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Abstract

Intensive Care Units are specialized hospital wards where critically ill patients receive enhanced
medical treatment. The beds in ICUs are limited, which sometimes forces healthcare professionals
to make a delicate decision of discharging a patient to make room for other seriously ill patients.
However, a premature discharge can be a reason for patient readmission, which is associated with
increased length of stay and deterioration of a patient’s condition. Therefore, it is important to
identify patients at high risk of readmission to guide the decision making concerning the discharge
of the patient. While readmission prediction has been extensively studied in adult patients, little
attention is paid to the readmission of neonate patients. Neonates are newborns in their first 4
weeks after birth. There are different reasons for admitting a newborn to an Intensive Care Unit,
including preterm birth, low birth weight, or health conditions such as breathing troubles, heart
problems, infections, etc. Yet, there is a lack of studies investigating the potentials of data-driven
decision support system in neonatal readmission. Previous studies have attempted to simply explain
the statistical connections between different variables and the readmission outcome. However, most
works have not extended their analysis to measure predictive performance.

This study extends previous research by implementing three distinct classification models –
Logistic Regression, Gradient Boosted Decision Trees, and Neural Network, for predicting the
readmission of neonatal patients to Intensive Care Units. It is among the first studies applying
machine learning techniques to predict neonatal readmissions. The study is carried out over an
anonymized dataset collected over seven years in a public pediatric hospital in Zhejiang, China. The
predictive analysis of 30-day readmission is formulated as a binary classification problem. However,
because readmission is a much less frequent event than no readmission, the data is highly skewed
towards the negative class. In this study, readmissions account for only 4.8% of the samples. This
class imbalance causes difficulties during training and validation of a model. During training, the
readmission class is underrepresented, hence, the model gets biased towards the majority class. Two
different approaches for dealing with class imbalance are used - one is to adjust the weights during
learning while the other is a data level approach - ADASYN oversampling technique, where synthetic
samples are generated for the minority class until the class balance is restored. Moreover, certain
performance metrics used for validation of the model, such as accuracy, are strongly influenced by
the majority class correct classification, hence, AUROC is one of the metrics used to express the
performance of the implemented models.

This study reports classification results achieved with models before and after class correction

with ADASYN. The results showed that the Neural Network is the best model developed in this

study, with an AUROC score of 0.71, which is an acceptable value for AUC in general. Although,

comparisons with literature indicate that the data and models developed in this study are subject

to improvement. Surprisingly the worst performing model is Gradient Boosted Decision Trees,

achieving an AUROC score of only 0.65. Furthermore, results showed that the imbalance correction

technique, ADASYN, did not improve the AUROC score for any of the implemented classification

algorithms. It even had a degrading effect on Logistic Regression. Therefore, a suggestion for future

research is to further explore other class imbalance handling techniques and models.
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1 Introduction

Intensive Care Units (ICUs) are specialized hospital wards where critically ill patients re-
ceive intensive, specialized medical treatment while their condition is being under enhanced
monitoring [1]. As such, ICUs have higher costs associated with them, reflecting the high
resource consumption and staffing needs. Depending on the specific medical requirements
and patients, there are different types of ICUs established such as the Coronary Care Unit
(CICU), Neonatal Intensive Care Unit (NICU), Pediatric Intensive Care Unit (PICU), to
name a few. ICUs are among the most critically functioning environments in a hospital. In
fact, the decisions taken in an ICU can increase or reduce the life-threatening risk for the
patients. Because ICU beds are limited, healthcare professionals may need to make a deli-
cate decision of discharging a patient from ICU to make room for other seriously ill patients
[2]. While delayed discharge can result in reduced capacity and therefore delayed admission
of patients who require critical care [3], a premature discharge can be a reason for patient
readmission, which is associated with increased length of stay, costs, and mortality rates [4].
Therefore, it is necessary to investigate the possibilities of developing predictive tools and
alerts to help ICU physicians avoid premature ICU discharges. Foreseeing which patients
are at risk of ICU readmission would enable the ICU team to best plan the discharge and
the ongoing care outside of the ICU [5].

The event of readmission is defined as a nonscheduled patient admission to a hospital ward
within a short period after discharge. The standard benchmark to count a patient return
as readmission is 30 days. ICU readmission rates have been used as a marker of hospital
performance. To encourage the prevention of readmissions, both public and private funding
policies have introduced financial penalties to hospitals that have excessive risk-adjusted
readmission rates [6]. Not only are there strong financial reasons to avoid readmissions, but
the readmissions to ICUs indicate a deterioration of a patient’s condition and are associated
with higher mortality rates, putting a burden on both patients and healthcare systems. It
has been argued that a large part of the readmissions are preventable, increasing the worth
of investment in the prediction of patient readmission [7]. There has been an active line of
research to establish decision support tools, focusing on the adult patient population, such
as scores that depict the severity of illness or even classification models that make use of
the fast-growing technological advances in the field of data mining. Recent works favour
the application of predictive machine learning approaches, formulating the readmission pre-
diction as a binary classification problem. For example, the literature reports results from
Logistic Regression [3], [7], Support Vector Machine [8], Neural Network [9], etc.

The readmission prediction is intrinsically class-imbalanced, which makes the prediction
task difficult. As the name suggests, class imbalance refers to skewed data distribution
where the classes are not equally represented – one class includes fewer samples than the
other class. Usually, the positive class is underrepresented. In such cases, most classification
models will focus on the negative class, which is not the interest group of research. Despite
the implications that class imbalance poses, only a small number of the reviewed predictive
models adjusted for it. Therefore, a further investigation into handling imbalanced elec-
tronic health record (EHR) data is needed.

Despite the long list of studies about hospital readmission for adult patients, when it comes
to the pediatric patient population and particularly neonates, not that much has been done
regarding readmission prevention. This is not surprising considering that Neonatal medicine
is a relatively recent advancement, becoming an accepted medical discipline only in the 1960s
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[10]. Neonates are newborns in their first 4 weeks after birth. After a month, a baby is
no longer considered a neonate. There could be different reasons for admitting a newborn
to an intensive care unit, including preterm birth, low birth weight, or health conditions
such as breathing troubles, heart problems, infections, etc. Research indicates that the risk
factors associated with readmission of infants to an ICU also include the operative method
of birth, maternal diabetes, hypertension, ethnicity, gestational age and socioeconomic sta-
tus, etc. [11], [12]. While factors suspected to have an impact on neonatal readmission
have been explored in the literature, there are not sufficient studies investigating the poten-
tials of data-driven decision support in neonatal readmission. Fortunately, the widespread
adoption of electronic health record (EHR) systems can help to address these shortcom-
ings. Thanks to the positive trends that data mining applications in healthcare have shown,
now more and more digitally available medical data becomes freely accessible for research
purposes. Therefore, the objective of this study is to develop and validate several classi-
fication models to predict 30-day neonatal readmission based on a recently released freely
accessible pediatric-specific database. Considering the intrinsic class-imbalanced problem,
an oversampling method was investigated as a method to compensate for the imbalance.

1.1 Problem Statement

The main goal of this research is to predict whether a neonatal patient will be readmitted
to an intensive care unit. The problem is formalized as a binary classification task.

The main research questions are defined as:

RQ1: To what extent, one can predict readmission of neonates to an inten-
sive care unit using machine learning methods (Logistic Regression, Gradient
Boosted Decision Tree, and Neural Network)?

RQ1.1: Given the class-imbalanced dataset, does class balancing during data preprocess-
ing improve the classification?

RQ2: Which of the machine learning algorithms performs the best in the clas-
sification task?

RQ2.1: Which features used in this study have the greatest impact on the performance
of the model from RQ2?

1.2 Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the background
information. Chapter 3 reviews the related work. Then the general methodology is intro-
duced in Chapter 4. Chapter 5 describes, in detail, the dataset preparation and variables
used in the study. Chapter 6 reports the models’ design, followed by the results presented
in Chapter 7. The discussion takes place in Chapter 8, including suggestions for future work
and the limitations of this study. The research conclusions are summarized in Chapter 9.
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2 Background

In this section, the background useful for this study is introduced.

2.1 Data Mining

Data mining is defined as an interdisciplinary field that involves methods of machine learning
and statistics to extract useful information from large and complex datasets. In this context,
useful information means information that has been previously unknown [13] and is too
subtle for humans to detect without the means of intelligent methods. Data mining has
the task to also transform this information into a comprehensive structure that is both
understandable and suitable for further use (to build predictive models etc.) [14].

2.1.1 Data Mining Techniques

Understanding the different data mining algorithms and their functionalities is a crucial step
before applying data mining to any kind of data. Data mining techniques can be broadly
separated into two types - predictive (supervised learning) and descriptive (unsupervised
learning) [15].

Descriptive data mining is used to determine the similarities and to find unknown patterns or
relationships within the data. The nature of descriptive data mining is mainly explanatory
and the emphasis lies on transforming a huge amount of data into meaningful information
that is presented in a comprehensible way. This type of data mining includes techniques such
as clustering, association, summarizing, and sequence discovery. Predictive data mining,
on the other hand, is used to forecast future behaviour or results. Therefore it employs
prediction rules such as classification, prediction, regression and time series analysis.

In this paper, the focus is on the predictive data mining techniques due to the nature of
the task - readmission prediction. The following sections provide a brief overview of the
algorithms relevant to the task.

Classification As the name suggests, classification is used to group data into predefined
classes, where each class is an attribute or feature from the dataset. The process of classifica-
tion consists of two steps - training and testing. While in the training phase, a classification
model, with classification rules, is built and utilized on a separate set of data - training data
that contains class labels. In comparison to the testing step, which is relatively simple, the
training step is a complex and very computationally expensive process. The testing phase
evaluates the accuracy of the classifier or its ability to classify unknown data. This is done
on testing data that was not included in the training process and it is either labelled data or
unlabelled data to suit the objective of the testing. The aim of the testing can be to simply
evaluate the accuracy or the ability of the classifier to predict on unknown data (also called
validation process).

There are different classifiers:
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Naive Bayesian classifier
Naive Bayesian classifier is considered to be the simplest algorithm among classification
algorithms. It is based on the Bayes theorem (1) and its name, naive, comes form the
assumption that all attributes are independent of one another. This is both its biggest
advantage because it can easily handle data with lots of attributes, but also its biggest
disadvantage as this assumption is not realistic in many cases. However, in general, Naive
Bayes has shown very good classification accuracy despite its overly-simplified assumption
and it is widely used in medical data mining [15].

P (A|B) =
P (B|A)P (A)

P (B)
(1)

Neural Network
Neural Network (NN) was developed in 1957 with the attempt to emulate the function of the
neurons in the human brain. NNs consist of computational nodes that are interconnected
via links with adjustable weights. The nodes are classified either into Input, Hidden, or
Output layers and the weights between them are adjusted during the training of the Neural
Network. Despite its sufficient classification performance on new data and its ability to
handle noisy data, Neural Network has several drawbacks. One of which is the need for
extensive amounts of data for training, which by itself is a slow and computationally ex-
pensive process. Besides, the classification accuracy is also highly dependent on the model
parameters selected by the data analyst. Another problem with Neural Networks is their
lack of transparency. Even though it is possible to get an insight into the way the NN’s
neurons communicate with each other, it is unknown what representations they learn from
the data. This makes Neural Network knowledge hardly transferable to different domains.

Decision Tree
Decision Tree classifiers are top-down tree-like structures that represent decisions and their
possible consequences, including chances that an event occurs, resource costs, and utility
[16]. The key process of constructing a decision tree is the Attribute Selection Method that
selects attributes that become nodes in the tree and split the given records into class labels
in the most optimal way [15]. When the number of attributes increases this task becomes
more complex and overfitting can occur. In such cases, a method called pruning is applied
to filter out the least important attributes while still keeping the overall structure of the
data. Tree-based classifiers are considered one of the best supervised learning methods.
They can solve both classification and regression problems and are often also referred to
as “Classification and Regression Trees”. Unlike other classification methods, the structure
of decision trees is easy to visualize and understand, which is the major advantage of this
classifier together with its high accuracy.
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Support vector machine
Support Vector Machine is a classifier that can be used to solve two-classes problems. It
aims to find out a line or hyperplane (in multidimensional space) that separates two classes
while trying to maximize the margin between both. Two support vectors surround each
hyperplane and calculate the margins as the goal is to find the margin that is equidistant as
far as possible from both classes. Generally, SVM has the best classification accuracy, but
it is not always the best classification algorithm as it does not fit every dataset. Moreover,
its training step is extremely slow and requires a lot of computational power.

Logistic Regression
Logistic Regression is a classification algorithm which is used to categorize data into two
distinct classes. Broadly, LR fits a sigmoid function (2) which returns a probability that a
data sample belongs to one of two classes based on its location with respect to the sigmoid
line. In fact, training the model means selecting the sigmoid function that best fits the data.
In order to choose the optimal line for a given dataset, logistic regression uses maximum like-
lihood. Different candidate lines are generated and their likelihoods are compared. The aim
is to select the line with the maximum likelihood. Logistic Regression is a simplistic model
and can be easily outperformed by more complex ones, but it is easy to implement, which
makes it a great baseline to measure the performance of other more complex algorithms.

f (x) =
1

1 + e−x
(2)

Gradient Boosted Decision Trees
Gradient Boosted Decision Trees (GBDT) is an ensemble learner which combines individuals
decision trees to build a more robust and accurate model. Boosting means combining a
learning algorithm in series to achieve a strong learner from many sequentially connected
weak learners - the decision trees. In each round of training, the predictions of the current
decision tree are compared to the correct outcome. A loss function is used to detect a
residual - the difference between the true value and the predicted value. Each newly added
tree fits the residuals from the current model as the goal of each iteration step is to reduce the
classification error made by the current model (each time a new tree is added the residuals
get smaller; at the final step the value of the residual should be close to 0). Two crucial
hyperparameters for gradient boosting decision trees are the learning rate and the number of
estimators. Each new tree modifies the overall model and the magnitude of the modification
is controlled by the learning rate. Lower learning rate means that the model becomes more
robust and generalized. However, the lower the learning rate, the longer it takes to train
the model. There is a correlation between the learning rate and the number of estimators.
If the learning rate is low, more trees (estimators) are needed to train the model. However,
increasing the number of trees can cause overfitting. This makes GBDT hard to tune model,
but once well tuned, its performance is outstanding.
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2.2 Pediatric Intensive Care Database

The PIC (Paediatric Intensive Care) database is a large, paediatric-specific database that
contains information about patients admitted to critical care units at the Children’s Hospital
of Zhejiang University School of Medicine. The main characteristics of PIC are shown in
Table 1.

Language English-Chinese bilingual
Data source 1900-bed children’s hospital

Category of critical care
CICU, SICU, PICU, NICU, GICU;
Total 119 paediatric critical care beds

Number of records 10,000+
Patient age, median (Q1–Q3) 0.8 years (0.1–3.5)

Vital signs
Daily nurse recorded &
surgery monitor generated (5 minute)

Laboratory data Yes
Clinician notes Extracted symptoms from notes
Diagnoses codes ICD-10 Codes
Mortality Only death recorded in the hospital

Table 1: PIC’s characteristics [17]

PIC can be considered as a pediatric-specific extension of the MIMIC-III database cre-
ated by the Massachusetts Institute for Technology (MIT) with the goal of providing a
real clinical database to support clinical research [18]. MIMIC contains health-related data
associated with over forty thousand patients who stayed in critical care units of an Israeli
hospital. Over the years it has supported a diverse range of analytic studies spanning epi-
demiology, clinical decision-rule improvement, and electronic tool development. The success
of the MIMIC database has inspired the development of PIC, which upholds the goal of im-
proving the quality of intensive care for children. Both, MIMIC and PIC, databases are
freely accessible under the condition that the user completes a training course on research
with human subjects and signs a data use agreement mandating the responsible handling
of the data.

Data records PIC comprises of de-identified health-related data associated with over ten
thousand pediatric patients who were admitted to critical care units of the Children’s Hospi-
tal, Zhejiang University School of Medicine between 2010 and 2019. This children’s hospital
is the largest comprehensive paediatric medical centre in Zhejiang Province and the Chinese
National Clinical Research Centre of Child Health. It has 119 critical care beds in 5 intensive
care units: general ICU, paediatric ICU (PICU), surgical ICU (SICU), cardiac ICU (CICU)
and neonatal ICU (NICU) [17]. Table 3 shows details (such as number of patients, age,
gender, mortality) of the PIC patient population per ICU. PIC database data have been
obtained from several information systems from the hospital as Hospital electronic medi-
cal record system, Laboratory information system, Nursing information system, and more.
Therefore, the data available in the PIC database includes information on demographic data
of the patients, laboratory measurements, charted observations during a patient’s stay and
vital signs during operation. This information is contained in 16 tables that are linked by
unique identifiers. All the tables are distributed as a collection of comma-separated value
(CSV) files that can be loaded into many relational database systems.
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Table Name Covarage Rate Covarage Group

CHARTEVENTS 79.7% high

DIAGNOSES ICD 99.9% excellent

EMR SYMPTOMS 6.7% low

INPUTEVENTS 41.1% medium

LABEVENTS 93.9% excellent

MICROBIOLOGYEVENTS 89.7% excellent

OR EXAM REPORTS 91.9% excellent

OUTPUTEVENTS 11.7% low

PRESCRIPTIONS 51.5% medium

SURGERY VITAL SIGNS 47.7% medium

Table 2: Amount of complete data per table [17]

There are three core tables to describe the patients (PATIENTS), admissions (ADMIS-
SIONS) and ICU stays (ICUSTAYS). The primary key of the three core tables was used to
index all other clinical data. SUBJECT ID in the PATIENTS table is a unique identifier
that specifies an individual patient, HADM ID in the ADMISSIONS table is the encounter
number that uniquely identifies a particular hospitalization for patients who might have been
admitted multiple times, and ICUSTAY ID in the ICUSTAYS table refers to a unique ad-
mission to an intensive care unit. Each SUBJECT ID has one or more related HADM IDs,
and each HADM ID can have one or more related ICUSTAY ID. Table 15 provides sum-
mary descriptions of the data tables. Because different clinical information systems were
implemented at different times, some data was not available from the beginning of the data
collection. Therefore the completeness of the different data tables varies. Table 2 shows the
completeness level of PIC tables.
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Critical care unit CICU GICU NICU PICU SICU Total

Patients, no. (%)
2583 2642 3137 1953 2566 12881
20.10% 20.50% 24.40% 15.20% 19.90% 100%

Admissions, no. (%)
2638 2725 3205 2084 2797 13449
19.60% 20.30% 23.80% 15.50% 20.80% 100%

ICU stay, no. (%)
2803 2788 3282 2166 2902 13941
20.10% 20.00% 23.50% 15.50% 20.80% 100%

Age, years, mean (Q1–Q3)
2.5 3.8 14.5 days 3.6 3.2 2.5
(0.5–3.1) (0.4–6.3) (0.0–18.0) (0.5–5.7) (0.4–4.9) (0.1–3.3)

Gender, male, % of unit stays
1391 1712 1984 1250 1680 8017
49.6% 61.4% 60.5% 57.7% 57.9% 57.5%

ICU LOS, mean days (Q1–Q3)
3.9 7.3 21.6 9.7 2.3 9.3
(0.9–4.0) (0.9–8.9) (2.5–32.8) (2.0–11.1) (0.8–1.6) (0.9–9.2)

HLOS, mean days (Q1–Q3)
16.6 12.8 27.1 14.5 14.7 17.6
(9.0–19.2) (3.8–16.2) (9.6–37.8) (4.6–16.7) (7.0–18.7) (7.0–21.0)

ICU mortality, %
48 414 236 200 57 955
1.70% 14.8% 7.20% 9.20% 2.00% 6.90%

Hospital mortality, %
53 417 239 205 57 971
2.00% 15.30% 7.50% 9.80% 2.00% 7.20%

Table 3: Details of the PIC patient population by Intensive Care Unit on hospital admission [17]

2.3 Limitations of Healthcare Data

First and foremost, the sharing of real clinical data for carrying out studies and research is
strictly restricted. Medical data is primarily generated through providing patient care which
consequently makes it sensitive to ethical, privacy and legal issues. The legal considerations
associated with the use of medical data are one of the reasons that uphold the sharing
of hospital data for research purposes. The process of data mining may reveal previously
unknown medical errors, which leads to lawsuits against health providers. Therefore, the
confidentiality preserving strategies that comply with regulations regarding human subject
research must be followed to ensure the anonymity of the patient [19]. Even when available,
healthcare data have limitations due to its nature. It may contain missing, corrupted, in-
consistent, or non-standardized data values [20]. Patients diagnosed with the same disease
do not always undergo similar medical treatment because of difference in age, symptoms,
complications and many other factors. This inevitably results in different data being gener-
ated [21]. As a result, the data might often contain inconsistent medical vocabulary, which
is a serious hurdle to data mining [22]. Not only this, but healthcare data often have highly
skewed class distribution, also referred to as imbalanced data. Preprocessing of the data
can minimise the effect of those limitations. There are various ways to deal with missing
and/or imbalanced data. The most common are described in the following sections of this
report.
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2.4 Missing Data

Because of its nature, medical data is prone to missing values. Missing data can significantly
decrease the quality of the data and the performance of the predictive models utilized in the
developing of medical guidelines [23]. There could be different reasons for the data absence
and before jumping to the methods of data imputation, we have to understand the reason
why data goes missing. In general, there are three types of missing data according to the
missing data mechanisms [24]:

• Missing Completely at Random (MCAR): occurs when the absence of a value
is not caused by or dependent on any other values, observed or missing.

• Missing at Random (MAR): occurs when the absence of a value is dependent on
other observed features in the dataset.

• Missing Not at Random (MNAR): occurs when the probability of a missing value
depends on the variable itself. (This missing data type is the most problematic one in
terms of both finding it and dealing with it.)

There are two standard approaches that are widely used to deal with missing data. One
is to delete the variables that have missing values and the other is to impute values for all
missing data [25]. Since missing data is ubiquitous, a correct approach must be found to
avoid loss of information. If the data is MCAR, the missing values can be discarded upon
their occurrence, however, with MAR and NMAR data this might introduce bias to the
model. Moreover, deleting MCAR values is also not very desirable as it reduces the size
of the dataset [26]. The amount of missing values for a variable or the amount of missing
values a unit has is also important to take into account when choosing a suitable approach.

Data imputation is a method that fills in missing values with some plausible values.
This is done in the data preprocessing phase meaning that the missing data treatment
is independent of the learning algorithm used and the user can select the most suitable
imputation technique for each situation [27]. There are various methods for missing value
imputation, such as:

• KNN imputation
The idea behind k-nearest neighbour imputation is that a missing value can be ap-
proximated by the values closest to it. As the name suggests, a missing value is filled
with the average of its k-nearest neighbours found in the training dataset.

• Multivariate Imputation By Chained Equations (MICE)
Multivariate Imputation operates under the assumption that the data is missing at
random and that it is possible to make an educated guess about its true value by
looking at other observed values. MICE imputes missing values by fitting a regression
model to predict the missing value by using the observed variables.

Dealing with missing values also depends on the type of data. If the missing values are
numerical data they can be mean imputed, while if the values are categorical they can be
imputed with a category randomly drawn from its distribution, where these categories are
then 1-hot encoded, as done by [8].
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2.5 Imbalanced Data

Imbalanced data, also known as skewed data, is characterized by a significantly unequal
distribution of the minority and majority classes. This is a problem since most of the
supervised learning algorithms work under the assumption that the classes in a dataset are
distributed evenly, which is not always the case. As a result, the classification models get
bias towards the majority class whereas the minority class is often the class that researchers
are the most interested in.

Generally, class imbalance may also exist in datasets with multi-classes, but as this study
is concerned with a binary classification problem, the focus is only on two-class imbalanced
learning problems. There are various ways to deal with the a two-class imbalance problem;
some of the most popular methods are described below.

2.5.1 Random Oversampling and Undersampling

Random resampling methods deal with imbalanced data by adding or removing examples
form the training dataset until an even class distribution is achieved. They are referred
to as naive techniques because when performed they assume nothing of the data. As the
names suggest, oversampling methods duplicate examples in the minority class, whereas
undersampling methods delete or merge examples in the majority class. Both techniques
can achieve good results when used alone, however, it can be more effective to use them
together.

Because the random oversampling method duplicates examples of the minority class, it
may increase the likelihood of overfitting, especially for higher oversampling rates [28]. A
limitation of the random undersampling is that it may delete examples from the majority
class that are important or even critical to fitting a robust decision boundary. This is
problematic as it results in a loss in classification performance.

2.5.2 The Synthetic Minority Oversampling Technique (SMOTE)

Synthetic Minority Oversampling Technique (SMOTE) uses the existing dataset to generate
new synthetic data that represents the minority class. For a given minority class example
(xi), a new observation is generated by interpolating between one of its k-nearest neighbours,
xj . See Eq.3,

xnew = xi + α (xj − xi) (3)

where α is a random number in the range [0,1]. This interpolation will create a new sample
on the line between xi and xj .

2.5.3 ADASYN: Adaptive synthetic sampling

ADASYN is another oversampling approach where synthetic examples are generated in order
to deal with class imbalance. The difference with SMOTE is that ADASYN generates a
greater amount of synthetic data based on minority class samples that are harder to learn,
compared to those minority samples that are easier to learn. In particular, an observation
from the minority class is “hard to learn” if there are many examples from the majority
class with features similar to that observation. The key idea of ADASYN is to used density
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Figure 1: Generating synthetic samples with SMOTE

distribution as a criterion to decide the number of synthetic examples to be generated based
on each minority class example [29].

2.5.4 Adjusting Class Weights/Cost-sensitive learning

Another approach to deal with imbalanced data is to adjust the class weights during the
learning. The idea is to make the classifier aware of the imbalanced data by introducing a
weight for each class into the cost function. Intuitively, the weights for the minority class
are higher so that the end result is a classifier which can learn equally from all classes.
However, cost-sensitive approaches have the downside of not knowing the actual cost of
misclassification and the search for or the generation of an effective cost lead to overhead
[30].

2.6 Evaluation Metrics

The problem of hospital readmission prediction can be acknowledged as a binary classifica-
tion problem. A binary classifier predicts all instances of a test dataset as either belonging
to positive or negative class. In this case, in the positive class are the patients who have
returned to the hospital within 30-days after their discharge. In the negative class are
the patients who have not returned to the hospital in 30-days. There are four possible
classification outcomes - true positive, true negative, false positive and false negative:
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• True Positives (TP): Outcomes where the model correctly predicts the positive
class.

• True Negatives (TN): Outcomes where the model correctly predicts the negative
class.

• False Positives (FP): Outcomes where the model incorrectly predicts the positive
class (originally samples belong to the negative class).

• False Negatives (FN): Outcomes where the model incorrectly predicts the negative
class (originally samples belong to the positive class).

Figure 2: Confusion matrix

By counting of the number of the four outcomes of a binary classifier one can form a
confusion matrix (Fig.2). Various informative performance measurements can be derived
from a confusion matrix:

Specificity or True Negative Rate (TNR) evaluates the proportion of actual negatives
that are correctly predicted

Specificity =
TN

FP + TN
(4)

Recall or Sensitivity or True Positive Rate (TPR) evaluates the proportion of
actual positives that are correctly predicted

Recall =
TP

TP + FN
(5)

False Positive Rate (FPR) evaluates the proportion of actual negatives that are incor-
rectly predicted

FPR =
FP

TN + FP
= 1 − Specificity (6)
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Precision or Positive Predictive Value (PPV) evaluates the proportion of actual
positives that are predicted as positives

Precision =
TP

TP + FP
(7)

Negative Predictive Value (NPV) evaluates the proportion of actual negatives that
are predicted as negatives

NPV =
TN

TN + FN
(8)

F1-score evaluates the balance between precision and recall

F1 score =
2 · Precision ·Recall
Precision + Recall

(9)

Accuracy evaluates the proportion of all correctly predicted samples regardless of their
class.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Receiver Operating Characteristic (ROC) is a probability curve where TPR is plot-
ted against FPR. Analyzing this curve gives a better understanding of the trade-off between
specificity and sensitivity. Area Under the ROC Curve (AUROC) represents the capability
of a model to distinguish between classes. AUC between 0.7 and 0.8 is considered as accept-
able discrimination, AUC between 0.8 and 0.9 is considered as excellent, AUC above 0.9 is
considered as outstanding.

Hosmer–Lemeshow test is a goodness of fit test that is widely used for evaluating
logistic regression models. HL test statistic is given by:

HL =

G∑
g=1

(
(O1g − E1g)

2

E1g
+

(O0g − E0g)

E0g

2)

=

G∑
g=1

(
(O1g − E1g)

2

Ngπg
+

(Ng − O1g − (Ng − E1g))

Ng (1 − πg)

2)

=

G∑
g=1

(O1g − E1g)
2

Ngπg (1 − πg)

(11)
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Figure 3: AUC-ROC plot

where Og denotes the observed events, Eg denotes the expected events and Ng denotes the
number of observations for the gth group, whereas G signifies the number of groups. The
test statistic follows a Chi-squared distribution with (G-2) degrees of freedom. A large value
of Chi-squared (with small p-value < 0.05) indicates that there is a lack of fit in the model.
Small Chi-squared values (with larger p-value closer to 1) indicate a good logistic regression
model fit.

3 Related Work

The objective of the literature review is to identify which machine learning methods are used
for readmission prediction and to assess which of these models have better performance, ex-
pressed in AUROC. The literature was retrieved from Google Scholar search engine because
of its extensive coverage of scientific publications. In order to collect relevant research pa-
pers, several keywords were used, namely: predicting (unplanned) readmission, predict ICU
readmission, predictive modelling for readmission, pediatric hospital readmission, neonates
readmission, neonates readmission to ICU, etc. To determine if a paper is suitable to be
included in the literature review, a few criteria have been established. First of all, the search
was limited to only publications written in English. Secondly, papers should have evaluated
the ability of some predictive models in the task of readmission prediction. Papers that do
not include any machine learning techniques are excluded. Thirdly, the studies were not
limited by a diagnosis within their medical population. And lastly, there was no strict time
frame, however, the intention was to look for recent scientific papers, considering that they
have investigated top-notch data mining methods. Therefore, the reviewed literature dates
from the year 2015 and on.

The literature review is presented in the upcoming sections of this chapter. First, an
overview of the methods used in recent research on readmission prediction in the case of
adults patients is presented. Then literature with a focus on pediatric patients is reviewed,
followed by a conclusion on the findings from the related work.
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3.1 Readmission prediction of adult patients

McWilliams et al. [3] aimed to classify the patients that appear physiologically fit to be safely
discharged from an Intensive Care Unit (ICU) by evaluating the risk of readmission. They
used both Random Forest (RF) and a Logistic Classifier (LC) to compare them upon the
performance of a nurse-led discharge (NLD) criteria for a safe discharge proposed by Knight
[31]. The NLD criteria consist of 15 constraints on various routinely collected laboratory
results and vital signs of patients in high dependency units (Appx. F). Knight states that if
a patient meets all the constraints for at least 4 hours, then they may be safely discharged
by a nurse. McWilliams et al. studied two historical cohorts - GICU at The Bristol Royal
Infirmary and MIMIC-III to investigate whether the data mining algorithms are better
estimators for safe discharge than the NLD criteria. By using two cohorts they increased
the volume of the data available for training and were able to study the generalization
of their results between different patient populations. Both Random Forest and Logistic
Classifier showed improved performance compared to the NLD criteria (AUROC = 0.82)
for each of the datasets. However, the RF (AUROC = 0.89) outperformed the LC (AUROC
= 0.87) on the MIMIC-III dataset, while on the GICU cohort, both RF (AUROC = 0.87)
and LC (AUROC = 0.88) produced similar results. Those results prove that depending on
the characteristics of the dataset, different models will perform better.

Rojas et al. [32] investigated the prediction of readmission to an ICU. They used a
Gradient-Boosted Machine (GBM) model trained and validated on an internal dataset from
an academic hospital in the United States. Moreover, external validation of the model has
been performed on the MIMIC-III dataset. The results were compared with the Stability
and Workload Index for Transfer (SWIFT) score and the Modified Early Warning Score
(MEWS). The SWIFT score was developed by Gajic et al. [33] to predict unplanned read-
mission; the MEWS was proposed by Stenhouse et al. [34] to identify patients at risk of
clinical deterioration and in need of a higher level of care. The GBM showed significantly
better performance (AUROC = 0.76) than SWIFT (AUROC = 0.65) and MEWS (AU-
ROC = 0.58). Those results were yielded from the internal dataset that Rojas et al. used in
their study, however, they reported similar accuracy improvements over SWIFT and MEWS
within the MIMIC-III cohort.

Because of its promising results, a variation of Gradient-Boosted Machine models can
be seen more often in recent studies related to the prediction of safe discharge and/or read-
mission. For instance, Pakbin et al. [8] employed Gradient-Boosted model (XGBoost) and
Logistic Regression model trained on MIMIC-III dataset to predict the risk of adult patients
being readmitted to ICU in short-term – within 72 hours after discharge and longer-term –
within 30 days after discharge. For the XGBoost, the mean value of AUROC for 72h and
30-day ICU readmission were 0.76 and 0.75, respectively, whereas the Logistic Regression
achieved slightly lower AUROC values - 0.74 and 0.73. The results show no significant
difference between the performance of XGBoost and Logistic Regression. In a very similar
manner, Nguyen, Paris and Parrot [4] also used XGBoost method to predict ICU readmis-
sion at different time points (3, 7, 15, 30-days) after discharge. The model was trained
and evaluated on OMOP-CDM version of the freely accessible MIMIC-III dataset. The
results were evaluated with AUROC and compared to the results of two other studies. For
the 3-days, 7-days, 15-days and 30-days readmission cases, the AUROC mean values were
of 0.802, 0.809, 0.803, and 0.795, respectively. The researchers reported that their results
outperformed compatible existing solutions.

Several studies compared the performance of different data mining techniques on the task
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of predicting patient readmission ([35], [7], [9]). A common observation was that there ex-
ists some trade-off between accuracy and model interpretation. Models that yield better
accuracy are often not easily interpreted and the other way around, models that are easy to
interpret typically have worse accuracy as discussed by Caruana et al. [35]. Futoma et al.
[7] compared variations of Logistic Regression (Maximum-likelihood LR, Penalized LR and
multi-step LR), Random Forest, Support Vector Machine, and Stochastic Gradient Descent
to conclude that non of the models shows significant superiority in performance. Further-
more, the authors compared Deep Neural Networks with the Penalised Logistic Regression
models for predicting early hospital readmissions across various disease cohorts. Their re-
sults show that the Deep Neural Networks (AUC mean: 0.735) outperformed the Penalised
Logistic Regressions (AUC mean: 0.715) with statistical significance, though training of the
DNN models was complex due to the large number of parameters and lack of interpretabil-
ity. Ben-Assuli and Padman [9], compared five classifiers: Logistic Regression (LR), Boosted
Decision Trees (BDTs), Support Vector Machine (SVM), Bayes Point Machine (BPM), and
Two-Class Neural Network (TCNN). They applied these methods to predict 30-day read-
mission risk for patients who stayed in the emergency department. The obtained results
showed that each of the five methods exhibited good performance for predicting the read-
mission within 30 days, however, the Boosted Decision Trees had the highest AUROC score
- 0.925, followed by the LR (0.912), BPM (0.912), TCNN (0.878), and SVM (0.846).

3.2 Readmission prediction of pediatric patients

A great number of the reviewed papers have excluded patients below 16 or 18 years old from
their research – [4], [3], [8], [36], [37]. This decision is motivated by the assumption that
factors contributing to readmission prediction might be different within the younger age
group. Other scientific works, focused on the pediatric population, also confirm that “the
underlying illness in children and reasons that children are critically ill is quite different in
comparison with adults” [38]. Moreover, the identification of a serious illness in children is
more difficult as children’s immunity can compensate well and show late but sudden dete-
rioration. Therefore, the analysis of the medical conditions of adults cannot be extended
directly into young patients [39].

The population of pediatric patients has received little attention in the task of hospital
readmission prediction. Studies often focus on identifying factors associated with readmis-
sion for pediatric patients [40], [38], [41], [42], rather than investigating predictive modelling
approaches. Only recently studies have worked on predicting pediatric patients readmission
to the emergency department [43], [44], [45]. Artetxe et al. [44] have tested a novel en-
semble classifier architecture, Anticipative Hybrid Extreme Rotation Forest (AHERF), over
balanced samples of data gathered at emergency services. The design of AHERF is moti-
vated by the no-free lunch theorems, which state that there is no optimal machine learning
approach for all instances of classification and regression problems. Therefore, AHERF es-
timates which kinds of classification architectures are better suited for the problem at hand
and the best-fitted classifiers are used to build the model. Artetxe et al. reported that their
AHERF (78.57%) shows superior performance, expressed in accuracy, when compared over
Support Vector Machine (59%) and Random Forest (72.72%), however, these results are not
definitive because they obviate the strong imbalance of the dataset.

Bergese et al. [43] compared the effectiveness of Artificial Neural Network (ANN) and
Decision Trees (DT) on the task of predicting pediatric return visits to the emergency
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department within 120 hours after discharge. The models achieved high accuracy, 81% for
DT and 91.3% for ANN, but also performed superbly on other measures such as sensitivity
and specificity. When comparing both DT and ANN, Bergese et al. concluded that DT is
a better model for predicting readmissions in a pediatric setting as it outperforms ANN in
regard to the sensitivity measure – 79.8% versus 6.9%, respectively.

Wolff et al. [45] reported the following classification results achieved with Support Vector
Machines (SVM) (AUROC = 0.6), Multilayer Perceptron (MLP) (AUROC = 0.64), and
Naive Bayes (NB) (AUROC = 0.65) approaches after data preprocessing for correction of
class imbalance. They carried on repeated cross-validation with decreasing number of folders
to assess performance and sensitivity to the effect of class imbalance. The data was class-
balanced using SMOTE up-sampling procedure with five-nearest neighbour on the minority
class samples until the number of samples in each class was the same. Wolff et al. have
reported large and significant increase in the recall for the positive class due to the class
imbalance correction – recall [%] of SVM: 0.95 before SMOTE, 45.63 after SMOTE; MLP:
27.60 before SMOTE, 96.29 after SMOTE; NB: 14.81 before SMOTE, 70.8 after SMOTE.

Jovanovic et al. [46] focused not only on developing an accurate predictive model, but
also an interpretable one. Their approach involves the integration of domain knowledge (in
the form of ICD-9-CM1 taxonomy) and a data-driven, sparse predictive algorithm – Tree-
Lasso Logistic Regression (AUROC = 0.779). This approach was compared with traditional
Lasso Logistic Regression (AUROC = 0.783). They reported that the Tree-Lasso Logistic
Regression model with the ICD-hierarchy is more interpretable than the traditional Lasso
model, without a significant loss in performance.

3.3 Conclusion

Various classification models have already been tested in predicting hospital readmission for
adult patients. The approaches used in the reviewed studies cannot be directly compared due
to the particular characteristics of each research. However, according to the results reported
by studies where different models have been compared under similar conditions, generally,
more complex models outperform traditional ones [4], [7]. For example, Futoma et al. [7]
reported that Deep Neural Networks (AUC mean: 0.735) outperform Penalised Logistic
Regression (AUC mean: 0.715) with statistical significance. Ben-Assuli and Padman [9]
also compared multiple classifiers, where Gradient Boosted Decision Tree yields the highest
AUROC score - 0.925. Generally, the Gradient Boosted Decision Tree models have proven
to be successful in predicting readmission of adult patients (AUROC = 0.76 [32]; AUROC
= 0.802 [4]; AUROC = 0.76 [8]). As a traditional statistical approach, Logistic Regression
has also been widely used and has shown good results (AUROC = 0.912 [9]; AUROC =
0.74 [8]). Moreover, Logistic Regression is known for its straightforward interpretability [47],
which, as already discussed, is of great importance in medical applications. On the contrary,
more complex models, such as Neural Networks, are hard to interpret but often outperform
simpler ones. Therefore, both complex and simple algorithms should be considered when
choosing models of interest.

Despite the successful application of machine learning models in predicting readmission
of adult patients, the possibilities in the neonatal domain have been left unexplored. For
example, as already concluded, the Gradient Boosted Models have proven to be successful in
predicting hospital readmission for adult patients, but they have not been previously tested
for a pediatric, let alone neonatal, patient population. Therefore, this work can contribute

1International Classification of Diseases 9th—revision Clinical Modification
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by conducting a comparative study to assess the effectiveness of GBM, among NN and LR,
in the domain of neonatal readmission prediction.
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4 Methodology

In this section, the methodology used to address the research objectives of this study is
presented. The diagram in Figure 4 provides a general understanding of the stages in the
methodology.

Figure 4: Methodology Diagram

4.1 Dataset acquiring

The first main stage of the methodology is to get access to the PIC dataset. The data is
freely accessible upon completing a training course on research with human subjects and
signing a data use agreement mandating the responsible handling of the data.

4.2 Data preparation

Several preparation steps are needed before the data is suitable for use in building a predic-
tive model. Details on the data preparation are described in Chapter 5.

4.3 Modelling

This phase consists of tuning the machine learning algorithms that were selected in advance
based on literature, setting up experiments and the training and testing of the models.
Chapter 6 explains the steps taken during this phase.

4.4 Results analysis

The performance of the algorithms and the results from the experiments are analysed during
this phase. AUROC score was selected as a metric to evaluate the models. The higher this
metric becomes, a model can better discriminate between the two classes. Descriptions of
this and related performance metrics can be found in Section 2.6. Further explanation of
the evaluation of the models is available in Section 6.2.
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5 Dataset Preparation

5.1 Data Extraction

The data available for this study is the Pediatric-specific Intensive Care (PIC) database (see
Section 2.2). The data is stored in a relational structure, meaning that multiple tables, each with
a different number of columns and rows, are linked by a key id. The large inter-related tables are
separated for clarity into categories such as PATIENTS, ICUSTAYS, CHARTEVENTS, etc (see
Appx. C). Before going any further, it is necessary to transform this structure into a new one,
where the relevant information from each table is extracted and then combined within one data
frame. As PIC is originally stored in SQL database system, PostgreSQL queries were used to
adjust and obtain the relevant subsets of data from the PIC database, which were then further
preprocessed in Python. The next section goes into detail about the features extraction.

5.2 Feature Extraction

Age - in days Patient’s age is not a given attribute in the PIC dataset, however the date of
birth for each patient is available. The feature age is therefore extracted by finding the difference
between patient’s date of birth and the date of admission to an ICU. The age is noted in days
because the interest is on neonatal patients, which are up to 30 days old. Data rows with patients
older than that are filtered out.

Figure 5: Age Density

Chartevents Chartevents are all the charted data available for a patient. The electronic chart
displays patients’ routine vital signs and any additional information: demographic data, input
and output, and so on2. Chartevent measures appear as dynamic data, meaning that a patient
can have multiple measures of a single event over the ICU stay. Aggregation was performed
to extract the minimum, maximum and mean values of the chartevents measures of interest.
Moreover, a pre-filtering of the values was necessary due to typographical errors (Table 4).

2PIC documents. [online] Available at: http://pic-doc.nbscn.org/#/pmimictables/chartevents [Accessed
3 March 2021].
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Respiratory rate 10 <value <100
Heart rate 60 <value <300
Temperature 20 <value <40

Table 4: Filtering of the values for respiratory rate, heart rate, and temperature

Initially, the most commonly measured chart events were extracted, namely: Temperature,
Respiratory rate, Heart rate, Systolic blood pressure, Diastolic blood pressure, and Urine. The
reason behind extracting the most commonly measured events was to avoid features with a lot of
missing values. The Weight measure was also derived as it is an important feature for the neonatal
patient population and it is relevant for the preterm conditions. Out of these features, Systolic
blood pressure, Diastolic blood pressure, and Urine were dropped due to a high percentage (over
30%) of missing values. For the remaining chartevents measures, the observations where all or
multiple features were missing were dropped. Additionally, since the Weight also had a great
amount of missing values (over 40%), a decision was made to extract two boolean features out
of it - Low birth weight and Very low birth weight. Table 5 shows the value ranges for VLBW
and LBW, validated by literature – [48] and the distribution of the weight in preterm newborns,
shown in Figure 6.

VLBW 0.5 kg <weight max <1.5 kg
LBW 1.5 kg <weight max <2.5 kg

Table 5: The value ranges for VLBW (Very low birth weight) and LBW (Low birth weight)

Figure 6: Distribution of the weight in preterm newborns

’

ICD10 codes ICD is a classification system for diagnosis coding, which clusters a wide variety
of signs, symptoms, abnormal findings, complaints, social circumstances, and external causes of
injury or disease. Due to the high number of unique ICD10 codes, they were reduced into their
more general categories, extracted from the World Health Organization website3 (see Appx. A).
The ICD10 categories were further filtered and only the top 2 categories were kept. As we can
see from Figure 7, the top ICD10 Categories are P00-P96 and Q00-Q99 with highest numbers of
records belonging to the readmission class.

3https://icd.who.int/browse10/2010/en
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Figure 7: Top ICD10 Categories

’

Diagnoses The diagnoses column contains around 241 unique values. In order to enrich the
dataset, a few features were extracted from the most common diagnoses (see Figure 8). Those
most common diagnoses and the features extracted from them are: Preterm, Birth asphyxia,
Congenital malformation of heart and Congenital condition in general. A search for the specific
diagnoses therms was performed in order to extract all the instances with the given diagnosis
(Appx. B).

Dependent variable - Readmission The dependent variable here is the readmission and
therefore a readmission label column should be defined. The readmission labels quantify whether
the patient was readmitted within 30 days after being discharged from the ICU (coded as 1) or
not (coded as 0). To create the labels, it is needed to identify the patients who returned to
the ICUs. The first step is to extract the next ICU admission time, if it exists. Once the next
ICU admission time is available, the days-until-next-admission are calculated and only the ones
that are within 30 days are coded as readmissions (days next icuadm <= 30). Records, where
the patient died during their index ICU stay, are removed. However, if a death occurs during a
readmission, the precedent ICU stay is labeled as a readmission.
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Figure 8: Diagnosis

(a) Days until the next ICU admission (b) Days until the next ICU admission (30 days)

Figure 9: A bar chart of the days until the next ICU admission
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Final data The final data consists of 27 features, presented in Table 6, and a total of 2640
records, of which only 129 are readmissions.

gender male categorical

agedays numerical

han ethnic categorical

premiums insurance categorical

medical insurance categorical

generalcard insurance categorical

NICU careunit categorical

CICU careunit categorical

SICU careunit categorical

los numerical

icdP00-P96 categorical

icdQ00-Q99 categorical

preterm categorical

congenital condition categorical

birth asphyxia categorical

heart malformation categorical

VLBW categorical

LBW categorical

temp mean numerical

temp max numerical

temp min numerical

resp rate mean numerical

resp rate max numerical

resp rate min numerical

heart rate mean numerical

heart rate max numerical

heart rate min numerical

readmission categorical

Table 6: All selected data features
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5.3 Data Preprocessing

The selected features are a combination of numerical and categorical features, which requires
preprocessing before being fed into a classifier. All numerical features were standardized by
Z-score Normalization so that each feature’s distribution has a mean value of 0 and a stan-
dard deviation of 1. The categorical features were transformed into one-hot encoded vectors.
Furthermore, there are missing values in the features extracted from the chartevents. It is
unknown if the values are missing simply due to the fact that the clinical measures are not
routinely performed on all patients or due to other reason. To handle the missing values,
besides deletion, K-Nearest Neighbour (KNN) imputation technique as proposed by [3] was
used. As the name suggests, this imputation technique utilizes the k-Nearest Neighbours
method to replace the missing values. KNN as imputation method is less prone to bias
than other sampling methods such as the mean imputation. Moreover, KNN is widely used
because of its efficiency [49]. In this study, the number of neighboring samples to use for im-
putation was decided to be k = 11; moreover, the distance measure is weighed proportional
to the distance between instances (rows). A few experiments with different values for k, the
number of nearest neighbours, were carried out on small section of the data. Eventually, k
= 11 was chosen as it scored the smallest RMSE (Root Mean Square Error) with default
support vector machine model, which was chosen randomly.

Another critical issue during classification is the class imbalance of the data. There are
different ways to deal with this problem. One way is to adjust the weights of each class dur-
ing the learning process; another way is to preprocess the data so that the balance between
the classes is restored. It is subjective, which one of these techniques is going to yield better
results, therefore, in this study, both methods are tested in order to investigate weather an
additional step for class balancing is necessary during the data preprocessing.

5.4 Data Visualization

In this section, some visualizations of the ready-to-use data are going to be presented. This
is to give a better understanding of the data.

Figure 10: A scatter matrix of the heart rate features

Figure 11 shows a scatter matrix of selected numerical features after data preprocessing.
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Scatter plots are useful for finding and interpreting trends in the data. Each square shows
the scatter plot corresponding to the two features defined by the row and column. To reduce
the size of the scatter plot and make it easy to read, some of the aggregated values for the
vital signs are excluded and only the mean value is included in the plot. It is expected that
the min, mean, and max values of a single parameter (e.g. heart rate, see Figure 10) are
having a strong correlation. However, as we can see from Figure 11, the data is not clustered
along an obvious line, meaning that the features have a weak correlation with each other.

Figure 11: A scatter matrix of selected numerical features after data preprocessing
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6 Models Design

Once the data is ready, the models’ design phase can take place. Several machine learning
approaches have been selected for predictive modeling in this study. Namely Logistic Re-
gression, Gradient Boosted Decision Trees, and Neural Network. These models have been
reported to have good performance (expressed in AUROC score) in the literature about
readmission prediction for adult patients but have not been used in readmission prediction
for neonatal patients before (see Section 3.3). The application of deep learning models is
discarded as the available data is too small for this purpose. The models’ implementation
phase involves hyperparameters tuning, evaluation and comparison of models performance,
further introduced in the follow-up subsections of this chapter. Additionally, an experiment
involving a class balancing technique is conducted to see if an additional data preprocessing
step is necessary. In the end, I look at the features that have the biggest impact on the
predictions by the best performing model.

6.1 Hyperparameters Tuning

Figure 12: The illustration of the Cross-validation Grid Search used in this study

Hyperparameters are specified parameters that are tuned to control a machine learning
algorithm’s behaviour. These values are usually determined before the training process. The
hyperparameters are crucial to the performance, speed, and quality of the machine learning
models. Hence, they should be optimized. The search for the best hyperparameter values
for the Logistic Regression and Gradient Boosted Trees models is done through Nested
Cross-Validation and Grid Search. In K-fold Cross-Validation, the dataset is divided into k
equal-sized partitions, where one of the k partitions is used as the test/validation set and
the other k − 1 partitions are put together to form a training set. This step is repeated k
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times as each time a different partition is used as a test set. This significantly reduces bias
as all the data is used for fitting and also reduces variance as all that data is being validated
on.

Due to the unbalanced nature of the data in this study, Stratified K-fold was used to
preserve the class ratio throughout the different folds. Nested Cross-Validation contains an
outer loop for error estimation, where k = 6, and inner loop for parameter tuning, where k =
4 (see Figure 12). Grid Search is performed on the inner loop of the Nested Cross-Validation.
Grid Search is a traditional method for hyperparameter optimization which search through
a manually specified subset of the hyperparameter space of a learning algorithm. The top-
performing set of parameters is selected based on the results on the validation set, with
AUROC as the scoring method.

6.1.1 Logistic Regression

The first model considered is Logistic Regression - the most popular method in prior re-
search that has been implemented in many readmission prediction studies. To decide on
optimization, regularization and regularization strength, tuning experiments are done, as
explained in the section above. See Table 7.

GridSearchCV for LogisticRegression
penalty L1, L2, none
solver lbfgs, liblinear, saga, newton-cg
class weight balanced
C 0.001, 0.01, 0.1, 1

Table 7: Lists of parameter settings to try as values for the Logistic Regression model

6.1.2 Gradient Boosted Decision Trees

The second model used in this study is Gradient Boosted Decision Trees. This technique
has shown to be one of the best-calibrated machine learning methods for predicting hospital
readmission. The optimal number of splits for each individual tree, the total number of
trees, and learning rate, etc. were determined through Grid Search as explained at the
beginning of this section. Note that the final lists of parameter settings for the Grid Search
(Table 8) were decided after several initial experiments focused on defining the learning rate
and the number of estimators, again based on AUROC value (see Appx. D).

GridSearchCV for Gradient Boosted Decision Trees
learning rate 0.01, 0.001
n estimators 1550, 1750
criterion ’friedman mse’, ’mse’
max depth 3, 4
max leaf nodes None, 3, 4

Table 8: Lists of parameter settings to try as values for the GBDT model
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6.1.3 Neural Network

Hyperparameters related to the Neural Network structure include the number of hidden
layers, dropout regularisation, network weight initialisation, activation function, learning
rate, number of epochs, and batch size. See Table 9. Performing a Cross-validated Grid
Search over all configuration choices is too computationally expensive. Hence, instead of
the Grid Search, the hyperparameters of the Neural Network model were tuned manually.
Furthermore, because the data is too small, instead of implementing cross-validation, the
data was split and 20% of it was dedicated for validation. Some of the components of the
network are fixed, such as the activation function, the optimizer and the loss function.

Hyperparameters of Neural Network
# of hidden layers 1, 2, 3
neurons 16, 32
activation function ReLU, Sigmoid (for output)
dropout 0.3, 0.4
weight for positive class 1, 1.5, 2 divided by # of positive samples in training dataset
weight for negative class 1/# of negative samples in training dataset
optimizer Root Mean Square Propagation
loss function binary cross-entropy

epochs
EarlyStopping
epochs: 5000
patience: 500

Table 9: Lists of parameter settings to try as values for the Neural Network model

6.2 Evaluation Metrics

Since this is a binary classification problem, it is convenient to use the Area Under The
Receiver-operating Characteristic Curve (AUROC) to compare the performance of the se-
lected classifiers. Even though AUROC scores have been frequently used as the main eval-
uation metric in many of the reviewed literature, it is also important to check the actual
ROC curves because even when two models have the same AUCROC values, their ROC
curves can be quite different. Therefore in this study, both the AUROC scores and the
curves themselves are analysed. To get more insight into what types of errors the models
made, additional performance metrics are taken into account. For this study, it is desired to
minimize the false negatives (FN) - incorrectly classified as not readmitted, and maximize
the true positives (TP) and true negatives (TN). Therefore, the Recall and Precision values
are included in the evaluation. Furthermore, to be able to track the cost of the predic-
tion models with regards to the false negative predictions, F-score is also included in the
evaluation.

6.3 Class Balancing

When one class is the underrepresented minority class in the dataset, as is the case in this
study, there are two common preprocessing methods that can be used to restore the balance
of the classes - oversampling and undersampling. As the names suggest, undersampling
removes instances from the majority class until a balance between the classes is achieved.
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Conversely, oversampling adds (synthetic) instances to the minority class until restoring
balance. Generally, oversampling is preferable as undersampling can result in the loss of
important data. Moreover, undersampling is suggested when the amount of data available
is larger than ideal. Since the available data for this study is rather limited, an oversampling
technique is chosen to investigate the effects that class balancing have in predicting cases
of readmission. The method used in this study is ADASYN. It finds the k-nearest neigh-
bours based on Euclidean distance for each sample from the minority class and it generates
synthetic samples based on the harder to learn examples. A few experiments with different
values for k, the number of nearest neighbours, were carried out on small section of the
data. Eventually, k = 3 was chosen as it scored the smallest RMSE (Root Mean Square
Error) with default support vector machine model, which was chosen randomly. Once the
oversampling process is done, the next step is to retrain the already optimized models, but
this time with the balanced data. This is done to investigate whether the class balancing
technique is a necessary step in neonatal readmission prediction.
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7 Results

7.1 Results from hyperparameter tuning

7.1.1 Logistic Regression

Outer
Fold

Outer Fold
AUC

Best AUC
from GridSearch

Best
Parameters

1 0.670 0.654
{’C’: 0.01, ’class weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’newton-cg’}

2 0.685 0.653
{’C’: 0.01, ’class weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’saga’}

3 0.566 0.663
{’C’: 0.01, ’class weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’lbfgs’}

4 0.674 0.633
{’C’: 0.1, ’class weight’: ’balanced’,
’penalty’: ’l1’, ’solver’: ’liblinear’}

5 0.674 0.650
{’C’: 0.001, ’class weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’liblinear’}

6 0.650 0.652
{’C’: 0.001, ’class weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’liblinear’}

Table 10: Grid Search results for the Logistic Regression

The results from the Grid Search for the Logistic Regression model show relatively con-
sistent best scores for AUROC (σ = 0.009). The results for best parameters show a few
differences for the regularization strength values (C) and the solver algorithm. When vali-
dated on the outer fold, the best AUC score is 0.685 in the second fold with best parameters
being: C: 0.01, class weight: balanced, penalty: l2, solver: saga. However, after further
experiments with optimization algorithms, it was decided to use the liblinear solver as it
yielded slightly better TP and TN values.

Hence, the Logistic Regression model used in the further experiments in this study is
with the following parameters: C: 0.01, class weight: balanced, penalty: l2, solver: liblinear.
See results from the 6-fold stratified cross-validation in Figure 13.

(a) ROC curves from 6-fold cross-validation (b) Confusion Matrix

Figure 13: LR with optimized hyperparameters
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7.1.2 Gradient Boosted Decision Trees

Outer
Fold

Outer Fold
AUC

Best AUC
from GridSearch

Best
Parameters

1 0.635 0.618
{’criterion’: ’friedman mse’, ’learning rate’: 0.001,
’max depth’: 3, max leaf nodes’: None, ’n estimators’: 1750}

2 0.683 0.611
{’criterion’: ’friedman mse’, ’learning rate’: 0.001,
’max depth’: 3, ’max leaf nodes’: None, ’n estimators’: 1550}

3 0.483 0.634
{’criterion’: ’friedman mse’, ’learning rate’: 0.01,
’max depth’: 3, ’max leaf nodes’: 3, ’n estimators’: 1550}

4 0.710 0.593
{’criterion’: ’mse’, ’learning rate’: 0.001,
’max depth’: 3, ’max leaf nodes’: None, ’n estimators’: 1750}

5 0.612 0.645
{’criterion’: ’friedman mse’, ’learning rate’: 0.001,
’max depth’: 3, ’max leaf nodes’: None, ’n estimators’: 1550}

6 0.673 0.631
{’criterion’: ’mse’, ’learning rate’: 0.001,
’max depth’: 3, ’max leaf nodes’: None, ’n estimators’: 1750}

Table 11: Grid Search results for the Gradient Boosted Decision Trees

The results from the Grid Search for the GBDT are presented in Table 11. As it can
be seen, the AUROC scores from the Grid Search and the outer folds fluctuate across the
6 folds. For example, in the 3rd and 4th fold, there are significant differences between
the outer fold AUC scores and the Grid Search AUC scores, which indicates that the data
reserved for validation in the outer folds is not a good representation of the data used while
searching for the best parameters. Therefore to decide on the model parameters, the most
common best parameters were selected, rather than the ones associated with the highest
AUROC in the outer fold.

As a result, the GBDT model used in the further experiments in this study is with
the following parameters: criterion: friedman mse, learning rate: 0.001, max depth: 3,
max leaf nodes: None, n estimators: 1750. See results from the 6-fold stratified cross-
validation in Figure 14.

(a) ROC curves from 6-fold cross-validation (b) Confusion Matrix

Figure 14: GBDT with optimized hyperparameters
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7.1.3 Neural Network

Unlike the tuning of the LR and GBDT models, the Neural Network model was tuned
manually. A variety of architectures, ranging from one to three hidden layers of nodes with
varying the sizes of layers were tested (see Appx. E). Ultimately, found that using simply
one hidden layer performed better than two or three layers.

A hidden layer has perceptrons/neurons, in this case, the hidden layer consists of 16
perceptrons. Every perceptron unit takes input from the input layer, multiplies it and adds
it to initially random values. Then the resulting output has to be activated by an activation
function. In this case, a ReLU activation function is used on the hidden layer. The output
from the hidden layer serves as an input to the last layer of the neural network - the output
layer. There the outputs from the hidden layer are multiplied and added to initial random
values. Then an activation function takes care of calculating the prediction. In this case, a
Sigmoid activation function is used.

The learning process consists of a loss and an optimizer function. These functions de-
fine how the learning process is progressing. Essentially, the optimizer updates the model
parameters - weight and bias and aims to reach the global minima where the loss function
attains the least possible value. The binary cross-entropy is used as a loss function and
RMSprop (Root Mean Square Propagation) is used as an optimizer. RMSProp uses an
adaptive learning rate instead of treating the learning rate as a hyperparameter. The learn-
ing rate for each trainable model parameter is iteratively updated as RMSProp maintains
slower learning in the vertical direction (bias) and faster learning in the horizontal direction
(weight). This boosts the speed and the accuracy of the model.

Dropout is used as a regularization technique. The idea behind it is to reduce the
interconnecting neurons within a neural network by dropping them out randomly. While
the neurons are trained they can become co-dependent on each other, meaning that their
weights can affect how the weights of other neurons get optimized. Dropping out neurons
at random prevents this co-dependency between neurons. The dropping out happens by
attaching Bernoulli random variables to the neuron’s output. At each epoch, each neuron
has a chance of being dropped that is determined by a dropout rate. It is highly impossible
that the same neurons are excluded at any two training steps, meaning that a variety of
different networks are trained at each step. This simulates an ensemble of neural networks,
which is known to reduce overfitting, but it is highly computationally expensive. Two values
for the dropout were tested - 0.3 and 0.4. At the end, dropout of 0.3 reported better results.

(a) ROC curves from 6-fold cross-validation (b) Confusion Matrix

Figure 15: NN with optimized architecture
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7.2 Comparing the selected models

(a) noADASYN (b) ADASYN

Figure 16: Average ROCs of LR, GBDT, and NN in 6-fold RCV (noADASYN, ADASYN)

(a) LR (b) GBDT (c) NN

Figure 17: Confusion Matrices for LR, GBDT, and NN in 6-fold RCV (noADASYN)

(a) LR (b) GBDT (c) NN

Figure 18: Confusion Matrices for LR, GBDT, and NN in 6-fold RCV (ADASYN)
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Following the most common evaluation metric for predicting readmission, in this study,
AUROC is used as a quantitative means of comparing the predictive performance among
the classifiers. In general, an AUC of 0.5 suggests no class separation capacity, 0.7 to 0.8
is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered
outstanding. By observing the AUROC plots, for both - before and after class imbalance
correction (Figure 16), it is apparent that the only model with acceptable performance is
the Neural Network with a score of 0.71. This means that there is a 71% chance that the
model will be able to distinguish between the readmission and no-readmission classes. To
test whether the AUROC of the Neural Network is significantly higher than the AUCs of
the other methods, a p-value from one-sided t-test statistics is used. The reported p-value,
equal to 0.25 (p > 0.05), shows that the AUROC scores of LR and GBDT, with or without
ADASYN, are statistically indistinguishable from the AUROC score for NN. Comparing the
AUROC scores with respect to class imbalance correction shows that applying ADASYN
actually decreases the performance at least in the case of Logistic Regression and Gradient
Boosted Decision Trees models. No difference in the values of AUROC is observed for
Neural Network with or without ADASYN class imbalance correction. However, AUROC
scores are not enough for a fair comparison. Other performance measures, with the default
decision threshold which is 0.5, are derived from the confusion matrices. These are Recall,
Precision, Negative Predictive Value, and F1-score (refer to Section 2.6 for an overview of
the mentioned metrics). Note that these scores are all subject to change once the decision
threshold is adjusted. One can do that by taking the ROC curves as a reference. All
evaluation measures for the methods with and without class imbalance correction are shown
in Table 12.

Model Data Sampling AUROC Recall Precision - PPV (%) NPV (%) F1-score

LR
noADASYN 0.67 0.6 8.78% 97.06% 0.15

ADASYN 0.62 0.41 7.42% 96.06% 0.13

GBDT
noADASYN 0.65 0 0 95.04% 0

ADASYN 0.6 0.34 7.19% 95.82% 0.12

NN
noADASYN 0.71 0.81 6.70% 97.77% 0.12

ADASYN 0.71 0.59 10.12% 97.20% 0.17

Table 12: Performance measures of LR, GBDT, and NN before and after oversampling correction of class
imbalance with ADASYN

Now that more measures are included, it can be confirmed that applying ADASYN
does not improve the performance of Logistic Regression. In fact, a decline in scores can
be observed in all of the evaluation measures. While there is a decrease in the AUROC
score of GBDT after applying ADASYN, an increase in the Recall, Precision, NPV, and
F1-score are observed. This is due to the fact that the model failed to make any true positive
predictions before class imbalance correction was applied (Figure 17 (b)). As a result, no
recall, precision or F1-score could be derived, leaving them with values of 0 - hence the
improvement observed after ADASYN sampling. Despite, Gradient Boosted Decision Tree,
with or without ADASYN, is still the worst-performing of all methods used in this study. In
the case of Neural Network, the results pre and after class imbalance correction are further
analysed.
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An ideal score for the Recall is 1.0, which means that 100% of the samples that should
have been labelled as a positive class were labelled correctly. In the task of readmission pre-
diction, having a high score for the recall measure is very important as we want to correctly
classify readmissions and minimize the instances of readmissions incorrectly classified as
no-readmissions. The results reported in Table 12 show that NN with no ADASYN imbal-
ance correction achieves the greatest recall score of 0.81, meaning that 81% of readmissions
were correctly classified, which can also be observed from the Confusion Matrix in Figure
17 (c). However, this score says nothing about how many other samples were also labelled
as readmissions, but should not have been. The precision score reflects that information.
Again, the Neural Network, this time, with ADASYN imbalance correction, scores the best
Precision among the other methods - 10.12%. This means that the chance that a positive
classification being indeed correct is only 10.12%. This low value is due to the highly im-
balanced classes. For example, the chance of a negative classification being indeed correct
is above 95% among all methods (see NPV at Table 12). To find harmony between Recall
and Precision, F-score is observed. Based on the F1-score (0.17) and F2-score(0.30), the
overall best model is the Neural Network with ADASYN.

7.3 Features impact

(a) a density scatter plot of SHAP values (b) a bar plot of the average impact per feature

Figure 19: Features impact on Neural Network (with ADASYN) output

To identify how much impact each model has on the Neural Network model output,
Shapley (Shap) values were calculated. A Shapley value is the average marginal contribution
of a feature value over all possible combinations of the other features. Shap values are the
most useful for understanding the positive/negative effect of each feature on the model’s
prediction. The proper interpretation of the Shapley value is: “Given the current set of

41



feature values, the contribution of a feature value to the difference between the actual
prediction and the mean prediction is the estimated Shapley value.”4

Figure 19 (a) shows a density scatter plot of the SHAP values. Each row corresponds to a
feature and each dot corresponds to a training sample. The color indicates how changes in
the value of a feature affect the change in risk of readmission. Red represents high feature
value, while blue represents low feature value. All the features are sorted by the sum of the
Shap value magnitudes actress all training samples. We can see that the primary indicator
of readmission is the lack of conditions originating in the perinatal period (icdP00-P96 ).
The next most powerful indicator of readmission is the age of the newborn - the older, the
higher the risk. Next is the respiratory rate, heart rate, length of stay, and so on.

4Molnar, C., 2021. 5.9 Shapley Values — Interpretable Machine Learning. [online] Available at: https:

//christophm.github.io/interpretable-ml-book/shapley.html [Accessed 3 March 2021].
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8 Discussion

While readmission prediction has been extensively studied in adult patients, little atten-
tion is paid to the readmission of pediatric patients, let alone neonatal patients. Studies
have attempted to simply explain the statistical connections between different variables and
the readmission outcome for neonates. However, they have not extended their analysis to
measure predictive performance for readmission. This study extends on previous studies by
implementing three distinct prediction models to predict readmission of neonatal patients
to Intensive Care Units. Due to the heavy class imbalance of the data, an experiment with
Adaptive Synthetic sampling approach was also conducted to further improve the prediction.
In this chapter, the methods, and the results and their meaning are discussed and reflected
on. Future work and limitations are integrated into the discussion of relevant parts.

8.1 Discussion on data preprocessing

Medical databases are particularly susceptible to missing data. Often researchers address
missing data by including only complete cases – ones that have no missing data in most of the
features needed for the analysis. However, even then it is not possible to completely reduce
the amount of missing data to zero. In this study, the features that have missing data are
the vital signs, such as temperature, respiratory rate, oxygen saturation, etc. Missingness
in such type of features is expected since not all patients undergo the same examination in
the ICUs. Because some of the variables have a large portion of missing values, features
were selected based on their completeness. Features that have above 30% missing data
were excluded from the analysis. Moreover, records with 3 or more missing features were
also excluded – so that if a patient has missing temperature, respiratory rate, and heart
rate values all together, then the patient is excluded from the dataset. After deleting these
records, the readmission rate remained the same and the class imbalance problem was not
intensified. While this method is common and easy to implement, it can cause both bias and
loss of statistical power. Discarding records or features with missing values is not always
a good idea. The fact that data are missing can hold important information. This is a
limitation of this study and in the future, more emphasis should be placed on investigating
the reasons for data missingness. While it is not possible to distinguish between missing
at random and missing not at random using observed data, biases caused by data that
are missing not at random can be addressed by sensitivity analyses examining the effect of
different assumptions about the missing data mechanism. When it is plausible that data are
missing at random, biases can be overcome by using methods such as multiple imputation
that allow patients with incomplete data to be included in analyses.

Not only the vital signs features contained missing values, but they also contained mis-
takes - presumably typographical errors. For example, temperature of 370◦C, respiratory
rate of 660 bpm5, or heart rate of 1160 bpm6. This is a problem when extracting the min-
imum, maximum and mean values of the vital signs of interest. To deal with those errors,
a filter was applied to each feature. The boundaries of the filters were decided on approx-
imations of acceptable values for each vital sign. While this method helped with removing
outliers, it is not robust against information loss. A suggestion for the future would be to
use the median of the vital signs instead of the minimum, maximum and mean values. In

5breaths per minute
6beats per minute
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such a way, the possible typographical errors would not play a role and information loss
would be avoided.

8.2 Discussion on hyperparameters optimization

Cross-validate Grid Searches took place to optimize the hyperparameters of the Logistic
Regression and Gradient Boosted Decision Trees, whereas the Neural Network architecture
was optimized manually. The Grid Search was performed on the imbalanced data and the
cross-validation results were evaluated on their average AUC scores. What is important to
note is that after class imbalance correction with ADASYN, the balanced data was fed to the
model optimized on the imbalanced data, as the parameters responsible for weighting the
classes for Logistic Regression and Neural Network were excluded. New hyperparameters
optimization was not performed, however, different hyperparameters might optimize a model
which is fed with the balanced data.

The results from the Grid Search for the Logistic Regression were fairly consistent
throughout the folds. However, the results for the Gradient Boosted Decision Trees were
abnormal. There could be observed significant differences between the outer fold (test) AUC
scores and the Grid Search (validation) AUC scores (see Table 11). In the 3rd fold, the best
AUC from the Grid Search is significantly higher than the validation on the test set in the
outer fold. The reverse can be observed in the 4th fold. These abnormal results could mean
that the data reserved for validation in the outer folds is not a good representation of the
data used while searching for the best parameters. Eventually, it was decided to select the
best hyperparameter based on their frequency, rather than the ones associated with the
highest AUC scores in the outer fold.

8.3 Discussion on imbalance correction

In this study, the readmissions account for only 4.8% of the samples. This class imbalance
in the targeted class is a common problem in medical datasets. Two different approaches
for dealing with class imbalance are used here - one is to adjust the class weights during
learning and the other is an oversampling approach - ADASYN, where synthetic samples
are generated based on harder to learn minority class samples until the class balance is
restored. The results showed that the oversampling approach caused degradation of the
Logistic Regression model’s performance. This could be due to different class distribution in
train and test data. Oversampling the minority class in the training set balances the ratio of
positive and negative classes, while the ratio of the classes in the testing set stays unchanged
- unbalanced. Logistic Regression optimizes deviance, which is strongly distributional; hence
it is more sensitive to a mismatch between training and test class distributions. Moreover,
in ADASYN, some of the harder to learn samples might be outliers, thus, the algorithm
produces some synthetic instances based on noise. This type of oversampling behaviour
could be problematic for classifiers if the synthetic values are just representative of very rare
samples.

Restoring the 1:1 class balance, when in reality there is a large disparity between the
classes will not necessarily improve the performance. While it is relevant in some cases,
oversampling changes the underlying distribution of the data, as already mentioned above.
This means that the insights from the classifier trained on over-sampled training data do
not transfer to the unseen test data that by definition has a very different distribution
for features to the over-sampled training set. The implementation of Adaptive Synthetic
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sampling helped GBDT to classify some true readmissions, but it also increased the False
Positive classification errors. This could be due to the shifted distribution of the training set.
The reverse can be observed in the case with the Neural Network, which was trained with
weighted classes, first, and then with ADASYN sampled data. After applying ADASYN the
number of False Positive classifications decreased, but so did the True Positive ones (observe
Figure 17 & 18 (c)). The Neural Network with weighted classes (and without ADASYN)
truthfully predicted many readmissions, but at the same time, it classified wrongly more
than half of the negative cases as positive, which decreased the precision of the model.
While for this study, it is desired to maximize the True Positives, the high values for False
Positives, achieved with the Neural Network without ADASYN, decrease the authenticity
of the truthful model’s predictions. Thus, the Neural Network with ADASYN was named
as the best performing model in this study, despite the decrease in TPs that it showed. As
a future recommendation, different class imbalance correction techniques and class balance
ratios should be explored.

8.4 Discussion on models performance

paper LR
GBDT
(or similar)

NN
(or similar)

Patient
population

McWilliams et al. [3] 0.85 AUC adult

Rojas et al. [32] 0.76 AUC adult

Pakbin et al. [8] 0.73 AUC 0.75 AUC adult

Nguyen et al. [4] 0.79 AUC adult

Futoma et al. [7] 0.72 AUC adult

Ben-Assuli [9] 0.91 AUC 0.925 AUC 0.88 AUC adult

Jovanovic et al. [46] 0.78 AUC pediatric

Wolff et al. [45] 0.64 AUC pediatric

This study 0.67 AUC 0.65 AUC 0.71 AUC neonatal

Table 13: Comparing the AUROC values achieved in the reviewed literature and this study

Contrary to the reported in the literature results, the performance of the Gradient
Boosted Decision Trees model in this study is rather poor (Table 13). Even though the
Gradient Boosted Machines are known to deal well with class imbalance by constructing
successive training sets based on incorrectly classified examples, in this case, the GBDT
model is being outperformed by the LR model. This could be because the Gradient Boosted
Machines cannot handle well information that is out of the range of the training data, while
LR has no problem with extrapolating. It could be also that the GBDT model needs more
extensive hyperparameters tuning than what has been done. Overall, the poor performance
of GBDT indicates that the data used in this study fits better with Logistic Regression or
Neural Network models. This is inconsistent with the trends in literature, where tree-based
Gradient Boosted models outperform both Logistic Regression and Neural Network models,
when reported together (Table 13). In general, the models’ performance achieved in this
study is hardly comparable to the results found in the literature. The implemented here
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models outperform only the Multilayer Perceptron utilized by Wolff et al. [45] to predict
readmission to the emergency department of a pediatric hospital. Even the best performing
model in this study, which is the Neural Network with an AUROC score of 0.71, cannot
outperform any of the Logistic Regressions or Gradient Boosted models reported in the
literature. However, it should be noted that the related studies, to which the performance
of this study was compared to, are very different and thus any comparison is biased. First
of all, these studies cover completely different patient population, namely adult patients.
Moreover, most of the studies also use multiple database sources to enrich and enlarge their
datasets, whereas in this study only one data source is used. Furthermore, the readmission
rate for the adult patient population is significantly higher compared to the ones of pediatric
and neonatal populations. Hence the class imbalance that the reviewed literature dealt with
is not as prominent as the one faced in this study.
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9 Conclusion

This study is concluded by answering the research questions as stated in Section 1.2.

RQ1: To what extent one can predict readmission of neonates to an intensive
care unit using machine learning algorithms?

Test results showed that the Neural Network model developed in this study can achieve an
AUROC score of 0.71, which is an acceptable value for AUC in general. Although compar-
isons of the performances with literature indicates that the data and model developed in
this study are subject to improvement.

RQ1.1: Given the class imbalance dataset, does class balancing during data pre-
processing improve the classification performance?

The imbalance correction technique used is ADASYN. This oversampling method did not
improve the AUROC score for any of the implemented classification algorithms. In fact, it
had a degrading effect on Logistic Regression for all evaluation measures. While it resulted
in decreased AUROC score for the Gradient Boosted Decision Trees, it showed improve-
ment in the recall and precision scores. In the case of Neural Network, the AUROC score
was neither improved nor worsen, however, the harmony between recall and precision (F-
score) was enhanced. Furthermore, the improvement of the Neural Network performance
by ADASYN is not much higher than no handling. Therefore, it is acceptable to not apply
class imbalance handling during data preprocessing.

RQ2: Which machine learning algorithm performs best in the classification
task?

Neural Network, with ADASYN, outperformed the other candidates with AUROC of 0.71,
even though this score was not statistically distinguishable from the AUCs of Logistic Re-
gression and Gradient Boosted Decision Trees. Surprisingly the worst performing model is
Gradient Boosted Decision Trees, achieving AUROC of 0.65.

RQ2.1: Which features, used in this study, have the greatest impact on the
output of the model from RQ2?

The features’ impact on the output of the Neural Network model are presented in Fig-
ure 19. The top five most powerful indicators of readmission are conditions originating
in the perinatal period (icdP00-P96 ), age of the newborn (agedays), average respiratory
rate (resp rate mean), highest heart rate (heart rate max ), and the lowest respiratory rate
(resp rate min).
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A Appx: ICD10 Categories

A00-B99 Certain infectious and parasitic diseases
C00-D48 Neoplasms
D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism
E00-E90 Endocrine, nutritional and metabolic diseases
F00-F90 Mental, Behavioral and Neurodevelopmental disorders
G00-G90 Diseases of the nervous system
H00-H59 Diseases of the eye and adnexa
H60-H95 Diseases of the ear and mastoid process

I00-I99 Diseases of the circulatory system
J00-J99 Diseases of the respiratory system

K00-K93 Diseases of the digestive system
L00-L99 Diseases of the skin and subcutaneous tissue

M00-M99 Diseases of the musculoskeletal system and connective tissue
N00-N99 Diseases of the genitourinary system
O00-O99 Pregnancy, childbirth and the puerperium
P00-P96 Certain conditions originating in the perinatal period
Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities
R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified
S00-T98 Injury, poisoning and certain other consequences of external causes
V01-Y98 External causes of morbidity
Z00-Z99 Factors influencing health status and contact with health services

Table 14: ICD10 Categories

48



B Appx: Congenital conditions & Birth asphyxia vari-
eties

Figure 20: Variety of Congenital conditions & Birth asphyxia
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C Appx: PIC database overview of tables
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D Appx. Initial GridSearch for GBDT

GridSearch = {
’learning rate’:[0.1,0.01,0.001],
’n estimators’:[500,1000]
}

Val AUC: 0.5893851574042506 Best GS AUC: 0.6143509666454218 Best Params: {’learning rate’: 0.01, ’n estimators’: 500}
Val AUC: 0.6870098874872144 Best GS AUC: 0.6084643438849939 Best Params: {’learning rate’: 0.001, ’n estimators’: 1000}
Val AUC: 0.5099443118536197 Best GS AUC: 0.6203880744989732 Best Params: {’learning rate’: 0.01, ’n estimators’: 1000}
Val AUC: 0.701174423662462 Best GS AUC: 0.5747471668768084 Best Params: {’learning rate’: 0.001, ’n estimators’: 1000}
Val AUC: 0.5797085689430187 Best GS AUC: 0.6383411030859325 Best Params: {’learning rate’: 0.001, ’n estimators’: 1000}
Val AUC: 0.6873640713353633 Best GS AUC: 0.6013859586892716 Best Params: {’learning rate’: 0.01, ’n estimators’: 500}

GridSearch = {
’learning rate’:[0.001],
’n estimators’:[1000, 1500]
}

Val AUC: 0.6235367655415389 Best GS AUC: 0.6147935698604915 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.681100125014206 Best GS AUC: 0.6096682246299837 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.5825093760654619 Best GS AUC: 0.6162541604702216 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.7123205741626795 Best GS AUC: 0.5916534271647991 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.6134188777729448 Best GS AUC: 0.6468553965500257 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.6784471509351893 Best GS AUC: 0.6293390988236767 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}

GridSearch = {
’learning rate’:[0.001],
’n estimators’:[1500, 1750]
}

Val AUC: 0.6358677122400275 Best GS AUC: 0.6175554139225268 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6822934424366405 Best GS AUC: 0.6097124849514907 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.5825093760654619 Best GS AUC: 0.616218752213016 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.7099282296650717 Best GS AUC: 0.592543477410218 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6134188777729448 Best GS AUC: 0.6468553965500257 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.6728468899521531 Best GS AUC: 0.6306440012185182 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}

GridSearch = {
’learning rate’:[0.001],
’n estimators’:[1750, 2000]
}

Val AUC: 0.6357540629617002 Best GS AUC: 0.617537709793924 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6766109785202864 Best GS AUC: 0.6108101409248636 Best Params: {’learning rate’: 0.001, ’n estimators’: 2000}
Val AUC: 0.5788725991589954 Best GS AUC: 0.6160328588626867 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.7099282296650717 Best GS AUC: 0.5925061316269007 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6171705089169204 Best GS AUC: 0.6435890413502326 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6728468899521531 Best GS AUC: 0.6307325218615321 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}

GridSearch = {
’learning rate’:[0.001],
’n estimators’:[1550, 1750]
}

Val AUC: 0.6358677122400274 Best GS AUC: 0.6175731180511296 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6832594613024208 Best GS AUC: 0.6109694780822887 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}
Val AUC: 0.5852369587453119 Best GS AUC: 0.6159266340910701 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}
Val AUC: 0.7099282296650717 Best GS AUC: 0.5925244815975407 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}
Val AUC: 0.6116789908655936 Best GS AUC: 0.6454884367921857 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}
Val AUC: 0.6728468899521531 Best GS AUC: 0.6307148177329293 Best Params: {’learning rate’: 0.001, ’n estimators’: 1750}

GridSearch = {
’learning rate’:[0.001],
’n estimators’:[1500, 1550]
}

Val AUC: 0.6243323104898283 Best GS AUC: 0.6152804333970682 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}
Val AUC: 0.6832594613024208 Best GS AUC: 0.6109340698250831 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}
Val AUC: 0.5825093760654619 Best GS AUC: 0.6162010480844133 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.7123205741626795 Best GS AUC: 0.591690127106079 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.6135276207046543 Best GS AUC: 0.6469085089358341 Best Params: {’learning rate’: 0.001, ’n estimators’: 1500}
Val AUC: 0.6785558938668987 Best GS AUC: 0.6305675982354587 Best Params: {’learning rate’: 0.001, ’n estimators’: 1550}

Table 16: Initial GridSearch for the GBDT focused on defining the learning rate and the number of estimators
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F Appx. NLD criteria

Test ID Test name Variable Test condition

R0 Respiratory: airway airway airway patent

R1 Respiratory: Fio2 fio2 fio2<0.6

R2 Respiratory: blood oxygen spo2 spo2>95 (%)

R3 Respiratory: bicarbonate hco3 hco3>19 (mmol/L)

R4 Respiratory: rate resp (rate) 10<resp<30 (bpm)

C0 Cardiovascular: blood pressure bp (systolic) bp>100 (mm Hg)

C1 Cardiovascular: heart rate hr 60<hour<100 (bpm)

P Pain pain 0<pain<1

CNS Central nervous system gcs gcs>14

T Temperature temp 36<temp<37.5 (°C)

B0 Bloods: haemoglobin haemoglobin haemoglobin>90 (g/L)

B1 Bloods: potassium k 3.5<k<6.0 (mmol/L)

B2 Bloods: sodium na 130<na<150 (mmol/L)

B3 Bloods: creatinine creatinine 59<creatinine<104 (umol/L)

B4 Bloods: urea bun 2.5<bun<7.8 (mmol/L)

Table 17: NLD criteria
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J. Raistenskis, E. Burokaitė, and V. Usonis, “Unscheduled return visits to a pediatric
emergency department,” Medicina, vol. 53, no. 1, pp. 66–71, 2017.

60



[41] A. M. Bernard and A. S. Czaja, “Unplanned pediatric intensive care unit
readmissions: A single-center experience,” Journal of critical care, vol. 28, no. 5,
pp. 625–633, 2013.

[42] K. A. Auger, E. L. Mueller, S. H. Weinberg, C. S. Forster, A. Shah, C. Wolski,
G. Mussman, A. J. Ipsaro, and M. M. Davis, “A validated method for identifying
unplanned pediatric readmission,” The Journal of pediatrics, vol. 170, pp. 105–112,
2016.

[43] I. Bergese, S. Frigerio, M. Clari, E. Castagno, A. De Clemente, E. Ponticelli,
E. Scavino, and P. Berchialla, “An innovative model to predict pediatric emergency
department return visits,” Pediatric emergency care, vol. 35, no. 3, pp. 231–236, 2019.

[44] A. Artetxe, B. Ayerdi, M. Graña, and S. Rios, “Using anticipative hybrid extreme
rotation forest to predict emergency service readmission risk,” Journal of
Computational Science, vol. 20, pp. 154–161, 2017.
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