
University of Twente

The Rectangle Covering Bound on the
Extension Complexity of Small Cut

Polytopes

Master Thesis
Applied Mathematics

K.W. Fokkema

Daily Supervisor:
Dr. M. Walter (University of Twente)

Graduation Committee:
Prof.dr. M.J. Uetz (University of Twente)
Dr. M. Walter (University of Twente)

Prof.dr. V. Kaibel (Otto von Guericke University Magdeburg)
Prof.dr. S. Weltge (Technical University of Munich)

Prof.dr. N.V. Litvak (University of Twente)

April 11, 2021

Preface

This report was written at the end of a master’s project about investigating lower bounds on the
extension complexity of small cut polytopes. Because of the COVID-19 pandemic, all contact with
supervisors and committee members was digital, and the report was written from home. I want
to thank everyone who helped me finish this challenging task. This mainly includes M. Walter as
supervisor and the friends I made at and around the university who kept in touch.

Table of Contents

1 Introduction 2

2 Cut Polytope 3
2.1 Symmetry . 3
2.2 Facets . 4

3 Bounds for Extension Complexity 7
3.1 Extension Complexity . 7
3.2 Rectangle Covering Bound . 7
3.3 Bounds for the Rectangle Covering Number . 9
3.4 Integer Linear Programming Formulation . 10
3.5 Hyperplane Separation Bound . 12

4 Rectangle covering bound of the Cut Polytope 15
4.1 Introduction . 15
4.2 Enumerating Rectangles . 15
4.3 Direct Computation . 19
4.4 Pure hypermetric facets . 19
4.5 Theoretical description for Hn,3 . 22
4.6 Weighted fooling sets for pure hypermetric facets . 24
4.7 Rectangle coverings of pure hypermetric facets . 25

5 Conclusions and Recommendations 29

A Unique Disjointness Matrix 30

B Computing Slack matrices 31

C Special rectangles calculations 33

D Iterative facet approach 35

Bibliography 36

1

1 Introduction

In this report we investigate lower bounds for the extension complexity of the cut polytope of size
n. At this moment, the best known asymptotic lower bound was found in [1], and is equal to
1.5n−1. However, the best known upper bound is equal to 2n−1. Computing this number for small
n can give an idea about where the true relationship lies in this gap. Furthermore, results of our
computations might give ideas for a theoretical proof of a better lower or upper bound for larger
values of n.

Cut polytopes have been widely studied. One application in which the cut polytope is used is in
solving the max-cut problem, which is NP-hard [2]. They are also closely related to correlation
polytopes, which are tightly connected to combinatorial problems in the foundations of quantum
mechanics, and to the Ising spin model [3].

In chapter 2, we discuss the cut polytope and some of its properties. In chapter 3 we introduce the
concept of extension complexity and techniques to find lower bounds for extension complexity. Then
in chapter 4 the techniques from chapter 3 are applied to small cut polytopes. We also show when
and why our approach fails. Finally, in chapter 5 we reflect on our results and make suggestions
for further research.

2

2 Cut Polytope

Let G = (V,E) denote a finite, undirected simple graph with vertex set V and edge set E. A cut
of G associated by the set of vertices W ⊆ V is defined as δ(W) := {{u, v} ∈ E | {u, v} ∩W = 1}.
For each different cut δ(W), we define an incidence vector χδ(W) of length |E| such that

χδ(W)
e =

{
1 if e ∈ δ(W)

0 otherwise.

The cut polytope P (G) is defined as the convex hull of all such incidence vectors. [2] In this report,
we restrict our view to cut polytopes of complete graphs, so let Kn denote the complete graph on
n vertices and define Pn = P (Kn).

There are some other geometric objects which are closely related to Pn. One of these is the
correlation polytope, the convex hull of all the rank-1 binary symmetric matrices of size n × n ,
which is linearly isomorphic to Pn [4]. Another one is the cut cone Cn, which is the cone defined
by all facets of Pn that also contain the origin.

Since Kn has d := n(n−1) edges (and Pn is full-dimensional), Pn is a d-dimensional polytope. Also,
because all vertices of Pn lie on {0, 1}d, Pn can be classified as a 0/1-polytope [5]. Furthermore,
there are 2n−1 different cuts of Kn, because each cut can be represented by two complementary
subsets of vertices. This means that Pn has 2n−1 vertices.

2.1 Symmetry

For efficient computations, it is useful to know the symmetries of Pn. There are two types of
operations which define an automorphism of Pn [6]: the permutation operation and the switching
operation.

The permutation operation is defined by permuting the vertices of the underlying graph Kn. Using
this operation, cuts can be mapped onto each other if and only if they have the same ‘size’, where
the ‘size’ is defined as the amount of elements in the smallest of the two disjoint subsets defined by
the cut:

Definition 2.1 (Size of a cut).
‖δ(W)‖ := min(|W |, |W |).

The switching operation is defined as follows: a cut δ(W) can by switched by any cut δ(W ′)
by taking the symmetric difference δ(W) ∆ δ(W ′), which is also a cut that can be rewritten as
δ((W ∪W ′) \ (W ∩W ′)). The switching operation is an automorphism for Pn that maps W ′ to the
origin. Because each cut can be mapped onto the origin this way, this means that Pn ‘looks the
same’ from the perspective of each cut.

It is useful to know the conditions that have to hold for a pair of cuts (δ(W1), δ(W2)) to be mapped
onto another pair of cuts (δ(W ′1), δ(W ′2)).

3

Proposition 2.2. There exists an automorphism for the cut polytope that maps δ(W1) onto δ(W ′1)
and δ(W2) onto δ(W ′2) if and only if ‖δ(W1) ∆ δ(W2)‖ = ‖δ(W ′1) ∆ δ(W ′2)‖

Proof. Using the switching operation, the first vertex of each pair of cuts can be mapped onto
the origin, so that the pairs become (δ(∅), δ(W1) ∆ δ(W2)) and (δ(∅), δ(W ′1) ∆ δ(W ′2)). Because the
permutation operation maps δ(∅) onto itself, these two pairs can be mapped onto each other using
the permutation operation if and only if ‖δ(W1) ∆ δ(W2)‖ = ‖δ(W ′1) ∆ δ(W ′2)‖.

This result motivates the following definition:

Definition 2.3 (Distance between cuts). We define the distance between cuts δ(W1) and δ(W2) to
be ‖δ(W1) ∆ δ(W2)‖.

This definition allows the following interpretation: a pair of cuts can be mapped onto another pair
of cuts if the distance between each pair is equal. This distance has the intuitive interpretation
of being the least amount of vertices that ‘need to change sides’ to change one cut to another
cut.

Finally, we can also use the distance between cuts to check whether a collection of more than 2
cuts can be mapped onto another collection of the same size: define for each collection a complete
weighted subgraph, in which the vertices represent cuts and the weights of the edges represent
the distance between the two vertices it is adjacent to. If there exists an isomorphism from one
collection of cuts onto another collection of cuts, then there also exists an isomorphism between
their weighted graphs.

2.2 Facets

We look at Pn as a function of the variable x ∈ Rd. Any face of Pn can then be represented by an
inequality a · x ≤ β, where a ∈ Rd and β ∈ R≥0. The face of Pn that corresponds to this equality
is given by {x ∈ Pn |a · x = β}. The vertices of Pn that are contained in a facet are called its
roots. Because Pn is d-dimensional, a face is called a facet when it has a dimension equal to d− 1.
Furthermore, because all vertices of Pn are integer, any facet can be represented by a pair (a, β)
such that a ∈ Zn and β ∈ N [7].

If (a, β) corresponds to a face and a 6= 0 then β is completely determined by a. Because each element
of x corresponds to an edge in Kn, any facet that is represented by a can also be represented by a
weighted version of Kn, where the edge weights are given by the corresponding elements in a.

In general, finding the facets of Pn for all n is an impossible task, unless NP = co-NP [3]. Fur-
thermore, unless NP = co-NP even determining whether a given pair (a, β) defines a facet of the
correlation polytope is NP-hard. Nevertheless, for small values of n all facets of Pn can be enu-
merated and classified [8]. Here, two facets are considered to be from the same class if and only
if there exists a combination of permutation and switching operations such that the facets can be
mapped onto each other. In Table 1, an overview is given of the amount of facet-classes and facets
up to n = 9, and in Table 2 an overview is given for all the facet classes up to n = 7, which is based
on the SMAPO database [9]. It can be seen that the total amount of facets increases quite rapidly
with n. It seems that it might be exponential in the number of vertices of Pn, which is equal to
2n−1 and thereby also exponential in n. Ziegler suggested cut polytopes (along with random 0/1
polytopes) as a candidate for the purpose of proving that the number of facets of a 0/1-polytope

4

Table 1: Number of facet classes and number of facets of Pn for small n[9]. Values marked with
(*) are conjectured.

n # classes # facets log2(# facets)
3 1 4 2.000
4 1 16 4.000
5 2 56 5.807
6 3 368 8.524
7 11 116,764 16.833
8 147* 217,093,472* 27.694*
9 164,506* 12,246,651,158,320* 43.477*

can be exponential in terms of its dimension (which is polynomial in terms of the number of vertices
for the cut polytope), but by our knowledge there is no literature showing this for cut polytopes
yet.[5]

One type of facet classes that is particularly interesting because of its simple structure is the
hypermetric facets. Any hypermetric facet is defined by some b ∈ Zn. In Table 2, these facet classes
are denoted by Hypn(b). In terms of the representation of a weighted graph, b gives weights for
the vertices of Kn. The weight of each edge (and thereby each entry of a), is subsequently given by
the product of the weights of its two adjacent vertices. Therefore, hypermetric facets correspond
to an inequality for some β of the following form:

∑
1≤i<j≤n

bibjxij ≤ β. (2.1)

Remark 2.4. Because b and −b correspond to the same facet we can make the assumption while
indexing that

∑
i bi ≥ 0 to prevent counting duplicates. For hypermetric facets, we always have that∑

i bi is odd, which is why assuming
∑
i bi ≥ 0 prevents counting any duplicate facets.

A nice property of hypermetric facets is how the left-hand side (2.1) can be rewritten for x =
χδ(W): ∑

1≤i<j≤n

bibjχ
δ(W)
ij =

∑
eij∈δ(W)

bibj =

(∑
v∈W

bv

)(∑
v/∈W

bv

)
= b(W)b(W). (2.2)

The amount of roots a facet can therefore be counted by counting the amount of cuts δ(W) for which
b(W)b(W) is maximal, which will be true when b(W) is as close to 1

2

∑
i bi as possible.

When b ∈ {−1, 0, 1}n, the corresponding facet is called a pure hypermetric facet. These facets can
be classified further by looking at the amount of nonzeros in b. If there are k such nonzeros, the
facet is called k-gonal (in general this terminology is used when

∑
i |bi| = k). Here, k is any odd

integer such that 3 ≤ k ≤ n. The pure hypermetric facets and some of their properties are further
described in section 4.4.

5

Table 2: Facet types of Pn for small n [9]. Facet names are taken from [8]. The ‘# roots’ column
indicates the number of roots in a facet in the corresponding class and the ‘# facets’ column
indicates the number of facets in the corresponding class.

n class name # roots # facets
3 Hyp3(1,1,-1) 3 4
4 Hyp4(1,1,-1,0) 6 16
5 Hyp5(1,1,-1,0,0) 12 40
5 Hyp5(1,1,1,-1,-1) 10 16
6 Hyp6(1,1,-1,0,0,0) 24 80
6 Hyp6(1,1,1,-1,-1,0) 20 96
6 Hyp6(2,1,1,-1,-1,-1) 15 192
7 Hyp7(1,1,-1,0,0,0,0) 48 140
7 Hyp7(1,1,1,-1,-1,0,0) 40 336
7 Hyp7(1,1,1,1,-1,-1,-1) 35 64
7 Hyp7(2,1,1,-1,-1,-1,0) 30 1344
7 Hyp7(2,2,1,-1,-1,-1,-1) 26 1344
7 Hyp7(3,1,1,-1,-1,-1,-1) 21 448
7 Cyc7(1,1,1,1,1,-1,-1) 21 16128
7 Cyc7(2,2,1,1,-1,-1,-1) 21 26880
7 Cyc7(3,2,2,-1,-1,-1,-1) 21 6720
7 Par7 21 23040
7 Gr7 21 40320

6

3 Bounds for Extension Complexity

3.1 Extension Complexity

The extension complexity xc(P) of a polytope P is the minimal number of facets of a polytope
P ′ such that P is a projection of P ′. In terms of linear programs, this can also be viewed as the
minimal number of inequalities that are necessary to define the feasible region of a linear program.
Yannakakis used this connection between polytopes and linear programs to formulate the extension
complexity in terms of linear programming [10]. To formulate this connection, first some more
standard terminology needs to be introduced.

A slack matrix SP of a polytope P is a matrix in which the rows are indexed by facets of the
polytope and columns are indexed by vertices of the polytope. Each element SPvf indicates the
amount of slack vertex v has with respect to the inequality that defines facet f . Intuitively, this
slack can be understood as the distance between v and the hyperplane containing f . By definition,
the slack matrix is a nonnegative matrix.

The nonnegative rank rk+(·) of a nonnegative matrix A is the smallest number of nonnegative
rank-1 matrices that sum to A.

Yannakakis showed in [10] that

xc(P) = rk+(SP). (3.1)

3.2 Rectangle Covering Bound

Computing the extension complexity by directly computing (3.1) can be very difficult, as finding the
nonnegative rank of a matrix is NP-hard [11]. To solve this problem, Yannakakis also introduced a
lower bound for the nonnegative rank by considering the support of the matrix.

The support of a real matrix A is defined as supp(A) = {(i, j) |Aij 6= 0}. The lower bound
Yannakakis found follows from the fact that the support of a nonnegative matrix is equal to the
union of the support of nonnegative rank-1 matrices that sum up to it. Define a rectangle of a
real matrix A to be the support of a rank-1 matrix that has a support that is contained within the
support of A. We will let rects(A) denote the set of rectangles of A. A rectangle cover of A is a set
of rectangles such that their union is supp(A), and the rectangle covering number rc(·) of A is the
minimal amount of rectangles needed to define a rectangle cover for A. The problem of finding such
a minimal rectangle cover is also known in literature as Boolean Matrix Factorization [12].

The lower bound shown by Yannakakis in [10] is called the rectangle covering bound, and is given
by

rc(SP) ≤ rk+(SP) = xc(P). (3.2)

The remaining part of this section tries to clarify some of the properties of the rectangle covering
number.

Definition 3.1. Call a rectangle inclusion-wise maximal if it is not strictly contained in any other
rectangle, and let rects∗(A) denote the set of inclusion-wise maximal rectangles of A.

7

Proposition 3.2. Only inclusion-wise maximal rectangles need to be considered for the purpose of
computing the rectangle covering number.

Proof. Suppose the rectangle cover that contains the smallest amount of rectangles contains a
rectangle that is not inclusion-wise maximal. Replacing that rectangle by another rectangle that
contains it also yields a valid rectangle cover with the same number of rectangles. Iteratively
applying this procedure yields a rectangle cover with the same number of rectangles containing
only inclusion-wise maximal rectangles.

Proposition 3.3. Let A be a real matrix. rc(A) is invariant under permutations of rows and
columns of A.

Proof. Trivial

Proposition 3.4. Let A be a real matrix and let A′ be any submatrix of A. Then rc(A′) ≤ rc(A).

Proof. This follows directly from the fact that any rectangle cover of A also defines a rectangle
cover of A′.

Remark 3.5. Let A,B be real matrices. supp(A) ⊆ supp(B) does not imply that rc(A) ≤ rc(B)

Proof. Counterexample:

A =

0 1 1
1 0 1
1 1 0

 , B =

1 1 1
1 0 1
1 1 0

yields supp(A) ⊆ supp(B), but 3 = rc(A) > rc(B) = 2.

Remark 3.6. rc(SP) is not always equal to xc(P)

Proof. The extension complexity of the matching polytope grows exponentially, but the correspond-
ing rectangle covering number grows polynomially [13].

Proposition 3.7. Let A be a real matrix and let r be a row vector with the same width as A. If

supp(r) is the union of the support of some rows in A, then rc(A) = rc

((
A
r

))

Proof. Each rectangle cover for A can be adjusted to also be a rectangle cover for

(
A
r

)
in the

following way: Every rectangle that contains a row Ai∗ such that supp(Ai∗) ⊆ supp(r), is extended
to also contain elements from the row r. By the construction of r, this new rectangle cover also

covers all elements from the new row. Therefore, rc(A) ≥ rc

((
A
r

))
. Because of Proposition 3.4,

rc(A) ≤ rc

((
A
r

))
, which means rc(A) = rc

((
A
r

))

8

Proposition 3.7 has a useful intuitive meaning in the context of slack matrices, because the row cor-
responding to a face that is not a facet has the same support as the union of the rows corresponding
to the facets in which the face is contained. This is expressed in the following corollary:

Corollary 3.8. Adding rows to SP that correspond to faces of P that are not facets does not affect
rc(SP).

Proposition 3.9. Computing the rectangle covering number is NP-hard

Proposition 3.9 is proven in [14].

3.3 Bounds for the Rectangle Covering Number

Because computing the rectangle covering number is NP-hard (Proposition 3.9), it is useful to look
for lower and upper bounds for the rectangle covering number. Because the rectangle covering
number can be used as a lower bound for extension complexity by applying (3.2), any lower bound
for the rectangle covering number leads to a lower bound for extension complexity. On the other
hand, upper bounds for the rectangle covering number do not give upper bounds for the extension
complexity, because of Remark 3.6.

After the introduction of some notation, some known upper and lower bounds for the rectangle
covering number will be listed [11].

Let 〈 · , · 〉 denote the Frobenius inner product of two matrices. For real matrices, this is the sum
of the elementwise product of the two matrices. Furthermore, for any set of pairs of indices
{(i1, j1), (i2, j2), ...} let χ(·) denote the binary matrix such that χ(S)ij = 1 ⇔ (i, j) ∈ S. To
simplify notation, the size of this binary matrix will follow from the context. Some examples:
χ(supp(A)) denotes a binary matrix of the same size as A such that χ(supp(A))ij = 0⇔ Aij = 0.
Also, if R is a rectangle of A, then χ(R) denotes a binary matrix of the same size as A such that
χ(R)ij = 1⇔ (i, j) ∈ R.

Proposition 3.10. Any rectangle cover defines an upper bound for the rectangle covering number.

Proof. Trivial.

Proposition 3.11. The number of unique rows and the number of unique columns of a matrix are
upper bounds for its rectangle covering number.

Proof. We can construct a rectangle cover that has the required amount of rectangles by letting
the rectangles be single rows or columns of the matrix.

Proposition 3.12 (Fooling Set Bound). Let A be a real matrix and let F ⊆ supp(A). If

max
R∈rects(A)

|R ∩ F| = 1,

then
rc(A) ≥ |F|. (3.3)

Proof. This follows directly from the fact that every element in F needs to be contained in at least
1 rectangle in the rectangle cover.

9

Proposition 3.13 (Generalized Fooling Set Bound). Let A be a real matrix and let F ⊆ supp(A).
Then

rc(A) ≥ |F|
max

R∈rects(A)
|R ∩ F|

. (3.4)

Proof. This follows from the fact that every element in F needs to be contained in at least 1
rectangle in the rectangle cover.

We could not find the following bound in any literature, but it is a natural generalization of the
generalized fooling set bound, so we call it the weighted fooling set bound. It is shown in section 3.4
that this bound is equivalent to the fractional rectangle covering bound, which is well known and
also explained in section 3.4 [11].

Proposition 3.14 (Weighted Fooling Set Bound). Let A be a real matrix and let W be a nonneg-
ative real matrix of the same size as A. Then

rc(A) ≥ 〈W,χ(supp(A))〉
max

R∈rects(A)
〈W,χ(R)〉

. (3.5)

Proof. Call 〈W,χ(R)〉 the weight of rectangle R. Because each element of supp(A) needs to be
contained in at least one rectangle of a rectangle cover and because W is nonnegative, the sum of
the weights of the rectangles in a rectangle cover must be at least 〈W,χ(supp(A))〉. Combining
this with the maximum weight of a rectangle, which is given by max{〈W,χ(R)〉 |R rectangle of A},
gives the lower bound for the number of rectangles in a rectangle cover.

It can be easily seen that the generalized fooling set bound (Proposition 3.13) is a generalization of
the fooling set bound (Proposition 3.12), and also that the weighted fooling set bound (Proposition
3.14) is a generalization of both of those bounds.

Remark 3.15. In Propositions 3.12, 3.13 and 3.14, we can safely replace every instance of
max

R∈rects(A)
by max
R∈rects∗(A)

, because the arguments are monotonous in the size of the rectangle.

3.4 Integer Linear Programming Formulation

It turns out that the weighted fooling set bound (Proposition 3.14) can be better understood by
looking at (integer) linear programming formulations of finding the rectangle number, which are
investigated in this section.

Proposition 3.16 (Rectangle Cover ILP). The following integer linear program models the the
problem of finding the rectangle covering number of a real matrix A:

10

minimize
∑
R
xR (3.6a)

subject to
∑

R:(i,j)∈R

xR ≥ 1 ∀(i, j) ∈ supp(A) (3.6b)

xR ∈ Z≥0 ∀R ∈ rects∗(A) (3.6c)

Proof (Sketch). The variables xR model whether rectangle R is contained in the rectangle cover.
Because of Proposition 3.2, any optimal solution can be assumed without loss of generality to only
contain inclusion-wise maximal rectangles, so we can restrict the rectangles to be in rects∗(A).
Note that the optimal values of xR will always be 0 or 1, so xR = 1 ⇔ R is contained in the
rectangle cover. The constraints in (3.6b) enforce that each element of supp(A) is contained in at
least 1 rectangle in the rectangle cover and the objective function (3.6a) minimizes the number of
rectangles in the rectangle cover.

The linear programming relaxation of (3.6) very straightforwardly replaces equations (3.6c) by their
continuous version:

minimize
∑
R
xR (3.7a)

subject to
∑

R:(i,j)∈R

xR ≥ 1 ∀(i, j) ∈ supp(A) (3.7b)

xR ≥ 0 ∀R ∈ rects∗(A) (3.7c)

This problem is very similar to finding a rectangle cover, except that fractional rectangles are
allowed. For that reason, the solution to (3.7) is called the fractional rectangle covering number,
denoted frc(·) [11]. Because (3.7) is a relaxation of (3.6),

frc(A) ≤ rc(A). (3.8)

Proposition 3.17. The dual of the linear programming relaxation of (3.6) is given by the following
linear program:

maximize
∑

(i,j)∈supp(A)

w(i,j) (3.9a)

subject to
∑

(i,j)∈R

w(i,j) ≤ 1 ∀R ∈ rects∗(A) (3.9b)

w(i,j) ≥ 0, ∀(i, j) ∈ supp(A) (3.9c)

By inspection it turns out that finding a solution to (3.9) is equivalent to finding a weighted fooling
set bound (Proposition 3.14), with Wij = w(i,j). To see this, note that the weighted fooling set

11

bound remains the same if W is scaled by some real number, so it is possible scale W in such a
way that

max
R∈rects∗(A)

〈W,χ(R)〉 = 1,

which is precisely modelled by equations (3.9b). Furthermore, the fact that W is a nonnegative
matrix is modelled by equations (3.9c). Finally, strong duality implies that the optimal solution
for (3.9) is equal to the optimal solution of (3.7), which is the fractional rectangle covering number,
which is a lower bound for the rectangle covering number as shown in (3.8).

The fact that the best weighted fooling bounds are given by the optimal solution to a linear program
helps in showing how the task of finding a matrix W can be simplified for a matrix A with many
automorphisms in the form of permutations of rows and columns.

Theorem 3.18. There exists a nonnegative matrix W that defines an optimal weighted fooling set
bound and satisfies Wij = Wi′j′ for any pair (i, j), (i′, j′) for which there exists a permutation of
rows and columns that is an automorphism for A that maps Aij onto Ai′j′ .

Proof. Let W ′ be any nonnegative real matrix that defines an optimal weighted fooling set bound
and is a solution to (3.9). All permutations of rows and columns that are automorphisms for A
define a permutation of W ′ that also defines an optimal weighted fooling set. These permutations of
W ′ are all solutions to the linear program (3.9), so therefore the average W of all these permutations
of W ′ is also a solution to (3.9) and defines an optimal weighted fooling set. Therefore, we can
assume that W satisfies the property that Wij = Wi′,j′ if there exists a permutation of rows and
columns that is an automorphism for A that maps Aij onto Ai′j′ .

3.5 Hyperplane Separation Bound

Besides the rectangle covering bound, another closely related lower bound is known for the nonneg-
ative rank of a matrix, called the hyperplane separation bound, denoted hsb(·) [13]. It is defined as
follows:

Proposition 3.19 (Hyperplane Separation Bound). Let A be a nonnegative real matrix and let W
be a real matrix of the same size as A. Then

rk+(A) ≥
〈W, A

‖A‖∞ 〉
max

R∈rects(A)
〈W,χ(R)〉

. (3.10)

Notice the similarity to the weighted fooling set bound (3.14). In [13] this bound is used to show
that the extension complexity of the matching polytope is exponential. It is also shown there
that the rectangle covering bound is polynomial for the matching polytope. Therefore, at least
in some cases the hyperplane separation bound is stronger than the rectangle covering bound. In
comparison to the weighted fooling set bound, the hyperplane separation bound can be stronger
because W is not restricted to be nonnegative. However, when the optimal W for the hyperplane
separation bound is already nonnegative, the weighted fooling set bound will be a factor ‖A‖∞
stronger. This might not be a problem for showing that the extension complexity of a polytope is
exponential when ‖A‖∞ can be shown to be polynomial at worst.

12

In [13], the rectangles that are considered for the hyperplane separation bound are allowed to have a
support that is not a subset of the support of A. However, for the value of the hyperplane separation
bound this makes no difference. To see that this is true, consider some W ∗ that maximises the
right hand side of (3.10). All elements of W ∗ that correspond to a 0 in A do not appear in the
numerator, so they will minimize the denominator. This can be done by sending the value of these
elements to negative infinity, which means any rectangle that maximizes the denominator will not
contain any of these elements and will therefore be contained within the support of A.

In contrast to bounds for the rectangle covering number, the rectangles in (3.10) cannot be assumed
to be inclusion-wise maximal, because when W contains negative elements, the rectangle that
maximises the denominator of the right hand side of (3.10) might not be inclusion-wise maximal.
This fact makes the hyperplane separation bound harder to compute than the rectangle covering
bound. Therefore, it is useful to know any limits where using (lower bounds for the) rectangle
covering bound yields equally good results as using the hyperplane separation bound.

The following theorem shows that one case in which this happens is when the hyperplane sep-
aration bound is equal to the amount of columns in A. For SP , this is the case in which the
hyperplane separation bound on the extension complexity is equal to the number of vertices of the
polytope.

Theorem 3.20. Let A ∈ Rf×v≥0 . If hsb(A) = rk+(A) = v, then also frc(A) = v.

Proof. Let W be the matrix that makes the right hand side of (3.10) equal to v. In the following,
we only consider the part of W corresponding to the support of A, because all rectangles we
consider are also in the support of A. Decompose W := W+ −W− such that 〈W+,W−〉 = 0 and

W+,W− ∈ Rf×v≥0 .

Substituting what we have into (3.10) gives

v · max
R∈rects(A)

〈W,χ(R)〉 = 〈W, A

‖A‖∞
〉. (3.11)

We will construct a collection of rectangles that satisfy this equation: consider the rectangles that
consist of single columns and are contained in supp(W+):

Rj := {(i, j) | (i, j) ∈ supp(W+)}.

Summing 〈W+, χ(Rj)〉 for all 1 ≤ j ≤ v gives

v∑
j=1

〈W+, χ(Rj)〉 = 〈W+, supp(A)〉,

because supp(W+) ⊆ supp(A). We show that both sides of this equation are equal to (3.11) as
follows:

13

v · max
R∈rects(A)

〈W,χ(R)〉 ≥
v∑
j=1

〈W,χ(Rj)〉 =

v∑
j=1

〈W+, χ(Rj)〉

= 〈W+, supp(A)〉 ≥ 〈W+,
A

‖A‖∞
〉 ≥ 〈W, A

‖A‖∞
〉.

The equality on the first line holds because
⋃
j supp(Rj) = supp(W+) We conclude that all in-

equalities must in fact be equalities. Because of the last inequality, this implies that 〈W−, A〉 = 0.
This means that W is nonnegative, in which case frc(A) ≥ hsb(A) = v. Because we know that
v ≥ rk+(A) ≥ frc(A), we conclude that hsb(A) = frc(A) = v.

Remark 3.21. A remarkable detail of the above proof is the fact that 〈W+, supp(A)〉 = 〈W+, A
‖A‖∞ 〉

for an optimal hyperplane separation bound equal to v. This would mean that we only have to
consider elements of A that are equal to ‖A‖∞. However, this does not make much sense intuitively.
For one thing, if we have a matrix with a high nonnegative rank, we would not expect that making
one entry of the matrix very large changes much about a good bound for this rnonnegative rank.
Furthermore, we might have a slack matrix with nonnegative rank equal to v in which the matrix
entries with smaller value are hard to cover with rectangles. This is exactly the situation we will
encounter in this report. This raises the question if the hyperplane separation bound could be
improved in this limit. The main problem is the factor ‖A‖∞. Maybe this normalization factor could
be made smaller by masking a part of the matrix and only considering the difficulty for rectangles to
cover the other parts of the matrix. Furthermore, scaling rows and columns of a matrix can make
the hyperplane separation bound significantly worse, but it does not change the nonnegative rank at
all. Therefore, it would be a nice property to investigate if there exists a stronger bound that does
not change when scaling rows and columns.

14

4 Rectangle covering bound of the Cut Polytope

4.1 Introduction

In this chapter, we will try to compute the rectangle covering number of SP
n

for small values of n.
Currently, the best known lower bound for general n by our knowledge is rc(SP

n

) ≥ 1.5n−1[1] and
a trivial upper bound is given by 2n−1. Therefore, it is an open question where in this gap the true
relation for the extension complexity of the cut polytope lies.

The main result of this chapter is the following:

Theorem 4.1. For 3 ≤ n ≤ 8, xc(Pn) = rc(SP
n

) = 2n−1

To get to this result, in section 4.2 algorithms are described to enumerate the inclusion-wise maximal
rectangles of a matrix. In section 4.4, we introduce the submatrix on which we will use our bounding
techniques. Then our theoretical and computational results are shown in sections 4.5 and 4.6
respectively. In section 4.7 we show how and why our approach fails for larger values of n.

4.2 Enumerating Rectangles

First we introduce Algorithm 1, which computes the set of all inclusion-wise maximal rectangles of
a matrix A, given the inclusion-wise maximal rectangles of the submatrix that excludes the last row
of A. We assume we have access to the procedures cols(R) and rows(R), which will respectively
give the set of rows and columns in the rectangle. We will assume that these procedures run in
output-linear time. This makes sense because a rectangle can be stored compactly in terms of its
rows and columns.

Algorithm 1 Inclusion-wise maximal rectangles iteration step

1: Input: Matrix A ∈ Rf×v, the set Z ′ of inclusion-wise maximal rectangles of the submatrix of
A that excludes the last row.

2: Output: The set Z of inclusion-wise maximal rectangles of A
3: Z = ∅
4: for R′ ∈ Z ′ do
5: if Af,j 6= 0 for all j ∈ cols(R′) then
6: R := R′ ∪ ({m} × cols(R′))
7: add R to Z
8: else
9: add R′ to Z

10: J := cols(R′) ∩ {j |Mf,j 6= 0}
11: if J 6= ∅ then
12: I := {i | i /∈ rows(R′) and Ai,j 6= 0 ∀j ∈ J}
13: if I = ∅ then
14: R := (rows(R′) ∪ {f})× J
15: add R to Z
16: end if
17: end if
18: end if
19: end for

15

Note that for Algorithm 1 to work, the (possibly empty) rectangle that consists of all columns also
needs to be included in Z ′. However, the algorithm does not yield the rectangle that consists of all
rows if it is empty. These are small implementation details we will not worry about. We show the
correctness of Algorithm 1 by proving the following theorem:

Theorem 4.2. Let A ∈ Rf×v and let A′ denote the submatrix of A of size f − 1× v that excludes
the last row of A. Furthermore, let Z and Z ′ denote the set of all inclusion-wise maximal rectangles
of A and A′ respectively. For any R ∈ Z exactly one of the following cases holds:

• R ∈ Z ′

• rows(R) = rows(R′) ∪ {f} and cols(R) = cols(R′) ∩ {j |Mf,j 6= 0} for a unique rectangle
R′ ∈ Z ′

Proof. First note that both cases cannot hold, as all inclusion-wise maximal rectangles that satisfy
the first case do not contain row f , but all inclusion-wise maximal rectangles that satisfy the second
case do.

Assume for the sake of contradiction that there is an inclusion-wise maximal rectangle R ∈ Z that
does not satisfy any of the cases. Since it does not satisfy the first case, f ∈ rows(R). We will now
construct R′ such that the second case holds.

Let I := rows(R)\{f} and J := cols(R) ∪ {j |Mi,j 6= 0 ∀i ∈ I}. Now, R′ := I × J is a rectangle.
It is also inclusion-wise maximal: we cannot add another row to R′ because R was inclusion-wise
maximal and we cannot add another column to R′ by the construction of J .

Now we want to show that R satisfies the second case for R′. From the construction of J it follows
that rows(R) = rows(R′) ∪ {f}. By construction of J , cols(R) ⊆ cols(R′), and because R is
inclusion-wise maximal the part cols(R) = cols(R′) ∩ {j |Mf,j 6= 0} must also be true.

Finally we show that R′ is unique. It is trivial that I = rows(R′) is determined uniquely by R.
Furthermore, J = cols(R′) is also unique because it is uniquely determined by I and the fact that
R′ is an inclusion-wise maximal rectangle. This means that the second case holds, which is a
contradiction. Since at least one of the two cases holds and both cannot hold at the same time, we
conclude that any R ∈ Z satisfies exactly one of the two cases.

Now we can easily use Algorithm 1 to write a recursive algorithm that computes the inclusion-wise
rectangles of a matrix from scratch. The base case is the only (empty) rectangle for a matrix
without any rows. The result is Algorithm 2.

Algorithms 1 and 2 can be easily changed to iterate over rows instead of columns. We can approxi-
mate the running time by counting how many rectangles are considered in the for-loop of Algorithm
1. An upper bound is the total amount of inclusion-wise maximal rectangles of A times min {f, v}.
This suggests that the computation time is smallest by choosing to iterate over the smallest di-
mension of A. A more realistic computation time is given by the assumption that the amount of
rectangles in a submatrix is exponential in the smallest dimension of the submatrix, which gives the
same result in the limit of large matrices. These estimates for the computation time are especially
useful for very ‘rectangular’ matrices that have one dimension that is much larger than the other
dimension.

16

Algorithm 2 Recursive inclusion-wise maximal rectangles

1: Input: Matrix A ∈ Rf×v
2: Output: The set Z of inclusion-wise maximal rectangles of A
3: if f = 0 then
4: R := {∅} × {1, 2, . . . , v}
5: Z = {R}
6: else
7: Let A′be A without its last row
8: Obtain the set Z ′ of inclusion-wise maximal rectangles of A′ by recursion
9: Use Algorithm 1 to obtain Z from Z ′

10: end if

When the goal is to iterate over all the rectangles instead of listing them, Algorithm 1 can also be
adapted to generate the rectangles one by one because each rectangle that is found only depends
on at most one rectangle of the previous submatrix. This is useful when storage space for the
rectangles is limited.

Now, we will look at how to deal with the symmetry in our matrix. This will be very useful when
computing the fractional rectangle covering number using the weighted fooling set bound, because
of Theorem 3.18. Using this theorem, we can assume that we can assign ‘similar matrix entries’ the
same weight, because we can construct a symmetrical fractional rectangle covering. This motivates
the following definition:

Definition 4.3. We will consider two rectangles symmetrical if there is a permutation of rows and
columns of A that is an automorphism for A and maps the rectangles onto each other. Otherwise ,
we will call the rectangles non-symmetrical.

The notion of symmetrical rectangles is useful when we want to find certain properties of all the
rectangles of a matrix that do not change for such a mapping. In that case, we only need to iterate
over non-symmetrical rectangles. Therefore, we will introduce variations of Algorithm 2 to find all
non-symmetrical inclusion-wise maximal rectangles in a (submatrix of a) slack matrix of the cut
polytope.

The goal of these algorithms is to find at least one instance of each non-symmetrical inclusion-
wise maximal rectangle, while minimizing computation time. In other words, we want break the
symmetries of the cut polytope. However, breaking all symmetries might be more computationally
intensive than allowing some duplicates of rectangles that are already found. To see this, we look at
inclusion-wise maximal rectangles as fully described by their columns. These columns are vertices
of the cut polytope, which are described by cuts of Kn. Therefore, to find out if two inclusion-wise
maximal rectangles are symmetrical, we need to find out if there exists an isomorphism from one
collection of cuts to another collection of cuts (see section 2.1). This is a special case of the graph
isomorphism problem. There is no known polynomial time for the graph isomorphism problem,
which explains why it might be advantageous to allow some symmetrical rectangles to reduce
the computational complexity. The following algorithms are an attempt to reduce the amount of
symmetrical rectangles that are obtained, but without too much (computational) effort.

First we use the symmetry of the switching operation (see section 2.1), which implies that columns

17

are equivalent: any column of Sn can be mapped onto the first column of Sn (or a submatrix that
has the same property). Because of this, we only have to look for inclusion-wise maximal rectangles
containing the first column, so any row that has a 0 in the first column can be discarded. This idea
is shown in Algorithm 3, which is a variation of Algorithm 2.

Algorithm 3 Inclusion-wise maximal rectangles for a matrix with equivalent columns

1: Input: Matrix A ∈ Rf×v with equivalent columns
2: Output: A superset Z of all non-symmetrical inclusion-wise maximal rectangles of A
3: if v = 1 then
4: R = {(i, 1) |Ai1 6= 0}
5: Z = {R}
6: else
7: Let A′ be A without its last column
8: Obtain the set Z ′ of inclusion-wise maximal rectangles of A′ by recursion
9: Use a column-wise version of Algorithm 1 to obtain Z from Z ′

10: end if

Finally, we will introduce Algorithm 4, which can be used in case we have more information about
the symmetries of A. For this purpose, we introduce the notion of different classes of nonzeros of
A:

Definition 4.4. We define a class c for each nonzero elements of a matrix A. Two different
nonzero elements belong to the same class if and only if there exists an automorphism for A which
is a permutation of rows and columns of A that maps one nonzero onto the other.

Assume we know the set of classes that nonzero entries of A belong to. For a class c and a rectangle
R of the matrix A, there are two options: either the rectangle contains a matrix entry (i, j) that
belongs to c, or it does not.

Now we can use the symmetry of the cut polytope from section 2.1. In the first case, we can assume
this matrix entry is in the first column of the matrix (which means j = 1) because of the switching
operation. Therefore, we can eliminate all rows of A that have a 0 in the first column and all
columns of A that have a 0 in the i’th row.

In the second case, we can set all entries of A that belong to class c to 0, because this prevents any
rectangle from containing an entry that belongs to such a class. This action does not introduce
new rectangles, but can make rectangles of A inclusion-wise maximal that were not inclusion-wise
maximal before. Because the extra zeros lead to more columns and rows being eliminated in further
steps, this is generally a very good trade-off for large classes.

We have not yet considered the symmetry of the cut polytope that is given by the permutation oper-
ation. For that reason (but also in general) it is very likely that there exists a direct improvement of
Algorithms 3 and 4, which gives fewer rectangles that are not inclusion-wise maximal or equivalent
to other rectangles. For the purposes of the research in this report however, these algorithms did
suffice, as the main problem for larger matrices is the large amount non-symmetrical inclusion-wise
maximal rectangles for larger cut polytopes.

18

Algorithm 4 Inclusion-wise maximal rectangles for a matrix with equivalent entries

1: Input: Matrix A ∈ Rf×v with entries belonging to classes in C
2: Output: A superset Z of all non-symmetrical inclusion-wise maximal rectangles of A
3: Z = ∅
4: for c ∈ C do
5: Pick an element (i, 1) that belongs to class c
6: A′ = (A without columns j where Ai,j = 0)
7: Obtain the set Z ′ of inclusion-wise maximal rectangles of A′ by using Algorithm 3.
8: Z = Z ∪ Z ′
9: Make all entries of A that belong to c equal to 0

10: end for

4.3 Direct Computation

Using Algorithm 2, we can list all inclusion-wise maximal rectangles of a given matrix. Using
those rectangles we can compute the rectangle covering number of the matrix directly by solving
the integer linear program (3.6) with a solver. Because the amount of inclusion-wise maximal
rectangles of Sn grows fast (see Table 3), this is only a feasible way to find the rectangle covering
number of Sn for small n. It can be deduced from Table 3 that finding the rectangle covering
number of S6 this way means solving an integer linear program with 417400 variables.

Table 3: Size and number of inclusion-wise maximal rectangles of Sn for small n. The number of
rows follows from Table 1.

n # columns # rows # inclusion-wise maximal rectangles
3 4 4 4
4 8 16 24
5 16 56 352
6 32 368 417400
7 64 116,764 ?

The rectangle covering numbers of Sn for 3 ≤ n ≤ 6 turn out to be exactly equal to 2n−1 when these
computations are done, which is equal to the amount of columns of Sn and the upper bound for
the extension complexity of Pn. This motivates looking at ower bounds for the rectangle covering
number for higher values of n that can be calculated more easily. We will simplify the bound in 2
ways: we will restrict ourselves to the pure hypermetric submatrix of Sn, and we will look at the
lower bounds for the rectangle covering number (described in section 3.3) for that matrix instead
of the rectangle covering number itself.

4.4 Pure hypermetric facets

To find lower bounds for the rectangle covering number of Sn, a very useful strategy is to find lower
bounds for a submatrix of Sn. This is especially true because the full description of the facets of
the cut polytope (and thereby the rows of Sn) is only known for small n [8] [15]. Furthermore, the
amount of rows in the submatrix can be much smaller, which makes computations easier.

19

In general, we are looking for a submatrix that has useful properties which we can use for our
computations, like a high degree of symmetry. Furthermore, we are looking for a submatrix that
can be expected to have a high rectangle covering number, otherwise the rectangle covering number
of the submatrix might be lower than the rectangle number of the entire matrix. In [1], where the
rectangle covering number of Sn is shown to be at least 1.5n−1 the submatrix of choice is the unique
disjointness matrix. More information about how the unique disjointness matrix is connected to our
work can be found in Appendix A. We will restrict ourselves instead to the submatrix consisting of
pure hypermetric inequalities, which we will call Hn. These matrices have a lot of symmetry and
can also be expected to have a high rectangle number, because pure hypermetric facets contain a
lot of roots (see Table 1), which correspond to zeros in the slack matrix (and matrices with too few
zeros generally have a low rectangle covering number [11]). Finally, the rows of these matrices can
easily be obtained. More information about how we obtained these rows, but also rows of Sn in
general, can be found in Appendix B.

First, some more properties of the pure hypermetric facets are discussed. Recall from section 2.2
that these facets are described by a vector b ∈ {−1, 0, 1}n, and that the facet is called k-gonal if
the number of nonzeros in this vector b is equal to k, for any odd k such that 3 ≤ k ≤ n. We will
define Hn,k to be the submatrix of Hn that only contains the rows corresponding to k-gonal facets.
Because each row of Hn corresponds to a vector b and each column of Hn corresponds to a cut
defined by a set of nodes W , we will index Hn and Hn,k as Hn,k

b,W .

Remark 4.5. Because W and W correspond to the same cut we can assume b(W) > 1
2

∑
i bi to

prevent counting duplicates. This is similar to Remark 2.4.

Proposition 4.6. Hn,k is a matrix with
(
n
k

)
2k−1 rows and 2n−1 columns.

Proof. The amount of columns follows from the amount of vertices of the cut polytope. To count
the number of rows, we count all vectors b that yield a different facet. There are

(
n
k

)
ways to

choose k nonzero elements in b and there are 2 options for each nonzero: 1 or −1. We assume∑
i bi > 0 because of Remark 2.4, which gives a total of

(
n
k

)
2k−1 k-gonal pure hypermetric facets.

This number is consistent with Table 2.

Because for each n the number of vectors b ∈ {−1, 0, 1}n is equal to 3n, the total amount of pure
hypermetric facets is at most exponential in n. When compared to the values in Tables 1 and 2,
this seems to be much smaller than the total number of facets of Pn.

We want to compute the entries of the slack matrix directly. From section 2.2 we know the inequality
(2.1) in combination with the expression for hypermetric inequalities (2.2), which gives

b(W)b(W) ≤ β(b). (4.1)

20

For pure hypermetric facets we can work this out a bit more:

b(W)b(W) =
1

4

(
(b(W) + b(W))2 − (b(W)− b(W))2

)
(4.2a)

=
1

4

(∑
i

bi

)2

− (b(W)− b(W))2

 (4.2b)

≤1

4

(∑
i

bi

)2

− 1

 , (4.2c)

where the last inequality holds because
∑
i bi is odd. Since b ∈ {−1, 0, 1}n, we can always find

some W for any b such that (b(W)− b(W))2 = 1, we conclude that

β(b) =
1

4

(∑
i

bi

)2

− 1

 . (4.3)

Using (4.1) and (4.3) we can compute entries of the slack matrix Hn,k:

Hn,k
b,W = β(b)− b(W)b(W) =

1

4

(
(b(W)− b(W))2 − 1

)
(4.4a)

=
1

4

(2b(W)−
∑
i

bi

)2

− 1

 (4.4b)

=

(
b(W)− 1

2

∑
i

bi +
1

2

)(
b(W)− 1

2

∑
i

bi −
1

2

)
. (4.4c)

Equation (4.4c) gives the intuition that the value of Hn,k
b,W is quadratic in the value of b(W). The

zeros of Hn,k are given by (b,W) such that b(W) and b(W) are as close together as possible.

Proposition 4.7. Each column of Hn,k contains
(
n
k

)(
k

k−1
2

)
zeros.

Proof. Because of the symmetry of the cut polytope, we know that every column must contain the
same amount of zeros, so we will calculate the amount of zeros in the column indexed by the empty
cut. Substituting W = ∅ and Hn,k

b,W into (4.4b) gives
∑
i bi = 1 or

∑
i bi = −1, but we can ignore

the latter because of Remark 2.4. Now we need to count the amount of different vectors b that
contain k nonzeros, of which k−1

2 are negative and the rest are positive. This gives the result of(
n
k

)(
k

k−1
2

)
zeros per column.

Proposition 4.8. Hn,k contains k−1
2 classes of nonzeros.

21

Proof. We will investigate the conditions under which a cut W and a hypermetric facet b, can be
mapped onto another cut W ′ and another hypermetric facet b′, using the symmetries of the cut
polytope (section 2.1). Note that we can apply the switching operation to both pairs (W,b) and
(W ′,b′) to obtain (∅, b̃) and (∅, b̃′). Next we can apply the permutation operation (which leaves
the empty cut invariant) to map b̃ onto b̃′ if and only if b̃ and b̃′ contain the same number of 1’s
and −1’s. Because both vectors contain k nonzeros, this condition is equivalent to

∑
i b̃i =

∑
i b̃
′
i.

We assume both sums are positive because of Remark 2.4, and note that both must be odd because
k is odd, which leaves k−1

2 possible values for the sums. Therefore, we can conclude that there are
k−1
2 different classes of pairs (W,b) and therefore k−1

2 classes of nonzeros of the matrix Hn,k.

Remark 4.9. If we inspect the number of different values that Hn,k
b,W can take in (4.4), we can see

that there are k−1
2 different possible values. Different values in Hn,k must correspond to different

classes of nonzeros, which leads to the conclusion that each class of nonzeros in Hn,k is characterized
by its own unique value in that matrix.

4.5 Theoretical description for Hn,3

In this section, we will use the generalized fooling set (Proposition 3.13) to show that the rectangle
covering number of Hn,3 is equal to 2n−1 when 3 ≤ n ≤ 6. In this case, the generalized fooling set
F will be equal to supp(Hn,3). To show the generalized fooling set bound, we need to calculate the
maximum amount of nonzero elements in a rectangle.

Lemma 4.10. Let j ∈ Z such that 0 ≤ j ≤ n− 3. Then

max
R∈rects(Hn,3)

|R| = max
j

(
n− j

3

)
2j . (4.5)

Proof. Assume without loss of generality that R := arg maxR∈rects(Hn,3) |R| contains the column
indexed by ∅. We assume

∑
i bi > 0 because of Remark 2.4, so

∑
i bi = 1 or

∑
i bi = 3. Let

B := {b |b ∈ {−1, 0, 1}n, Hn,3
b,∅ 6= 0}.

Using (4.4b), we simplify this to

B = {b |b ∈ {0, 1}n,
∑
i

bi = 3}.

Given a subset B1 ⊆ B, define

W := {W |Hn,3
b,W 6= 0 ∀b ∈ B1}.

Because of Remark 4.5 and (4.4), W only contains W satisfying b(W) = 3. Now we see that W
just consists of all cuts that contain all vertices of Kn that are labeled 1 by any b ∈ B1. Let j be
the number of vertices that are labeled 0 by all b ∈ B1, then |W| = 2j . There are n − j vertices
left that are labeled 1 by at least some b ∈ B1, which means that we can find

(
n−j
3

)
solutions b for

a given j.

This means that any inclusion-wise maximal rectangle of Hn,3 has size
(
n−j
3

)
2j for some j ∈

{0, 1, ..., n− 3}. From this, we derive (4.5).

22

Table 4: The values of
(
n−j
3

)
2j for 0 ≤ j ≤ n− 3 and 3 ≤ n ≤ 7.

n j
(
n−j
3

)
2j

(
n
3

)
3 0 1 1

4
0 4

4
1 2

5
0 10

101 8
2 4

6

0 20

20
1 20
2 16
3 8

7

0 35

35
1 40
2 40
3 32
4 16

Theorem 4.11.

rc(Hn,3) ≥

{
2n−1, if 3 ≤ n ≤ 6
8
5

(
n
3

)
, if n ≥ 6

(4.6)

Proof. We use the generalized fooling set bound (3.4), where A = Hn,3 and F = supp(Hn,3). Using
Propositions 4.6 and 4.7 we know that |F| =

(
n
3

)
2n−1 and from Lemma 4.10 we know that

max
R∈rects(A)

|R ∩ F| = max
j

(
n− j

3

)
2j ,

so we have

rc(Hn,3) ≥
(
n
3

)
2n−1

maxj
(
n−j
3

)
2j
,

The values of
(
n−j
3

)
2j and

(
n
3

)
are shown in Table 4 for illustration. For 3 ≤ n ≤ 6, maxj

(
n−j
3

)
2j =(

n
3

)
, which gives a rectangle covering bound of 2n−1. For n ≥ 6, maxj

(
n−j
3

)
2j = 5 · 2n−4, which

gives a rectangle covering bound of 8
5

(
n
3

)
.

Corollary 4.12. For 3 ≤ n ≤ 6,

xc(Pn) = rc(Sn) = rc(Hn,3) = 2n−1

23

4.6 Weighted fooling sets for pure hypermetric facets

In the previous section, we have shown that the extension complexity of Pn is equal to 2n−1 for
3 ≤ n ≤ 6 by using the rectangle covering bound of Hn,k for k = 3. For any fixed k, this cannot work
for arbitrarily large n. This is because the amount of rows of Hn,k, which is an upper bound for
rc(Hn,k), grows polynomially (see (4.6)), but 2n−1 grows exponentially. Therefore in this section,
we include more values for k, and we show that we can generalize the result of the previous section
to compute that xc(Pn) = 2n−1 for 3 ≤ n ≤ 8, as was given in Theorem 4.1. We will do this doing
the weighted fooling set bound. However, in the next section we will show that this is as far as the
weighted fooling set bound (or equivalently the fractional rectangle covering number) can lead us
when applying it to the submatrices Hn,k.

We know that Hn,k contains k−1
2 classes of nonzeros (Proposition 4.8 and that each of these classes

has its own unique values in this matrix (Remark 4.9). Furthermore, we know that for the weighted
fooling set bound we can assign the same weight to nonzeros of the same class (Theorem 3.18).
One strategy to determine what the weights of the different classes should be to give the best
weighted fooling set bound, is to iterate over all non-symmetrical rectangles in the matrix (using,
for example, Algorithm 4) and count for each of these rectangles how many elements they contain
from each class. In a simple case it might be possible to see this way that using some class as the
generalized fooling set, the best bound can be obtained. In general, one could construct a linear
program to find the best weights.

We implemented this algorithm to decide whether or not frc(Hn,k) = 2n−1 for 3 ≤ n ≤ 9. The
results can be seen in Table 5.

Table 5: The (bounds for the) fractional rectangle covering numbers of Hn,k, resulting from our
computations.

n frc(Hn,3) frc(Hn,5) frc(Hn,7) frc(Hn,9)
3 4 - - -
4 8 - - -
5 16 16 - -
6 32 32 - -
7 56 64 32 -
8 <128 128 <128 -
9 <256 <256 <256 <256

We can see that for all 3 ≤ n ≤ 8, there is at least one matrix Hn,k that has a fractional rectangle
covering number equal to 2n−1, but not for n = 9. This does not in itself mean that frc(H9) < 28.
To see this, consider a rectangle as defined by its columns. Rectangles that cover many elements of
Hn,k for a specific k might cover very little elements of Hn,k′ for some k 6= k′. However, in the next
section we will show that we can find some rectangles that cover enough elements in each Hn,k to
conclude that frc(Hn,k) < 2n−1 for all n ≥ 9.

In all computations, it turned out that the best bound was obtained by only assigning weight to
the class corresponding to the smallest value in Hn,k. It turns out that nonzeros of higher value are
too common in large rectangles. In fact, instead of the more general weighted fooling set bound,
the general fooling set gives the same result for the set of all the smallest entries. The advantage of

24

Table 6: The number of rectangles given by Algorithm 4) for the matrix Hn, in comparison to the
amount of rectangles of Hn and Sn without optimization.

n # rectangles of Sn # rectangles of Hn # rectangles checked
3 4 4 1
4 24 24 2
5 352 352 16
6 417400 12536 173
7 ? 2121108 9232
8 ? ? 3204482

using the weighted fooling set is that we know that we cannot do any better by choosing another
set. The fact that the smaller entries of the matrix seem harder to cover can also be seen in the
next section.

The total amount of rectangles that we checked with our method is shown in Table 6. For n = 9, not
all rectangles were checked, but the computation was stopped after ‘large enough’ rectangles were
found. It can be seen that we drastically reduced the total amount of rectangles that we needed
to check by using the rectangle enumeration algorithms we designed for symmetrical matrices in
section 4.2. However, the total number of rectangles that are checked still increases very fast with
n. This is partially because our algorithm does not remove all symmetrical rectangles. However, it
is very likely that the total amount of rectangles that are not symmetrical grows very fast by itself,
which makes the computations difficult for larger values of n.

4.7 Rectangle coverings of pure hypermetric facets

In this section, we will show limits to bounding the (fractional) rectangle covering number of Sn

by the fractional rectangle covering number of Hn. To this end, we construct (fractional) rectangle
coverings of Hn.

We look at rectangles in Hn as described by their columns, which are indexed by cuts of Kn.
Our goal is to find large rectangles, such that we can cover the entire matrix with less than 2n−1

rectangles. We can use our knowledge from section 2.1 to conclude that each non-symmetrical
rectangle is defined by the relative distances (as in Definition 2.3) between the cuts that correspond
to columns of the rectangle.

We consider 3 different kinds of rectangles: a rectangle described by a single cut that we will call
R0, a rectangle that is described by two cuts that are a distance 1 apart, which we will call Rp,
and finally a rectangle that is described by a single cut and all cuts that have distance at most 1
to that single cut, which we will call R∗.

We want to count how many elements from each class of nonzeros in Hn each rectangle contains.
From Remark 4.9 we know that there are k−1

2 classes of nonzeros in Hn,k, which correspond to a

unique value in Hn,k. For simplicity, we will number the classes from 1 to k−1
2 and indicate this

class number with c. In terms of the entries of the slack matrix, given in (4.4), we have the relation
|b(W)− b(W)| = 2c+ 1. Coincidentally, the zero-entries of the slack matrix correspond to c = 0.

25

For c ≥ 1 we define the counting function

φ(R, n, k, c),

which gives the number of nonzeros of class c in the matrix Hn,k that are contained in the rectangle
R.

Proposition 4.13. The number of nonzeros of class c in the matrix Hn, k that are contained in
the rectangles R0, R0 and R∗ respectively are as follows:

φ(R0, n, k, c) =

(
n

k

)(
k

k−1
2 − c

)
(4.7a)

φ(Rp, n, k, c) =

2

(
n

k

)(
k

k−1
2 − c

)
− 2

(
n− 1

k − 1

)(
k − 1
k−1
2 − c

)
if c = 1

2

(
n

k

)(
k

k−1
2 − c

)
if c ≥ 2

(4.7b)

φ(R∗, n, k, c) =

k − 3

2

(
n

k

)(
k

k−1
2 − c

)
if c = 1(

n+ 1− k +
k − 5

2

)(
n

k

)(
k

k−1
2 − c

)
if c = 2

(n+ 1)

(
n

k

)(
k

k−1
2 − c

)
if c ≥ 3

(4.7c)

The derivation of the expressions in Proposition 4.13 can be found in Appendix C.

Theorem 4.14. If n > k + 3, then frc(Hn,k) < 2n−1.

Proof. We check under which conditions φ(Rp, n, k, c) > φ(R0, n, k, c). This is trivially true when
c ≥ 2. Solving φ(Rp, n, k, 1) > φ(R0, n, k, 1) yields n > k + 3. This means that when n > k + 3, a

rectangle given by two cuts that are a distance 1 apart contains more elements from Mn,k
j than a

rectangle given by a single cut, for all values of c. Therefore, if we construct a fractional rectangle
covering that consists of all the symmetries of Rp, we can cover all elements using less than 2n−1

fractional rectangles.

Theorem 4.15. If k > 5, then frc(Hn,k) < 2n−1

Proof. Similar to the proof of Theorem 4.14, we check under which conditions φ(R∗, n, k, c) >
φ(R0, n, k, c). This relation is trivially true for c ≥ 2 and φ(R∗, n, k, 1) > φ(R0, n, k, 1) gives k > 5,
so for any k > 5 we can construct a fractional rectangle covering consisting of less than 2n−1

fractional rectangles.

All matrices Hn,k that can still have frc(Hn,k) = 2n−1 despite Theorems 4.14 and 4.15 are H3,k

for 3 ≤ k ≤ 6 and H5,k for 5 ≤ k ≤ 8. For all of these matrices, we indeed have frc(Hn,k) = 2n−1,
because of our computational results for these values in Table 5.

Next, we extend our results from the matrices Hn,k to the matrices Hn by considering affine
combinations of the rectangles Rp and R∗.

26

Theorem 4.16. For n ≥ 9, frc(Hn) < 2n−1.

Proof. If we can find an affine combination of Rp and R∗ that covers more nonzero elements of
each class than R0, we can construct a fractional rectangle covering of Hn using less than 2n−1

fractional rectangles, similar to our construction in Theorems 4.14 and 4.15.

It is easy to verify that

λφ(Rp, n, k, c) + (1− λ)φ(R∗, n, k, 1) > φ(R0, n, k, c)

is true for all allowed values of c and n ≥ 9, for all 3
4 < λ < 6

7 . Therefore, we have found an
appropriate affine combination and we conclude that frc(Hn) < 2n−1 for n ≥ 9.

Finally, we construct a rectangle covering of Hn for large n, to show that not only frc(Hn) < 2n−1

holds for large n, but also rc(Hn) < 2n−1.

Theorem 4.17. For large enough n, rc(Hn) < 2n−1.

Proof. It is easy to verify that for n ≥ k ≥ 7, φ(R∗, n, k, c) ≥ 2 for all allowed values of c. Therefore
the set of the 2n−1 symmetries of R∗ contains each nonzero matrix element of Hn at least twice,
except for the submatrices Hn,3 and Hn,5.

To make this set a rectangle covering, we need to add a rectangle covering of the submatrices Hn,3

and Hn,5. For simplicity, we will choose the rows of these submatrices as rectangles, which are
4
(
n
3

)
+ 16

(
n
5

)
rectangles in total, by Proposition 4.6. Therefore, we have a rectangle covering of Hn

of

2n−1 + 4

(
n

3

)
+ 16

(
n

5

)
rectangles.

We will remove some symmetries of R∗ from our rectangle cover that do not overlap with each
other. Because each element was covered at least twice, removing some non-overlapping rectangles
still leaves a rectangle cover.

A simple way to choose non-overlapping symmetries of R∗ is to group the vertices of Kn into
groups of 3 (or more) vertices and only consider cuts that do not contain any edge between vertices
of the same group. This way, the distance between the cuts is at least 3. Now we can remove any
symmetries of R∗ that have these cuts as their central cut. These rectangles do not overlap because
R∗ only covers matrix elements corresponding to cuts that have distance at most 1 to the central
cut, so we are left with a rectangle covering.

The number of rectangles in this rectangle covering is

2n−1 − 2b
n
3 c−1 + 4

(
n

3

)
+ 16

(
n

5

)
.

Because 2b
n
3 c−1 grows exponentially and 4

(
n
3

)
+ 16

(
n
5

)
grows polynomially, we know that in the

limit of n to infinity, this expression will be less than 2n−1. Numerically, we can verify that this is
true for all n ≥ 93. Therefore, we have constructed a rectangle covering for Hn that has less than
2n−1 rectangles for n ≥ 93 and we have rc(Hn) < 2n−1 for n ≥ 93.

27

We have chosen the rectangles Rp and R∗ because they often turned out to contain many elements
in the computations for section 4.6. Geometrically it makes sense to pick a rectangle from which
the columns consist of a set of cuts which are close together on the cut polytope, because that
maximizes the number of facet-defining inequalities of the cut polytope that have slack for all those
cuts together. Therefore, these rectangles and generalizations are good candidates for constructing
rectangle coverings for larger submatrices of Sn.

An example for a generalization of R∗ is a rectangle that is described by a single cut and all cuts
that have distance at most z to that single cut, where z is some positive number. Another example
of a generalization of R∗ would be a single cut and some cuts that have distance at most 1 to that
single cut, such that all these cuts are equal for a subset of nodes of size z.

28

5 Conclusions and Recommendations

In this report, we have shown that the rectangle covering bound on the extension complexity of
the cut polytope is equal to 2n−1 for n up to 8. We have done this using the fractional rectangle
covering number of the slack matrix containing all pure hypermetric facets as a lower bound.

To do the computations necessary for this result, we have first explored the relation between the
fractional rectangle covering number and fooling set bounds, in the form of the weighted fooling set
bound. We have shown that the hyperplane separation bound is not stronger than the weighted
fooling set bound in our limit. Furthermore, we have explored how to use symmetry when computing
rectangle cover bounds to greatly reduce the amount of computational work.

Finally, we have used some insights given by the results of our computation to show that the
fractional rectangle covering number of the pure hypermetric submatrix is lower than 2n−1 for
n ≥ 9, and also that the rectangle covering number of this submatrix is less than 2n−1 for large
enough n, where n ≥ 93 suffices.

Our result showing that the hyperplane separation bound is not stronger than the fractional rect-
angle covering bound when the extension complexity is equal to the number of columns showed
some weaknesses of the hyperplane separation bound. The normalization factor in the hyperplane
separation bound makes it weaker when scaling rows or columns of the matrix, while this does not
make a difference for the nonnegative rank of the matrix. The normalization factor also leads to
weaker bounds in matrices in which the smaller entries are hard to cover with rectangles. Therefore,
it would be interesting to investigate whether the hyperplane separation bound could be improved
to address these issues.

Further research would be needed to decide whether or not the extension complexity of the cut
polytope is equal to 2n−1 for all n. To get more computational results, our approach for the pure
hypermetric facets could perhaps be applied to a larger subset of faces or facets. The set of all
hypermetric facets seems like an obvious candidate for this purpose. However, because of the greater
amount of facets and the lower degree of symmetry, this is a computationally challenging task, and
our algorithms would have to be improved to do computations beyond n = 9.

Another interesting idea would be to try to construct smaller rectangle coverings for a larger subsets
of faces or facets like the hypermetric facets. This might lead to a method to show that the rectangle
covering bound is not strong enough to show that the extension complexity of the cut polytope
is equal to 2n−1. The downside of this result would be that it still does not give any conclusions
about the extension complexity.

Maybe the best chance to decide whether or not the extension complexity of the cut polytope is
equal to 2n−1 is to theoretically prove that the fractional rectangle covering number of the slack
matrix of all hypermetric facets is equal to 2n−1. This is because the space of hypermetric facets
(and faces) still has some nice properties and symmetries to be able to make a theoretical argument,
given that the pure hypermetric facets are not enough.

29

A Unique Disjointness Matrix

In [1], the unique disjointness matrix to compute a rectangle covering bound of 1.5n−1 for the
extension complexity of the cut polytope. This is another choice for a submatrix of the slack matrix
of the cut polytope than we have made in the report. In order to see how this matrix compares to
our results, we will interpret the unique disjointness matrix in terms of hypermetric inequalities,
and also in terms of the cut polytope, as it is usually defined for the correlation polytope. We start
with the definition of the facet defining inequalities for the unique disjointness matrix. For this
purpose, we will index the columns of the slack matrix of the cut polytope with all subsets W of
{1, 2, . . . , n− 1}. This indeed gives all possible cuts δ(W).

Proposition A.1. For each A ⊆ {1, 2, . . . , n− 1}, there exists a face of the cut polytope such that
the cut δ(W) is contained in the face if and only if |W ∩A| = 1.

Proof. Fix A and consider the hypermetric inequality with characteristic vector b, such that

bi =

1 if i ∈ A
2− |A| if i = n

0 otherwise.

Because
∑
i bi = 2 we have b(W)b(W) = b(W)(2 − b(W)) ≤ 1 for any W . Furthermore, if

b(W)b(W) = 1 then we have b(W) = 1. Because W does not contain node n, this means
|W ∩A| = 1. Therefore, the hypermetric inequality b(W)b(W) ≤ 1 satisfies our property.

This result means that the faces that define the unique disjointness matrix are hypermetric. They
are not pure hypermetric faces, which means the results elsewhere in this report cannot be used to
draw conclusions about the (fractional) rectangle covering number of the unique disjointess matrix.
However, the following is not hard to see:

Proposition A.2. The rectangle covering number of the unique disjointness matrix is less than
2n−1 for any n ≥ 3

Proof. In the unique disjointness matrix , the zero-entries correspond to |W ∩ A| = 1. Therefore,
the row indexed A = ∅ contain only nonzero entries, because there is no W that satisfies |W ∩∅| = 1.
Consider the submatrix U ′ of the unique disjointness matrix without this row. U ′ has (2n−1 − 1)
rows, so rc(A′) ≤ 2n−1 − 1. Furthermore, each column of U ′ has at least one nonzero entry: if
|W | ≥ 2 we can choose A = W and if |W | = 1 we can pick A to be disjoint from W . Because each
column of U ′ has at least one nonzero, we can extend the rectangle covering of U ′ to also include
the row indexed by A = ∅, which means the rectangle covering number of the unique disjointness
matrix is less than 2n−1.

Because the rectangle covering number of the unique disjointness matrix is less than 2n−1, it makes
sense to invetigate other submatrices of the slack matrix of the cut polytope, like the matrix defined
by the pure hypermetric facets that we used in the report. Finally, because of our result in Theorem
3.20, we also know that the hyperplane separation bound on the unique disjointness matrix will be
less than 2n−1.

30

B Computing Slack matrices

To investigate the rectangle covering number of the cut polytope for small values of n, first we need
to obtain its slack matrix. In this appendix, 3 methods are described for doing so:

1. Exhaustively computing all facets of the cut polytope with the C library lrslib [16]

2. Using the known classification of facets from SMAPO,[9] and computing all the symmetries
of the facets by calculating the symmetry group of cut(n) using nauty.[17]

3. Listing all symmetries of a hypermetric inequality by listing all possible vectors b for that
inequality.

Each method has his own advantages and disadvantages:

The first method can be used to quickly and independently calculate all facets for small values of
n. The downside is that these facets are not classified. Furthermore, the total amount of facets
quickly becomes too large for this method to be feasible above n = 6.

The second method is the most involved, but can give any class of facets that is known if we can
list all symmetries (switching and permutation) of the cut polytope. We can list these symmetries
as permutations of the vertices of the cut polytope. This can be done reasonably quickly up to
n = 7 by using nauty, which can be used to compute generators for the symmetry group of the cut
polytope. These generators can be applied recursively to the identity permutation to make a list of
all the symmetries. Because nauty requires a vertex-colored graph as input, we need to construct
such a graph from the cut polytope, such that any automorphism for the graph is an automorphism
for the cut polytope. To do this, the cut polytope can be seen as an edge colored graph, where
the colors encode the euclidian distances between the vertices. Subsequently this graph can be
converted to a vertex colored graph using a technique described in the nauty user guide, which is
shown in Figure 1.

The third method can be used to obtain rows of the slack matrix for only the hypermetric inequal-
ities. This method works for any n as long as the required matrix is not too large. The idea is
that we can iterate over all possible vectors b. Here we have to keep in mind the permutation and
switching operations on the cut polytope. The permutation operation gives pemutations of b and
the switching operation flips the signs of any set of elements of b. Since b and −b give the same
inequality, we can assume

∑
i bi ≥ 0 to find less duplicate rows. In fact, we can only find duplicate

rows if
∑
i bi = 0, which can only happen for faces and not for facets, because for hypermetric

facets the sum of b is always odd.[8]

31

Figure 1: Technique to write an edge colored graph to a vertex colored graph with ”the same”
automorphisms.

32

C Special rectangles calculations

In this appendix, we show the derivation of the formulas given in Proposition 4.13. We will use the
formula

|(b(W)− b(W)| = 2c+ 1

for pure hypermetric facets that are defined by b. These vectors b have k ≤ n nonzeros, which are
all equal to 1 or −1. Furthermore, we have 1 ≤ c ≤ k−1

2 . We assume
∑
i bi > 0 because of Remark

2.4.

We start with φ(R0, n, k, c). BecauseR0 consists of a single column and all columns are symmetrical,
we can pick the column W = ∅. This gives

∑
i bi = 2c+1. Because

∑
i bi > 0, b contains k nonzero

elements, from which k−1
2 −c are equal to −1 (and the other nonzero elements are equal to 1). This

gives
(
n
k

)(
k

k−1
2 −c

)
solutions for b, which means

φ(R0, n, k, c) =

(
n

k

)(
k

k−1
2 − c

)
.

Now we consider φ(Rp, n, k, c). Rp consists of 2 columns that are a distance 1 apart. Distance here
means the minimal amount of vertices that need to change sides for the cuts to be equal. We pick
the columns indexed by W = ∅ and W = {1}. Because of symmetry between these two columns,
we only need to count the elements in one of the columns and multiply the result by 2. To do this,
we consider the result for

φ(R0, n, k, c)

and count all the vectors b that are a solution to
∑
i bi = 2c + 1 but give a zero in the second

column, which gives the following system of equations:

{∑
i bi = 2c+ 1

|b1 − b({2, 3, . . . , n})| = 1

This system can only be satisfied if c = 1 and b1 = 1. Now we use some combinatorics to find
out that the number of vectors b that satisfy b1 is equal to

(
n−1
k−1
)(k−1

k−1
2 −c

)
. Combining all this

gives

φ(Rp, n, k, c) =

2

(
n

k

)(
k

k−1
2 − c

)
− 2

(
n− 1

k − 1

)(
k − 1
k−1
2 − c

)
if c = 1

2

(
n

k

)(
k

k−1
2 − c

)
if c ≥ 2.

In the case c = 1, we could of course had substituted c = 1 into the formula, but not doing so
stresses the similarities between the terms.

For φ(Rp, n, k, c), we consider the column indexed by W = ∅ and all n cuts that differ in one
element. First we will determine the set of vectors b that give nonzeros in the slack matrix for all
these cuts, which means |b(W) − b(W)| ≥ 3 for all W that satisfy |W | ≤ 1. For any b that has∑
i bi = 3, we can find a W such that |b(W)−b(W)| = 1 which is no good, so

∑
i bi ≥ 5. For any

33

b that has
∑
i bi = 5, we can never find a W such that |b(W) − b(W)| = 1, so we conclude that

our rectangle consists of exactly the rows indexed by b such that
∑
i bi ≥ 5.

Given these rows, we calculate φ(Rp, n, k, c) by counting how many instances of each class of nonzero
occurs in the column indexed by W = ∅ and W = {1}. By symmetry, we can multiply the latter
by n and add the former to get the correct total.

• In the column W = ∅, we have the same result as for φ(R0, n, k, c) except when c = 1, for
which there are no elements.

• In the column W = {1}, we have (
∑
i bi) − 2b1 = 2c + 1. We need to count the amount

of solutions that satisfy
∑
i bi ≥ 5, which gives 2c + 1 + 2b1 ≥ 5. Therefore, for c = 1, we

need to count all vectors b that satisfy
∑
i bi ≥ 5 and b1 = 1, for c = 2 we need to count

all vectors b that satisfy
∑
i bi ≥ 5 and b1 ≥ 0 and for c ≥ 3 we have the same result as for

φ(R0, n, k, c).

By adding everything and using combinatorial identities to simplify the expression, we obtain

φ(R∗, n, k, c) =

k − 3

2

(
n

k

)(
k

k−1
2 − c

)
if c = 1(

n+ 1− k +
k − 5

2

)(
n

k

)(
k

k−1
2 − c

)
if c = 2

(n+ 1)

(
n

k

)(
k

k−1
2 − c

)
if c ≥ 3.

34

D Iterative facet approach

We started the project which is described in this report with another idea to obtain a submatrix of
a slack matrix that has a high rectangle covering number. This idea was to start with a submatrix
that consists of a single row and subsequently iteratively add new rows that are likely to increase
the rectangle covering number. Such a row could be found by computing a rectangle cover using the
minimal amount of rectangles and then picking a row that could not be covered by these rectangles.
Therefore, our algorithm was as follows:

Algorithm 6 Iterative rectangle covering bound

1: Output: A submatrix M of A that has the same rectangle cover number as A
2: Initialize M as an empty matrix
3: Initialize C as an empty set of rectangles of M .
4: while there exists a row r of A that is not covered by C do
5: Add row r to the matrix M
6: Compute the minimal cover C of M
7: end while

To compute a minimal rectangle cover in Algorithm 5 (line 6), we used an integer linear program-
ming solver for the integer linear program described in (3.6). To find a row that is not covered
by the existing rectangle cover, we used another integer linear program. This last integer linear
program consisted of one part that determines a face-defining equality for the cut polytope, which
included boolean variables that indicated which vertices of the cut polytope had slack with respect
to the face-defining equality. The second part of this integer linear program enforced that the row of
the slack matrix that corresponded to this inequality could be not covered by extending rectangles
of the existing rectangle cover to this new row.

We used this approach up to n = 6, to find submatrices that have a rectangle covering number of
2n−1. The main bottleneck was the integer linear program to find a minimal rectangle cover of each
submatrix. The total amount of inclusion-wise maximal rectangles in these submatrices quickly
became very large (exponential in the amount of rows of the matrix), which implied solving an
integer linear program with millions or billions of variables. Because of the lack of knowledge about
the structure of this submatrix, it was hard to optimize this procedure, which is why we abandoned
it.

35

Bibliography

[1] Volker Kaibel and Stefan Weltge. A short proof that the extension complexity of the correlation
polytope grows exponentially. Discrete & Computational Geometry, 53(2):397–401, Dec 2014.

[2] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Programming, 36(2):157–
173, June 1986.

[3] Itamar Pitowsky. Correlation polytopes: Their geometry and complexity. Math. Program.,
50(3):395–414, April 1991.

[4] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Tiwary, and Ronald Wolf. Linear vs.
semidefinite extended formulations: Exponential separation and strong lower bounds. Proceed-
ings of the Annual ACM Symposium on Theory of Computing, 11 2011.

[5] Günter M. Ziegler. Lectures on 0/1-Polytopes, pages 1–41. Birkhäuser Basel, Basel, 2000.

[6] M. Laurent, M.M. Deza, and V.P. Grishukhin. The symmetries of the cut polytope and of some
relatives, pages 205–220. Number 4 in DIMACS series in discrete mathematics and theoretical
computer science. American Mathematical Society, United States, 1991. Pagination: 16.

[7] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
USA, 1986.

[8] Michel Deza and Monique Laurent. Facets for the cut cone i. Mathematical Programming,
56:121–160, 8 1992.

[9] T. Christof. SMAPO. Available at http://comopt.ifi.uni-
heidelberg.de/software/SMAPO/cut/cut.html.

[10] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. Jour-
nal of Computer and System Sciences, 43(3):441–466, 1991.

[11] Samuel Fiorini, Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. Combinatorial
bounds on nonnegative rank and extended formulations. Discrete Mathematics, 313(1):67–83,
2013.

[12] Changlin Wan, Wennan Chang, Tong Zhao, Mengya Li, Sha Cao, and Chi Zhang. Fast and
efficient boolean matrix factorization by geometric segmentation, 2020.

[13] Thomas Rothvoss. The matching polytope has exponential extension complexity, 2017.

[14] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis problem.
IEEE Transactions on Knowledge and Data Engineering, 20(10):1348–1362, 2008.

[15] V.P. Grishukhin. All facets of the cut cone cn for n = 7 are known. European Journal of
Combinatorics, 11(2):115–117, 1990.

[16] David Avis. A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm,
pages 177–198. Birkhäuser Basel, Basel, 2000.

[17] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii, 2013.

36

	Introduction
	Cut Polytope
	Symmetry
	Facets

	Bounds for Extension Complexity
	Extension Complexity
	Rectangle Covering Bound
	Bounds for the Rectangle Covering Number
	Integer Linear Programming Formulation
	Hyperplane Separation Bound

	Rectangle covering bound of the Cut Polytope
	Introduction
	Enumerating Rectangles
	Direct Computation
	Pure hypermetric facets
	Theoretical description for Hn,3
	Weighted fooling sets for pure hypermetric facets
	Rectangle coverings of pure hypermetric facets

	Conclusions and Recommendations
	Unique Disjointness Matrix
	Computing Slack matrices
	Special rectangles calculations
	Iterative facet approach
	Bibliography

