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Preface 
Alweer een jaar geleden begon ik aan mijn 

afstudeerstage op de afdeling Verloskunde en 
Gynaecologie in het Radboudumc, Nijmegen. 
Nadat ik eerder al met veel plezier een korte 
stage had gelopen op dezelfde afdeling, begon 
ik in april 2020 met veel enthousiasme, 
gedrevenheid en een gezonde dosis 

leergierigheid aan mijn afstudeerstage.  
 
Terugkijkend op het afgelopen jaar kan ik niet 
anders dan zeggen dat het een bijzonder jaar 
is geweest. Naast dat afstuderen an sich al vele 

uitdagingen met zich mee kan brengen, zaten 
we midden een pandemie. Desondanks kijk ik 
met veel positiviteit terug op een jaar dat ik 
vooral als heel leerzaam en waardevol heb 

ervaren. Ik ben er dan ook van overtuigd dat 
ik het afgelopen jaar op technisch, medisch én 
persoonlijk vlak echt sprongen heb gemaakt. 
En omdat ik dit zeker niet alleen had gekund, 
wil ik bij deze graag een moment nemen om 

mijn dank uit te spreken aan iedereen die 
hierin een bijdrage heeft gehad. 
 
Om te beginnen wil ik graag Anouk bedanken 
voor de ontzettend fijne begeleiding. Ik vond 
het erg fijn dat ik bij je terecht kon voor alles, 
zowel op professioneel als op persoonlijk vlak. 
Bovendien gaf je mij de vrijheid om mezelf te 
ontwikkelen op de gebieden waarop ik dat zelf 
graag wilde. Hierdoor had ik de ruimte om mij 

te ontwikkelen tot de Technische 
Geneeskundige die ik ambieer te zijn.  
 

Daarnaast zou ik graag Esther en de afdeling 
Verloskunde en Gynaecologie in het algemeen 

willen bedanken voor alle klinische ervaringen 
die ik op heb mogen doen. Ik voelde me 
welkom en kreeg de vrijheid om te leren wat 
ik wilde leren. Niks moest, alles mocht. Tevens 
wil ik graag Ferdi bedanken voor de 
begeleiding op technologisch en 
wetenschappelijk gebied. Je hield me scherp 
wanneer nodig en hielp mij the big picture te 
zien.  
 
Ruby en Paul, jullie wil ik graag bedanken voor 
de begeleiding met betrekking tot mijn 

persoonlijke ontwikkeling. Over je afstuderen 

wordt vaak gezegd dat dit één van de 
momenten is waarop je jezelf écht tegen komt. 
Dit was zeker ook het geval en ik durf te 
wedden dat dit effect –in positieve zin- nóg 
sterker is geworden dankzij alle intervisies, 
reflectiemomenten en de goede begeleiding. 

Mijn zelfvertrouwen als medisch-technisch 
professional heeft in een lift gezeten de 
afgelopen twee jaar en dat heb ik zéker mede 
te danken aan jullie. Ruby, bedankt dat je me 
hebt leren voelen, waardoor ik mijn 

authenticiteit weer terug heb gevonden. 
 
En last, but certainly not least, ben ik de 
mensen in mijn directe omgeving erg 

dankbaar voor al jullie steun, hulp en 
luisterende oren gedurende het afgelopen jaar. 
Vera, Celine en Iris, bedankt voor alle 
gezelligheid en de fijne sfeer thuis. Bij jullie 
kon (en kan) ik altijd terecht, of het nou is om 

een biertje te drinken of om even uit te huilen, 
de deur staat altijd open.  
 
Sammel, jullie zijn simpelweg geweldig. Anne, 
bedankt voor alle wandel-belafspraken die we 
hebben gehad gedurende het jaar. Je hebt me 
er echt doorheen gesleept. De meiden van mijn 
jaarclub, en in het bijzonder Rianne, Meike en 
Diantha, ontzettend bedankt voor het 
meedenken, de openheid en gezelligheid. 

Pandemie of niet, met jullie is het altijd 
genieten.  
 

Tot slot wil ik graag mijn ouders en Ruben 
bedanken. Jullie staan altijd achter mij, wat ik 

ook doe of welke keuze ik ook maak. Bedank 
voor jullie onvoorwaardelijke steun en 
vertrouwen in mij.  
 

    
 

Marèll Niekolaas 
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Summary  
 

Introduction – Twin-To-Twin Transfusion Syndrome (TTTS) is a condition that occurs in 

monochorionic twin pregnancies and is characterized by a disbalanced blood supply between the 

two fetuses. When left untreated, TTTS is associated with a mortality rate of 90-95%. To date, 

Fetoscopic Lasercoagulation Of Vascular Anastomoses (FLOVA) is the only treatment option for TTTS 

that addresses the underlying pathology.  

 

One of the main drawbacks of FLOVA is the limited Field of View (FOV). Therefore, providing the 

surgeon with an overview of the placental vasculature is thought to increase the success rates of 

FLOVA. Through the recent years, more and more research has been conducted on reconstruction of 

the placental surface using image stitching algorithms. However, to date, none of these approaches 

were proven successful when applied to (longer) in-vivo video sequences. 

 

The in-vivo fetoscopic videos contain numerous frames that are either irrelevant or disruptive for 

image stitching. Therefore, the first part of this thesis focused on automatic classification of frames 

that are suitable for image stitching using a deep learning approach. The second part focused on the 

training and potential use of a vessel segmentation network. We hypothesized that the resulting 

segmentation maps can be used for 1) improved inlier feature detection by using selective regional 

image enhancement and 2) intensity-based image stitching.  

 

Methods – Ten in-vivo fetoscopic videos from FLOVA procedures were included in this thesis. First, 

the effect of the frame content on the number and quality of the detected inlier feature matches is 

evaluated. Thereafter, a total of 62,422 labeled frames were extracted and labeled. A pre-trained 

CNN with a VGG-16 architecture was trained for binary classification of the in-vivo video frames. 

For the vessel segmentation network (VesSeg), a U-Net was trained using 729 in-vivo frames and 

ground truth vessel segmentations. Lastly, the potential use of the vessel segmentations for both 

feature-based and intensity-based image stitching was briefly explored.  

 

Results & Discussion – Frames in which the vessels are visible without any occlusions were most 

suitable for image stitching, followed by frames that show vessels that are partly occluded. These 

frames were therefore labeled as suitable for the vessel identification network. The trained vessel 

identification network (VesDet) generated predictions with an ROC-AUC of 0.95 when tested using 

an unseen video. A prediction rate of 714 fps was reported when using Google Colab’s GPU. Based 

on these results, the network is considered useful and applicable for future clinical implementation. 

 

Our best performing U-Net generated vessel segmentations with a Dice Score of 0.80 (± 0.13) and 

ROC-AUC of 0.98. In literature, two studies proposed similar networks and reported Dice Scores of 

0.55 (± 0.22) and 0.78 (± 0.13) for their best networks. Therefore, our network significantly 

outperformed the network from the first study and slightly outperformed the network from the 

second study described in literature. Additional qualitative analysis supported these findings. 

Moreover, an average prediction rate of 7 fps was measured, which is considered sufficient for future 

clinical applications of the network.  
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Lastly, experimentations with VesSeg for multiple different feature-based and intensity-based image 

stitching approaches showed an increase in the number of frames that were stitched together 

successfully. However, systematic research on the different image stitching approaches is highly 

recommended.  

 

Conclusion – Based on the studies and experimentations performed in this thesis, we conclude that 

the vessel identification and segmentation deep learning networks are of added value for image 

stitching of in-vivo fetoscopic video frames. Moreover, the networks are considered suitable for 

clinical applications based on their high performance when tested using unseen in-vivo data and fast 

prediction rates. However, the image stitching algorithm requires further development before it can 

be used in clinical settings. 
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1. General introduction 
 

1.1 Twin-to-Twin Transfusion syndrome 
Twin-To-Twin Transfusion Syndrome (TTTS) is a condition that occurs in monochorionic twin 

pregnancies and is characterized by a disbalanced blood supply between the two fetuses. The blood 

is disproportionately redirected from one fetus (the donor) to the other fetus (the recipient) through 

vascular anastomoses.1,2 Monochorionic twin pregnancies account for 3 in 1000 of all deliveries 

worldwide.3 It is estimated that TTTS occurs in 10-15% of these pregnancies.1,4  

 

TTTS can have serious consequences for both twins, including 1) severe hypotension and heart 

failure in the recipient twin, 2) pulmonary hypoplasia and permanent brain damage in the donor 

twin and 3) eventually death in one or both twins.2,5 When left untreated, TTTS is associated with a 

mortality rate of approximately 90-95%.6,7    

 

1.2 Fetoscopic Laser Coagulation 
To date, Fetoscopic Lasercoagulation Of Vascular Anastomoses (FLOVA) is the only definitive 

treatment option for TTTS. This treatment aims to interrupt the undesired blood transfusion 

between both fetuses.8,9 During FLOVA, the placental surface is visually inspected to identify the 

vascular anastomoses.10,11 This is done using a fetoscope, which is a specialized endoscope with a 

relatively small outer diameter (1.0-3.8 mm).12 Thereafter, the anastomoses are coagulated with a 

built-in laser (Figure 1).  
 

 

 
Figure 1. Illustration of the Fetoscopic Lasercoagulation of placental Vascular Anastomoses (FLOVA) 

procedure in a TTTS pregnancy.13 
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The small diameter of the fetoscope is necessary to reduce the risk of preterm prelabor rupture of 

membranes (PPROM) and thus reduce the risk of preterm birth.14 However, smaller diameter 

instruments demand technical compromises, which affects the overall image quality and the size of 

the field of view (FOV). As a result, inspection of the placental surface and identification of the 

vascular anastomoses can be challenging.  

 

Akkersmans et al. published a systematic review on the outcomes of 3,868 FLOVA procedures 

performed between 1990 and 2014. Based on the most recent cases (2011-2014), they described a 

benchmark for perinatal survival rates after FLOVA of 52–54% for both twins and 81– 88% for at 

least one twin, with a mean gestational age (GA) of 32.4 weeks.15 Although the survival rates of one 

or both twins after FLOVA has increased since its first introduction15,16, there is still scope for 

improvement. 

 

Providing the surgeon with an overview of the placenta during FLOVA is thought to be of great value 

for faster navigation and identification of the anastomoses. This reduces the operation duration, 

which is generally associated with a reduction of postoperative complications and mortality rates.17,18 

Moreover, an overview of the placental vasculature is thought to help determine the appropriate 

order in which the anastomoses should be coagulated. Unfortunately, to date, no imaging modality 

is able to generate an overview of the placental vasculature pre- or intraperative.19 A potential 

solution could be to artificially increase the FOV during FLOVA, using computer vision techniques. 

To do so, the individual fetoscopic video frames are used to generate a two- or three-dimensional 

(2D or 3D) reconstruction of the placental surface.  

 

1.3 Previous Research 

In literature, various attempts have been reported on intraoperative, real-time mosaicking of 

fetoscopic video sequences in order to increase the FOV artificially.20–28 Most of the techniques and 

algorithms proposed in these studies have shown promising results when tested on placenta 

phantoms or ex-vivo (dye-injected) placentas. However, none of these approaches were proven 

successful when applied to (longer) in-vivo video sequences.25  

 

Other studies proposed the use of additional imaging modalities, such as MRI29 or photoacoustic 

imaging30, in an attempt to generate an overview of the placental surface preoperatively. Moreover, 

intraoperative use of external electromagnetic (EM) or visual tracking devices to improve the camera 

position estimation has been reported.31–33 The main drawback of these approaches is that they 

require (significant) changes to the current FLOVA workflow, either pre- or intraoperatively. Since 

our aim is to generate a placental overview without impacting the current clinical workflow, these 

approaches were excluded in our study. Furthermore, most of these studies were limited to 

simulation settings and ex-vivo placentas, meaning that they were not proven effective in in-vivo 

settings as well. 

 

1.3.1 Image Stitching 

One popular approach for generating an overview of the placental surface is image stitching. This 

technique combines multiple images with overlapping content to form a reconstruction or map. In 
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the field of fetoscopic surgery, most research focusses on feature-based image stitching.21–24,34–36 

Features can be described as recognizable regions in an image, such as corners. A team from the 

Department of Obstetrics & Gynaecology at the Radboudumc has been working on the so-called 3D 

FLOVA-SLAM technique, which is a feature-based image stitching approach as well. This technique 

involves the ORB-SLAM2 algorithm, an open-source algorithm that uses ORB feature detection 

combined with Simultaneous Localization And Mapping (SLAM)37.  

 

Hitherto, the proposed feature-based image stitching approaches showed promising results when 

tested using ex-vivo placentas and phantoms. Unfortunately, their performance drastically decreased 

when applied to in-vivo data. As a result, the proposed feature-based image stitching techniques have 

not been able to perform image stitching of (longer) in-vivo fetoscopic video sequences. One of the 

complications is that these algorithms are sensitive to drift.32  

 

Feature-based image stitching of in-vivo fetoscopic video frames is limited due to multiple reasons, 

including 1) the lack of texture on the placental surface, 2) the poor overall image quality and 3) the 

presence of unstable features. The latter is caused by floating amniotic fluid particles (fetal skin 

flakes), fetal parts and the umbilical cord.26,38 These dynamic features are problematic since feature-

based stitching relies on stable features. Moreover, the poor image quality is partly the result of the 

poor lighting conditions in the intrauterine environment.25,35,39  

 

An alternative to feature-based image stitching is intensity-based image stitching, also known as 

direct image registration or alignment. In 2018, Peter et al.26 proposed the first approach for 

intensity-based image stitching of in-vivo fetoscopic video sequences. Although they demonstrated 

promising results, no further research is published on this topic yet.   

 

Lastly, another factor that makes the transition from ex-vivo to in-vivo challenging is the fact that 

most studies rely on videos from previously performed FLOVA procedures. These videos were 

recorded without the intention to generate an overview. As a result, the scope moves relatively fast 

or chaotic in some frames, making retrospective image stitching challenging. In contrast, when 

testing an image stitching algorithm using a test setup, the operator can adjust the scope’s 

movements based on the progress of the real-time generated reconstruction. For example, when the 

signal gets lost, the surgeon will return to the previous position and reduce the speed of the scope’s 

movements. Test setups are therefore more useful for development of real-time stitching algorithms. 

However, the video frames from test setups appear visually different from in-vivo fetoscopic video 

frames, making the translation from ex-vivo to in-vivo applications difficult.25 

 

1.3.2 Deep Learning 

Through the recent years, the number of studies that use artificial intelligence (AI) approaches to 

generate an overview of the placental vasculature is rising. This is thought to be related to the high 

variability of image appearances between different fetoscopic frames and videos40, making it 

challenging to develop one size fits all algorithms. In previous studies, deep learning (DL) networks 

have been developed and tested for improved homography matrix estimation41, placental pose 

estimation28, and stable feature detection25. Additionally, DL networks have been trained for other 
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purposes in the field of fetoscopic surgery, including occlusion identification38 and segmentation of 

the inter-fetus membrane42 or placental vessels19.  

 

Bano et al. trained a DL network to identify four different fetoscopic events, including clear view.38 

We hypothesize that a similar approach can be used for binary identification (classification) of 

frames that are suitable for image stitching. This network can then be used to exclude frames that 

are less suitable or disruptive during image stitching, increasing the likelihood of successful image 

stitching of (longer) in-vivo video sequences.  

 

1.4 Goals and Thesis Outline 

Providing the surgeon with an overview of the placental vasculature during FLOVA is thought to 

increase the success rates of FLOVA, increasing the survival rates of one or both twins. Although 

more and more research has been conducted on the topic of real-time image stitching, no solution is 

described in literature for (longer) in-vivo fetoscopic video sequences yet. We hypothesize that DL 

networks can be trained to overcome some of the problems related to development of an image 

stitching algorithm, such as the presence of useless or disturbing frames. Therefore, the aim of this 

thesis is to evaluate the potential use of DL approaches for image stitching of fetoscopic video frames, 

focusing explicitly on in-vivo data. 

 

One of the main challenges related to working with in-vivo data is the frame content: besides frames 

that show the placental vessels, a significant portion of the frames show other structures, including 

fetal body parts and the umbilical cord. Furthermore, the amniotic fluid contains fetal skin flakes, 

which can negatively affect the performance of image stitching techniques. Figure 2 shows a series 

of example frames from the orientation phase of a FLOVA procedure performed in the Radboudumc. 

Since not all frames are suitable for image stitching, we first focus on identifying non-occluded 

frames with vessels using a DL approach. Therefore, the first sub-goal is to train a DL network for 

binary classification of in-vivo fetoscopic video frames.  

 

 
Figure 2. Example frames demonstrating the differences in frame content from a FLOVA procedure performed 

in the Radboudumc. All frames originate from the same video. 

 

One of the main drawbacks of feature-based image stitching is the fact that some frames result in an 

inadequate number of matchable features. Although this is mainly seen in frames that show little to 

no vascular structures, it is also seen in frames that show ‘clearly visible’ vessels. We hypothesize 

that a solution can be found in semantic segmentation of the vessels through either 1) using the 

segmentation maps for selective regional image enhancement or 2) using the segmentations for 

intensity-based image stitching.  
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The added value of the first approach has been demonstrated in an earlier project (M2-3). This 

project demonstrated that segmentation maps of the vascular structures can be used to increase the 

number of inlier feature matches. This was done by using the segmentation maps to separate the 

vessels from the ‘background’ and performing different pre-processing steps to the separated parts. 

The report from this project is available on request. Hence, the second sub-goal of this thesis is to 

train a DL network for vessel segmentation of in-vivo fetoscopic video frames. 

 

To summarize, this thesis first focuses on training a DL network for binary image classification. The 

aim of this network is to identify frames with vessels, since these are considered more suitable for 

image stitching. Thereafter, a second DL network will be trained for vessel segmentation. Lastly, the 

different uses of the segmentation maps for image stitching will be briefly explored. Figure 3 shows 

a schematic overview of the goals of the trained DL networks in the process of generating a 

reconstruction of the placental surface.  

 

 
Figure 3. Overview of the steps taken in this thesis for generating a reconstruction of the placental surface of 

in-vivo fetoscopic video sequences, using two deep learning networks (blue). 
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1.4.1 Research Questions 

The following research sub-questions were drafted: 

1. What are the main hindrances when attempting image stitching of in-vivo fetoscopic video 

frames and what are potential solutions? 

a. What solutions are proposed in literature?  

b. What AI solutions are proposed in literature and what is their potential?  

2. How does the frame content (e.g. vessels, fetal parts) affect the number and quality of 

inlier feature matches (IFM) found in two consecutive frames?   

3. To what extent can a DL network be trained for binary classification of in-vivo video 

frames to identify frames with vessels / frames that are useful for image stitching? 

a. What is the performance of this network when tested using an unseen FLOVA 

video? 

b. How fast can the network generate its predictions? 

4. To what extent can a DL network be trained for vessel segmentation of in-vivo fetoscopic 

video frames with vessels?  

a. What is the performance of this network (Dice Score) when tested using unseen 

frames? 

b. How fast can the network perform its predictions? 

5. What application of the segmentation network has more potential?  

a. How many consecutive in-vivo frames can be successfully stitched by using the 

segmentation maps for selective regional image enhancement? 

b. How many consecutive in-vivo frames can be successfully stitched by using the 

prediction maps for intensity-based image stitching?  

6. What is needed before the DL networks can be used in clinical applications and what are 

the potential uses of the networks?  

7. How can a priori knowledge on the geometrical shape of the placenta be used for improved 

image stitching?  

 

1.4.2 Thesis Outline 

First, background information on feature detection and deep learning is provided (Chapter 2), 

followed by an overview of the characteristics of the data used in this thesis (Chapter 3). Thereafter, 

the effect of the video content on the feature detection is evaluated (Chapter 4). Based on the findings 

from this chapter, the data was labeled for the classification network. Then, the classification and 

segmentation DL networks were developed and their performance was evaluated (Chapter 5 & 6). 

The potential uses of the segmentation network for feature-based and intensity-based image 

stitching was briefly explored (Chapter 7).  
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2. Background Information 
 

2.1 Feature Detection 
An image feature can be described as a small patch of information composed of a feature keypoint, 

which is the 2D position of the patch, and a feature descriptor, which can be described as a visual 

description of the patch. One frequently used feature detector is ORB, since it is known for its speed 

and robustness.43,44 

 

ORB stands for Oriented FAST and Rotated BRIEF feature detection.45 FAST, or Features from 

Accelerated and Segments Test, is a method for real-time feature detection. It was developed for 

corner detection and is relatively computational efficient.46 FAST works as follows: the pixels in a 

circle around a pixel p are sorted as lighter than, darker than or similar to p. If more than fifty 

percent of these pixels are darker or brighter than p, that pixel is selected as a keypoint (Figure 4).45 

In ORB, FAST is made partial scale invariant by augmenting it with multiscale image pyramids.43  

 

 
Figure 4. FAST keypoint detection (directly taken from Rosten and Drummond46).  

 

After the feature points are detected using FAST, Binary Robust Independent Elementary Feature 

(BRIEF) calculates a binary descriptor for each feature point. BRIEF uses simple binary tests between 

pixels in a smoothed image region.47  

 

2.2 Deep Learning  

Deep learning (DL) is a sub-field of machine learning, which is in turn a form of Artificial Intelligence 

(AI). DL is inspired by the neural network of the human brain and by the way it learns, which is 

learning by experience. An artificial neural network exists of an input layer, multiple hidden layers 

and an output layer. The word deep refers to the multiple hidden layers that make up the structure 

of a DL neural network (Figure 5).  
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Figure 5. Illustration of a simple neural network versus a deep learning neural network.48 

 

An example of a deep learning task could be classification of images of cats and dogs. When training 

a DL network, the network is not told what the distinguishable features are (such as the shape of the 

ears). Instead, it is rewarded or ‘punished’ when giving a correct or incorrect prediction, 

respectively. After multiple training sessions, the network learns what features are relevant and how 

they can lead to correct classification of the input images. 

 

A DL neural network can be described as a large mathematical function with trainable parameters. 

At the start of training, these parameters are random numbers and the network generates random 

predictions. While training a network, these parameters are repeatedly altered to make the 

prediction match the desired output. While training a network, the performance of the network is 

measured by a loss function, also known as cost function. This function compares the prediction with 

the desired output and quantifies the error by a real number. When training a network, the goal is 

to minimize the loss function or cost of each repetition.   

 

2.2.1 Supervised Learning & Transfer Learning 

The abovementioned example of images classification is an example of supervised learning: the data 

is labeled prior to training and the network’s performance is measured by comparing its prediction 

with the desired output. This is the first introduced and most widely used training method.49 Other 

methods are reinforcement and unsupervised learning, which do not require labeled data. In 

reinforcement learning the data is not labeled, but instead feedback is given during training that a 

prediction was correct or incorrect without telling what the actual label is. Unsupervised learning 

refers to learning by clustering or grouping the data. 

 

Transfer learning is a form of supervised learning that can be described as the reuse of a pre-trained 

network for a new task. The general idea is that the basic skills of the pre-trained, such as the ability 

to recognize patterns, are adopted. Thus, instead of training a network from scratch, the pre-trained 

weights of trained network are used as a starting point for training a new network. This leads to 

early convergence with better performance compared to training from scratch.50 As a result, transfer 

learning approaches require comparatively little data.51  
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2.2.2 Convolutional Neural Network 

A Convolutional Neural Network (CNN or ConvNet) is a class of DL networks that performs 

convolutional operations in some of the hidden layers. CNNs are commonly applied when working 

with images, such as classification or segmentation tasks.49 The convolutional layers help to 

recognize spatially relevant features, such as shapes and textures.  

 

In contrast to a fully-connected network (Figure 4), the convolutional layers are not fully-connected. 

In other words, the neurons in one layer are only connected to a few locally nearby neurons in the 

second layer (Figure 6). This reduces the cost in memory (weights) and computations (connections).  

 

Figure 6 shows the general architecture of a CNN for image classification purposes. Here, the feature 

learning part, which contains convolutional layers, is followed by a classification part, which contains 

fully-connected layers.  

 

 

 
Figure 6. The general architecture of a convolutional neural network (CNN) for image classification.52 

 

2.2.3 U-Net 

U-Net is a DL network with a specific architecture, giving it a U-shape. It was first introduced by the 

computer science department of the University of Freiburg, Germany for a biomedical image 

segmentation task.53  

 

U-Net is a fully convolutional network (FCN), meaning that the network only contains convolutional 

layers and thus no fully connected layers. U-Net consists of a contracting path with convolutional 

layers (common CNN) and an expansive path (Figure 7). In the expansive path, upsampling takes 

place, followed by deconvolution or “up-convolution”. One of the key contributions of the U-Net 

architecture is the information transfer from the contracting path to the expansive path, which is 

illustrated by the gray arrows in Figure 7.19 This helps to retain detailed information on the images 

that may have gotten lost during the max pooling operations.  

 

Lastly, U-Net is known for its robustness and requiring relatively little training data.53 According to 

Zhou et al.54, U-Net is the most widely used encoder-decoder network for segmentation tasks in the 

field of medical imaging.  
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Figure 7. U-Net architecture as introduced by Ronneberger, Fischer and Brox.53 The blue boxes represent 

multi-channel feature maps. The value on top of each box corresponds to the number of channels. The values 

on the left of the boxes refer to the height and width of the matrices (images). The feature maps from the 

contracting path are cropped and copied to the expansive path (gray arrows; white boxes). Lastly, the 

remaining arrows represent different operations, including convolutional and max pooling operations. 
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3. Data Acquisition 
 

Ten in-vivo videos from nine FLOVA procedures were included in this thesis. The CMO has approved 

the use of these videos for research and development of the placental reconstruction algorithm. 

These FLOVA procedures were performed in the Radboudumc between 2018 and 2019. The GA at 

time of FLOVA varied from 15.2 to 27.1 weeks, with a mean GA of 21.4 weeks.  

 

The characteristics of the videos can be found in Table I. All videos were recorded using Straight 

Forward Telescopes (Karl Storz, Tuttlingen, German). More specifically, a 2.0 mm HOPKINS® II 

Straight Forward Telescope 0° (26008AA) and a 2.9 mm HOPKINS® II Straight Forward Telescope 

30° (26120BA) were used for posterior and anterior placentas, respectively. Video 8 and 9 were 

recorded during the same FLOVA procedure, using different fetoscopes. Video 9 was recorded using 

a 1.3 mm Miniature Straight Forward Telescope 0° (11540AA).  

     

Only the frames from the so-called orientation phase were extracted from the videos, which is the 

first phase of the FLOVA procedure. During the orientation phase, the placental surface and vascular 

structures are visually scanned to identify the anastomoses. The frames were extracted using 

MATLAB R2020b. Thereafter, the frames were cropped to make the circular FOV from the fetoscope 

fully fit the frame. The frames were stored twice: a full resolution version stored as .png file and a 

compromised version, meaning that the frame was downsized to 256 x 256 x 3 pixels and stored as 

.jpg file. The latter will be used for the majority of the studies performed in this thesis to reduce 

computational time. The .png files will be used for image stitching (Chapter 7). 

 

 

Table I. Characteristics of the in-vivo fetoscopic videos used in this study 

Fetoscopic 
video # 

Placenta 
location 

Frame 
dimensions 

Frames per 
second 

Number of 
frames 

1 Posterior 576 x 720 25 3,511 

2 Anterior 576 x 720 25 1,995 

3 Posterior 1080 x 1920 25 1,938 

4 Anterior 1080 x 1920 60 775 

5 Anterior 1080 x 1920 50 12,678 

6 Posterior 1080 x 1920 25 5,308 

7 Posterior/ 

Anterior 

480 x 640 30 23,866 

8 Anterior 1080 x 1920 25 1,646 

9 Anterior 1080 x 1920 25 5,331 

10 Anterior 720 x 1280 24 5,374 
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4. The effect of fetoscopic video content on ORB feature detection 
 

4.1 Introduction 

Providing the surgeon with an overview of the placental vasculature is thought to improve the 

outcomes of the FLOVA procedure in TTTS pregnancies. Feature-based image stitching of the in-vivo 

fetoscopic video sequences is one of the potential solutions for generating an overview of the placenta 

during FLOVA. 

 

When performing a feature-based stitching technique, the matched feature points of two consecutive 

frames are used to calculate the geometric transformation between those frames. The larger the 

number of matched feature points, the higher the accuracy of the geometric transformation 

estimation. Besides, in order to estimate the geometric transformation matrix for projective 

transformations, at least four matched feature pairs are required.  

 

In case of in-vivo fetoscopic video frames, some frames lead to an inadequate number of stable 

feature matches. This is thought to be caused by 1) the lack of texture resulting in a lack of (unique) 

detectable features, 2) the presence of moving structures, such as fetal parts, the umbilical cord and 

fetal skin flakes in the amniotic fluid, leading to instable features and 3) the poor image quality 

related to the fetoscope’s limited cannula diameter.  

 

Conversely, it is observed through experimentation that certain in-vivo fetoscopic video sequences 

lead to enough stable features, making image stitching feasible. To identify which frames are 

‘suitable’ for image stitching, the effect of the frame content on the number of stable matched 

features will be analyzed. Therefore, this chapter aims to find out how the frame content affects the 

number and quality of the feature detection. Eventually, the results from this chapter will be used 

for appropriate data labeling for a vessel classification network. 

 

We hypothesize that frames with clearly visible vessels are more suitable for image stitching, 

followed by frames that show vessels that are partly occluded by other structures. The frames with 

poor image quality or occlusions are thought to lead to the lowest number of stable feature matches. 

 

4.2 Method 
In order to assess the effects of the frame content on the number and quality on the detected features, 

the frames will be subdivided into five classes based on visual inspection. The number of inlier 

feature matches (IFM) will be calculated and compared between the classes. Moreover, a qualitative 

analysis will be executed to provide additional information on the quality or reliability of the found 

IFM.  

 

In this chapter, ten in-vivo fetoscopic videos (Chapter 3, Table I) were used, resulting in a total of 

62,422 frames. The frames that were previously downsized to 256 x 256 pixels and stored as .jpg 

files were used.  

 



 
14 

4.2.1 Data Labeling 

The frames were divided into multiple classes based on visual inspection of the frame content of the 

in-vivo fetoscopic videos. The following five classes were defined: 1. vessels, 2. vessels + bad view, 

3. no vessels, 4. partly vessels and 5. partly vessels + bad view. A description and example images 

for each class can be found in Table II. The frames were manually labeled by a technical medicine 

student and reviewed by a technical physician, specialized in fetal therapy. The number of frames 

assigned to each class can be seen in Table III.  

 

 

Table II. The five classes used for labeling the in-vivo fetoscopic video frames. 

Class Class name Class description Example frames* 

1 Vessels 

 

Vessels are clearly visible with an 

acceptable image quality. 

  

  

2 Vessels  

+ Bad View 

Vessels are visible, but with a ‘bad view’ 

(e.g. many fetal skin flakes, low image 

quality). 

 

  
3 No Vessels 

 

No vessels are visible. 

  
4 Partly Vessels 

 

Vessels are clearly visible, but partly 

occluded by other structures (e.g. fetal 

parts, umbilical cord). 

  

5 Partly Vessels  

+ Bad View 

Vessels are visible, but partly occluded 

by other structures and the view is 

‘bad’ (e.g. many fetal skin flakes, low 

image quality). 

  
*all example frames originate from fetoscopic video six.  
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Table III. Number of frames per class in, per fetoscopic video.  

Fetoscopic 

Video 

Class 1 

Vessels 

Class 2 

Vessels  

+ Bad View 

Class 3 

No Vessels 

Class 4 

Partly 

Vessels 

Class 5 

Partly Vessels 

+ Bad View 

Total  

1 1,104 848 973 284 302 3,511 

2 691 184 998 80 42 1,995 

3 191 131 995 251 370 1,938 

4 105 40 602 12 16 775 

5 6,789 2,881 2,095 502 411 12,678 

6 1,437 926 2,116 462 367 5,308 

7 15,209 836 3,477 3,608 736 23,866 

8 155 514 966 3 8 1,646 

9 996 1,969 2,141 108 117 5,331 

10 1,729 997 2,299 232 117 5,374 

All 28,406 9,326 16,662 5,542 2,486 62,422 

 

 

4.2.2 Preprocessing  

For each class, 1016 pairs of two consecutive frames were extracted from the total dataset. This was 

done using a step size of ~ 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠

1016
  per class to extract the frames evenly from the total 

dataset.  The camera’s intrinsic parameters were unknown for most videos. Therefore, the frames 

were not corrected for lens distortion.  

 

Image enhancement was performed using the multiple steps. First, the in-vivo frames (RGB images) 

were converted to the HSV (Hue, Saturation, Value) color space. Thereafter, contrast enhancement 

was applied to the Value component to enhance the luminance.55 This was done using the contrast-

limited adaptive histogram equalization (CLAHE)56 technique. The images were converted to 

grayscale images and a second contrast enhancement technique was applied: the intensity values of 

the grayscale images were adjusted to saturate the lowest and highest possible pixel values for each 

image. In other words: the grayscale values from a specific frame are stretched from the lowest 

possible value (0) to the highest (255). Image noise was reduced by applying pixelwise adaptive low-

pass Wiener filtering with a neighborhood size of 3 x 3 pixels. Lastly, a circular mask was applied to 

the images to ensure no features are detected outside the FOV. 

 

4.2.3 Feature Detection and Matching 

ORB feature detection was performed using seven decomposition levels, each with a scale factor of 

1.2. This resulted in an image height and width of 
256 𝑝𝑖𝑥𝑒𝑙𝑠

1.2(𝑛−1)  for each decomposition level (𝑛). 

Thereafter, the features were extracted and matched for two consecutive frames. A geometric 

transformation matrix was estimated using a function that uses the M-estimator SAmple Consensus 

(MSAC) algorithm to exclude outliers. For the matrix estimation calculations, the following 

parameters were used: a confidence of 95%, a maximum of 1000 random trials and a maximum 
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distance of 3 pixels from a point to the projection of its corresponding point. These parameters were 

chosen based on trial and error and kept constant for all calculations. 

 

4.2.4 Quantitative Analysis 

For each class, the number of IFM were collected for all 1016 frame pairs plotted using boxplots. IBM 

SPSS Statistics 25 was used to determine whether the results were normally distributed. Thereafter, 

a Kruskal Wallis test was performed to determine whether a statistically significant difference was 

found between any of the classes. Finally, the Mann-Whitney U test was performed multiple times 

for pairwise comparisons between the classes.  

 

4.2.5 Qualitative Analysis 

The matched feature points were plotted on the frame pairs for visual inspection. Additional 

qualitative analysis is relevant because a high number of IFM can be deceitful. It is observed through 

experimentation that frames that contain fetal skin flakes or fetal body parts can lead to a high 

number of IFM, which are considered unwanted. These IFM are unwanted because the 

corresponding transformation matrix is related to the movements of the skin flakes or fetus, instead 

of the camera movements. Figure 8 shows an example of a fetal body part (fingers) leading to a high 

number of IFM. Moreover, MSAC might fail to find the appropriate geometric transformation matrix, 

which leads to a wrong discrimination between inlier and outlier feature matches. Figure 9 

demonstrates correct and incorrect selection of inliers by MSAC. The found IFM for all 1016 frame 

pairs were visually assessed to determine their reliability for each class.  

 

 

 
Figure 8. Examples of inlier ORB-feature matches found on a fetal structure (the fingers). 

 

 
Figure 9. Examples of correct (left) and incorrect (right) selection of inlier ORB-feature matches, using MSAC. 
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4.3 Results  

 

4.3.1 Quantitative Analysis 

The number of inlier ORB-feature matches (IFM) for each class is shown in Table IV. Most IFM 

were found in the first class (Vessels), followed by the fourth class (Partly Vessels). Figure 10 

shows a boxplot of the number of IFM found per class.  

 

Table IV. Statistics on the number of inlier ORB-feature matches found for each class.  

Class # Class Name Max. Average  STD Median 

1 Vessels 262 18.42 ±26.97 9 

2 Vessels + Bad View 205 5.82 ±10.12 5 

3 No Vessels 220 7.61 ±15.87 5 

4 Partly Vessels 202 11.87 ±14.72 8 

5 Partly Vessels + Bad View 341 9.92 ±24.89 5 

 

 

 
Figure 10. Boxplot of the number of inlier ORB-feature matches found for each class (red line is the median; 

bottom and top of blue boxes mark the 25th and 75 percentiles; + are outliers). Classes: 1. vessels, 2. vessels + 

bad view, 3. no vessels, 4. partly vessels and 5. partly vessels + bad view. 

 

The Kruskal-Wallis H test showed that at least one of the classes resulted in a statistically significant 

different number of IFM compared to another class (p < 0.001). Multiple Mann-Whitney U tests 

showed a statistically significant difference when performing pairwise comparisons between all 

classes, except when comparing class 2 with 3, 2 with 5 and 3 with 5. An overview of the results can 

be found in Table V. The values correspond to the fraction of wins out of all pairwise comparisons. 

That is, U-value (number of wins) divided by the total number of comparisons (10162). 
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Table V. Results of multiple pairwise Mann-Whitney U tests with Asymp. Sig. (2-tailed). The values represent 

the fraction of wins out of all comparisons. Compared classes: 1. vessels, 2. vessels + bad view, 3. no vessels, 

4. partly vessels and 5. partly vessels + bad view. 

Class 2 3 4 5 

1 0.29 (p < 0.001) 0.32 (p < 0.001) 0.44 (p < 0.001) 0.33 (p < 0.001) 

2 - 0.48 (p = 0.090) 0.33 (p < 0.001) 0.49 (p = 0.266) 

3 - - 0.36 (p < 0.001) 0.50 (p = 0.695) 

4 - - - 0.37 (p < 0.001) 

 

 

4.3.2 Qualitative Analysis 

Figure 11 shows four examples of frame pairs that resulted in IFM that were considered true positives 

or reliable, based on visual inspection. It was noticed that in all classes, unreliable IFM were found 

on floating fetal skin flakes, fetal body parts (Figure 12, a-b) or image artefacts along the edge of the 

FOV (Figure 12, c). Furthermore, the IFM were considered false positives or unreliable in case the 

lines that connect the feature matches did not appear parallel, indicating incorrect transformation 

matrix estimation and thus incorrect discrimination between inlier and outlier feature matches 

(Figure 12, d-h). 

 

False positive or unreliable IFM were mostly seen in frames from class 3, followed by frames from 

class 2 and 5. Class 1 and 4 showed the highest number of true positive IFM. However, in class 4, the 

edges of the structure that partly blocked the sight of the vessels led to some false positive IFM as 

well (Figure 12, a). 

 

 

 
Figure 11. Examples of inlier feature matches (IFM) that are considered true positives based on visual 

inspection. 
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Figure 12. Examples of inlier feature matches (IFM) that are considered false positives based on visual 

inspection. 

 

4.4 Discussion  

When comparing the number of IFM found in the frames from the five different classes, most IFM 

were found in the first class (vessels), followed by the fourth class (partly vessels). This is in 

accordance with our hypothesis. The qualitative analysis showed that class 3 (no vessels) resulted in 

the most false positive IFM, followed by class 2 (vessels + bad view) and 5 (partly vessels + bad view). 

Moreover, the qualitative analysis showed that the edges of the occluding structures in class 4 and 5 

led to false positives as well.  

 

For class 2, 3 and 5, the median was five IFM, which is marginal considering the fact that at least 

four IFM are needed to calculate a geometric transformation matrix, in case of projective 
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transformations. However, it is important to mention that the number of IFM is affected by the 

chosen input parameters of MSAC, which were not optimized in this study.  

 

Comparing our findings to literature is limited since, to the best of our knowledge, no similar study 

is published. Nonetheless, multiple studies that focused on feature-based image stitching of 

fetoscopic video sequences affirm the challenges related to in-vivo data, including both the overall 

low number and quality of features as well as the disruptiveness of occlusions, caused by fetal body 

parts and the turbidity of the amniotic fluid.25,27,32,35,41  

 

4.4.1 Study Limitations & Future Recommendations 

The input parameters that affect the geometric transformation matrix estimation and MSAC were 

chosen based on trial and error and no further tests were performed for parameter optimization. 

Since these parameters affect the number of IFM, parameter optimization is recommended in future 

development of a feature-based image stitching algorithm for in-vivo fetoscopic video sequences. 

Fortunately, our focus was mainly on the differences in the number of IFM found between the 

classes, rather than the absolute number of IFM. Therefore, our results are still assessable for 

evaluating the effect of the frame content on the relative number of IFM. 

 

Although the qualitative analysis provided additional information on the true and false positives, no 

test was performed to explore the true and false negatives. In order to get optimal insights in the 

effect of the frame content on the number and quality of the IFM, additional investigation into the 

IFM classified as outliers is recommended. 

 

It is important to be aware of the subjective nature of data labeling. The process of data labeling is 

sensitive to both inter and intra-observer variability. The latter can be reduced by repeatedly 

checking the labeled dataset until satisfied with all labeled frames. This was not done because of the 

limited amount of time available for this chapter and the time-consuming nature of this task. 

 

Furthermore, one of the drawbacks of labeling video content is that there are always frames that 

display the transition between two classes. For example, when a video shows clearly visible vessels, 

followed by poorly visible vessels, classification of the so-called transition frames can be challenging. 

The observer performing the data labeling has to decide where to draw the line, and has to be 

consistent for comparable cases. When using this labeled dataset for training an image classification 

DL network, we suggest to experiment with excluding the transition frames from the training set 

and explore the network’s output when confronted with these frames.  

 

Based on our findings, it is recommended to actively exclude the frames from class 2, 3 and 5 when 

attempting feature-based image stitching. The frames from class 1 are deemed most suitable for 

image stitching. Whether the frames from class 4 are suitable for feature-based image stitching is 

inconclusive and has to be further explored. It is thus suggested to use either only the frames from 

class 1 or the frames from both class 1 and 4 for feature-based image stitching.  
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4.5 Conclusion  

The aim of this chapter was to determine which in-vivo fetoscopic video frames are suitable for 

feature-based image stitching. This is done by evaluating the number and quality of the detected 

ORB-feature matches for different frame classes. Frames in which the vessels are visible without any 

occlusions result in the highest number of IFM and true positive IFM, followed by frames that show 

vessels that are partly occluded. Frames that show no vessels, fetal body parts or suffer from the 

turbidity of the amniotic fluid result in the lowest number of true positive IFM. It is recommended 

to actively exclude these frames for image-stitching purposes, since they are generally more sensitive 

to wrong geometric transformation estimation.   
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5. Automatic vessel identification using a deep learning approach 
 

5.1 Introduction 

This chapter focuses on training a binary classification network for vessel identification in in-vivo 

fetoscopic video frames. The goal of the DL network is to identify frames in which placental vessels 

are clearly visible, since these frames are considered useful for image stitching. Figure 13 provides a 

schematic overview of the purpose of this network, which will be referred to as VesDet.  

 

 

 
Figure 13. Illustration of the purpose of the VesDet network 

 

Quite recently, two studies were published on deep learned classification of in-vivo fetoscopic video 

frames. First, Vasconcelos et al. compared multiple ResNet-based DL networks for ablation detection 

in fetoscopic video sequences to evaluate the surgical procedure timeline. They used a ResNet101 

network with pre-trained weights, which was fine-tuned using their data. They showed that it is 

possible to incorporate existing network-architectures and pre-trained weights for image 

classification of fetoscopic images.57  

 

Thereafter, Bano et al. trained a deep learning network to extend and improve the work done by 

Vasconcelos et al.57, by adding additional fetoscopic events. They trained a spatio-temporal network 

to identify the following events: Clear View, Occlusion, Tool and Vessel Ablation. They combined a 

VGG-16 based network with pre-trained weights with a long short-term memory recurrent neural 

network (LSTM-RNN).38  

 

The findings from both Vasconcelos et al. and Bano et al. suggest that existing network architectures, 

initialized with pre-trained weights (based on ImageNet), can be used for image classification of 

fetoscopic video sequences.  
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In this chapter, a deep learning network will be trained for binary image classification of in-vivo 

fetoscopic video frames. Based on both the findings from the above-mentioned studies and the 

results from the annual ImageNet visual recognition challenge (image classification, 2015)58, the 

VGG-16 network architectures seems most suitable for image classification of fetoscopic video 

frames. Moreover, a transfer learning approach using pre-trained weights will be used since this is 

associated with early convergence and requiring less training data.50,51 To our knowledge, we are the 

first to train a DL network for binary classification of vascular structures in fetoscopic video 

sequences.  

 

5.2 Method  

The frames of ten in-vivo fetoscopic videos (Chapter 3, Table I) were used, resulting in a total of 

62,422 RGB with a resolution of 256 x 256 x 3 pixels. The frames were labeled according to the 

findings of Chapter 4: frames in which the vessels are clearly visible and frames in which vessels are 

‘partly’ visible were assigned to the Vessels class. These frames are considered useful for image-

stitching. The remaining frames were assigned to the No Vessels class. Table VI provides an overview 

of the two classes used in this chapter, including example frames. The number of frames for each 

class, per video, is provided in Table VII. 

 

Table VI. The two classes used for labeling the in-vivo fetoscopic video frames. 

Class Class description Example frames* 

Vessels These frames are considered useful 

for image stitching. Vessels are 

clearly visible with acceptable image 

quality. The vessels might be partly 

blocked by occlusions (e.g. fetal 

structures, umbilical cord).     
No 

Vessels 

These frames are considered 

unuseful for image stitching. The 

frames either contain poorly visible 

vascular structures or no vessels at 

all.  
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Table VII. Number of frames per class, per video. 

Fetoscopic 

video # 

Vessels  

class 

No Vessels 

class 

Total 

1 1,388 2,123 3,511 

2 771 1,224 1,995 

3 442 1,496 1,938 

4 117 658 775 

5 7,291 5,387 12,678 

6 1,899 3,409 5,308 

7 18,817 5,049 23,866 

8 158 1,488 1,646 

9 1,104 4,227 5,331 

10 1,961 3,413 5,374 

Total 33,948 28,474 62,422  

 

 

5.2.1 Network Architecture 

A CNN with a VGG-16 architecture, as introduced by Simonyan and Zisserman59, is used (Figure 14). 

To convert this multi-class classification network to a binary classification network, the output layer 

is converted to have a single output feature (node) with a sigmoid activation. Consequently, the 

output layer will generate a value between 0 and 1. The closer the output value to 0 or 1, the ‘more 

certain’ the network is that the input frame should be classified as No Vessels or Vessels, respectively.  

  

 

 
Figure 14. The architecture of a VGG-16 convolutional neural network (taken from Nash et al.60 and modified). 
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5.2.2 Training 

The weights of a pre-trained VGG-16 network (pre-trained on ImageNet) were imported from the 

TorchVision library (PyTorch framework)a. Data transformations were applied to the labeled frames, 

including a center crop to 224 x 224 pixels, conversion from RGB image to Tensor and image 

normalization (with mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]).  

 

The frames from video six were kept separate to serve as the test set. This is done to test whether 

the network is able to correctly classify the frames from an unseen FLOVA procedure or patient. The 

frames from the remaining nine videos were used for training. These frames were randomly split 

into a training and validation set, with an 80:20 split respectively.   

 

The network was trained using a batch size of 6, an initial learning rate of 10-3 with a factor 0.1 drop 

every seven epochs. The network was trained for 15 epochs with early stopping. The network is 

trained using Google Colab’s GPU.  

 

5.2.3 Testing 

The performance of the trained network was tested on one unseen video. A threshold value of 0.5 

was applied to the network’s predictions to classify the frames as Vessels (prediction > 0.5) or No 

Vessels (prediction < 0.5). The results were collected in a confusion matrix, which was used to 

calculate performance metrics. Moreover, the performance of the classification network was 

visualized by calculating and plotting the true and false positive rates for various threshold values, 

also known as the Receiver Operating Characteristics (ROC) curve.  

 

Additionally, a random set of input frames and corresponding predictions were plotted and visually 

inspected to evaluate the network’s performance. In case of a wrong classification, the prediction 

value is assessed to find out how ‘sure’ the network was of its prediction. Ideally, wrong 

classifications have values surrounding the threshold value of 0.5. Moreover, wrongly classified 

frames were plotted and visually inspected to see what frame content leads to wrong predictions and 

what the prediction value was.  

 

For additional qualitative analysis of the performance of VesDet, saliency maps were generated to 

determine what spatial region of the frame is most relevant to the network when determining its 

predictions. This is done using guided backpropagation61, using the FlashTorchb visualization toolkit. 

Lastly, the prediction speed of the network was measured.  

 

  

                                                           
a https://pytorch.org/vision/0.8/models.html  
b https://github.com/MisaOgura/flashtorch  

https://pytorch.org/vision/0.8/models.html
https://github.com/MisaOgura/flashtorch
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5.3 Results  

Due to overfitting after seven epochs, the network of the seventh epoch is considered the best 

network. For this network, the training and validation accuracy were 0.955 and 0.951 respectively.  

 

Table VIII shows a confusion matrix of the performance VesDet on the unseen video. Here, a 

threshold of 0.5 is applied to determine the predictions. This results in a sensitivity, specificity and 

accuracy of 0.958, 0.811 and 0.863 respectively. Figure 15 shows the ROC curve of the same results 

for various thresholds between 0 and 1. The area under the ROC curve (AUC) is 0.95. The saliency 

map of a frame from the video six is shown in Figure 16. Lastly, Figure 17 and Figure 18 show 

saliency maps and predictions for random frames from the Vessels and No Vessels classes, 

respectively.  

 

The measured average prediction speed of the network was 0.0014 seconds per frame, which 

corresponds with a prediction rate of about 714 fps.  

 

 

Table VIII. Confusion matrix of the predicted classes, when 

tested on an unseen video 

  Predicted Class   

  Vessels No 

Vessels 

Total  

A
ct

u
a

l 
C

la
ss

 

 

Vessels 1,820 79 1,899 
 

 

No 

Vessels 
646 2,763 3,409 

 

 

 Total 2,466 2,842 5,308  
 

 
Figure 15. Receiver Operating Characteristics curve of the 

performance of VesDet, when tested on an unseen video. 

 
Figure 16. VesDet saliency map on an unseen input frame (video 6) from the ‘Vessels’ class. 
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Figure 17. Predictions of VesDet on frames from the ‘Vessels’ class. A threshold of 0.5 is used to determine the 

predicted class. 
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Figure 18. Predictions of VesDet on frames from the ‘No Vessels’ class. A threshold of 0.5 is used to determine 

the predicted class. 
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5.4 Discussion  

The results show that our DL network was able to detect frames with clearly visible vessels in an 

unseen fetoscopic video. The network shows promising results for future applications with a ROC-

AUC of about 0.95. The predictions were calculated at a high framerate. Moreover, qualitative 

analysis support the idea that the network is capable of recognizing vascular structures. This is based 

on the highlighted areas in the saliency maps at the positions of vascular structures. Therefore, the 

network is considered suitable further development of an image stitching algorithm for FOV 

expansion during fetoscopic surgery. 

 

The difference in accuracy (0.86) and AUC (0.95) can be explained by the fact that the accuracy is 

based on a single threshold value rather than a range of threshold values. The high AUC value 

indicates that wrongly predicted classes have prediction values surrounding the threshold value, 

meaning that the network was ‘not so sure’ about its prediction. Furthermore, the AUC value is 

considered more relevant for clinical applications since a fixed optimal threshold value does not exist 

for each setting. In other words, the appropriate threshold value is expected to vary between patients 

and technical settings, such as lighting conditions.  

 

The measured average prediction rate 714 fps suggest that this network is suitable for real-time 

implementations. However, it is important to mention that the calculations were performed using 

Google Colab’s GPU. Google Colab offers free usage of multiple different GPUs. Which GPUs are 

available vary over time and users are not allowed to select the GPU they want to use. Therefore, we 

do not know what GPU was precisely used to perform our calculations. Additionally, the usage of 

Google Colab’s GPU is limited to a certain amount of time. It is therefore not a sustainable solution.  

 

Some of the saliency maps show unexpected or surprising results. One surprising finding is that 

some correctly classified frames have ‘empty’ saliency maps. One possible explanation could be that 

the saliency maps only show the maximal values. Moreover, the fact that the borders of the FOV are 

highlighted is an unexpected result, since the borders are present in all frames from both classes and 

should therefore not play an important role in the network’s decision-making.  

 

Comparison of our results to findings in literature is limited, since we were the first to train a binary 

classification network for vessel identification in fetoscopic video sequences. Nevertheless, one study 

focused on multi-class classification of fetoscopic frames: Bano et al. trained a classification network 

for identifying multiple events, including Clear View, which is thought to be similar to our Vessels 

class. The frames from the Clear View class were detected with an F1-score and AUC of 0.85 and 

0.91, respectively.38 This is quite similar to our findings (F1 score of 0.83; AUC of 0,95). However, 

comparing the results of one class from a multi-class classification network with our binary 

classification network is unfounded.  

 

5.4.1 Study Limitations & Future Recommendations 

In this chapter, the labeled frames from Chapter 4 were directly used. The results from Chapter 4 

showed that the frames with vessels (partly blocked by occlusions) result in more inlier ORB-feature 

matches (IFM). However, it is not demonstrated that these frames make feature-based image 
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stitching feasible yet. Since the ultimate goal of the network is to identify frames that are useful for 

image stitching, it would be appropriate to label the frames based on tests involving image stitching.  

 

Another limitation is the fact that the data was unbalanced, meaning that there was no equal 

distribution between the number of frames in each fetoscopic video and in the two classes. This was 

not corrected for by undersampling to keep the dataset as large as possible. An alternative would be 

to remove frames until a balance is reached, followed by data augmentation, such as mirroring, to 

enlarge the dataset.  

 

The performance of the network is tested on one unseen video. A more robust way would be to train 

and test the network using a k-fold cross-validation method, in which k is the number of fetoscopic 

videos and each fetoscopic video acts as the test set for k folds. The frames from the remaining k-1 

videos will be subdivided in a training and validation set and used for training. Once trained, the 

network is evaluated and this whole process is repeated k times. This approach is not executed 

because of the limited time available in this study. However, this is highly recommended for further 

development of the network. 

 

For future research and development of the binary classification network, it is recommended to 

include temporal information. In other words, prediction values from previous frames should be 

taken into account in the prediction of the current frame. This is thought to be relevant since the 

type of frame content is commonly consistent for a certain number of consecutive frames. Another 

recommendation for further development is to compare different network architectures, including 

ResNet, GoogLeNet and Inception-v3/v4.  

 

5.5 Conclusion  

The goal of this chapter was to train a binary classification network for vessel identification in in-

vivo fetoscopic video frames. These frames can be used to create an overview of the placental 

vasculature by performing image stitching. Our network was successful in classifying frames of an 

unseen FLOVA procedure video (AUC = 0.95), supporting its potential for application in future 

clinical settings. Further research is could focus on optimization of the network’s performance, 

including experiments with different network architectures and the inclusion of temporal 

information. 
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6. Automatic vessel segmentation using U-Net 
 

6.1 Introduction 

This chapter focuses on the training of an automatic segmentation network. The resulting vessel 

segmentations or can be used for either 1) selective regional image enhancement for improved 

feature detection or 2) for intensity-based image stitching, respectively. Figure 19 provides a 

schematic overview of the purpose of this network, which will be referred to as VesSeg.  

 

 
Figure 19. Illustration of the purpose of the VesSeg network 

 

 

Sadda et al. reported the first attempt in deep-learned placental vessel segmentation of in-vivo 

fetoscopic videos using a fully-connected neural network (FCNN).19 Casella et al. proposed a FCNN 

network for automatic inter-fetus membrane segmentation to help the surgeon identify the 

membrane, which can serve as a reference for finding vascular anastomoses.42 The proposed FCNN 

networks were variations of the U-Net architecture, which was introduced by Ronneberger, Fischer 

and Brox.53 

 

Recently, Bano et al. proposed a network based on U-Net combined with a pre-trained ResNet101 

backbone for placental vessel segmentation in fetoscopic videos. The prediction maps were used for 

intensity-based image stitching. After performing 6-fold cross-validation, a Dice score of 0.78 ± 0.13 

was found. They manually annotated 483 in-vivo fetoscopic video frames with vascular structures 

and offered both the input frames and the ground truths (GTs) for public use.62  

 

Since limited work is published on deep-learned segmentation of placental vessels, inspiration is 

taken from literature in the field of fundus imaging. Multiple articles have been published on 

automatic vessel segmentation of retinal vasculature.63–67  

 

For our vessel segmentation DL network, a U-Net will be trained from scratch. The traditional U-Net 

architecture, as introduced by Ronneberger, Fischer and Brox, will be used since it is known for its 

robustness and requiring relatively little training data. 53 Moreover, U-Net is the most widely used 

encoder-decoder network for segmentation tasks in the field of medical imaging. 54 

 

6.2 Method 

First, a summary of the methodology is provided: the dataset offered by Bano et al.62 is used for 

training our first network. This network was then used to generate GTs for the in-vivo frames from 

the Radboudumc (referred to as Rumc). This was done by saving the outputs from the network and 
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fine-tuning them manually. Thereafter, the network was trained two more times, using the Rumc 

dataset and a combination of both datasets (BanoRumc).  

 

6.2.1 Data  

The total dataset consisted of 729 in-vivo fetoscopic video frames and GT segmentations, of which 

483 from the published dataset from Bano et al.62. The remaining 246 frames came from our in-vivo 

fetoscopic videos (see Chapter 3, Table I). Only frames in which the vessels were clearly visible (see 

Chapter 4) were included. It is important to mention that the 246 frames were randomly selected to 

yield the most diverse dataset.  

 

Before training the networks, the GTs from the Bano dataset were ‘cleaned’. This means that the GTs 

were manually fine-tuned to yield even more precise GTs. This was done because 1) some very small 

or large vessels were not included in the GTs, 2) some vessels were ‘drawn outside the FOV’ and 3) 

the light reflections on the vessels were excluded in some frames. Lastly, the frames were binarized 

by thresholding because some GTs contained more than two pixel values, which is inconvenient for 

a binary segmentation task. Table IX show example frames of the Bano dataset, including the original 

GTs and the GTs after ‘cleaning’. Table X show examples frames from the Rumc dataset. 

 

 

Table IX. Example frames from the ‘Bano’ dataset. The cleaned GTs are the GTs used in this chapter. 

Input Ground Truth (original) Ground Truth (cleaned) 
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Table X. Example frames from the ‘Rumc’ dataset. 

Input Ground Truth 

  

 

 

After splitting the test sets (~15%) from the datasets, data augmentation was performed: the frames 

were flipped horizontally, vertically and horizontally and vertically combined (Figure 20), which 

quadrupled our datasets. This is done because DL networks generalize better when trained using 

more data.68 Table XI provides an overview of the number of frames used in this chapter.  
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Figure 20. The data augmentation used in this chapter. 

 

 

Table XI. Number of frames for each dataset used in this chapter, after splitting the total dataset in train and 

test sets. 

Dataset Train Test Total 

Bano 1,640 288 1,928 

Rumc 844 140 984 

BanoRumc 2,484 428 2,912 

 

 

6.2.2 Network Architecture & Training 

The U-Net architecture (Figure 7) is used with input and output layers of size 224 x 224 x 3 and 

224 x 224 x 1, respectively. The network was built in python using the Keras open-source library.  

The output layer has a sigmoid activation layer. Therefore, the network generates prediction values 

between 0 and 1 for each individual pixel. The higher the prediction value, the more ‘certain’ the 

network is that the pixel belongs to a vessel. All prediction values combined in one grid form a 

prediction map.  

 

Before training the network, the frames were downsized to 224 x 224 pixels in height and width and 

split in a training and validation set, with an 80:20 split respectively. The frames were randomly 

split with controlled shuffling, for a reproducible output for each training and testing session. The 

network was trained three times, using the Bano, Rumc and BanoRumc datasets. The trained 

networks will be referred to as Unet_Bano, Unet_Rumc and Unet_BanoRumc respectively. 

 

A batch size of 8 was used and the network was trained for 30 epochs, with early stopping. An initial 

learning rate of 10-3 was used, with a factor 0.1 drop after 3 epochs of no improvement in validation 
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loss, with a lower bound of 10-5. The network was trained using Keras with TensorFlow as backend. 

The training was performed on a Lenovo ThinkPad with an Intel® Core™ i5-4200U processor.  

 

6.2.3 Testing 

The performance of the trained networks was tested using both the test sets that correspond to the 

training set and other test sets. For example, the network trained using the Bano training set was 

tested on the Bano, Rumc and BanoRumc test sets. This is done to test the performance of a trained 

network when applied to data from different FLOVA procedures (e.g. different scopes, patients, 

settings, etc.). It is important to mention that the test sets were not used for any of the training 

sessions.  

 

The performance of the segmentation network was visualized by calculating the true and false 

positive rates for various threshold values applied to the prediction maps. The true and false positive 

rates were plotted in a ROC curve. Moreover the networks’ performances were measured by 

calculating a Sørensen–Dice, also known as a Dice Score, DSC or F1 score. A Dice Score takes two 

times the area of overlap, divided by the total number of pixels in both images: 

 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 (1) 

 

The quality of the resulting prediction maps was assessed by visual inspection. This is done by 

plotting a randomly selected set of input frames with the corresponding prediction maps from the 

three networks. The prediction maps were judged based on false negatives, such as missing vessels, 

and false positives, such as flakes of the amniotic fluid. Moreover, the prediction speed of our 

network was measured. Lastly, the performance of our best network (highest Dice Score) was 

qualitatively compared to the networks proposed by Sadda et al.19 and Bano et al.62. 

 

 

 
Figure 21. Example frame with its corresponding prediction map (middle) and segmentation map (right). A 

threshold value of 0.5 was used to generate the segmentation map. 
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6.3 Results  

The loss, accuracy and Dice Score of the trained networks, tested on all three test sets, can be found 

in Table XII. The Unet_BanoRumc has the best Dice Score for all three test sets. The values marked 

in blue refer to cases in which the data used for training and testing originate from the same dataset. 

For these tests, the area under the ROC curve was 0.98, 0.97 and 0.98 for Unet_Bano, Unet_Rumc 

and Unet_BanoRumc, respectively. Figure 22 shows the ROC curve of the Unet_BanoRumc network 

when tested on the BanoRumc test set. The measured average prediction speed of the network was 

0.14 seconds per frame, which corresponds with a prediction rate of about 7 fps.  

 

Figure 23 and Figure 24 provide some example frames for qualitative comparisons. Figure 23 focuses 

on comparisons between our own networks which were trained using different datasets. Figure 24 

provides insights in the performance of our best network (Unet_BanoRumc) compared to networks 

proposed by colleagues.  

 

 

Table XII. The performance of the trained U-Nets on multiple test sets. The rows marked in blue are the cases 

where the training and test set correspond.  

Network Test set Loss Accuracy Dice Score (± std) 

Unet_Bano  Bano 0.09 0.97 0.79  (± 0.12)  
Rumc 0.20 0.94 0.53  (± 0.36) 

 BanoRumc 0.13 0.96 0.70  (± 0.26) 

Unet_Rumc  Bano 0.17 0.95 0.60  (± 0.23) 

 Rumc 0.12 0.96 0.66  (± 0.28)  
BanoRumc 0.15 0.95 0.62  (± 0.25) 

Unet_BanoRumc  Bano 0.09 0.97 0.80  (± 0.13) 

VesSeg Rumc 0.10 0.97 0.72  (± 0.26) 

 BanoRumc 0.09 0.97 0.77  (± 0.18) 

 

 

 
Figure 22. Receiver Operating Characteristics (ROC) curve of the performance of the ‘BanoRumc’ network, 

when tested on the ‘BanoRumc’ test set. 
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Figure 23. Prediction maps generated by our networks, which have been trained using different datasets 

(‘Bano’; ‘Rumc’). The red boxes mark false positives or negatives; the green boxes mark true positives or 

negatives.  
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Figure 24. Qualitative comparison of our best network (Unet_BanoRumc, VesSeg) with the DL networks 

proposed by Sadda et al.19 and Bano et al.62. The four input frames originate from the ‘Bano’ dataset. The 

green and red boxes mark true and false positives respectively. 

 

 

6.4 Discussion  

Our results show that our U-Net, which was trained from scratch, was able to generate 

segmentations of vascular structures in in-vivo fetoscopic video sequences, with Dice Scores up to 

0.80 and an area under the ROC curve of 0.98. The U-Net trained using the largest dataset 

(Unet_BanoRumc) outperformed the other networks. 

 

The qualitative analysis showed that the Unet_BanoRumc network performed the most accurate 

segmentations of vascular structures. Based on visual inspection, the Unet_BanoRumc was most 

sensitive to both smaller and larger vessels. The Unet_Bano was most susceptible to the light 

reflections on the vessels and led to the most false negatives.  

 

The Unet_BanoRumc network outperformed the network proposed by Sadda et al.19 This was seen 

both quantitatively (they reported a Dice Score of 0.55 (± 0.22) and qualitatively. Moreover, our 

Unet_Bano and Unet_BanoRumc networks slightly outperformed the network trained by Bano et al.: 

they reported an overall Dice Score of 0.78 (± 0.13)62, compared to 0.79 (± 0.12) and 0.80 (± 0.13) 
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for our networks. However, these differences are marginal. The qualitative comparisons also showed 

a similar performance of our network compared to that of Bano et al. However, our network seemed 

to perform better at detecting relatively small vessels compared to their network. This can be 

explained by the fact that extra attention was payed to precise annotation of the GTs, which included 

more inclusions of small vessels.   

 

Besides the fact that the Unet_BanoRumc network (slightly) outperformed the other networks based 

on the quantitative and qualitative analysis, additional motivation for using our network for clinical 

applications can be found in the fact that the network is trained using the most diverse dataset. The 

dataset is most diverse in terms of number of patients, vessel size (very small and large vessels), 

image quality, used fetoscopes and frame content. The latter refers to the frames in which the vessels 

are partly blocked by structures such as fetal parts or the umbilical cord.  

 

Lastly, the measured average prediction rate of about 7 fps is considered sufficient for real-time 

image stitching purposes. This is because not all frames are necessary for image stitching due to the 

relatively large overlapping areas in the consecutive frames.62 Furthermore, the predictions were 

calculated using an Intel Core i5 processor. Using a more advanced processing unit is thought to 

improve the prediction rates.  

 

6.4.1 Study Limitations & Future Recommendations 

It is important to be aware of the subjective nature of data labeling, making it sensitive to both inter- 

and intra-observer variability. In our study, the data was labeled once, by one person. To improve 

the reproducibility, it is recommended to label the data multiple times, by multiple individuals.  

 

The data from multiple fetoscopic videos were merged and shuffled before splitting the test sets from 

the datasets. As a result, some frames in the test set might be similar in appearance to frames in the 

training set. In future clinical applications, the network will be confronted with new clinical data. 

Therefore, it is recommended to re-train the network while leaving one fetoscopic video out and use 

this video as the test set, which is known as the hold-out method. Another, more robust evaluation 

method is the k-fold cross-validation (see section 5.4.1).  

 

In our study, the traditional U-Net architecture53 was used. For further improvement of the 

network’s performance, it is recommended to experiment with different network architectures. 

Another recommendation would be to include temporal information, since consecutive frames show 

largely similar scenes. To do so, the prediction map from the previous frame is used as additional 

input for the DL network.   

 

The motivation for training a vessel segmentation network (VesSeg) was to use the resulting 

prediction or segmentation maps for image stitching by either 1) using the segmentation maps for 

selective regional image enhancement of the frames for improved feature detection or 2) using the 

prediction maps from VesSeg for intensity-based image-stitching. Besides this, the segmentation 

maps might be of additional use during FLOVA procedures. For example, after preprocessing the 
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frames using selective regional image enhancement, these frames can be presented to the surgeon 

for improved image quality and vessel visibility.  

 

Another potential use for VesSeg is presenting the prediction or segmentation maps directly to the 

surgeon. While discussing the results of the network with a gynecologist from the Radboudumc, he 

mentioned that the network was able to detect some very small vessels, which were not noticed by 

the gynecologist at fist. In other words, the prediction maps could potentially supply the surgeon 

with additional information. Nonetheless, it should be pointed out that the network might fail to 

detect some (small) vessels. Therefore, the original in-vivo fetoscopic frames should remain the main 

source of information. Another potential application could be to superimpose the segmentation or 

prediction maps onto the original frames during FLOVA and allow for manual adjustments of the 

transparency of the masks if desired.   

 

Finally, the segmentation maps could be used as a region of interest (ROI) during or after feature 

detection. When using a segmentation mask after feature detection, the features located outside the 

mask are discarded. However, using the segmentation mask as a ROI during feature detection is 

thought to be more effective because of how the feature detection function operates: feature 

detection continues until a certain number of features are found. Using the segmentation mask while 

detecting features, rather than after, is thought to lead to more features within the ROI. This has not 

been tested in our project since the feature detection function used only allows for rectangular ROIs.  

 

6.5 Conclusion 

The aim of this chapter was to train a deep learning network for automatic vessel segmentation in 

in-vivo fetoscopic video sequences. Our trained network showed promising results, including Dice 

Scores up to 0.80 and a ROC-AUC of 0.98. Moreover, when visually comparing the input frames with 

the resulting prediction maps, the results appear convincing. Future research is required to 

determine for what potential image stitching approach the prediction maps are most useful.  
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7. Technical note: vessel segmentation maps for image stitching 
 

7.1 Introduction 
This chapter discusses the use of the vessel segmentation maps for both feature-based and intensity-

based image stitching of in-vivo fetoscopic video sequences. The previously trained deep learning 

networks will be incorporated: VesDet will be used to select frames with vessels and VesSeg will be 

used to create vessel prediction and segmentation maps. The potential uses of both the prediction 

and segmentation maps for image stitching will be explained and briefly demonstrated. 

Recommendations for future development of an image stitching algorithm will be given based on 

our observations gained through experimentation. The main goal of this chapter is to explore the 

possibilities for image stitching using VesSeg and provide recommendations for future development 

of the image stitching algorithm.  

 

In the field of fetoscopic surgery, most research focusses on feature-based image stitching.21–24,34–36 

Although feature-based approaches are generally associated with a high robustness and 

computational efficiency69,70, the visual properties of the in-vivo fetoscopic video sequences can lead 

to an inadequate number of reliable features. This is thought to be the result of a series of factors, 

including the poor lighting conditions, the lack of texture of the placental surface and the presence 

of occluding and dynamic structures in the intrauterine environment.26,38 The latter can lead to the 

detection of dynamic features, which is problematic since feature-based stitching relies on static or 

stable features.  

 

An alternative to feature-based image stitching is intensity-based image stitching, also known as 

direct image registration or alignment. Quite recently, Intensity-based image stitching has gained 

attention in the field of fetoscopic surgery. In 2018, Peter et al.26 proposed the first intensity-based 

approach for image stitching of in-vivo fetoscopic video sequences. They performed dense pixelwise 

alignment of the image gradient orientations of in-vivo fetoscopic video frames.26 Thereafter, in 

September 2020, Bano et al. published an article that proposes a direct registration method using 

the probability (prediction) maps from a vessel segmentation network.62 Their results were very 

promising and support our hypothesis, being that vessel segmentations can be used for intensity-

based image stitching of in-vivo fetoscopic video sequences. Therefore, one of our goals is to see 

whether we can develop a similar algorithm for the department of Department of Obstetrics & 

Gynaecology at the Radboudumc. 

 

7.1.2 Image Stitching Algorithm  

In image stitching, two or more frames with overlapping content are combined together to create 

one larger image or overview. This process involves image registration, warping and blending.71 In 

the image registration step, the geometric transformation between two images is estimated. When 

using data from a fetoscope, which is a monocular system, transformation matrices are estimated 

based solely on the information from the individual video frames. Feature-based and intensity-based 

image stitching approaches differ in the way they determine the geometric transformation between 

two consecutive frames.  
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Feature-based image registration 

When using a feature-based approach, the transformation matrix is estimated based on the matching 

feature points. As demonstrated in an earlier project (M2-3), the number of inlier feature matches 

(IFM) can be increased using vessel segmentation maps combined with a so-called selective regional 

image enhancement (SRIE) step. In this chapter, we will experiment with both the prediction and 

segmentation maps from VesSeg for improved feature-based image stitching of in-vivo fetoscopic 

video sequences.  

 

Intensity-based image registration 

Intensity-based image stitching approaches use direct pixel-to-pixel comparisons with gradient 

descent or another optimization technique in order to estimate the geometric transformation 

between two frames. This is done by applying numerous transformations to the so-called ‘moving’ 

image in order to align it with the ‘fixed’ image. The smaller the sum of the pixelwise intensity value 

comparisons, the better the alignment or registration of the two images. We hypothesize that the 

prediction maps from VesSeg are suitable for intensity-based image stitching.  

 

7.2 Experimentations & Observations 

Multiple experimentations with feature-based and intensity-based image stitching were performed 

to get insights in the potential and usage of the prediction and segmentation maps generated by 

VesSeg. All experimentations were performed using MATLAB R2020b.  
 

7.2.1 Data Acquisition  

The frames from two in-vivo fetoscopic videos (Chapter 3, Table I) were used: video 1 and 6. These 

videos were selected because of their relatively good image quality and the fact that the placentas 

were located posteriorly, which is thought to make image stitching more feasible compared to frames 

with anterior placentas.  

 

VesDet was used to select frames with clearly visible vascular structures. Thereafter, four sets of 50 

consecutive frames were manually selected and extracted (Figure 25). VesSeg was then used to 

generate the prediction maps (Figure 26), which were later converted to segmentation maps by 

image binarization.  

       
Figure 25. Example frames from the four sets of in-vivo fetoscopic video frames. 
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Figure 26. Examples of prediction maps generated by VesSeg. 

 

7.2.2 Feature-Based Image Stitching 

Multiple different attempts were made for the feature-based image stitching. First, ORB feature 

detection and matching was performed using the in-vivo frames without performing any 

preprocessing to the frames. This resulted in little to none features being detected, regardless of the 

input parameters used for ORB feature detection. This is in accordance with earlier experiences with 

our in-vivo dataset. Therefore, the frames were fist preprocessed to increase the number of features 

being detected.   

 

Preprocessing 

Multiple different preprocessing approaches were tested to evaluate the effect of preprocessing on 

feature detection. Based on our observations gained through experimentations, the following 

preprocessing method led, in general, to the highest number of features, feature matches and inlier 

feature matches (IFM).  

 

First, the RGB frames were converted to the HSV (Hue, Saturation, Value) color space and contrast 

enhancement was applied to the Value component to enhance the luminance.55 This was done using 

the CLAHE56. The frames were converted back to the RGB color space and the three color channels 

were separated. Additionally, a grayscale copy of the RGB image was created. Then, element wise 

matrix multiplication of the green channel and grey image was performed, followed by element wise 

division using the red channel. This was done to emphasize the impact of the green channel, since 

most contrast between the vessels and the placental surface is seen in the green channel.72 

Thereafter, image noise was reduced by applying pixelwise adaptive low-pass Wiener filtering with 

a neighborhood size of 3 x 3 pixels. Lastly, additional contrast enhancement was applied to the 

resulting image using histogram equalization. 

 

Selective Regional Image Enhancement 

The prediction and segmentation maps from VesSeg were used for selective regional image 

enhancement (SRIE). Prediction maps, which are the initial outputs from VesSeg, were binarized to 

create segmentation maps (Figure 27). For all prediction maps, a threshold value of 0.5 was used. 

 

First, the segmentation maps were used for SRIE: the vessels (foreground) were separated from the 

background (Figure 27) and noise reduction was applied to the background. This was done using 

pixelwise adaptive low-pass Wiener filtering with a neighborhood size of 3 x 3 pixels. Thereafter, 

the foreground and background were fused back together. For additional experimentations, the same 
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steps were repeated using the prediction maps instead of the segmentation maps. Moreover, we 

experimented with different SRIE approaches, such as contrast enhancement in the foreground and 

applying a Gaussian blur (σ = 3) to the background. However, based on our experiences, these steps 

led to a lower number of IFM.  

 

It was noticed that usage of the segmentation and prediction maps for SRIE leads a decrease in the 

number of detected and matched features, while simultaneously leading to an increase in the number 

of IFM. This is thought to be the result of the noise reduction which was selectively applied to the 

background. As a result, the total number of detected features decreases. Fortunately, the number of 

IFM remained stable or increased, suggesting that the ‘lost’ features were (mostly) false positives.  

 

 

Figure 27. Prediction map, segmentation map, foreground and background of the same frame. A threshold 

value (T) of 0.5 was used to generate the segmentation map.  

 

Feature Detection and Image Stitching 

ORB feature detection and matching was performed using the same method and parameters as 

described in section 4.2.3. For the four sets of frames, image stitching was not successful for all 50 

frames, meaning that either not enough IFM were found to calculate the transformation matrices or 

that the resulting reconstruction was visually corrupted. The input parameters for ORB feature 

detection and matching were manually adjusted in an attempt to improve the resulting 

reconstruction, but to no avail. 

 

Figure 28 shows five consecutive frames stitched together using the prediction maps from VesSeg 

for SRIE. It is important to mention that only a binary circular mask was used in the blending process 

and no further blending techniques were used. As a result, the edges or seams of the stitched frames 

are clearly visible.  
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Figure 28. Feature-based image stitching of five consecutive in-vivo frames using the prediction maps from 

VesSeg for selective regional image enhancement (SRIE). 

 

The use of the prediction and segmentation maps for SRIE was briefly tested for a visual SLAMc 

approach, which is designed to create 3D reconstructions. Unfortunately, we did not manage to get 

past the map initialization step, since not enough IFM were found.  

 

Evaluation 

Although not all 50 frames were successfully stitched together, image stitching was repeatedly 

successful for about five to ten consecutive frames, interchanged with incorrectly stitched frames. 

Here, image stitching was considered successful when the resulting reconstruction was in 

accordance with our expectations, based on visual inspection.  

 

Based on our observations through experimentations, using the prediction or segmentation maps 

from VesSeg for SRIE, improved the performance of our feature-based image stitching approach. 

More specifically, the prediction maps seemed to outperform the segmentation maps. For now, only 

a couple of consecutive in-vivo frames were stitched together successfully, which is naturally 

inadequate for clinical implementation. Nevertheless, some first steps are taken into the use of 

prediction and segmentations maps for improved feature-based image stitching.  

 

Limitations and Alternatives 

One important limitation of our experiments is the fact that the parameters involved in the image 

stitching algorithms were chosen based on trial and error. Thorough parameter optimization is 

thought to positively affect the performance of the algorithm. The same can be said for the 

preprocessing and SRIE algorithms. However, it is important to be aware of the high variability of 

image appearances between different fetoscopic frames and videos40, making it challenging to 

develop a one size fits all algorithm. 

 

                                                           
c https://mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html 
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In our code, the frames were first preprocessed, followed by the SRIE step. One limitation here is the 

fact that the preprocessing step converts the color image into a grayscale image before the SRIE step, 

which reduces the dimensionality of the image. As a result, potential useful information might get 

lost. Conversely, applying SRIE to a color image is thought to allow for more image enhancement 

possibilities, such as saturation enhancement. Therefore, one future recommendation is to perform 

a SRIE method to a color image instead of a grayscale image and to further explore the possibilities 

for SRIE to color images.  

 

One of the main drawbacks of feature-based image stitching of in-vivo fetoscopic video frames is the 

lack of features or IFM. As a result, the algorithm fails to estimate (appropriate) geometric 

transformation matrices for all sets of consecutive frames. Therefore, it is highly recommended to 

force the algorithm to skip ‘not useful’ frames. This can be done, for example, by increasing the 

Confidence argument of MATLAB’s geometric transformation matrix estimation function and 

skipping frames in case the algorithm fails to find a transformation matrix with respect to this new 

confidence value. Fortunately, our fetoscopic videos are recorded at a minimum frame rate of 25 fps 

and consecutive frames usually contain large overlapping areas. This allows for ‘safely’ skipping one 

or multiple frames. Moreover, other studies reduced the frame rate from 25 fps to 12.5 fps38 or 1 fps62 

for image stitching purposes, suggesting that image stitching is still feasible with less frames. 

 

7.2.3 Intensity-Based Image Stitching 

For the intensity-based approach, the transformation matrices of two consecutive frames were 

calculated through intensity-based image registration using the prediction maps. The image 

registration was done using the so-called imregtform functiond build in MATLAB. Unfortunately, 

explicit documentation on this function is missing.  

 

Optimization configuration was done using regular step gradient descent (RSGD)e, for multi-

resolution pyramids. Gradient descent, which is a first-order iterative optimization algorithm, aims 

to find local minima of the cost function. RSGD starts with a constant step length and reduces the 

step length by a given relaxation factor every time the gradient descent changes direction. MATLAB’s 

default values for step length (0.0625) and relaxation factor (0.5) were used.  

 

The number of maximum iterations was set to 200. For the other parameters, MATLAB’s default 

settings were used. Affine geometric transformations were applied to the moving image, thus 

allowing for translation, rotation, scale, and shear transformations. Figure 29 demonstrates two 

consecutive frames before and after direct image registration.  

 

Image Stitching 

After performing image registration of the prediction maps, the resulting transformation matrices 

were used to stitching both the prediction maps and in-vivo fetoscopic frames together. An example 

of five consecutive frames is shown in Figure 30.  

 

                                                           
d https://mathworks.com/help/images/ref/imregtform.html 
e https://mathworks.com/help/images/ref/registration.optimizer.regularstepgradientdescent.html 
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Figure 29. An overlay of two consecutive frames before (left) and after (right) direct image registration. 

 

 
Figure 30. Intensity-based image stitching of five consecutive prediction maps from VesSeg (left). The 

corresponding transformation matrices were used for image stitching of the in-vivo fetoscopic frames (right). 

 

Evaluation 

The performance of our intensity-based image stitching approach was similar to that of the feature-

based approach: the algorithm failed to stitch all 50 consecutive frames from the four datasets 

successfully. Here, image stitching was considered successful when the resulting reconstruction was 

in accordance with our expectations, based on visual inspection. Nonetheless, the intensity-based 

approach was also able to stitch about five to fifteen consecutive frames successfully, interchanged 

with incorrectly stitched frames. Although the number of successfully stitched frames were slightly 

higher compared to the feature-based approach, the differences were minimal.  

 

Limitations and Alternatives 

One important disadvantage of the intensity-based approach is that it is more computational costly 

compared to the feature-based method. However, using different programming languages and more 

powerful processors is thought to improve the computational time. Although the promising results 

reported by Bano et al.62 provides confidence in the potential use of VesSeg for image stitching, they 

did not report on the speed of their algorithm. Therefore, it is unclear whether real-time intensity-

based image stitching is feasible. Despite this, we consider intensity-based image stitching as a 

potential solution for in-vivo fetoscopic video frames. 

 

In our preliminary experimentations, only one intensity-based image stitching approach is tested. It 

is therefore recommended to experiment with different approaches. Firstly, the approach reported 

by Bano et al. shows great potential. Moreover, inspiration can be taken from other methods 
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proposed in other fields of research. Examples are optical flow for miniature microscopic images71, 

image alignment using a second-order minimization method73 and the combination of intensity- and 

feature-based image stitching.74,75 

 

7.4 Summary & Recommendations 

Based on our experimentations, the use of VesSeg improved the performance of both the feature-

based and intensity-based image stitching algorithms. In case of the feature-based approach, the 

prediction maps combined with SRIE showed most potential. Likewise, using the prediction maps 

for intensity-based showed a higher potential compared to usage of the segmentation maps.  

 

To summarize, the pseudocodes of the feature-based and intensity-based image stitching approaches 

using VesSeg that showed most potential based on our experimentations are provided here: 

 

Pseudocode - feature-based image stitching using VesSeg 

1 

2 

4 

5 

6 

 

7 

8 

9 

10 

 

11 

12 

13 

Load images 

Get prediction maps using VesSeg 

For two consecutive frames 

Image preprocessing 

Selective regional image enhancement (SRIE) using the    

  prediction maps 

Detect features 

Match features  

Outlier rejection using MSAC  

Estimate geometric transformation matrix (H) using the inlier  

  feature matches 

 Warp one image using H 

 Combine both images 

 Blending to remove the seams 

 

 
Pseudocode - intensity-based image stitching using VesSeg 

1 

2 

3 

4 

 

5 

6 

7 

Load images 

Get prediction maps using VesSeg 

For two consecutive frames 

 Estimate geometric transformation matrix (H) using direct image 

registration (optimization using regular step gradient descent)  

 Warp one image using H 

 Combine both images 

 Blending to remove the seams 

 

 

It is important to mention that our algorithms were able to stitch about five to fifteen consecutive 

frames, which is naturally inadequate for clinical implementation. Therefore, further research on 

and development of these stitching algorithms is necessary. Nevertheless, the results of our 

experimentations suggest that VesSeg can be of added value for feature-based and intensity-based 

image stitching approaches.  

 

Finally, one of the main goals was to provide recommendations for future development of the image 

stitching algorithm. To summarize the recommendations provided in this chapter, an overview is 

provided in Table XIII. 
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Table XIII. Recommendations for further development of the feature-based and intensity-based image stitching 

algorithms.  

Image stitching in general Feature-based approach Intensity-based approach 

- Use only a fraction of the 

frames to reduce 

computational time (e.g. 

from 25 fps to 1-5 fps) 

- Experiment with other 

programming languages 

and/or functions 

 

 

 

- Use the prediction maps 

combined with SRIE 

- Parameter optimization 

for ORB feature detection  

- Apply SRIE to color image 

instead of grayscale image 

and further explore the 

possibilities for SRIE 

- Only allow for F matrices 

predicted with a high 

confidence value 

- Use prediction maps, 

rather than segmentation 

maps 

- Evaluate possibilities for 

increased computational 

speed 

- Experiment with other 

intensity-based methods, 

including the method 

proposed by Bano et al.62 
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8. General Discussion  
This thesis focused on the training and added value of deep learning networks for improved image 

stitching of in-vivo fetoscopic video frames. First, an image classification network was trained for 

identification of frames with clearly visible vessels. Our network showed promising results when 

tested using an unseen in-vivo video. Moreover, high prediction rates were measured. This offers 

promising prospects for future clinical applications of the network. To our knowledge, we were the 

first the train a binary classification network for vessel detection of in-vivo fetoscopic video frames. 

A second DL network was trained for vessel segmentation. Both the quantitative and qualitative 

analysis showed promising results, supporting the network’s potential for future applications. 

 

Comparisons of our networks with similar networks proposed in literature showed that our 

networks performed either similar to these networks or outperformed them. This was an unexpected 

result, since our approaches were relatively simple compared to their approaches. For example, Bano 

et al. trained a network for fetoscopic event identification using a LSTM-RNN. to incorporate spatio-

temporal information.38 For vessel segmentations, Bano et al. trained and tested multiple U-Nets 

with different pre-trained backbones.62 Although one-to-one comparisons of our networks to the 

networks trained by colleagues is limited due to the fact that different datasets and evaluation 

methods were used, our findings might suggest that more advances network architectures will not 

have a significant effect on the network’s performance.  

 

After training and evaluating the deep learning networks, multiple different potential applications 

of VesSeg for improved image stitching were explored. While doing so, a wider variety of potential 

uses of the network were found than initially anticipated. However, our experimentations lacked a 

scientific approach and thus limited conclusions can be drawn from our findings. Therefore, further 

research on these (and possibly other) image stitching approaches is strongly recommended.  

 

8.1 Clinical Implementation & Applications 
Before the deep learning networks can be used for image stitching in clinical practice, further 

development of the image stitching algorithm is required. Chapter 7 provides an overview of 

recommendations for development of the algorithm. Nevertheless, the deep learning networks are 

considered ready for potential other clinical implementations, based on the good performance of the 

networks when tested using unseen in-vivo data and the reported prediction rates of 7 and 714 fps.  

 

One example of a potential application of VesSeg is to provide the surgeon with additional insights 

or information during FLOVA. Here, the prediction maps from VesSeg are generated and displayed 

to the surgeon. The idea is that the network might ‘see’ vessels that were otherwise missed by the 

human eye. This can be done using multiple different approaches, including 1) directly showing the 

prediction or segmentation maps or 2) superimpose the prediction or segmentation maps onto the 

original frames and allow for manual adjustments of the transparency of the masks if desired.   

 

These approaches can be executed (near) real-time, depending on the processor used to perform the 

calculations. Moreover, it is important to mention that the goal of these approaches is to provide 



 
54 

additional information, while the images from the fetoscope remain the main source of information 

for identification of the vascular anastomoses.  

  

8.2 Future Recommendations & Perspectives 
Firstly, more research is required for further development of the image stitching algorithm. 

Moreover, additional experimentations with different network architectures may further improve 

the networks’ performances. Also, investing in an advanced processor is thought to allow for faster 

training and application of the deep learning algorithms and faster development of the image 

stitching algorithm.  

 

It is important to be aware of the fact that the deep learning networks need to be retrained after new 

clinical data is collected from future FLOVA procedures, for optimal performance of the networks.  

 

Another suggestion for faster development of the image stitching algorithm is related to the test 

setups. Investing in a test setup that mimics the in-vivo situation more closely is thought to be of 

great value. Currently, most studies are limited to videos from previously performed FLOVA 

procedures, which can make retrospective image stitching more challenging compared to real-time 

image stitching. When testing the algorithm real-time, the operator can adjustment the scope’s 

movements based on the progress of the real-time generated reconstruction. For example, when the 

signal gets lost, the operator will return to a previous position and reduce the speed of the scope’s 

movements.  

 

Two suggestions for improved test setups will be described. The first suggestion is to invest in a test 

setup that mimics the in-vivo FLOVA setting more realistically. This includes a hyper-realistic 

placenta phantom, a dark environment and a liquid that mimics to amniotic fluid. One requirement 

for the latter is the presence of flakes that mimic fetal skin flakes. Figure 31 demonstrates the 

differences in appearances of placental phantoms and an ex-vivo placentas compared to an 

in-vivo fetoscopic video frame. The second suggestion is to train a deep learning network that is able 

to convert frames from a test setup to frames that mimic the appearance of in-vivo fetoscopic video 

frames. 

 

 

 
Figure 31. Example frames of different test setups and an in-vivo fetoscopic video frame. A) placenta phantom 

used by Yang et al.23; B) dye-injected placenta; C) dye-injected placenta in dark container to mimic 

intrauterine environment; D) frame from a FLOVA procedure (in-vivo). 
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Although research on the topic of FOV expansion during fetal surgery is gaining more and more 

attention, studies on technological innovations related to the instruments and equipment remain 

absent.15 Therefore, a suggestion for future research could be to investigate the possibilities of 

technological innovations regarding the instruments for improves image stitching. For example, 

usage of a binocular would allow for more robust image stitching. A second camera could perhaps 

be incorporated in a fetoscope without increasing the outer diameter significantly by combining one 

regular sized camera with a relatively small camera equipped with a fisheye lens.   

 

Lastly, a future perspective for the image stitching algorithm is navigation support during FLOVA. 

Here, the idea is that, after the placental surface reconstruction is generated, the algorithm keeps 

tracking the fetoscope’s relative position to the placenta. The fetoscope’s position is then real-time 

visualized.  

 

9. General Conclusion 
The aim of this thesis was to evaluate the potential use of deep learning approaches for image 

stitching of in-vivo fetoscopic video frames, for field of view expansion during fetal surgery. A 

classification network was trained for vessel identification, followed by a vessel segmentation 

network. Both networks showed promising results for future clinical applications and for further 

development of the image stitching algorithm. Despite the promising results, additional experiments 

for network optimization is recommended, including the use of different network architectures. 

Lastly, before the networks can be implemented in clinical practice, further development of the 

image stitching algorithm is required.  
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