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Abstract

As a result of the Paris Agreement, electric taxiing of aircraft needs to be the standard and all ground-based
activities at a Dutch airport need to be zero-emission by 2030. This requires an energy-transition at airports,
where decision-makers need to decide which type of Ground Service Equipment (GSE) needs to be bought
in order to meet the Paris Agreements. In this thesis, we developed 3 mathematical models that describe
the operations of electric towing trucks that perform the taxi procedure. Firstly, a deterministic Electric
Vehicle Routing Problem (EVRP) is developed as a Mixed Integer Linear Program (MILP) that determines the
operations of electric towing trucks for deterministic arrival and departure times of the aircraft, minimizing
the electricity costs. These electric towing trucks tow aircraft from the landing lane (gate) to the gate (runway)
within a time-window and the trucks need to charge at a charging station when their battery is empty.

As the uncertainty in arrival and departure times of aircraft has an impact on the operations of the elec-
tric towing trucks, decision-makers need to know what the effect on the operations of electric towing trucks is.
So, the second model that is developed is an EVRP with uncertain arrival and departure times described by a
Robust Optimization (RO)-program. This RO-based program schedules the electric trucks at the beginning
of the day, minimizing the electricity costs, while ensuring aircraft from a large number of sampled scenarios
are towed on time, whilst the arrival/departure times are uncertain.

Thirdly, a dynamic EVRP with uncertain arrival and departure times of aircraft is developed to determine the
optimal operations throughout the day using the information about the actual arrival and departure times
that becomes available throughout the day. This Stochastic Sequential Decision Problem (SSDP) is solved by
a Dynamic Approximated Cost Algorithm (DACA).

The results of the deterministic model show that the computational complexity of an EVRP increases sig-
nificantly compared to a Vehicle Routing Problem (VRP) of non-electric trucks due to the decision variables
(DVs) associated with the charging of the trucks. Compared to a VRP of non-electric trucks, the EVRP of
electric towing trucks of our formulation consists of 8 times more binary decision variables and the number of
non-zero elements of the constraint matrix of the MILP is about 4 times larger.

The RO-based EVRP is found to be of the same order of computational complexity as the deterministic
EVRP. As trucks are scheduled to be occupied longer with a tow job of an aircraft, compared to the determinis-
tic model, this results in more trucks needed to tow all aircraft.

Results of the EVRP with uncertain arrival and departure times described as a SSDP, show that fewer trucks
may be needed to serve all aircraft, compared to the RO-based EVRP. However, the computational complexity
of the SSDP is significantly higher compared to the deterministic and RO-based model, so the SSDP is only
suitable to determine the operation of a relatively small flight schedule and a small fleet of trucks within
reasonable computation time.
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Nomenclature

Ap Set of actions that can be chosen from at decision epoch p *
ap Action chosen at decision epoch p *
aπ

p Action chosen from policy π *
c Index, c ∈Cc

c t
k Truck category of truck k

cr
i Request category of request i

Cc Set of costs of charging speeds
Cc Capacity of truck
Cs Set of charging speeds
Cp Direct costs at decision epoch p *
C a Post-decision total electricity costs *
dic j

Action of going to the i th depot to charge with the charging speed of option j *

D Set of depots
ei Earliest moment request i may be towed
γ Discount factor *
hi Status of request i (handled, assigned or not yet assigned) *
ha

i Post-decision status of request i *
i Index, i ∈ I ∪D
I Set of requests
j Index, j ∈ I ∪D
k Index, k ∈ K
K Set of trucks
Kp Set of truck that a decision needs to be made for at decision epoch p *

l a,d ,e
i Destination location of arriving/departing aircraft of request i

l a,d ,s
i Start location of arriving/departing aircraft of request i

li Latest time request i may be towed
lk Location of truck k *
l a

k Post-decision location of truck k *
p Decision epoch *
P Final decision epoch *
π Policy *
π∗ Optimal policy *
Π Set of possible policies *

Table 1: * Elements only appear in Chap. 5 on Stochastic Sequential Decision Problems.
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viii

qi Decision variable battery level at start of request i
qi , j ,k Electricity used when xi , j ,k = 1
qk Electricity level of truck k *
q a

k Post-decision electricity level of truck k *
si Decision variable starting time of tow
Sp State at decision epoch p *
SP Absorbing state *
Sa

p Post-decision state *
tk Moment in time truck k is finished with its current tow *
t a

k Post-decision time truck k is finished with its current tow *

t a,d
i Arrival/departure time of request i

ti Decision variable amount of time charged
ti , j ,k Time duration corresponding to xi , j ,k = 1
Tp Time of decision epoch p *
t̃ n

i nth sampled arrival time of request i
t̃ max

i Maximum of the sampled arrival times of request i
t̃ mean

i Mean of the sampled arrival times of request i
Vt Value function at time t *
Wp Exogenous information that became known between decision epochs p −1 and p *
Wp All available exogenous information at decision epoch p *
xi , j ,k Binary decision variable, consecutive handling of requests

Table 2: * Elements only appear in Chap. 5 on Stochastic Sequential Decision Problems.



Abbreviations

ADP Approximate Dynamic Programming.

APU Auxiliary Power Unit.

CO2 Carbon-dioxide.

CSO Civil Society Organizations.

DACA Dynamic Approximated Cost Algorithm.

DV Decision Variable.

EVRP Electric Vehicle Routing Problem.

FPU Fixed Power Unit.

GHG Green House Gasses.

GPU Ground Power Unit.

GSE Ground Service Equipment.

GSH Ground Service Handlers.

ICAO International Civil Aviation Organization.

LIFO Last In, First Out.

LP Linear Program.

MILP Mixed Integer Linear Program.

RO Robust Optimization.

SP Stochastic Program.

SSDM Stochastic Sequential Decision Model.

SSDP Stochastic Sequential Decision Problem.
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VRP Vehicle Routing Problem.

VRPPD Vehicle Routing Problem with Pick-up and Delivery.

VRPTW Vehicle Routing Problem with Time Windows.
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Chapter 1

Introduction

As an introduction to the research conducted, the current situation of climate change regulation will be described
first, in Sec 1.1. Second, the impact of the aviation sector on global warming is discussed in Sec. 1.1.1, followed
by the climate agreements made with the aviation sector. Sec. 1.2.1 elaborates on ground-based activities, which
is followed by the introduction of different taxi procedures in Sec. 1.2.2. Sec. 1.3 introduces the main problem
that is studied in this thesis. This chapter ends with the research framework in Sec. 1.4, which includes the main
research question, sub-questions, research goals, research scope, and a report outline.

1.1 Climate Change Regulations

Global warming is one of the biggest challenges of the current century. The large-scale emission of Green
House Gasses (GHG) is the cause of global warming. The caused climate change results in e.g. rising sea
level, severe weather events, decrease in freshwater availability, and a decline in bio-diversity [1–3]. The Paris
Agreement of 2015 is set up to respond to global warming [4]. The goal is to keep the global temperature rise
below 2 ◦C compared to pre-industrial levels and its ambition is to keep the temperature rise below 1.5 ◦C. All
parties that signed, are responsible for about 97 % of global greenhouse emissions. All participating countries
have made climate plans in which they describe how to achieve Carbon-dioxide (CO2) emission reduction and
how they will combat climate change.

The Dutch target is to reduce emissions by 49% in 2030 compared to 1990. The reduction of CO2 in 2050 must
be 95 % compared to 1990. These targets are stated in the Climate law (Klimaatwet) [5]. In order to achieve
the emission reductions, the Dutch government, companies and Civil Society Organizations (CSO) signed
the Climate Agreement (Klimaat Akkoord) [6]. This agreement includes plans and agreements between the
parties in order to achieve the CO2 reduction targets. Besides this, the Climate law also states that the Dutch
government needs to set up a Climate Plan (Klimaatplan) [7]. This plan includes the main points of the policy
with which the government is going to achieve the targets of the Climate law. This climate plan also includes
the latest scientific insights into climate change and the economic effects of it.

All targets set by the UN and all individual governments, require an energy transition in many sectors. An
energy transition is a transition from the current fossil fuel-based energy system to a low-carbon society based
on renewable energy sources. Decision-makers need to make highly complex decisions in the process of
creating a low-carbon society. These decisions need to maintain or even increase the current level of prosperity
while considering multiple environmental, social, and financial objectives.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Aviation Sector Climate Agreements

The aviation sector includes all aspects of air travel. This also includes the activities supporting air travel.
The aviation sector is a large and growing contributor to global warming. Before the COVID-19 pandemic
hit, the aviation sector was expected to grow 5% annually, increasing its contribution to global warming [8].
Global aviation is responsible for 4.9% of global warming [9]. Besides the impact it has on global climate
change, it also has a detrimental impact on human health due to aviation noise and air quality degradation
near airports [10]. At airports, the landing and take-off (LTO) cycle are the major causes of emissions that
contribute to the impact it has on human health [11, 12].

In order to reduce the impact on the climate and human health, the aviation sector is taking steps to re-
duce its emissions. The aviation sector has several reasons to become more sustainable. The first reason is
the pressure from the government. By signing the Paris Agreement, the Dutch government commits itself to
these targets, which directly affects the Dutch aviation sector. Also, the Dutch government states its ambition
to be a front-runner in sustainable aviation innovation [13]. Being a front-runner of sustainable aviation
innovation might offer national business opportunities. This ambition stimulates the aviation sector to focus
on sustainability. A second reason why the aviation sector wants to reduce its emissions is social urgency.
There is an increasing tendency of people to want flying to be less damaging for the environment [14]. A
third reason why airports want an energy transition is that this might offer new business opportunities for the
airports. Many new initiatives are being developed for sustainable flying from which an airport can profit, like
domestic package delivery from the airport, usage of large drones for delivery, and the airport being used for
domestic taxi flight services, i.e. Uber-like flight services [13, 15, 16].

Although international aviation is not included in the Paris Agreement, all 193 national governments, in-
cluding the Netherlands, which are a member of the UN-organization International Civil Aviation Organization
(ICAO) made agreements regarding aviation. They agreed in 2016 to halve their CO2 emissions due to aviation
activities by 2050 compared to 2005 [17]. Also, they agreed to a carbon-neutral growth starting in 2020.

In contrast to international aviation, domestic flights and ground operations at an airport fall under the
legally binding Paris Agreement. The Dutch aviation targets are set in a time window till 2070. The feasibility of
these targets and all plans to realize the required emission reduction are stated in the Draft Aviation Annotation
(Ontwerp-Luchtvaartnota 2020-2050) [18]. The targets regarding aviation that must be met first, i.e. 2030
are, [19]:

• All ground-based aviation activities to be zero-emission.

• Electric taxiing to be the standard procedure.

• 15% reduction of emissions originating from domestic aviation compared to the emission level of 1990.

• The first 20-50 passenger electric aircraft to be operating.

An aviation activity that is zero-emission, does not emit any CO2. So, an activity that emits CO2, but the
emission is compensated, is not a zero-emission activity. In addition, all electricity, hydrogen, or biomass used
for zero-emission activities, need to be emission-free. For this research, we will focus on the zero-emission of
ground-based activities and electric taxiing to be the standard procedure, as these require large investments,
need to be realized in a relatively short time frame, and have a major impact on the daily operations at an
airport.
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1.2 Aviation Sustainability Targets

This section elaborates on the aviation sustainability targets that are studied in this research, the ground-based
activities to be zero-emission in 2030 and electric taxiing becoming the standard procedure.

1.2.1 Ground-Based Activities

The first aviation sustainability target that is studied in this research, is the ground-based aviation activities to
be zero-emission in 2030. Ground-based activities include, according to the Dutch Ministry of Infrastructure
and Water Management [19]:

• Maintenance, energy supply, and handling of aircraft.

• Transportation of passengers, employees, luggage, and cargo at an airport, which are not on a taxiing
aircraft.

• Energy and maintenance of all buildings of an airport.

Currently, ground-based activities account for about 1% of all CO2 emissions of the aviation sector [15, 20]. The
largest contributors to CO2 emissions originating from ground-based activities at an airport are the (Ground
Power Units) GPUs and the pushback trucks. They are responsible for about 51% and 17% of the CO2 emissions
respectively [20].

GPUs provide aircraft electricity during the turn-around of an aircraft. This is the time between 2 consecutive
flights of an aircraft. GPUs provide electricity for heating, onboard systems, and air conditioning. A GPU can
be considered as a mobile diesel-fuelled generator. In order to reduce the emissions from GPUs, the usage
of a GPU can be replaced by using a Fixed Power Unit (FPU). This is a socket in the wall of the main airport
building which can provide an aircraft emission-free electricity, i.e. green electricity. Providing an aircraft with
green electricity from a FPU instead of electricity from a GPU reduces half of all emissions originating from
ground-based activities. The FPUs are already present at many airports. However, connecting an aircraft to
a FPU requires heavy lifting and more personnel compared to using a GPU. In the next couple of years, it is
expected that airports will start using the FPUs instead of GPUs to reduce emissions.

The second-largest contributor to emissions is pushback trucks. A pushback truck pushes an aircraft back from
the gate. After a pushback truck performed the push, it is detached from the aircraft and the taxi procedure
starts. Sec. 2.1 elaborates further on the current operations of pushback trucks.

1.2.2 Taxi Procedures

The second sustainability target that is studied in this research, is the electric taxi procedures. Taxi procedures
of an aircraft are one of the largest contributors to emissions at an airport. Note, that these emissions are not
regarded as emissions from ground-based activities.

After an aircraft lands, it taxis from the landing lane to the gate, or upon departure an aircraft taxis from
the gate to the runway. This can be done in several ways. Currently, the most sustainable option is a form of
taxiing in which all engines are off. Examples of sustainable taxiing are onboard systems that are powered by
the Auxiliary Power Unit (APU) present on an aircraft. An APU is a kerosene fuelled generator that powers
aircraft electricity. However, these systems are quite heavy (about 150 kg) and airlines want their aircraft to be
as light as possible to reduce fuel consumption. The other option for sustainable taxiing is a ground-based
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system. Currently, the only ground-based sustainable taxiing vehicle is the Taxibot [21]. The usage of ground-
based taxi systems depends on whether an airport has this equipment, while in the case of all other options of
taxiing, the airline decides what form of taxiing is used. A Taxibot is a hybrid truck that can tow an aircraft from
the gate to the runway at the same speed as taxiing on an aircraft’s engines. Usage of a Taxibot is expected to
save 4% - 9% of fuel per flight, depending on the duration of a flight, as an aircraft needs less fuel as the taxiing
does not consume fuel [21]. Zero-emission taxiing is not possible as an aircraft’s engine needs to warm up and
cool down after landing. Also, the Taxibot does not take over the function of an APU. So, the (kerosene-fuelled)
onboard APU still provides an aircraft with the electricity needed for onboard systems, starting of the engines
and air-conditioning during a taxi trip performed by a Taxibot. Currently, there are no trucks on the market
that also take over the function of the APU. However, companies are developing electric towing trucks that
take over the function of an APU, to reduce the emissions at airports.

1.3 Energy Transition

In order to meet the sustainability targets mentioned in Sec. 1.1.1, airports need to make many decisions.
How will they achieve zero-emission ground-based activities and how will electric taxiing be the standard?
What investments need to be made? How will the operations change? Many actors play a role and each actor
has its own interests. Airports are responsible to meet the sustainability targets, while the Ground Service
Handlers (GSH) are responsible for the Ground Service Equipment (GSE) and the handling of the GSE. Also,
when an airport decides to choose to go for a type of taxiing that takes longer than the current way of taxiing,
airlines might be disadvantaged, as the turn around may take longer and they can perform fewer flights per day.

When focusing on what GSE to invest in, first needs to be decided what fuel-based GSE to invest in. The most
common types are hydrogen, electricity, and biomass [22]. The most important factors, in deciding to invest in
what, for each type of fuel-based GSE, are:

• Total cost of the new equipment

• Cost of man-hours needed to operate the equipment

• Fuel/electricity costs

• Speed at which the new equipment operates

• Costs of new infrastructure needed to operate the equipment

In order to have an idea of the impact of these factors, the daily operations of each potential type of new
equipment must be studied in order to be able to compare them. In this research, we focus on the daily
operations of one type of these options. We focus on fully electric towing trucks that provide an aircraft with
all electricity, such that an aircraft does not need to use its APU. We choose to study electric trucks, as they
require the largest operational changes compared to hydrogen or biomass fuelled trucks, as the electric trucks
need to be charged at a fixed charging station, while the other trucks may be filled anywhere at the airport.
However, there is already infrastructure for electric GSE present at airports, such that (large) investments may
not be necessary for the implementation of electric towing trucks, compared to trucks that are fuelled by
another source. A large disadvantage of electric towing trucks, and thus a possible reason why airports do not
choose electric towing trucks, is that the change in operations is large. By studying the operational changes
for the electric case, more will be known about the feasibility and costs of electric trucks. Also, as the battery
technology rapidly increases [23–25], optimal charging strategies will become more important. Besides this,
many companies are developing electric aircraft, which would lead to an increase of batteries that need to
be charged at an airport [26]. Determining optimal charging strategies can be potential of great use for other
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electric vehicles at an airport, for example when electric aircraft are introduced.

In addition, we will focus on the impact of uncertainty of the arrival and departure times of aircraft at an
airport on the operations of electric towing trucks. Delay of aircraft is very common and due to this delay,
trucks must pick up aircraft at another time. The delay of these aircraft may be hours [27–29]. The effect of the
delay must be considered when determining the operations of electric towing trucks, as it will have a large
impact on the truck schedule.

1.4 Research Framework

1.4.1 Research Question

The research objective of this thesis is:

" to reduce the environmental impact of vehicles and stimulate the energy transition at airports to electric
taxiing, increase the knowledge on electric vehicle routing problems (EVRPs) under uncertainty, by researching
different models to describe such models under uncertainty "

This leads to the main research question:

" How can an adapted version of a vehicle routing problem describe the operations of electric towing trucks at an
airport under uncertainty? "

1.4.2 Sub-questions

The sub-questions that will help answer the main research question are:

• How can one describe the operations of electric towing trucks at an airport by a deterministic Electric
Vehicle Routing Problem?

• What techniques can include uncertainty of arrival and departure times of aircraft in an Electric Vehicle
Routing Problem of electric towing trucks at an airport?

• What is the effect of the uncertainty on the solution of the EVRP?

1.4.3 Research Goals

The following goals are set in order to answer the research question:

• Develop a deterministic model to schedule electric towing operations at an airport given fixed arrival
and departure times

• Develop a model that schedules electric towing trucks under uncertainty of arrival and departure times
of aircraft at an airport

1.4.4 Research Scope

In order to be able to complete this research project within the limited amount of time, the objective of this
research is scoped. The assumptions made demarcate the context of this research:
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• This research focuses on all taxiing operations of commercial airlines, so cargo, general aviation, and
military aviation are not included in this research.

• In this research, only fully electric trucks are considered, so no hybrid trucks.

• Additional investments needed in infrastructure are not considered, e.g. the construction of extra roads.

• Change in weather conditions that may affect the electricity consumption of electric trucks is not taken
into account.

• Legality, e.g. with respect to working hour restriction, of the operations is not taken into account.

• Only uncertainty of arrival and departure times of the aircraft are taken into account since this has the
largest impact on the planning of the trucks.

• Break-down of the trucks or truck driver mistakes / absence is not taken into account.

1.4.5 Report Structure

The structure of this thesis is as follows. First, a general introduction to a Electric Vehicle Routing Problem
(EVRP) is given (Chap. 2). In this chapter, we discuss how the operations of electric towing trucks can be
described in a general way. In addition, we discuss how to solve models that optimize the operations of electric
towing trucks at an airport.

In Chap. 3, we present a deterministic EVRP. We discuss the decision variables (DVs) and we present the
objective value and all constraints that together describe the model of a deterministic EVRP. In this chapter, we
present the results obtained from this deterministic model and we discuss the results. In addition, we compare
the deterministic EVRP with a deterministic Vehicle Routing Problem (VRP) of non-electric towing trucks, to
indicate the impact of a change to an electric towing truck fleet at an airport.

As aircraft may be delayed, the arrival and departure times of aircraft at an airport may not be considered
deterministic. This affects the operations of the electric towing trucks. In Chap. 4, we present a Robust
Optimization (RO)-based model that describes the operations of the electric towing trucks under uncertain
arrival and departure times of the aircraft. In Chap. 4 we motivate the specific RO-based method that is used.
In this chapter, we present the results obtained from the RO-based model and we compare the results with the
results obtained by the deterministic model presented in Chap. 3.

In Chap. 5 we present a second way to describe the operations of electric towing trucks at an airport un-
der uncertain arrival and departure times. This model is a dynamic model that makes decisions throughout the
day about what trucks must do next, considering the information about the actual arrival and departure times,
that becomes available throughout the day. An algorithm to solve this Stochastic Sequential Decision Problem
(SSDP) is presented. This Dynamic Approximated Cost Algorithm (DACA) determines at every decision epoch
what the best action is, considering many sampled realizations of the arrival and departure times of aircraft.
The results of this Stochastic Sequential Decision Model (SSDM) are presented and discussed in this chapter.
These results are compared with the results obtained from the deterministic model and the RO-based model.

In Chap. 6 we state our conclusions. We finalize this thesis with Chap. 7, where we discuss this research
project, according to 3 categories of discussion points. We discuss (1) general points of discussion that apply
to all models presented in this thesis, (2) discussion points regarding the models that take into account the
uncertainty of arrival and departure times, and (3) we present additional ideas for EVRPs.



Chapter 2

Scheduling of Electric Towing Trucks

One of our research goals is to develop a schedule of electric towing trucks at an airport. The goal of this chapter
is to introduce how an Electric Vehicle Routing Problem (EVRP) can be formulated and solved. Before we describe
how an EVRP can be formulated, we must understand the current and future daily operations at an airport. This
is described in Sec. 2.1. This is followed by a brief description of the electricity usage of the electric towing trucks.
In Sec. 2.2, an introduction to a Vehicle Routing Problem (VRP) is given and described how one can formulate an
EVRP. And in Sec. 2.3 is explained how the EVRPs in this thesis are solved. In Chap. 3, we continue by presenting
the mathematical formulation of the EVRP of electric towing trucks at an airport.

2.1 Change of Operations due to Electric Towing Trucks

Operations differ from airport to airport and sometimes even from airline to airline at an airport. One
description of all daily operations or one description of the future operations at an airport can not be given.
However, after talking to ground service handler companies, we state a generally accepted description of
the current and future operations at an airport. Currently, almost all aircraft will taxi on (a number of) their
engines from the landing lane (gate) to the gate (runway). For this thesis, we consider that all aircraft will be
towed by an electric truck from the runway to the gate (or vice versa). The truck is attached to the aircraft.
Currently, most aircraft are attached to a diesel-fuelled Ground Power Unit (GPU) during turn-around and
in the future all, aircraft will be connected to an electricity-powered Fixed Power Unit (FPU). The last main
difference in operations is regarding the power supply during the taxi procedure. Currently, most aircraft are
powered by the on-board Auxiliary Power Unit (APU) during the taxi procedure. For this research project, we
consider that the electric towing truck provides an aircraft with electricity during a taxi trip.

2.1.1 Electricity Consumption During a Tow

When determining the operations of electric towing trucks, we must take the electricity usage of the towing
trucks into account, as a truck needs to charge when its battery is empty. In Appendix A, the details of this
estimation are presented. Here we explain which factors are taken into account. While moving, trucks may
either be towing an aircraft or driving around the airport while not towing an aircraft. For this thesis, it is
assumed that a truck uses constant power overtime for driving empty or towing an aircraft. This way, the
electricity usage depends on the duration of the drive or tow. Here we categorize the electricity usage in two
parts: (1) a truck needs electricity to drive or tow and (2) it needs electricity to provide an aircraft with electricity
during the tow.

7
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While a truck moves, we consider that the electricity needed depends on the weight of an aircraft in the
case of towing and the speed at which the truck drives. When the weight of the aircraft, the towing speed,
and the time needed to tow, are known, one can determine the electricity needed for the tow. Here we
also take into account that a departing aircraft weighs more than an arriving aircraft, as arriving aircraft have
used most of the kerosene. All details on the exact power required while driving/towing are given in Appendix A.

In addition to the electricity needed for the actual towing/driving, electricity is needed to provide an air-
craft with electricity during the tow. There are 3 main processes that need electricity from the towing truck.
First, electricity is needed for on-board systems, such as lighting. The amount of electricity needed for on-
board systems depends on the size of an aircraft. The second main consumer of electricity is air-conditioning.
The amount of electricity needed for air-conditioning depends on the size of the aircraft and the outside
temperature. Lastly, departing aircraft need electricity to start the engines. The power needed to start the
engine depends on the size of the aircraft. The amount of electricity needed for on-board systems and air-
conditioning, is proportional to the towing time, while the electricity needed for the engine starter is fixed. All
details regarding the exact amount of electricity needed to provide aircraft electricity during the tow, are given
in Appendix A.

2.2 (Electric) Vehicle Routing Problems as a Mixed Integer Linear Pro-
gram

There are many situations in which one wants to know for a fleet of vehicles what the (sub-)optimal operations
are. A package delivery service may want to know what routes their trucks need to drive in order to deliver all
packages. A taxicab company may want to determine which driver goes to which customer. Formulating a
mathematical model that determines for a fleet of vehicles which goes where at what moment in time, can be
done in many ways. That is the wonderful thing about mathematics: one can decompose a real-life situation
till it is an abstract representation of reality, but you can also lose yourself in complex theories, trying to obtain
a more realistic representation of the problem. By determining how to model a routing problem of electric
towing trucks, this is no different. There are many ways to represent this problem and many ways to solve it.
The question is always: what is the most suitable method to describe the real-life situation? The basis for all
mathematical decision models that determine the routes for a fleet of vehicles, is a Vehicle Routing Problem
(VRP). For the EVRP, we focus on an adapted version of a VRP. Here we will elaborate on the adapted version of
a VRP to describe the operations of electric towing trucks at an airport.

The first description of a VRP is of G. Dantzig et al. in 1959, where they describe a truck dispatching prob-
lem [30]. In this problem, the optimal routing of a fleet of gasoline trucks is determined between a terminal
and service stations that are supplied by the terminal. This model generalizes the famous Travelling Sales
Problem. VRPs are widely used in industry [31–37] and many variations to the VRP stated by Dantzig et al.,
are introduced [38–43]. A VRP is a combinatorial optimization and integer programming problem. It usually
determines how goods are delivered from a depot to customers by a fleet of trucks. An optimal solution of a
VRP is a set of Decision Variables (DVs) that describe (timed) routes such that all requirements are met and the
costs are minimized. These requirements may be customer (specific) requirements or operational constraints.
The costs that are minimized, may be e.g. the total travel time, total distance traveled, fuel costs, operational
costs, or total tardiness.

The routing problem of electric towing trucks at an airport can be considered as trucks that need to pick-up
goods (an aircraft) at a location to drop it off at another location. Electric towing trucks will pick up aircraft at
the exit ramp (gate) and deliver them at the gate (runway). This differs from the classical VRP, where trucks
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leave from a depot and deliver goods at various locations consecutively. Another difference compared to
the classical VRP is that electric towing trucks have a limited battery, such that they must return to a (fixed)
charging station before they run out of battery. Lastly, aircraft arrive and depart at specific times, such that
the aircraft needs to be served in a specific time-window. All these characteristics of the situation may be
described by combining several VRPs.

A VRP where goods need to be picked up and delivered, like in the case of electric towing trucks at an
airport, is known as a Vehicle Routing Problem with Pick-up and Delivery (VRPPD). Examples of such models
are presented in [39, 42–44]. In the case of electric towing trucks, the aircraft needs to be delivered at a certain
location directly upon pick-up. No other goods (aircraft) may be picked-up before a truck delivers its good at
the drop-off location. This can be realized by adding the so-called Last In, First Out (LIFO) constraint. This
constraint is used in many models, among which [39, 42, 45, 46].

The aircraft needs to be picked up in a small and specific time-window. A VRP where goods need to be
delivered in a specific time-window is known as Vehicle Routing Problem with Time Windows (VRPTW). This
widely used version of a VRP, can be used for problems where, for example, goods are needed at a specific
time, or in cases where the locations that the goods need to be dropped off, have specific opening hours. In a
VRPTW, a time constraint is added for each delivery.

Lastly, the electric towing trucks may not run out of battery and need time to recharge at a (fixed) charg-
ing station.

VRPs are usually modeled as a Mixed Integer Linear Program (MILP). Here some decision variables (DVs)
have integer constraints, while other DVs are continuous variables. In a VRP, usually, the DV that determines
whether a truck drives to a specific location or not is a binary DV. In contrast, the DV that determines at what
moment in time a truck drives, is usually a continuous DV.

Definition 2.2.1 (Mixed Integer Linear program). A Mixed Integer Linear Program (MILP) is a problem with a
linear objective function f T x, where f is a column vector of constants and x is a column vector of unknown
decision variables. A MILP has bounds, linear constraints, no non-linear constraints, and some DVs are
constrained to be an integer. The set of indices of the integer constrained DVs is denoted I .

min f T x

s.t. Ax ≤ b

xi ∈Z, ∀i ∈ I

(2.1)

Definition 2.2.2 (Solution). A solution to a MILP is defined as a setting of the decision variables.

Definition 2.2.3 (Feasible solution). A feasible solution to a MILP is defined as a solution that satisfies all
constraints of the MILP.

Definition 2.2.4 (Optimal solution). An optimal solution to a MILP is defined as a feasible solution with the
minimal (maximum) objective function value of the MILP in case it is a minimization (maximization) problem.

So in conclusion, to describe the operations of electric towing trucks at an airport, we formulate a special EVRP.
This EVRP will be an adapted version of a VRPTW and a VRPPD with LIFO constraints. Additional constraints
concerning the battery level of trucks are introduced to describe an EVRP instead of a VRP. The mathematical
description of the vehicle routing problem of electric towing trucks at an airport is given in Chap. 3. This EVRP
is described as a MILP.
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2.3 Solving a Mixed Integer Linear Program by a Branch-and-Bound Al-
gorithm

The basis of the solving techniques used to solve MILPs, is the branch-and-bound algorithm, schematically
depicted in Fig. 2.1.

The branch-and-bound algorithm first converts a MILP to a relaxed version. This relaxed version is the
MILP without all integer restrictions. So all DVs may be continuous. The relaxed MILP is a Linear Program (LP).
We denote the original MILP as P0. P0 is depicted in Fig. 2.1, as the white dot at the top of the figure. The LP is
then solved, hoping the solution satisfies the integer restrictions. However, as the integer constraints are not
specifically stated, most likely the solution does not satisfy the integer constraints. If indeed, the solution does
not satisfy the integer restrictions, there are DVs whose value is fractional. For example, the DV x = 22.3, then 2
restrictions can be added: x <= 22 and x >= 23. Two new MILPs are created, P1 and P2 one for each restriction.
This is depicted in Fig. 2.1 as the two white dots below the top white dot. The DV of these restrictions, x, is
called the branching variable. The best solution of the 2 sub-MILPs, P1 and P2, is optimal to the original
problem, P0. The same idea can be applied to the sub-MILPs. The LP relaxations of these MILPs are computed
and if necessary new branching variables are selected. When repeating this procedure, one creates a search
tree. The sub-MILPs are called the nodes of the tree and P0 is the root node. The leaves of this tree are all nodes
that have not yet been branched. If one can solve or dispose of all leaf nodes, the original MILP, P0 is solved.
A node is denoted as fathomed if a node is no longer branched. These nodes are depicted as the green dots
in Fig. 2.1. This can happen in the case (1) that by branching and thus adding a restriction, the LP becomes
infeasible. The second case, in which a node is denoted as fathomed, (2) concerns finding a solution of the LP
that satisfies all integer restrictions.

If during the process of bounding and branching, a solution of a LP-relaxation satisfies all integer restrictions,
we know that this a (feasible and possible optimal) solution of our original MILP, P0. This node is then denoted
as fathomed and this node is no longer branched. In addition, the best solution that satisfies the integer restric-
tions is denoted as the incumbent. This is depicted as the purple dots in Fig. 2.1. If the currently found solution
is better than the current incumbent or in the case that this is the first found solution, the incumbent is updated.

In the case of a minimization problem, like the EVRP as will be shown in Chap. 3, the optimality gap of
a MILP is determined by the difference in the so-called current upper bound and best bound (or sometimes
called the lower bound). The upper bound is the objective value of the incumbent. The best bound is in case
of a minimization problem, the minimum of the optimal objective values of all current leaf nodes.

The optimality gap of LPs is usually a good measure of the solution. However, the optimality gap of a MILP
is not necessary a good measure of the solution. The best bound is the optimal objective value of all current
leaves. Some of these leaves, do not contain all integer constraints of the model. When a problem contains
many integer DVs, this best bound may be way better, such that the gap is very large. This is also the case for
most MILPs solved for this project. As a result of many integer DVs, the best bound is always 0, as there are
leaves where not all integer restrictions are taken into account. The upper bound is either 0 or a non-zero
value if the MILP is feasible. In the case that the upper bound is 0, the optimality gap is 0 and this is the optimal
solution. In the case of a non-negative upper bound, the optimality gap is 100% as the best bound is 0. This
is why a maximum solving time must be set to stop solving, as the model will continue to solve till it finds a
solution with an objective value equal to zero. We introduce the term: a best-found solution.

Definition 2.3.1 (Best-found solution). The best-found solution of a MILP is defined as the feasible solution
with the lowest objective function value, that is found within the maximum solving time.



2.3. SOLVING A MIXED INTEGER LINEAR PROGRAM BY A BRANCH-AND-BOUND ALGORITHM 11

There are many techniques to improve the solving process of the branch-and-bound algorithm. State-of-
the-art solvers use many techniques to improve the performance of the branch-and-bound algorithm to
solve MILPs. Among the most important techniques are pre-solve, cutting planes, heuristics, and parallelism.
Pre-solve is done in order to deduce the size of the problem and to formulate a problem more tightly. Cutting
planes, which is a whole field of research of its own, is in short, a way of tightening the formulation of the
problem during solving, without creating more sub-problems. Heuristics are of great importance for finding
good solutions very early in the process of solving. As a maximum solving time is set to solve the EVRPs of
this project, we would like to have good solutions as fast as possible, such that we are most likely to have good
solutions when the maximum solving time is reached. Heuristics are implemented in the commercial solver
that we use, Gurobi, to do a little extra work to explore whether a node might have a good integer feasible
solution. Lastly, most solvers run in parallel, as nodes may be processed independently.

Before presenting the mathematical model, some specifics about the implementation of the mathemati-
cal model must be noted. All mathematical models presented in this thesis are coded in Python 3.7. The
mathematical models are implemented using the Pyomo 5.7.1 package [47] and are solved by the state-of-
the-art commercial solver Gurobi 9.0.3 [48]. The Python-based Pyomo package is a widely used package for
describing optimization problems. Pyomo was chosen as an optimization problem described as a MILP can be
implemented intuitively and the package is compatible with many (commercial) solvers. The Gurobi solver
is used as it contains state-of-the-art solving techniques and does not require a connection with a cloud,
compared to other commercial state-of-the-art solvers.

Figure 2.1: Schematic overview of the branch-and-bound algorithm, adapted from [49].
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Chapter 3

Deterministic EVRP

To first consider the daily operations of electric towing trucks at an airport, without taking the uncertainty of
arrival and departure times into consideration, a deterministic model that determines the daily operations
of electric towing trucks at an airport is presented. This mathematical model is introduced in this chapter.
In Chap. 4 and Chap. 5, the impact of the uncertainty in arrival- and departure times are studied. From the
best-found solution of the deterministic Electric Vehicle Routing Problem (EVRP) introduced in this chapter, a
schedule for all trucks can be derived. This includes when the towing trucks will travel and when they will return
to the charging station to charge and for how long they will charge.

In Sec. 3.1.1-Sec 3.1.3 all parameters, sets, and decision variables of the deterministic EVRP are introduced. This
is followed by the objective function and all constraints. Comments on the implementation of this EVRP are
given, followed by an analysis of the best-found solutions of this EVRP in Sec. 3.4. Some extensions to this EVRP
are done to make the model more realistic. The extensions and the analysis on the best-found solutions of the
EVRP with extensions are presented in Sec. 3.5. This chapter is finalized with a comparison between the usage of
electric and non-electric trucks at an airport in Sec. 3.7.

3.1 Description of a Deterministic EVRP

In this section, the elements of the deterministic EVRP of electric towing trucks at an airport are discussed. For
this deterministic EVRP, the flight schedule including all arrival- and departure times, start and end location of
the tow are considered deterministic.

3.1.1 Sets and Indices

Here we discuss the sets and indices used throughout this chapter.

Sets

I : Set of requests, a request is considered as the job to tow an aircraft from a start location to a
destination location.

D : Set of depots, where the charging stations are present. In this deterministic EVRP, a single depot
is considered: D = {d}.

K : Set of trucks, a homogeneous fleet is considered.

13
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Indices

i , j ∈ I ∪D : i , j are elements of the set of requests, I , or elements of the set of depots, D .

k ∈ K : k is an element of the set of trucks, K , so k represents a specific truck.

It might not seem obvious at first, why we define i , j to be an element of the set of requests, I or of the set of
depots, D . However, these indices will be used to distinguish Decision Variables (DVs) and for some constraints
it is necessary to make a distinction between cases where i , j are an element of I or of D . For example, in the
set of constraints of Eq. 3.4.

3.1.2 Decision Variables

There is a lot of literature available on all kinds of variations of VRPs. In this literature, many different kinds of
DVs are discussed. In most studies on VRPs, a binary DV, e.g. xi , j ,k , is introduced to indicate a truck drives
from one place to another [43, 44, 50]. Here i , j are the places and k the truck. One can choose to let i and j
be a point in the graph or to let i and j be the actual locations of a customer or one can choose to indicate a
specific customer by i and j . For VRPs where the vehicles leave and come back to a depot several times during
the day (or any other time-window), like for electric towing trucks, different ways of formulating the DVs are
covered in literature. In some studies, the concept of a trip is introduced. A trip consists of all nodes/locations
visited consecutively by a truck between leaving the depot and arriving at the depot again. The binary DVs of
such studies include a trip number, xi , j ,k,r , where r is the trip number [25, 32, 51]. We choose not to use the
concept of trips, as this would significantly increase the DV set.

For this thesis, we use the binary DV, xi , j ,k , where i and j are requests or depots and k a truck. This is
chosen as some constraints of our deterministic EVRP can be formulated intuitively. For example, we want
to include the constraint that all aircraft are towed exactly once. This constraint is described by Eq. 3.3 and
is discussed in Sec. 3.1.5. This constraint can be formulated as exactly one xi , j ,k must equal 1 for every i in
the set of requests. If we choose to use a set of binary DVs, xi , j ,k , for which i and j are locations, it would
be difficult to formulate a constraint that all aircraft must be towed. In addition, if we choose i and j to be
nodes in a graph of the airport, the EVRP must also determine the shortest route to drive, while solving. In
this EVRP, we determine the shortest route between requests i and j and use this distance, the time needed
and the electricity needed as input parameters for the EVRP. This way, the shortest route does not have to be
determined while solving the EVRP.

An overview of all DVs:

xi , j ,k , i , j ∈ I ∪D , k ∈ K : binary DV.

This DV describes which requests are handled consecutively by truck k. If xi , j ,k = 1, truck k will go to
request j after i . Here, i , j can be an element of I or D. For example, if xi , j ,k = 1 and i ∈ D and j ∈ I ,
truck k will leave a depot to go to the start location of request j . While, if i , j ∈ I , truck k will first tow the
aircraft of request i from its start location to its destination and then drive to the start location of request
j . Lastly, if i ∈ I and j ∈ D , truck k will tow the aircraft of request i to its destination and then return to
the depot. In order to reduce the number of DVs, the DVs xi , j ,k for which hold that the start time of the
tow of request i is later than the start time of the tow of request j , are not included. This can be done, as
request i will not be towed before j , as its start time must be later than that of request j .

si , i ∈ I : continuous real non-negative DV.
This DV decides the start time of the tow of request i .
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ti , i ∈ I : continuous real non-negative DV.
This DV decides how long a truck will charge after it served request i . This DV can only be non-zero
when xi , j ,k = 1, where i ∈ I and j ∈ D .

qi , i ∈ I : continuous real non-negative DV.
This DV indicates the battery level of a truck at the start of towing the aircraft of request i . One could
argue that this DV is redundant, as the battery charge of a truck can be constructed by adding all
charged electricity and subtract all electricity used up till the start of request i . However, this requires
multiplication of DVs xi , j ,k and ti , which most MILP solvers do not accept, although xi , j ,k is a binary DV.
In addition, the number of constraints does not decrease when qi is not introduced. Also, the readability
of the mathematical model decreases, as the load would have to be represented by:

qi =
∑

i ′∈I : si ′≤si
k∈K

xi ′,d ,k · ti ′ ·Cs −
∑

i ′, j ′∈I : s j ′≤si

k∈K

xi ′, j ′,k ·qi ′, j ′,k . (3.1)

Here, the first part of the right-hand side (RHS) represents the amount of electricity charged up till the
start of request i . Cs represents the charging speed. The second part of the RHS represents the electricity
used up till the start of request i . qi , j ,k is the electricity used when xi , j ,k = 1, the next section elaborates
on the value of qi , j ,k .

3.1.3 Parameters and Input Data

Cs : Charging speed in kW/h

Cc : Maximum capacity of the trucks

In order to determine the electricity used to tow a certain aircraft, a flight schedule must be known. Also, the
distances that a truck needs to travel and the corresponding towing and driving times must be known. Here,
we elaborate on the electricity used and travel times.

Flight schedule

For this thesis, data of the busiest days of the year at Rotterdam-Airport is used. On these days ± 50 flights
arrive or depart at the airport. For this deterministic EVRP, this data is considered known. This data includes:

t a,d
i i ∈ I : Arrival/departure time of the arriving aircraft of request i

l a,d ,s
i i ∈ I : Start location of arriving/departing aircraft of request i

l a,d ,e
i i ∈ I : Destination location of arriving/departing aircraft of request i

For all i ∈ I , a time-window in which a truck needs to start to tow the aircraft of request i is determined by t a,d
i :

[ei , li ]: Time-window in which a truck needs to start to tow the aircraft of request i . It is
assumed that this is just a couple of minutes before and after t a,d

i .
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Distances, travel times and electricity usage

In order to know the distances traveled, a graph is created from the aerodrome chart of the Rotterdam-Airport,
which is included in Appendix B. A scale is included in this aerodrome chart, such that the shortest distances
between gates, runways, and exit gates can be calculated from the aerodrome. This is done by using Dijkstra’s
algorithm.

The time duration of each DV xi , j ,k , can be calculated from these distances. It is assumed that the speed of a
truck is 14 km/h when towing an aircraft and is 30 km/h when a truck is driving while not towing an aircraft. It
is assumed that these speeds are constant while a truck drives. Note, DVs xi , j ,k where i ∈ D and j ∈ I , describe
that truck k goes from the depot to the start location of request j . So, ti , j ,k where i ∈ D and j ∈ I , includes the
travel time of a truck driving empty, i.e. not towing an aircraft, from the depot to the start location of request j .
Likewise, for xi , j ,k where i , j ∈ I , describe that truck k tows the aircraft of request i from its start location to its
destination and then drives empty to the start location of request j . So, ti , j ,k where i , j ∈ D , include the travel
time of the tow of request i and the time that truck k drives empty from the destination location of request i to
the start location of request j .

ti , j ,k , i , j ∈ I ∪D,k ∈ K : Time duration of xi , j ,k

The amount of electricity associated with the DV xi , j ,k = 1, is determined by the sum of electricity needed for
the towing, driving empty and electricity needed for all other systems, e.g. air-conditioning and on-board
systems, as explained in Appendix A.

qi , j ,k , i , j ∈ I ∪D,k ∈ K : Electricity associated with the DV xi , j ,k

3.1.4 Objective Function

In a Vehicle Routing Problem (VRP), one can choose different objectives. For example, one can choose to
minimize the travel time or the number of trucks or one could also be interested in maximizing the number of
customers visited. In this thesis, we choose to minimize the electricity costs. This is chosen, as the number
of trucks is usually fixed at an airport and given this amount of trucks, one can determine what the optimal
truck schedule is, such that the electricity costs are minimal. We consider the electricity costs per kWh to be
constant over time, so the objective is to minimize the total time charged,

Minimize
∑
i∈I

ti (3.2)

This deterministic EVRP minimizes the total charge time. The time charged at the depot after serving request i
is defined by the DV ti , which is only positive if xi , j ,k = 1 where i ∈ I and j ∈ D .

3.1.5 Truck Moving Constraints

In this subsection, we discuss all constraints regarding the movements of trucks and the order in which the
trucks may or may not drive. First of all, we want all aircraft to be towed exactly once. This is ensured by the set
of constraints, ∑

j∈I∪D
k∈K

xi , j ,k = 1, ∀i ∈ I . (3.3)

This set of constraints states that summing over all DVs that have request i as its first index, must equal exactly
one, for every i in the set of requests. Resulting in all requests being served once.
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Constraints must be stated such that the order in which a truck serves different requests is clear. For ex-
ample, a truck may leave the depot to go to a start location of a certain request, i , but then it must serve it and
go to another request or return to the depot. This is an adapted form of a VRPPD with LIFO-constraint. Here
we add that a truck cannot go to another aircraft, while it is towing one. This chaining of the operations of a
single truck is done by the following constraints,∑

i∈I∪D
xi , j ,k −

∑
i∈I∪D

x j ,i ,k = 0, ∀ j ∈ I , ∀k ∈ K . (3.4)

This set of constraints states that if a truck k arrives at the start location of request j , this is when∑
i∈I∪D xi , j ,k = 1, it must go to another request afterwards or return to the depot. This is the case when∑
i∈I∪D x j ,i ,k = 1. Otherwise, these sums must equal 0. This must be valid for each request j ∈ I and each truck

k ∈ K . This way, all operations are chained correctly.

The third set of constraints regarding the movements of a truck, states that trucks that leave the depot
must return to the depot. As trucks must not be scattered around the airport at the end of the day, constraints
are formulated to ensure that trucks return to the depot,∑

i∈I
xd ,i ,k −

∑
i∈I

xi ,d ,k = 0, ∀k ∈ K . (3.5)

These constraints make sure that when a truck k leaves a depot n times during the day (
∑

i∈I xd ,i ,k = n), it must
return to the depot exactly n times (

∑
i∈I xi ,d ,k = n).

The last set of constraints that are specifically concerning the movements of the truck, is about trucks being
only allowed to leave the depot, when they are actually present at the depot. If this set of constraints is not
added, trucks will be assigned to go to aircraft, while they are not present at the depot. This set is formulated
as,

xd , j ,k ≤ 1−
∣∣∣ ∑
i∈I : si<s j

xd ,i ,k −
∑

i∈I : si<s j

xi ,d ,k

∣∣∣, ∀ j ∈ I , ∀k ∈ K . (3.6)

When the number of times that a truck left the depot (
∑

i∈I : si<s j
xd ,i ,k ) and returned again at the moment in

time the truck wants to leave (
∑

i∈I : si<s j
xi ,d ,k ), are equal, a truck must be present at the depot and it may leave

to go tow an aircraft.

3.1.6 Time Constraints

In this subsection, the sets of constraints regarding the time a truck starts to tow an aircraft of a request are
discussed. First, the start of a tow of request i must be within its time-window. Here we add the time-window
constraint of a Vehicle Routing Problem with Time Windows (VRPTW). This is formulated for our EVRP as,

ei ≤ si ≤ li , ∀i ∈ I . (3.7)

The constraints of Eq. 3.7, constrain the starting time of each request to be within the time-window of that
request. For this research project, we set ei = 0 and li = t a,d

i +5, ∀i ∈ I . Here t a,d
i is the arrival or departure

time of request i . So we constrain the tow to start no later than 5 minutes after the aircraft arrived.

In the second set of constraints regarding time, we constrain that requests i and j may only be handled
consecutively if the truck can be on time at the start location of request j ,

s j ≥ max{si , t a,d
i }+ ti , j ,k , if xi , j ,k = 1, ∀i , j ∈ I , i 6= j , ∀k ∈ K . (3.8)
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These constraints state that if a truck k goes to request j after serving request i (so xi , j ,k = 1), the time truck
k start to tow j must be at least the start time of the tow of request i plus the time it takes to tow the aircraft
of request i to its destination and then drive empty to the start location of request j (this is ti , j ,k ). This must
be the case for all different combinations of requests, for every truck. In addition, if the truck arrives at the
starting location of request j , before the aircraft has landed, it must wait till the aircraft is there.

The last set of constraints regarding the start time of the requests, is about the start time of requests that are
served by trucks that just left the depot. These requests can only be towed by a truck if there is enough time
between the previous tow, the time spend at the depot and the start of the tow now. This is formulated as,

s j ≥ si + ti ,d ,k + td , j ,k + ti , if xi ,d ,k = 1∧xd , j ,k = 1, ∀i , j ∈ I , t a,d
j > t a,d

i , ∀k ∈ K . (3.9)

If truck k goes to the depot after serving request i , xi ,d ,k = 1, and if a truck k serves request j after it departs
from the depot, xd , j ,k = 1. If this is the case, the start time of the tow of request j must be at least the start tow
time of request i ( this is si ) plus the time to serve request i and to drive to the depot (this is ti ,d ,k ), plus the
time it takes to drive from the depot to the start location of request j , ( this is td , j ,k ) plus the charging time,
ti . This constraint must be valid if xi ,d ,k = 1 and xd , j ,k = 1, for all combinations of i , j ∈ I . For computational

reasons, we state that this must only be valid for i , j ∈ I for which holds t a,d
j > t a,d

i and for all trucks k ∈ K .

This reduces the number of constraints, as we know that if t a,d
j > t a,d

i , request i cannot be served before j . So

constraints regarding these combinations are not included.

3.1.7 Battery Level Constraints

In this subsection, we discuss all constraints regarding the battery level of the trucks. One assumption must be
noted. We assume that all trucks are fully charged at the beginning of the day and may be fully empty at the
end of the day. This assumption is valid as the last flights of the day at Rotterdam Airport are around 11 p.m.,
while the first flights in the morning are around 7 a.m. There is enough time in between these flights, for a
truck to fully charge.

The first set of constraints regarding the electricity level of trucks are about the maximum and minimum the
battery level of a truck may be,

qi ,d ,k ≤ qi ≤Cc −qd ,i ,k , ∀i ∈ I , ∀k ∈ K . (3.10)

The constraints of Eq. 3.10 ensure that the battery level of a truck k at the start of a request i , is always between
the maximum capacity of the battery, Cc , minus the electricity used to drive to the start location of request i ,
and the electricity needed to tow the aircraft of request i to its destination and then drive empty to the charging
station. These constraints are needed to limit the electricity level to its maximum capacity and to ensure that a
truck is always able to perform the tow and return to the charging station again.

The second set of constraints that we state about the battery level of trucks is about the battery level at
the start of a tow,

q j ≤ qi −qi , j ,k , if xi , j ,k = 1, ∀i , j ∈ I , i 6= j , ∀k ∈ K . (3.11)

These constraints state that if truck k serves request i and then goes to the start of request j (this is if xi , j ,k = 1),
the battery charge of the truck at the start of request j , must be at most the battery charge at the start of request
i minus the electricity consumed by serving request i and driving from the destination location of request i to
the start location of request j (this is qi , j ,k ).
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The last constraints that we introduce are about the battery level of trucks that leave the depot. The bat-
tery level of a truck must be updated, if the truck charged at the depot,

q j ≤ qi −qi ,d ,k −qd , j ,k +Cs · ti , if xi ,d ,k = 1∧xd , j ,k = 1, ∀i , j ∈ I , t a
j > t a

i , ∀k ∈ K . (3.12)

The constraints of Eq. 3.12 state that the battery level of truck k at the beginning of request j , after leaving
the depot, must be at most the battery charge of truck k at the beginning of request i , minus the electricity
used to tow request i , drive to the depot and drive to the start location of request j , plus the amount electricity
charged at the charging station. This constraint must be valid if xi ,d ,k = 1 and xd , j ,k = 1, for all combinations of
i , j ∈ I and for all trucks k ∈ K . Again, for computational reasons, only the constraints for which holds t a

j > t a
i ,

are implemented.

3.2 Mathematical Model Implementation

In this section, we will discuss some specific implementation methods used to implement the deterministic
EVRP presented in previous sections, as a linear model. This is needed as most packages and solvers only
accept linear operations.

The constraints of Eq. 3.6, contain absolute values, which is not a linear operation, such that it cannot
directly be implemented in a MILP. This can be bypassed by rewriting Eq. 3.6 into the following form,

xd , j ,k ≤ 1− ∑
i∈I : si<s j

xd ,i ,k +
∑

i∈I : si<s j

xi ,d ,k , ∀ j ∈ I , ∀k ∈ K ,

xd , j ,k ≤ 1+ ∑
i∈I : si<s j

xd ,i ,k −
∑

i∈I : si<s j

xi ,d ,k , ∀ j ∈ I , ∀k ∈ K . (3.13)

All constraints that contain an if -statement, like the constraint of Eq. 3.8, 3.9, 3.11 and 3.12 need to be included
to the MILP only if the if -statement is True. However, these if -statements include DVs, xi , j ,k , which are
unknown when adding the constraints to the code. This can be bypassed by adding/subtracting M(1−xi , j ,k ) to
a constraint, depending whether it is a ≤ or ≥ constraint. Here, M is a large number. For example, considering
the constraint of Eq. 3.8. Only if, xi , j ,k = 1, the constraint needs to be valid. When subtracting M(1− xi , j ,k )
from the right-hand side of the constraint, the constraint is only of influence when xi , j ,k = 1. If xi , j ,k = 0, s j

may be smaller than the case if xi , j ,k = 1. So, the constraints of Eq. 3.8 are implemented as,

s j ≥ si + ti , j ,k −M(1−xi , j ,k ), ∀i , j ∈ I , i 6= j , ∀k ∈ K . (3.14)

The same is done for the other constraints that contain an if -statement, i.e. the constraints of Eq. 3.9, 3.11 and
3.12.

3.3 Process Overview

The complete model, including pre-processing (this includes among other things, determining the electricity
and time needed for each x-DV), building the EVRP, solving it, and the post-processing, is implemented as a
Python code using the Pycharm editor. The experiments are run on a laptop with Intel® Core™ i7-8650U
CPU @ 1.90 GHz Processor with 16 GB RAM memory.
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Pre-processing of data
-Loading of the flight schedule

- Defining all DVs
- Determine electric load and time of every 

binary DV
- Determine time-windows of requests

Model making
Defining objective function and adding of all 

constraints

Model solving
Determining the values of all DVs

Post-processing of data
-Performing checks

- Displaying the schedule of each truck
- Imaging the driving and charging schedule of 

the whole truck fleet

Figure 3.1: Flow chart of the pre-processing of the data, model making, solving, and post-processing of the data.
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Once the EVRP is solved, the output consists of the DV values. The values of the DVs of the best-found
solution are post-processed and visualized in a truck schedule. Also, several checks are performed to check
whether all requirements are met. This is mainly done in order to check whether the constraints are imple-
mented correctly and whether the post-processing of the solution is done properly. These checks include
checking if all requests are served once and that they are served in time, checking whether towing, driving, and
charging activities do not overlap in time for each truck. In addition to the visualized truck schedule, a detailed
schedule of each truck is printed. This detailed schedule describes at what moment which truck must drive to
which aircraft with what route. This detailed schedule also indicates the battery level of each truck during the
day. An example of a detailed schedule is presented in Appendix B. A flowchart of the whole process is shown
in Fig. 3.1.

3.4 Best-Found Solutions of the Deterministic EVRP

As explained in Sec. 2.3, a maximum solving time is set, such that we have a best-found solution, defined
by Def. 2.3.1. This maximum solving time is determined per different problem that is solved, as a trade-off
between the quality of the solution and the solving time. The best-found solutions of the EVRP, i.e. the found
values of the DVs, are post-processed and depicted in a truck schedule. In this section, we present the truck
schedules derived from the best-found solutions of the deterministic EVRP as described in Sec. 3.1. We will
discuss the truck schedules while presenting them.

Fig. 3.2 shows the truck schedule obtained from the best-found solution of our EVRP. In this figure, the
blue blocks correspond to the time that a truck is not present at the depot. A truck can either be driving
empty or towing an aircraft or waiting at the end location of a certain request i to go to the start location
of request j . The red blocks represent the time a truck spends at the depot charging. All white areas in this
schedule, represent time waiting at the depot, not charging. Fig. 3.2 shows the truck schedule obtained from
the best-found solution of our EVRP for a homogeneous fleet of 11 trucks for a flight schedule of the 25 first
arriving and 25 first departing flights of "Day 1" of Rotterdam Airport. The minimum amount of trucks that
are needed to serve all 50 aircraft of this day is 11. The EVRP is infeasible when only 10 trucks are available.
The electricity capacity of the batteries is 150 kWh. The charging speed is such that the battery is charged in 4
hours (37.5 kW/h). We consider the charging costs to beAC 1/min. The electricity costs for charging during the
day areAC 2428.97. If we add the charging costs in order to get the trucks fully charged at the beginning of the
day, the total electricity costs areAC 5068.97.

The first point to notice of this truck schedule is that all trucks charge exactly the amount of electricity
that is needed to serve later requests and to be able to return to the depot. In the truck schedule, none of the
trucks charge after they towed the last aircraft. The detailed schedule of each truck, confirms that indeed all
batteries are completely empty at the end of the day. This is exactly what we would expect, in the case of a
model that minimizes the total charging time.

Another point is that we see that this truck schedule is dependent on the flight schedule. If many aircraft
need service at the same time, or in the same time interval, more trucks are needed to be able to serve all
aircraft within the time-interval, as a result of a lot of electricity used by the trucks. That a truck schedule is
dependent on a flight schedule, can be seen in Fig. 3.3. Here we see in Fig. 3.3a, the truck schedule for the
same fleet, but for the flight schedule of one day later. However, all flights can be served by a fleet of fewer
trucks. The minimum amount of trucks needed for this flight schedule is 9. The schedule of 9 trucks serving
50 flights of day 2, is shown in Fig. 3.3b. The electricity costs from the charging during the day of this flight
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schedule are higher, as more trucks need to charge, compared to the case of 11 trucks available. This is due to
the assumption that all trucks are fully charged at the beginning of the day. However, the total electricity costs
are higher for the truck schedule of 11 trucks. So from this, we can conclude that the truck schedule and thus
the number of trucks needed, is dependent on the flight schedule.

Figure 3.2: A truck schedule of a fleet of 11 homogeneous trucks for a flight schedule of 50 flights of day 1, where 5 minutes
of service time is considered and all trucks have a capacity of 150 kWh. The total electricity costs areAC 5068.97.

Figure 3.3: A truck schedule of a fleet of (a) 11 and (b) 9 homogeneous trucks for a flight schedule of 50 flights of day 2,
where 5 minutes of service time is considered and all trucks have a capacity of 150 kWh, total charging costs areAC 4756.16
(of whichAC 2116.16 due to charging during the day) in (a) andAC 4421.72 (of whichAC 2261.72 due to charging during the
day) in (b).
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3.5 Extensions to the Deterministic EVRP

The truck schedules shown in the previous section, show that the current deterministic EVRP is able to
determine a truck schedule for a flight schedule while minimizing the charging time. However, there are
opportunities to make this EVRP closer to the real-life situation. In this section, we present 3 extensions to the
deterministic EVRP presented and discussed in the previous sections.

3.5.1 Different Charging Speeds

The first extension to the EVRP as presented in Sec. 3.1, concerns the charging speed. In reality, there may be
more charging speeds at which a truck may be charged. There are a few advantages of being able to charge
with different charging speeds. First of all, charging slowly is better for a battery and this will result in the
battery lasting longer before it needs to be replaced [24, 52, 53]. As the trucks and batteries are expected to be
relatively expensive compared to the electricity costs, it is important to take this into account. Introducing
different charging speeds will also lead a truck schedule to be less dependent on a flight schedule. This will of
course not bypass issues in the case of a number of aircraft need service around the same time. But allowing
trucks to charge at different speeds will introduce more flexibility. Trucks have the option to go to the depot
and charge fast when they are needed shortly after, while in the case that they are not needed for a long time,
they can charge slow. So by introducing different charging speeds at which a truck may charge, may lead to a
reduction of the total electricity costs and may result in batteries lasting longer before they need replacement.

By adding the opportunity for trucks to charge with different charging speeds, we introduce a set of charging
speeds, Cs . The subscript c, is added to the subscript indicating a visit to a depot, denoting with what speed
the truck will charge: xi ,dc ,k . Consider that there are n different charging speeds. The set of elements of the set
depots, D, is now larger, as an element is added for every charging speed: D =⋃n

c=0 dc . In addition, the DV
that decides how long a truck charges, ti , the subscript c is added, to indicate with what speed has been charged.

Proposition 1. By introducing multiple charging speeds, Cs = {cs0 ,cs1 , ...,csn }, where cs0 ,cs1 > ... > csn with
corresponding charging costs per kW h, Cc = {c0,c1, ..,cn}, where c0 > c1 > ... > cn , the electricity costs of an
optimal schedule, can only decrease or stay equal compared to a case where only cs0 with costs c0 are allowed,

ti0 · cs0 · c0 ≥ tic · csc · cc . (3.15)

Proof. Trivial, as the amount of electricity that needs to be charged and the time that is available to charge, is
the same for both cases. If time allows, a truck may charge with a slower speed. Due to the monotonicity of Cs

and Cc , the total charging costs of the optimal schedule remain equal or reduce if more charging speeds are
available. �

The objective function needs to be adjusted as the electricity costs per minute is not constant. The objective
function as described by Eq. 3.2 is replaced by,

Minimize
∑
i∈I

c∈Cs
k∈K

xi ,dc ,k · tic ·Cc , (3.16)

where Cc is the electricity costs per minute for the charging speed c. The implementation of these new DVs,
requires adjustment of the time and load constraints concerning the depot, i.e. Eq. 3.9 and Eq. 3.12. Here, the
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subscript, c, of dc needs to be added. Eq. 3.9 is changed to,

s j ≥ si + ti ,dc ,k + tdc , j ,k + tic , if xi ,dc ,k = 1∧xd , j ,k = 1, ∀i , j ∈ I , t a
j > t a

i , ∀k ∈ K , ∀c ∈Cs (3.17)

Eq. 3.12 is adjusted in the same way to,

q j ≤ qi −qi ,dc ,k −qdc , j ,k + c · tic , if xi ,d ,k = 1∧xd , j ,k = 1, ∀i , j ∈ I , t a
j > t a

i , ∀k ∈ K , ∀c ∈Cs . (3.18)

Here it must be noted that ti ,dc ,k is the same for all c, as the time it takes to go to the depot to charge with a
different speed, does not differ. The same holds for tdc , j ,k , qi ,dc ,k , and qdc , j ,k . For this study, we choose to
implement 3 different charging speeds. Tab. 3.1 shows an overview of the charging speeds and the costs per
minute. As electricity price agreements are made by airports with electricity companies, it is unknown what
the costs of electricity are. So the electricity prices, presented in Tab. 3.1 are hypothetical. We assume, that the
costs of slow charging per kWh are less than the costs per kWh when charging at a higher speed. So we expect
that the electricity costs will decrease and that trucks will be assigned to go to the depot to charge with a slow
speed when time allows it.

Charging speed option Fully charged in [hours] Ratio Charging costs [AC/min]

0 4 1/1 1
1 8 1/2 0.43 ( = 1/2.3)
2 20 1/5 0.0182 ( =1/55)

Table 3.1: Overview of the different charging speeds and corresponding costs per minute.

(a) (b)

Figure 3.4: A truck schedule of a fleet of 14 homogeneous trucks for a flight schedule of 50 flights on day 2, where 5 minutes
of service time is considered and all trucks have a capacity of 150 kWh. (a) one charging speed is used and the total
electricity costs areAC 4716.54. (b) 3 charging speeds are used and the total electricity costs areAC 3377.50.

Fig. 3.4a shows the truck schedule for 50 flights on day 2 for 14 homogeneous trucks. Here only the fast charging
option could be used. The electricity costs for charging during the day of this truck schedule areAC 1356.54.
The total electricity costs, including the charging to have fully charged trucks at the beginning of the day, are
AC 4716.54. Fig. 3.4b shows the truck schedule for the same situation, but now 3 different charging speeds could
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be used. The electricity costs for charging during the day of this truck schedule are less than the costs of the
truck schedule where one charging speed was available. The electricity costs for charging during the day of
the truck schedule where 3 charging speeds could be used areAC 487.90. When we include the electricity costs
to get fully charged trucks at the beginning of the day, where we consider that trucks can be fully charged in
8 hours, the total electricity costs areAC 3377.50.

A first point to note is, that these truck schedules are not for a minimum amount of trucks. Here, we minimize
the electricity costs of the charging during the day, but the trucks start the day fully charged. So, if many trucks
are fully charged in the morning, no truck needs to charge during the day, resulting in no electricity costs
due to charging during the day. Sec. 3.6 elaborates on the trade-off between the number of trucks and the
associated electricity costs.

Another point that must be noted is that this schedule is not an optimal solution, but a maximum solv-
ing time is set. The maximum solving time is 1000 seconds. For example one can see in Fig. 3.4b, that the
second time truck 3 charges, it charges with the charging speed of charge option 1, however it had time enough
to charge with the charging speed of option 2.

In addition, we see that in the case where multiple charging speeds are allowed, Fig. 3.4b, trucks are usually
scheduled to go to a single request and then return to the depot to charge. This can be seen by blue blocks
being narrow, while in Fig. 3.4a, there appear more blue blocks that are wider, indicating the truck serves
multiple requests consecutively. As the deterministic EVRP minimizes the electricity costs, it is convenient
for trucks to spend the most time at the depot charging with the slowest speed. This leads to trucks being
scheduled to serve a single request and then return to the depot to charge.

Another point that should be addressed, is the fact that a truck can not adapt its charging speed while
charging. So the electricity costs depend on the flight schedule and whether there is enough time to charge
with a certain speed. So if there is not enough time between arriving at the depot and the time a truck has
to leave to charge with the slowest charging speed, the truck must charge faster. In reality, one would ideally
charge partly with the slowest (and thus cheapest) charging speed and partly with a higher charging speed.
This is the second extension to the deterministic EVRP presented in Sec. 3.1, that we will elaborate on.

3.5.2 Adapting the Charging Speed While Charging

The second extension to the deterministic EVRP concerns adapting the charging speed while charging at the
depot.

Let ticn
be the time a truck charges after serving request i , with charging speed c, at the nth time it chooses a

new charging speed. And let cscn
be the charging speed a truck charges with after n times adapting its charging

speed.

Proposition 2. By introducing the possibility to adapt the charging speed n times while charging, Cs =
{csc0

,csc1
, · · · ,cscn

}, the total electricity costs of the optimal truck schedule remains the same or decreases.

Proof. Trivial, as allowing trucks to adapt its charging speed while charging, the average speed at which the
truck charged (and the associated electricity costs) is lower than when trucks are not allowed to adapt its
charging speed and this average charging speed, is a charging speed that is not part of the charging speed set,
Cs . As a result of Proposition 1, the total electricity costs must be equal or go down. �

Introducing the ability for trucks to charge at multiple speeds during one depot visit, can be done in several
ways. For this study, we choose to let trucks adapt their charging speed once while at the depot. The imple-
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mentation of adapting the charging speeds once is already time-consuming. Here, we like to show the possible
functionalities that such models can have. We must note that by increasing the number of times a truck can
switch charging speeds and by increasing the number of possible charging speeds, the electricity costs can
only go down.

As mentioned, there are several ways in which the adaption of charging speed while charging at the de-
pot can be added to this EVRP. Here we choose to increase the set of charging speeds, Cs . By doing this, one
could say we introduce a second depot, where trucks go after they were at the first depot. At the second depot,
trucks can again charge by the speeds indicated in Tab. 3.1. The transition from the first to the second depot
does not cost any time or electricity. This addition of the second depot requires the following adjustments to
the mathematical formulation of the EVRP.

First, we split our set of depots, from the set D to the sets D1 and D2. The elements of D1 are d0,d1,d2.
These elements are used to indicate whether a truck goes to the first depot to charge with a certain charging
speed option, i.e. 0, 1, 2. The set D2 = {d3,d4,d5}. Here the indices 3, 4, 5 represent the charging speeds of
charging options 0, 1, 2 respectively, but at the second depot. It may not seem obvious why it is needed to split
the set of "depot", but some constraints will include DVs that concern trucks going to the depot, so the first
time a truck charges, while other constraints concern leaving the depot and thus the second time that a truck
chooses a charging speed.

The set of DVs, xi , j ,k and tic becomes larger as the set Cs doubles. The notation of the objective stated
in Eq. 3.16 does not change, only the set Cs becomes larger, which affects the total objective but the notation
does not change. However, many constraints must be slightly adjusted in notation. The constraints of Eq. 3.3
must be adjusted, one must not sum now over the x -DVs, where the second index belongs to D2,∑

j∈I∪D1
k∈K

xi , j ,k = 1, ∀i ∈ I . (3.19)

The constraints of Eq. 3.4 are slightly adjusted. In the first term, the sum over i ∈ I ∪D, must be replaced by
a sum over i ∈ I ∪D2, while the second sum must become i ∈ I ∪D1. In addition, we must add a constraint
ensuring that trucks always travel from depot 1 to depot 2. If we do not add this constraint, trucks cannot leave
the depot, as a result of the adjustment. The added constraints are is,∑

j∈D1

xi , j ,k −
∑

j∈D2

xi , j ,k = 0, ∀i ∈ I , ∀k ∈ K . (3.20)

A truck must always "visit" both depots, however, it can charge at one of the depots for 0 minutes, such that it
did not adapt its charging speed while charging. Also, a truck can choose the same charging speed at both
depots, such that the charging speed is not adjusted, but the truck did "visit" both depots. The constraints of
Eq. 3.5 are adjusted such that in the first term is summed over all elements from the set D2 and in the second
term is summed over the elements from the set D1,∑

i∈I
j∈D2

x j ,i ,k −
∑
i∈I

j∈D1

xi , j ,k = 0, ∀k ∈ K . (3.21)

Similar adjustments are done for the constraints of Eq. 3.6, Eq. 3.8, and Eq. 3.12.

Fig. 3.5 shows the truck schedule when allowing trucks to adapt their charging speed once while charg-
ing. This is a schedule of 14 trucks that serve 50 flights during one day. The electricity costs due to the charging
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during the day areAC 259.72. The total electricity costs, including the electricity costs to get fully charged trucks
at the beginning of the day, areAC 3148.60. Fig. 3.4b shows the truck schedule for the same flight schedule, but
trucks were not able to adapt their charging speed while charging. The costs of this schedule areAC 3377.50.
This shows that by allowing trucks to adapt their charging speed, the total electricity costs reduce. It must
be noted that these schedules are not optimal, but were limited to a maximum time of solving, namely 1000
seconds. But what is clear, that allowing trucks to adapt their charging speed reduces the electricity costs,
as trucks can charge with the slowest speed and thus with the lowest costs and charge for a short amount of
time with a higher charging speed if needed. In the case where trucks could not adapt their charging speed,
the speed at which a truck charges and thus also the electricity costs involved were dependent on the time
in between 2 consecutive tows. When a truck can adapt its charging speed, trucks use the time in between
consecutive tows to charge with the slowest charging speed.

Figure 3.5: The truck schedule of a truck fleet of 14 homogeneous trucks for a flight schedule of 50 flights with a service
time of 5 minutes and a truck capacity of 150 kWh. Here trucks could switch from charging speed once while charging at
the depot. The total electricity costs areAC 3148.60.

3.5.3 Truck and Aircraft Size Categorization

The last extension to the deterministic EVRP is the addition of different trucks and different types of aircraft.
One can imagine that an Airbus A380 must be towed by a larger truck than a B737. Or to put it differently, a
B737 may be towed by a large truck, but a smaller truck can also tow it. While an Airbus A380 can only be towed
by a large truck. In Appendix A an overview of the different aircraft categories and some examples of aircraft of
each category are given in Tab. A.1. Adding these constraints can be done by introducing 2 new parameters:
the truck category, c t

k of truck k and aircraft category, cr
i of request i . For now, we categorize the trucks and

aircraft into 3 categories. The trucks differ in capacity and the electricity needed to tow the different sized
aircraft for the different tasks is given in Tab. A.3. The electricity needed for all different categorized aircraft is
implemented in the parameter qi , j ,k , which indicates the amount of electricity associated with the DV xi , j ,k .
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The constraints that are added to ensure that aircraft are towed by a truck that can tow it, is,∑
j∈I∪D1

xi , j ,k · (c t
k − cr

i ) ≥ 0, ∀i ∈ I , ∀k ∈ K . (3.22)

In the case that xi , j ,k = 1, the truck category of truck k, c t
k , must be larger or equal to the aircraft category of

request i , cr
i . In the case that xi , j ,k = 0, the truck and aircraft category do not matter.

These constraints are implemented to the EVRP. As stated in Appendix A, more electricity is needed to
tow larger-sized aircraft. This way, the total electricity needed increases when large aircraft need to be towed,
compared to the case where only small aircraft need to be towed. This has an impact on the feasibility and
total electricity costs of the truck schedule. As this is highly dependent on the parameters set, it is difficult to
make a good comparison with the results presented in this chapter, such that we leave it out.

3.6 Number of Trucks versus Electricity Costs

As mentioned before, it is a trade-off between how many trucks are used and the electricity costs of the truck
schedule. Especially when airports need to chance their total Ground Service Equipment (GSE) fleet, Ground
Service Handlers (GSH) need to answer the question, how many trucks need to be bought? We determine the
total electricity costs of different numbers of trucks that serve all requests of the same flight schedule. Fig. 3.6
shows the total electricity costs for a flight schedule of 36 flights for different fleet sizes, where we consider
8 minutes of service time. Here, we consider all trucks and aircraft to be of the same category. The trucks may
charge with different charging speeds and may adapt their charging speed once while charging. In addition,
we subtract the electricity costs of all electricity that is not used by trucks. So all trucks will be empty at the end
of the day.

It can be seen that a fleet size of 13 trucks results in the lowest total electricity costs. This is due to the
fact that the trucks of a fleet of 12 trucks need to charge a significant amount of time during the day with the
charging option 0. This results in the electricity costs due to charging during the day being significantly higher.
At least 11 trucks are needed to serve all aircraft on time. The truck schedule of the fleet of 17 trucks results in a
schedule where trucks only need to charge during the day with charging speed option 2. Note, that the trucks
charge with charging speed 1 at night. The truck schedule of 16 trucks results in fewer total electricity costs, as
during the day more time can be charged with charging speed 2 compared to the schedule of 17 trucks, and
the model is still feasible.

These calculations have been done for many different fleet sizes and for different flight schedules. All results
show similar behavior, the costs decrease when fewer trucks are available, up till the point that the trucks of
the fleet have to charge for a significant amount of time with the charging speed of option 0, resulting in the
total electricity costs to increase, when fewer trucks are available. In addition, there is a minimum amount of
trucks needed to serve all aircraft, a fleet of fewer trucks results in the EVRP to be infeasible and all requests
can not be served on time, or there is not enough time to charge during the day.
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Figure 3.6: The total electricity costs of the best-found solution of the deterministic EVRP of different sized truck fleets that
serve a flight schedule of 36 flights.

3.7 Comparison with a VRP of Non-Electric Towing Trucks

To show the versatility of our EVRP and to compare the case of electric trucks with that of trucks that do not
need to be charged, we present a truck schedule of a VRP of non-electric trucks.

The deterministic EVRP presented in Sec. 3.1 is adjusted to create a VRP of non-electric trucks. Two main
adjustments are done. Firstly, the objective of the VRP cannot be to minimize the electricity costs as the trucks
do not have to charge. The objective function of the VRP is to minimize the total driving time. Secondly,
all constraints regarding the battery levels of trucks are removed, i.e. all constraints of Sec. 3.1.7. Here we
do not consider that it takes time to fill a truck with diesel (or another type of fuel). We assume that these
non-electric trucks drive at the same speed as the electric trucks considered before. Also, the same service
times are considered. Fig. 3.7 shows the truck schedule of 3 non-electric trucks, that serve 50 flights of day
1 of the considered flight schedule. The minimum amount of trucks needed to serve all 50 flights on time is
3. In Sec. 3.4, we presented the best-found solution of the deterministic EVRP of 50 flights. For the EVRP the
minimal amount of trucks needed to serve 50 flights at day 1 is 11 trucks. So for the EVRP significantly more
trucks are needed to tow all aircraft on time. This is due to the fact that the electric trucks of the EVRP need to
charge, while the non-electric trucks of the VRP do not have to charge.

Another point that should be addressed, is that for this VRP an optimal solution is found within the maximum
solving time, while for the EVRP only a best-found solution was found within the maximum solving time.
In addition, it must be noted that this VRP solves, in comparison to the EVRP, very fast: the optimal truck
schedule of Fig. 3.7, was found in 3 seconds, while the best-found solution of a EVRP of 50 flights and 11 trucks
was found in 1000 seconds. It must be noted that the reason why the VRP solves so fast is not due to the fact
that the minimum amount of trucks needed for the VRP, is so low. For small systems (4 electric trucks and 12
aircraft), no solution with an optimality gap of 0, was found within a few minutes of the EVRP.

This result shows the main difference between a VRP and our formulated EVRP. It shows that our EVRP
is computationally more "complex" than a VRP. This brings us to the question, what defines the complexity of
a MILP? In literature, there is no consensus on what defines the complexity in terms of the solving time of a
MILP [54–56], as this is highly dependent on the input parameters of the objective and the constraints.
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Figure 3.7: Truck schedule of 3 non-electric trucks serving 50 flights. The total driving time is 39328 minutes.

However, we can state some qualitative observations. In Tab. 3.2, we compare the number of constraints and
(binary) DVs of the VRP and the EVRP for large and smaller systems. The number of continuous DVs of the
EVRP is 8 times that of the VRP. This is because the VRP does not contain the DVs qi and ticn

. In addition, the
constraints that the EVRP has, which the VRP does not have, are constraints that make the DVs dependent. As
a decision to go to the depot to charge for an EVRP, influences the level of the battery load, but also which
request it can serve at a later moment in time. This is not the case for the VRP. For the VRP whether a truck goes
to a certain request, depends on whether the truck can be there on time. For the EVRP this also depends on
whether a truck’s battery is full enough and whether it has enough time to charge during the day. For example,
the constraints of Eq. 3.18 are part of the EVRP, but not of the VRP. This set of constraints contains the DVs qi ,
q j , ticn

, xi ,d ,k , and xd , j ,k . So the constraints that are added to the EVRP compared to the VRP, make the DVs
dependent and thus results in a computationally more complex problem.

Number of: 5 Trucks, 16 flights 14 Trucks, 50 flights

EVRP VRP EVRP VRP

Constraints (rows) 7 380 1 259 193 835 25 603
Columns 1 064 862 13 911 10 355
Non-zero elements 55 213 14 063 1 524 155 353 685
Continuous DVs 128 16 400 50
Binary DVs 935 845 13 510 10 304

Table 3.2: Comparison of the model characteristics of the VRP as introduced in this section and the EVRP as introduced in
Sec. 3.5. Here the number of rows and columns correspond to the number of rows and columns of matrix A, of each MILP
of the (E)VRP, as defined in the definition of a MILP in Def. 2.2.1. The number of non-zero elements corresponds to the
non-zero elements of matrix A.



3.8. CONCLUSIONS ON THE DETERMINISTIC EVRP 31

3.8 Conclusions on the Deterministic EVRP

In conclusion, we have formulated a deterministic Electric Vehicle Routing Problem (EVRP) as a Mixed Integer
Linear Program (MILP) that describes the operations of electric towing trucks at an airport of a deterministic
flight schedule, minimizing the electricity costs. This way, we accomplished one of our research goals as stated
in Sec. 1.4.3. Due to the computational complexity of solving this MILP, a maximum solving time is set and
a best-found solution of the MILP is found. From this best-found solution, the routes of the electric trucks
of a fleet that tow all aircraft on time from the gate (landing lane) to the runway (gate) of departing (arriving)
aircraft of a certain flight schedule at an airport, can be derived. In addition, from the best-found solution can
be derived when each truck must charge for how long and at what charging speed it must charge.

In addition, we found that, by allowing trucks to charge at different speeds and adapting the charging speed
while charging, the total electricity costs reduce. This extension is added to the EVRP description, by adding
multiple depots where trucks can charge at each depot with a different charging speed. Going from a depot
to another does not cost electricity or time. Lastly, we found that describing the operations of non-electric
towing trucks by a Vehicle Routing Problem (VRP) is significantly less computational complex to solve. This
emphasizes the computational complexity of an EVRP compared to a VRP.
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Chapter 4

Robust Optimization

Aircraft may be delayed or arrive early due to all kinds of reasons. The moment in time an aircraft needs to
be towed is thus uncertain and this may change the optimal operations of the electric trucks significantly. We
introduce two methods to take account of the uncertainty in arrival and departure times of aircraft. In this
chapter, we present the first method. In this chapter, we present how the operations of electric towing trucks at
an airport may be optimized under the uncertainty of the arrival and departure times of aircraft, by Robust
Optimization (RO). In Chap. 5, we present the second method, which uses a dynamic approach to determine the
operations of a fleet of electric towing trucks under uncertain arrival and departure times of aircraft.

Different types of stochastic optimization could be suitable to describe the electric towing trucks’ opera-
tions under uncertain arrival and departure times of the aircraft. In this chapter, we show that RO is a suitable
approach. However, there are multiple suitable candidates and in Appendix. D, we discuss how Stochastic
Programming (SP) could be used to describe the operations of electric towing trucks at an airport under
uncertain arrival and departure times and we show that a RO-approach and a SP approach are very similar.

RO is a field of research that concerns optimization problems in which a certain measure of robustness
against uncertainty is sought. Within the field of RO, different techniques may be used for different types
of uncertainty problems. Before we motivate why RO is a suitable technique to describe the operations of
electric towing trucks at an airport under the uncertainty of arrival and departure times, we must discuss the
uncertainty in arrival and departure times in more detail.

4.1 Distribution of the Uncertain Arrival and Departure Times

Delays may be due to various reasons, among many others, weather effects may influence whether an aircraft
may arrive or depart (late) and, delay in ground-based activities, e.g. the cleaning or catering process may
result in a delay of departing aircraft. It is important to note that the delay of arrival and departure times may
differ per airport, per airline, per flight, and per moment in time (day/year). In addition, the delay of aircraft in
the morning (may) have an effect on the operations at an airport and possible delay of an aircraft at a later
moment that day. So we need to agree on the formulation of the uncertainty in arrival and departure time.
However, not a lot of data on arrival and departure delays is published or freely available, as these statistics
may harm an airport’s reputation. We do not have data on the delays at Rotterdam Airport. For this thesis,
we make the assumption that the delay of arrival and departure times are normally distributed. However, in
reality, this distribution is not valid for most airports and airlines. We need to emphasize, that if the presented

33
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mathematical model of this chapter is used for a specific airport, it is of high importance that the distribution
used is a good representation of the uncertainty in arrival and departure times.

Novianingsih et al. studied in [57] the delays of Garuda Indonesia Airline and fitted the delays of all arriving and
departing aircraft of its aircraft fleet in 2012. They found that the delay of arriving aircraft can be described by a
normal distribution, with a mean of -2.73 minutes and a standard deviation of 13.75 minutes, N (−2.73,13.75).
The delay of departing aircraft can be described by a normal distribution, N (−1.54,10.49). Throughout this
thesis, these distributions are used to describe the delay in arrival and departure times at an airport. The effect
that delays early on the day may have on flights later that day, is not taken into account in Novianingsihs study
and thus also not taken into account in this thesis.

4.2 Robust Optimization Approaches

Now that we stated how the uncertainty of the arrival and departure times is described in this thesis, we can
focus on different types of RO and decide on the type that is best suitable to describe the operations of electric
towing trucks at an airport under the uncertainty of arriving and departing times of aircraft. Here we discuss 3
important types of RO, namely the approach of Charnes, Cooper et al. [58], the approach of Soyster [59], and
the approach of Ben-Tal and Nemirovski [60].

Charnes, Cooper et al. are known for their studies on chance-constrained problems within the RO research
field [58]. Chance-constrained problems are characterized by constraints that need to be satisfied with some
probability. For example, a chance-constrained problem may describe the optimal operations of the electric
towing trucks under uncertain arrival and departure times, if a percentage of all aircraft need to be served on
time. However, this type of RO is not the most suitable, as these constraints constrain that a certain amount of
aircraft is towed not on time. This way it must be known with what probability a certain aircraft arrives in time.
In this thesis, we consider that the delays can be described by a normal distribution, so this probability can be
determined. However, in reality it is difficult to determine this distribution, as it depends on many factors and
we expect schedulers to use historic data and sampled scenarios. This way, a chance-constrained description
is less suitable than other methods presented in the rest of this section.

Soyster introduced another method to describe optimization problems under uncertainty. [59]. In Def. 2.2.1 we
defined matrix A as the matrix that contains all coefficients of the constraints of a Mixed Integer Linear Program
(MILP). Let Ji = { j : ai j ∈ A, subject to uncertainty}. Soyster considers all coefficients of the constraints that
are subject to uncertainty, ai j , as symmetric and bounded random variables. This way, each entry ai j , j ∈ Ji

becomes a bounded random variable ãi , j in the interval [ai , j − ãi , j , ai , j + ãi , j ]. However, the uncertainty
of the arrival and departure times of aircraft are not necessarily a bounded or symmetric random variable.
For this thesis, we consider the uncertainty of arrival and departure times to be normally distributed, so not
bounded. There are many examples where the uncertainty of arrival and departure times cannot be described
by a bounded and symmetric random variable [27–29, 61]. So, if a RO-based uncertain Electric Vehicle Routing
Problem (EVRP) is used to describe the operations of electric towing trucks at a specific airport, it is desired
not to be bound by the way the delay in arrival and departure times need to be described, as is the case for the
Soyster approach where the uncertainty must be described by a bound and symmetric random variable.

Ben-Tal and Nemirovski introduced in 1999 [60] a way to describe an optimization problem under uncertainty,
where the uncertainty may be described by an unbounded distribution. In addition, the method of Ben-Tal et
al., allow scenario-based optimization instead of describing the uncertainty by a known distribution. This
method is known as the min-max robust approach. The idea of this approach is to determine the solution
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which is feasible in all sampled scenarios and optimal in the worst case. These scenarios can be sampled from
a known distribution or based on historic data. Rewriting the definition of a MILP into its robust counterpart,

min
x

max
j∈E

f T
j x

s.t. a j x ≤ b j , ∀ j ∈ E

xi ∈Z, ∀i ∈ I .

(4.1)

Here E is the set of sampled realizations of the uncertain parameters. The number of sampled realizations
must be sufficiently large. However, in the case of uncertainty in arrival and departure times, it is not directly
clear whether a specific delay or early arrival/departure is beneficial or detrimental to the objective function.
So it is difficult to determine what the sampled realization of the flight schedule is, that is the worst-case. In
the next sections, we discuss how this is bypassed for our description of an EVRP.

(a) (b)

Figure 4.1: Schematic representation of a feasible set of an optimization problem without (a) and with (b) uncertainty.

4.3 An EVRP under Uncertainty using a Min-Max RO-Approach

As the EVRP, as explained in Chap. 3 only has hard constraints, for the RO-based model, we want all constraints
to be met for many realizations of the flight schedule. So the question is, what are the optimal operations such
that for a large number of possible realizations of a flight schedule, all aircraft will be served on time? This
can be done by sampling flight schedules using the distribution of the delay and adding the time-window
constraints of all requests by the sampled realizations to the deterministic EVRP as presented in Chap. 3.
Fig. 4.1a schematically depicts the set of feasible solutions in the case that no uncertainty is present, like the
deterministic EVRP presented in Chap. 3. Fig. 4.1b schematically shows what happens when 3 samples of a
flight schedule are sampled and the corresponding time-window constraints of all requests are added. One
can see that by adding constraints the set of feasible solutions gets smaller. By adding these constraints, the
EVRP may become infeasible and more trucks are needed to tow the aircraft within the time-windows of all
sampled arrival/departure times.

This method of adding extra time-window constraints to the deterministic EVRP as a RO-approach, looks like
the min-max robust approach of Ben-Tal et al., but we do not specifically determine the worst-case sampled
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scenario (flight schedule). Determining the worst-case sampled scenario is not trivial, as an early arrival of an
aircraft may be beneficial but also detrimental to the truck schedule. So it is difficult to say whether a sampled
scenario is a worst-case scenario. Instead, we minimize the electricity costs considering all sampled flight
schedules. By sampling more flight schedules, the probability that all aircraft are towed on time for the actual
realization of the flight schedule, increases. However, there will be a probability that not all aircraft can be
towed on time for the realization of the flight schedule. In Sec. 4.4, we motivate how many samples of the flight
schedule we used and what the probability is that the realization of the flight schedule results in not all aircraft
being towed on time. We denote the nth sampled arrival/departure time of request i , by t̃ n

i .

Before we present the results on our EVRP under uncertain arrival and departure times using a RO-approach,
we must clarify two last points, namely (1) what do we consider as the moment in time the truck must be at the
start location of the tow, as the moment in time an aircraft arrives is uncertain and thus also the moment in
time the truck starts a tow is uncertain and (2) what we consider as the moment in time that a truck is actually
finished with the tow, as the starting time is uncertain and thus also the moment in time the truck finished a
tow. These two points are discussed in the next sections.
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Figure 4.2: Schematic representation of deciding when a truck must be present at the start location of a tow by sampled
realizations of the actual arrival/departure time of an aircraft. The 4 red lines on the different timelines show possible
sampled arrival times of a single request. The green dotted lines show possible moments in time that a truck must be
present at the start location of a tow. The pink areas are the time-windows in which the aircraft needs to be towed as
described for the deterministic EVRP of Chap. 3. It can be seen that there is no moment in time where a truck can start to
tow the aircraft of this request, where it is in the time-windows of all sampled realizations of the arrival time of the aircraft.

4.3.1 The Time a Truck Needs to be Present at the Tow Location

In this section we discuss the first point that needs clarification. Fig. 4.2 schematically depicts 4 possible
sampled arrival times of a certain request, indicated by the 4 red lines on the timelines. The 3 green dotted
lines indicate examples of possible start times of the tow, which still needs to be decided on. The pink areas
represent the time-windows as they are introduced in Chap. 3. Namely, as a time-window (of 5 minutes) after
an aircraft arrives/departs. However, it can be seen that if we do not change the time-window in which a
truck is allowed to start to tow the aircraft, there is not a moment in time a truck can start to tow within the
time-windows of all sampled arrivals of the aircraft, as the there is no moment in time on the timeline, the
dotted green line can go through the pink areas of all sampled arrival times.
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But what we do know, is that we want to have a truck at the start location of the tow at the earliest sam-
pled realization of the arrival/departure time of an aircraft. We ensure that a truck is present at the start
location of the tow before the end of the time-window of the earliest sampled realization of each request i , we
replace the set of time-window constraints of Eq. 3.7 of the deterministic EVRP described in Chap. 3 by,

si ≤ min
n

t̃ n
i +5, ∀i (4.2)

So the time-window constraint is now replaced by a constraint, constraining a truck to be present at the start lo-
cation of the tow before the end of the time-window of the earliest sampled realization of the arrival/departure
of request i . This is schematically depicted by Fig. 4.3.

Possible arrival aircraft

Time-window

Time

Latest possible arrival truck

Figure 4.3: Schematic representation of the time the truck may arrive latest at the start location of the tow for a specific
request, where the sampled arrival times of this request are depicted by the red lines. The green line is the moment in time
the truck may arrive latest at the start location of the tow. And the pink area is the time-window of the earliest sampled
arrival time of a request.

4.3.2 The End Time of a Tow

This leads to our second point that needs clarification, namely, what do we consider as the moment in time
the truck is finished with the tow, such that it can be scheduled to go to another tow or return to the depot.
In our deterministic EVRP of Chap. 3, it is considered that the truck starts to tow when it arrives at the start
location of the tow, or in case that the aircraft is not there yet, a truck starts to tow when the aircraft arrives.
Now for the case that the arrival and departure times are uncertain, the truck is assigned to be at the start
location of the tow no later than the end of the time-window of the earliest sampled arrival/departure time of
the tow. However, now it is uncertain when the aircraft arrives, so we cannot state that a truck starts to tow
when it arrives at the start location of the tow, as the aircraft may not have arrived. So it is unknown when a
truck finishes a tow and is ready to tow another aircraft or return to the depot (to charge).

This is schematically depicted in Fig. 4.4. In this figure, again 4 possible arrival times are depicted. We
consider that a truck is present no later than the end of the time-window of the earliest sampled arrival/de-
parture time of this aircraft, indicated by the solid green line. The shaded green areas indicate the time that a
truck cannot be assigned to go to another request or return to the depot, for each sampled realization of the
arrival/departure time. It can be seen that the moment in time that a truck can be assigned to go to another
request or return to the depot is uncertain and differs per sampled realization of the arrival/departure time,
indicated by the green dotted lines.

For the EVRP with uncertain arrival and departure time, described by a RO-approach, we consider that
a truck tows an aircraft when the aircraft arrives and we set a maximum to the time that a truck may wait for an
aircraft to arrive/depart. We consider 2 potential options for this maximum time that a truck may wait for an
aircraft to be towed:

Option 1 Mean of the sampled realizations of each request i , t̃ mean
i , indicated by the pink dotted line in Fig. 4.4

Option 2 Maximum of the sampled realizations of each request t̃ max
i , indicated by the blue dotted line in Fig. 4.4



38 CHAPTER 4. ROBUST OPTIMIZATION

Time

Time

Time

Time

Example possible end time of tow

Truck waiting/towing

Maximum of sampled 
arrival times aircraft

Mean of sampled arrival 
times aircraft

Possible arrival aircraft

Latest possible arrival truck

First arrival 
time scenario 

Second arrival 
time scenario 

Third arrival 
time scenario 

Fourth arrival 
time scenario 

Figure 4.4: Schematic representation of deciding when a truck may be scheduled to go to another request or return to
the depot. The 4 red lines on the different timelines show possible sampled arrival times of a single request. The green
solid line shows the latest moment in time a truck must be present at the start location of the tow. The green shaded areas
are the time-windows in which a truck cannot be assigned to go to another request or return to the depot. The dotted
green lines are examples of the moment in time a truck might be done for each sampled realization of the arrival time.
The dotted pink line indicates the mean of the sampled arrival times of the request and the dotted blue line indicates the
maximum of the sampled arrival times of this request.

Both options have their disadvantages. In the case of option 1, an aircraft may not have arrived yet, when a
truck is considered to start with the tow. Aircraft that arrive later than the mean of the sampled realizations are
not towed. So this option is not a realistic representation of reality, as aircraft might be left behind. However,
we would like to see what the effect of the uncertainty in arrival and departure times is. So this option is
studied in order to compare with option 2. In option 2, we demand trucks to wait until the latest sampled
arrival/departure time, so all aircraft of the sampled scenarios have arrived within the time the truck has to
wait for an aircraft to arrive/depart. So, if the realization of the arrival of the aircraft is within the earliest and
latest sampled scenario, the aircraft is towed on time in reality. But a truck may need to wait (unnecessary)
long after they towed the aircraft to go to another tow or to return to the depot, as a truck cannot be scheduled
in advance to go to another request or to the depot before the maximum sampled arrival/departure time of
the request. And as the standard deviation of the delay in arrival and departure times are respectively 13.75
minutes and 10.49 minutes, this waiting time may be long. But option 2 will result in aircraft of which the
actual arrival/departure time is between the earliest and latest sampled arrival/departure time of the request,
being towed on time, while the arrival and departure times are uncertain.

This adjustment concerning the moment in time, a truck actually is done with a tow results in the adap-
tion of 2 sets of constraints of the deterministic EVRP as described in Chap. 3, namely the set of constraints of
Eq. 3.8 and of Eq. 3.9. In the case that we consider the latest moment in time a truck starts to tow to be the
mean of the sampled arrival times of an aircraft, Eq. 3.8 is adjusted to,

s j ≥ t̃ mean
i + ti , j ,k , if xi , j ,k = 1, ∀i , j ∈ I , i 6= j , ∀k ∈ K (4.3)

And Eq. 3.9 is adjusted to,

s j ≥ t̃ mean
i + ti ,d ,k + td , j ,k + ti , if xi ,d ,k = 1∧xd , j ,k = 1, ∀i , j ∈ I , t a,d

j > t a,d
i , ∀k ∈ K . (4.4)

Likewise, for the case where we consider that the maximum start time of a tow is the maximum sampled
arrival/departure time of a request, t̃ mean

i in Eq. 4.3 and in Eq. 4.4, is replaced by t̃ max
i .
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4.4 Results of an Uncertain EVRP using a RO-approach

In this section we present and discuss best-found solutions of the EVRP, that describes the operations of
electric towing trucks at an airport under uncertain arrival and departure times, using a RO-approach. For
all results of the RO-based models presented throughout this thesis, we sample 300 arrival/departing delays
for every request. To indicate that 300 samples is enough, we sampled for 1000 days 300 flight schedules
of 50 flights and we determined for every request what the earliest sampled arrival/departure is. From these
earliest sampled arrival/departures, we determined which earliest sample was closest to the scheduled ar-
rival/departure. Or to put it differently, we determined for 1000 days, which is the sample that has the highest
probability of a truck not being present on time to tow an aircraft, when we demand a truck to be there no later
than the earliest sampled arrival/departure time (+ 5 minutes). One time sampling for 1000 days, shows that
the highest probability over 1000 days, that a truck is not on time to tow an aircraft of the sampled scenarios
is, 0.017. So over 1000 days, in the worst-case, there is a single aircraft where the probability is 0.017 that a
truck is not present on time. We consider this probability low enough, such that we consider 300 samples as
enough samples.

Fig. 4.5a shows the truck schedule of the best-found solution of an uncertain flight schedule of 50 flights of
day 2, where trucks were considered to wait for an aircraft to arrive/depart until the mean of the sampled
arrival/departure times of each request (option 1). Remember that we defined the best-found solution in
Sec. 2.3 as the feasible solution that has the minimal objective unction value, that is found within the maximum
solving time. The maximum solving time is set to 1000 seconds. 300 arrival/departure times are sampled for
each request from the distributions discussed in Sec. 4.1. A minimum number of 10 trucks are needed to serve
all aircraft on time. The electricity costs due to charging during the day are AC 1049.20. The total electricity
costs, including the electricity costs due to the charging of the trucks such that they are fully charged at the
beginning of the day, are AC 3109.20. As this schedule is made at the beginning of the day, trucks will follow
this schedule. So the realization of the actual flight schedule will not affect the total electricity costs. So the
realization of the flight schedule may only result in an aircraft not being towed, if it arrives before the earliest
sampled arrival time like discussed in the previous section.

In Sec. 3.4, we discussed the truck schedule of 50 flights of day 2, where the flight schedule is considered
deterministic. Fig. 3.3 shows this truck schedule. For the deterministic case, a minimum of 9 trucks was needed
to tow all aircraft on time. Here, we see that the minimum amount of trucks to serve all aircraft on time for
an uncertain flight schedule, where trucks are considered to start the tow of each request at the mean of the
sampled arrival/departure times, is 10. An overview of these results is shown in Fig. 4.6. In addition, we see
that indeed trucks take longer for each tow, as the blue blocks in Fig. 4.5a are wider than in Fig. 3.3, on the
trips that a truck tows a single request. For example, during the first trip of truck 1 of the truck schedule of
Fig. 4.5a, this truck tows a single truck. This is wider than the blue block of the first trip of the second truck
of the truck schedule of Fig. 3.3, where truck 2 also tows a single truck during that trip. This is as expected,
as trucks need to be on time for the earliest sampled arrival/departure time of each request, but cannot be
scheduled for another tow or scheduled to return to the depot until the mean of the sampled arrival/departure
times of the request.

However, option 1 is not a realistic representation, as many aircraft may not be towed. Option 2 results
in a low probability that an aircraft is left untowed. We have performed 12 runs for the option 2 case. For
every run, different arrival/departing delays are sampled per request, and thus a different truck schedule is
determined by the model. It was found that 9 out of these 12 runs resulted in a feasible model. Here, we only
present the results of the first run. The results of the other runs are presented in Appendix E.
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(a) (b)

Figure 4.5: Truck schedule of a fleet of 10 (13) trucks of a flight schedule of 50 flights, determined by a RO-approach,
where trucks could leave for another tow after the mean (maximum) of the sampled request times. (a) Truck schedule of
uncertain arrival and departure times, where trucks were allowed to leave after the mean of the sampled arrival/departure
times over 300 samples of each request (option 1). Here 10 trucks were needed for 50 flights and the total electricity costs
areAC 3109.20. (b) Truck schedule of uncertain arrival and departure times, where trucks were allowed to leave after the
maximum sampled arrival/departure times over 300 samples of each request. Here a minimum of 13 trucks was needed
for 50 flights and the total electricity costs areAC 2964.53.

Fig. 4.5b shows the truck schedule of the best-found solution of the EVRP with uncertain arrival and de-
parture times, described by a RO-approach, of 50 flights on day 2, where trucks are considered to wait until the
latest sampled arrival/departure time (option 2). The minimum number of trucks needed to serve all aircraft
on time is 13. The maximum solving time is set at 1000 seconds and 300 arrival/departure times are sampled
for each request. The electricity costs due to charging during the day areAC 280.53 and the total electricity costs
areAC2964.53. The time that is scheduled for trucks to serve an aircraft is longer, resulting in more trucks are
needed to serve all aircraft on time, compared to the case where trucks are considered to start a tow at the
mean of the sampled arrival/departure times. This can be seen by the blue blocks being wider in Fig. 4.5b than
in Fig. 4.5a on trips where a single aircraft is towed during a trip. In both Fig. 4.5a and in Fig. 4.5b, truck 1 tows
a single truck during the first trip of the day.

In addition, the electricity costs due to charging during the day of the truck schedule of Fig. 4.5b is less
than the electricity costs of the truck schedule of Fig. 4.5a, as more trucks are needed to serve all aircraft
in the case that trucks are considered to start the tow at the maximum sampled arrival/departure time. As
we assume all trucks to be fully charged at the beginning of the day, trucks need to charge less in the truck
schedule of Fig. 4.5b than in that of Fig. 4.5a. Comparing the total electricity costs, we saw that the total
electricity costs of the truck schedule of Fig. 4.5a are AC 3109.20, while the total electricity costs of the truck
schedule of option 2, Fig. 4.5b are AC 2964.53. This results in lower electricity costs of the truck schedule of
Fig. 4.5b compared to the truck schedule of Fig. 4.5a. This is due to the fact that the trucks of the truck schedule
of Fig. 4.5b need to charge less time with the charging option 0, than the trucks of the truck schedule of Fig. 4.5a.

In reality, all aircraft need to be served on time, so the truck schedule of Fig. 4.5a where trucks are considered
to start a tow no later than the mean of the sampled arrival/departure times is not a realistic representation.
However, we see that only 1 truck more is needed for this case (option 1), compared to the deterministic case
as discussed in Chap. 3. While for the EVRP with uncertain arrival and departure times, where trucks are not
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Figure 4.6: Comparison of the results of the deterministic model and the RO-based models where 50 aircraft had to be
towed. The electricity costs due to the charging during the day and due to the charging of the trucks to get them fully
charged at the beginning of the day are separated in this graph by a line. The top part of the bar indicates the electricity
costs due to the charging during the day.

scheduled to go to another request or to return to the depot until the latest sampled arrival/departure time
(option 2), 13 trucks were needed, this is 4 trucks more compared to the deterministic case and 3 trucks more
compared to the case where a truck needs to wait till the mean of the sampled arrival/departure times of
a request (option 1). This shows that uncertainty in arrival and departure times has a major impact on the
best-found solution of an EVRP where all aircraft of all sampled arrival/departure times need to be towed on
time, needs to be valid. An overview of the results of the deterministic and the RO-based models (option 1 and
options 2) is presented in Fig. 4.6.

From Fig. 4.6, it can be seen that there is not a difference in solving time set. This is due to the fact that
the RO-based models do not contain more constraints than the deterministic models. It might be argued that it
is more difficult to find a feasible solution as the set of feasible solutions reduces. However, it is found that this
is not significant, such that the maximum solving time set does not need to be increased. The deterministic
model results in the highest total electricity costs. However, this is due to the fact that the deterministic model
also results to be feasible with the smallest fleet of trucks. The trucks for the deterministic model need to
charge a significant amount of time with the charging option 0, so the electricity costs due to charging during
the day are relatively high. The total electricity costs of the RO-based models are lower than of the deterministic
model, however, it must be emphasized that the RO-based model option 1, is not a realistic option, as aircraft
may be left untowed. The RO-based model of option 2 results, most likely in all aircraft being towed on time.
However, there are 4 trucks more needed compared to the deterministic model.
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4.5 Conclusions on the EVRP under Uncertain Arrival and Departure Times,
using a RO-Approach

In conclusion, we have formulated an Electric Vehicle Routing Problem (EVRP) under uncertain arrival and
departure times, using a min-max Robust Optimization (RO) approach, that minimizes the electricity costs,
while ensuring all aircraft of the sampled arrival/departure times are towed on time. This way, we accomplished
our second research goal, as stated in Sec. 1.4.3. The start time of the tow and the moment in time the truck
can be assigned to another request or return to the depot, had to be specified, as the arrival/departure time
of an aircraft is uncertain. Constraining the Decision Variables (DVs) si to be less or equal to the end of the
earliest sampled arrival/departure time-window, results in trucks being on time at the start location of the
sampled arrival/departure times of a request. By not scheduling a truck to go to another aircraft or to return
to the depot, until the latest sampled realization of the arrival/departure time, ensures that all aircraft of the
sampled arrival/departure times are towed on time. Sampling 300 arrival/departure times of each request,
is considered to be enough. The probability that the actual arrival/departure time is earlier than the earliest
sampled arrival/departure time of each request are considered small enough.

It is found that uncertainty in arrival/departure times has a major impact on the truck schedule and more
trucks are needed to ensure that aircraft are served on time for the sampled arrival/departure times. Compared
to the deterministic EVRP, 4 more trucks were needed to tow 50 aircraft on time for 300 sampled arrival/depar-
ture times, for the uncertain EVRP discussed in this chapter.

In addition, it is found that there is not a significant change in computational complexity for the EVRP
with uncertain arrival/departure times described by a RO-approach, compared to the deterministic EVRP
discussed in Chap. 3.



Chapter 5

Stochastic Sequential Decision Problem

In Chap. 4, we discussed how the operations of electric towing trucks can be optimized under uncertain arrival
and departure times, using a Robust Optimization (RO)-approach. In this approach, the schedule is determined
at the beginning of the day. A large disadvantage of this approach is that information about the actual ar-
rival/departure times of aircraft that becomes available throughout the day is not taken into account. In the
RO-approach of Chap. 4, trucks were not scheduled to go to another aircraft or to return to the depot until the
latest sampled arrival time. However, this waiting is not necessary if we take into account information about the
known arrival/departure times throughout the day. In this chapter, we discuss how the operations of electric
towing trucks under uncertain arrival/departure times of aircraft can be optimized by a dynamic approach.

In Sec. 5.1, we discuss what dynamic programming is and how to determine the optimal operations under
uncertain arrival and departure times in a dynamic way. In Sec. 5.2, we discuss how approximations can help
with the problem of the curse of dimensionality for dynamic programs. Before we discuss in Sec. 5.4 how we
determine the optimal policy, we discuss the six elements of a Stochastic Sequential Decision Problem (SSDP)
which formulates the problem of an Electric Vehicle Routing Problem (EVRP) with uncertain arrival/departure
times of aircraft, described by a dynamic approach. This is followed by the model formulation and the introduc-
tion of the developed algorithm to find the optimal policy in Sec. 5.4. In Sec. 5.5, we discuss how the presented
dynamic model is implemented in code. This is followed by the results of this model in Sec. 5.6, where we focus
on the comparison of the deterministic, RO-based, and the dynamic model.

5.1 Dynamic Programming

In Chap. 4 we considered that the actual arrival/departure times of aircraft are uncertain until the moment in
time, the aircraft actually arrives or departs. However, in reality, as soon as an aircraft takes off, it is usually
known when it will land. So prior to the actual arrival of an aircraft, it is known when it will land. The departing
time of an aircraft depends, among other things, on the success and possible delay of the ground operations
during the turn-around. So a specific moment in time cannot be pointed out at which it is certain what the
departure time of a departing aircraft is. However, it can be stated that it is known prior to the actual departure
time when the aircraft will depart. For this thesis, we make the assumption that 2 hours prior to the scheduled
arrival/departure time, we know what the actual arrival/departure time will be.

As the information about the actual arrival/departure times of aircraft becomes available throughout the
day, one would like to adjust the schedule of the electric towing trucks according to this information. This

43
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way, trucks do not have to wait until the latest sampled realization of an arrival/departure time, as was the
case for the RO-based model. As the delays are considered normally distributed N (-2.73, 13.75) for arriving
aircraft and N (-1.54, 10.49) for departing aircraft, this waiting time may be long. Adjusting the schedule of the
electric towing trucks throughout the day by the information that becomes available, requires a dynamic model.

In the field of dynamic programming, decision problems are broken down into smaller sub-problems, where
a sequence of decisions is made over time. The decisions made at earlier moments in time may influence
the options of decisions that can be made later in time. A dynamic program seeks to make the decisions over
time that minimizes (or maximizes) the objective function. The value function is the function that denotes the
minimum (maximum) value of the objective function at every state in time subject to the constraints. The
value functions of dynamic programs are usually expressed as,

Vt (St ) = min
at

(
Ct (St , at )+γ E(Vt+1(St+1|St ))

)
, (5.1)

where Vt represents the value function at time t and St represents the state at time t , Ct (St , at ) the direct
costs at time t of being in state St and action at is chosen, and γ is the discount factor. Important is that the
values at earlier moments in time can be determined recursively by the Bellman equation. However, in case
the transition function is unclear, for example, unknown exogenous information becomes known over time,
one cannot determine the transition from state to state. In addition, we will have to deal with the curse of
dimensionality. Eq. 5.1 requires looping over all states to determine the expected value of the value function.
The state-space can be large and becomes even larger when including the uncertainty of arrival/departure
times. We explain more about the state variable in Sec. 5.3.2, but to motivate that the state-space becomes very
large, let us for now consider an EVRP of 50 flights and 13 trucks, like we presented in earlier chapters. In order
to give an idea of the size of the state-space, we make the assumption that we discretize time, the battery load,
and discretize and bound the delay of aircraft. If we discretize the time of a day into segments of a minute
(1440 segments), and we discretize the battery load of trucks in segments of 0.5 kWh (300 segments), and we
discretize and bound the possible delay of aircraft in 40 segments, the state-space of an EVRP of 50 flights and
13 trucks consists of: (50×1440×300)13 × (2×40)50 ≈ 3 ·10190 states. Computational it is not desirable to loop
over all states at every decision epoch. The next section explains how to prevent looping over all states at each
decision epoch.

5.2 Stochastic Sequential Decision Problems

In a Stochastic Sequential Decision Problem (SSDP), decisions are made sequentially under some uncertainty.
An example of this is Approximate Dynamic Programming (ADP), whereby stepping forward in time and
approximating the value function, results in not having to loop over the whole state-space at each decision
epoch to determine the value function. A well-known method for ADP is the Approximated Value Iteration
algorithm, where an approximate value function is learned, hoping that the final approximate value function
results in a good policy. In this section, we present a similar method, a Stochastic Sequential Decision Model
(SSDM), that does not require learning an approximate value function, like is done for an ADP.

Before we present this model in detail, we must have made a clear distinction between a SSDP and a SSDM.
This is needed, as in the excellent overview paper, "Clearing the Jungle of Stochastic Optimization" [62], Powell
discusses that (for example) a dynamic programming model and an approximate dynamic programming
model are not a model, but instead they are classes of policies for solving dynamic programs. So this leads us to
our definitions of a SSDP and a SSDM.
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Definition 5.2.1 (Stochastic Sequential Decision Problem (SSDP)). A SSDP is a problem where decisions need
to be made sequentially under uncertainty. A SSDP consists of a defined state-space, action-space, exogenous
information distribution, transition functions, and an objective function.

Definition 5.2.2 (Stochastic Sequential Decision Model (SSDM)). A SSDM is a model that consists of a SSDP
and a description of how the optimal policy is sought.

5.3 The Five (Six) Elements of our SSDP

According to Powell, there are five elements of a SSDP. In this section, we discuss each element specifically and
describe what these elements represent for an EVRP where the arrival/departure times of aircraft are uncertain.
This section is followed by Sec. 5.4, where we discuss how to find an optimal policy and thus what a SSDM of
an EVRP with uncertain arrival and departure time is.

According to Powell, a SSDM can be described by five elements. Most SSDPs can be described by these
five elements. However, I would argue that an element needs to be added for an EVRP described by a SSDM,
namely the decision epoch. So the six elements of an EVRP described as a SSDM are:

1. Decision epoch

2. State

3. Actions

4. Exogenous information

5. Transition function

6. Objective function

5.3.1 Decision Epoch

A decision epoch, Tp , is a moment in time decisions are made. Here, Tp is the pth moment in time decisions
are made. Especially for an EVRP it is essential to discuss what the decision epochs are. There are two "types"
of moments in time that require decision-making. Namely, (1) when a truck is done with a tow a decision
needs to be made regarding what it should do next. In addition, (2) decisions need to be made for charging
trucks.

However, it is not trivial what moment in time decisions need to be made for charging trucks: when do
we reconsider whether a truck needs to remain to charge, adapt the charging speed or stop charging? Here we
choose to reconsider what charging trucks must do when exogenous information becomes available. This is
because, when exogenous information becomes available, trucks (may) need to adapt what they are doing,
but trucks that are towing when exogenous information becomes available, are not allowed to change tasks
while performing a tow. So decisions can only be made for trucks at the depot at these decision epochs. For
this thesis, it was assumed that exogenous information becomes available 2 hours prior to the scheduled
arrival/departure time of each aircraft. So in conclusion, we choose the set of decision epochs to consist of all
moments in time some trucks are done with a tow and all moments in time exogenous information becomes
available.
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5.3.2 State description

Powell discusses that a definition of a state variable is not that trivial and that in different study books different
definitions of a state variable are given. We will follow the definition of the state variable that Powell gives in
[62],

Definition 5.3.1 (State variable). A state variable is the minimally dimensioned function of history that is
necessary and sufficient to compute the action function, the transition function, and the contribution function.

This definition states that the state, Sp , at time Tp includes the minimal amount of information needed to
determine the actions that can be taken, the transition to the next state for every action chosen and the
objective value function. This minimum amount of information of an EVRP with uncertain arrival and
departing times of aircraft, at the pth decision epoch Tp , consists of,

• The assigned request or assignment to the depot of every truck: lk ∈ I ∪D,k ∈ K , where I is the set of
requests, D the set of depots and K the set of trucks.

• The moment in time at which each truck is done with the tow or the earliest moment in time exogenous
information becomes available for trucks that are at the depot: tk ∈[0,∞),k ∈ K .

• The battery level of each truck: qk ∈ [0,Cc ),k ∈ K

• The status of each request (handled, scheduled to be handled, or not scheduled to be handled yet):
hi ∈ {0,1}, i ∈ I . Here, hi = 1 when request i is handled or scheduled to be handled at Tp , and hi = 0 if
there is not yet a truck assigned to request i .

• All exogenous information currently available about the delays of each request: Wp . Wp consists of all
information gathered about the delays of each request throughout time, W1,W2, · · · ,Wp . Here, Wp takes
the form of Wp ∈ {{?}∪ (−∞,∞)}|I |, where Wpi is the exogenous information of the delay of request i that
becomes available between time Tp−1 and Tp about request i . If Wpi = {?}, no exogenous information
became available about request i between Tp−1 and Tp . It is assumed that per request information is
obtained once, such that Wp is the vector that contains all information about all requests gathered until
Tp and is of the form Wp ∈ {{?}∪ (−∞,∞)}|I |. For example in the case of 5 requests, consider that at
decision epoch p it is only known that the aircraft of request 4 will be 2 minutes early, Wp = {?, ?, ?,−2,?}.
If we then obtain the exogenous information between decision epoch p and p +1 that the aircraft of
request 5 will be 4 minutes late, Wp+1 = {?,?, ?, ?,4}, then Wp+1 = {?,?, ?,−2,4}. As we do not require the
information about when the exogenous information became available to compute the action function,
transition function, and the contribution function, this does not need to be included. This is why we
include W in the state and not W .

• Total charging costs: C ∈[0,∞).

According to Powell, a state must be the minimal amount of information to determine (1) the actions that can
be taken, (2) transition to the next state, and (3) the objective value function. From the list of information, just
stated, we can determine what actions can be taken at Tp , as we know for which trucks a decision needs to be
made, as we know when every truck is done with its current job (so we know which trucks are finished) and
we know which trucks are at the depot. From the status of each request and the exogenous information, one
can determine the set of possible actions for the set of trucks that a decision needs to be made, so the first
requirement of a state variable is met. A transition from the current state to the next state can be computed by
updating the state by the action made and the exogenous information. Lastly, the objective value function can
be determined for all Tp as the state includes the total electricity costs at Tp and the associated costs of each
action can be added.
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If we denote (l , t , q) = (lk , tk , qk )k∈K and (h) = (hi )i∈I then the state at the pth decision epoch, Tp , of an
EVRP under uncertain arrival and departure times of aircraft, described as a SSDP, is,

Sp = ((l , t , q), (h),Wp ,C ) (5.2)

So the total state-space is,

S = I |K |× [0,∞)|K |× [0,Cc )|K |× {0,1}|I |× {{?}∪ (−∞,∞)}|I |× [0,∞) (5.3)

The initial state at T0 = 0, where all trucks are at the depot, nothing is known about the arrival and departure
delays, no trucks are assigned and the total electricity costs are zero, is,

S0 = ((0,0,Cc )|K |, (0)|I |, {?}|I |,0) (5.4)

If one of the absorbing states is visited, the decision-making process is stopped. The set of absorbing states is,

SP = {((0, t , q)|K |, (1)|I |, WP , C ) : t ∈ [0,∞), q ∈ [0,Cc ), WP ∈ (−∞,∞)|I |, C ∈ [0,∞)} (5.5)

Here, TP represents the final decision epoch.

5.3.3 Actions

The third element of a SSDP, is the action, a. At each decision epoch, p, an action, ap , needs to be chosen. In
Sec. 5.4, we describe how we seek the optimal policy and thus how actions are chosen. For now, we assume
we know how actions are chosen. But this requires a set of actions that can be chosen from at each decision
epoch. So how do we define this set of actions when in the state Sp ?

For this we introduce, Kp , which is the set of trucks for which a decision needs to be made in decision epoch p,
Kp = argmink∈K tk (p). All trucks k ∈ {K \Kp } are assigned, so no decision needs to be made for these trucks.
We consider action a as a |K |-dimensional vector where the kth element is the action of truck k, directing truck
k to a location lk ∈ I ∪D . In Sec. 5.4, we discuss the algorithm to find the optimal policy. It will be shown that
we loop over all actions in the action-space at each decision epoch. So it is important to minimize the size of
the action-space at each decision epoch for computational reasons. However, defining an action-space that is
too small may result in not finding the optimal solution as some actions are excluded. Fig. 5.1 schematically
depicts the possible actions that can be chosen for trucks, for which a decision needs to be made at Tp , when at
a certain location, as described by Eq. 5.8-Eq. 5.10. We define the set of actions that can be chosen in state Sp as,

Ap = {a ∈ {I ∪D}k :

ak = lk , ∀k ∈ {K \Kp }, (5.6)

ak 6= a j , ∀k, j ∈ K : k 6= j , ak , a j ∉ {d1c0
,d1c1

,d1c2
,d2c0

,d2c1
,d2c2

}, (5.7)

ak ∈ { j : h j = 0,∀ j ∈ I , d1c0
,d1c1

,d1c2
}, ∀k ∈Kp : lk ∉ {d1c0

,d1c1
,d1c2

,d2c0
,d2c1

,d2c2
}, (5.8)

ak ∈ {lk , d2c0
,d2c1

,d2c2
}, ∀k ∈Kp : lk ∈ {d1c0

,d1c1
,d1c2

}, (5.9)

ak ∈ { j : h j = 0,∀ j ∈ I , lk }, ∀k ∈Kp : lk ∈ {d2c0
, d2c1

, d2c2
}}, (5.10)

where we denote drcg
as the action/location that a truck goes to the r th depot to charge with the charging

speed of option g . So d1c0
is the action of a truck going to the first depot to charge with the charging speed

of option 0. In the formulation of the set of actions that can be chosen from, in state Sp , Eq. 5.6 and Eq. 5.7
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are regarding general "rules". For example, in Eq. 5.6 we ensure only a decision is made for the trucks that a
decision needs to be made for. Eq. 5.8-Eq. 5.10 are regarding the actions that can be chosen for trucks that are
at a specific location.

Eq. 5.7 ensures that 2 trucks may not be assigned to the same request. Eq. 5.8 allows trucks for which a
decision needs to be made, that are currently finished with a tow (so not at the depot), to be assigned either to
a request that has not yet been assigned or to go to the first depot to charge with the charging speed of either
option 0, 1, or 2. Eq. 5.9 forces trucks that are currently at the first depot, to either remain there and to charge
with the same charging speed the truck is currently charging with, or to go to the second depot to charge with
a certain charging speed. Eq. 5.10 forces trucks for which a decision needs to be made, that are present at the
second depot, to remain there charging with the charging speed the truck is currently charging with, or to go
to a request that has not yet been assigned.

Not assigned 
requests

Depot 1

Depot 2

End of tow

Depot 1

Depot 2

Location at Tp Action

Figure 5.1: Schematic representation of the possible actions trucks have, for which a decision needs to be made at Tp ,
when at a certain location, as described by Eq. 5.8-Eq. 5.10. The green arrows indicate where a truck may go when at a
specific location.

5.3.4 Exogenous information

The fourth element of a SSDP, is exogenous information. As explained in Sec. 5.3.2, the exogenous information
is observed as a sequence W1,W2, · · · ,Wp , where the index is the decision epoch and Wp represents the
exogenous information that becomes available between Wp−1 and Wp . As we assume information about
each request becomes available once, all known information about all requests can be expressed in Wp ∈
{{?}∪ (−∞,∞)}|I |. So the states, actions, and information evolve as follows,

(S0, a0,W1,S1, a1,W2, · · · ,Sp , ap ,Wp+1, · · · ,SP ),

where SP is an absorbing state. We consider the exogenous information, W , which is the actual delay of
aircraft, to arrive for each request 2 hours before the scheduled arrival/departure time and this delay of the
arrivals/departures is normally distributed as described in Sec. 4.1.
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5.3.5 Transition function

The fifth element of a SSDP is the transition function. In Sec. 5.4 we will discuss how actions are chosen
and how we seek the optimal policy. But once an action is chosen, a transition to the next state needs to be
formulated. This is done by a transition function. For now, we assume we made a decision ap while being in
state Sp = ((lp , tp , qp ), (hp ),Wp ,Cp ). All elements of Sp can be updated deterministically, except for Wp . We
split the transition from Sp to Sp+1 into 2 steps, namely the transition from Sp to Sa

p , where a is the chosen
action and from Sa

p to Sp+1. Here, Sa
p is the state after we chose action a, but before the exogenous information

at decision epoch Tp+1 arrived, such that Sa
p = ((l a

p , t a
p , q a

p ), (ha
p ),Wa

p ,C a
p ) is the post-decision state. Sp+1 is the

pre-decision state. So the states, actions, pre-decision states, exogenous information, and the post-decision
states evolve as,

(S0, a0,Sa
0 ,W1,S1, a1,Sa

1 ,W2, · · · ,Sp , ap ,Sa
p ,Wp+1, · · · ,SP ).

Post-decision state

The transition from Sp to the post-decision state Sa
p is done by updating lp , tp , qp ,hp and Cp . Here, we do not

update Wp . Updating to the post-decision state is done in the following way, where we leave the index p out,
for simplicity,

l a
k = ak , ∀k ∈ K (5.11)

t a
k =

{
tk + t (lk , l a

k ), ∀k ∈Kp

tk , ∀k ∈ {K \Kp }
(5.12)

q a
k =

{
qk +q(lk , l a

k ), ∀k ∈Kp

qk , ∀k ∈ {K \Kp }
(5.13)

ha
i =

{
1, ∀k ∈Kp : l a

k = i , i ∈ I

hi , otherwise
(5.14)

C a =C + ∑
k∈K

C (ak ). (5.15)

Eq. 5.11 describes how l a
k is updated, by the chosen action. As the action vector consists of the updated

assigned requests of trucks or the allocation of a truck to the depot, this action vector represents the updated
vector l a

k . Eq. 5.12 describes how the time vector, which describes at what moment in time a truck is done
with a tow or when new exogenous information arrives for charging trucks, is updated. For every truck that
a decision is made for, the time is updated by adding t(lk , l a

k ). This value is the time needed to perform the
tow or the time it takes to drive without towing an aircraft. And for trucks that are assigned to go to the depot,
t (lk , l a

k ) must be the next moment in time exogenous information becomes available. Eq. 5.13 represents the
updating of q a

k . This vector represents the battery level of each truck. This is updated by adding q(lk , l a
k ) for

trucks that a decision is made for. For trucks at the depot, q(lk , l a
k ) is positive and depends on the time between

2 decision epochs and the charging speed. For trucks that are assigned to tow an aircraft (or to drive while
not towing), q(lk , l a

k ) is negative and this value corresponds to the electricity needed to tow the aircraft (drive
empty). Eq. 5.14 represents the updating of the vector that keeps track of the assigned requests. For trucks
that a decision is made for, where their updated assigned request is not to go to the depot (so to go to another
request), the element corresponding to the request of ha

i is updated to 1. All other elements remain the same
as before the decision is made. Lastly, Eq. 5.15 shows how the total electricity costs are updated. Here, C (ak )
corresponds to the direct electricity costs associated with actions ak , ∀k which are the actions chosen for all
trucks. The costs associated with all actions chosen depend on the time between 2 decision epochs and the
charging speed, trucks at the depot charge with.
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Pre-decision state

From the post-decision state Sa
p , a transition function to the pre-decision state Sp+1 must be defined. This

transition updates the state by including the exogenous information that becomes available between 2 decision
epochs, Wp+1. Remember that Wp is defined as all exogenous information about every request obtained until
decision epoch p, while Wp+1 is the information that becomes available between decision epochs p and p +1.
The transition to the pre-decision state goes in the following way,

Wp+1,i =
{

Wp+1,i , ∀i ∈ I : Wp+1,i ∉ {?}

Wp,i , ∀i ∈ I : Wp+1,i ∈ {?}
(5.16)

Eq. 5.16 describes that Wp+1 is the vector containing all information available at decision epoch p +1. This
consists of all information that was already known, Wp and the information, Wp+1, that became available
between decision epoch p and p +1.

5.3.6 Objective function

The objective function is the sixth element of a SSDP. As the arrival and departure times are uncertain, the
objective of the EVRP with uncertain arrival and departure times, described by a dynamic model, is to minimize
expected electricity costs. So the objective is,

min
π∈Π

Eπ
P∑

p=0
C (Sp , aπ

p (Sp )), (5.17)

where π is a policy of the set of possible policiesΠ. The optimal stationary policy is denoted as π∗. This policy
will result in minimal expected electricity costs. Here, C (Sp , aπ

p (Sp )) represents the direct electricity costs in
state Sp , when action aπ

p (Sp ) is chosen according to the policy π.

All six elements of a SSDP that describe an EVRP with uncertain arrival and departure times are introduced.
Fig. 5.2 schematically shows an overview of the timeline of an EVRP described by a SSDP.
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Time

Event

Transition

Costs

Decision epoch 𝑝

𝑇𝑝
Decision epoch 𝑝 + 1

𝑇𝑝+1

1. Truck is done 
with tow or 
exogenous 
information 
becomes 
available

2. Action is selected

3. Trucks are 
relocated or 
continued to charge

4. Truck is done 
with tow or 
exogenous 
information 
becomes 
available

𝑆𝑝−1
𝑎𝑝−1 → 𝑆𝑝 𝑆𝑝 → 𝑆𝑝

𝑎𝑝
𝑆𝑝
𝑎𝑝

→ 𝑆𝑝+1

𝐶𝑝(𝑆𝑝, 𝑎𝑝)

Electricity costs 
incurred by action 𝑎𝑝

Figure 5.2: Schematic representation of the timeline of an EVRP with uncertain arrival and departure times of aircraft,
described as a SSDP, adapted from [63].

5.4 Finding the Optimal Policy on a SSDP

We seek to find the optimal policy, that minimizes the expected total electricity costs. So, we seek to find
the optimal (stationary) policy, π∗ that produces actions ap ∈Ap , where Ap is the set of feasible actions that
depend on the state Sp , that results in the minimal expected total electricity costs. The main question is how
will we find this optimal policy. By the elements of the SSDP introduced in the previous section, we know a few
things about our EVRP. Namely, we know (1) the state-space is very large, as shown in Sec. 5.1. However, (2)
the action-space at every decision epoch is not necessarily large, as the set Kp is at most the whole fleet, but
by the way we defined a decision epoch, Kp will consist of a single (or a few) trucks at most decision epochs.
Looking at the options of actions of each of these trucks, we see that there are only a few possibilities per truck,
resulting in a relatively small set of possible actions at each decision epoch. And (3) the EVRP still has the
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constraints that all aircraft of the sampled arrival/departure times need to be towed on time. Lastly, (4) it is
very difficult to determine a transition function from state to state. These 4 important characteristics of the
EVRP can help us determine a way to find an optimal policy.

Due to the large state-space and the fact that it is difficult to determine a transition function between states,
one would prefer an algorithm that does not include looping over all states or one that requires a transition
function. On the other hand, looping over the action-space would not be a problem. We present a Dynamic
Approximated Cost Algorithm (DACA) that takes advantage of these points. This DACA ensures all constraints
regarding time-windows and battery level of trucks, as presented for the deterministic and RO-based model,
to be satisfied for all sample paths. The DACA determines at every decision epoch what action needs to be
chosen, by considering what action results in the lowest electricity costs at the end of the day for all sample
paths.

Algorithm 1: Dynamic Approximated Cost Algorithm (DACA)

1. Sample Sample n random sample-paths of the joint delay distribution, Ω̂n ∈Ω.
2. Initialize Set an initial state S0, set p = 0.

3. Update Determine the set of trucks for which a decision needs to be made, Kp .
4. Update Determine set of actions, Ap that can be taken at epoch p.
5. Iteration For ∀ ap ∈Ap , ∀n:

Determine the total electricity costs, considering being in state Sp and ap is the chosen action and
Ω̂n is the realization of the flight schedule:

V (S
ap
p ,Ω̂n) = min MILP(S

ap
p ,Ω̂n) (5.18)

6. Decision-making
ãp = argmin

ap∈Ap

∑
Ω̂n∈Ω

V (S
ap
p ,Ω̂n) (5.19)

7. Update and increment Update state, S
ãp
p → Sp+1.

8. Increment or stop If Sp+1 ∈ SP : stop, otherwise: p = p +1 and go to step 3.

Algorithm 1 samples in the first step n sample-paths of the flight schedule, where n is preferably a large
number. So n samples are drawn from the joint distribution of all scheduled arrivals/departures and the
probability delay functions. In step 2, the state is initialized as S0 = ((0,0,Cc )|K |, (0)|I |, {?}|I |,0). In step 3, the
set of trucks for which a decision needs to be made is determined. Then this is followed by determining the
set of possible actions, Ap , in step 4. This is done as explained in Sec. 5.3.3. Step 5 is the step where for every
possible action and for every sampled sample path, the electricity costs at the end of the day is determined,
by solving the deterministic model, MILP, of Chap. 3, where it is considered being in state Sp , action ap is
chosen and Ω̂n is the deterministic flight schedule. So this step requires |Ap |×n times solving a deterministic

EVRP at every decision epoch. This is indicated in the algorithm by Eq. 5.18. We denote V (S
ap
p ,Ω̂n) as the

electricity costs at the end of the day when in state Sp and an action ap is chosen and Ω̂n is the sample path.
Note that, if for example at Tp the actual arrival time of request i is known, then Ω̂n does not include sampled
realizations of the arrival/departure time of request i , now Ω̂n will contain the actual arrival/departure time
for all sample-paths. If an action ap results in an infeasible model, V (S

ap
p ,Ω̂n) =∞.
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In step 6, the actual decision-making is done, by determining which action from the set Ap results in the
lowest expected electricity costs at the end of the day by summing over the electricity costs determined for
every sampled flight schedule. This is indicated in the algorithm by Eq. 5.19. In step 7, the state is updated
according to the chosen action ãp . Lastly, in step 8, if the state is not an absorbing state, the decision epoch is
incremented and the procedure continues by going back to step 3. So step 3-7 are repeated until an absorbing
state is reached.

The advantages of this algorithm include that this algorithm uses part of the deterministic model. The
deterministic model of the EVRP is tested and analyzed in Chap. 3. In addition, the only approximation that is
done is that the action is chosen by sampling n scenarios of the delays of flight schedules, instead of using
approximating that might lead to exploitation, like for an ADP. In addition, one is not restricted to distributions
of the delay. One could also use historical data by using scenario sampling, where for example dependencies
between delays may be included. This would be more difficult when being restricted to use distributions.

5.5 SSDM with a DACA Code Implementation

Several implementation details need to be mentioned for completeness. The implementation of steps 1-4
of the DACA presented in Algorithm 1 is straightforward, however, for step 5 we use part of the code of the
deterministic model as presented in Chap. 3. In step 5 of Algorithm 1, we loop over all actions ap ∈Ap and we
loop over all n sample-paths Ω̂n ∈Ω. This way, we determine for every combination of ap ∈Ap and Ω̂n ∈Ω,

the total electricity costs, V (S
ap
p ,Ω̂n), of being in state S

ap
p , assuming full knowledge of the remainder of the

flight schedule Ω̂n .

The state Sp can be considered as the initial state where some DVs are fixed. We use this for the imple-

mentation of the DACA. S
ap
p is determined for every ap ∈Ap , by constraining the DVs associated with actions

a0, a1, · · · , ap−1 to "create" state Sp and by iterating over the actions ap ∈Ap , we fix the DVs associated with

the different ap ∈Ap , to "create" S
ap
p . By determining V (S

ap
p ,Ω̂n), we consider the sample-path Ω̂n to be the

deterministic flight schedule and we solve the deterministic EVRP. Then in step 6, a decision is made, regarding
what action should be chosen, by determining which action results in the lowest total electricity costs for all
sample-paths.

For this implementation of the DACA of an EVRP using the deterministic model of Chap. 3, it is impor-
tant to note that this fixing of the DVs is not straightforward. For example, one must, in addition to the DVs
xi , j ,k associated with the chosen action ãp , fix the time charged at the depot at each decision epoch. For
example, if truck k, after towing the aircraft of request i , was assigned to go to the depot to charge with charging
speed c at decision epoch p, and at decision epoch p+1 it is assigned to remain charging, this must be included
in the "fixed DVs" of state Sp+1. This is done by adding the constraint,

tic ≥ Tp+1 −Tp + ti ,dc ,k . (5.20)

This constraint states that the charging time of the truck that towed the aircraft of request i , must be equal
or larger to the time between the decision epoch p +1 and the decision epoch p, plus the time it takes to get
to the depot after towing the aircraft. Then if it is decided in decision epoch t +2, truck k must still remain
charging, the constraint is updated to,

tic ≥ Tp+2 −Tp + ti ,dc ,k . (5.21)

Similar constraints are implemented for trucks that adapt the charging speed at a certain decision epoch.
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Another point of implementation that should be addressed is that for the initial state, S0, we set a random truck
to tow the aircraft that needs to be towed earliest in time. This is done as this will not affect the total electricity
costs, but at the first decision epoch, the set of actions that can be chosen from is large, as a decision needs to
be made for all trucks, as all are at the depot. If we initialize a random truck to serve the first aircraft that needs
to be towed, this reduces the set of actions that can be chosen from in the first decision epoch significantly,
without affecting the solution. If we do not implement this, the computation time of the first decision epoch
(for a flight schedule of 12 flights and a electric towing truck fleet of 4 trucks) will be longer than a day.

Another point of implementation that should be addressed that may influence the operations of the trucks that
we used is the following. When we determine the set of possible actions, we limit trucks to only be assigned to
one of the three earliest requests at that moment in time. When allowing all future requests, the set of actions
that can be chosen from increases significantly, while it is most likely that a truck will be assigned to a request
that needs to be towed within the near future, otherwise a truck is most likely to be assigned to go to the depot.
However, it is important to keep in mind that the implementation may influence the solution, as the set of
actions that can be chosen from might be too small. If this happens, we expect the expected total costs to
increase significantly at a certain decision epoch.

One last important implementation detail is that we stop with the decision-making of the DACA after the
arrival/departure times of all requests are known, as a deterministic model remains. So we do not continue
decision-making by the DACA until the absorbing state is reached. However, the end state of the best-found
solution of this deterministic model is an absorbing state.

5.6 Results

In this section, the results of the EVRP with uncertain arrival and departure times of aircraft at an airport,
described as a SSDM will be presented and discussed. Before we present and discuss the results, we must
clarify two more points regarding the results: (1) the number of sample-paths drawn from the joint delay
distribution, and (2) the size of the problem in terms of the number of aircraft and trucks.

The first point that needs clarification is the number of samples drawn from the joint delay distribution.
For the RO-based model we chose the number of samples drawn such that the probability that an aircraft
actually arrives before a truck is present at the start location, is considered low enough. However, it is difficult
to say what the probability is that no truck can be assigned to tow an aircraft on time for the SSDM. This is due
to the fact that an early arrival of a certain aircraft may result in a lower objective value but it may also result in
a very high objective value or even in an infeasible model. In addition, for the SSDM we do not know when a
truck will be scheduled to be at the start location of a request. We only know it determines what actions to
choose in every decision epoch by determining which action results in the lowest objective value function for
many scenarios.

So we cannot base the number of samples drawn on the probability that a truck is on time. However, we
do know that when the number of samples drawn is higher, the probability that a truck is tardy, decreases.
In addition, it is found that the computation time of this model is very long, so as a trade-off between the
probability that a truck is on time and the computation time, we have decided to sample 50 sample paths.

The second point that needs clarification is the size of the problem we will consider. Although we defined a
small action-space at each decision epoch, as explained in Sec. 5.3.3, the computation time is still very long,
even for a small fleet of trucks and a small number of aircraft. For example, if we set the maximum solving
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time to solve the deterministic problem (Eq. 5.18) of an EVRP of 12 flights and 4 trucks, to 5 seconds and we
sample 50 flight schedules, determining the operations of that day already takes about 6 hours. In this section,
we present the results of the best-found truck schedule of a fleet of 4 trucks, that tow 12 aircraft. This is the
minimal found amount of trucks needed to serve all aircraft determined by the SSDM. We will compare the
best-found truck schedule found by the DACA with the results obtained by the deterministic and RO-based
model.

SSDM Deterministic model RO-based model

Number of flights 12 12 12
Number of trucks 4 4 5
Battery capacity [kWh] 150 150 150
Service time [min] 5 5 5
Number of samples 50 N/A 300

Table 5.1: Overview of the problem parameters of the different models that are compared in this chapter.

Fig. 5.3a shows a best-found truck schedule of a homogenous fleet of 4 trucks that tow 12 aircraft under
uncertain arrival/departure times, determined by the DACA. The actual flight schedule is determined by
sampling a flight schedule. An overview of the parameters used for every model presented in this chapter is
given in Tab.5.1. The electricity costs due to charging during the day of this truck schedule areAC 17.75. The
total electricity costs including the costs associated with the charging of the trucks, such that they are fully
charged at the beginning of the day, areAC 843.35. In Appendix. F, we show and discuss the best-found truck
schedule of four other runs, where 50 other scenario flight schedules were sampled and a different actual flight
schedule was sampled. All four runs resulted in a found truck schedule that is able to tow all aircraft on time.
Due to the long computational time, the number of runs performed is limited. So from these results, no hard
conclusions can be drawn, as only five runs were performed.

The blue dots in Fig. 5.4 show the objective values determined by Eq. 5.18 at each decision epoch, for every
action and every sample-path. For aesthetic reasons, the objective values of models of a combination of an
action ap and a sample-path Ω̂n that results in an infeasible model, V (S

ap
p ,Ω̂n) =∞, is indicated by a blue

dot with a value of 3 times the value of the maximum objective value found for a feasible model. So these
are the dots at the top of the graph. The red line indicates the expected total costs at the end of the day for
the action that is chosen in that decision epoch. The blue dots below the red line correspond to actions that
for some sample paths result in lower electricity costs than the red line at the end of the day, however, these
actions do not result in the lowest electricity costs for all sample paths. It can be seen that the expected total
cost slightly increases and decreases over the decision epochs, due to exogenous information that becomes
available throughout the day. However, no significant steps of the expected objective value are observed at a
specific decision epoch. This suggests that the set of actions that can be chosen from at each decision epoch
does not exclude actions that would result in a significantly lower expected objective value.

Fig. 5.3b shows the best-found truck schedule of 12 aircraft, with deterministic arrival/departure times, towed
by a homogenous fleet of 4 trucks. This schedule is determined by the model presented in Chap. 3. It is
important to emphasize that the objective value of the deterministic schedule of the realization of the flight
schedule of the SSDM is the lower bound of the objective value of the schedule found by the SSDM. As for the
deterministic model all information about the arrival/departure times is known, while for the SSDM this is
2 hours prior to the scheduled arrival/departure and the operations of the trucks may need to be adjusted as a
result of the actual arrival/departure times during the day. The total electricity costs of this truck schedule are
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(a) SSDM schedule (b) Deterministic schedule

(c) RO-based schedule

Figure 5.3: Truck schedule for a flight schedule of 12 flights (a) Obtained by the uncertain EVRP, described by a SSDM,
as described in Chap. 5. The total electricity costs are AC 843.35. The bright red ellipses are used for clarification in the
main text. (b) Obtained by the deterministic EVRP of Chap. 3. The total electricity costs areAC 838.09. (c) Obtained by the
uncertain EVRP, described by a RO-approach of Chap. 4. 5 trucks were needed to tow all aircraft. Trucks were considered
to be done with the tow after the maximum sampled arrival time. And the total electricity costs areAC 1032. The trucks do
not have to charge during the day, as they are considered to be fully charged at the beginning of the day.

AC 838.09. So the electricity costs of the deterministic truck schedule are less, as trucks do not have to charge
with a faster-charging speed than the charging speed of option 2, which is needed for the truck schedule
determined by the DACA. An overview of these results is depicted in Fig. 5.5.

In more detail, one can see that in the best-found truck schedule determined by the DACA, shown in Fig. 5.3a,
that it might have been a better choice to let truck 3 tow the second request that truck 2 tows (indicated by
the bright red ellipse around the second tow of truck 2). This way truck 2 did not have to charge with the
higher charging speed of option 0. However, at the decision epoch where it was decided that truck 2 towed that
request, the arrival time of the second request that truck 3 tows, was not known, as the information about the
arrival time of that aircraft became known just before 8 o’clock. This request is also indicated for clarification



5.6. RESULTS 57

0 2 4 6 8 10 12 14
Decision Epoch

0

50

100

150

200

250

300

Ob
je

ct
iv

e 
va

lu
e

Objective values per decision epoch

Figure 5.4: The objective values of every combination of the actions that can be chosen at each decision epoch for every
sample path, for the truck schedule of Fig. 5.3a. The red line indicates the expected charging costs for the action that is
chosen in that decision epoch.

with a bright red ellipse. This has led to the decision that truck 2 charged with a fast charging speed and that it
was assigned to tow the request.

Fig. 5.3c shows the best-found truck schedule of a homogenous fleet of 5 trucks, found by a RO-based model, of
an uncertain flight schedule of 12 flights, where trucks were considered to wait for an aircraft to arrive/depart
until the maximum of the sampled arrival/departure times of each request (option 2) like presented in Chap. 4.
300 arrival/departure times are sampled for each request from the distribution discussed in Sec. 4.1. The
electricity costs due to charging during the day of this truck schedule are AC 0, as no truck needs to charge
during the day. However, the charging costs to charge the trucks to be fully charged at the beginning of the day
areAC 1032. The trucks are almost all empty at the end of the day. Remember that the trucks charge with the
charging speed of option 1 during the might, this is the reason why the electricity costs are significantly high.
This model does not minimize for the electricity costs of the charging during the night. The minimum number
of trucks needed to tow all aircraft considered by the sampled arrival/departure times on time is 5 trucks.

So the SSDM results in fewer trucks needed to serve all aircraft on time corresponding to the sampled realiza-
tions of the flight schedule, compared to the RO-based model. This is due to the fact that for the RO-based
model, trucks are occupied longer for each request, as trucks are not scheduled to go to another aircraft or
return to the depot until the latest sampled arrival/departure time. An overview of these results is depicted in
Fig. 5.5.
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Figure 5.5: Comparison of the results obtained from the deterministic, RO-based model and the SSDM for a flight schedule
of 12 flights. The electricity costs due to the charging during the day and due to the charging of the trucks to get them fully
charged at the beginning of the day are separated in this graph by a line. The top part of the bar indicates the electricity
costs due to the charging during the day.

5.6.1 Main Discussion Points

The main point of discussion of this SSDM solved by the DACA, is the computational time. This model is
not suitable to use for large flight schedules (>50 flights), where many trucks are needed. So this model is
not directly suitable for usage on a daily basis for an airport. Within the limited time of this research project,
there was no time to implement ideas to improve the computation time. However, there are ideas on how
to improve this model. Firstly, there might be a more compact way to describe this EVRP, for example, the
two-index formulation of Furtado et al. [43]. By a more compact formulation, the computation time might
reduce. However, as we set a maximum solving time, a compact formulation might only result in a better
solution, instead of a reduction of computation time. One could also reduce the solving time by lowering the
maximum solving time, however, this is a trade-off as this may lead to a worse solution.

In addition, there are ways to improve the computation time by considering other approximation meth-
ods, like the density-based algorithm presented in [64]. Another interesting option would be the Adaptive
Variable Neighbourhood Search algorithm, for example, the formulation of Polacek et al. [65]. Lastly, there is a
whole field of machine learning that can be used to predict the delays in a better way, such that fewer samples
may be needed. In [66] Basso et al. present a model where they predict the energy consumption of electric
vehicles using machine learning and use this to solve an EVRP. A similar approach can be used to predict
delays in arrival and departure times.

Another example of how the computation time can be reduced of this model is to exclude actions that
result in an infeasible model. So if the model becomes infeasible for a combination of an action from the set of
actions that can be chosen from and a sample path at a decision epoch, that specific action does not have to
be considered anymore in that decision epoch. This will result in a shorter computation time. In addition, it
would be interesting to think of a way to determine the actions that result in an infeasible solution as soon as
possible while looping over the actions in the set of actions that can be chosen and looping over all sample
paths, at a decision epoch, such that these actions can be excluded early on in the iterative process.
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Another point of discussion is that we cannot guarantee that all aircraft are towed (on time). We have not yet
found a way to indicate what the probability is that aircraft are not towed on time, besides running a lot of
experiments and analyzing the statistics. However, what we do know is that 2 hours prior to the scheduled
arrival/departure, we know what the actual arrival/departure time will be. There are roughly 2 reasons why
a model becomes infeasible, that is (1) an aircraft will arrive when there is no truck available with enough
battery to tow it. (2) All trucks are towing other aircraft. As information arrives 2 hours prior to the scheduled
arrival/departure time, a truck can charge its battery at least half-way full, if it starts to charge immediately
when the information about the arrival time becomes known. And the second point is highly unusual, as we
saw that only 3 trucks were needed to tow 50 aircraft on time when considering non-electric vehicles. The
minimum amount of non-electric towing trucks needed depends only on whether trucks are available, as these
do not have to charge. As we saw what only 3 truck were needed to tow 50 aircraft, it will be highly unusual that
all electric trucks will be towing as we found that more electric trucks are needed compared to the non-electric
truck case, such that there is no truck available to tow the aircraft that arrives in two hours.

Another point of discussion is the fact that we only allow trucks to be assigned to the 3 requests that need to be
towed earliest from that moment in time. This reduces the size of the actions that can be chosen from each
decision epoch significantly, however, this is an assumption that might affect the solution. On the other side,
our results do not indicate that the set of actions that can be chosen from is defined as too small. In the ideal
case, one would like trucks to be able to go to any request after they finished a tow.

Lastly, it is good to note that how this model can be improved, highly depends on the question that the
user wants to answer. For example, if one wants to use this model to determine the minimal number of trucks
needed, computation time is not that important. One can let this model run for many realizations of a possible
day (by using historic data) and then determine the number of trucks one has to buy. However, if one wants
to use this model to determine throughout the day what the truck schedule must be, this current model is
not useful, as the computation time is sometimes longer than the time between the actual time between
decision epochs. However, the model can be improved by giving it an initial schedule using the scheduled
flight schedule and the deterministic model and let a model determine the changes needed in this initial
schedule dynamically using the exogenous information that becomes available throughout the day. So the
improvements needed to this model depend on the question that a user wants to answer.

5.7 Conclusions on the EVRP under Uncertain Arrival and Departure Times,
using a Dynamic Approach

In conclusion, we have formulated a second model that describes an Electric Vehicle Routing Problem (EVRP)
under uncertain arrival and departure times. This second model is a dynamic model, that uses the exogenous
information about the actual arrival and departure times that becomes available throughout the day. In this
Stochastic Sequential Decision Model (SSDM), we determine the set of trucks that a decision needs to be
made for at every decision epoch. For these trucks, we determine the possible actions that can be chosen, for
every truck. Then we determine what the expected total electricity costs are when each of these actions are
chosen. The expected costs are calculated by solving the deterministic EVRP as introduced in Chap. 3, for many
different sampled flight schedules. When an action is chosen, the state is updated and the decision-making pro-
cess continues until all information about arriving/departing times is known, as a deterministic model remains.

It is found that the SSDM results in fewer trucks needed, compared to a Robust Optimization (RO)-based
model. The total electricity costs of the SSDM and of the deterministic model are found to be similar for a
flight schedule of 12 aircraft.
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The computation time is found to be very long, such that results are only obtained for a small fleet of trucks
(4 trucks) and a small number of aircraft (12 aircraft). The computation time for a flight schedule of 12 aircraft,
towed by a fleet of 4 trucks, is more than 40 times the computation time needed for the deterministic model
and the RO-based model. Improvements to the model are needed if this model is to be used to determine the
daily operations of a fleet of electric trucks throughout the day in a practical scenario, as the computation time
is too long.



Chapter 6

Conclusion

In this chapter, we conclude our research project by answering the research questions presented in Sec. 1.4.1.

Within this thesis, Electric Vehicle Routing Problems (EVRPs) are developed that describe the operations
of electric towing trucks at an airport, minimizing the electricity costs, in an attempt to answer the research
question,

" How can an adapted version of a vehicle routing problem describe the operations of electric towing trucks at an
airport under uncertainty? "

As explained in Sec. 1.4.3, the goals of this thesis project are to develop both a model that can determine the
operations of electric towing trucks by deterministic arrival/departure times, as well as a model that does
so for uncertain arrival/departure times. The developed deterministic EVRP, as presented in Chap. 3, is a
Mixed Integer Linear Program (MILP) that minimizes the electricity costs. This model consists of constraints
regarding the routing of the trucks, the time trucks start to tow, and the battery load of the trucks. From
solutions of the model, truck schedules can be obtained, describing the operations of electric towing trucks
at an airport. We have found by comparing the EVRP to a Vehicle Routing Problem (VRP) of non-electric
trucks, that significantly more electric trucks are needed to tow all aircraft on time, given the selected truck
specifications, due to the charging time of the electric trucks of the EVRP. The deterministic model solves fast
enough to determine the operations at a regional Dutch airport.

Two types of EVRP models have been developed that take the uncertainty of arrival/departure times of
aircraft into account. Both models use scenarios of the delays to take the uncertainty into account. In Chap. 4,
a Robust Optimization (RO)-based model is presented, where trucks are forces to arrive at the start location of
the tow before the earliest sampled arrival/departure time of the aircraft. The trucks were scheduled to tow
another aircraft or to return to the depot, after the latest sampled arrival/departure time. This resulted in more
significantly more trucks needed to tow all aircraft within the time interval of the earliest and latest sampled
arrival/departure time of every aircraft.

A dynamic model, a Stochastic Sequential Decision Model (SSDM), is developed in order to adapt the truck
schedule according to the information about the actual arrival/departure times of aircraft throughout the day.
This model makes decisions throughout the day about what trucks must do next while considering a set of
actions that can be chosen from and sampled scenarios of the delays. The action that results in the minimal
expected costs at the end of the day, considering all sample paths, will be chosen at each decision epoch.
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The computation time of this model is significantly longer than that of the deterministic and the RO-based
model. However, the SSDM presented in Chap. 5 was able to determine the operations of a fleet of 4 electric
towing trucks that tow 12 aircraft throughout the day, of which the arrival/departure times were uncertain.
The results of the SSDM show that fewer trucks may be needed compared to the RO-based model. Given the
long computation time of the dynamic model, even for relatively small problems, improvements on this model
are needed for it to be suitable for (major) airports.

In the next chapter, we elaborate on general points of discussion on the models presented in this thesis
and share our vision on future research of EVRPs.



Chapter 7

Discussion and Future Work

We developed 3 different models that determine the operations of electric towing trucks at an airport, minimizing
the total electricity costs. The results of these models are presented and discussed in Chap. 3-5. However, there
are points of discussion not discussed yet. In this chapter, we would like to address these points of discussion and
propose ways to improve the models by presenting our vision for future work. We will present these points of
discussion in 3 different categories. We start with general points of discussion, these points are relevant for all
models presented in this thesis. Then we continue by discussing the models that take the uncertainty in arrival
and departure times into account. This chapter will be finalized with ideas to make the Electric Vehicle Routing
Problems (EVRPs) more realistic for specific applications.

7.1 General Points of Discussion

In this section, we discuss general points of discussion that apply to all models presented in this thesis. The first
and main point of discussion is that the found truck schedules highly depend on the input parameters. These
input parameters include the battery capacity of the trucks, the charging speeds (and costs), the electricity
used by the trucks to tow the aircraft, and the speed at which the trucks drive and tow. If we adjust the charging
speeds or the costs, the found truck schedules may be different. This also holds for all other input parameters.
One of the goals of this thesis was to develop a model that can determine the operations of a fleet of electric
towing trucks while minimizing the electricity costs. As the input parameters differ from airport to airport and
this study is not performed for a specific client, it was not the focus of this research project to find the most
realistic input parameters. We have made many assumptions on these parameters. However, we have shown
that we are able to develop EVRPs, but if one is going to use one of the presented models for a specific airport,
one must revise the input parameters.

In addition, we highly recommend for future research to focus on a compact formulation of the deterministic
model. If this model has a more compact formulation, which results in less computation time needed to
solve models, this will also result in less computation time of the Robust Optimization (RO)-based model and
the Stochastic Sequential Decision Model (SSDM). So improving the deterministic model by means of the
computation time, will also result in a faster RO-based model and a faster SSDM.

In this thesis, we considered 3 charging speed options, with their corresponding charging costs. However,
in reality more charging speeds might be possible. By introducing more charging speeds, the set of binary
Decision Variable (DV) increases as well, resulting in a longer computation time. A possible option is to include
bounded continuous DVs that represent the charging speed. This also includes finding a way to describe the
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electricity costs associated with the bounded continuous charging speed set. Therefore, it is of importance that
future research on these types of models focusses on a compact formulation of the depots and the different
charging speed options.

For this research project, we have fixed the charging speed options, but also the costs associated with the
charging speed. However, in reality the electricity price may not be fixed. The electricity price may be dynamic,
due to various reasons. For example, an airport may have made agreements with the electricity supplier on
the electricity price over the day, but an airport may also have invested in solar panels where the supply of
electricity varies over time, such that total electricity costs vary over time. In addition, the electricity price
may also depend on the amount of electricity used in a period of time. For future research, it would be very
interesting to implement the effect of dynamic electricity pricing to EVRP models as presented in this thesis.

At large airports, multiple depots will be present at different locations at an airport, as there might not
be enough space to charge many trucks at the same location. So, if large airports will use the models presented
in this thesis, the presence of multiple depots needs to be added to the EVRP. This can be done by expanding
the set of depots. However, by expanding the set of depots, the number of binary DV will increase, which
might result in a longer computation time. In addition, by introducing multiple physical depots, some of the
constraints need to be revised. For example, the constraint stating that a truck may only leave a depot when it
is present, Eq. 3.6, needs to be adjusted as this constraint is based on the fact that trucks start the day leaving
the only depot that the model has. When multiple depots are considered, one needs to constrain trucks to be
able to leave only the depot where they start at the beginning of the day.

Our last general recommendation is regarding the location of charging stations. Especially in an early stage of
the transition to electric towing trucks, decision-makers need to decide where the charging stations will be
placed. With the models presented in this thesis, it is possible to determine what the best location is, in terms
of the lowest electricity costs. In reality, other factors might be of more importance when determining where
the depots must be placed. For example, a depot is probably not located where there is no space for many
trucks to be positioned while charging. But the models presented in this thesis can give an idea of the effect on
the operations of the electric towing trucks when a depot is positioned at specific locations.

7.2 Discussion on Uncertainty in a EVRP

In Chap. 4 and Chap. 5 we discussed models that include uncertainty in arrival and departure times of aircraft.
We have seen that delays may have a large impact on the operations of the electric towing trucks and also on
the total electricity costs. So it is of high importance that more is known about this delay, such that this can
be taken into account in a better/more suitable way for the specific delay behaviour at an airport. One of the
advantages of the methods presented in this thesis is the fact that they use scenario sampling. Although we
used a normal distribution where we sampled scenarios from, also historic data can be used by these methods
as scenarios. This leads to the recommendation to have a better look at the delay of aircraft. For example, we
know that if an aircraft arrives late, there is a high probability that it will also depart late again. Quantitative
knowledge on the delay and on the dependence of early delays on delays later that day results in a schedule
that is more robust to the actual arrival and departure times. Having a better understanding of the behaviour
of the delays may also result in suitable heuristics that can be used. This might lead to a reduction in compu-
tation time. So it is important for future research to look at the behaviour of the delay in arrivals and departures.

In addition, as briefly mentioned in Chap. 5, it would be very interesting to have a look into machine learning
techniques that can predict the delay of a certain aircraft. If predictions can be made, these can be used as
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scenarios for the RO-based and the SSDM. Especially, as the computation time of the SSDM is high, due to
the large number of samples that need to be drawn, the computation can be reduced significantly if a good
estimate can be determined for the actual arrival/departure time of an aircraft and the large number of samples
can be reduced by good estimates.

One of the consequences of using electric towing trucks is that there will be more trucks at the airport,
as the current taxiing process is not executed by trucks. So there will be an increase in traffic at the airport.
Ground Service Handlers (GSH) let us know during our conversations, that the traffic at airports is (at least
at Schiphol Airport) already busy. So the traffic will only get busier. This might lead to traffic jams and un-
certainty in the driving times of the trucks. For future research, it is interesting to get an idea of the effect
of the introduction of significantly more trucks at an airport and whether this will result in traffic jams and
uncertainty in travel times. In addition, it would be interesting for airports to know whether new roads need to
be paved in order to prevent these traffic jams and where these roads need to be placed.

7.3 Additional Ideas

The rise of the use of electric vehicles resulted in a record number of electric vehicles sold in 2020, resulting
in over 10 million electric vehicles currently on the road in the world [67]. Considering that the rise of the
use of electric vehicles started roughly in 2008, one can imagine that a lot has changed in the field of electric
charging since then. Also in terms of rules, agreements, and goals, companies are stimulated (forced) to switch
to electric vehicles. For example, package delivery services and supermarket suppliers want/need to switch to
electric vehicles [68, 69]. As (some) packages need to be delivered in specific time-slots but, package deliverers
may be subject to traffic jams or other delays, it is important to determine how this affects the operations
of the electric vehicles. The models presented in this thesis could also be applied to describe how package
deliverers must deliver the packages in electric vehicles. This emphasizes the importance and versatility of
EVRPs and research performed on this topic. So, the type of models presented in this thesis can be used for
many different applications (and companies) by adapting the input parameters.

An idea that is especially of interest for large trucks, like the towing trucks at an airport, is the idea of swapping
batteries instead of charging the batteries while they remain in the truck. This has the advantage that trucks
do not have to remain (for a long time) at the charging station while charging, and in addition, usually there
is not a lot of space at an airport for trucks to be charged. This way it is also interesting to exploit the idea
of swapping batteries. This will also lead to fewer trucks needed, as only more batteries need to be bought,
instead of whole trucks. It would be of interest to know how this affects the operations of electric towing trucks.
This requires models where the number of trucks and batteries is not the same. For such a model, the battery
"operations" and the truck operations need to be determined. This can be done with an adapted version of
the models presented in this thesis. For example, this can be done by introducing n depots, in the case of n
batteries and keeping track of the battery load of a battery that is charging.

A last point of recommendation is looking into the effect of a limited number of charging stations at a depot.
For decision-makers, it is important to know how many charging stations need to be built. During this thesis
project, we have looked briefly into this and tried to implement constraints regarding a maximum number
of trucks that can be charging at the same moment in time. However, we have found that this is not trivial
and due to the limited time of this project, we have decided to stop looking into this. However, this is a very
relevant question for decision-makers.
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Appendix A

The Electricity Usage of Electric Towing
Trucks

In this Appendix, we explain in detail how the electricity used by an electric towing truck is estimated. A general
description is given in Sec. 2.1.1.

A tow job differs when a taxi-in tow is performed or a taxi-out. The trip from the exit lane to a gate of
an arriving aircraft is defined as a taxi-in, while the taxi trip for departing aircraft from the gate to the runway is
defined as a taxi-out. The engines of an aircraft need to warm up during a taxi-out, while the engines of an
aircraft need to cool down during a taxi-in. This results in a different electricity consumption of the towing
truck for a taxi-in tow and a taxi-out tow, as the truck needs to provide different amounts of electricity to an
arriving and a departing aircraft.

The total electricity needed for a tow job consists of two main processes: electricity needed for the actual
driving or towing and electricity needed to supply aircraft electricity during the tow. For all processes, it is
assumed that they require constant power over time. This results in the electricity needed for all processes to
be dependent on the duration of the processes.

During a taxi-in, a truck needs to provide an aircraft electricity for on-board systems and air-conditioning. It is
assumed that the engine cool-down takes 2.5 minutes. So the truck needs to provide electricity to an aircraft
during the taxi-in for the total transportation time minus 2.5 minutes, as the engines provide an aircraft with
electricity during the cool-down of the engines.

A taxi-out tow requires electricity for on-board systems, air-conditioning, and for the engine starter. Also,
electricity is needed from the truck while an aircraft is released. It is assumed that it takes about 3 minutes to
release an aircraft and to disconnect an aircraft from the Fixed Power Unit (FPU). Usually, an aircraft engine
takes about 5 minutes to warm-up. During this time, the truck does not need to provide an aircraft with
electricity. Lastly, the actual engine starter takes about 45 seconds to start the engines.

The power needed for each process depends on the type and size of the aircraft. The International Civil
Aviation Organization (ICAO) categorizes aircraft according to size. For each aircraft type, an estimate can
be made for the power needed for each aircraft type. For this research, we consider 3 types of aircraft: small,
middle, and large aircraft. An overview of examples of aircraft that are categorized in a certain category is given
in Tab. A.1.
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Aircraft category ICAO category Aircraft example

Small C Boeing 737
Middle D Boeing 767
Large E/F Boeing 777 / Airbus A380

Table A.1: Overview of the categorization of all aircraft.

The power needed for air-conditioning depends on the outside temperature. When the outside temperature
is higher than the desired temperature of an aircraft, electricity is needed to cool the aircraft, while heating
is needed when the outside temperature is lower than the desired inside temperature. The minimum power
is needed for an outside temperature of about 18 ◦C. The power needed to heat an aircraft while the outside
temperature is 10 ◦C is about the same for cooling an aircraft when the outside temperature is about 20 ◦C.
For this project, it is assumed that the outside temperature is always between 10 ◦C and 20 ◦C. An overview of
the duration and power needed for each type of aircraft of each process during taxi-in and taxi-out is given
in Tab. A.2. The duration is given in terms of the transport time, tt minus the time the engines take over the
process. The transportation time is the time a truck tows the aircraft. This transportation time depends on the
distance travelled, as the towing speed is considered constant.

Taxi process Process Duration [min] Power for each aircraft category [kW]

Small Middle Large

Taxi-in On-board systems tt - 2.5 3.7 14.1 33.9
Air-conditioning tt - 2.5 175 300 350

Taxi-out On-board systems tt - 2 3.7 14.1 33.9
Air-conditioning tt - 2 175 300 350
Engine starter 0.75 384 783 783

Table A.2: Overview of the duration and power needed of processes during taxi-in and taxi-out tows, for small, middle and
large aircraft.

The electricity used to tow an aircraft depends on the velocity and the weight of an aircraft. It is assumed that
trucks drive with a constant velocity of 14 km/h when towing and 30 km/h when trucks are driving empty.
The power per kg for a velocity of 14 km/h is considered as 2.75 W/kg and for 30 km/h, 5.9 W/kg. There is
a difference in typical weight for taxi-in and taxi-out aircraft, as aircraft are lighter when they arrive as they
used most their fuel during the flight already. Typical weights for taxi-out aircraft in the small, middle and
large aircraft categories are, 80.000 kg, 200.000 kg and 575.000 kg respectively. For taxi-in aircraft, the typical
weight per category is 65.000 kg, 130.000 kg, and 325.000 kg respectively. The electricity used for towing for
each category is given in Tab. A.3.

Aircraft category Power taxi-in [kW] Power taxi-out [kW]

Small 180 220
Middle 360 550
Large 895 1580

Table A.3: Overview of the power needed for transportation of an aircraft during taxi-in and taxi-out tows, for small, middle
and large aircraft.



Appendix B

Detailed Truck Schedule

In this Appendix, we present an example of what we consider as a detailed truck schedule. Throughout this
thesis we present truck schedules by indicating when a truck is away from the depot, either towing or driving
and we indicate when a truck is at the depot charging (and with what charging speed). However, the full truck
schedule includes how a truck must drive, which aircraft it needs to pick-up and tow to what location etc etc.
In this appendix, we explain what this detailed truck schedule looks like by an example.

Fig. B.1 shows a truck schedule of a fleet of 5 trucks that tow 16 flights. This schedule is obtained from
solving the deterministic Electric Vehicle Routing Problem (EVRP) as presented in Chap. 3 with some maxi-
mum solving time. Tab. B.1 and Tab. B.2 present the detailed truck schedule. Tab. B.1 indicates the time at
which a truck needs to leave the depot and at what time it starts to tow an aircraft and when it returns to the
depot and for how long it charges at what charging speed. Tab. B.2 indicates the requests it will handle and
which routes the trucks need to take during the trip. The nodes indicated in this table correspond to the nodes
indicated in the aerodrome chart of Fig. B.2.

Let us look at the operations of truck 1 in detail. Tab. B.2 indicates that truck 1 makes 3 trips. The first
trip is to tow the aircraft of request 12. Note that all arriving and departing requests are ordered such that
the first half of the request numbers are arrivals (requests 0 to 7) and the second half of the request numbers
are departing aircraft (requests 8 to 15). So the aircraft of request 12 is a departing flight. The first trip of
truck 1 is from the depot (node 38) to the start location of request 12 (node 25) to the end location of request
12 (node 4) back to the depot (node 38). This truck leaves the depot at 7:15 o’clock and arrives at the start
location (node 25) at 7:17 o’clock and tows the aircraft from node 25 (a gate) to node 4 (runway) and drives
back to the depot and arrives there at 7:31 o’clock. The battery level at the start is 150 kWh, as we assume that
all trucks are fully charged at the beginning of the day and the battery level after this first trip is 68.82 kWh.
The truck is scheduled to charge with charging speed option 0 for 24.6 minutes such that the battery level is
68.62 kWh+15.38 kWh = 84.20 kWh. This is the battery level when the truck leaves for its second trip of the day.
The truck is scheduled to go to start its second trip at 7:55 o’clock, which perfectly fits as it is scheduled to be
done charging 24.6 minutes after it arrives at 7:31 o’clock, which is at 7:55 o’clock. Tab. B.2 indicates that the
truck drives the shortest route.

During trip 2 of truck 1, the truck starts from the depot and tows the aircraft of request 15 to the runway
and returns to the depot. This trip starts at 7:55 o’clock and the truck arrives at the start location (gate of node
31) of the tow at 7:56 o’clock and the truck arrives at the depot at 8:11 o’clock. The battery level of the truck is
now 0 kWh. At the depot, truck 1 first charges with the charging speed of option 0 for 41 minutes and then
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switches to the charging speed of option 2, to charge for another 183.14 minutes. The total charging time after
trip 2 is 224.14 minutes. In total it has charged 25.63 kWh+22.89 kWh = 48.52 kWh. This way, the battery level
of truck 1 is at the start of trip 3 48.52 kWh.

After truck 1 is done charging after trip 2, it will start trip 3. Trip 3 starts 224 minutes after the truck ar-
rived at the depot after trip 2, which was at 8:11 o’clock. 224 minutes after 8:11 o’clock is 11:55 o’clock. Truck 1
will go from the depot to the start location of request 3 (node 3, which is the landing lane as the aircraft of the
request is an arrival), then it tows the aircraft to its gate (node 31), then the truck goes back to the depot. It
arrives there at 12:06 o’clock and its battery is completely empty.

The same explanation can be done for all other trucks. All information on the truck schedules of the other
trucks can also be found in Tab. B.1 and Tab. B.2. These detailed truck schedules are made for all truck
schedules depicted in this thesis.

Figure B.1: Truck schedule of a fleet of 4 trucks of a flight schedule of 16 flights with 5 minutes of service time, determined
by the deterministic EVRP explained in Chap. 3. The total electricity costs areAC 1296.72.
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Appendix C

Flight Schedule

Table C.1: Flight schedule of 2 days at the Rotterdam Airport. The traffic type ’D’ represents departing flights and ’A’
indicates an arriving aircraft.

Flight Number Actual Local Scheduled Local Traffic Type

TRA5691 07:04 06:55 D
TRA6035 07:06 07:00 D
TRA6061 07:12 06:55 D
CFE4450 07:14 07:05 D
TRA5701 07:22 07:05 D
TRA6421 07:24 07:10 D
TRA-731 07:45 07:35 D
TFL-585 07:53 07:20 D
TRA5367 08:00 07:55 D
TRA5021 08:22 08:00 D
CFE4451 09:24 09:25 A
CFE4452 10:05 09:55 D
CFE4453 10:08 10:15 A
CFE4454 10:49 10:50 D
TRA6422 11:24 11:35 A
TRA6062 11:52 11:55 A
TRA6036 11:55 12:15 A
TRA5204 12:00 12:15 A
TRA5692 12:09 12:20 A
TRA5689 12:26 12:25 D
TRA5052 12:28 12:40 A
TRA6191 12:44 12:40 D
PGT1641 13:04 13:00 A
TRA5987 13:06 13:00 D
TRA6081 13:08 13:05 D
TFL-586 13:13 12:50 A
CFE4477 13:21 13:30 A
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Flight Number Actual Local Scheduled Local Traffic Type

TRA5051 13:39 13:25 D
TRA5702 14:04 13:55 A
CFE4476 14:13 14:05 D
TRA5022 14:17 14:25 A
TRA6841 14:22 14:00 D
TFL-765 14:26 13:50 D
PGT1642 14:52 13:40 D
CFE4455 15:01 15:05 A
TRA5368 15:44 15:45 A
TRA6783 15:46 15:30 D
CFE4456 15:52 15:45 D
TRA6093 15:55 16:00 D
TRA-732 16:05 16:05 A
CFE4479 16:35 16:40 A
TRA6082 16:41 16:40 A
TRA5023 16:43 16:30 D
TRA5988 16:49 17:00 A
CFE4478 17:19 17:15 D
TRA5053 17:32 16:50 D
TRA5690 17:43 17:50 A
TRA5203 17:54 17:45 D
TRA6192 18:01 18:00 A
TRA6441 18:10 17:35 D
CFE4457 18:28 18:35 A
TRA5067 18:47 18:35 D
TRA5293 18:55 18:40 D
CFE4458 19:33 19:15 D
TRA6784 21:34 21:45 A
CFE4459 21:45 21:40 A
TRA6842 21:48 22:00 A
TFL-766 22:33 22:30 A
TRA6094 22:36 22:30 A
TRA5024 22:54 22:55 A
TRA5068 22:56 22:55 A
TRA5294 22:58 22:40 A
TRA6442 23:20 22:50 A
TRA5054 23:31 22:35 A
TRA5689 07:09 06:55 D
TRA5639 07:14 06:55 D
CFE4450 07:17 07:05 D
TRA6061 07:21 07:05 D
TRA5643 07:25 07:10 D
TRA6485 07:27 07:15 D
TRA6697 07:38 07:20 D
TRA6091 07:57 07:45 D
TRA5033 08:00 07:55 D
TFL-545 08:10 07:55 D
FHM6021 08:55 08:45 D
TRA6698 11:40 12:10 A
TRA6062 12:09 12:05 A
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Flight Number Actual Local Scheduled Local Traffic Type

TRA6486 12:26 12:30 A
TRA6259 12:49 12:45 D
TRA5640 12:55 13:05 A
PGT1261 13:03 13:00 A
TRA6191 13:05 12:55 D
TRA5644 13:23 13:20 A
TRA5833 13:24 13:15 D
TRA6285 13:38 13:30 D
TRA5034 13:48 14:00 A
PGT1262 13:58 13:45 D
TRA6081 14:17 14:05 D
TRA6092 14:27 14:15 A
TRA6093 14:55 12:20 D
TRA6094 15:13 11:35 A
TRA6325 16:01 16:00 D
TRA6260 17:23 17:40 A
TRA6286 17:36 17:50 A
FHM6022 17:40 17:35 A
TRA6082 17:44 17:40 A
TRA5688 18:00 18:00 A
TRA6192 18:14 18:15 A
TFL-546 18:17 18:45 A
TRA5690 18:30 18:45 A
TRA5067 18:33 18:25 D
TRA6421 18:43 18:30 D
TRA5997 18:52 18:40 D
TRA5243 18:55 16:00 D
TRA5687 19:08 18:55 D
TRA5021 19:10 18:55 D
TRA5053 19:34 19:30 D
LMU6312 20:27 20:15 A
TRA6326 21:46 22:05 A
LMU6313 22:18 21:15 D
TRA5068 22:31 22:45 A
TRA5998 22:39 22:55 A
TRA6422 22:42 22:50 A
TRA5834 22:44 22:55 A
TRA5054 22:53 22:55 A
TRA5022 23:03 22:45 A
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Appendix D

Robust Optimization versus Stochastic
Programming

In Chap. 4 we present a Robust Optimization (RO)-based model that describes how the optimal operations of
a fleet of electric towing trucks under uncertain arrival and departure times, can be determined. However,
the RO-based model is not the only technique that can be used to describe the operations of electric towing
trucks under uncertain arrival/departure times. Powell discusses in "A unified framework for stochastic
optimization" [70] how all methods in stochastic optimization can be categorized and how for many problems,
one can describe a problem by various "types" of stochastic optimization problems.

Powell discusses that RO is the robust analog of a stochastic search problem. In this Appendix, we show
that the RO-approach of an Electric Vehicle Routing Problem (EVRP) under uncertain arrival and departure
times, as presented in Chap. 4, can be described as a Stochastic Program.

A Stochastic Program (SP) is described in stages and the most simple version of a mixed-integer SP is a
two-stage SP. A two-stage maximization SP is defined as,

max
x∈Rn

f T x +Eξ[Q(x,ξ)]

s.t. Ax ≤ b

xi ∈Z, ∀i ∈ I ,

(D.1)

where Q(x,ξ) is the optimal value of the second-stage problem,

max
y∈Rm

q(ξ)T y

s.t. T (ξ)x +W (ξ)y ≤ h(ξ)

yi ∈Z, ∀i ∈ I ′.

(D.2)

Here x ∈ Rn is the vector containing all Decision Variables (DVs) of the first-stage problem and y ∈ Rm the
second-stage DV vector. ξ represents the uncertain data. The first-stage problem can be considered as the
"here and now", as a decision needs to be made "now", before we know what the realization of the uncertain
data ξ will be. The second stage can be considered as the moment in time, where the uncertain information
becomes available and we need to optimize for the realized scenario.
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In order to further explain the idea of the first and second stage, we present the farmer’s problem. Con-
sider a farmer that grows different crops. And at the beginning of the year, he has to decide how much of his
land he grows which crop in order to maximize his profit. He needs a certain amount of each crop for his own
use and he can sell the surplus and he can buy crops if he did not harvest enough of each crop for his own
use. However, the amount of crops that he can harvest for each crop is dependent on the weather. Consider
that the weather can be described by a finite number of realizations. For example, a number of realizations
sampled from a distribution that describes the weather (for a period of time). So the weather is uncertain and
the farmer does not know how many crops he will harvest at the end of the year. But he needs to decide now
how much land he grows each crop.

This problem can be described as a SP. The decision of how much land the farmer needs to grow each
crop can be described by the stage 1 DVs, x, and the number of crops he will sell and how many crops he needs
to buy given a certain realization (scenario) of the weather of last year, is determined in the second stage by the
DVs, y .

In the case of a finite number of scenarios, the decisions made in stage 1 need to be valid in every sce-
nario, while the decisions made in stage 2 are specific for each scenario. If we would like to describe an EVRP
with uncertain arrival and departure times, there would be 2 options. The first option is to only have DVs in
stage 1. In this case, we make a schedule at the beginning of the day, that needs to minimize the electricity
costs, while all aircraft of the sampled scenarios are towed on time. No decisions need to made after we know
what the actual realization of the flight schedule is, as by the time we know the arrival and departure times
of all aircraft, it is the end of the day and no decisions need to be made. This approach is very similar to the
RO-approach described in Chap. 4.

The second option is a multi-stage SP. In this case we set different moments in time as the first, second,
third etc. stage. This will be similar to a Stochastic Sequential Decision Problem (SSDP) with deterministic
decision epochs. The implementation of a Stochastic Sequential Decision Model (SSDM) as a multi-stage SP
will be difficult, as one needs to determine which DVs belong to which stage before one starts to solve, while
the arrival/departure times are uncertain.

So in conclusion, if we would describe an EVRP with uncertain arrival and departure times as a SP, there are
two options, (1) all DVs would be stage 1 DVs and the schedule is determined at the beginning of the day. This
model will be similar to our RO-approach of Chap. 4. Or (2) a multi-stage SP model can be formulated, which
will be similar to our SSDM of Chap. 5. So we agree with Powell, that problems can be described by different
approaches and that they might end up being very similar.



Appendix E

Additional Results of the RO-Based Model

In this Appendix, we present additional results obtained from the Robust Optimization (RO)-based model as
presented in Chap. 4. Every time we run this model, the sampled flight schedules will be slightly different, as
the scheduled flight schedule remains the same, but the sampled delays differ from sample path to sample
path. This results in different truck schedules found every run by the RO-based model. In this Appendix, we
show that indeed the found truck schedules are different and we briefly discuss the found truck schedules. The
goal of this Appendix is to show that indeed the obtained truck schedules differ and that the developed model
works as expected. This Appendix does not contain statistics on the obtained results.

We have performed a total of 12 runs of this model. From these 12 runs, 3 runs resulted in an infeasible
model. For these runs, sampled realizations of the arrival/departure times of a certain request led to the
infeasibility of the model. The result of the first run of the RO-based model is presented and discussed in
Sec. 4.4. The results of the other 8 feasible models are presented in this Appendix.

Fig. E.1 and Fig. E.2 show the additional truck schedules obtained from the RO-based model. The truck
schedules show that indeed the best-found truck schedules are different as for every run, 300 different sample
paths are sampled from the delay distribution. We ordered the truck schedules by total electricity costs, so the
truck schedule of Fig. E.1a has the highest total electricity costs and the truck schedule of Fig. E.2d the lowest
total electricity costs. The total electricity costs of these truck schedules are of the same order of magnitude.
The difference in the total electricity costs is due to the fact that in some truck schedules more time needs to
be charged with the charging speed of option 0 or option 1, compared to others. These truck schedules have
higher total electricity costs. This can be seen by the fact that the trucks of the truck schedule of Fig. E.1a need
to charge more with option 0 and option 1, compared to the trucks of the truck schedule of Fig. E.2d.
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(c)

Figure E.1: Additional truck schedules obtained from the RO-based model (option 2) as presented in Chap. 4. Truck
schedules of 13 trucks that serve 50 aircraft, where 300 sampled delays per request are considered. The total electricity
costs are in (a)AC 3186.24, (b)AC 3119.09, (c)AC 3116.14, (d)AC 2985.98.
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(c)

Figure E.2: Additional truck schedules obtained from the RO-based model (option 2) as presented in Chap. 4. Truck
schedules of 13 trucks that serve 50 aircraft, where 300 sampled delays per request are considered. The total electricity
costs are in (a)AC 2968.23, (b)AC 2950.78, (c)AC 2888.41, (d)AC 2834.13.
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Appendix F

Additional Results SSDM

In this Appendix, we present additional results obtained from the Stochastic Sequential Decision Model (SSDM)
as presented in Chap. 5. Every time we run this model, the "actual" flight schedule will be different, resulting in
different truck schedules found by the SSDM. In this Appendix, we show that indeed the found truck schedules
are different and we briefly discuss the found truck schedules and the objective values found for all iterations
of the Mixed Integer Linear Program (MILP) of the found truck schedule. We need to emphasize that for the
results of the Robust Optimization (RO)-based models, like presented in Appendix E, the considered scheduled
flight schedule is the same for all runs. The only the difference between the runs are the earliest and latest
sampled arrival/departure times for every request, such that the total time a truck is scheduled to tow an
aircraft differs per run for every request. So we need to emphasize, that for the results of the SSDM presented
in this Appendix, the realization of the flight schedule differs per run.

The goal of this Appendix is to show that indeed for every run, the realization of the flight schedule is different
and thus also the corresponding found truck schedule. This Appendix does not contain statistics on the
obtained results.

We have performed a total of 5 runs of this model, the results of the first run of the SSDM is presented
and discussed in Sec. 5.6 and the corresponding truck schedule is given in Fig. 5.3a. The results obtained from
the other 4 runs are presented in this Appendix.

The truck schedules of Fig. F.1a, Fig. F.2a, Fig. F.3a, and Fig. F.4a are quite similar. We see for all sched-
ules about 12 decision epochs are needed until all information becomes available. The expected costs at
every decision epoch increases and decreases slightly from decision epoch to decision epoch, this is due to
exogenous information that becomes available. We do not see any significant sudden increase or decrease of
the expected electricity costs.

In Fig. F.1a, we see an obtained best-found solution of a truck schedule of 4 trucks that tow 12 aircraft during
that day. A remarkable point to notice about this truck schedule, is that after 6 decision epochs all exogenous
information about the arriving/departing had arrived, so only 6 decision epochs were needed. This is as only a
few decisions are made until about 10 o’clock, which is around the moment in time the information about the
latest scheduled flight becomes available, such that a deterministic model remains and the sequential decision
making process stops. Note that at each decision epoch, actions for multiple trucks can be chosen.
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(a) Truck schedule determined by a SSDM
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Figure F.1: (a) A best-found truck schedule of 4 trucks that tow 12 aircraft, of which the arrival times are uncertain, by a
SSDM. The total electricity costs areAC 850.41. (b) The objective values of every combination of the actions that can be
chosen from at each decision epoch for every sample path. The red line indicates the expected charging costs for the action
that is chosen in that decision epoch.

(a) Truck schedule determined by a SSDM
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Figure F.2: (a) A best-found truck schedule of 4 trucks that tow 12 aircraft, of which the arrival times are uncertain, by a
SSDM. The total electricity costs areAC 833.92. (b) The objective values of every combination of the actions that can be
chosen from at each decision epoch for every sample path. The red line indicates the expected charging costs for the action
that is chosen in that decision epoch.
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(a) Truck schedule determined by a SSDM
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Figure F.3: (a) A best-found truck schedule of 4 trucks that tow 12 aircraft, of which the arrival times are uncertain, by a
SSDM. The total electricity costs areAC 866.99. (b) The objective values of every combination of the actions that can be
chosen from at each decision epoch for every sample path. The red line indicates the expected charging costs for the action
that is chosen in that decision epoch.

(a) Truck schedule determined by a SSDM
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(b) Objective values of all combinations of actions and sample paths

Figure F.4: (a) A best-found truck schedule of 4 trucks that tow 12 aircraft, of which the arrival times are uncertain, by a
SSDM. The total electricity costs areAC 843.39. (b) The objective values of every combination of the actions that can be
chosen from at each decision epoch for every sample path. The red line indicates the expected charging costs for the action
that is chosen in that decision epoch.
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