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Abstract 

The internet is growing at a rapid speed, as well as the need for 

extracting valuable information from the web. Web data is messy and 

disconnected, which poses a challenge for information extraction 

research. Current extraction methods are limited to a specific website 

schema, require manual work, and hard to scale. In this thesis, we 

propose a novel component-based design method to solve these 

challenges in a generic and automatic way. The global design consists 

of 1. a relevancy filter (binary classifier) to clean out irrelevant 

websites. 2. a feature extraction component to extract useful features 

from the relevant websites, including XPath. 3. an XPath-based 

clustering component to group similar web page elements into clusters 

based on Levenshtein distance. 4. a knowledge-based entity recognition 

component to link clusters with their corresponding entities. The last 

component remains for future work. Our experiments show huge 

potential in this generic approach to structure and extract web data at 

scale without the need for pre-defined website schemas. More work is 

needed in future experiments to link entities with their attributes and 

explore untapped candidate features. 

 

Keywords: Web information extraction, Machine learning, Web data 

wrapping, Wrapper induction, Relevancy filter, Clustering, Entity 

recognition, XPath, DOM, HTML, JSON, Levenshtein distance, 

Design science.  
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Introduction 

The internet is full of web pages growing exponentially at a rapid rate. 

Web pages typically contain unstructured and semi-structured data in 

the form of natural language text, images, videos, tables, etc., that is 

valuable for nowadays business. This big data has led to open business 

opportunities and data-driven applications. Web data analytics and 

extraction can offer significant value to companies in many ways, 

including higher revenues, better customer satisfaction, and more 

efficient operations. Many industries have used web data as a 

competitive advantage tool for different needs, including business 

contact information collecting from public business directories, brand 

and competitor web present monitoring, market analysis, collecting job 

postings from job portals, product information from webshops, and 

online products and pricing comparison. As a result of the business 

interest and practical applications, technologies for processing and 

extracting value from the web data have become an important study 

area, so as the need for automated methods to collect and extract 

relevant information from the web, accurately and expeditiously.  

Web Information Extraction is the process of extracting 

information from web pages data, which usually comes in a semi-

structured format and converting that into structured information. 

This process includes collecting web page data by downloading the 

actual content of the page. A typical web page is formatted in an 

HTML document and other web technologies such as JavaScript and 

(Cascading Style Sheets) CSS. The HTML document is a hierarchy of 

HTML elements that are normally represented as DOM (Document 

Object Model). 

Current web information extraction methods which aim at 

extracting information from the web pages are limited to particular 

website HTML document structure, and therefore hard to scale on 

different websites. Such methods are specific to a template definition 

or schema structure. Suppose someone is interested in extracting web 

information from 1 million websites, normally a developer has to hard 
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code scripts to extract data form each website individually, which 

means 1 million scripts and countless hours. The same issue is found 

in other solutions that aim at allowing non-technical people to annotate 

the data of interest visually through a user interface. This is clearly 

infeasible at scale. 

This thesis discusses different approaches found from the literature 

related to Web Information Extraction and propose a novel 

component-based method based on the established methodology of 

(Wieringa, 2014). The global design includes several components; each 

component has a local goal and contributes to the global design. The 

main contribution is an automatic generic approach that can extract 

information from web pages from any website regardless of its 

structure. The method takes a collection of web pages, filter them 

based on a relevancy filter classifier. Candidate features (including 

XPath) are then extracted from the relevant websites. A clustering 

component groups similar HTML sections into clusters given the 

extracted features. Finally, clusters are linked to entities using a 

knowledge-based approach. The ideal output is a structured key-value 

pairs information in a JSON format. The output can then be used to 

fulfill the need for structured information in many applications and 

smart services. 

The rest of the thesis is organized as follows. The research 

background and motivation are presented in the following section. Web 

Information Extraction methods found from literature and related 

work are in Section 3. Section 4 includes the proposed method, a design 

science research, including the research requirements, goals, and 

existing challenges. The system design components for the automatic 

generic method are discussed in detail in Section 5, including relevancy 

filter, feature extraction, clustering, and entity recognition component. 

Finally, section 6 provides conclusions and answers to the research 

questions with a discussion and future research directions. 

  



 12 

 

Background and Motivation 

As described in the previous section, the need for structured 

information is significantly increasing. Traditional information 

extraction methods are limited to specific website schemas, which 

require manual work and thus not scalable. To overcome these 

limitations, we must investigate alternative generic and automatic web 

extraction methods that can work well at the required scale. The rest 

of this section describes important background concepts. 

 Semi-structured vs Structured Data 

Web data typically comes in a semi-structured format, which is a form 

of data that contains some semantic structure and include noticeable 

uniform patterns. However, the schema is not pre-defined and open 

among different websites. (Lin et al., 2018) describe three 

characteristics of semi-structured data: 1. The data has a certain 

structure, but this structure is mixed with the content. This is also the 

case in web pages, where the content data is mixed with the HTML 

document code. 2. The data may be formed from multiple elements 

and may be represented by different data types. In web pages, multiple 

sections may represent the same entity. 3. The data has no pre-defined 

model and include irregular structure. On the other hand, structured 

data obey tabular structured and has a strict data model that can work 

well with relational databases and other forms of data tables. 

To overcome the problems of semi-structured data, methods and 

tools exist to cleanup and wrangle the data (Krishnan et al., 2019). 

This is often done through a user interface-driven tool, which takes 

time and requires manual labor. Another approach is to transform the 

data into the structured form using transformation methods based on 

natural language pattern matching (Califf & Mooney, 1999), efficient 

wrapper generation (Suzhi Zhang & Shi, 2009), and HTML and XML 

parsing using tree structure (Hu & Meng, 2004). 
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 DOM (Document Object Model) 

Document Object Model (DOM) is a tree-based representation of an 

HTML document structure that consists of nodes, also known as (aka) 

DOM Elements. Each element can have a key tag and possibly a value 

such as p to represent paragraph, a for links, and h for headings (De 

Mol et al., 2015). An element can have any number of child elements. 

Below is an example of the HTML DOM Tree. 

 
Figure 1: HTML DOM Tree, credits to w3schools.com 

 XPath (XML Path Language) 

XPath can be used to identify one or more elements in XML or HTML 

documents. Although XPath supports both HTML and XML due to 

the fact that they are very similar and based on the Standard General 

Markup Language (SGML) (De Mol et al., 2015), in this study, the 

focus is on HTML web pages. XPath is also useful to navigate between 

elements and attributes in the HTML document and selecting 

particular nodes. Thus, a useful tool for extracting the desired 

information from web pages. 

XPath consist of a set of steps separated by forward slashes. Each 

step can reference one or many node elements in the DOM. XPath also 

has (basic, set, and comparison) operators such as + addition, - 

subtraction, * multiplication, AND, and OR. Operators can be useful 

for selecting targeted elements from the DOM. Below is a simple 

example to illustrate how XPath can be used to select elements. 
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Figure 2: XPath examples on a simple HTML 

 OXPath 

OXPath1 from Oxford is an extension to XPath, a language designed 

for scalable web data extraction and automation (Fayzrakhmanov et 

al., 2018). It comes with improved features such as actions (e.g., 

clicking on elements and buttons, and form filling), Kleene star2 

(unbounded and bounded expressions) for iteration and navigation, 

and markers/wrappers for data extraction. The wrappers are 

responsible for extracting data from DOM trees of traversed web pages 

and appending the results to the output. The output of OXPath is a 

tree-like structure (Furche et al., 2013). 

OXPath is suitable for data extraction at scale, since its memory 

requirement remains small regardless of the number of web pages 

crawled (Grasso et al., 2013). Furthermore, OXPath is designed to 

integrate with other technologies by providing an API. Although, the 

language has a standard API, XPath integrated libraries and tooling 

remain widely adopted. 

  

 
1 http://www.oxpath.org 
2 https://en.wikipedia.org/wiki/Kleene_star 
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 JSON (JavaScript Object Notation) 

JavaScript Object Notation (JSON) is an open standard format that 

can represent entities in an unordered enumeration of properties, 

consisting of key/value pairs (JSON, 2020) (Klettke et al., 2015). 

JSON supports basic data types such as number, string, and boolean. 

It can support more complex structures using multi-value nested 

objects and the use of arrays. Arrays are ordered lists of values 

separated by commas. An array value can include a JSON structure, 

resulting in an array of JSONs. Figure 3 shows an example of a JSON 

object, addresses attribute is an array of JSONs. 

 
Figure 3: Example of a JSON object  
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 JSON-LD (JSON for Linked Data) 

The linked data concept refers to a set of principles for sharing 

machine-readable structured and interlinked data on the web, a format 

type commonly used in Semantic Web (SW). SW is a concept to enable 

machines to manipulate interlinked web data meaningfully. In other 

words, the vision of SW is to have a universal global database of the 

web data that can be searched publicly and understood by machines 

(Berners-Lee & others, 1998). 

JSON-LD is a method to encode linked data using the JSON format 

and add semantics to existing JSON objects (Sporny et al., 2014) 

(Lanthaler & Gütl, 2012). It was designed to empower existing tools 

and libraries that use traditional JSON and thus fully compatible by 

design. It comes with additional benefits such as pagination metadata, 

filters, and support to datatypes with values as dates and times. 

Furthermore, it provides a way in which a value in one JSON object 

can refer to another JSON object on a different site on the web. A 

useful feature to link nested object by reference instead of nesting the 

whole thing. 
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Figure 4 shows the former JSON example in a JSON-LD format. 

Notice that @context and @type were added to link the data semantics 

and @nest to reference a nested object. 

 
Figure 4: Example of a JSON-LD object 

 Google Rich Results 

Google Rich Results, aka Google Structured Data or Schema Markup, 

is a standardized format to enable advanced search engine optimization 

(SEO) capabilities in Google Search. It is a way of describing a website 

to make it easier for search engines to understand and parse the site 

content to deliver enhanced experiences to its users. 

 Search engines including Google3 and Yandex4 have adopted 

JSON-LD to be the recommended format for describing search rich 

results.  

  

 
3 https://developers.google.com/search/docs/guides/intro-structured-data 
4 https://webmaster.yandex.com/tools/microtest 
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At this moment, Google supports the following features: 

Here is an example of a logo feature in JSON-LD code, and further 

details about the other features can be found in Appendix A. In this 

example, Google recognizes and requires at least the attributes logo 

and URL to display the content as a rich result. Additional image 

guidelines are required to be eligible for this feature, including image 

must be crawlable and indexable, and in a specific size. 

 

Figure 5: Google Rich Results logo feature example 

 Robots.txt and No-index Meta Tag 

It is a text file that tells search engines and crawlers which pages can 

be requested from the website and which not (Introduction to 

Robots.Txt - Search Console Help, 2020). This file allows crawlers to 

know and control how to crawl and index websites that are publicly 

accessible. It is a mechanism to enable traffic management to the site 

and avoid overloading it with crawling requests. To prevent crawlers 

from accessing the websites entirely, site owners can use the no index 

meta tag. 

Article, Book, Breadcrumb, Carousel, Course, Critic review, 

Dataset, EmployerAggregateRating, Event, Local Business, 

Logo, Podcast, Product, Recipe, Review snippet, Software App, 

Subscription and paywalled content, Video, Fact Check, FAQ, 

Home Activities, How-to, Image License, JobPosting, Job 

Training, Speakable, Sitelinks Search box, Q&A, Movie, and 

Estimated salary. 

Table 1: Google Rich Results features 
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 Structured Information Need and Applications 

As mentioned in the previous sections, search engines such as Google 

prefer structured data to display rich results to users and to rank 

websites higher accordingly. In addition to that, a well-defined 

structured schema enables efficient data processing, data integration, 

data interoperability, and an improved way to query and analyze the 

content of the data (Sint et al., 2009). (Abiteboul et al., 2014) discuss 

several advantages of structured data, including optimizing query 

evaluation, improving data storage, and supporting strongly typed 

languages. 

Due to the benefits of structured information and the problems of 

semi-structured data, transformation methods exist to overcome these 

limitations (Krishnan et al., 2019). Hence, the need for structured 

information is importantly increasing to enable many applications. 

Below a list of example applications in different industries: 

• Company data: in our digital age, each company has a web 

presence. Companies have an interest in monitoring and 

getting insights on market dynamics, e.g., services and 

products being offered, monitor pricing changes of 

competitors. Data can provide answers to questions e.g., 

what is the average price point of x SaaS platforms? Which 

websites have updated their home page last week? What are 

the most common use cases published on x websites? etc. 

• Product data: many webshops offer their products online, 

including descriptions, pricing, and other information. This 

data can be used, for example, to enrich existing product 

catalogues. Questions like: which products my existing 

catalogue lack, but other competitors have? What are similar 

products to product x? How have other companies described 

product x? What are the top recent reviews about product 

x? What are the top characteristics found on the home page 

of x company? How many companies use a large font on the 

home page? How many companies have a signup form on the 

home page? Does this increase the conversion rate? 

• Sport data: information about players, local players across 

provinces, information about matches (e.g., location, time, 

results). Top-performing teams in specific locations in 

different sports. 
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Related Work: Existing Web 

Information Extraction Methods 

(Laender et al., 2002) proposed a taxonomy comprised of six groups 

for existing web data extraction: 

1. Languages for wrapper development: the idea is to employ 

specially designed languages using e.g., Python and Java, to 

assist users in developing and generating wrappers. A 

wrapper is a configuration to identify the data of interest 

among many other undesired data (Laender et al., 2002). 

2. HTML-aware: methods that rely on the structural features 

of HTML web pages to turn documents into a parsing tree, 

and then perform the data extraction task. 

3. Wrapper induction: approaches based on learning certain 

features such as web page formatting, in order to define the 

structure of the data and perform the extraction task 

(Varlamov & Turdakov, 2016). 

4. Ontology-based: given a specific domain, an ontology is built 

relying directly on the data rather than the structure of the 

web page. 

5. Modelling-based: aim at finding sections in the web pages 

that match a pre-defined model. 

6. NLP-based: methods that leverage free natural text within 

the web pages to learn extraction rules. 
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Below we present a similar taxonomy that better fits this study and 

discuss each in more detail. 

 Specification-based Extraction Methods 

This category includes traditional methods that require user 

interaction, user input, or manual work. Usually, researchers build 

browser-based plugins or rely on configuration-based files to specify 

how to extract information from web pages. In other words, the user 

must identify and provide the attributes of interest and the extraction 

rules for the extraction task manually, often per website or for a specific 

domain. A simple specification form would be providing a regular 

expression configuration to extract matching elements from web pages. 

Such methods are not suitable for the requirements of this research, 

because they are limited specific website schema and require manual 

specification, although they might be useful for other use cases, for 

example, cases that aim at accessing private data. When accessing a 

website, the wrapper can benefit from browser-relevant cookies, 

authentication data, and user session data. In addition to that, since 

the plugin is installed locally in the browser and the extraction task 

takes place within this environment, rendering the web page content, 

including CSS styles and JavaScript, comes out of the box. 

 Element-specific Extraction 

Element-specific methods are techniques that focus only on a specific 

element of the web page, such as WebTables (Cafarella et al., 2008) 

and TableMiner (Z. Zhang, 2009), which focus on identifying and 

extracting HTML tables with high quality data. (Shuo Zhang & Balog, 

2020) (Hotho et al., 2016) present recent survey work including 

information extraction, web table extraction, retrieval, and 

augmentation. Others focus on extracting search results to build 

federated search engines (Trieschnigg et al., 2012), or extracting web 

assets such as images, audio, and videos to build media libraries. 

The primary focus of this category is on extracting one specific 

element type (e.g., tables, forms, search results, images) from web 

pages rather than providing a generic extraction approach to any 

element. 



 22 

 Machine Learning-based Extraction 

The studies in this category use machine learning techniques to extract 

web information from web pages. Such methods rely on the structure 

and presentation features of the data within a document to generate 

rules or patterns to perform the extraction task, usually, not fully 

automated but semi-automated and requiring training examples. 

Wrapper induction is a subfield of wrapper generation in 

information extraction. Extraction rules are acquired from inductive 

learning examples then applied to new unseen websites (Muslea et al., 

1999) (Goebel & Ceresna, 2009). In wrapper-based methods, learned 

rules are often applied to other pages within the same website, thus, 

require manual annotations for each new website. This makes them 

expensive and impractical at scale. Although this is generally the case, 

some researchers have proposed creative solutions to reduce the 

annotations workload, for example, using a bootstrapping approach for 

learning to use small seed annotations for training an initial classifier 

which then used to annotate the rest of the data (Jones et al., 1999). 

Also, there are situations where the necessary annotations can be 

derived from the website, given a sample structured data. Enough 

pages of the website can be automatically annotated this way before 

training the model (Jundt & Van Keulen, 2013). 

(Yuchen Lin et al., 2020) define the task of web data extraction as 

a structured prediction task. They present a novel two-stage neural 

approach named FreeDOM, which combines both the text and markup 

information in the first stage and capture conditional dependencies 

between nodes in the second stage. The method is based on a neural 

network architecture and does not need to download all external files, 

including CSS style and JavaScript but relies only on the HTML 

content. However, it only focuses on detail pages that describe a single 

entity. Thus, might fail in real-world scenarios with multiple entities 

found on a single page. 

Another direction of research is using end-to-end unsupervised deep 

learning methods. Html2Vec5 and Web2Vec6 (Feng et al., 2020) are 

proposed methods to encode web pages information based on 

multidimensional features in order to make the extraction task deep 

learning ready. 

 
5 https://github.com/dpritsos/html2vec 
6 https://github.com/Hanjingzhou/Web2vec 
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Figure 6 shows an example result of the Html2Vec on google.com 

home page, which encoded each of the DOM elements as machine 

learning ready vectors. Although this method has potential, it is still 

computationally expensive and may be challenging to use at scale. 

 
Figure 6: Html2Vec example 

 Pattern Discovery-based Extraction 

Pattern discovery techniques are methods that apply pattern discovery 

approaches to generate information extractors that can extract 

structured data from the web pages. Unlike most machine learning-

based methods, which require manual annotated examples and 

training, pattern discovery methods do not rely on user labeled 

examples but on pattern discovery techniques including PAT-trees, 

multiple string alignment, and pattern matching algorithms. PAT-

trees (aka Patricia trees) are effective at recognizing repeated patterns 

in semi-structured web pages. 

(C.-H. Chang & Hsu, 1999) proposed a method to extract 

information blocks by converting the HTML web page into tokenized 

strings, which are then used to construct PAT-trees to detect patterns 

and locate the information. Similarly, (C. H. Chang et al., 2003) 

presented an unsupervised approach to generate extraction rules for 

web pages. The discovered patterns can be used on unseen web pages. 
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Although these methods require no labeled examples, they are quite 

limited when they encounter web pages that contain only one data 

record due to the lack of patterns. In addition to that, the number of 

patterns increases considerably when there are too many 

layouts/structures, and the discovered rules generalize poorly on other 

websites with different layouts (C. H. Chang et al., 2003). Finally, 

these methods do not include the process of automatically resolving 

the attribute names of the extracted data; but rely on the user to 

manually assign the attributes using a visual pattern viewer. 

 Vision-based Page Segmentation 

Vision-based approach, known as VIPS Algorithm uses both the web 

page rendered source code and also analyzes the visual layout of the 

page (Cai et al., 2003). The visual layout input can be a screenshot 

image of the website. The algorithm generates a block tree that is 

structurally similar to the underlying DOM tree. Similarly, custom 

machine learning models can be trained on features by providing 

training samples, for instance, in the form of bounding boxes, to extract 

elements of interest from web pages. 

(Liu et al., 2006) proposed a vision-based solution performs the 

extraction using only the visual information of the web pages. Given 

main visual features such as position, layout, appearance, and content 

of the web page. 

Figure 37 in Appendix B outlines an example result which was done 

previously at M06 Company7 using the vision-based approach, it shows 

the ability of clustering interesting elements of the web page. A clear 

downside of this approach is that embedded images on the page are 

included as part of the web page as well as the content inside the 

images. So, it is hard for the model to distinguish between which 

content belongs to the embedded images and which to the web page 

itself. Nevertheless, additional meta data can be provided to the model 

to overcome this challenge, for example, by excluding all the images 

from the page or covering them with solid colors.  

 
7 https://m06.company 
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Method: Design Science Research 

According to the design science methodology (Wieringa, 2014), we 

treat design as well as research as a problem-solving process. In this 

section, we propose a complex design intended to improve on the web 

information extraction task and suggest research knowledge questions 

to return knowledge back to the design activity. The general goal of 

this design science research is to provide a generic, automatic, and 

scalable approach for extracting and structuring information from web 

pages. 

The following subsections outline the problem statement and define 

requirements for the desired web extraction method in detail. The 

global method design is illustrated in Section 4.2. Challenges and 

research questions are discussed in Section 4.3. Our experiments are 

described in Section 4.4. Finally, Section 4.5 outlines metrics which are 

used to evaluate the experiments. 

 Problem Statement and Requirements 

As mentioned earlier in Section 3, existing web information extraction 

methods are limited to specific website schema and hard at scale. 

Therefore, we seek alternative methods that can overcome these 

limitations. To be more precise, below, we define a set of requirements 

that have to be fulfilled for a web extraction system to reach the 

general goal: 

• The system must be generic, work on any given website 

regardless of its schema and without pre-defined templates. 

• The system must be fully automatic, require no user input nor 

interaction. 

• The system must be scalable, adaptable, and can handle many 

different websites in millions.  

• The system should be able to support different information 

needs. 
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• The system should support cross-language web pages, at least 

English and Dutch. 

• The system does not enter any values in search bars or forms. 

• The system does not consider websites that are locked behind a 

login page and only consider publicly accessible websites. 

 Global Design 

Figure 9 outlines the global design of the system, which includes four 

steps. The subsections below provide a detailed description of each of 

the steps. 

4.2.1 Input: Web Data 

As mentioned in Section 4.1, the system must fulfill different 

information needs; this first step aims at obtaining web data (a set of 

web pages) that include information of interest to the user. Web data 

can be sourced from several different channels, such as the following: 

• Directly from public data repositories such as 

CommonCrawl8 a large corpus contains petabytes of web 

data collected over several years of web crawling, and 

ClueWeb9 which contains about 733 million web pages. 

• Private data sources, through partnering with data providers 

(e.g., dataprovider.com), a private database, or provided by 

a client for specific needs. 

• Scraping the web and own dataset collection. Web crawlers 

can be coded to scrape the public web. This option should 

be used with care and respect to data privacy. Section 2.8 

 
8 https://commoncrawl.org 
9 https://lemurproject.org/clueweb12 
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Figure 7: Global design 
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discussed how site owners can use the no index meta tag to 

stop the crawlers from accessing their website. 

After obtaining the web data of choice from some data source, the 

data might need preprocessing and transformation to form the input 

dataset. The input is a collection of unique links (URLs) to web pages 

with their raw HTML content (Figure 8). 

4.2.2 Method: Web Information Extraction 

This step represents a pipeline that contains four components, which 

form the generic web information extraction system (Figure 9). 

 
  

 

{URL1: Raw HTML}, 

{URL2: Raw HTML}, 

{URL3: Raw HTML}, 

             … 

Figure 8: Web data input 

Figure 9: Generic web information extraction pipeline 
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Relevancy Filter to filter out irrelevant web pages to the user. Web 

data is messy as it contains many web pages in different shapes and 

forms; for example, a website may include different languages or may 

contain useless information to the user. Instead of putting the burden 

of filtering web pages on the user (which is time-consuming and not 

scalable), this component becomes essential as it can do the filtering 

automatically. 

Feature Extraction extracts candidate features given the input 

dataset, including XPaths for all elements per page and put them into 

a dataset. This process is typically followed by a feature selection 

process to select which features contribute the most to the output of 

interest. 

Clustering to group similar HTML elements into groups based on 

the extracted features. The general assumption is that elements with 

similar features might belong to the same entity. 

Entity Recognition generates possible entity rankings for each 

cluster, given a knowledge base containing information about different 

entities. The knowledge base may consist of the entity rankings 

generated by the system and additional information about user-specific 

entities. This knowledge can be further enriched by public knowledge 

graphs such as Schema.org and Google Knowledge Graph. Entity 

recognition is also responsible for tagging each cluster with the 

corresponding entity. 

Collection of web pages ➔ Collection of relevant web pages 

Figure 10: Relevancy filter input/output 

Web page content ➔ List of features, including XPaths 

Figure 11: Feature extraction input/output 

Features + HTML content ➔ List of clusters 

Figure 12: Clustering input/output 

Clusters + Entity knowledge base ➔ Key-value pairs output 

Figure 13: Entity recognition input/output 
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4.2.3 Output: Structured Key-value Information 

The output is a structured key-value pairs information in a JSON 

format (or JSON-LD ideally). This structured output can be used to 

fulfill the need for structured information and build smart applications 

(see Section 2.9). 

While Section 2.5 discussed how JSON objects could be 

constructed, the ideal output is an object that can match an entity 

object, where the keys refer to the names of the entity object or 

attribute, and the values refer to the values for the same entity. Given 

a web page as an input, the expected output is a structured JSON 

object which contains a set of entity objects. 

Although a web page might include information that cannot be 

classified as an entity, nevertheless, we consider elements with the 

same attributes as an entity (e.g., a web page might have a footer 

section with some navigation links or a header with menu items). The 

resulted information in these examples might not look relevant to 

someone, but very useful to others; this depends on the business use 

case, therefore from a generic design perspective, we leave all extracted 

information, and keep it up to the user to decide what is relevant. 

Another alternative approach would be to apply a post-filtering 

mechanism automatically given the use case (but this is outside the 

scope of this thesis). 

 Challenges and Research Questions 

Within the proposed complex global design, some aspects are 

challenging and require research. In this thesis, we focus extensively on 

the first three pipeline components (proposed in Section 4.2.2). The 

fourth component Entity Recognition is discussed briefly in Section 

5.4, but we leave extensive research on this component for future work. 

The remaining of this section outlines challenges and research 

questions (for each pipeline component) that need to be answered in 

order to return knowledge to the design science activity. 

Relevancy Filter: web data is messy and disconnected, as it contains 

irrelevant web pages (e.g., a web page that has no structure, just a 

plain text or has unrelated content, given a business use case). Note 

that relevancy is subjective to a business use case or need; therefore, 

we must look for generic solutions.  

Q1: How can irrelevant web pages be filtered out? 



 30 

Feature Extraction: web pages contain common patterns and 

features (e.g., elements have similar style, font-size, or color). These 

features, once identified, are helpful for the rest of the pipeline, for 

example, to cluster similar elements and recognize entities.  

Q2: What candidate features can be extracted 

from web pages? 

XPath is a simple yet effective feature to locate elements in web 

pages; however, there could be many ways to construct XPaths to find 

elements effectively.  

Q3: How can XPaths be constructed to effectively 

locate web page elements? 

Clustering: given the previous component features, the goal is to 

form clusters such that similar HTML elements group together. Many 

clustering methods exist, including spectral clustering, probabilistic 

relational models, graph partitioning, fuzzy clustering, and similarity-

based clustering, but which one is best suited for the web information 

extraction task. 

Q4: What existing clustering methods can be 

effectively used for clustering web page elements?  

Q5: What evaluation metrics can be used to 

measure the performance of clustering? 

Entity Recognition (for future research): given the previous 

components knowledge, the system should be able to suggest entities 

automatically for each cluster (e.g., based on the HTML structure, 

code, and content). For example, an element could be inside an HTML 

table, and directly above it a large-sized title. Can we then assume 

that the table column or row name correspond with the entity attribute 

and the large-sized title correspond to the entity name? 

FQ1: How can candidate features be leveraged to 

identify entities? 

The knowledge of entities and entity features can be stored in a 

knowledge base (e.g., a price entity is a number, relatively short in 

length, often comes next to a currency sign and could include comma 

or a dot.). However, it could happen that the HTML structure, code, 
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and content do not include any information that can help the system 

in identifying entities. In this case, we could rely on additional 

information such as user-specific knowledge base and public knowledge 

graphs. 

FQ2: What is an effective method for 

constructing a knowledge base to hold entity 

representations? 

The output is a structured key-value pairs JSON; however, it can 

be constructed in different ways (e.g., flatten or nested JSON objects) 

FQ3: What is the best way to generate key-value 

structured information? 

 Experimental Setup 

Several experiments can be carried out to validate the proposed 

method. In this thesis, we focus on two experiments (the first two 

pipeline components, see Section 4.2.2). The subsections below explain 

the main two activities involved in the process of web information 

extraction, the data collection process to obtain a stream of web pages, 

the relevancy filter and clustering experiments setup. Finally, a use 

case which focuses on blocky websites is described to sketch out the 

need for structured information. 
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4.4.1 Extraction vs Recognition 

The proposed method primarily consists of two main activities: 

extraction and recognition. 

Extraction is the process that aims at locating and extracting 

candidate elements given a web page HTML content as an input. 

Clustering methods are applied to group similar candidate elements 

together. Additional filtering of unnecessary groups can be applied to 

filter out irrelevant groups. A group might result in an attributes group 

for a particular entity. Another clustering step is needed to enhance 

and link the group of entity attributes to an entity object. 

Recognition is the process of identifying the entity class for each 

cluster/group to provide rich structured key-value pairs output. 

Recognition often comes after the extraction process. The figure below 

illustrates an example. 
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Figure 14: Extraction enhancement 
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<div class="row"> 

<div class="_1_3 column plan">

<div class="body-container">

<h2 
class="price">€<span>12</span>,00</h

2> <span class="period x-small">per 
maand</span> </div></div>

<div class="_1_3 column plan">

<div class="body-container">

<h2 
class="price">€<span>21</span>,00</h

2> <span class="period x-small">per 
maand</span> </div> </div>

<div class="_1_3 column plan"> 

<div class="body-container">

<h2 
class="price">€<span>30</span>,00</h

2> <span class="period x-small">per 
maand</span> </div> </div> </div>
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[ {"currency":"€"}, 
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{"price:":"30,00"]

}]

Figure 15: Method extraction vs recognition 
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4.4.2 Dataset Collection 

To validate the proposed method and system design we need a stream 

of web pages as an input (see Section 4.2.1). This section outlines the 

process of web data collection at scale. 

For this research, a publicly available data is collected from the 

Dutch Chamber of Commerce. The choice obtaining own dataset gives 

the research more flexibility and control. The data contains 

information about registered businesses in the Netherlands such as the 

official business name, website URL, and location address. For this 

research, only the website URL is needed. 

Figure 16 illustrates the dataset collection process. The process 

starts with the collected companies’ data. The records that are not 

reachable or do not include website URL are ignored; since the URL is 

the only required field needed for the rest of the pipeline. Furthermore, 

the homepage HTML content for each active website is collected and 

passed to the relevancy filter. The purpose of this filter is to classify 

and filter out irrelevant websites. Section 5.1 discusses in more details 

how this relevancy filter works. 

Given only the relevant websites, external and internal links are 

extracted. External links are the URLs that link to other websites, and 

therefore treated as new websites. Internal links are all the nested links 

found under the same domain name. Finally, a limited sample (e.g., 10 

web pages per website) is taken of the internal links, and the HTML 

content is collected and appended into the final dataset. 
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Figure 16: Dataset collection process 
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4.4.3 Experiments 

This section briefly outlines the two experiments (further explanation 

is provided in the system design components sections 5.1 and 5.3) 

As mentioned earlier, the goal is to extract and classify information 

from web pages and convert it into a structured form. The input is a 

web page, and output is a JSON object. As an example, two web pages 

with the desired structured output are listed in Appendix C. 

Table 2 outlines the two experiments for the relevancy filter and 

clustering components. Note that the clustering is evaluated manually 

on a small sample proportion. The evaluation metrics are explained in 

detail in Section 4.5. 

 Relevancy Filter Clustering 

Input Collection of web pages XPath features 

Output Collection of relevant 

web pages 

List of clusters 

Dataset Three datasets: English 

(240 web pages) and 

Dutch (260 web pages, 

and a larger one 

containing 437 web 

pages) 

Three web pages 

containing 1177 

XPaths 

Model Custom binary 

classification 

XPath-based similarity 

distance clustering 

Evaluation metrics Recall, F1, and Area 

under the curve 

Purity and Percentage 

purity 

Table 2: Experimental setup 
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4.4.4 Use case, Need of Structured Information 

Section 2.9 discussed the need for structured information and some 

applications. Section 4.1 discussed the system requirements. In the 

research, we focus on the following use case based on the requirements, 

in particular on websites with blocky structure and exclude other 

irrelevant and private websites that are locked by the login screen. 

A website is considered blocky when it has repetitive blocks like 

pattern. This pattern is often found in the following website categories 

(See Appendix D for figure examples): 

• Business informative websites: sites that include only 

information and present media content, for example, self-

starters, product offering business, non-profit, marketing-

oriented websites, and other informative landing pages. 

• Ecommerce websites/webshops: sites that offer and sell 

products online, both digital and physical. For example, B2C 

webshops that sell primarily products online and delivery 

directly to homes. B2B webshops that sell technical products 

to other companies and factories. 

• Pricing packages included websites: such websites can be 

seen as ecommerce websites in its nature; however, the key 

difference is that webshops often include many products, but 

pricing packages included websites don’t. They do include 

few-tiered pricing packages, for instance, as seen in freemium 

business models (e.g., free, basic, premium), SaaS offering 

platforms, service offerings, self-starters, and businesses that 

sell educational content and courses. 
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 Evaluation Metrics 

The method is evaluated based on commonly used metrics among 

researchers in web information extraction: precision, recall, F1, and 

area under the curve for the relevancy filter component and purity and 

percentage purity for the clustering component. 

Usually, the following characteristics are needed to evaluate 

information extraction systems: 

• A single score measure is needed to reflect on how well the 

system is performing. 

• Extraction systems are often evaluated using a relevance 

judgment, in which the relevancy of one record does not 

affect other records. 

• Relevance judgment is a binary classification choose, which 

means a record is either relevant or not. 

• An ideal system should be able to classify relevant records 

and filter out irrelevant records. 

Practically speaking, it is often hard and time-consuming to judge 

the full dataset; therefore, the evaluation is instead done on a smaller 

sample. Thus, the final measures are calculated from the sample 

proportion. 

The next subsections outline in more details each of the evaluation 

metrics, but first, we define the following symbols which will be used 

to describe the metrics: 

Symbol Description 

record A data record referring to a website web page 

r The total number of relevant records correctly classified 

n The total number of records 

R The total number of relevant records 

TP True positive is where the model correctly classifies a 

relevant record 

TN True negative is where the model correctly classifies an 

irrelevant record 

FP False positive is where the model incorrectly classifies a 

relevant record 

FN False negative is where the model incorrectly classifies an 

irrelevant record 

Table 3: Evaluation metrics symbols 
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4.5.1 Precision 

Precision also known as a positive predictive value, which is defined as 

the percentage of results (predictions) made that are classified correctly 

as relevant by the model (TP) out of all the checked records (TP + 

FP). Precision is represented by the following formula: 

4.5.2 Recall 

Recall is the percentage of relevant records correctly classified by the 

system (𝑇𝑃) out of all relevant records (𝑇𝑃 +  𝐹𝑁). This percentage is 

also known as hit rate, coverage, or sensitivity and can be represented 

by the formula: 

4.5.3 F1 

F measure (aka F1 score) is considered a sort of accuracy measure. It 

combines both precision (P) and recall (R) in a single score measure; 

therefore, it gives an overall estimate of the system performance. F 

measure can be calculated by the following formula: 

4.5.4 AUC (Area Under the Curve) 

Area Under the Curve is a measure that describes the ability of a 

classifier to discriminate between two classes (Ling et al., 2003). When 

the AUC value is equal to one, that means the classifier can classify a 

record with a 100% confidence that it belongs to one class over the 

other. 

4.5.5 Purity 

The previous metrics are good to evaluate classification tasks, however 

other metrics are found to better measure the quality of clustering 

tasks. Clustering is the task of grouping similar objects in the same 

cluster. The quality of clustering can be measured based on the notion 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  OR 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑟

𝑅
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    OR   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑟

𝑛
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of cluster purity. Purity is a simple and popular evaluation measure 

that describes how pure is one cluster with respect to a particular class 

(Amigó et al., 2009). 

Purity can be computed by the following: For each cluster, the 

number of elements from the most dominant class is counted, and the 

sum over all clusters is calculated and divided by the total number of 

elements (Y. Zhao & Karypis, 2001). 

where Ω =  {𝜔1, 𝜔2, . . . , 𝜔𝐾} is the set of clusters and 𝐶 =

 {𝑐1, 𝑐2, . . . , 𝑐𝐽} is the set of classes. 𝜔k and cj are the subsets of elements 

from the total set of elements (Manning et al., 2008). 

Purity can be viewed as the weighted precision of all clusters 

(Huang, 2011), and the greater the value of purity indicates good 

clustering (Sripada & Rao, 2011). A perfect clustering has a purity 

score of 1 and is achieved by placing each of the elements in its own 

cluster. 

Percentage purity is a similar metric that can better describe what 

proportion of the total elements within clusters is relevant. It can be 

calculated by the following formula: 

 

  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑃𝑢𝑟𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 𝑥 100% 

𝑝𝑢𝑟𝑖𝑡𝑦(Ω, 𝐶) =
1

𝑁
 ∑ max 

𝑗
|ω 

𝑘
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System Design and Components 

Section 4.2 presented the method global design. In this section, we 

research in more detail each of the pipeline components. 

 Relevancy Filter 

The web is messy as it comes in many different shapes and forms and 

might contains irrelevant content. Therefore, this relevancy filter 

component is introduced to filter out irrelevant websites. The filtering 

challenge is seen as a binary classification task, in which a custom 

classifier is trained and evaluated on manual annotations for this 

purpose. 

To train the custom classifier a library named Spacy10 was used. 

Spacy is a free and open-source python library for advanced natural 

language processing tasks, including text classification. Spacy v3.0 just 

came out recently which introduced many new features and 

improvements, including end-to-end workflows11 and pipelines. 

Although we chose Spacy for this component due to its simplicity, any 

other text classification library should reproduce similar results. 

Two custom classifiers were trained on English dataset and another 

on Dutch dataset. This decision was made because both of these 

languages include different keywords and training a single multilingual 

model would be expensive, time-consuming, larger and less accurate 

than a focused model. However, note that this component can be 

retrained or extended on different data to narrow down the websites 

or include other languages based on the user use case and needs. 

The next subsections present the models, annotation process, 

training the custom classifier, and evaluation metrics. The last 

subsection discusses and presents ideas on how to improve this 

component further. 

 
10 https://spacy.io 
11 https://spacy.io/usage/projects 
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5.1.1 Annotations 

In order to train a custom binary classifier, manual annotations were 

needed, namely relevant and irrelevant examples. 

A widget called pigeon12 was used as an annotation interface due to 

its simplicity and compatibility with the rest of the pipeline. Figure 17 

shows an example of the interface, which includes the following three 

options for each website: accept to consider the website as relevant, 

reject to count the website as irrelevant and ignore to disregard the 

record in case of any doubt. The interface includes additional helpful 

information, including the website to be annotated is shown, and the 

number of remaining and annotated examples so far. 

 
Figure 17: Annotation interface using Jupyter notebook pigeon widget 

The table below outlines the criteria that were set and followed 

during the annotation process for both languages. See Appendix E for 

figures of several example annotation cases. 

Action Criteria 

accept - Websites with a blocky structure. As mentioned 

earlier (in Section 4.4.4), a website is considered 

blocky when it has repetitive blocks like pattern. 

For example, a page with a section that shows a 

list of products, brands, or team members etc. 

reject - Default web server pages 

- Default web hosting pages 

- Pages full of ads 

- Under construction pages 

- Under maintenance pages 

- Password-protected pages 

- Pages that include text content only without 

clear structure pattern 

- Pages that show no content but technical errors 

ignore - In case of unclear classification 

- In case of doubt 

 
12 https://github.com/agermanidis/pigeon 
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Table 4: Annotating criteria 

Websites in both languages English and Dutch were annotated 

according to the mentioned criteria. Annotations are divided into two 

subdatasets training and evaluation, as shown in the table below. 

Training data: a pre-labelled dataset which is given to the model 

with its label during the training process and is used to fit the model 

parameters and measure wights. 

Evaluation data: an unseen dataset, in which labels are kept hidden 

in order to evaluate the trained model. 

Dataset Accepted Rejected Total 

English 

E1 Training 40 100 140 

Evaluation 30 70 100 

Dutch 

N1 Training 80 80 160 

Evaluation 50 50 100 

N2 Training 80 135 215 

Evaluation 50 172 222 

Table 5: Annotations dataset 

5.1.2 Workflow 

This workflow was inspired by a Spacy example project13. The aim is 

to train the custom relevancy filter classification models on the manual 

annotations we collected earlier (mentioned in the previous section 

5.1.1). 

The workflow includes the following steps:  

1. preprocess: to convert the data to a binary format which can 

be understood by spacy. A blank Spacy instance is initialized 

for each of the target languages. 

2. train: to train a text classification model. Two models for 

each language were trained, resulting in a total of four 

models. The English models are trained on the same dataset 

(E1) but using two different configurations (C1, C2). 

Similarly, the Dutch models on the same configurations (C1, 

C2) but trained on two different datasets (N1, N2). 

 
13 https://github.com/explosion/projects/tree/v3/tutorials/textcat_docs_issues 
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3. evaluate: to evaluate the model and output evaluation 

metrics. 

5.1.3 Pre-processing 

In this step, the input dataset is cleaned by removing the HTML tags 

and comments. The data is then tokenized using Tokenizer.v114 to 

convert text into words/tokens. The tokenizer batch size is set to 1000 

records to process the input as a batch stream rather than one text at 

a time, which makes it faster and more efficient. 

The tokenization step is followed by two processing components 

Tok2Vec15 and TextCat16. 

Tok2Vec basically converts tokens to vector embeddings which can 

be understood and processed by the machine. MultiHashEmbed.v117 

embedding layer is used to embed features using hash embedding and 

build a mixed data representation. MaxoutWindowEncoder.v218 is used 

to encode the features using maxout units as activation functions. 

Figure 18 shows the tok2vec parameters we used to build the models. 

Here we include more details for some of the parameters. The 

include_static_vectors parameter is set to false because we do not have 

any pretrained vectors but aim to train the models from scratch on the 

annotated data. The rows parameter represents the number of rows for 

each embedding tables. This value is left the same as it was 

recommended by Spacy. The encoder depth represents the number of 

layers. Increasing the layers from 4 (in C1) to 5 (in C2) has improved 

the model performance. 

 
14 https://spacy.io/api/tokenizer 
15 https://spacy.io/api/tok2vec 
16 https://spacy.io/api/textcategorizer 
17 https://spacy.io/api/architectures#MultiHashEmbed 
18 https://spacy.io/api/architectures#MaxoutWindowEncoder 
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Figure 18: Tok2Vec processing component 

TextCat is a text categorizer component that is used for single label 

(binary) text classification. The categorizer predicts classes over a 

whole record (web page). A record can have exactly one true label 

(either relevant or irrelevant). The categorizer threshold is set to 0.5 

to cutoff the result and consider a prediction. TextCatEnsemble.v119 

model instance is used to predict scores for each class. No additional 

pretrained vectors were used but only the feature encodings from the 

previous step. Therefore, the pretrained_vectors parameters were set 

to null. Figure 19 outlines the parameters we tuned to optimize the 

model performance. The width value refers to the output dimension of 

the feature encoding step. The ngram_size determines the maximum 

length of the ngrams in the model. Increasing the width from 64 (in 

C1) to 128 in (C2) in addition to the ngram size from 3 (in C1) to 5 

in (C2) have accelerated the performance. This way larger number of 

text phrases and co-occurring words are captured as candidate 

matches, leading to better classification. 

 
19 https://spacy.io/api/architectures#TextCatEnsemble 
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Figure 19: TextCat processing component 

To sum up, all the four models had similar configuration parameters 

but with some tuning to optimize performance (As mentioned earlier 

in this section). Table 6 presents the parameters we changed. 

Parameter C1 C2 

tok2vec.model.depth 4 5 

textcat.model.width 64 128 

textcat.model.ngram_size 3 5 

Table 6: Processing components parameter optimization 

5.1.4 Training 

This section outlines settings and controls that are used for the training 

process. Figure 20 outlines the exact parameters we used. Most of the 

parameters are set to the default value recommended by Spacy.  

Spacy's training documentation20 is rich and has explained all the 

parameters. Nevertheless, here we discuss most important ones. The 

dropout parameter is the probability of training a given node in a layer. 

Training batcher batch_by_words.v121 is used to split the text into a 

set of small batches of words. The batcher.size represents the target 

number of words per batch. Adam.v122 replacement optimization 

algorithm is used as a training optimizer. Optimizer learning rate 

warmup linear over the first 250 steps and 20000 total steps. This 

warmup setting is necessary in order to use a low learning rate than 

base learning rate for the initial few steps and prevent model 

overfitting. 

 
20 https://spacy.io/api/data-formats#config-training 
21 https://spacy.io/api/top-level#batch_by_words 
22 https://thinc.ai/docs/api-optimizers#adam 
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Figure 20: Training parameters 
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5.1.5 Evaluation Metrics and Experimental Results 

Out of the commonly used evaluation metrics (previously mentioned 

in Section 4.5) for extraction and classification tasks, we select and 

calculate Recall, F1 and AUC. These metrics make more sense for this 

task because they represent what we want to measure: the total 

relevant websites correctly classified by the models. 

The table below outlines the evaluation metrics for the two models. 

The English models were assessed on the same dataset while the second 

Dutch model was evaluated on a different (slightly larger) dataset. As 

shown, the second models are the winners which we use further to 

classify relevant websites to use in the rest of pipeline. 

Model 

configuration 

Dataset Recall F1 AUC 

English 

C1 E1 66.00 79.52 0.52 

C2 E1 97.00 98.48 0.32 

Dutch 

C1 N1 76.00 86.36 0.66 

C2 N2 97.75 98.86 0.46 

Table 7: Relevancy filter evaluation metrics 
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5.1.6 Discussion and Future Work 

The custom trained models perform very well to classify relevant 

websites from others. However, they support only two languages 

English and Dutch. Additional different models are required in case 

other languages are needed. Two approaches to tackle this multilingual 

challenge: 

• Training a custom model for each additional language. 

• Training one larger language-agnostic multilingual model. 

Another challenge linked to training larger models is the need for 

manual annotations which is an expensive and time-consuming task. 

A solution direction to this issue is to use what is known as 

Bootstrapping approach for text learning (Jones et al., 1999) 

(McCallum & Nigam, 1999). Bootstrapping annotations is the idea to 

use a small set of seed annotations to train an initial classifier. Then 

applying it to predict labels for a large collection of unlabelled data 

and incorporating some of the then new labels to train a final large 

classifier. 

Another purpose and motivation to training own custom models is 

the adaptability to specific use cases. Someone could be interested only 

in webshops for example. In this case, annotations for webshops are 

marked as relevant and other types of websites are ignored. Thus, the 

advantage of this component that it can be easily adapted to other 

domains and use cases. 

 Feature Extraction 

This step aims at extracting features from the relevant websites that 

were filtered and selected in the previous component. The extracted 

features could be useful for the following components, for example, to 

identify and group similar elements together in the clustering 

component and recognize named entities in the entity 

tagging/recognition step. 

This section outlines candidate features, a list of possible features 

that could be extracted from web pages. In addition to that, it discusses 

the feature selection process and XPath extraction. 
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5.2.1 Candidate Features 

This section presents a list of candidate features that can be extracted 

from three different web page representations: 1. visual page 

presentation is what people see visually and can be extracted using 

computer vision-based algorithms (see Section 3.5). 2. The actual 

source code of the web page (e.g., HTML, JavaScript, and CSS). 3. 

DOM tree representation which is parsed from the HTML source code 

(see Section 2.2). 

All these features could be studied and leveraged to enhance the 

overall system performance, especially in the clustering and entity 

recognition components. 

Table 8 outlines a list of candidate features. 

Feature class Candidate feature 

Style Font size, type, color, weight (e.g., bold, 

light, thin), style (e.g., normal, oblique, 

italic, underline), and background color 

Dimensions and location Offset/margin/padding width, height, top, 

right, and left. Border width and height, 

scroll height and width, z-index 

Element information  Element attributes, classes, values, tag type 

(e.g., heading <h1>…<h6>, <a> link, <img> 

image etc.) 

DOM information Tag name, children, inner text, 

bounds/bounding client rectangle, XPath, 

parent XPath 

Meta data Title, description, type, site name, site page 

name, keywords 

Other calculated values Length of the text, average and standard 

deviation, average number of nodes, text 

density, number of attributes 

Table 8: List of candidate features 

The literature has also proposed similar features, for example, 

(Vogels et al., 2018) distinguish between two types of features, namely 

block features which capture information on each block of text in the 

web page and edge features which capture information on each pair of 

neighboring text blocks. Table 9 outlines a list of features proposed by 

(Vogels et al., 2018). These features study binary attributes (e.g., has 

duplicate, has parent, and has grandparent), the content structure of 

elements (e.g., what an element contains, what does it end with) and 
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compute additional unique features (e.g., the number of stopwords, 

number of words with capital letters). 

Feature name 

Has duplicate: is there another element with the same text? 

Relative position of the element in the source code 

Has parent 

Has grandparent 

Contains form element 

Contains punctuation 

Contains URL 

Contains email 

Ends with punctuation 

Ends with question mark 

Has a commonly used word (stopword) 

Number of stopwords 

Average word length 

Number of words with capital letters 

Has multiple sentences 

Table 9: List of features proposed in Web2Text (Vogels et al., 2018) 

5.2.2 Feature Selection 

The previous section 5.2 listed many candidate features; however, in 

this thesis, we focus the feature selection process for the clustering 

component to one simple but informative feature, namely XPath. 

Nevertheless, we describe the feature extraction component generically, 

as it would enable future experiments to leverage the multiple features. 

In general, the aim of the feature selection step is to select useful 

attributes and eliminate non-informative and redundant ones. In 

addition to that, to enable faster training time of machine learning 

algorithms, reduce model complexity and help in model 

interpretability. Below we outline several feature selection approaches 

found in the literature (Chandrashekar & Sahin, 2014; Khalid et al., 

2014; Miao & Niu, 2016): 

• Filter methods: typically, generic and does not incorporate a 

specific machine learning algorithm. The relevancy of each 

individual feature is analyzed and evaluated as a single 

factor. 

• Wrapper methods: evaluate on a specific machine learning 

algorithm in mind to find optimal features. Wrapper 
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methods use combinations of features to find the best 

performing combination that determines the desired output. 

• Embedded methods: filter out features during the model 

building and training process. The model takes care of the 

feature selection process since it has this function built in. 

Feature selection methods aim at selecting relevant features and 

filtering out irrelevant ones without changing them. Another approach 

is to use dimensionality reduction methods to reduce the number of 

features by transforming them to lower dimension (Raymer et al., 2000; 

Sorzano et al., 2014). Most popular dimensionality reduction methods 

are: Principal Component Analysis (PCA) (Tipping & Bishop, 1999; 

Wold et al., 1987), Linear Discriminant Analysis (LDA) (Ioffe, 2006; 

Izenman, 2013), and Canonical Correlation Analysis (CCA) 

(Thompson, 1984, 2005). 
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 Clustering 

This clustering component aims at grouping similar HTML elements 

into clusters. Clustering is typically categorized as an unsupervised 

learning task of dividing and grouping a set of elements into several 

clusters such that elements in the same group are more likely similar 

to other elements in the same groups than those in other groups. In 

this thesis, the general assumption is that HTML elements with similar 

features will group under the same cluster; a cluster which most likely 

represents a named entity or entity attribute. 

This section first presents several clustering methods found in the 

literature followed by a discussion on XPath feature, the main selected 

feature to perform the clustering. Levenshtein edit distance, which 

measures the difference between two strings, in terms of edit distance 

score is described and evaluated. Finally, future work and discussion 

on the clustering component is presented in 5.3.6.  

5.3.1 Existing Methods 

This section outlines a list of existing clustering methods which could 

be suited for grouping similar web page elements into clusters. Since 

the selected feature of the clustering component is XPath, which is a 

computed text-value reference of each element in the web page, we 

compiled the list focusing on text similarity techniques (see Table 10). 

The list was collected from different survey papers and scientific 

sources; below, references are provided. 

Text similarity methods can be categorized into the four similarity 

approaches, String-based (includes Character-based and Term-based), 

Corpus-based, Knowledge-based, and Hybrid-based (Gomaa et al., 

2013; Vijaymeena & Kavitha, 2016). 

 
Figure 21: Text similarity categories 
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• String-based measures operations between strings and 

represents similarity in terms of distance scores. Usually, a 

small distance score represents a high similarity between 

strings and vice versa. String-based similarity includes 

character-based in which edit distances is measured between 

characters and term-based on words and phrases of text. 

• Corpus-based measures semantic similarity between words 

based on information gained from large corpora/dataset. 

• Knowledge-based determines similarity between words using 

information obtained from semantic knowledge bases (e.g., 

WordNet23 a lexical database for English). 

• Hybrid-based uses multiple similarity measures, basically, a 

mix of the former methods. 

Category Method Reference 

E
d
it
-b

a
se

d
 

Levenshtein distance (Levenshtein, 1966) 

Damerau-Levenshtein distance (C. Zhao & Sahni, 

2019) 

Hamming distance (Bookstein et al., 

2002) 

Jaro–Winkler distance (Winkler, 1990) 

Needleman-Wunsch distance (Needleman & 

Wunsch, 1970) 

Smith-Waterman algorithm (Smith et al., 1981) 

T
o
k
en

-b
a
se

d
 

Cosine similarity (Li & Han, 2013; 

Sidorov et al., 2014) 

Sørensen–Dice coefficient (Dice, 1945) 

Tversky index (Tversky, 1977) 

Jaccard coefficient, aka Jaccard index (Jaccard, 1912; 

Kosub, 2019) 

Szymkiewicz–Simpson coefficient, aka 

Overlap coefficient 

(Vijaymeena & 

Kavitha, 2016) 

Tanimoto distance (Lipkus, 1999) 

 
23 https://wordnet.princeton.edu 
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Bag distance (Bartolini et al., 

2002) 

Monge-Elkan (Monge & Elkan, 

1997) 

Token sort ratio, aka fuzzy matching 

score 

(Rao et al., 2018) 

O
th

er
 

K-means (MacQueen & others, 

1967) 

K-NN (K-nearest neighbor) (Fix, 1985) 

EM (Expectation-maximization) (Moon, 1996) 

GMM (Gaussian mixture model) (Reynolds, 1993) 

Brown clustering (Brown et al., 1992) 

 Table 10: Clustering methods 

5.3.2 XPath Feature 

The web page consists of many elements, this step aims at identifying 

each of the elements by an XPath locator. Normally, an element can 

be located by multiple different ways, for example by element ID, CSS 

selector, text of the element, element class, or raw Full XPath24. The 

XPath provide us a simple, effective, and unified way to locate all 

elements from the web page. Therefore, it was selected as the main 

feature to perform the clustering task. 

The general assumption is a similarity-based clustering approach, 

in which elements that have similar XPaths are likely to cluster under 

the same group. In order to better illustrate this concept, consider the 

following example. Figure 22 shows a section of a pricing page (from 

Figure 39), where one XPath locates all the prices (the yellow boxes). 

 
24 A raw Full XPath traverses the hierarchy from the root element of the web 

page to the target element. 
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Figure 22: Prices located using XPath 

As mentioned above, the price can be located in different ways, for 

example, by the element class name (//div/h2[@class='price'])[*], or by 

the Full XPath. In order to provide a generic solution that works on 

any website regardless of how it was built (e.g., if elements include 

class names or not), we intentionally use the Full XPath for locating 

elements in the web page. 

Figure 23 outlines XPaths of the three prices. As shown above, the 

difference between XPaths is only one character (marked in bold). 

Hence, the potential of using character-based string similarity as a 

clustering method is encouraging. The next section outlines 

Levenshtein distance, a metric for measuring the difference between 

two strings. 

  

 

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[1]/div/h2 

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[2]/div/h2 

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div/h2 

Figure 23: Prices located by the Full XPath 
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5.3.3 Levenshtein Distance 

Levenshtein distance is a character-based (aka edit distance) metric 

for measuring the difference between two strings. It is defined as the 

number of the smallest edit operations required to transform one string 

into the other (Levenshtein, 1966). A possible edit operation is a single 

character edit, including insertion, deletion, and substitution. 

Levenshtein distance between two strings 𝑎, 𝑏 (of length |𝑎| and |𝑏| 

respectively) is calculated by the following formula, 𝑙𝑒𝑣(𝑎, 𝑏): 

 
Figure 24: Levenshtein distance formula, credits to wikipedia.org25 

Where: 

• 𝐿𝑒𝑣(𝑎, 𝑏) is the smallest number of edits to change 𝑎 to 𝑏. 

• The 𝑡𝑎𝑖𝑙 function of some string 𝑥 is a string of all characters 

except the first character of 𝑥. 

• 𝐿𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎), 𝑏) corresponds to deletion (from 𝑎 to 𝑏). 

• 𝐿𝑒𝑣(𝑎, 𝑡𝑎𝑖𝑙(𝑏)) corresponds to insertion. 

• 𝐿𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎), 𝑡𝑎𝑖𝑙(𝑏)) corresponds to substitution 

(replacement of 𝑎 and 𝑏). 

 

The next example illustrates the calculation of the Levenshtein edit 

distance between two strings kitten and sitting.  

 
25 https://en.wikipedia.org/wiki/Levenshtein_distance 

kitten → sitten (substitution of s for k) 

sitten → sittin (substitution of i for e) 

sittin → sitting (insertion of g at the end) 

Figure 25: Levenshtein distance example calculation 
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The transformation had three edits to change the word kitten to 

sitting, and there is no other way to achieve the same with fewer 

changes than three edits, hance 𝑙𝑒𝑣(𝑘𝑖𝑡𝑡𝑒𝑛, 𝑠𝑖𝑡𝑡𝑖𝑛𝑔) =  3. 

5.3.4 XPath-based Clustering 

As mentioned previously (see Section 5.3.2), the goal is to cluster 

similar XPaths into groups using the Levenshtein edit distance metric 

(Lev distance). Levenshtein edit can measure the distance between two 

strings only, therefore, we must look at XPath locators that best suit 

the clustering task.  

Table 11 presents XPath-based candidate features that can be 

derived from the XPath feature. Let us first define the following 

concepts: 

• Target: the target element that we wish to cluster. 

• Root: the root element, top element in the DOM tree; it is 

typically the HTML tag and can be located by /∗ [1]. 

• Next: the following sibling of the target element. 

• Previous: the preceding sibling of the target element. 

• Parent: the parent of the target element. 

Note that Levenshtein edit score is calculated on the XPaths of 

these elements. 

Key Description 

D1 𝐿𝑒𝑣(𝑅𝑜𝑜𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡) 

D2 𝐿𝑒𝑣(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡) 

D3 𝐿𝑒𝑣(𝑁𝑒𝑥𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡) 

D4 𝐿𝑒𝑣(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡) 

D5 Depth of the target element by counting its ancestors (which 

include the parent, the parent of the parent, until the top end of 

the DOM tree). The depth can be calculated using the following: 

count(/html/ancestor-or-self::*), which equals to 1. 

D6 Weighted Levenshtein distance to specify different weights for 

edit operations. In a default Levenshtein distance setting, all edit 

operations have a cost of one. It could be interesting to give 

different weights to some characters (e.g., give high weights to 

numbers since they refer to the position of an element in the 

XPath). 

Table 11: XPath-based candidate features 
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Figure 26 illustrates some of the XPath-based candidate distances 

for the target element (the price on the right tire). In this example, the 

shortest distance is found between the target element 𝑇 and its parent 

element 𝑃. Note that knowing the shortest distance by itself is not 

helpful at this stage, however such information might be useful in the 

rest of the pipeline. For the clustering task, it is useful to know that 

similar elements will have the same or nearby distances, hence they 

will cluster in the same group. For example, in the figure below, the 

prices 12, 21, and 30 have the same Levenshtein distance (Figure 27); 

therefore, they will group under the same cluster. 

 
Figure 26: Levenshtein distances illustration 
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In this clustering component, given a web page input, we start by 

extracting XPaths of elements with a filter using the following 

expression: //body//*[not(self::script or self::br)]. The goal of the filter 

is to reduce unnecessary XPaths that do not link to actual informative 

elements, visible to the user. The following are cleaned out: 

• Elements which are located outside the <body> tag (e.g., 

elements in the <head> tag, styles, and fonts). 

• <script> JavaScript code, even the ones inside the body. 

• <br> empty line breaking tags, this tag does not include 

information. 

• Empty elements which have no content. 

• Hidden elements which are present in the DOM but not 

visible on the web page to the user. These elements are 

identified by searching for the term hidden in the element 

attributes or class values. 

• Element wrappers/containers (e.g., <div> tags) which group 

a set of child elements to define a division or section in the 

Html document. These containers often do not include any 

information (e.g., text content) but used for styling and 

structuring. Childless containers may contain unique text 

or additional text to what is in the child elements; in these 

cases, containers are kept (not removed). 

Note that these elements are filtered out locally for the purpose of 

this component, and such meta information should be kept because it 

could be useful for the rest of the pipeline (e.g., for entity recognition). 

The removal of element containers is applied to reduce the number 

of irrelevant XPaths prior to the clustering. The idea is simply to 

match short and long XPaths. For example, /html/body/div[1]/div is 

a container that is matched with /html/body/div[1]/div/img an 

XPath of an image element. Note that elements which contain 

additional unique text are not removed (e.g., /html/body/div[1]/div/p). 

 

T: /html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div/h2 

P: /html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div 

𝐿𝑒𝑣(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡)  =  3 

Figure 27: Example of XPaths distance between the target element and its parent 
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Figure 28 presents an example of 8 input XPaths were reduced to 

5. 

First, consider this example of three web pages from different 

websites (WP126, WP227, WP328) which explores the effectiveness of the 

cleaning process and possible clustering patterns. Table 12 shows the 

number of XPaths before and after the cleaning process, which achieves 

a reduction average of 55.66% of the total XPaths. 

Web page Before After Reduction % 

WP1 265 148 44.15% 

WP2 1818 879 51.65% 

WP3 521 150 71.20% 

Table 12: Number of XPaths before and after the cleaning process 

  

 
26 https://www.moneybird.nl/prijzen 
27 https://www.imes.be/gereedschap-handling-en-

bevestigingen/handgereedschappen/lampen-en-verlengkabels.html 
28 https://www.st-group.com/our-brands 

 

Input: 

 /html/body/div[1] 

 /html/body/div[1]/div 

 /html/body/div[1]/div/img 

 /html/body/div[1]/div/p 

 /html/body/div[1]/div/p/a 

 /html/body/div[1]/div/span 

 /html/body/div[1]/div/span/button[1] 

 /html/body/div[1]/div/span/button[2] 

 

Output: 

 /html/body/div[1]/div/img 

 /html/body/div[1]/div/p 

 /html/body/div[1]/div/p/a 

 /html/body/div[1]/div/span/button[1] 

 /html/body/div[1]/div/span/button[2]] 

 

Figure 28: Example of element containers reduction 
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Figure 29 and Figure 30 visualize the values of candidate features 

extracted from WP1, which shows a clear clustering pattern; as shown 

horizontally, similar values can form a possible cluster.  

 
Figure 29: Line chart of XPath-based Levenshtein distances 

 
Figure 30: Scatter chart of XPath-based Levenshtein distances 
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The general idea to achieve clustering is to do sorting and grouping 

by a Levenshtein distance value (other approaches are possible; see 

Section 5.3.6). In order to validate which of the XPath-based candidate 

features fit the clustering best, we explore further the same web pages 

and present the results below. Note that the Weighted Levenshtein 

distance (D6) remains unexplored for future work, which requires an 

additional variable for each distance. 

 Number of clusters 

Candidate feature WP1 WP2 WP3 

D1 26 53 5 

D2 8 8 5 

D3 8 8 5 

D4 7 7 5 

D5 12 15 5 

Table 13: Number of clusters by XPath candidate feature 

The next section presents evaluation and experiment results 

performed on D2 (the Levenshtein distance between the target element 

and its parent). This distance was selected in particular because it 

outputs the best clusters in terms of the number of clusters (average 

size as seen in Table 13) and their quality. The quality was evaluated 

visually by looking at the output clusters of each distance across the 

three web pages, using a visual evaluation interface (More in the next 

section). Figure 31 shows an example of a brands section that was 

clustered given D1 and D2. The left side (D1) had two clusters (C16 

and C17) of the same thing, but the correct expected result should 

have been one cluster. D2 clusters are correct, (C2) refers to the brand 

boxes (e.g., entity object of name and image) and (C3) represents the 

entity attribute (e.g., brand name). 

 
Figure 31: A section taken from WP3 shows the difference between D1 (left side) and 

D2 
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5.3.5 Evaluation and Experimental Results 

Evaluating the quality of a clustering result is an important yet can be 

a difficult challenge because it is subjective task. It depends on the 

task specifics; for example, in this section the goal is evaluate how well 

is the proposed clustering component performs on the web pages (e.g., 

whether similar elements are grouped correctly or not). In order to 

evaluate this, several measures can be considered to capture 

performance at different levels: across various websites, different web 

pages within a website, across clusters within a web page or all pages 

to capture relevancy of clusters, and finally, across XPaths, to capture 

relevancy of locating target elements, and the XPaths relation with 

respect to the cluster. 

The purity of clusters is considered as a metric (see Section 4.5.5) 

to evaluate the clustering of similar XPaths. It fits well this clustering 

component and the generic approach followed in the global design. A 

good clustering should include pure clusters and have less impure 

clusters. 

In order to evaluate the XPath-based clusters and compute the 

purity metric, a simple visual evaluation interface was developed. The 

interface generates a color scheme automatically, containing the color, 

cluster id, and number of XPaths in the cluster (Figure 32). The 

interface then maps the different but unique colors (and cluster id tags) 

to each cluster, making it easy for the human eye to interpret and 

judge the resulted output. A bounding box is drawn on each cluster. 

Finally, the interface presents an image of the web page visually, 

including all the annotated information. 

 
Figure 32: Clustering color scheme generated by the evaluation interface 
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Figure 33 shows an output example of a questions (FAQ) section. 

As shown, two main clusters were annotated (C0 and C1). C0 refers 

to the question attribute and C1 to the answer attribute; these 

attributes can relate to a FAQ entity object. 

 
Figure 33: XPath-based clustering performed on FAQ section (WP1) 

The previous section introduced a removal mechanism to reduce 

the number of irrelevant XPaths (e.g., element containers) prior to the 

clustering. Although progress has been made in cleaning up more than 

half of the XPaths, some XPaths passed through, which can lead to 

misevaluating the quality of the clustering. The purity metric is 

calculated based on the number of XPaths in the majority class. High 

purity is easy to achieve when irrelevant XPaths are left uncleaned, 

because they might represent the majority class in most of the cases. 

To overcome this, we introduce the concept of XPath relevancy 

within a cluster. A relevant XPath is the one that locates an element 

that has similar elements within the cluster; single elements are 

considered irrelevant. Elements are considered relevant if they can 

represent a candidate entity attribute/class (e.g., price, product name). 

A candidate attribute is a possible output representation (e.g., the 

price attribute in WP1 can be represented as 21, 21,00, or €21,00); a 

follow up step should predict the best attribute given the candidates. 

Furthermore, the concept of percentage purity which describes 

what proportion of the total XPaths is relevant; it can be calculated 

by dividing the total number of relevant XPaths by the total of all 

XPaths, and then multiplying this number by 100. 

Figure 34 illustrates an annotated example of a pricing packages 

section used for clustering evaluation. The green bounding boxes 

represent the elements were located by the XPaths under one cluster. 

The red markings are annotated manually by a human judge. /I/ is a 
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single irrelevant element which can be ignored. Although A1, A2, and 

A3 are clustered under the same cluster, they represent different 

candidate attributes (e.g., A1 a price, A2 a period, A3 part of a feature 

name). The majority class in this example is 15 (A3). 

 
Figure 34: pricing packages cluster annotated by candidate entity attribute (WP1) 

Table 14 outlines the evaluation results for the three randomly 

selected web pages. The size of a cluster is determined by the number 

of XPaths it has. Note that clusters which include only one XPath 

were ignored prior to the clustering. 

Web page WP1 WP2 WP3 

# of clusters 8 8 5 

# of XPaths 148 879 150 

Largest size 40 276 51 

Smallest size 2 13 11 

Mean size 18.5 109.9 30 

Median size 16.5 80.5 25 

# of irrelevant XPaths 58 572 44 

# of relevant XPaths 90 307 106 

# of relevant candidate 

entity attributes/types 

15 29 14 

% purity 60.81% 34.93% 70.67% 

Purity 64.44% 43.32% 76.42% 

Table 14: XPath-based clustering evaluation 

The purity is computed by counting the number of XPaths of the 

majority class (in each cluster) and diving by the number of relevant 

XPaths. The average of percentage purity is 45.47% and purity is 

61.39%. 

The next section provides a detailed discussion on the results and 

outlines possible directions to improve the results in future work.  
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5.3.6 Discussion and Future Work 

The clustering results presented in the previous section show that this 

research direction is promising and has enormous potential. Using a 

simple feature (XPath), the system was able to group similar elements 

groups correctly more than sixty percent of the time. The clustering 

could be enhanced further by leveraging the multiple features (see 

Section 5.2.1); for example, by applying k-means clustering on 

additional features besides the XPath (or other methods, see Section 

5.3.1). In this case, additional work is needed to encode the various 

features into machine-learning ready features (e.g., element location as 

numerical feature, color, and tag type as categorical, and convert text 

content into vectors). In addition to that, to normalize large numbers 

and independent features of data (e.g., using z-scaling to ensure that 

feature distributions have a zero-mean and standard deviation of one) 

(Bejarano et al., 2011; Kumar & others, 2014). Although, K-means 

may capture better clusters, it comes with some disadvantages: the 

number of clusters (K) must be known beforehand and chosen 

manually; this could be challenging since the number of clusters varies 

between different web pages, as it depends on the web page structure 

and content. 

Various features can be extracted from the structure of web pages 

(e.g., DOM tree, location of elements, neighboring elements); in 

addition to that, the text content of web page elements can be a useful 

attribute for clustering elements. Methods to measure the content 

similarity such as paragraph and word similarity (e.g., Word2Vec and 

Doc2Vec (Le & Mikolov, 2014)) can be applied on each element to 

group elements with similar content together. 

The clustering experiment was done using simple sorting and 

grouping by the XPath-based distances. However, more complex 

approaches can be performed to optimize the process of forming 

clusters; for example, using Jenks natural breaks to normalize and 

group close numbers together (Jiang, 2013). The method minimizes the 

variation within each similarly distances range, resulting in fewer 

clusters. 

The clustering component was evaluated using a visual evaluation 

interface on a small sample of web pages due to the manual work 

involved. At present, the visual evaluation interface generates colors 

randomly; this can be improved further by displaying distinct colors 

and colors that do not look alike to the human-eye. Furthermore, in 
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the future, more research should be done to investigate automated 

clustering evaluation methods that fit the web information extraction 

task; once found, evaluation on a larger sample size becomes easy. 

 Global System Discussion 

This section lists the contributions of this study and reflects on the 

results of each component. Furthermore, it outlines a multi-clustering 

nested challenge and provides ideas for the entity recognition 

component. 

As previously mentioned, the system's goal is to extract and 

structure information from web pages generically; given web page as 

input, the system produces a structured output in JSON format. 

The main contribution of this study is the proposed pipeline system 

design, consisting of the relevancy filter to filter out irrelevant web 

pages, feature extraction to study and extract candidate features from 

web pages, clustering component to group similar web page elements 

together, and finally, entity recognition to identify and link extracted 

clusters to entities. In addition to the global design, we have discussed 

each component in detail and proposed a list of candidate features 

which can be extracted from web pages (e.g., style-based, element and 

DOM information, and location-based features). 

Furthermore, we have implemented and evaluated two components: 

relevancy filter and clustering. The relevancy filter performed well on 

classifying irrelevant web pages; however, it supports only English and 

Dutch. Training a larger language-agnostic multilingual model would 

improve the system further. In the clustering component, we provided 

a list of existing clustering methods focusing on techniques suited for 

web information extraction and text similarity. Moreover, we 

experimented with XPath-based Levenshtein distance features to form 

clusters of similar web page elements. Although the XPath-based 

clustering results are promising and show potential in this generic 

research approach, they can be improved further by leveraging the 

multiple web page features besides the XPath. 

The similarity-based clustering performed well on clustering entity 

attributes; however, linking these attributes to an entity object remains 

challenging. We define this challenge as a multi-clustering nested task. 

Figure 35 illustrates an ideal clustering example of a pricing packages 

section. In a similarity-based clustering, the system will output price 

(C0) and period (C1) as entity attributes; however, to produce a fully 
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structured JSON, more work is needed. The attributes should be 

flattened and grouped vertically to form entity objects (C2, the 

packages), and since the objects relate to the same entity type, they 

must be grouped under one parent cluster (C3). In this example, C0 

and C1 have no feature similarity (only the location of elements). 

Hence, we must look beyond the similarity-based clustering to link the 

entity attributes with their objects. A possible solution is to look at 

the DOM tree and investigate the parent-child relation; child elements 

represent the entity attributes, and parent element corresponds to the 

entity object. 

 
Figure 35: Pricing packages multi-clustering example 

Finally, the entity recognition component solves the last task to 

tackle the generic web information extraction. The evaluation of 

component remains for future work, but here we provide general ideas 

about the component and outline future directions. Given the 

clustering component's output clusters, the system assigns named 

entity attributes and entity object names. For this component to work 

correctly, the system must have a knowledge base containing 

information about possible entities and how they can be described. 

The meta information of all steps carried out in the previous 

components can help the recognition process; therefore, it should be 

kept and passed on to this step. Given an entity knowledge base, 

components meta information and additional entity descriptions from 

open graphs (e.g., schema.org), the system should suggest possible 

entities automatically. In addition to that, the user may provide the 

system with extra entity definitions of interest. The entity definitions 

can be provided in a knowledge base as a set of rules or training 

examples (to train a machine learning model). The main challenge is 

to identify what features describe each entity. Consider this example 

of a pricing page that includes at least a price entity. The knowledge 

base should define what the price entity looks like; for example, a price 

is a number next to a currency sign, and the currency is a euro or 

dollar symbol. This way the system can resolve the entity attribute 
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name. The system may recognize a name for the entity object (e.g., 

object names are often located in the parent section and have a large 

bold font). This simple idea can generalize on many examples, 

including web tables. Figure 36 illustrates a web table example; when 

we apply the ideas presented above. The entity attributes will be the 

name and color because they are in bold font, centered in the middle, 

separated by lines, and use headline style capitalization. 

 
Figure 36: Simple web table example 

In the future, we could study and list common entities (with 

features for each entity) that occur in web pages; by taking a random 

sample of web pages and annotating interesting entities. Finally, an 

easy way to model and integrate user specific entities in the system is 

needed.  
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Conclusions 

This thesis reviewed different approaches on how to extract and 

structure information from web pages and proposed a component-

based system design. The goal is to extract and recognize web 

information and convert it into a structured form (JSON format) in a 

generic way. The resulted structured information is beneficial and 

increasingly needed to support the business demands of building smart 

applications and system integrations (Section 2.9). 

In general, some literature was found on the topic of web 

information extraction; however, no system or method could be found 

that can fulfill all the desired requirements for a generic and automatic 

extraction (Section 4.1). Extracting structured information from web 

data is challenging as it contains many web pages in different shapes 

and forms. Current methods are limited and fail to scale across 

different websites; some methods tackle parts of the challenge such as 

WebTables and TableMiner for HTML tables; others are limited to a 

pre-defined schema, require manual user input, visual-driven 

interaction, or training examples. 

In the following subsections, we summarize the global system design 

and provide conclusions to each pipeline component. Furthermore, 

answer the research questions we defined at the beginning in Section 

4.3 and outline future work suggestions. 
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 Conclusions 

This thesis proposed a novel component-based web information 

extraction system based on the well-established design science 

methodology (Wieringa, 2014). Given a collection of web pages as 

input, the system can extract and cluster web information generically. 

The global design consists of four pipeline components; we studied 

literature and listed existing methods for each component. 

Relevancy filter aims to clean out irrelevant websites based on 

custom binary classification models for two languages (English and 

Dutch). We trained and evaluated four models with different 

configurations on companies’ dataset obtained from the Dutch 

Chamber of Commerce. The winning models did well on classifying 

irrelevant web pages (98.86% F1). 

Feature extraction component aims at extracting helpful candidate 

features from the relevant websites, including XPath (Section 5.2.1). 

We studied and extracted the candidate features from three different 

web page representations: the visual presentation (what people see 

visually via browsers), source code, and DOM tree. The XPath feature 

was selected because of its simplicity in locating web page elements. 

Clustering aims at grouping similar web page elements into clusters 

based on XPath-based Levenshtein distance. We listed existing 

clustering methods and focused on text similarity approaches, which 

are better suited for this research (Section 5.3.1). We extracted several 

features from the XPath-based Levenshtein distance and focused on 

the distance between target element and its parent to perform the 

clustering. Furthermore, a rule-based cleaning process was introduced 

to filter out unnecessary XPaths. Finally, the clustering was manually 

evaluated using a visual evaluation interface on three web pages 

(average purity of 61.39%). 

Entity recognition is the last component in the pipeline; its goal is 

to link clusters with their corresponding entities. Although this 

component has remained for future work, we presented a knowledge-

based approach to recognizing entities and proposed future research 

questions (see Section 5.4 and Section 4.3). 
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 Research Questions 

This thesis involves several research questions, as explained in Section 

4.3. Below we discuss each of them based on the system global design 

and findings of this research. 

Q1: How can irrelevant web pages be filtered out? 

In general, the relevancy of web pages is subjective and depends on 

the business use case. We solve this challenge by annotating a dataset 

of web pages and training a custom binary classifier. This same process 

can be adapted to different use cases (see Section 5.1). 

Q2: What candidate features can be extracted from web pages? 

Web pages contain feature-rich semi-structured information. In 

Section 5.2.1, we studied and proposed a list of candidate features 

(style, dimensions and location, element information, DOM 

information, meta data, and other calculated features). These features 

could be leveraged to enhance the overall system performance. 

Q3: How can XPaths be constructed to effectively locate web page 

elements? 

There are several ways to construct XPaths; we preferred the Full 

XPath, which traverses the DOM tree hierarchy from the root element 

of the web page (/html/) to the target element. This way, we get a 

standard and unified way to locate elements from web pages, making 

it easy to perform clustering experiments. 

Q4: What existing clustering methods can be effectively used for 

clustering web page elements? 

Several existing methods were found from the literature, which have 

potential in clustering similar web page elements. We focused on 

character-based text similarity methods, including the Levenshtein 

distance, mainly because it fits well with the XPath feature. (see the 

complete list in Section 5.3.1). 

Q5: What evaluation metrics can be used to measure the 

performance of clustering? 

Clustering evaluation is challenging and specific to the task. For 

this thesis, we adopted the purity and percentage purity to evaluate 

the quality of clusters. Purity measures the number of pure clusters 

among all clusters, while percentage purity estimates the percentage of 

relevant clusters. 
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 Future work 

Future research includes further optimization to the global system 

design to achieve better performance. Carrying out additional 

exploratory studies to the candidate features might be beneficial to 

uncover unseen patterns among web pages. 

Training a large language-agnostic multilingual model can help the 

relevancy filter component in supporting additional languages. Hence, 

the ability to filter out web pages that include unseen languages 

correctly. 

As for the clustering component to leverage and apply multiple 

features not only the XPath-based features. In the current 

implementation, all Levenshtein features had the same weights in the 

similarity distance calculation; it could be useful to apply a weighted 

distance by specifying different weights for each edit operations; for 

example, by giving larger weights to numbers than characters, since 

numbers refer to the element position in the XPath. Moreover, further 

research for automated clustering evaluation methods can come in 

handy to evaluate the same clustering experiment but on a larger 

sample size. Alternatively, improvements to the visual evaluation 

interface are needed to carry out the evaluation manually faster (e.g., 

print out a distinct color for each cluster). Finally, more research is 

needed for methods to group entity attributes with their objects. 

Lastly, the entity recognition component needs more extensive 

study. The knowledge-based approach has good potential in resolving 

named entities. In this direction, a study of entities must be done on a 

sample of web pages or public knowledge bases (e.g., schema.org) to 

identify common entities and list their features. The following 

knowledge questions are listed for future research. 

FQ1: How can candidate features be leveraged to identify entities? 

FQ2: What is an effective method for constructing a knowledge 

base to hold entity representations? 

FQ3: What is the best way to generate key-value structured 

information?  
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Appendices 

A. Google Rich Results Features 

Feature Description 

Article A blog article displayed with a 

highlighted headline and larger 

images. 

Book Actions to enable users to buy books 

directly. 

Breadcrumb Navigation to move users to a 

specific content position 

Carousel Rich results that display in a gallery 

view 

Course Display course title, provider, and a 

short description for educational 

courses 

Critic review A snippet review from a larger 

article about a book, movie, or local 

business. 

Dataset Dataset files that appear in Google 

Dataset Search 

EmployerAggregateRating An evaluation review of a hiring 

process displayed from many users 

to enhance a job search experience. 

Event Shows a list of events such as 

festivals and concerts that start at a 

particular time and place in order to 

help people attend and small 

business to increase their sales. 

Local Business Show information about a local 

business including opening hours, 

ratings, google maps directions, and 

actions to book appointments or 

order products directly. 

Logo Shows an organization logo in 

search results and on the side as 

part of google knowledge panel. 

Podcast Shows podcasts in a playable link in 

Google Search and Google Podcasts 

app. 
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Product Information about a product, 

including price, stocks availability, 

and review ratings. 

Recipe Shows what are the recipe 

ingredients, cooking time and 

temperature, and calories. 

Review snippet A short description, review or rating 

from a review site about a book, 

recipe, product, software app, and 

local business. 

Software App Information about a software app 

such as rating, reviews and a link to 

download the app. 

Subscription and paywalled content Show a paywalled content on a site. 

Video Shows information about a video or 

live-stream content with the option 

to enable users to play it right away. 

Other features, including: Fact Check, FAQ, Home Activities, How-to, 

Image License, JobPosting, Job Training, Speakable, Sitelinks Search box, 

Q&A, Movie, and Estimated salary. 

Table 15: Google Rich Results features29 explained 

  

 
29 https://developers.google.com/search/docs/guides/search-gallery 
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B. Vision-based Page Segmentation 

 
Figure 37: An example of web data extraction using a vision-based technique 

 

C. Web Pages Input and Output 

 
Figure 38: Example of webshop product detail page and it’s structured output 
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Figure 39: Example of pricing packages web page and it’s structured output 
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D. Website Categories 

Business informative website 

 
Figure 40: Business informative websites: present information and media content 

Ecommerce websites 

 
Figure 41: Ecommerce websites/webshops: sell many products online 

Pricing packages included websites 

 
Figure 42: Pricing packages included websites: include few-tiered pricing packages 
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E. Relevancy Filter Annotation Examples 

Good Examples 

 
Figure 43: Accepted example 1 (aannemeraanzet.nl) 

 

 
Figure 44: Accepted example 2 (active-hydration.com) 
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Figure 45: Accepted example 3 (agiocigars.com) 

 
Figure 46: Accepted example (alijt.nl) 
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Bad Examples 

 
Figure 47: Rejected example 1 (12motiv8.nl) 

 

 
Figure 48: Rejected example 2 (180gradenom.com) 
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Figure 49: Rejected example 3 (1816media.nl) 

 
Figure 50: Rejected example 4 (a2eco.com) 
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Figure 51: Rejected example 5 (aceauctions.eu) 

 

 
Figure 52: Rejected example 6 (adit-services.nl) 

 
Figure 53: Rejected example 7 (admarsol.com) 
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Figure 54: Rejected example 8 (adrenalinemedia.net) 
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F. XPath-based clustering examples 

 
Figure 55: XPath-based clustering performed on pricing packages page 
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Figure 56: XPath-based clustering performed on products page 
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Figure 57: XPath-based clustering performed on brands page 


