cell 
obtains an average; if the average falls outside of the tolerance range, a signal is given 
to the pad making machine. The pad making machine adjusts the weight by decreasing 
or increasing the depth of the cavity, by turning the spindle.  
 
 
 
x 
FIGURE 65: PAD FILLING FROM COFFEE SUPPLY UP TO THE CAVITY (ADAPTED FROM4).  

  

 
 
4 From research R. Ten Berge (2017) 
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Rounding of weighing cells  

The weighing cells (i.e. for both product carriers and bags) round their detected values on 
an even number with two digits, i.e. multiples of 0.02. The used averages are based on 
these values and also rounded in the same way.  
 
Conclusion 

With this section, the first part of the answer to research question 1.3 “What factors 
influence the process of weighing and can be changed”, is given. In this section possible 
causes by imperfections in the production line are discussed. All possible causes, the 
hopper level, speed of the agitator and the fluctuation of vacuum power are all negligible. 
The aim was to check whether they could be improved instantly, which is not the case.  
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APPENDIX B: SELECTION CRITERIA FOR SIMULATION 
SOFTWARE SELECTION  

The criteria are scored from 1 to 5, where 5 indicates “Excellent”, 4 indicates “Good”, 3 
indicates “Sufficient”,  2 indicates “Insufficient” and 1 indicates “The feature doesn’t exist”. 
The criteria in bold are selected as being the most important criteria for this research. 
Since all bold criteria are scored 4 or 5, Siemens Plant Simulation v.14 is sufficient to use.  
 
Below in the tables, the score per criterium for Siemens Plant Simulation v.14 are shown.  
 
Table: Model development and input category Criteria 

Criteria  Weight 
Graphical model building 4 
Merging models 2 
Conditional routing 4 
Statistical distribution  5 
Queuing policies  5 
Reuse of user defined modules  5 
Built-in functions  3 
Link to other languages  2 
Coding tools and utilities  3 
Input from text files  4 
Input from database  5 
Input from spreadsheets  5 
Automatic data collection  5 
Batch input mode  4 
Interactive input mode  4 

 
Table: Output category criteria 

Criteria  Weight 
Standard report generation  5 
Report customization  2 
Integration with statistical packages  2 
Integration with other simulation packages  1 
Feature for exporting data to database  3 
Feature for exporting data to spreadsheets  5 
Feature for exporting data to text files or word 
processors 

4 

Optimization  2 
Output analysis feature  4 
Business graphics  3 
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Criteria  Weight 
Cost  5 
Connectivity with internet  2 
Package interoperability  2 
Package link to different animation packages  1 
Package has open source code  3 
Package application area  4 
Flow oriented modeling approach  4 
High level architecture  5 
Capability for continuous simulation  2 
Simulation strategy  4 
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APPENDIX C: DATA TABLES OF THE SIMULATION 
MODEL 

 

FIGURE 66: LIST OF GENERATED PADS (1/2) 

 

 
FIGURE 67: LIST OF GENERATED PADS (2/2) 

 

Pad weight of 

first full product 

carrier 

Pad weight of 

second full 

product carrier 
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FIGURE 68: LIST OF PRODUCT CARRIERS (1/2) 

 
FIGURE 69: LIST OF PRODUCT CARRIERS (2/2) 

 

 
FIGURE 70: LIST OF BAGS (1/2) 

 

 
FIGURE 71: LIST OF BAGS (2/2) 

 

 
FIGURE 72: LIST OF PRODUCT CARRIERS WITH ONE REJECTION 

 

Weights of first 

two full product 

carriers 

Weight of first 

full bag 

First bag is 

filled by first 

two product 

carriers 

The 338th 

product carrier 
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The 338th 
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did not go in a 

bag 
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FIGURE 73: LIST OF BAGS WITH INDICATION OF PRODUCT CARRIERS THAT GO IN ONE BAG 
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APPENDIX D: AGGREGATED DATA OF BAGS WITH 48 
PADS  

 
 
 
 



                              

 

93 

MSc Thesis – Thomas Anton de Koning – 2021 

APPENDIX E: ONE-BY-ONE PARAMETER 
OPTIMISATION 

Determining the best possible sample size 
The sample size is the number of product carriers that is measured to determine the 
average weight of product carriers at that moment in time. The minimum sample size is 1 
and there is no maximum, currently the default is set at 10 product carriers. We ran 
experiments in extremes and in between at first, namely sample sizes of 1, 5, 10 and 20. 
From these four settings, a sample size of 5 product carriers resulted in the lowest Coffee 
In Coffee in rework costs rate. A second round of experiments was ran with sample sizes 
of 2, 3, 4, 5, 6 and 7.  
 

 

FIGURE 74: 95% CONFIDENCE INTERVAL BOXPLOT OF THE EFFECT OF SAMPLE SIZES ON THE COFFEE IN REWORK COSTS RATE. 

 
 
Determining the best possible delay 
The delay is the number of product carriers that the weighing cells does not take into 
account for calculating the average of product carriers at that moment in time. This delay 
is activated after the machine steered the weight. The minimum value is 12, since there 
are product carriers that are between the machine and the weighing machine where the 
steering had no effect yet. The effect of steering takes 30 pads per gram the weight is 
higher than the norm weight product carriers depending on the product carrier size, for 
the bag size of 48 pads with product carriers of 24 pads, this will not be more than 3 
product carriers. We ran experiments at: 

1. 12 (The effect of the steering is included in the new sample size) 

2. 13 (The effect of the steering is often slightly included in the new sample size) 

3. 14 (The effect of the steering is often slightly included in the new sample size 

) 

4. 15 (The effect of the steering is already finished) 

After these experiments, a delay of 12 product carriers resulted in the lowest coffee in 
rework costs rate. Since the coffee in rework costs rate increases when the delay 
increases, no further experiments were needed.  
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FIGURE 75: 95% CONFIDENCE INTERVAL BOXPLOT OF THE EFFECT OF DELAY IN PRODUCT CARRIERS ON THE COFFEE IN REWORK COSTS RATE. 

 
 
Determining the best possible tolerances 
The tolerance determines at what average of product carriers, the steering mechanism is 
activated. This is expressed in a percentage of the nominal weight of the filled product 
carriers, minus the tare of the product carrier itself. By default, this tolerance is determined 
on 0.5. We can ran experiments with 0.2, 0.4, 0.6 and 0.8 lower and upper tolerances. 
Based on the results shown in Figure 76, the setting of tolerances does not seem to 
influence the objective Coffee In Rework Costs Rate significantly. Though, a higher 
tolerance value seems to be better than a lower one.  
 

 

FIGURE 76: 95% CONFIDENCE INTERVAL BOXPLOT OF THE EFFECT OF TOLERANCES ON THE COFFEE IN REWORK COSTS RATE. 

 

 
Determining the best possible pulse factor 
The steering factor determines the severity of steering, when the steering mechanism is 
triggered. Currently, this factor is set at 50% at default. We ran experiments with extreme 
values, namely at 50%, 80%, 100%, 120% and 150%. We choose 4 experiments that are 
mirrored compared to the expected value of 100%, since assume that the curve of the 
best possible value is an upward opening parabola.  
After the first round of experiments, a steering factor of 0.8 seems to be the best possible, 
based on the objective Coffee In Rework Costs Rate. In a second round of experiments, 
a steering factor of 0.7 and 0.9 is examined too.  
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FIGURE 77 95% CONFIDENCE INTERVAL BOXPLOT OF THE EFFECT OF THE STEERING FACTOR ON THE COFFEE IN REWORK COSTS RATE. 

 
Step 3: Design of Experiments around the best possible  values 

For the DOE, we used the two settings with the minimal Coffee In Rework Costs Rate per 
parameter. For example, the minimum costs rate were realized with a sample size of 2 
and the then minimum costs with a sample size of 3.   
Given the best possible values, we  run a DOE around these best possible values.  
 

Experiment Delay Sample size Tolerances 
Steering 
factor 

1 12 2 0.8 1.2 

2 12 2 0.8 1.3 

3 12 2 0.8 1.2 

4 12 2 0.9 1.3 

5 12 2 0.9 1.2 

6 12 2 0.9 1.3 

7 12 3 0.8 1.2 

8 12 3 0.8 1.3 

9 12 3 0.8 1.2 

10 12 3 0.9 1.3 

11 12 3 0.9 1.2 

12 12 3 0.9 1.3 

13 13 2 0.8 1.2 

14 13 2 0.8 1.3 

15 13 2 0.8 1.2 

16 13 2 0.9 1.3 

17 13 2 0.9 1.2 

18 13 2 0.9 1.3 

19 13 3 0.8 1.2 

20 13 3 0.8 1.3 

21 13 3 0.8 1.2 

22 13 3 0.9 1.3 
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23 13 3 0.9 1.2 

24 13 3 0.9 1.3 
 

 
FIGURE 78: RESULTS OF DOE. 

 
 
The first notable thing of this DOE is that the objective increased, compared to the 
experiments of the one-by-one parameter variations. This implies that the combination of 
the best possible settings does result in suboptimal results. We can conclude that the 
one-by-one parameter optimizations were local optima and we need another approach to 
find the global optima.  
To find these global optima, we first looked at the main effects of the parameters to see if 
we can fix some of the parameters, see Figure 79. This figures implies that we should 
decrease the Delay, though the Delay cannot be lower than 12, therefore we are able to 
leave out this parameter in the next round of experiments. It also implies that we should 
increase the Sample size, decrease the tolerances and decrease the steering factor. 
These outputs are used to design a new DOE.  
 

 
FIGURE 79: MAIN EFFECTS OF PARAMETERS WITH TWO SETTINGS PER PARAMETER. 
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APPENDIX F: DETAILED FIGURES REGARDING 
EXPERIMENTS  

Step 1: European law 
According to European law, the weight of a product may vary from the value declared on 
the bag within certain limits. According to Council Directive 76/211/EEC, the weights 
should meet the following requirements: 

• 1.1 the actual contents should not be less, on average per hour , than the nominal 

quantity ;  

• 1.2 the proportion of pre-packages with a negative error greater than the tolerable 

negative error presented in Figure 80 should not exceed 2.5% of the packages 

produced per hour  

• 1.3 no pre-package should have a negative error greater than twice the tolerable 

negative error given in the table in Figure 80. 

 

 
FIGURE 80: E-MARK LIMITS PER WEIGHT RANGE. 

 
 

TABLE 29: LIST OF EXPERIMENTS IN THE FIRST DOE, WITH A HIGH, MID AND LOW PARAMETER SETTING. 

Experiment Sample size Tolerance 
Adjustment 
factor 

Coffee in 
rework costs 
rate 

1 3 0.2 0.5 26.57 

2 3 0.2 0.8 26.14 

3 3 0.2 1.2 25.71 

4 3 0.5 0.5 26.44 

5 3 0.5 0.8 25.20 

6 3 0.5 1.2 26.30 

7 3 0.8 0.5 26.21 

8 3 0.8 0.8 25.30 

9 3 0.8 1.2 26.39 

10 6 0.2 0.5 26.34 

11 6 0.2 0.8 25.61 

E-mark norm 

Product weight 
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12 6 0.2 1.2 25.64 

13 6 0.5 0.5 26.67 

14 6 0.5 0.8 26.48 

15 6 0.5 1.2 25.88 

16 6 0.8 0.5 26.66 

17 6 0.8 0.8 25.69 

18 6 0.8 1.2 25.94 

19 12 0.2 0.5 26.59 

20 12 0.2 0.8 26.53 

21 12 0.2 1.2 26.75 

22 12 0.5 0.5 26.00 

23 12 0.5 0.8 25.91 

24 12 0.5 1.2 26.46 

25 12 0.8 0.5 26.41 

26 12 0.8 0.8 25.59 

27 12 0.8 1.2 25.66 

 
 
 
 

TABLE 30: EXPERIMENTS IN THE SECOND DOE. 

Experiment Sample size Tolerance 
Adjustment 
factor 

Coffee in 
rework costs 
rate 

1 5 0.1 0.8 23.58 

2 5 0.1 0.9 23.29 

3 5 0.3 0.8 24.40 

4 5 0.3 0.9 24.43 

5 6 0.1 0.8 23.82 

6 6 0.1 0.9 23.63 

7 6 0.3 0.8 24.23 

8 6 0.3 0.9 24.39 

9 7 0.1 0.8 23.86 

10 7 0.1 0.9 23.65 

11 7 0.3 0.8 24.32 

12 7 0.3 0.9 24.39 
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FIGURE 81: MAIN EFFECTS PLOT AND AND INTERACTION PLOTOF SECOND DOE PER PARAMETER. 

 
TABLE 31: LIST OF EXPERIMENTS IN THE THIRD DOE (WITH A HIGH, MEDIUM AND LOW PARAMETER SETTING). 

Experiment Sample size Tolerance 
Adjustment 
factor 

Coffee in 
rework costs 
rate 

1 3 0.2 0.5 23.58 

2 3 0.2 0.8 23.29 

3 3 0.2 1.2 24.40 

4 3 0.5 0.5 24.43 

5 3 0.5 0.8 23.82 

6 3 0.5 1.2 23.63 

7 3 0.8 0.5 24.23 

8 3 0.8 0.8 24.39 

9 3 0.8 1.2 23.86 

10 6 0.2 0.5 23.65 

11 6 0.2 0.8 24.32 

12 6 0.2 1.2 24.39 

 

 
FIGURE 82: MAIN EFFECTS AND INTERACTOIN PLOT OF THIRD DOE PER PARAMETER. 
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FIGURE 83: MAIN EFFECTS AND INTERACTION PLOT OF THE FOURTH DOE PER PARAMETER. 

 

 
FIGURE 84: INTERACTION PLOT FOR THE PRODUCT CARRIER AND BAG REJECTION LIMITS ON COFFEE IN REWORK COSTS (LEFT) AND MISSING PAD RATE 

(RIGHT). 

 
 

TABLE 32: SENSITIVITY ANALYSIS EXPERIMENTS. 

Experiment Sample size Tolerance 
Steering 

factor 
Delay 

PC rej. 

Limits 

Bag rej. 

Limits 

Coffee in 

rework  

costs rate 

Missing pad 

rate 

1 3 0.1 0.9 12 +/- 3.3 +/- 4.4 26.33 1.1% 

2 4 0.1 0.9 12 +/- 3.3 +/- 4.4 26.09 1.4% 

3 6 0.1 0.9 12 +/- 3.3 +/- 4.4 26.25 0.8% 

4 7 0.1 0.9 12 +/- 3.3 +/- 4.4 26.15 0.6% 

5 5 0.2 0.9 12 +/- 3.3 +/- 4.4 26.95 1.6% 

6 5 0.3 0.9 12 +/- 3.3 +/- 4.4 28.22 1.4% 

7 5 0.4 0.9 12 +/- 3.3 +/- 4.4 29.58 1.7% 

8 5 0.1 0.7 12 +/- 3.3 +/- 4.4 26.70 1.2% 

9 5 0.1 0.8 12 +/- 3.3 +/- 4.4 26.10 0.9% 

10 5 0.1 1.0 12 +/- 3.3 +/- 4.4 26.08 1.3% 

11 5 0.1 1.1 12 +/- 3.3 +/- 4.4 26.69 0.6% 

12 5 0.1 0.9 13 +/- 3.3 +/- 4.4 33.95 2.0% 

13 5 0.1 0.9 14 +/- 3.3 +/- 4.4 36.18 3.0% 

14 5 0.1 0.9 12 +/- 3.2 +/- 4.4 26.07 1.4% 

15 5 0.1 0.9 12 +/- 3.4 +/- 4.4 25.82 1.4% 

16 5 0.1 0.9 12 +/- 3.3 +/- 4.3 27.36 0.6% 

17 5 0.1 0.9 12 +/- 3.3 +/- 4.5 25.35 1.1% 

  

3 
1 

2 

2 

1 
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APPENDIX G: RESULTS OF EXPERIMENTS PER BAG 
SIZE 

In this appendix, the results for the design of experiments for all bag sizes is listed 
(except for 48 pads which is included in the experiments chapter).  
 

Bag size 32 pads 

DOE 
Sample 

size 
Tolerances 

Steering 
factor 

 
 

   

1 4  0.7      

2 5 0.1 0.8      

3 6 0.2 0.9      

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 4 0,1 12 0,7 3,3 4,5 20,70 0,8% 

2 4 0,1 12 0,8 3,3 4,5 20,79 0,5% 

3 4 0,1 12 0,9 3,3 4,5 20,86 0,5% 

4 4 0,2 12 0,7 3,3 4,5 20,95 0,5% 

5 4 0,2 12 0,8 3,3 4,5 20,95 0,5% 

6 4 0,2 12 0,9 3,3 4,5 20,90 0,6% 

7 5 0,1 12 0,7 3,3 4,5 20,70 0,5% 

8 5 0,1 12 0,8 3,3 4,5 20,70 0,6% 

9 5 0,1 12 0,9 3,3 4,5 20,82 0,8% 

10 5 0,2 12 0,7 3,3 4,5 20,78 0,3% 

11 5 0,2 12 0,8 3,3 4,5 20,93 0,3% 

12 5 0,2 12 0,9 3,3 4,5 20,98 0,8% 

13 6 0,1 12 0,7 3,3 4,5 20,76 0,6% 

14 6 0,1 12 0,8 3,3 4,5 20,78 0,6% 

15 6 0,1 12 0,9 3,3 4,5 20,84 0,5% 

16 6 0,2 12 0,7 3,3 4,5 20,88 0,3% 

17 6 0,2 12 0,8 3,3 4,5 20,99 0,3% 

18 6 0,2 12 0,9 3,3 4,5 20,91 0,8% 

 

DOE PC (+/-) Bag (+/-)   
 

   

1 3.4 4.7       

2 3.5 4.8       

3  4.9       

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 3 0.1 12 0.7 3,4 4,7   

2 3 0.1 12 0.7 3,4 4,8   

3 3 0.1 12 0.7 3,4 4,9   

4 3 0.1 12 0.7 3,5 4,7   

5 3 0.1 12 0.7 3,5 4,8   
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6 3 0.1 12 0.7 3,5 4,9   
 

  

 

Bag size 36 pads 

DOE 
Sample 

size 
Tolerances 

Steering 
factor 

 
 

   

1 4  0.7      

2 5 0.1 0.8      

3 6 0.2 0.9      

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 4 0,1 12 0,7 3,3 4,5 20,70 0,8% 

2 4 0,1 12 0,8 3,3 4,5 20,79 0,5% 

3 4 0,1 12 0,9 3,3 4,5 20,86 0,5% 

4 4 0,2 12 0,7 3,3 4,5 20,95 0,5% 

5 4 0,2 12 0,8 3,3 4,5 20,95 0,5% 

6 4 0,2 12 0,9 3,3 4,5 20,90 0,6% 

7 5 0,1 12 0,7 3,3 4,5 20,70 0,5% 

8 5 0,1 12 0,8 3,3 4,5 20,70 0,6% 

9 5 0,1 12 0,9 3,3 4,5 20,82 0,8% 

10 5 0,2 12 0,7 3,3 4,5 20,78 0,3% 

11 5 0,2 12 0,8 3,3 4,5 20,93 0,3% 

12 5 0,2 12 0,9 3,3 4,5 20,98 0,8% 

13 6 0,1 12 0,7 3,3 4,5 20,76 0,6% 

14 6 0,1 12 0,8 3,3 4,5 20,78 0,6% 

15 6 0,1 12 0,9 3,3 4,5 20,84 0,5% 

16 6 0,2 12 0,7 3,3 4,5 20,88 0,3% 

17 6 0,2 12 0,8 3,3 4,5 20,99 0,3% 

18 6 0,2 12 0,9 3,3 4,5 20,91 0,8% 
 
 

DOE PC (+/-) Bag (+/-)   
 

   

1 3.4 4.6       

2 3.5 4.7       

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 5 0.1 12 0.7 3,4 4,6 20,640 0,8% 

2 5 0.1 12 0.7 3,5 4,7 20,532 1,3% 

 
TABLE 33: EXPERIMENTS OF THE FIRST DOE FOR REJECTION LIMITS OPTIMISATION, INCLUDING RESULTS. 

Experiment PC Bag 
Coffee in 
rework costs 
rate 

Missing pad 
rate 

1 3.3 4.3 27.36 0.6% 

2 3.3 4.5 25.35 1.1% 
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3 3.3 4.7 23.87 2.2% 

4 3.5 4.3 26.91 0.8% 

5 3.5 4.5 24.82 1.2% 

6 3.5 4.7 23.29 2.5% 

7 3.7 4.3 27.22 1.1% 

8 3.7 4.5 24.92 1.2% 

9 3.7 4.7 23.32 2.3% 
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Bag size 40 pads 

DOE 
Sample 

size 
Tolerances 

Steering 
factor 

 
 

   

1 4  0.7      

2 5 0.1 0.8      

3 6 0.2 0.9      

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 4 0,1 12 0,7 3,3 4,4 22,15 0,7% 

2 4 0,1 12 0,8 3,3 4,4 22,11 0,5% 

3 4 0,1 12 0,9 3,3 4,4 21,88 0,7% 

4 4 0,2 12 0,7 3,3 4,4 22,13 1,2% 

5 4 0,2 12 0,8 3,3 4,4 22,32 0,9% 

6 4 0,2 12 0,9 3,3 4,4 22,42 0,5% 

7 5 0,1 12 0,7 3,3 4,4 22,00 0,5% 

8 5 0,1 12 0,8 3,3 4,4 21,72 0,5% 

9 5 0,1 12 0,9 3,3 4,4 21,91 0,5% 

10 5 0,2 12 0,7 3,3 4,4 22,16 0,9% 

11 5 0,2 12 0,8 3,3 4,4 22,26 0,7% 

12 5 0,2 12 0,9 3,3 4,4 22,42 1,4% 

13 6 0,1 12 0,7 3,3 4,4 21,95 0,7% 

14 6 0,1 12 0,8 3,3 4,4 22,04 0,2% 

15 6 0,1 12 0,9 3,3 4,4 22,01 0,2% 

16 6 0,2 12 0,7 3,3 4,4 22,00 0,5% 

17 6 0,2 12 0,8 3,3 4,4 22,25 0,5% 

18 6 0,2 12 0,9 3,3 4,4 22,13 1,4% 
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DOE PC (+/-) Bag (+/-)   
 

   

1 3.2 4.3       

2 3.3 4.4       

3 3.4 4.5       

         

Exp. 

Sample 
size Tolerance Delay 

Steering 
factor PC (+/-) 

Bag (+/-
) rework 

Missing 
pad rate 

1 5 0.1 12 0.8 3,2 4,3 22,19 0,2% 

2 5 0.1 12 0.8 3,2 4,4 21,86 0,2% 

3 5 0.1 12 0.8 3,2 4,5 21,54 0,6% 

4 5 0.1 12 0.8 3,3 4,3 22,05 0,5% 

5 5 0.1 12 0.8 3,3 4,4 21,66 0,5% 

6 5 0.1 12 0.8 3,3 4,5 21,41 0,6% 

7 5 0.1 12 0.8 3,4 4,3 22,18 0,5% 

8 5 0.1 12 0.8 3,4 4,4 21,79 0,6% 

9 5 0.1 12 0.8 3,4 4,5 21,44 0,8% 

 
 
Bag size 54 pads 

First DOE: 

TABLE 34: DOE AND LISTED EXPERIMENTS WITH OUTPUT FOR BAG WITH 54 PADS 

DOE Sample size Tolerances Steering factor  
 

1 4  0.8   
2 5 0.1 0.9   
3 6 0.2 1.0         

Experiment Sample size Tolerances Steering factor Delay Output 

1 4 0,1 0,8 12 29,59 

2 4 0,1 0,9 12 30,51 
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3 4 0,1 1 12 32,17 

4 4 0,2 0,8 12 31,51 

5 4 0,2 0,9 12 32,85 

6 4 0,2 1 12 36,85 

7 5 0,1 0,8 12 29,11 

8 5 0,1 0,9 12 29,81 

9 5 0,1 1 12 31,28 

10 5 0,2 0,8 12 30,35 

11 5 0,2 0,9 12 32,17 

12 5 0,2 1 12 33,57 

13 6 0,1 0,8 12 29,26 

14 6 0,1 0,9 12 29,40 

15 6 0,1 1 12 30,09 

16 6 0,2 0,8 12 30,38 

17 6 0,2 0,9 12 30,78 

18 6 0,2 1 12 32,31 

 

 

 
 
Second DOE: 

DOE Sample size Tolerances Steering factor Delay  

Low 5 0.1 0.7 12  
Mid 6  0.8   

High 7     

      

Experiment Sample size Tolerances Steering factor Delay Output 

1 5 0,1 0,7 12 29,04 

2 5 0,1 0,8 12 29,11 

3 6 0,1 0,7 12 29,33 

4 6 0,1 0,8 12 29,26 

5 7 0,1 0,7 12 29,62 

6 7 0,1 0,8 12 29,31 
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The best possible parameter settings are: 
Sample size: 5 
Tolerance: 0.1 
Steering factor: 0.7 
Delay: 12 
The probability of accepting a bag with a missing pad is 2.03%. 
DOE for best possible rejection limits: 

DOE PC Bag 

Low 3.2 4.3 

Mid 3.3 4.4 

high 3.4 4.5 

   

Experiment PC Bag 

1 3,2 4,3 

2 3,2 4,4 

3 3,2 4,5 

4 3,3 4,3 

5 3,3 4,4 

6 3,3 4,5 

7 3,4 4,3 

8 3,4 4,4 

9 3,4 4,5 

 

Bag size 60 pads 

TABLE 35: FIRST DOE AND LISTED EXPERIMENTS WITH OUTPUT FOR BAG WITH 60 PADS 

DOE Sample size Tolerances Steering factor  
  

1 4  0.6    

2 5 0.1 0.7    

3 6 0.2 0.8    

       

Experiment 

Sample size Tolerances Steering factor Delay Output 

Probability 
accepting 
missing 

pad 

1 4 0,1 0,6 12 40,23 3,9% 

2 4 0,1 0,7 12 39,12 3,6% 

3 4 0,1 0,8 12 39,19 3,6% 

4 4 0,2 0,6 12 42,97 3,6% 

5 4 0,2 0,7 12 43,05 4,0% 

6 4 0,2 0,8 12 45,18 4,0% 

7 5 0,1 0,6 12 41,42 4,0% 

8 5 0,1 0,7 12 39,97 3,6% 

9 5 0,1 0,8 12 38,73 4,0% 

10 5 0,2 0,6 12 43,83 4,5% 

11 5 0,2 0,7 12 42,08 4,4% 

12 5 0,2 0,8 12 42,65 3,3% 

13 6 0,1 0,6 12 43,30 2,5% 

14 6 0,1 0,7 12 39,40 3,1% 

15 6 0,1 0,8 12 39,05 3,4% 

16 6 0,2 0,6 12 44,24 3,1% 

17 6 0,2 0,7 12 42,75 2,5% 



                              

 

109 

MSc Thesis – Thomas Anton de Koning – 2021 

18 6 0,2 0,8 12 42,20 2,3% 

 

TABLE 36:SECOND DOE AND EXPERIMENTS FOR 60 PADS BAG 

DOE PC limit (+/-) Bag limit (+/-)   

1 3.4 4.1   

2 3.5 4.2   

3  4.3   

     

Experiment 

PC limit (+/-) Bag limit (+/-) Output 

Probability 
accepting 
missing 

pad 

1 3,4 4,1 50,75 2,5% 

2 3,4 4,2 45,91 3,3% 

3 3,4 4,3 41,88 3,9% 

4 3,5 4,1 50,50 1,7% 

5 3,5 4,2 45,88 2,8% 

6 3,5 4,3 41,95 3,6% 

 

 

TABLE 37:THIRD DOE AND EXPERIMENTS FOR 60 PADS BAG 

DOE PC limit (+/-) Bag limit (+/-)   

1 3.5 3.9   

2 3.6 4.0   

     

Experiment 

PC limit (+/-) Bag limit (+/-) Output 

Probability 
accepting 
missing 

pad 

1 3,5 3.9 63,81 1,1% 

2 3,5 4.0 56,19 1,4% 

3 3,6 3.9 62,90 0,8% 

4 3,6 4.0 55,78 1,2% 
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FIGURE 85:INTERACTION PLOT OF FIRST DOE FOR BAG OF 60 PADS (OBJECTIVE IS COFFEE IN REWORK COSTS) 

 

 
FIGURE 86: INTERACTION PLOT OF SECOND DOE ON REJECTION LIMITS (OBJECTIVE IS PROBABILTY BAG WITH MISSING PAD IS ACCEPTED). 
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Bag size 72 pads 

DOE Sample size Tolerances Steering factor  
  

1 4  0.7    

2 5 0.1 0.8    

3 6 0.2 0.9    

       

Experiment Sample size Tolerance Delay 

Steering 
factor Rework 

Missing 
pad rate 

1 4 0,1 12 0,7 130,19 1,4% 

2 4 0,1 12 0,8 124,01 1,9% 

3 4 0,1 12 0,9 125,13 1,4% 

4 4 0,2 12 0,7 148,18 2,3% 

5 4 0,2 12 0,8 148,84 2,6% 

6 4 0,2 12 0,9 159,00 2,1% 

7 5 0,1 12 0,7 135,02 1,6% 

8 5 0,1 12 0,8 124,13 0,9% 

9 5 0,1 12 0,9 121,57 0,9% 

10 5 0,2 12 0,7 147,95 0,9% 

11 5 0,2 12 0,8 144,89 2,8% 

12 5 0,2 12 0,9 149,15 1,6% 

13 6 0,1 12 0,7 140,35 1,2% 

14 6 0,1 12 0,8 127,25 0,9% 

15 6 0,1 12 0,9 123,58 0,9% 

16 6 0,2 12 0,7 152,04 1,9% 

17 6 0,2 12 0,8 145,36 1,2% 

18 6 0,2 12 0,9 32,31  
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FIGURE 87: INTERACTION PLOTS OF FIRST DOE ON BOTH COFFEE IN REWORK COSTS RATE AND PROBABILITY OF ACCEPTING A BAG WITH A MISSING 

PAD. 
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APPENDIX H: LIST OF RESULTS IN THE INITIAL AND BEST POSSIBLE SITUATION 
PER BAG SIZE 

TABLE 38: EXTENSIVE TABLE WITH RESULTS PER BAG SIZE (1/3) 

Experiment nr. 1 394   2 389   3 366   

Bag size 16 18 32 

  Old  
Best 

possible 
Difference Old  

Best 
possible 

Difference Old  
Best 

possible 
Difference 

Sample size 10 6 -4 10 4 -6 10 3 -7 

Tolerance 0,7 0,1 -0,6 0,7 0,1 -0,6 0,7 0,1 -0,6 

Adjustment factor 0,5 0,7 0,2 0,5 0,7 0,2 0,5 0,7 0,2 

Delay 25 12 -13 25 12 -13 25 12 -13 

PC Lower Limit 3 3,4 0,4 2 3,4 1,4 2 3,4 1,4 

PC Upper Limit 4 3,4 -0,6 4 3,4 -0,6 4 3,4 -0,6 

Bag Lower Limit 4 4,9 0,9 4 4,9 0,9 5 4,9 -0,1 

Bag Upper Limit 10 4,9 -5,1 10 4,9 -5,1 10 4,9 -5,1 

Coffee in rework costs rate 13,6251 15,857 16% 34,9484 15,913 -54% 15,6184 20,046 28% 

Product carrier rejection rate          

Bag rejection rate          

Overfill (overall) -21149 -11741 44% 18354 12298 33% -29271 -22248 24% 

Probability accepting bag with missing pad          
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TABLE 39: EXTENSIVE TABLE WITH RESULTS PER BAG SIZE (2/3) 

Experiment nr. 4 308   5 284   6 150   

Bag size 36 40 48 

  Old  
Best 

possible 
Difference Old  

Best 
possible 

Difference Old  
Best 

possible 
Difference 

Sample size 10 5 -5 10 5 -5 10 5 -5 

Tolerance 0,7 0,1 -0,6 0,7 0,1 -0,6 0,5 0,1 -0,4 

Adjustment factor 0,5 0,7 0,2 0,5 0,8 0,3 0,5 0,8 0,3 

Delay 25 12 -13 25 12 -13 25 12 -13 

PC Lower Limit 2 3,4 1,4 2 3,3 1,3 2 3,3 1,3 

PC Upper Limit 4 3,4 -0,6 4 3,3 -0,7 4 3,3 -0,7 

Bag Lower Limit 5 4,6 -0,4 3,5 4,5 1 3,5 4,4 0,9 

Bag Upper Limit 10 4,6 -5,4 9 4,5 -4,5 10 4,4 -5,6 

Coffee in rework costs rate 41,622 20,639 -50% 68,4681 21,408 -69% 139,8743 26,335 -81% 

Product carrier rejection rate          

Bag rejection rate          

Overfill (overall) 11659 10557 9% 55511 50031 10% 65924 33652 49% 

Probability accepting bag with missing pad          
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TABLE 40: EXTENSIVE TABLE WITH RESULTS PER BAG SIZE (3/3) 

Experiment nr. 7 408   8 235   9 251   

Bag size 54 60 72 

  Old  
Best 

possible 
Difference Old  

Best 
possible 

Difference Old  
Best 

possible 
Difference 

Sample size 10 5 -5 10 5 -5 10 5 -5 

Tolerance 0,7 0,1 -0,6 0,7 0,1 -0,6 0,7 0,1 -0,6 

Adjustment factor 0,5 0,7 0,2 0,5 0,8 0,3 0,5 0,9 0,4 

Delay 25 12 -13 25 12 -13 25 12 -13 

PC Lower Limit 2 3,4 1,4 2 3,6 1,6 2 3,6 1,6 

PC Upper Limit 4 3,4 -0,6 4 3,6 -0,4 4 3,6 -0,4 

Bag Lower Limit 3,5 4,2 0,7 6 3,9 -2,1 4,2 3,9 -0,3 

Bag Upper Limit 15 4,2 -10,8 14 3,9 -10,1 4,2 3,9 -0,3 

Coffee in rework costs rate 124,4288 35,231 -72% 58,2075 62,899 8% 114,1704 121,568 6% 

Product carrier rejection rate          

Bag rejection rate          

Overfill (overall) 14682 9.667 34% 56677 49460 13% 56766 20611 64% 

Probability accepting bag with missing pad s         

 


