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ABSTRACT 

Yellow rust (Puccinia striiformis f. sp. Tritici) is a crop disease of wheat that regularly causes yield loss in 

Ethiopia. The disease has significant consequences for the country’s crop production, food security, 

health, and socioeconomic well-being. Anticipating yellow rust epidemics can help better manage 

them and mitigate their adverse impacts. This study explores the potential of remote sensing-based 

early prediction of yellow rust in the Oromia region in Ethiopia. The research focuses on modeling 

the incidence of yellow rust among young wheat in the region by looking at unique environmental 

conditions that enable off-season survival of the rust pathogen.  

Tiller and boot-level yellow rust incidence data from 2016-2018 in Oromia was analyzed together 

with the environmental variables generated through AgERA5 (temperature), CHIRPS (precipitation), 

ProbaV-NDVI, and SRTM-DEM (terrain characteristics). Univariate Area Under ROC Curve 

analysis and Classification Tree analysis were used to understand the influential environmental 

variables and filter those with high relevance to the early-stage rust infection. Subsequently, General 

Additive Model and Boosted Regression Tree were applied to fit and test the early warning models 

and their prediction capacity. The models were built for three data sets: data with all available 

observations; tiller-level observations; and data that share the same climate zone.  

As a result, the climate zone-based GAM model performed at a 78% accuracy level with  Kappa 0.44 

(moderate). The tiller-only GAM model performed at a 72% accuracy level with Kappa 0.44 

(moderate). The all-observation BRT model had a 71% accuracy level with Kappa 0.34 (fair 

agreement). Rain characteristics served as particularly strong predictors in these models. Especially, 

excessive rain had a strong relationship with a lower probability of yellow rust cases among young 

wheat. The models also suggest that terrain characteristics serve as the static environmental 

conditions that expose certain locations to the disease. The study demonstrated the potential of 

yellow rust early warning solely based on remote sensing. The models could be further tested with a 

larger volume of data set to confirm the strength. Consideration of the probability of varying rust 

severity (low, moderate, high) and types of wheat cultivars would further add value to the models. 

Lastly, additional field and laboratory-based knowledge on the off-season rust survival would be a 

vital step towards a more accurate configuration of early warning models.
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1. INTRODUCTION

Yellow (stripe) rust, a wheat disease caused by the fungus Puccinia striiformis f. sp. Tritici (Pst) (Zadoks, 

1961) is common in Ethiopia, causing frequent crop failure and resulting in economic loss (Jaleta 

et al., 2019). Ethiopia’s agriculture sector accounts for 37% of the country’s GDP, employing 72% 

of the total population, of which 74% are small-scale farmers (FAO, 2018). Ethiopia is a leading 

wheat producer in sub-Saharan Africa (FAO, 2018), but the country’s wheat production has been 

continuously undermined by rust epidemics such as in 1977, 1980-83, 1986, 1993, 2010, and 2013-

2014 (Badebo et al., 1990, Jaleta et al., 2019, Olivera et al., 2015). Ethiopia’s average wheat yield 

capacity is about 1.83𝑡 ℎ𝑎−1 , which is much lower than the world average of 3.47𝑡 ℎ𝑎−1

(Mengesha, 2020). Disruptive rust epidemics are compounded by a new norm of extreme weather, 

droughts, and floods, generating additional pressure on wheat production, contributing to food 

insecurity in a country with a growing population (Alemu and Mengistu, 2019) and where a quarter 

of the population still live under US$ 1.9 a day (WB, 2020). Food insecurity can fuel other long-

term complications such as malnutrition (Humphries et al., 2015), conflicts over food resources, 

and social instability (Martin-Shields and Stojetz, 2019).  

The study of wheat rust started as early as 1767, and over the centuries, the wheat rust pathology 

has been better understood. As a result, its management has been somewhat successful through 

the introduction of fungicides and disease-resistant wheat varieties (Martinelli et al., 2015). Despite 

improved rust management techniques, the fungi evolve and new races of yellow rust emerge and 

continue to impact up to 5% of the crop across the wheat-producing countries today (Wellings, 

2011). 

Yellow Rust mainly spreads in the form of urediniospores through the wind, and it can disperse over 

large areas (Beest et al., 2008, Chen and Kang, 2017, Eriksson, 1894). The rust can propagate 

aggressively depending on atmospheric conditions, such as temperature, humidity, and sunlight 

(Zadoks, 1961). Efforts have been made to estimate the severity of future rust epidemics and 

potential wheat production loss based on climate data (Beest et al., 2008, Coakley et al., 1987, 

Grabow et al., 2016, Park, 1990). A similar approach with climate data has been applied in 

Ethiopia’s early detection and communication of wheat rust outbreaks during the season, with the 

aim to help rust control measures (Allen-Sader et al., 2019). 
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Many of the yellow rust prediction models rely on rust incidence observations from the middle of 

a wheat season or the records of epidemics that come at the end of the season to facilitate more 

effective fungicide use. Meanwhile, projections made based on rust cases from the middle of the 

season imply that the disease is already happening and there is production loss inevitably expected 

for farmers. While complete avoidance of rust damage is impossible, such loss can be costly for 

the many small farmers of Ethiopia.  

This research explores the possibility of identifying the signs of yellow rust outbreak earlier than 

the planting season in Ethiopia by looking at the conditions that enable yellow rust to survive the 

off-season period. Yellow rust can spread through dormant spores on volunteer wheat after the 

harvest (Rapilly, 1979, Zadoks, 1961). If the wheat-growing sites meet certain environmental 

conditions known to enable off-season survival of the pathogen, yellow rust outbreaks in the 

surrounding wheat field could be anticipated earlier before the crop season. This research will test 

this hypothesis in the context of Ethiopia's Oromia region by examining the relationship between 

yellow rust cases at the early stage of wheat growth and various environmental conditions 

observable with remote sensing.  

Objectives and Research Questions 

This research's overall objective is to develop and test a model for pre-season early warning of 

yellow rust in the Oromia Region of Ethiopia based on the environmental conditions favorable for 

off-season survival of yellow rust by maximizing the use of remotely sensed (RS) environmental 

data. The study designed the following sub-objectives and research questions to guide various steps 

of the research.  

Sub-objective 1: 

To examine the relationship between the past yellow rust incidence and the relevant RS-based 

environmental conditions during the pre-planting season.  

Research Question 1.a  

What are the associations between the yellow rust incidence and off-season 

environmental conditions captured by RS-derived indicators? 

Research Question 1.b. 

What are the most relevant or important yellow-rust inducing environmental 

parameters detected before planting season? 
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Sub-objective 2: 

To develop a functional yellow rust prediction model based on the off-season environmental 

conditions in the Oromia region. 

 

Research Question 2 

How reliably can yellow rust incidence be predicted before planting season by 

the environmental conditions captured by RS-derived indicators? 
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2. BACKGROUND 

2.1 Yellow Rust 

Yellow rust starts with yellow or light-orange colored smooth surface flecks of varying sizes on 

primary leaves, lower leaves, transition leaves, or even on stem leaves (Zadoks, 1961). Over several 

days, these freckles transform into lesions with little bumps of pustules that could eventually cover 

leaf surfaces (Zadoks, 1961). Figure 1 below shows the progression of yellow rust infection on 

leaves.  

 

Figure 1: Adult plant host response to yellow rust 

The graphic was adapted from Roelfs et al. (1992) 

     

Puccinia striiformis requires a host plant to survive on, and these plants are categorized into the 

primary host that is wheat, and alternate hosts that are non-wheat plants (Grabow, 2016, Aime et 

al., 2017). On the primary host, pathogen reproduces asexually in the form of urediniospores 

(Figure 2), one of the five spore stages (Grabow, 2016).  

 

 

The graphic was adapted from Roelfs et al. (1992) 

Figure 2: Symptoms and spore (urediniospore) morphology of yellow rust disease  
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Weeds and other local plants have been thought to serve as an alternate host (Rapilly, 1979). 

However, so far, only a limited number of plants such as Berberis spp  (Yue Jin et al, 2010) and 

Mahonia aquifolium (Oregon grape) (Wang and Chen, 2013) are proven to be alternate hosts that can 

contribute to increased pathogen variability. Between the primary host and alternate host, yellow 

rust completes five distinct spore stages: uredinial, telial, basidial, pycnial, and aecial stages 

(Mehmood et al., 2020).  

 

Figure 3 below is the schematic illustration of the lifecycle of Puccinia striiformis f. sp. tritici (Pst), which 

occurs on the primary host (wheat) and alternate hosts throughout different stages of the rust’s life 

cycle. Yellow rust starts as an infection by urediniospores (A). The yellow patches of urediniospores 

become dark spots of teliospores (B) and basidiospores (C), which could infect alternate hosts. In 

the process of infecting the alternate hosts, the disease propagates in the form of pycnispores and 

aeciospores (Sexual cycle). Urediniospores can continue infecting wheat without advancing to 

teliospores (Asexual cycle). The final aecial stage can disperse aeciospores to infect wheat as well.  

 

Adapted and modified from Mehmood et al. (2020) 

 

Figure 4 demonstrates how the infection propagates on wheat from a single piece of urediniospore. 

The infection starts by arrival and adhesion of a urediniospore. The spore extends the germination 

tube to form an appressorium and penetrate through the leaves' tissues where rust colonization 

and reproduction occurs (Kumar et al., 2018). Deposition of a urediniospore on leaves and 

subsequent germination and appressoria formation depends on various climate factors such as 

temperature, rainfall, humidity, and sunlight (Park, 1990, Rapilly, 1979, de Vallavieille-Pope et al., 

Figure 3: Lifecycle of Puccinia striiformis f. sp. tritici (Pst) on primary host and alternate host  
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2018, Zadoks, 1961). The same climate factors also influence the speed, termination, and latency 

(being inactive but live infection after germination and before pustulation) (Rapilly, F, 1979). Rain 

and wind can be rust spreading factors but also have adverse effects on spore survival (Rapilly, 

1979, Chen, 2005).  

 

The graphic was adapted from Kumar et al. (2018) 

 

The disease can originate from distant locations through spores traveling in the air for hundreds 

of kilometers (Rapilly, 1979, Zadoks, 1961). It can also spread from the spores that remained 

dormant on the voluntary wheat (primary host) or alternate host nearby wheat fields after the 

harvesting (Rapilly, 1979, Zadoks, 1961). Such dormant rust infections are the result of so-called 

rust oversummering or overwintering.  

 

Figure 4: Propagation of infection on leave by a urediniospore 
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2.2 Oversummering and Overwintering of Yellow Rust 

Frequent outbreaks of yellow rust are partly explained by the pathogens surviving the season when 

wheat crops are not grown (Sharma-Poudyal et al., 2014). Oversummering is the survival of rust 

pathogens during summer as a latent or dormant infection between harvest and the next season, 

and it occurs on self-grown volunteer wheat from the grain shed during harvest and late-tillers that 

grew out of the roots left after harvest (Zadok, 1961) (Figure 5). Plowing before planting does not 

entirely remove volunteer wheat with oversummering rusts, leading to infecting autumn-sown 

wheat, some of which carry the pathogen until the following spring by overwintering (Zadoks, 

1961). Temperature and precipitation can determine the effectiveness of volunteer wheat and later 

spread the yellow rust pathogens. Under a stable high temperature and lack of rainfall, 

oversummering of yellow rust can be interrupted (Zadoks and Bouwman, 1985). However, 

warm/cool weather with sufficient water available creates a conducive environment for the 

pathogen to survive. 

 

On the other hand, overwintering is the survival of rust infection on winter wheat planted in 

autumn that goes through a slow vegetative phase during winter and continues growing in the 

following spring (Zadoks and Bouwman, 1985). Overwintering occurs as urediniomycelium (not 

necessarily visible on the leaves but germination and appressorium penetration occurred already) 

in the wheat plants exposed to yellow rust at one point and endures winter climate (Zadoks, 1961). 

The pathogen can die at a temperature below about - 4 ℃, but so long as the host plant is alive, it 

can survive as a latent infection for 118 to 150 days in a growth conducive environment, such as 

snow cover, which provides insulation and allows the pathogen to survive (Zadoks, 1961).  

 

 

Figure 5: Growth cycle of wheat influenced by the rust infection on volunteer wheat 

After harvest, some grains remain in the field and end up growing as new young wheat. When this young wheat gets 

infected by yellow rust and survives as dormant/latent infection during the off-season, it can infect the new wheat during 

the following wheat season. The graphic was made based on the Feekes Scale of Wheat Development adapted from 

Large (1954) and Marsalis and Goldberg (2016). 
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Off-season survival of rust on volunteer wheat increases the chance of local infection of young 

wheat in the following season and the severity of overall rust incidence later on. Eversmeyer and 

Kramer (1998) observed that there was a significant difference in the leaf rust severity between the 

field with the prevalence of rust-infected volunteer wheat plants (80-100% severity) and the fields 

of the same wheat with no volunteer plants around (10-30%). According to Zadoks and Bouwman 

(1985), one lesion of yellow rust overwintering is sufficient to cause a rust epidemic in the 

upcoming spring. As such, while distant spore dispersal is a common way of rust spreading, 

proximity to the infected volunteer wheat matters a great deal. Anticipating the areas where off-

season rust survival occurs has drawn attention to promoting better control of yellow rust  

(Sharma-Poudyal et al., 2014). 

 

2.3 Yellow Rust Prediction Models 

Over the years, the epidemiology of yellow rust has advanced. It led to various rust management 

techniques such as fungicide application, continuous improvement of rust-resistant cultivars, and 

adjusting farming practices (Chen and Kang, 2017). Efforts have also been made to predict yellow 

rust epidemics to mitigate the potential loss from the disease. 

  

Coakley et al. (1987) presented one of the earlier predictive models of yellow rust severity of a few 

winter wheat varieties. The model applied a stepwise regression to analyze the critical 

meteorological factors associated with disease severity to develop the so-called Disease Index. Rust 

data used in this model was from milk and dough wheat growth stages for three wheat cultivars. 

Parameters such as temperatures in October and November, the days of maximum temperature 

above 25℃, precipitation in June played a crucial role in this model. The model intended to 

facilitate a more effective fungicide application. 

 

Grabow et al. (2016) worked on yellow rust epidemic models for winter wheat in Kansas in the 

United States. A combination of Classification Tree and Generalized Estimating Equation (GEE) 

selected the key predictors and modeled the epidemics. Soil moisture from October to December 

(planting season for winter wheat) was strongly associated with yellow rust epidemics. Several other 

environmental predictors such as temperature, relative humidity, and precipitation from March to 

May (the period during which nodes development to boot, heading, and flowering occur) were 

applied to classify the predicted severity of epidemics based on the yield loss data. This model’s 

novelty was in consideration of soil moisture, which was assumed to provide sufficient wet 

microenvironments that are favorable for the yellow rust pathogen to grow on leaves. Soil moisture 

can influence canopies' growth, where yellow rust thrives under wet conditions (Grabow et al., 

2016).   
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In Canada, Newlands (2018) proposed an integrated model-based framework for forecasting 

disease risk in Southern Alberta. The two models were built based on the Coffee Leaf Rust models 

developed in Colombia (temperatures and leaf wetness duration) and the multivariate 

spatiotemporal endemic-epidemic model (leaf wetness duration, temperature, relative humidity). 

In addition to weather station data and RS-based environmental data, the study was supported by 

airborne inoculum samples (spores traveling in the air) collected in the region. 

 

Sharma-Poudyal et al. (2014)‘s work is one of the few studies available that looked at predicting 

off-season survival of the yellow rust pathogen with temperature, humidity, and precipitation. The 

model projected the extent to which climates of different US regions are favorable for 

oversummering or overwintering of yellow rust.  Similarly, Xu et al. (2019) pursued a yellow rust 

overwintering model for northwestern China based on the cultivars' empirical field observations 

with different hardiness levels related to temperature. The logistic models demonstrated that 

overwintering of Puccinia striiformis f. sp. is mainly influenced by the duration of low temperature in 

the coldest period in December and January. Overwintering probability had different thresholds 

for the cultivars with different hardiness. For example, the probability declined under the average 

temperature below -2 ℃ for the cultivar with weak winter hardiness, but the cultivar with moderate 

and strong winter hardiness saw the decline in overwintering probability only below -4 ℃.  

  

In recent years, learnings from the past rust modeling have been applied in the context of Ethiopia 

as well. Allen-Sader et al. (2019) present an overview of the novel early warning system of wheat 

rust in Ethiopia, where a synthetic rust predictive model feeds into the network of last-mile 

communication with the farmers about the risk of rust infection. Canopy temperature, free 

moisture, and solar radiation derived from the UK meteorological Unified Model serve as the 

model’s critical environmental parameters. What makes the model unique compared to other 

models is that this considers atmospheric spore dispersion (based on the Numerical Atmospheric 

dispersion Modeling Environment (NAME) model), which influences the long-distance dispersal 

of urediniospores. 

 

2.4 Knowledge Gap 

The earlier yellow rust prediction models mostly rely on yellow rust incidence data from the middle 

of the growing season or yield loss data at the end of the season to promote efficient fungicide-

based rust control. Meanwhile, these models naturally imply that the disease is already occurring, 

and there is some level of production loss inevitably expected. Such loss can be very costly for 

many smallholder farmers in Ethiopia. As Eversmeyer and Kramer (1998) observed in their study, 

infection and survival of yellow rust during the off-season tends to lead to severe rust infection 
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during the actual wheat season. Rust infection in young wheat also has a considerable impact on 

the quality of the grains produced later (Wellings, 2011). Observing the conditions of 

oversummering and overwintering is one way to promote earlier warning of yellow rust, but this is 

not a commonly adopted approach and yet to be examined in Ethiopia. 

 

 

 

Figure 6: Focus of this study in relation with the existing yellow rust models and stages of Pts 

infection 

This study focuses on the environmental conditions that enable the pathogen to survive in latent infection (become 

dormant before sporulating) or pustulated infection during the off-season. 

 

 

Cold and hot weather usually terminate the yellow rust pathogen (Zadoks, 1961). However, if the 

climate is warm or cold enough, urediniomycelia, which is the critical inoculum for yellow rust, can 

remain latent on the host plants, prolonging the incubation time of the rust before the actual wheat 

season begins (Rapilly, 1979, Sharma-Poudyal et al., 2014, Tollenaar and Houston, 1967, Zadoks, 

1961). As crop season begins, the surviving urediniospores are dispersed through the air to nearby 

or distant crop fields to infect the newly planted wheat (Rapilly, 1979). Tollenaar and Houston 

(1967), Eversmeyer and Kramer (1996), and Sharma-Poudyal et al. (2014) looked into the potential 

of off-season fungi survival in relation to meteorological parameters that are similar to the ones 

used in rust epidemic prediction. These studies were done in the US, where a robust network of 

weather stations is available. In-situ weather stations are not widely available in Ethiopia. However, 
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remote sensing technology can feed the necessary environmental data at a high spatial and temporal 

resolution. 
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3. Method 

3.1 Study Area 

The research will focus on Ethiopia’s Oromia region. The Oromia region spreads through the 

center to the western and southern parts of Ethiopia. The region is situated between the latitude 

of 3°30’ N and 10°23’ N and the longitude of 34°7’ E and 42°55’ E (Figure 7), covering a total 

area of 353,690 square kilometers that is split into several climate zones by the Great African Valley 

offering abundant agricultural cropland including that for wheat production (Mohammed et al., 

2020). 

 

 

  

Figure 7: Map of Study Area - Oromia region, Ethiopia 
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3.2 Methodological Flowchart 

Figure 8: Methodological Flowchart 
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Figure 8 is the methodological flow chart outlining the process of data acquisition, processing, 

and analysis. The following section describes the data and steps more in detail.  

 

3.3 Data 

Yellow Rust Incidence Data  

Yellow rust incidence data was attained from the International Maize and Wheat Improvement 

Center (CIMMYT) Ethiopia. The original data set contained 4,342 yellow rust observation points 

over three years (2016–2018) across the country recorded at different wheat growth stages - Tiller, 

Boot, Heading, Flowering, Milk, Dough, and Maturity. This study's geographic scope is limited to 

the Oromia Region, and the analysis is on the yellow rust cases in the early stage of wheat rust in 

relation to pre-seasonal environmental conditions. Therefore, only the observations from the 

Oromia Region at Tiller and Boot stage were filtered. In total, 258 observations from 2016 to 2018 

were made available for the analysis (Table 1). 

 

 

Table 1: Yellow rust incidence data used in the study 

 
Yellow Rust Incidence 

(Tiller and Boot) 

 
None (0) 

 
Low 

(less than 20%) 

 
Moderate 
(20-40%) 

 
High 

(more than 40%) 

 
Total 

(n=258) 

2016 35 83 9 3 108 

2017 40 26 1 5 71 

2018 32 45 3 3 79 

 

 

 

RS-based Data on Environmental Condition 

Weather (temperature and precipitation) and Normalized Difference Vegetation Index (NDVI) 

were used in the analysis as dynamic environmental parameters. In addition, in this study, elevation, 

slope, and aspects were also considered as the static environmental conditions that could influence 

the off-season survival of yellow rust pathogens. While NDVI is regarded as a dynamic 

environmental parameter, the study also used this to identify a static characteristic of climate zones 

based on a unique range of NDVI values. The dynamic and static RS-based products are 

summarized in Table 2 and Table 3.  
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Table 2: List of RS-based products for dynamic environmental conditions 

 

RS Product Spatial res. period Use 

AgERA5 (Temperature) 11 km 2016-2018 Temperature predictor 

variables 

CHIRPS (Precipitation) 5.55 km 2016-2018 Rain-based predictor 

variables 

NDVI 10-day maximum composite 

data (ProbaV) 

1 km 2016-2018 NDVI-based predictor 

variables 

    

 

Table 3: List of RS-based products for static environmental conditions 

RS Product Spatial res. period Use 

NDVI 10-day maximum 

composite data (ProbaV) 

1 km 2016-2018 Common climate zone 

SRTM-DEM 30m 2000 Elevation, slope, and aspect 

 

 

AgERA5 (Temperature)  

A collection of daily surface meteorological data prepared for environmental and agricultural 

modeling. Temperature data is among the multiple parameters made available. The temperature 

data (Kelvin) is available from 1979 to 2018 at the resolution of 0.1° grid (about 11 km) with global 

coverage. The product is the aggregation and correction of ECMWF (European Center for 

Medium-range Weather Forecast) ERA5 data. ERA stands for ECMWF Re-Analysis, a 

deterministic climatic, land, and oceanic climate data at surface level with 30km (0.28215°) spatial 

resolution. ERA5 derives from historical observations by multiple satellite sensors into global 

estimates using advanced modeling and data assimilation systems. ECMWF ERA5 data went 

through spatial scaling down to 0.1° grid with Nearest Neighborhood algorithm, temporal 

aggregation to daily time steps, and bias correction based on the finer topography, land use pattern, 

and land-sea delineations to arrive at AgERA5. Source: ECMWF (2020) 

 

CHIRPS (Precipitation) 

A Quasi-global rainfall data set is available over 30 years at 0.05° grid (5.55 km) resolution. CHIRPS 

has been developed since 1999 by the U.S. Geological Survey Earth Resources Observation and 

Science Center, initially to support the United States Agency for International Development 

(USAID)’s Famine Early Warning System Network (FEWS NET) in collaboration with the 
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National Aeronautics and Space Administration (NASA) and the National Oceanic and 

Atmospheric Administration (NOAA). The product is derived through: rainfall estimates by the 

infrared Cold Cloud Duration (the measurement of the threshold at which clouds become 

precipitation), long-term historical in-situ observation data, and existing gauge observations for 

bias correction. In Ethiopia, CHIRPS products are commonly used in the analysis of precipitation 

anomalies, drought, and food insecurity. Reference: Funk et al. (2015)   

 

Note: Relative humidity is another commonly used climate parameter in the study of rust 

propagation. However, currently available humidity data was at the resolution of 27km (Global 

Forecast Systems) or 17km (UK Met Unified Model). This spatial resolution was considered not 

adequate for the analysis since many rust observations spread within the space of 1 to 5 km (many 

observation points would end up having the same relative humidity value). The literature review 

suggests that relative humidity becomes essential at the time of germination to sporulation of the 

rust but not concerning the off-season survival of the already germinated or sporulated lesion of 

yellow rust (Tollenaar and Houston, 1967, Eversmeyer and Kramer, 1998). Hence this variable was 

not included in this study. 

 

Normalized Difference Vegetation Index (NDVI) 

A vegetation index is calculated by comparing the visible and near-infrared sunlight reflected by 

the surface. NDVI layers entail the maximum value (range: -0.08 - 0.9) out of 10 individual images 

taken over ten sequential days at 1km spatial resolution with the geographic projection WGS84 

(EPSG:4326). The data were generated by the Global Land Service of Copernicus, the Earth 

Observation program of the European Commission in Digital Number (DN) through PROBA-V 

daily top-of-atmosphere orbit reflectance values (BRDF-adjusted; Release-Candidate #3 produced 

by VITO). The retrieved images were processed to obtain their long-term median data by dekad 

between 1999 and 2018 (20 years) to create the 36 dekad specific “normal” data series. 

NDVI physical values (PhyVal) are usually generated using DN value, scale factor, and offset 

(VITO, 2019).  

 

𝑃ℎ𝑦𝑉𝑎𝑙 = 𝐷𝑁 ∗ 0.004 (𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟) − 0.08 (𝑜𝑓𝑓𝑠𝑒𝑡) 

 

In this study, NDVI was used as an environmental variable potentially associated with yellow rust 

incidence. Also NDVI was used to subset the yellow rust observation data by a unique climate 

zone. (See 3.4 Data Processing, Data Sub-setting) 
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DEM 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) from the NASA was 

used as altitudes and to generate additional terrain characteristics such as slope and aspect 

(orientation of slope). SRTM DEM comes in WGS84 Datum and 30m/90m (USGS) spatial 

resolution.  

 

 

3.4 Data Processing 

Yellow Rust Incidence Categories 

Yellow rust incidence was recorded in four levels: None (0), Low (1), Moderate (2), and High (3). 

The study initially aimed to assess all four levels of incidence to compare the probability of different 

yellow rust incidence levels. However, among the observations, the Moderate and High incidence 

was minimal. Thus, the study used a binary category of yellow rust (0, absent) and yellow rust (1, 

present) (which includes low to high incidence). 

 

Retrieval and Processing of Weather Data 

AgER5 and CHIRPS data were accessed through Google Earth Engine (GEE) using the point 

feature (.shp) generated with the yellow rust observation data from CIMMYT. The daily values for 

the period of April-September, 2016-2018, were extracted through GEE and tabulated using 

Python and R to calculate the dekad (10-day) maximum, minimum, and mean temperature; dekad 

sum of precipitation; and dekad number of rainy days (>3mm). The Javascript used for the point-

based extraction of AgERA5 and CHIRPS data is available in the Appendices.  

 

A ‘dekad’ approach for dynamic environmental variables 

Of all the RS-based data retrieved for temperature, precipitation, and NDVI, variables for 

modeling were generated for the period between April and September. April is a few months before 

the wheat cropping season begins in Ethiopia.  September is where some tiller-level observations 

were still observed in rust data each year. Earlier rust prediction models typically applied monthly 

intervals or rolling averages over 10, 20, 30, and 60 days for those dynamic variables. However, in 

this study, 10-day (dekad) was applied to align the NDVI data interval and was prepared as a 10-

day maximum composition. A dekad is a period of ten days typically used in weather and vegetation 

analysis. For example, the first dekad of January is from 1st to 10th  January. The second dekad is 

from 11th to 20th January, and the third dekad is from 21st to 31st January (the third dekad in the 

month with the 31st day contains 11 days).  In this study, the dekad numbering was done annually 

from the beginning of January till the end of December (dekad 1 to 36). The analyses focused on 

the data from the dekad 10 (1-10 April) to the dekad 27 (21-30 September). Each dekad measure 

was considered as a dynamic environmental condition that represents a certain point in time.  
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Precipitation, temperature, and NDVI are dynamic variables that change over time. Meanwhile, 

elevation (DEM), slope, and aspect are considered as static environment variables. Table 4 below 

is the list of dynamic and static variables prepared based on the data from AgERA5 (temperature), 

CHIRPS (precipitation), NDVI, and SRTM (elevation, slope, aspect). A total of 111 variables were 

initially taken into consideration. 

 

Table 4: Environmental variables and description 

Variable Code Description 

prc_mm_10 ~ prc_mm_27 Accumulated precipitation (mm) per dekad 

daysr_10 ~ daysr_27 The number of  rainy days with more than 3mm 
precipitation  

maxT_10 ~ maxT_27 Maximum temperature in dekad (℃) 

minT_10 ~ minT_27 Minimum temperature in dekad (℃) 

meanT_10 ~ meanT_27 Average temperature in dekad (℃) 

ndvi_10 ~ ndvi_27 10-day vegetation density (DN-value) 

DEM Elevation (m) 

Slope Degree of  slope 

Aspect Compass direction that slope faces.  
0 = North, 90 = East, 180 = South, 270 = West 

 

 

Data sub-setting 

The rust observation data prepared for this study contains the observations from tiller and boot 

level from all over Oromia. Different climate zones, growth levels (tiller or boot), or even 

observation timing could have distinct characteristics in the relationship with environmental 

variables, hence yields a better model. Therefore, the original data was further subset into the tiller-

only data set, and Climate Zone b data set.  

The variability of climate zones was determined based on the unique characteristics of NDVI 

propagation over time (through ISODATA pixel clustering), shared across the observation points. 

Of five major climate zones (a, b, e, h, j) identified (Figures 9 and 10), the study used the Climate 

Zone b data set, which had more than 100 observations.  
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Figure 9: NDVI profile by group (climate zone) 

 

Figure 10: Map of major climate zones in Oromia Region 
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After all, three sets of data: mydata, mydata.till, and zone.b were used in the analysis (Table 5).  

 

Table 5: Three data sets prepared for the analysis 

Dataset Description 
Observations 

(n= total,  [0] = no rust, [1] = rust) 

mydata Tiller and boot level observations. n = 258 
[0] 95, [1]163 

mydata.till Tiller-level yellow rust 
observations. 

n = 159 
[0] 75, [1] 84 

zone.b Climate Zone b, tiller and boot level 
observations. 

n = 111 
[0] 28 , [1]83 

 

 

3.5 Analysis 

Initially, the weather data was explored to understand the seasonal weather variability and crop 

growing seasons around the locations of rust observations in the Oromia Region. Subsequently, 

using the tabulated data sets, analyses were conducted to address the three Research Questions 

(RQs) designed for this study (Figure 8: Methodological Flowchart - Analysis). The scripts used in 

the analyses are available in Appendices. 

 

3.5.1 Variable Exploration (RQ1.a) 

Research Question 1.a (RQ1.a) probes the association between yellow rust incidence and 

environmental conditions. The RS-based 111 environmental variables (temperature, precipitation, 

NDVI, and terrain characteristics) were examined against yellow rust observations in the three data 

subsets: mydata, mydata.till, and zone.b. The objective here was to understand what types of variables 

are more associated with yellow rust and narrow down the number of related variables. A 

combination of univariate correlation analysis and Classification Tree (CT) analysis were applied.  

Univariate correlation:  

When there are multiple variables in hand, Area Under ROC Curve (AUC) helps identify the more 

relevant ones than the others. Especially when the response variable (rust incidence) is categorical 

(i.e., incidence or no-incidence), AUC quantifies the extent to which the respective variable can 

separate these two categories. An AUC score of around 0.5 is an indication of a completely 

irrelevant variable. The R. package ‘caret’ was used to calculate AUC for each variable. AUC values 

were calculated by k-fold cross validation that enabled several repetitions of AUC value calculation. 

By averaging multiple cycles of AUC calculation, the AUC values presented were made more 
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reliable. AUC helps identify the variables that are individually associated with yellow rust infection. 

However, this does not address interactions between different variables that may create an 

environment conducive to potential off-season survival of pathogen and impact early infection at 

the tiller/boot-level.  

Classification Tree (CT):  

CT was applied to identify a small number of variables that serve as good predictors. It categorizes 

the observation data into smaller and homogeneous groups by repeating a binary splitting based 

on the influential predictors (Hastie et al., 2009). This splitting aims to categorize the observation 

data, for example, in the case of yellow rust, into infected or not infected based on the influencing 

factors such as temperature and precipitation. Initially, the data categorized as infected may contain 

some uninfected observations, but this ‘impurity’ minimizes as splitting is repeated multiple times 

to better categorize the classes. The resulting summary of all the splitting forms a tree-like shape. 

Practically, CT is a modeling process on its own, but this was used purely for variable exploration 

and reducing the number of potential environmental variables in this part of the analysis. CT was 

undertaken using the ‘cart’ package in R.  

The variables were analyzed group-wise: maxT, minT, meanT, prc_mm, daysr, ndvi, and terrain 

(DEM, slope, aspect). The top-performing variables from each variable group were put together 

to find out the combination variables that achieved the lowest relative errors, and cross-validation 

errors were grouped as the variables most associated with the rust and forwarded to the next step 

to address RQ1.b.   

 

3.5.2 Finding the most critical variables (RQ1.b) 

The study applied General Additive Model (GAM) and Boosted Regression Model (BRT) to 

understand more about the critical variables associated with the early yellow rust incidence. 

Datasets were randomly split into training data (70%) and test data (30%) using the R 

package ‘caret’. This part of the analysis essentially builds models that explain the interaction of 

different environmental variables related to yellow rust incidence. The best performing models 

were forwarded to address the subsequent Research Question 2.  

GAM 

GAM (Hastie et al., 2009) is a progression of the Generalized Linear Model (GLM, Nelder and 

Wedderburn (1972)) which had considered the response variable that are not-normally distributed. 

GAM enhances GLM by considering nominal/categorical and ordinal predictors in their 

characteristics and maximizing a model's prediction capacity (Ravindra et al., 2019). While the 

ordinary regression model fits simple least-squares as function, GAM model fitting is based on the 



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 23 

‘smoothing’ function using a scatterplot smoother such as cubic smoothing spline or kernel 

smoother (Hastie et al., 2009). The smoothing function takes into consideration the nature of 

predictive variables that are not normally distributed. Thus, GAM is a flexible statistical method 

for identifying and characterizing nonlinear regression effects  (Hastie et al., 2009). 

With a random variable 𝑌 and a set of the predictor variable 𝑋1, 𝑋2, … , 𝑋𝑝, a regression model 

estimates 𝐸(  𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝). The formula for a traditional regression model like GLM is 

expressed as: 

𝐸(  𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝) =  𝛽0 + 𝛽1𝑋1 + … +  𝛽𝑝𝑋𝑝 

where 𝛽0, 𝛽1, … , 𝛽𝑝 are generated by least squares. Meanwhile, GAM assumes the following 

formula:  

𝐸( 𝑌 | 𝑋1, 𝑋2, … , 𝑋𝑝) =  𝑠0 + ∑ 𝑠𝑗(𝑋𝑗)

𝑝

𝑗=1

 

where 𝑠𝑗(. )’s are smooth functions that are estimated through a scatterplot smoother. The details 

of how scatter smoothers work are available by Hastie and Tibshirani (1986). 

To the best of the author’s knowledge, GAM has not been applied in yellow rust modeling. 

However, this has been widely used in many other fields, such as in plant ecology (Yee and Mitchell, 

1991), species habitat study (Suárez-Seoane et al., 2002), and environmental health (Bouzid et al., 

2014).  The R package ‘mgcv’ was used in GAM analysis. GAM has a function called ‘smoothing’ or 

‘splines’ to realize flexible non-linear expression. In R. package ‘mgcv’, this smoothness can be 

defined by the user or automatically suggested by setting the method with Restricted Maximum 

Likelihood (REML).  

Some of the methods to understand model convergences are: 

i. summary() for model statistics to check parametric coefficient and significance of smooth 

terms 

ii. plogis() to transform the model outcome to the log-odds scale to assess the extent of the 

model’s prediction of a positive outcome (i.e., yellow rust infection). 

iii. plot() to visualize the partial effect of the concerned variables with a confidence interval.  

iv. gam.check() to check the random distribution of residuals for each predictor variable. “Basis 

function” (this influences the smooth parameter) for variables is adjustable to improve the 

model performance.     

v. Collinearity and Concurvity check 
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Collinearity is the correlation among the predictors that potentially influence the model 

convergence. ggpairs() in the ‘GGally’ package was used to plot the variable interactions. 

Variance Inflation Factor (VIF) calculation was also conducted to decide which variable to 

drop.  

Concurvity is when one variable smooth term in GAM is approximated by one or more other 

variable smooth terms. Even though the variables are not collinear, concurvity can occur. The 

function concurvity() was used to check and rule out potential concurvity.  

  

BRT 

BRT (Friedman, 2001) is a combination of statistics and machine learning, guided by an algorithm 

to achieve the most optimal model (Youssef et al., 2016). BRT’s rule sets are two-fold: 

“classification/regression trees” to find the most influential predictors; and “boosting” to synthesize many 

possible models to build the best performing model (Elith et al., 2008, Schapire, 2003).  

There are four parameters that need to be set and adjusted to maximize the resulting model 

performance.  

i. learning rate (lr): signifies the contribution of each tree to the final fitted model;  

ii. tree complexity (tc): the number of total nodes (split point) in the tree;  

iii. number of trees (nt): the result of lr and tr; and  

iv. bag fraction (bf): the portion of data to be used for each iteration.  

 

BRT can be applied to data that is not-normally distributed, and it is widely used in ecological and 

environmental model building (Naghibi et al., 2016, Pittman and Brown, 2011, Zellweger et al., 

2013). BRT can select only relevant variables and ignore non-informative predictors. However, as 

Elith et al. (2008) point out, for small datasets where redundant predictors may degrade 

performance by increasing variance, it is better to simplify the list of predictor variables in advance 

instead of putting them all at once into the model.  Thus, only the pre-selected list of predictor 

variables from RQ1.a was used in BRT. The R package ‘dismo’ and ‘gbm.step’ were used in BRT 

analysis.  

In R, gbm.step() uses cross-validation (default k=10) to estimate the optimal number of trees. 

Considering the relatively small sample size (number of observations) used in the analysis, tree 

complexity (tc)  2 and learning rate (lr) 0.001 were used, unless a smaller lr yielded better models. 
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Model statistics in summary() and gbm.plot() report were examined to understand the relative 

importance/influence of key environmental variables. Tree Complexity (tc) and Learning Rate (lr) 

were as necessary to achieve better model statistics.  

gbm.interactions() was used to understand the interactions between the critical environmental 

variables, and gbm.perspec() was used to visualize the interactions. 

 

3.5.3 Assessing Model Predictive Capacity (RQ2) 

Research Question 2 (RQ2) examines how reliably the RS-based environmental predictors can 

project yellow rust incidence among young wheat. The trained GAM and BRT models were used 

to predict yellow rust incidence using the test data (30% of observations). The R. 

package ‘mgcv’ and ‘gbm’ were used to conduct prediction.  

The output of model prediction is in the form of probability with the values ranging from 0 to 1. 

This value was classified into 0 (probability < 0.5) and 1 (probability >= 0.5) in order to compare 

with the actual incidence of yellow rust.  

A confusion matrix (Figure 11) was created with the prediction and actual observation.  

Prediction   

0 1   

True 
Negative 

(TN) 

False Positive 
(FP) 0 

A
ctu

al O
b
serv

atio
n

 

False 
Negative 

(FN) 

True Positive 
(TP) 1 

Figure 11: Confusion Matrix 

 

 

On R., a function ModelPerformance() was used to examine the key statistics to assess the GAM and 

BRT models' predictive performance. These statistics include Accuracy, Kappa Statistic, Sensitivity, 

Specificity, and Precision. 

a. Accuracy is the ratio of correct predictions calculated by the true positive (TP) and true 

negative (TN) divided by the total number of events. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
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b. Kappa Statistic (Cohen, 1960): the extent to which prediction and observations agree 

with the actual yellow rust incidence 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =  
𝑃𝑜 −  𝑃𝑒

1 −  𝑃𝑒
 

where 𝑃𝑜  is the relative observed agreement, and𝑃𝑒  is the hypothetical probability of 

chance agreement.  

𝑃𝑜 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑒 =  (
𝑇𝑁 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗

𝑇𝑁 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 )

+ (
𝐹𝑃 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗

𝐹𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ) 

 

           

 

 

 

 

 

c. Sensitivity is a true positive (TP) rate. It measures the rate of actual yellow rust cases 

corrected (predicted yellow rust case is an incidence in the observation) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

d. Specificity is a true negative (TN) rate. It measures the rate of the negatives correctly 

predicted (the predicted no-yellow rust case is the no-yellow rust in the real observation 

data) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

e. Precision is how accurately the model predicted the positive cases 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

Kappa statistic Level of agreement 

≦0 no agreement 

0.01 – 0.20 none to slight agreement 

0.21 – 0.40 fair agreement 

0.41 – 0.60 moderate agreement 

0.61 – 0.80 substantial agreement 

0.81 – 1.00 almost perfect agreement 
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3.5.4 Model Extrapolation over Oromia Region 

The models with good predictive performance were used to extrapolate the yellow rust 

probabilities (in the scale of 0 – 1) over wider areas of interest. The maps were generated for 2016, 

2017, and 2018, respectively. The key environmental variables from the identified dekad period 

(for dynamic variable) were re-generated as raster layers from the respective sources (AgER5, 

CHIRPS ProbaV NDVI, and STRM DEM) of RS products. The R scripts used in the extrapolation 

are available in Appendices. 
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4. Results 

4.1 Understanding Oromia’s Wheat Growing Environment 

In Ethiopia, wheat is generally grown at a high elevation of around 1500 – 3200 meters above sea 

level in cool weather, and sowing happens during Meher, which is the primary crop growing season 

with rain lasting from June till September, and harvesting is from October through January (USDA, 

2015). The period between wheat harvest and sowing (i.e., from March to May) is a minor growing 

season called Belg with lesser rain, suitable for growing potatoes and yams (Alemayehu et al., 2012, 

Mohammed et al., 2020). 

Figure 12 shows the average maximum/minimum temperature and precipitation (mm) across all 

the rust observation locations throughout the three years from 2016 to 2018. Meher season (June 

to September) generally shows an increased amount of rain with moderate temperatures ranging 

from 10 to 22℃. Rainfall drops drastically from around October till January, which is the season 

for harvesting. The minimum temperature during this season drops, but stays above 0℃, while the 

maximum temperature is slowly on the rise, which leads to an increased day-night temperature 

difference. It is also noticeable that every year there is a rise of rainfall in April-May, right before 

the Meher season (i.e., the end of Belg season).     

Figure 12: Temperature (max, min) and precipitation at the rust observation points in Oromia 

2016–2018 
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The map below (Figure 13) represents the yellow rust observation locations in the Oromia region 

with elevation spanning from 1620 to 2978 meters above the sea level.   

 

 

Figure 13: Distribution of yellow rust observation points in Oromia Region 



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 31 

According to the yellow rust observation data from CIMMYT, there is a wide variety of wheat 

cultivars grown in the region. About one-quarter of them are Digelu or Hidase variety (Figure 14).  

 

Figure 14: Proportion of different wheat varieties grown in Oromia Region 

  

 

The table below shows the distribution of yellow rust observation data across different periods in 

dekad. The data used in this study are limited to the ones recorded at the tiller and boot stage of 

wheat growth, and most of the observations were recorded in August and September. Based on 

the growth stage and observation time, the planting period for most of the wheat field observed is 

anticipated somewhere between June and August, depending on the location. This trend concurs 

with major crop growing Meher season in Ethiopia. 

 

Table 6: Distribution of rust observation across dekad periods 

Month April May June July August September  

Date 1-
10 

11-
20 

21-
30 

1-
10 

11-
20 

21-
31 

1-
10 

11-
20 

21-
31 

1-
10 

11-
20 

21-
31 

1-
10 

11-
20 

21-
31 

1-
10 

11-
20 

21-
30 

 

Dekad 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Total 

Tiller           1  71 10 36 10 31  159 

Boot   1        3  12 10 51 5 15 2 99 

        Anticipated period of  pre-planting/planting season         
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Earlier, in the preparation of dynamic environmental variables (precipitation, temperature, and 

NDVI), variables were prepared for the dekad period from 10 (April 1-11) to 27 (September 21-

31). Considering the distribution of rust observations in Table 6, most of the locations are entirely 

in the wheat-growing season from August (dekad 22). As this study's focus is on pre-season 

environmental conditions, eventually, dynamic environmental variables were considered only up 

to dekad 21. Dekad 21 is the end of July and possibly still a pre-planting season for some locations 

for which yellow rust cases were recorded in late August and September. It reduces the initially 

prepared 111 environmental variables to 74 variables.   

 

Overwintering or Oversummering? 

Based on the rust observation data and the knowledge of general wheat-growing practice in 

Ethiopia, it seems that the Oromia region does not grow so-called winter wheat, which is usually 

sown during autumn to yield over the following spring. Temperatures maintain above 0℃ and 

below 30℃ throughout the year as well as during the off-season. 

 

Past studies examined pathogen termination temperature. At the low-end, under a temperature as 

low as -4℃ without snow cover, the pathogen can perish together with the host plants (Zadoks, 

1961). At the high-end, it is known that urediniospores diminish at the temperature of more than 

25℃ for a certain number of days (Dennis, 1987). Tollenaar and Houston (1967) give a variation 

of temperatures to be considered as pathogen termination points as a 10-day average minimum 

temperature of 22.3℃ or 10-day average maximum temperature of 32.4℃.  

 

The temperature trend in the Oromia region suggests that the climate is never too cold or too hot 

for yellow rust to die out, and rather conducive temperature range for the pathogen to oversummer 

unless there are other conditions to terminate the infection. Meanwhile, in Ethiopia, the 

term oversummering may be somewhat confusing because their off-season (i.e., February to 

May/June) is not summer as the term is used in the context of Europe or North America. This 

season is a combination of the post-harvesting period, Belg (short rain period), and early-Meher 

(primary rain season). The study considered this as off-season survival of pathogen instead of using the 

term oversummering to avoid such confusion. 

 

4.2 Association between rust incidence and pre-season environmental condition 

In this section, the results of variable exploration are introduced for each of the three data sets 

below.  

a. All observations (data frame: mydata) 

b. Only tiller-level observations (data frame: mydata.till) 
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c. Observations from Climate Zone B (data frame: zone.b) 

 

a.  All observations (data frame: mydata) 

Figure 15 ranks the variables with univariate Area Under ROC Curve (AUC) scores of more than 

0.55. The pattern observed here is that rain-based variables (i.e., precipitation and number of rainy 

days) dominate higher AUC scores above 0.6. NDVI and temperature variables seem to have less 

strong univariate association compared to that of rain variables. Terrain characteristics such as 

slope and aspect show some relevance as an individual variable related to yellow rust cases.  

 

The result of Classification Tree (CT)-based analysis was a small set of multi-variables to classify 

yellow rust incidence at the tiller and boot level. A total of 11 variables were selected as a set of 

multi-variables associated with yellow rust among young wheat. These are: 

- Number of days during dekad 20 and 21; 

- Precipitation during dekad 10 and 14;  

- Maximum temperature from dekad 19;  

- Minimum temperature from dekad 14;  

0.5 0.6 0.7

maxT_13
ndvi_17
maxT_12

ndvi_13
ndvi_19

prc_mm_17
prc_mm_11

ndvi_18
daysr_11

prc_mm_12
prc_mm_18

aspect
prc_mm_13
prc_mm_21
prc_mm_19

daysr_10
ndvi_10

prc_mm_10
daysr_19
daysr_16
daysr_18
daysr_17

slope
prc_mm_15
prc_mm_16

daysr_14
daysr_20
daysr_21

prc_mm_20
daysr_15

AUC (ALL OBSERVATIONS)

Figure 15: AUC values (all observations) 
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- NDVI from dekad 10, 14, and 20;  

- Elevation (DEM); and  

- Aspect  

The table below highlights the selected variables with variable importance (values highlighted) 

corresponding to the dekad period.    

 

Table 7: CT selected variables and variable importance (all observations) 

 
 

Dekad period corresponding to calendar month/date 

 
 

April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            

                    

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           4  83 20 87 15 46 2 

Dynamic 

variables 

maxT          11         

minT     8              

meanT                   

prc_mm 8    8              

daysr           5 16       

ndvi 6    12      9        

                    

Static 

variables 

DEM 6                  

slope 10                  

aspect 1                  

 

 

Figure 16 below shows the 11 environmental variables' interactions that achieved the best 

classification result (relative error 0.39, cross-validation error 0.76, and cross-validation standard 

deviation 0.076). As briefly explained in the methodology section, CT analysis was not for modeling 

but to explore the variables and narrow down the number of influential variables.   
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Figure 16: Classification Trees (all observations)
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b. Tiller-level dataset (mydata.till) 

In the tiller-only data set, the rain-based variables were again more associated with the yellow rust 

cases (Figure 17). It is particularly the case for the variables with an AUC score above 0.6.  

Slope stands out in the tiller-level dataset as highly associated univariate with the early incidence of 

yellow rust. More NDVI variables appear to have an AUC score of more than 0.55 compared to 

the previous data set (all-observation data set). There are no temperature-related variables that 

showed a significant univariate association with a positive rust observation.     

 

Meanwhile, CT analysis identified a combination of 8 variables that are a mixture of high-AUC 

variables and low-AUC variables from univariate analysis. Those are: 

- Number of rainy days in dekad 21; 

- Maximum temperature during dekad 12; 

- Minimum temperature during dekad 11; 

0.5 0.6 0.7

prc_mm_11

ndvi_16

daysr_12

daysr_11

ndv i_21

ndv i_17

prc_mm_12

daysr_19

ndv i_18

ndv i_19

ndv i_11
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ndv i_20

prc_mm_19

prc_mm_14

daysr_16

prc_mm_17

daysr_20

daysr_17

prc_mm_16

daysr_18

prc_mm_20

prc_mm_15

prc_mm_21

ndvi_10

daysr_10

prc_mm_10

prc_mm_18

daysr_15

daysr_21
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daysr_14

AUC (TILLER-ONLY DATA)

Figure 17: AUC values (tiller-only) 
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- Mean temperature during dekad 11; 

- NDVI during dekad 19;   

- Slope; 

- Elevation (DEM); and 

- Aspect 

 

The matrix below highlights the selected variables with variable importance (values with highlight) 

corresponding to the dekad period.    

 

Table 8: CT selected variables and variable importance (tiller-only) 

 
 

Dekad period corresponding to calendar month/date 

 
 

April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            

                    

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           1  71 10 36 10 31  

Dynamic 

variables 

maxT   21                

minT  9                 

meanT   19                

prc_mm                   

daysr            15       

ndvi          19         

                    

Static 

variables 

DEM 10                  

slope 10                  

aspect 9                  

 

The Classification Tree (Figure 18) shows that the eight variables' interaction is less complex than 

the all-observation data set. The splits made by max_12 and min_11 (right side of the tree) show 

an interaction of maximum temperature and minimum temperature in April. The areas where the 

temperature ranges from a minimum of 15℃ and a maximum of 22℃ had a clear association with 

yellow rust cases later on at tiller-level growth. One of the critical variables, daysr_21, classified 

13% of the data into ‘no yellow rust incidence’ when there are more than eight days of rainy days 

during the dekad.     
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Figure 18: Classification Trees (tiller-only) 
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c. Observations from the Climate Zone b (data frame: zone.b) 

Climate Zone b shares the similar characteristics of the propagation of vegetation in the region 

(NDVI). The Figure 19 shows those variables scored AUC more than 0.5. In this dataset, three 

top variables had AUC score more than 0.7 and those are precipitation in dekad 18 and dekad 19; 

and the number of rainy days during dekad 15. While rain-based variables again show more 

substantial univariate relevance, the ranking also indicates that several NDVI-based variables and 

terrain-based variables also have higher AUC values (>0.6), unlike the other two data sets.  

  

 

 

0.5 0.6 0.7 0.8
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Figure 19: AUC values (Climate Zone b) 
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The result of CT analysis was a combination of 3 variables: 

- Precipitation during dekad 16; 

- Precipitation during dekad 18; and 

- Aspect 

 

The table below highlights the selected variables with variable importance and corresponding to 

the dekad period. It indicates that the precipitation during dekad 18 has the highest variable 

importance, followed by the precipitation during dekad 16 and aspect.  

Table 9: CT selected variables and variable importance (Climate Zone b) 

 
 

Dekad period corresponding to calendar month/date 

 
 

April May June July August September 

 10       20        30      10      20      31      10     20      30      10     20      31      10       20      31      10      20            

 
                   

  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

# of rust observation           1  38 5 47 1 19  

Dynamic 

variables 

maxT                   

minT                   

meanT                   

prc_mm       37  45          

daysr                   

ndvi                   

                    

Static 

variables 

DEM                   

slope                   

aspect 18                  

 

 

 

The tree generated from this analysis (Figure 20) shows the interaction of the three variables 

selected. The tree splits made by the two strong precipitation variables indicate that the rainfall 

above a certain amount has an association with the absence of yellow rust infection.  
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Summary of variable exploration 

Higher relevance of rain-based variables with yellow rust incidence was observed in the simple 

evaluation of univariate Area Under ROC Curve (AUC) scores across all data sets. The same was 

observed in the variable importance under the Classification Tree (CT) analysis to identify 

combinations of variables associated with the yellow rust incidence. The larger the number of total 

observations, the more the associated variables were identified across a broad spectrum of 

environmental variables. For example, the dataset mydata (n=258), which entails all the tiller-boot 

level yellow rust observations from the Oromia region from 2016 to 2018, has 11 variables that 

seem highly associated with the rust cases. Tiller-only data set, mydata.till (n=159), had 8 multi-

variables suggested. Climate zone-based dataset, Zone.b (n=111), had only three variables highly 

associated with the rust. The set of multi-variable identified was forwarded to the next step to 

analyze the most critical parameters further.    

 

 

4.3 Most Influential Environmental Parameters  

The previous section selected a small number of multi-variables as rust associated off-season 

environmental variables. Based on these variables, GAM and BRT models were fit to understand 

the most influential yellow rust inducing environmental parameters and their interactions. This 

Figure 20: Classification Trees (Climate Zone b) 
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section addresses the Research Question 1.b (RQ1.b) and uses 70% of the total observations in 

each data sets described below.  

 

1. All observations (mydata, training n=182) 

2. Only tiller-level observations (mydata.till, training n=112) 

3. Observations from Climate Zone B - tiller and boot mixed (zone.b, training n=79) 

 

a. All observations (data set: mydata)  

The training data set with 182 observations were used in fitting GAM and BRT. In the GAM 

model, the approximate significance of smooth terms indicates that the number of rainy days in 

dekad 21 (daysr_21) and maximum temperatures in dekad 19 (maxT_19) are the most critical 

variables. They are followed by slope, altitude (DEM), and precipitation during dekad 14 

(prc_mm_14).   

 

> summary(gam.mydata2) 
Family: binomial  
Link function: logit  
Formula: 
rust ~ s(maxT_19) + s(prc_mm_10) + s(prc_mm_14) + s(daysr_21) 

+ s(ndvi_10) + s(DEM) + s(slope) 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   0.6720     0.1994    3.37 0.000752 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Approximate significance of smooth terms: 
               edf Ref.df Chi.sq p-value    
s(maxT_19)   1.000  1.000  8.689 0.00320 ** 
s(prc_mm_10) 2.674  3.272  4.830 0.22636    
s(prc_mm_14) 2.590  3.273  6.754 0.09672 .  
s(daysr_21)  2.968  3.700 14.597 0.00546 ** 
s(ndvi_10)   1.000  1.000  1.962 0.16137    
s(DEM)       1.000  1.000  2.718 0.09919 .  
s(slope)     1.000  1.000  4.586 0.03224 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
R-sq.(adj) =  0.285   Deviance explained = 27.9% 
-REML = 98.599  Scale est. = 1         n = 182 

 

 

Partial effect plots (Figure 21) show the effect of the respective predictor's smooths that makes up 

the model. The x-axis of each plot is the value range of the respective predictor. The y-axis indicates 

the probability of rust incidence occurring according to the fitted model on the scale of 0 to 1. The 

short, sometimes dense, tick marks on the x-axis are from the observations, and the circles around 

the smooth lines are partial residuals. The gray shaded area indicates a 95% confidence interval, 

and the narrower shade indicates improved confidence. 
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Figure 21: GAM Partial Effect Plot (all observations) 

 

The partial plot for maximum temperature in the early-July (dekad 19) shows that the probability 

of yellow rust incidence increases when the temperature is warm about 20℃ or above up to about 

28℃. Two precipitation periods have contributed to the model with a different smooth line. One 
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is the precipitation during early April (dekad 10), and the other is the precipitation during the 

middle of May (dekad 14).  The scatter plot for the number of rainy days during late July (daysr_21) 

shows that more than six days of rainy days contributed to a drastic reduction of the probability of 

rust incidence.  

The two static environmental parameters, altitude (DEM) and slope, show that the probability of 

early-stage yellow rusts incidence tends to increase in the places with milder slope and higher 

elevation.  

Finally, this model's only NDVI parameter comes from early April (ndvi_10, upper-left corner). 

The scatter plot shows that the NDVI (DN value) between 60 and 90 is related to yellow rust 

incidence with a higher confidence interval (narrow gray shadow area).  

The boxplot below (Figure 22) shows the trend of NDVI in this data set. Early April contributed 

to this model, and this is when the vegetation indices are at the lowest among the dekad periods. 

  



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 45 

 

Figure 22: Box chart of NDVI trend (all observations) 
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Meanwhile, in the BRT model, the number of rainy days in late-July (daysr_21) had the highest 

variable importance. This is followed by slope, precipitation during early April (prc_mm_10), 

NDVI during mid-May (ndvi_14), the maximum temperature during early-July (maxT_19), and 

elevation (DEM).   

 

 

> summary(yrust.tc2.lr001.3) 

var    rel.inf 

daysr_21  19.391407 

slope  18.621347 

prc_mm_10  17.009422 

ndvi_14  15.945774 

maxT_19  14.345800 

DEM   10.448235 

 

 
Figure 23: BRT optimal number of trees (all observations) 

The black curve line is the mean, and dotted curves indicate one standard error for holdout deviance. The 

red horizontal line (minimum of the mean holdout deviance) and the green vertical line crosses at the number 

of trees at which minimum deviance occurs.   

 

 

There are two noteworthy interactions between the key variables. Those are the interaction among 

altitude (DEM), slope, and the number of rainy days in dekad 21. Figure 24 visualizes the most 

critical variable interaction, which is between altitude and slope. It indicates a higher probability of 

early-stage rust infection (vertical axis in the 3D figure) at an elevation higher than 2400m. The 

probability is even higher when combined with a slope of less than 10 degrees.   
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The interaction between altitude and daysr_21 (Figure 25) indicates a higher probability of rust 

incidence at tiller at the places where elevation is more than 2400m with less than seven days of 

rain during the off-season period of around 21-31 July. 

 

Figure 25: BRT variable interaction between altitude and 

daysr_21 (all observation) 

Figure 24: BRT variable interaction between altitude and slope 

(all observation) 
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b. Tiller-level observations (data frame: mydata.till) 

The test data set with 112 observations were used to fit GAM and BRT for tiller-level observation 

data.  

The best performing GAM model was based on the mix of variables the number of rainy days 

during end-July (daysr_21), the minimum temperature during mid-April (minT_11), aspect, slope, 

altitude (DEM), and NDVI at the beginning of July (ndvi_19).  

 

> summary(gam.tiller) 
Family: binomial  
Link function: logit  
Formula: 
rust ~ s(daysr_21) + s(minT_11) + s(aspect) + s(slope) + s(DEM) 

+ s(ndvi_19) 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  0.01917    0.26716   0.072    0.943 
Approximate significance of smooth terms: 
              edf Ref.df Chi.sq p-value    
s(daysr_21) 3.019  3.791  8.437 0.07825 .  
s(minT_11)  4.143  5.138  8.612 0.13311    
s(aspect)   1.000  1.000  9.649 0.00189 ** 
s(slope)    1.048  1.093  4.262 0.05010 .  
s(DEM)      1.000  1.000  1.612 0.20425    
s(ndvi_19)  2.493  3.149  2.599 0.49131    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
R-sq.(adj) =  0.384   Deviance explained = 38.6% 
-REML = 59.683  Scale est. = 1         n = 112 

 

 

From the summary report, the most significant smooth term is the aspect. Its partial plot (Figure 

26) below shows that the aspect of 10-150 degrees (ranging from North-East to South-East) has a 

higher probability of early-stage yellow rust incidence. The number of rainy days during dekad 

21(upper-left corner of Figure 26) and slope are also significant in this model, and they exhibit 

similar characteristics as the other GAM model fit with the data set with all observations. The 

number of rainy days of more than six days during this period drastically decreases the probability 

of rust and a higher probability for the wheat grown on a milder slope.     
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Figure 26: GAM Partial Effect Plot (tiller-only) 

 

It is observed from the width of the partial plots' confidence interval that the static variables such 

as aspect, slope, and elevation (DEM) tend to show a more distinct relationship with yellow rust 

incidence than the dynamic variables such as temperature and NDVI.     

 

In the BRT model for tiller-only data, the same variables with higher significance as the GAM 

model (i.e., aspect, daysr_21, slope) play the top most significant variables.   

 

 

> summary(yrust.tc2.lr.001.c) 

var    rel.inf 

aspect  25.335903 

daysr_21  22.798807 

slope  15.913423 

maxT_12  14.615917 
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ndvi_19  14.203403 

DEM   7.132548 

 

 

 

The BRT model for tiller-level observation yielded about 3200 trees as the tree's optimal size, and 

the model identified two critical variable interactions. One is between maxT_12 and daysr_21, and 

the other one is between daysr_21 and aspect. 

 

 

Figure 28: BRT variable interaction between maxT_12 and daysr_21 

(tiller-only) 

Figure 27: BRT optimal number of trees (tiller-only) 
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Figure 28 is a 3D visualization of the most critical variable interaction between maximum 

temperature in dekad 12 and the number of rainy days in dekad 21. While the general trend is that 

a high number of rainy days lowered the probability, some probabilities variations depend on the 

level of maximum temperature.  

 

Another 3D variable interaction between aspect and number of rainy days during dekad 21 (Figure 

29) shows that the areas with less than 50 degrees aspect (North-East direction) receiving less than 

five days of rain during this period had the highest probability of yellow rust.   

 

 

 

 

 

 

 

 

 

 

Figure 29: BRT variable interaction between daysr_21 and aspect 

(tiller-only) 
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c. Observations from Zone b - tiller and boot mixed (data frame: zone.b) 

Zone b training data with 79 observations were used to fit GAM and BRT. Due to the small volume 

of training data, the BRT model did not fully converge in this data set. Thus, this section presents 

only the GAM model outcome.  The resulting GAM model had precipitation during mid-June 

(prc_mm_18) and aspect as the only and most important variables.   

 

> summary(gam.zoneb) 

Family: binomial  

Link function: logit  

Formula: 

rust ~ s(prc_mm_18) + s(aspect) 

Parametric coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   1.4357     0.3357   4.277 1.89e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

               edf Ref.df Chi.sq p-value    

s(prc_mm_18) 1.000  1.000  9.084 0.00258 ** 

s(aspect)    3.211  3.997 10.952 0.02622 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.256   Deviance explained = 25.8% 

-REML = 37.248  Scale est. = 1         n = 79 

 

> plogis(coef(gam.zoneb)[1]) 

(Intercept)  

  0.8077877  

 

 

The partial effect plots (Figure 30) indicate that the accumulated precipitation in dekad 18 (left) 

less than 60mm has a higher probability of yellow rust among young wheat later during the season. 

Further, the places with aspects from 30 to 250 degrees (North-East ~ South ~ South-West) show 

a higher probability. 

Figure 30: GAM Partial Effect Plot (zone.b) 
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4.4 Prediction and Accuracy 

In the previous section, several yellow rust models were fitted based on the off-season 

environmental conditions. One GAM model and one BRT model was trained for the data set with 

all-observations (n=258) and tiller-only data set (n=159). For the Climate Zone b data set (n=111), 

only the GAM model was trained. The models’ predictive capacity was assessed with the 30% test 

data, based on accuracy, kappa statistics, precision, sensitivity, and specificity. Together with the 

confusion matrix, the statistics were summarized in the table below.  

 

Table 10: Confusion matrix and model predictive performance statistics 

Data all observation tiller-only climate zone b 

Observation n = 258 n = 159 n = 111 

Model type GAM BRT GAM BRT GAM 

Confusion 

Matrix 

FN    9 

FP   17 

TN   11 

TP   39 

FN    7 

FP   15 

TN   13 

TP   41 

FN    5 

FP    8 

TN   14 

TP   20 

FN    6 

FP    9 

TN   13 

TP   19 

FN    4 

FP    3 

TN    5 

TP   20 

Accuracy 

Kappa 

Precision 

Sensitivity 

Specificity 

0.6579 

0.2184 

0.6964 

0.8125 

0.3929 

0.7105 

0.3386 

0.7321 

0.8542 

0.4643 

0.7234 

0.44 

0.7143 

0.8 

0.6364 

0.6809 

0.3538 

0.6786 

0.76 

0.5909 

0.7812 

0.44 

0.8696 

0.8333 

0.625 

 

 

Overall, the Climate Zone b GAM model performed the best at a 78% accuracy level with Kappa 

0.44 (moderate agreement). The tiller-only GAM model achieved a 72% accuracy level and Kappa 

0.44 (moderate agreement). Finally, the all-observation BRT model performed at a 71% accuracy 

level with Kappa 0.34 (fair agreement). The models performed better in predicting positive yellow 

rust cases than in predicting no-yellow rust cases. It is observed from the higher values for 

sensitivity (true-positive rate) than specificity (true-negative rate).  

  

4.5 Model Extrapolation 

Based on the predictive capacity assessed in the previous section, the GAM model for tiller-only 

observations and Climate Zone b were extrapolated over a wider area to visualize the probability 

of yellow rust incidence at an early stage of wheat growth.  
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Figure 31 below represents the probability of yellow rust incidence at the early stage of wheat 

growth (tiller-level) over the Oromia Region. The tiller-only GAM model (accuracy 72%, Kappa 

0.44) was used for this. The probability is expressed on the scale of 0-1, and the value closer to 1 

indicates a higher probability of yellow rust infection.  

Figure 31: Yellow rust probability maps with the tiller-only GAM model 
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Similarly, Figure 32 is an extrapolation of the zone.b GAM model (accuracy 78%, Kappa 0.44) 

over the Climate Zone b. The higher probability of yellow rust incidence is represented by orange 

and red color.  

Figure 32: Yellow rust probability map for Climate Zone based on the zone.b GAM model 
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5. Discussion 

This study examined RS-based environmental conditions in Oromia’s wheat growing area during 

the off-season and their relationship with early-stage yellow rust incidence. The study is based on 

the assumption that yellow rust survives in the field during the off-season after every harvesting, 

contributing to early local infection of young wheat, which increases the risk of repetitive yellow 

rust epidemics in the field. This section presents some reflections on the results of the analyses in 

line with the research questions and recommendations for future research.   

 

Rainfall as a critical parameter 

The variable exploration and model training process demonstrated higher importance of rain-based 

variables during the off-season than temperature, which is often regarded as the critical parameter 

in the past yellow rust modeling and exploration of pathogen survival during the off-season 

(Dennis, 1987, Tollenaar and Houston, 1967). The models for all-observation data (n=258) and 

tiller-observation data (n=159) indicated that more than 6-7 days of rainy days in late July decreased 

the probability of rust at the tiller and boot stage. Similarly, the model for the Climate Zone b 

observation data (n=111) indicated higher probabilities of yellow rust incidence in the places 

rainfall was less at the end of June. This trend recalls that long periods of rain are typically not 

conducive to the survival of rust during the off-season as it washes the spores from the plants, and 

low-placed infected leaves can be covered by mud, hence terminating the pathogens (Zadoks and 

Bouwman, 1985). In the Oromia region, maximum and minimum temperatures tend to remain at 

around 20-27℃ and 3-13℃, respectively, throughout the off-season. As per the epidemiological 

studies conducted in the past, these temperatures are not hot or cold enough to terminate the 

pathogens and provide a stable conducive environment for pathogens' survival. Under such 

conditions, it is possible that rainfall stood as the critical determiner and the parameter that brings 

the impact of off-season rust survival on the following wheat season in the Oromia region.    

 

How early is early enough? 

The periods that are deemed to be essential for the fitted models are June and July. These months 

are the beginning of Meher, the primary rain season. Considering the dates of rust observations 

concentrated around August and September (tiller/boot growth level), June and July are estimated 

as the period right before or around sowing could happen at many locations. In other words, 

monitoring weather conditions toward the end of the off-season instead of right after harvesting 

could lead to an effective early warning of the potential impact of off-season survival of yellow rust 

pathogen on young wheat plants at the beginning of a new wheat season. 

 



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 

 58 

 

 

Role of static environmental characteristics   

The rust observations used for this study are located at a relatively higher altitude between 1620m 

and 2978m. According to Tollenaar and Houston (1967), off-season survival (in their study, 

oversummering) of yellow rust is less likely at the elevation below 1829m (6000ft) because of 

unfavorable summer temperatures at these altitudes. The models trained for all-observation data 

set and tiller-observation data set were featured partially by altitude (DEM) parameter and 

confirmed this trend by showing that rust probability increased as the altitude increased. What was 

unique about this study was the findings around the roles that other static terrain characteristics 

can play in modeling. For example, milder slope (less than 10 degrees) and aspect less than 200 

degrees (facing somewhere in the rage of North-East to South) increased the probability of yellow 

rust incidence in the new season. It triggers a thought around exposure to sunlight that may or may 

not influence prudence of pathogen survival on the host plants during the off-season.   

 

Strength of Models 

While the comparison of GAM and BRT as modeling method is not the focus of this study, 

applying different modeling methods helped confirm the most critical environmental variables and 

arrive at a better-performing model depending on the concerned data set. For the all-observation 

data set, BRT performed better with 71% accuracy. As for the tiller-observation data set and 

Climate Zone b data set, GAM models achieved 72% and 78 % accuracy, respectively. Looking at 

the Kappa statistics, the models for tiller-only observation data and the Climate Zone b data set 

are moderately reliable, while the all-observation data set requires further improvement. All the 

models were more robust in sensitivity than their specificity. This indicates that the models predict 

rust cases better than predicting no-rust cases. For this, the threshold to classify rust case or no-

rust (0.5) could be adjusted and see if the performance changes.  

 

One emerging hypothesis from the result of the predictive capacity assessment is that when the 

observation data is more homogeneous than not, the models could be performing better. For 

example, the tiller-observation data set is limited to the observations at the tiller growth stage, 

which are about 2-3 weeks from sowing. Boot-level observations have more time since the time of 

sowing, and they can be as matured as one month or even two months into the growing stage. The 

more mature the observed wheat is, the more possible it would be that the rust infection at that 

time is influenced by additional factors such as in-season rust propagation including longer-distance 

pathogen infection through the dispersal of urediniospores via wind. An early warning model based 

on off-season environmental conditions may be more effective if it limits the observations to tiller-

level rust cases.  
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Climate Zone b data performed the best in prediction. This data set has common climate 

conditions based on the vegetation trend. This model’s predictive capacity is the most promising 

among the three models. However, at this point, it is not clear if the model performed better 

(accuracy) because of the homogeneity of the data set (i.e., the same climate zone), or it was simply 

because the data set was small. At the time of data preparation, other Climate Zones were identified 

based on the NDVI profiles, but due to the number of observations available, they were not 

included in the modeling process. If a larger volume of observations is made available, climate 

Zone-based predictive models can be tested further to confirm its strength.    

 

Opportunities for RS-based ‘earlier’ warning of yellow rust 

The study demonstrated the possibility of using solely RS-based freely available data to analyze and 

model the relationship between yellow rust incidence on young wheat and off-season 

environmental conditions in Ethiopia’s Oromia region. Amid a limited number of country-specific 

studies on yellow rust epidemic prediction, this study's outcome highlights some opportunities that 

could pave the way for a functional earlier warning of yellow rust incidence in Ethiopia. 

 

For example, it would be more useful to understand what makes Moderate and High incidence at 

a very early wheat growth stage. Due to the smaller number of Moderate-High incidence in the 

sample data, this study's analysis was limited to binary categories. Similarly, yellow rust effects based 

on cultivar types would add values to modeling and make sense to understand the susceptibility of 

different wheat variety to yellow rust when certain environmental conditions are met. It was 

impossible to include this analysis in this study, as one-quarter of the observations did not have a 

cultivar name assigned to the observation. These aspects would be important in order to prioritize 

mitigation actions on the ground. If certain areas are prone to more severe incidence of yellow rust 

than the others, or if some cultivars seem to be more vulnerable to particular environmental 

conditions than the others, the resources and guidance should be directed to those areas with 

priority. With a larger volume of data beyond this study's time-scale, some of these additional 

analyses may be possible.   

 

In this study, the off-season period was identified based on the general crop calendar and the 

estimated from the date of rust observation recorded at the tiller and boot stage in the absence of 

planting date information. However, it is worth noting that planting dates could play an important 

role in better understanding the relationship between the pre-planting environmental conditions 

and early-stage yellow rust incidence.  

 

The modeling approach is one way to understand and analyze the complexity of the system of 

yellow rust infection. However, it requires strong empirical knowledge of how biology and 
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physiology behave in a particular set of environment. This study drew the knowledge of yellow 

rust epidemiology from the work of Zadoks (1961), Tollenaar and Houston (1967), Coakley and 

Line (1981), Dennis (1987),  Rapilly (1979), and Devallavieillepope et al. (1995). While their work 

is still referred to by many recent rust modeling initiatives, empirical studies around off-season 

survival of yellow rust are still very limited. Laboratory-based observation of actual survival of 

yellow rust on specific wheat cultivars in the Ethiopian highland would be highly beneficial for 

fine-tuning of the environmental parameters used in the modeling.  For example, in this, study the 

rain parameters were designed with the accumulation of precipitation and the number of rainy days 

(>3mm) over ten days. It may well be the number of consecutive rainy days over a much shorter 

or longer period of time that matters more.  

Similarly, the study was undertaken with the assumption that pathogen's off-season survival on 

volunteer wheat influences the local infection in the upcoming season. While some unique 

characteristics were found on this relationship through this study, some field studies of off-season 

rust survival and local infection in the context of the Oromia region would be beneficial to confirm 

or modify the model configurations. For example, the presence of volunteer wheat or alternative 

hosts and their yellow rust infection status in the wheat field could be monitored during the off-

season and linked with the nearby observation of yellow rust infection among young wheat in the 

upcoming wheat season.  
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6. Conclusion 

The research explored the possibility of earlier forecasting of yellow rust infection by looking at 

the RS-based environmental conditions unique to off-season survival of yellow rust in the Oromia 

region of Ethiopia. While the epidemiology of yellow rust typically indicates the importance of 

temperature in the survival of pathogens, the study highlighted additional factors of rain and terrain 

characteristics that play a key role in the relationship between the off-season environmental 

conditions and yellow rust incidence on young wheat in the next season. Climate zone-based 

observations and tiller-only observations generated moderately reliable predictive models 

(Accuracy > 70%, Kappa > 0.40). 

Further analysis is recommended using a larger volume of observation data to confirm the model's 

general strength and allow for more specific categorical analysis based on different severity of rust 

incidence and unique cultivars. Little is known or documented empirically about the ground reality 

of off-season yellow rust survival, especially in the context of Ethiopia. With such additional 

analysis and empirical knowledge, the approaches tested in this study could be enhanced for its 

practical application for RS-based early warning of yellow rust in the future.    

 

 

 

 

 

 

 

 

 

  



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 

 62 

 

  



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 63 

LIST OF REFERENCES 

AIME, M. C., MCTAGGART, A. R., MONDO, S. J. & DUPLESSIS, S. 2017. Chapter Seven - 

Phylogenetics and Phylogenomics of Rust Fungi. In: TOWNSEND, J. P. & WANG, Z. 

(eds.) Advances in Genetics. Academic Press. 

ALEMAYEHU, S., PAUL, D. & SINAFIKEH, A. 2012. Crop Production in Ethiopia: Regional 

Patterns and Trends Summary of ESSP II Working Paper 16,“Crop Production in 

Ethiopia: Regional Patterns and Trends”. International Food Policy Research Institute. 

Research Note 11. 

ALEMU, T. & MENGISTU, A. 2019. Impacts of Climate Change on Food Security in Ethiopia: 

Adaptation and Mitigation Options: A Review: Soil-Water-Plant Nexus. 

ALLEN-SADER, C., THURSTON, W., MEYER, M., NURE, E., BACHA, N., ALEMAYEHU, 

Y., STUTT, R., SAFKA, D., CRAIG, A. P., DERSO, E., BURGIN, L. E., 

MILLINGTON, S. C., HORT, M. C., HODSON, D. P. & GILLIGAN, C. A. 2019. An 

early warning system to predict and mitigate wheat rust diseases in Ethiopia. Environmental 

Research Letters, 14. 

BADEBO, A., STUBBS, R. W., VAN GINKEL, M. & GEBEYEHU, G. 1990. Identification of 

resistance genes to Puccinia striiformis in seedlings of Ethiopian and CIMMYT bread 

wheat varieties and lines. Netherlands Journal of Plant Pathology, 96, 199-210. 

BEEST, D. E. T., PAVELEY, N. D., SHAW, M. W. & VAN DEN BOSCH, F. 2008. Disease-

weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology, 

98, 609-617. 

BOUZID, M., COLÓN-GONZÁLEZ, F. J., LUNG, T., LAKE, I. R. & HUNTER, P. R. 2014. 

Climate change and the emergence of vector-borne diseases in Europe: case study of 

dengue fever. BMC Public Health, 14, 781. 

CHEN, X. & KANG, Z. 2017. Integrated Control of Stripe Rust. In: CHEN, X. & KANG, Z. 

(eds.) Stripe Rust. Dordrecht: Springer Netherlands. 

CHEN, X. M. 2005. Epidemiology and control of stripe rust [Puccinia striiformisf. sp.tritici] on 

wheat. Canadian Journal of Plant Pathology, 27, 314-337. 

COAKLEY, S. M. & LINE, R. F. 1981. Quantitative Relationships Between Climatic Variables 

and Stripe Rust Epidemics on Winter Wheat. Phytopathology, 71, 461-467. 

COAKLEY, S. M., LINE, R. F. & MCDANIEL, L. R. 1987. Predicting stripe rust severity on 

winter wheat using an improved method for analyzing meteorological and rust data. 

COHEN, J. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological 

Measurement, 20, 37-46. 

DE VALLAVIEILLE-POPE, C., BAHRI, B., LECONTE, M., ZURFLUH, O., BELAID, Y., 

MAGHREBI, E., HUARD, F., HUBER, L., LAUNAY, M. & BANCAL, M. O. 2018. 



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 

 64 

 

Thermal generalist behaviour of invasive Puccinia striiformis f. sp tritici strains under 

current and future climate conditions. Plant Pathology, 67, 1307-1320. 

DENNIS, J. I. 1987. Effect of high temperatures on survival and development of Puccinia 

striiformis on wheat. Transactions of the British Mycological Society, 88, 91-96. 

DEVALLAVIEILLEPOPE, C., HUBER, L., LECONTE, M. & GOYEAU, H. 1995. 

Comparative effects of temperature and interrupted wet periods on germination, 

penetration, and infection of Puccinia-Recondita F SP and P-Striiformis on wheat 

seedlings. Phytopathology, 85, 409-415. 

ECMWF. 2020. Agrometeorological indicators from 1979 to 2018 derived from reanalysis [Online]. Available: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-

indicators?tab=overview [Accessed 10 April 2020]. 

ELITH, J., LEATHWICK, J. R. & HASTIE, T. 2008. A working guide to boosted regression trees. 

Journal of Animal Ecology, 77, 802-813. 

ERIKSSON, J. 1894. Ueber die Specialisirung des Parasitismus bei den Getreiderostpilzen, G. Borntraeger. 

EVERSMEYER, M. G. & KRAMER, C. L. 1996. Modeling winter and early spring survival of 

Puccinia recondita in wheat nurseries during 1980 to 1993. Plant Disease, 80, 490-493. 

EVERSMEYER, M. G. & KRAMER, C. L. 1998. Models of early spring survival of wheat leaf 

rust in the central Great Plains. Plant Disease, 82, 987-991. 

FAO 2018. Forecasting threats to the food chain affecting food security in countries and regions 

(July-Sept 2018). Food Chain Crisis Early Warning Bulletin. Food and Agriculture 

Organization. 

FRIEDMAN, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of 

Statistics, 29, 1189-1232. 

FUNK, C., PETERSON, P., LANDSFELD, M., PEDREROS, D., VERDIN, J., SHUKLA, S., 

HUSAK, G., ROWLAND, J., HARRISON, L., HOELL, A. & MICHAELSEN, J. 2015. 

The climate hazards infrared precipitation with stations—a new environmental record for 

monitoring extremes. Scientific Data, 2, 150066. 

GRABOW, B. 2016. Environmental Conditions Associated with Stripe Rust and Leaf Rust Epidemics in 

Kansas Winter Wheat (An Abstract of a Dissertation). PhD, Kansas State University. 

GRABOW, B. S., SHAH, D. A. & DEWOLF, E. D. 2016. Environmental Conditions Associated 

with Stripe Rust in Kansas Winter Wheat. Plant Disease, 100, 2306-2312. 

HASTIE, T. & TIBSHIRANI, R. 1986. Generalized Additive Models. Statistical Science, 1, 297-310. 

HASTIE, T., TIBSHIRANI, R., SPRINGERLINK & FRIEDMAN, J. 2009. The Elements of 

Statistical Learning. Data Mining, Inference, and Prediction, Springer New York. 

HUMPHRIES, D. L., DEARDEN, K. A., CROOKSTON, B. T., FERNALD, L. C., STEIN, A. 

D., WOLDEHANNA, T., PENNY, M. E. & BEHRMAN, J. R. 2015. Cross-Sectional 

and Longitudinal Associations between Household Food Security and Child 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview


REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 65 

Anthropometry at Ages 5 and 8 Years in Ethiopia, India, Peru, and Vietnam. Journal of 

Nutrition, 145, 1924-1933. 

JALETA, M., HODSON, D., ABEYO, B., YIRGA, C. & ERENSTEIN, O. 2019. Smallholders' 

coping mechanisms with wheat rust epidemics: Lessons from Ethiopia. PloS one, 14, 

e0219327-e0219327. 

KUMAR, M., BRAR, A., YADAV, M., CHAWADE, A., VIVEKANAND, V. & PAREEK, N. 

2018. Chitinases-Potential Candidates for Enhanced Plant Resistance towards Fungal 

Pathogens. Agriculture, 8. 

LARGE, E. C. 1954. GROWTH STAGES IN CEREALS ILLUSTRATION OF THE FEEKES 

SCALE. 3, 128-129. 

MARSALIS, M. A. & GOLDBERG, N. P. 2016. Leaf, Stem, and Stripe Rust Diseases of Wheat [Online]. 

College of Agricultural, Consumer and Environmental Sciences, New Mexico State 

University. Available: https://aces.nmsu.edu/pubs/_a/A415/welcome.html [Accessed]. 

MARTIN-SHIELDS, C. P. & STOJETZ, W. 2019. Food security and conflict: Empirical 

challenges and future opportunities for research and policy making on food security and 

conflict. World Development, 119, 150-164. 

MARTINELLI, F., SCALENGHE, R., DAVINO, S., PANNO, S., SCUDERI, G., RUISI, P., 

VILLA, P., STROPPIANA, D., BOSCHETTI, M., GOULART, L. R., DAVIS, C. E. & 

DANDEKAR, A. M. 2015. Advanced methods of plant disease detection. A review. 

Agronomy for Sustainable Development, 35, 1-25. 

MEHMOOD, S., SAJID, M., ZHAO, J., HUANG, L. & KANG, Z. 2020. Alternate Hosts of 

Puccinia striiformis f. sp. tritici and Their Role. Pathogens, 9, 434. 

MENGESHA, G. G. 2020. Management of yellow rust (Puccinia striiformis f.sp. tritici) and stem 

rust (Puccinia graminis f.sp tritici) of bread wheat through host resistance and fungicide 

application in Southern Ethiopia. Cogent Food & Agriculture, 6. 

MOHAMMED, I., MARSHALL, M., DE BIE, K., ESTES, L. & NELSON, A. 2020. A blended 

census and multiscale remote sensing approach to probabilistic cropland mapping in 

complex landscapes. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 233-245. 

NAGHIBI, S. A., POURGHASEMI, H. R. & DIXON, B. 2016. GIS-based groundwater potential 

mapping using boosted regression tree, classification and regression tree, and random 

forest machine learning models in Iran. Environmental Monitoring and Assessment, 188. 

NELDER, J. A. & WEDDERBURN, R. W. M. 1972. Generalized Linear Models. Journal of the 

Royal Statistical Society. Series A (General), 135, 370. 

NEWLANDS, N. K. 2018. Model-Based Forecasting of Agricultural Crop Disease Risk at the 

Regional Scale, Integrating Airborne Inoculum, Environmental, and Satellite-Based 

Monitoring Data. Frontiers in Environmental Science, 6. 

https://aces.nmsu.edu/pubs/_a/A415/welcome.html


REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 

 66 

 

OLIVERA, P., NEWCOMB, M., SZABO, L. J., ROUSE, M., JOHNSON, J., GALE, S., LUSTER, 

D. G., HODSON, D., COX, J. A., BURGIN, L., HORT, M., GILLIGAN, C. A., 

PATPOUR, M., JUSTESEN, A. F., HOVMOLLER, M. S., WOLDEAB, G., HAILU, E., 

HUNDIE, B., TADESSE, K., PUMPHREY, M., SINGH, R. P. & JIN, Y. 2015. 

Phenotypic and Genotypic Characterization of Race TKTTF of Puccinia graminis f. sp 

tritici that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013-14. 

Phytopathology, 105, 917-928. 

PARK, R. F. 1990. The role of temperature and rainfall in the epidemiology of Puccinia striiformis 

f.sp. tritici in the summer rainfall area of eastern Australia. Plant Pathology, 39, 416. 

PITTMAN, S. J. & BROWN, K. A. 2011. Multi-Scale Approach for Predicting Fish Species 

Distributions across Coral Reef Seascapes. PLoS ONE, 6, e20583. 

RAPILLY, F. 1979. Yello Rust Epidemiology. Annual Review of Phytopathology, 17, 59-73. 

RAVINDRA, K., RATTAN, P., MOR, S. & AGGARWAL, A. N. 2019. Generalized additive 

models: Building evidence of air pollution, climate change and human health. Environment 

International, 132, 104987. 

ROELFS, A. P., SINGH, R. P. & SAARI, E. E. 1992. Rust Diseases of Wheat: Concepts and methods of 

disease management, Mexico, CIMMYT. 

SCHAPIRE, R. E. 2003. The Boosting Approach to Machine Learning: An Overview. Springer 

New York. 

SHARMA-POUDYAL, D., CHEN, X. & RUPP, R. A. 2014. Potential oversummering and 

overwintering regions for the wheat stripe rust pathogen in the contiguous United States. 

International Journal of Biometeorology, 58, 987-997. 

SUÁREZ-SEOANE, S., OSBORNE, P. E. & ALONSO, J. C. 2002. Large-scale habitat selection 

by agricultural steppe birds in Spain: identifying species-habitat responses using 

generalized additive models. Journal of Applied Ecology, 39, 755-771. 

TOLLENAAR, H. & HOUSTON, B. R. 1967. A Study on the Epidemiology of Stripe Rust, 

Puccinia Striiformis West., in California. Canadian Journal of Botany, 45, 291-307. 

USDA 2015. Commodity Intelligence Report. In: UNITED STATES DEPARTMENT OF 

AGRICULTURE, F. A. S. (ed.). United States Department of Agriculture, Foreign 

Agriculture Service. 

USGS. Digital Elevation - Shuttle Radar Topography Mission [Online]. Available: 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-

radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-

science_center_objects [Accessed 23 July 2020]. 

VITO 2019. Product User Manual (draft) Normalized Difference Vegetation Index Collection 1km 

Vr.3. In: CONSORTIUM, C.-G. L. (ed.). Copernicus Global Land Service (GCLS). 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects


REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 67 

WANG, M. N. & CHEN, X. M. 2013. First Report of Oregon Grape (Mahonia aquifolium) as an 

Alternate Host for the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp tritici) Under 

Artificial Inoculation. Plant Disease, 97, 839-839. 

WB 2020. Ethiopia Poverty Assessment: Harnessing Continued Growth for Accelerated Poverty 

Reduction. Washington DC: World Bank. 

WELLINGS, C. R. 2011. Global status of stripe rust: a review of historical and current threats. 

Euphytica, 179, 129-141. 

XU, X., MA, L. & HU, X. 2019. Overwintering of Wheat Stripe Rust Under Field Conditions in 

the Northwestern Regions of China. Plant Disease, 103, 638-644. 

YEE, T. W. & MITCHELL, N. D. 1991. Generalized additive models in plant ecology. Journal of 

Vegetation Science, 2, 587-602. 

YOUSSEF, A. M., POURGHASEMI, H. R., POURTAGHI, Z. S. & AL-KATHEERI, M. M. 

2016. Landslide susceptibility mapping using random forest, boosted regression tree, 

classification and regression tree, and general linear models and comparison of their 

performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13, 839-856. 

ZADOKS, J. C. 1961. Yellow rust on wheat studies in epidemiology and physiologic specialization. 

Tijdschrift Over Plantenziekten, 67, 69-256. 

ZADOKS, J. C. & BOUWMAN, J. J. 1985. 11 - Epidemiology in Europe. In: ROELFS, A. P. & 

BUSHNELL, W. R. (eds.) Diseases, Distribution, Epidemiology, and Control. Academic Press. 

ZELLWEGER, F., BRAUNISCH, V., BALTENSWEILER, A. & BOLLMANN, K. 2013. 

Remotely sensed forest structural complexity predicts multi species occurrence at the 

landscape scale. Forest Ecology and Management, 307, 303-312. 

 

 

  



REMOTE SENSING BASED PRE-SEASON YELLOW RUST EARLY WARNING IN ETHIOPIA 

 

 68 

 

APPENDICES 

 

Chapter 3. Method 

 

3.4 Data Processing 

 

Retrieval of precipitation and temperature data on GEE 

 

Google Earth Engine (GEE), point-data extraction of precipitation (CHIRPS), and temperature 

(AgERA5). Below is the example of precipitation data extracted for the month of April 2018. 

(Javascript reference) 

 

var aoi: Table users/ccendoo/OromiaYellowRust2018_TB 

print(aoi); 

Map.addLayer(aoi); 

 

// Script to extract CHIRPS precipitation values with point data on 

Google Earth Engine 

 

var start = ('2016-04-01'); 

var end = ('2016-05-01'); 

 

// Daily precipitation - load in image collection and filter by area and 

date 

var era5_prec = ee.ImageCollection('ECMWF/ERA5/DAILY') 

                   .select('total_precipitation') 

                   .filter(ee.Filter.date(start, end)) 

                   .map(function(image){return image.clip(aoi)}); 

//Clips data based on "aoi" 

                    

print('collection', era5_prec); 

 

//Create variables and extract data 

var scale = era5_prec.first().projection().nominalScale().multiply(0.5); 

print(scale); 

era5_prec = era5_prec.filter(ee.Filter.listContains('system:band_names', 

era5_prec.first().bandNames().get(0))); 

 

var ft = ee.FeatureCollection(ee.List([])); 

//Function to extract values from image collection based on point file 

and export as a table  

var fill = function(img, ini) { 

  var inift = ee.FeatureCollection(ini); 

  var ft2 = img.reduceRegions(aoi, ee.Reducer.first(), scale); 

  var date = img.date().format("YYYYMMdd"); 

  var ft3 = ft2.map(function(f){return f.set("date", date)}); 

return inift.merge(ft3); 

}; 

 

// Iterates over the ImageCollection 

var profile = ee.FeatureCollection(era5_prec.iterate(fill, ft)); 

print(profile,'profile'); 

 

// Export 

Export.table.toDrive({ 

  collection : profile, 

https://stackoverflow.com/questions/59992533/extract-timeseries-data-from-era5-google-earth-engine
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  description : "ERA5_prec-"+start+"-"+end, 

  fileNamePrefix : "ERA5_prec-"+start+"-"+end, 

  fileFormat : 'CSV', 

  folder: 'ERA5', 

  selectors: ["date","first"] 

}); 

 

 

 

3.5 Analysis 

 

3.5.1 Variable Exploration (RQ1.a) 

 

Univariate AUC values 

 

library(tidyverse) 

set.seed(123) 

folds <- createFolds(mydata2$rust, k=10) 

# The result of this is a list of vectors storing the row numbers for 

each of the k=10 requested folds. 

 

library(caret) 

# Use lapply() to conduct identical steps to calculate the Area Under 

ROC curve (AUC) for each fold 

 

rocVal <- lapply(folds, function(x){ 

  test <- mydata2[x, ]  

  train <- mydata2[-x, ]  

  rocVal <- filterVarImp(x = train[ , -1], y = train$rust) 

}) 

 

#Combine list of all 10-fold AUC data frames into one to calculate a 

mean 

library(data.table) # to activate rbindlist() 

rocVal_comb <- Map(cbind, rocVal, predictor = lapply(rocVal, rownames)) 

rocVal.mydata2 <- rbindlist(rocVal_comb, idcol = TRUE) %>% 

  group_by(predictor) %>% 

  summarise_at(vars(X0, X1), list(mean_ROC = mean))     

 

 

Classification Tree (‘cart’ package) 

 

library(rpart) 

library(rpart.plot) 

cart.model <- rpart(rust ~ var1 + var2 + ... + varX, 

                     method = 'class', #classification 

data = dataset,  

parms = list(split='information'), 

control = rpart.control(cp=0.001)) 

 

#cp = complexity parameter 

#The parameter ‘information’ is a splitting criterion, and 

it is also called entropy index that forms the category 

groups by minimizing the within-group diversity.  

 

rpart.plot(cart.model, type = 5, extra = 1, branch.lty = 3, box.palette 

= "auto", nn=TRUE) 

 

summary(cart.model) 

plotcp(cart.model) # plot complexity parameter 
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3.5.2 Finding the most critical variables (RQ1.b) 

 

 

General Additive Model (GAM) 

 

library(mgcv) 

gam.model <- gam(rust ~ s(var1) + s(var2) + ... + s(varX), 

                   data = dataset, 

                   family = binomial, #Classification 

                   method = "REML")  

 

# “REML”: Restricted Maximum Likelihood method: automatic smooth 

parameter selection 

 

summary(gam.mydata2) 

plogis(coef(gam.mydata2)[1]) 

gam.check(gam.mydata2) 

 

par(mfrow = c(2, 2)) 

plot(gam.mydata2, pages = 2, 

     trans =plogis, # transform y-axis to 0-1 scale 

     shift = coef(gam.mydata2)[1], # adding model intercept 

     seWithMean = TRUE, # consider intercept uncertainty 

     residuals = TRUE, pch = 1, cex = 1, 

     shade = TRUE)   

 

 

GAM concurvity report 

> concurvity(gam.tiller, full = TRUE) 

                 para s(daysr_21) s(minT_11) s(aspect)  s(slope)    s(DEM) s(ndvi_19) 

worst    1.358463e-18   0.7813170  0.7784903 0.6610410 0.7400053 0.7767376  0.7792632 

observed 1.358463e-18   0.6680082  0.5369568 0.4489580 0.6543160 0.5753127  0.5027777 

estimate 1.358463e-18   0.5712507  0.5238092 0.4527114 0.5995162 0.5561714  0.6337436 

 

In the convurvity report when the values on ‘worst’ is above 8, there is a possibility of concurvity 

and adjustment in predictors may be required. Thus, the details should be checked for each 

variable against the other variables to find out which combination of variables have concurvity. 

 

 

library(GGally) 

library(tidyverse) 

# Checking potential collinearity 

dataset %>% ggpairs(columns = c("maxT_19","minT_14", "prc_mm_10",  

"prc_mm_14", "daysr_20", "daysr_21", 

"ndvi_10", "ndvi_14", "ndvi_20", "DEM", 

"slope"), 

                upper = list(continuous = wrap('cor', size =4)), 

                lower = list(combo = wrap("facethist", bins = 30))) 

 

# VIF calculation 

VIFcalc(data.frame(dataset$maxT_19, dataset $minT_14, dataset 

$prc_mm_10,  

dataset $prc_mm_14,dataset$daysr_20,dataset$daysr_21, 
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dataset $ndvi_10, dataset $ndvi_14, dataset$ndvi_20, 

dataset$DEM, dataset$slope)) 

 

 

# GAM PREDICTION  

predictions <- predict(gam.model, newdata = dataset, 

                       type = "link", se.fit = TRUE) 

 

 

Boosted Regression Tree (BRT) 

 

library(gbm) 

library(dismo) 

source("brt.functions.R") 

yrust.tc2.lr.001 <- gbm.step(data=mydata2train,  

                             gbm.x =c(53,10,99,3,14,69,84,38,25,39,19),  

                             gbm.y = 1, 

                             family = "bernoulli",  #binomial model 

                             tree.complexity = 2,   

                             learning.rate = 0.001, 

                             bag.fraction = 0.75)  

# bag fraction specifies proportion of data to be selected at each step 

(In this case, 75% of the data is drawn at random) 

 

 

# Identify important interactions of variables(pair-wise interactions) 

find.int <- gbm.interactions(yrust.tc2.lr001.3)  

find.int$interactions 

find.int$rank.list  

 

# Visualizing the identified key interactions (example) 

gbm.perspec(yrust.tc2.lr001.3, 7, 6, theta = 150) 

 

gbm.perspec(yrust.tc2.lr001.3, 6, 7, z.range = c(0.5, 1), theta = 220 , 

cex.lab = 0.8, cex.axis = 0.6) 

 

gbm.perspec(yrust.tc2.lr001.3, 6, 4, z.range = c(0.2, 1), theta = 240 , 

cex.lab = 0.8, cex.axis = 0.6) 

 

 

# BRT prediction  

predictions <- predict.gbm(yrust.tc2.lr001.3, mydata2test, 

                      n.trees = yrust.tc2.lr001.3$gbm.call$best.trees, 

                        type = "response") 

   

 

 

 

3.5.3 Assessing Model Predictive Capacity (RQ2) 

 

Generating Confusion Matrix 

 

# Creating the table with probability, prediction (0 or 1), actual 

observation (0 or 1), and accuracy (TP, FP, FN, TN) 

 

pred.table <- as.data.frame(predictions2)  %>% 

  rename(probability=predictions2) %>% 

  mutate(prediction=if_else(probability >= 0.5, '1', '0')) %>% 

  cbind(mydata2test$rust) %>% 

  rename_at(3, ~'observation') %>% 

  mutate(accuracy = case_when( 
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    prediction == 1 & observation == 1 ~ "TP", 

    prediction == 1 & observation == 0 ~ "FP", 

    prediction == 0 & observation == 1 ~ "FN", 

    prediction == 0 & observation == 0 ~ "TN")) 

 

pred.table # print prediction table 

 

# create confusion matrix by counting TP, FP, FN, TN  

ConfusionMatrix <- as.data.frame(table(pred.table$accuracy)) 

ConfusionMatrix 

 

fn <- ConfusionMatrix[ConfusionMatrix$Var1 == "FN", "Freq"] 

fp <- ConfusionMatrix[ConfusionMatrix$Var1 == "FP", "Freq"] 

tn <- ConfusionMatrix[ConfusionMatrix$Var1 == "TN", "Freq"] 

tp <- ConfusionMatrix[ConfusionMatrix$Var1 == "TP", "Freq"] 

 

 

ModelPerformance()  

 

#calculate statistics for accuracy, kappa, precision, sensitivity, and 

specificity.  

ModelPerformance = function(tp, tn, fp, fn){ 

  { # Accuracy 

    correct = tp+tn   

    total = tp+tn+fp+fn 

    print(paste0("Accuracy: ", round(correct/total, digits= 4))) 

  } 

  { # Kappa 

    total=tp+tn+fp+fn 

    observed_acc=(tp+tn)/total 

    expected_acc=((tn+fn)/total)*((tn+fp)/total) + 

((fp+tp)/total)*((fn+tp)/total)  

    print(paste0("Kappa: ", round((observed_acc - expected_acc)/(1 - 

expected_acc), digits = 4))) 

  } 

   

  { # Precision 

    print(paste0("Precision: ", round(tp/(tp+fp), digits = 4))) 

  } 

   

  { # Sensitivity 

    print(paste0("Sensitivity: ", round(tp/(tp+fn), digits = 4))) 

  } 

   

  { # Specificity 

    print(paste0("Specificity: ", round(tn/(tn+fp), digits = 4))) 

  } 

 

 

 

3.5.4 Model Extrapolation 

 

An example based on the GAM model for tiller-only data, 2018 map. 

 

# Generate extrapolation map based on the GAM model fit with the tiller-

only dataset 

 

setwd("WORKING FOLDER LOCATION") 

tiller.train <- read.csv("tiller.train.csv", header=TRUE) 
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# Below is the GAM model that performed the best - Accuracy 0.72, Kappa 

0.44 (moderate agreement) 

 

library(mgcv) 

gam.tiller <- gam(rust ~ s(daysr_21) + s(minT_11) + s(aspect) + s(slope) 

+ s(DEM) + s(ndvi_19), 

                  data = tiller.train, 

                  family = binomial, 

                  method = "REML") 

 

summary(gam.tiller) 

plogis(coef(gam.tiller)[1]) 

gam.check(gam.tiller) 

plot(gam.tiller, pages = 2, 

     trans =plogis, # transform y-axis to 0-1 scale 

     shift = coef(gam.tiller)[1], # adding model intercept 

     seWithMean = TRUE, # consider intercept uncertainty 

     residuals = TRUE, pch = 1, cex = 1, 

     shade = TRUE)   

 

 

# Preparation for extrapolation using the raster layers of the key 

predictor variables. 

 

# Step 1: Load maps into R. 

require(raster) # Enabling R to read and write maps 

require(rgdal) 

 

# Load maps that are relevant for the analysis.  

# Make sure to change the year of the folder (2016, 2017, 2018) 

depending on the year of interest! (DEM, slope and aspect come from the 

same location) 

daysr_21.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/daysr_21.ovr") 

minT_11.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/minT_11.ovr") 

ndvi_19.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/ndvi_19.ovr") 

DEM.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/DEM.ovr") 

slope.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/slope.ovr") 

aspect.rs <- raster("/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/aspect.ovr") 

 

# Step 2: Converting raster image to data frame (.df)   

daysr_21.df <-as.data.frame(daysr_21.rs) 

minT_11.df <-as.data.frame(minT_11.rs) 

ndvi_19.df <-as.data.frame(ndvi_19.rs) 

DEM.df <-as.data.frame(DEM.rs) 

slope.df <-as.data.frame(slope.rs) 

aspect.df <-as.data.frame(aspect.rs) 

 

# Collate all the maps into one data frame 

gam.till.df <- data.frame(daysr_21 = daysr_21.df, minT_11 = 

minT_11.df,ndvi_19 = ndvi_19.df, DEM = DEM.df, slope = slope.df, aspect 

= aspect.df) 

 

# Column head for minT_11 remained "mint_11". Change this to the exact 

variable name "minT_11" so that model extrapolation works well.  

colnames(gam.till.df)[2] = "minT_11"  

     

# Step 3: calculate prediction for the data frame generated 

gam.till.df$predict <- predict.gam(gam.tiller, gam.till.df, type = 

"response") # the new data frame (in matrix) 

# "response" indicates probability in the scale of 0-1. Do not use the 

Link function! 
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# Step 4: converting predictions into map 

gam.till.matrix <- matrix(gam.till.df$predict,  

                      nrow=DEM.rs@nrows, ncol=DEM.rs@ncols, byrow=TRUE) 

gam.till.rs <- raster(gam.till.matrix,crs=DEM.rs@crs,  

                     xmn=DEM.rs@extent@xmin, 

                     ymn=DEM.rs@extent@ymin,  

                     xmx=DEM.rs@extent@xmax,  

                     ymx=DEM.rs@extent@ymax)    

 

# check the result raster and save.  

library(RColorBrewer) 

coul <- colorRampPalette(c("white", "yellow", "orange","brown")) 

plot(gam.till.rs, col = coul(100), axes = FALSE) 

 

#exporting the image to file 

writeRaster(gam.till.rs,"/Volumes/My Passport for Mac/MSc 

iGEON/Extrapolation/GAM_Tiller/2018/gam.till.2018.img") 
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