
 1

 2

Automatic Generic Web

Information Extraction at Scale

Master Thesis

Computer Science, Data Science and Technology

University of Twente. Enschede, The Netherlands

An attempt to bring some

structure to the web data mess.

Author

Mahmoud Aljabary

Supervisors

Dr. Ir. Maurice van Keulen

Dr. Ir. Marten van Sinderen

March 2021

 3

Abstract

The internet is growing at a rapid speed, as well as the need for

extracting valuable information from the web. Web data is messy and

disconnected, which poses a challenge for information extraction

research. Current extraction methods are limited to a specific website

schema, require manual work, and hard to scale. In this thesis, we

propose a novel component-based design method to solve these

challenges in a generic and automatic way. The global design consists

of 1. a relevancy filter (binary classifier) to clean out irrelevant

websites. 2. a feature extraction component to extract useful features

from the relevant websites, including XPath. 3. an XPath-based

clustering component to group similar web page elements into clusters

based on Levenshtein distance. 4. a knowledge-based entity recognition

component to link clusters with their corresponding entities. The last

component remains for future work. Our experiments show huge

potential in this generic approach to structure and extract web data at

scale without the need for pre-defined website schemas. More work is

needed in future experiments to link entities with their attributes and

explore untapped candidate features.

Keywords: Web information extraction, Machine learning, Web data

wrapping, Wrapper induction, Relevancy filter, Clustering, Entity

recognition, XPath, DOM, HTML, JSON, Levenshtein distance,

Design science.

 4

Table of Contents

Abstract .. 3

List of Tables .. 7

List of Figures ... 8

 Introduction ... 10

 Background and Motivation ... 12

 Semi-structured vs Structured Data 12

 DOM (Document Object Model) 13

 XPath (XML Path Language) 13

 OXPath .. 14

 JSON (JavaScript Object Notation) 15

 JSON-LD (JSON for Linked Data) 16

 Google Rich Results ... 17

 Robots.txt and No-index Meta Tag 18

 Structured Information Need and Applications 19

 Related Work: Existing Web Information Extraction Methods 20

 Specification-based Extraction Methods 21

 Element-specific Extraction .. 21

 Machine Learning-based Extraction 22

 Pattern Discovery-based Extraction 23

 Vision-based Page Segmentation 24

 Method: Design Science Research .. 25

 Problem Statement and Requirements 25

 Global Design ... 26

4.2.1 Input: Web Data ... 26

4.2.2 Method: Web Information Extraction 27

4.2.3 Output: Structured Key-value Information 29

 Challenges and Research Questions 29

 Experimental Setup .. 31

4.4.1 Extraction vs Recognition ... 32

 5

4.4.2 Dataset Collection ... 33

4.4.3 Experiments .. 35

4.4.4 Use case, Need of Structured Information 36

 Evaluation Metrics ... 37

4.5.1 Precision .. 38

4.5.2 Recall .. 38

4.5.3 F1 .. 38

4.5.4 AUC (Area Under the Curve) 38

4.5.5 Purity .. 38

 System Design and Components .. 40

 Relevancy Filter ... 40

5.1.1 Annotations ... 41

5.1.2 Workflow ... 42

5.1.3 Pre-processing ... 43

5.1.4 Training .. 45

5.1.5 Evaluation Metrics and Experimental Results 47

5.1.6 Discussion and Future Work 48

 Feature Extraction ... 48

5.2.1 Candidate Features ... 49

5.2.2 Feature Selection ... 50

 Clustering ... 52

5.3.1 Existing Methods .. 52

5.3.2 XPath Feature .. 54

5.3.3 Levenshtein Distance ... 56

5.3.4 XPath-based Clustering .. 57

5.3.5 Evaluation and Experimental Results 63

5.3.6 Discussion and Future Work 66

 Global System Discussion ... 67

 Conclusions .. 70

 Conclusions ... 71

 6

 Research Questions ... 72

 Future work .. 73

References ... 74

Appendices .. 80

A. Google Rich Results Features .. 80

B. Vision-based Page Segmentation 82

C. Web Pages Input and Output .. 82

D. Website Categories .. 84

E. Relevancy Filter Annotation Examples 85

F. XPath-based clustering examples 91

 7

List of Tables

Table 1: Google Rich Results features ... 18

Table 2: Experimental setup ... 35

Table 3: Evaluation metrics symbols .. 37

Table 4: Annotating criteria .. 42

Table 5: Annotations dataset .. 42

Table 6: Processing components parameter optimization 45

Table 7: Relevancy filter evaluation metrics 47

Table 8: List of candidate features .. 49

Table 9: List of features proposed in Web2Text (Vogels et al., 2018)

 ... 50

Table 10: Clustering methods ... 54

Table 11: XPath-based candidate features 57

Table 12: Number of XPaths before and after the cleaning process

 ... 60

Table 13: Number of clusters by XPath candidate feature 62

Table 14: XPath-based clustering evaluation 65

Table 15: Google Rich Results features explained 81

file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298509

 8

List of Figures

Figure 1: HTML DOM Tree, credits to w3schools.com 13

Figure 2: XPath examples on a simple HTML 14

Figure 3: Example of a JSON object ... 15

Figure 4: Example of a JSON-LD object 17

Figure 5: Google Rich Results logo feature example 18

Figure 6: Html2Vec example ... 23

Figure 7: Global design ... 26

Figure 8: Web data input .. 27

Figure 9: Generic web information extraction pipeline 27

Figure 10: Relevancy filter input/output 28

Figure 11: Feature extraction input/output 28

Figure 12: Clustering input/output ... 28

Figure 13: Entity recognition input/output 28

Figure 14: Extraction enhancement .. 32

Figure 15: Method extraction vs recognition 32

Figure 16: Dataset collection process .. 34

Figure 17: Annotation interface using Jupyter notebook pigeon

widget .. 41

Figure 18: Tok2Vec processing component 44

Figure 19: TextCat processing component 45

Figure 20: Training parameters ... 46

Figure 21: Text similarity categories ... 52

Figure 22: Prices located using XPath .. 55

Figure 23: Prices located by the Full XPath 55

Figure 24: Levenshtein distance formula, credits to 56

Figure 25: Levenshtein distance example calculation 56

Figure 26: Levenshtein distances illustration............................... 58

Figure 27: Example of XPaths distance between the target element

and its parent ... 59

Figure 28: Example of element containers reduction 60

Figure 29: Line chart of XPath-based Levenshtein distances 61

Figure 30: Scatter chart of XPath-based Levenshtein distances .. 61

Figure 31: A section taken from WP3 shows the difference between

D1 (left side) and D2 ... 62

Figure 32: Clustering color scheme generated by the evaluation

interface ... 63

file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298530
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298531
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298532
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298533
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298534
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298535
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298536
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298537
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298538
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298546
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298548
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298550
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298550
file:///G:/My%20Drive/0%20Twente%20Master%20-%20Computer%20Science%20-%20Data%20Science/1%20Master%20Thesis/Generic%20Web%20Information%20Extraction%20At%20Scale%20-%20Thesis%20-%20Mahmoud%20Aljabary%20v1.0.docx%23_Toc67298551

 9

Figure 33: XPath-based clustering performed on FAQ section

(WP1) .. 64

Figure 34: pricing packages cluster annotated by candidate entity

attribute (WP1) ... 65

Figure 35: Pricing packages multi-clustering example 68

Figure 36: Simple web table example .. 69

Figure 37: An example of web data extraction using a vision-based

technique .. 82

Figure 38: Example of webshop product detail page and it’s

structured output ... 82

Figure 39: Example of pricing packages web page and it’s structured

output .. 83

Figure 40: Business informative websites: present information and

media content ... 84

Figure 41: Ecommerce websites/webshops: sell many products

online ... 84

Figure 42: Pricing packages included websites: include few-tiered

pricing packages ... 84

Figure 43: Accepted example 1 (aannemeraanzet.nl) 85

Figure 44: Accepted example 2 (active-hydration.com)............... 85

Figure 45: Accepted example 3 (agiocigars.com) 86

Figure 46: Accepted example (alijt.nl) .. 86

Figure 47: Rejected example 1 (12motiv8.nl) 87

Figure 48: Rejected example 2 (180gradenom.com) 87

Figure 49: Rejected example 3 (1816media.nl) 88

Figure 50: Rejected example 4 (a2eco.com) 88

Figure 51: Rejected example 5 (aceauctions.eu) 89

Figure 52: Rejected example 6 (adit-services.nl) 89

Figure 53: Rejected example 7 (admarsol.com) 89

Figure 54: Rejected example 8 (adrenalinemedia.net) 90

Figure 55: XPath-based clustering performed on pricing packages

page .. 91

Figure 56: XPath-based clustering performed on products page . 92

Figure 57: XPath-based clustering performed on brands page 93

 10

Introduction

The internet is full of web pages growing exponentially at a rapid rate.

Web pages typically contain unstructured and semi-structured data in

the form of natural language text, images, videos, tables, etc., that is

valuable for nowadays business. This big data has led to open business

opportunities and data-driven applications. Web data analytics and

extraction can offer significant value to companies in many ways,

including higher revenues, better customer satisfaction, and more

efficient operations. Many industries have used web data as a

competitive advantage tool for different needs, including business

contact information collecting from public business directories, brand

and competitor web present monitoring, market analysis, collecting job

postings from job portals, product information from webshops, and

online products and pricing comparison. As a result of the business

interest and practical applications, technologies for processing and

extracting value from the web data have become an important study

area, so as the need for automated methods to collect and extract

relevant information from the web, accurately and expeditiously.

Web Information Extraction is the process of extracting

information from web pages data, which usually comes in a semi-

structured format and converting that into structured information.

This process includes collecting web page data by downloading the

actual content of the page. A typical web page is formatted in an

HTML document and other web technologies such as JavaScript and

(Cascading Style Sheets) CSS. The HTML document is a hierarchy of

HTML elements that are normally represented as DOM (Document

Object Model).

Current web information extraction methods which aim at

extracting information from the web pages are limited to particular

website HTML document structure, and therefore hard to scale on

different websites. Such methods are specific to a template definition

or schema structure. Suppose someone is interested in extracting web

information from 1 million websites, normally a developer has to hard

 11

code scripts to extract data form each website individually, which

means 1 million scripts and countless hours. The same issue is found

in other solutions that aim at allowing non-technical people to annotate

the data of interest visually through a user interface. This is clearly

infeasible at scale.

This thesis discusses different approaches found from the literature

related to Web Information Extraction and propose a novel

component-based method based on the established methodology of

(Wieringa, 2014). The global design includes several components; each

component has a local goal and contributes to the global design. The

main contribution is an automatic generic approach that can extract

information from web pages from any website regardless of its

structure. The method takes a collection of web pages, filter them

based on a relevancy filter classifier. Candidate features (including

XPath) are then extracted from the relevant websites. A clustering

component groups similar HTML sections into clusters given the

extracted features. Finally, clusters are linked to entities using a

knowledge-based approach. The ideal output is a structured key-value

pairs information in a JSON format. The output can then be used to

fulfill the need for structured information in many applications and

smart services.

The rest of the thesis is organized as follows. The research

background and motivation are presented in the following section. Web

Information Extraction methods found from literature and related

work are in Section 3. Section 4 includes the proposed method, a design

science research, including the research requirements, goals, and

existing challenges. The system design components for the automatic

generic method are discussed in detail in Section 5, including relevancy

filter, feature extraction, clustering, and entity recognition component.

Finally, section 6 provides conclusions and answers to the research

questions with a discussion and future research directions.

 12

Background and Motivation

As described in the previous section, the need for structured

information is significantly increasing. Traditional information

extraction methods are limited to specific website schemas, which

require manual work and thus not scalable. To overcome these

limitations, we must investigate alternative generic and automatic web

extraction methods that can work well at the required scale. The rest

of this section describes important background concepts.

 Semi-structured vs Structured Data

Web data typically comes in a semi-structured format, which is a form

of data that contains some semantic structure and include noticeable

uniform patterns. However, the schema is not pre-defined and open

among different websites. (Lin et al., 2018) describe three

characteristics of semi-structured data: 1. The data has a certain

structure, but this structure is mixed with the content. This is also the

case in web pages, where the content data is mixed with the HTML

document code. 2. The data may be formed from multiple elements

and may be represented by different data types. In web pages, multiple

sections may represent the same entity. 3. The data has no pre-defined

model and include irregular structure. On the other hand, structured

data obey tabular structured and has a strict data model that can work

well with relational databases and other forms of data tables.

To overcome the problems of semi-structured data, methods and

tools exist to cleanup and wrangle the data (Krishnan et al., 2019).

This is often done through a user interface-driven tool, which takes

time and requires manual labor. Another approach is to transform the

data into the structured form using transformation methods based on

natural language pattern matching (Califf & Mooney, 1999), efficient

wrapper generation (Suzhi Zhang & Shi, 2009), and HTML and XML

parsing using tree structure (Hu & Meng, 2004).

 13

 DOM (Document Object Model)

Document Object Model (DOM) is a tree-based representation of an

HTML document structure that consists of nodes, also known as (aka)

DOM Elements. Each element can have a key tag and possibly a value

such as p to represent paragraph, a for links, and h for headings (De

Mol et al., 2015). An element can have any number of child elements.

Below is an example of the HTML DOM Tree.

Figure 1: HTML DOM Tree, credits to w3schools.com

 XPath (XML Path Language)

XPath can be used to identify one or more elements in XML or HTML

documents. Although XPath supports both HTML and XML due to

the fact that they are very similar and based on the Standard General

Markup Language (SGML) (De Mol et al., 2015), in this study, the

focus is on HTML web pages. XPath is also useful to navigate between

elements and attributes in the HTML document and selecting

particular nodes. Thus, a useful tool for extracting the desired

information from web pages.

XPath consist of a set of steps separated by forward slashes. Each

step can reference one or many node elements in the DOM. XPath also

has (basic, set, and comparison) operators such as + addition, -

subtraction, * multiplication, AND, and OR. Operators can be useful

for selecting targeted elements from the DOM. Below is a simple

example to illustrate how XPath can be used to select elements.

 14

Figure 2: XPath examples on a simple HTML

 OXPath

OXPath1 from Oxford is an extension to XPath, a language designed

for scalable web data extraction and automation (Fayzrakhmanov et

al., 2018). It comes with improved features such as actions (e.g.,

clicking on elements and buttons, and form filling), Kleene star2

(unbounded and bounded expressions) for iteration and navigation,

and markers/wrappers for data extraction. The wrappers are

responsible for extracting data from DOM trees of traversed web pages

and appending the results to the output. The output of OXPath is a

tree-like structure (Furche et al., 2013).

OXPath is suitable for data extraction at scale, since its memory

requirement remains small regardless of the number of web pages

crawled (Grasso et al., 2013). Furthermore, OXPath is designed to

integrate with other technologies by providing an API. Although, the

language has a standard API, XPath integrated libraries and tooling

remain widely adopted.

1 http://www.oxpath.org
2 https://en.wikipedia.org/wiki/Kleene_star

 15

 JSON (JavaScript Object Notation)

JavaScript Object Notation (JSON) is an open standard format that

can represent entities in an unordered enumeration of properties,

consisting of key/value pairs (JSON, 2020) (Klettke et al., 2015).

JSON supports basic data types such as number, string, and boolean.

It can support more complex structures using multi-value nested

objects and the use of arrays. Arrays are ordered lists of values

separated by commas. An array value can include a JSON structure,

resulting in an array of JSONs. Figure 3 shows an example of a JSON

object, addresses attribute is an array of JSONs.

Figure 3: Example of a JSON object

 16

 JSON-LD (JSON for Linked Data)

The linked data concept refers to a set of principles for sharing

machine-readable structured and interlinked data on the web, a format

type commonly used in Semantic Web (SW). SW is a concept to enable

machines to manipulate interlinked web data meaningfully. In other

words, the vision of SW is to have a universal global database of the

web data that can be searched publicly and understood by machines

(Berners-Lee & others, 1998).

JSON-LD is a method to encode linked data using the JSON format

and add semantics to existing JSON objects (Sporny et al., 2014)

(Lanthaler & Gütl, 2012). It was designed to empower existing tools

and libraries that use traditional JSON and thus fully compatible by

design. It comes with additional benefits such as pagination metadata,

filters, and support to datatypes with values as dates and times.

Furthermore, it provides a way in which a value in one JSON object

can refer to another JSON object on a different site on the web. A

useful feature to link nested object by reference instead of nesting the

whole thing.

 17

Figure 4 shows the former JSON example in a JSON-LD format.

Notice that @context and @type were added to link the data semantics

and @nest to reference a nested object.

Figure 4: Example of a JSON-LD object

 Google Rich Results

Google Rich Results, aka Google Structured Data or Schema Markup,

is a standardized format to enable advanced search engine optimization

(SEO) capabilities in Google Search. It is a way of describing a website

to make it easier for search engines to understand and parse the site

content to deliver enhanced experiences to its users.

 Search engines including Google3 and Yandex4 have adopted

JSON-LD to be the recommended format for describing search rich

results.

3 https://developers.google.com/search/docs/guides/intro-structured-data
4 https://webmaster.yandex.com/tools/microtest

 18

At this moment, Google supports the following features:

Here is an example of a logo feature in JSON-LD code, and further

details about the other features can be found in Appendix A. In this

example, Google recognizes and requires at least the attributes logo

and URL to display the content as a rich result. Additional image

guidelines are required to be eligible for this feature, including image

must be crawlable and indexable, and in a specific size.

Figure 5: Google Rich Results logo feature example

 Robots.txt and No-index Meta Tag

It is a text file that tells search engines and crawlers which pages can

be requested from the website and which not (Introduction to

Robots.Txt - Search Console Help, 2020). This file allows crawlers to

know and control how to crawl and index websites that are publicly

accessible. It is a mechanism to enable traffic management to the site

and avoid overloading it with crawling requests. To prevent crawlers

from accessing the websites entirely, site owners can use the no index

meta tag.

Article, Book, Breadcrumb, Carousel, Course, Critic review,

Dataset, EmployerAggregateRating, Event, Local Business,

Logo, Podcast, Product, Recipe, Review snippet, Software App,

Subscription and paywalled content, Video, Fact Check, FAQ,

Home Activities, How-to, Image License, JobPosting, Job

Training, Speakable, Sitelinks Search box, Q&A, Movie, and

Estimated salary.

Table 1: Google Rich Results features

 19

 Structured Information Need and Applications

As mentioned in the previous sections, search engines such as Google

prefer structured data to display rich results to users and to rank

websites higher accordingly. In addition to that, a well-defined

structured schema enables efficient data processing, data integration,

data interoperability, and an improved way to query and analyze the

content of the data (Sint et al., 2009). (Abiteboul et al., 2014) discuss

several advantages of structured data, including optimizing query

evaluation, improving data storage, and supporting strongly typed

languages.

Due to the benefits of structured information and the problems of

semi-structured data, transformation methods exist to overcome these

limitations (Krishnan et al., 2019). Hence, the need for structured

information is importantly increasing to enable many applications.

Below a list of example applications in different industries:

• Company data: in our digital age, each company has a web

presence. Companies have an interest in monitoring and

getting insights on market dynamics, e.g., services and

products being offered, monitor pricing changes of

competitors. Data can provide answers to questions e.g.,

what is the average price point of x SaaS platforms? Which

websites have updated their home page last week? What are

the most common use cases published on x websites? etc.

• Product data: many webshops offer their products online,

including descriptions, pricing, and other information. This

data can be used, for example, to enrich existing product

catalogues. Questions like: which products my existing

catalogue lack, but other competitors have? What are similar

products to product x? How have other companies described

product x? What are the top recent reviews about product

x? What are the top characteristics found on the home page

of x company? How many companies use a large font on the

home page? How many companies have a signup form on the

home page? Does this increase the conversion rate?

• Sport data: information about players, local players across

provinces, information about matches (e.g., location, time,

results). Top-performing teams in specific locations in

different sports.

 20

Related Work: Existing Web

Information Extraction Methods

(Laender et al., 2002) proposed a taxonomy comprised of six groups

for existing web data extraction:

1. Languages for wrapper development: the idea is to employ

specially designed languages using e.g., Python and Java, to

assist users in developing and generating wrappers. A

wrapper is a configuration to identify the data of interest

among many other undesired data (Laender et al., 2002).

2. HTML-aware: methods that rely on the structural features

of HTML web pages to turn documents into a parsing tree,

and then perform the data extraction task.

3. Wrapper induction: approaches based on learning certain

features such as web page formatting, in order to define the

structure of the data and perform the extraction task

(Varlamov & Turdakov, 2016).

4. Ontology-based: given a specific domain, an ontology is built

relying directly on the data rather than the structure of the

web page.

5. Modelling-based: aim at finding sections in the web pages

that match a pre-defined model.

6. NLP-based: methods that leverage free natural text within

the web pages to learn extraction rules.

 21

Below we present a similar taxonomy that better fits this study and

discuss each in more detail.

 Specification-based Extraction Methods

This category includes traditional methods that require user

interaction, user input, or manual work. Usually, researchers build

browser-based plugins or rely on configuration-based files to specify

how to extract information from web pages. In other words, the user

must identify and provide the attributes of interest and the extraction

rules for the extraction task manually, often per website or for a specific

domain. A simple specification form would be providing a regular

expression configuration to extract matching elements from web pages.

Such methods are not suitable for the requirements of this research,

because they are limited specific website schema and require manual

specification, although they might be useful for other use cases, for

example, cases that aim at accessing private data. When accessing a

website, the wrapper can benefit from browser-relevant cookies,

authentication data, and user session data. In addition to that, since

the plugin is installed locally in the browser and the extraction task

takes place within this environment, rendering the web page content,

including CSS styles and JavaScript, comes out of the box.

 Element-specific Extraction

Element-specific methods are techniques that focus only on a specific

element of the web page, such as WebTables (Cafarella et al., 2008)

and TableMiner (Z. Zhang, 2009), which focus on identifying and

extracting HTML tables with high quality data. (Shuo Zhang & Balog,

2020) (Hotho et al., 2016) present recent survey work including

information extraction, web table extraction, retrieval, and

augmentation. Others focus on extracting search results to build

federated search engines (Trieschnigg et al., 2012), or extracting web

assets such as images, audio, and videos to build media libraries.

The primary focus of this category is on extracting one specific

element type (e.g., tables, forms, search results, images) from web

pages rather than providing a generic extraction approach to any

element.

 22

 Machine Learning-based Extraction

The studies in this category use machine learning techniques to extract

web information from web pages. Such methods rely on the structure

and presentation features of the data within a document to generate

rules or patterns to perform the extraction task, usually, not fully

automated but semi-automated and requiring training examples.

Wrapper induction is a subfield of wrapper generation in

information extraction. Extraction rules are acquired from inductive

learning examples then applied to new unseen websites (Muslea et al.,

1999) (Goebel & Ceresna, 2009). In wrapper-based methods, learned

rules are often applied to other pages within the same website, thus,

require manual annotations for each new website. This makes them

expensive and impractical at scale. Although this is generally the case,

some researchers have proposed creative solutions to reduce the

annotations workload, for example, using a bootstrapping approach for

learning to use small seed annotations for training an initial classifier

which then used to annotate the rest of the data (Jones et al., 1999).

Also, there are situations where the necessary annotations can be

derived from the website, given a sample structured data. Enough

pages of the website can be automatically annotated this way before

training the model (Jundt & Van Keulen, 2013).

(Yuchen Lin et al., 2020) define the task of web data extraction as

a structured prediction task. They present a novel two-stage neural

approach named FreeDOM, which combines both the text and markup

information in the first stage and capture conditional dependencies

between nodes in the second stage. The method is based on a neural

network architecture and does not need to download all external files,

including CSS style and JavaScript but relies only on the HTML

content. However, it only focuses on detail pages that describe a single

entity. Thus, might fail in real-world scenarios with multiple entities

found on a single page.

Another direction of research is using end-to-end unsupervised deep

learning methods. Html2Vec5 and Web2Vec6 (Feng et al., 2020) are

proposed methods to encode web pages information based on

multidimensional features in order to make the extraction task deep

learning ready.

5 https://github.com/dpritsos/html2vec
6 https://github.com/Hanjingzhou/Web2vec

 23

Figure 6 shows an example result of the Html2Vec on google.com

home page, which encoded each of the DOM elements as machine

learning ready vectors. Although this method has potential, it is still

computationally expensive and may be challenging to use at scale.

Figure 6: Html2Vec example

 Pattern Discovery-based Extraction

Pattern discovery techniques are methods that apply pattern discovery

approaches to generate information extractors that can extract

structured data from the web pages. Unlike most machine learning-

based methods, which require manual annotated examples and

training, pattern discovery methods do not rely on user labeled

examples but on pattern discovery techniques including PAT-trees,

multiple string alignment, and pattern matching algorithms. PAT-

trees (aka Patricia trees) are effective at recognizing repeated patterns

in semi-structured web pages.

(C.-H. Chang & Hsu, 1999) proposed a method to extract

information blocks by converting the HTML web page into tokenized

strings, which are then used to construct PAT-trees to detect patterns

and locate the information. Similarly, (C. H. Chang et al., 2003)

presented an unsupervised approach to generate extraction rules for

web pages. The discovered patterns can be used on unseen web pages.

 24

Although these methods require no labeled examples, they are quite

limited when they encounter web pages that contain only one data

record due to the lack of patterns. In addition to that, the number of

patterns increases considerably when there are too many

layouts/structures, and the discovered rules generalize poorly on other

websites with different layouts (C. H. Chang et al., 2003). Finally,

these methods do not include the process of automatically resolving

the attribute names of the extracted data; but rely on the user to

manually assign the attributes using a visual pattern viewer.

 Vision-based Page Segmentation

Vision-based approach, known as VIPS Algorithm uses both the web

page rendered source code and also analyzes the visual layout of the

page (Cai et al., 2003). The visual layout input can be a screenshot

image of the website. The algorithm generates a block tree that is

structurally similar to the underlying DOM tree. Similarly, custom

machine learning models can be trained on features by providing

training samples, for instance, in the form of bounding boxes, to extract

elements of interest from web pages.

(Liu et al., 2006) proposed a vision-based solution performs the

extraction using only the visual information of the web pages. Given

main visual features such as position, layout, appearance, and content

of the web page.

Figure 37 in Appendix B outlines an example result which was done

previously at M06 Company7 using the vision-based approach, it shows

the ability of clustering interesting elements of the web page. A clear

downside of this approach is that embedded images on the page are

included as part of the web page as well as the content inside the

images. So, it is hard for the model to distinguish between which

content belongs to the embedded images and which to the web page

itself. Nevertheless, additional meta data can be provided to the model

to overcome this challenge, for example, by excluding all the images

from the page or covering them with solid colors.

7 https://m06.company

 25

Method: Design Science Research

According to the design science methodology (Wieringa, 2014), we

treat design as well as research as a problem-solving process. In this

section, we propose a complex design intended to improve on the web

information extraction task and suggest research knowledge questions

to return knowledge back to the design activity. The general goal of

this design science research is to provide a generic, automatic, and

scalable approach for extracting and structuring information from web

pages.

The following subsections outline the problem statement and define

requirements for the desired web extraction method in detail. The

global method design is illustrated in Section 4.2. Challenges and

research questions are discussed in Section 4.3. Our experiments are

described in Section 4.4. Finally, Section 4.5 outlines metrics which are

used to evaluate the experiments.

 Problem Statement and Requirements

As mentioned earlier in Section 3, existing web information extraction

methods are limited to specific website schema and hard at scale.

Therefore, we seek alternative methods that can overcome these

limitations. To be more precise, below, we define a set of requirements

that have to be fulfilled for a web extraction system to reach the

general goal:

• The system must be generic, work on any given website

regardless of its schema and without pre-defined templates.

• The system must be fully automatic, require no user input nor

interaction.

• The system must be scalable, adaptable, and can handle many

different websites in millions.

• The system should be able to support different information

needs.

 26

• The system should support cross-language web pages, at least

English and Dutch.

• The system does not enter any values in search bars or forms.

• The system does not consider websites that are locked behind a

login page and only consider publicly accessible websites.

 Global Design

Figure 9 outlines the global design of the system, which includes four

steps. The subsections below provide a detailed description of each of

the steps.

4.2.1 Input: Web Data

As mentioned in Section 4.1, the system must fulfill different

information needs; this first step aims at obtaining web data (a set of

web pages) that include information of interest to the user. Web data

can be sourced from several different channels, such as the following:

• Directly from public data repositories such as

CommonCrawl8 a large corpus contains petabytes of web

data collected over several years of web crawling, and

ClueWeb9 which contains about 733 million web pages.

• Private data sources, through partnering with data providers

(e.g., dataprovider.com), a private database, or provided by

a client for specific needs.

• Scraping the web and own dataset collection. Web crawlers

can be coded to scrape the public web. This option should

be used with care and respect to data privacy. Section 2.8

8 https://commoncrawl.org
9 https://lemurproject.org/clueweb12

Source:

Web data
repositories

Input:

Web dataset

Method:

Web
information
extraction

Output:

Structured
key-value

information

Figure 7: Global design

 27

discussed how site owners can use the no index meta tag to

stop the crawlers from accessing their website.

After obtaining the web data of choice from some data source, the

data might need preprocessing and transformation to form the input

dataset. The input is a collection of unique links (URLs) to web pages

with their raw HTML content (Figure 8).

4.2.2 Method: Web Information Extraction

This step represents a pipeline that contains four components, which

form the generic web information extraction system (Figure 9).

{URL1: Raw HTML},

{URL2: Raw HTML},

{URL3: Raw HTML},

 …

Figure 8: Web data input

Figure 9: Generic web information extraction pipeline

Relevancy Filter

Feature Extraction

Clustering

Entity Recognition

 28

Relevancy Filter to filter out irrelevant web pages to the user. Web

data is messy as it contains many web pages in different shapes and

forms; for example, a website may include different languages or may

contain useless information to the user. Instead of putting the burden

of filtering web pages on the user (which is time-consuming and not

scalable), this component becomes essential as it can do the filtering

automatically.

Feature Extraction extracts candidate features given the input

dataset, including XPaths for all elements per page and put them into

a dataset. This process is typically followed by a feature selection

process to select which features contribute the most to the output of

interest.

Clustering to group similar HTML elements into groups based on

the extracted features. The general assumption is that elements with

similar features might belong to the same entity.

Entity Recognition generates possible entity rankings for each

cluster, given a knowledge base containing information about different

entities. The knowledge base may consist of the entity rankings

generated by the system and additional information about user-specific

entities. This knowledge can be further enriched by public knowledge

graphs such as Schema.org and Google Knowledge Graph. Entity

recognition is also responsible for tagging each cluster with the

corresponding entity.

Collection of web pages ➔ Collection of relevant web pages

Figure 10: Relevancy filter input/output

Web page content ➔ List of features, including XPaths

Figure 11: Feature extraction input/output

Features + HTML content ➔ List of clusters

Figure 12: Clustering input/output

Clusters + Entity knowledge base ➔ Key-value pairs output

Figure 13: Entity recognition input/output

 29

4.2.3 Output: Structured Key-value Information

The output is a structured key-value pairs information in a JSON

format (or JSON-LD ideally). This structured output can be used to

fulfill the need for structured information and build smart applications

(see Section 2.9).

While Section 2.5 discussed how JSON objects could be

constructed, the ideal output is an object that can match an entity

object, where the keys refer to the names of the entity object or

attribute, and the values refer to the values for the same entity. Given

a web page as an input, the expected output is a structured JSON

object which contains a set of entity objects.

Although a web page might include information that cannot be

classified as an entity, nevertheless, we consider elements with the

same attributes as an entity (e.g., a web page might have a footer

section with some navigation links or a header with menu items). The

resulted information in these examples might not look relevant to

someone, but very useful to others; this depends on the business use

case, therefore from a generic design perspective, we leave all extracted

information, and keep it up to the user to decide what is relevant.

Another alternative approach would be to apply a post-filtering

mechanism automatically given the use case (but this is outside the

scope of this thesis).

 Challenges and Research Questions

Within the proposed complex global design, some aspects are

challenging and require research. In this thesis, we focus extensively on

the first three pipeline components (proposed in Section 4.2.2). The

fourth component Entity Recognition is discussed briefly in Section

5.4, but we leave extensive research on this component for future work.

The remaining of this section outlines challenges and research

questions (for each pipeline component) that need to be answered in

order to return knowledge to the design science activity.

Relevancy Filter: web data is messy and disconnected, as it contains

irrelevant web pages (e.g., a web page that has no structure, just a

plain text or has unrelated content, given a business use case). Note

that relevancy is subjective to a business use case or need; therefore,

we must look for generic solutions.

Q1: How can irrelevant web pages be filtered out?

 30

Feature Extraction: web pages contain common patterns and

features (e.g., elements have similar style, font-size, or color). These

features, once identified, are helpful for the rest of the pipeline, for

example, to cluster similar elements and recognize entities.

Q2: What candidate features can be extracted

from web pages?

XPath is a simple yet effective feature to locate elements in web

pages; however, there could be many ways to construct XPaths to find

elements effectively.

Q3: How can XPaths be constructed to effectively

locate web page elements?

Clustering: given the previous component features, the goal is to

form clusters such that similar HTML elements group together. Many

clustering methods exist, including spectral clustering, probabilistic

relational models, graph partitioning, fuzzy clustering, and similarity-

based clustering, but which one is best suited for the web information

extraction task.

Q4: What existing clustering methods can be

effectively used for clustering web page elements?

Q5: What evaluation metrics can be used to

measure the performance of clustering?

Entity Recognition (for future research): given the previous

components knowledge, the system should be able to suggest entities

automatically for each cluster (e.g., based on the HTML structure,

code, and content). For example, an element could be inside an HTML

table, and directly above it a large-sized title. Can we then assume

that the table column or row name correspond with the entity attribute

and the large-sized title correspond to the entity name?

FQ1: How can candidate features be leveraged to

identify entities?

The knowledge of entities and entity features can be stored in a

knowledge base (e.g., a price entity is a number, relatively short in

length, often comes next to a currency sign and could include comma

or a dot.). However, it could happen that the HTML structure, code,

 31

and content do not include any information that can help the system

in identifying entities. In this case, we could rely on additional

information such as user-specific knowledge base and public knowledge

graphs.

FQ2: What is an effective method for

constructing a knowledge base to hold entity

representations?

The output is a structured key-value pairs JSON; however, it can

be constructed in different ways (e.g., flatten or nested JSON objects)

FQ3: What is the best way to generate key-value

structured information?

 Experimental Setup

Several experiments can be carried out to validate the proposed

method. In this thesis, we focus on two experiments (the first two

pipeline components, see Section 4.2.2). The subsections below explain

the main two activities involved in the process of web information

extraction, the data collection process to obtain a stream of web pages,

the relevancy filter and clustering experiments setup. Finally, a use

case which focuses on blocky websites is described to sketch out the

need for structured information.

 32

4.4.1 Extraction vs Recognition

The proposed method primarily consists of two main activities:

extraction and recognition.

Extraction is the process that aims at locating and extracting

candidate elements given a web page HTML content as an input.

Clustering methods are applied to group similar candidate elements

together. Additional filtering of unnecessary groups can be applied to

filter out irrelevant groups. A group might result in an attributes group

for a particular entity. Another clustering step is needed to enhance

and link the group of entity attributes to an entity object.

Recognition is the process of identifying the entity class for each

cluster/group to provide rich structured key-value pairs output.

Recognition often comes after the extraction process. The figure below

illustrates an example.

E
x
tr

a
ct

io
n

[{

"cluster1":

["€", "€","€"]},{

"cluster2":

["per maand","per
maand","per maand"]

},{

"cluster3":

["12,00", "21,00", "30,00"]

}]

E
n
h
a
n
ce

d

ex
tr

a
ct

io
n

[{

"cluster1":

["€", "per
maand","12,00"]},{

"cluster2":

["€", "per
maand","21,00"]},{

"cluster3":

["€", "per maand","30,00"]

}]

Figure 14: Extraction enhancement

H
tm

l
In

p
u
t

<div class="row">

<div class="_1_3 column plan">

<div class="body-container">

<h2
class="price">€12,00</h

2> per
maand </div></div>

<div class="_1_3 column plan">

<div class="body-container">

<h2
class="price">€21,00</h

2> per
maand </div> </div>

<div class="_1_3 column plan">

<div class="body-container">

<h2
class="price">€30,00</h

2> per
maand </div> </div> </div>

E
x
tr

a
ct

io
n

[{

"cluster1":

["€", "per
maand","12,00"]},{

"cluster2":

["€", "per
maand","21,00"]},{

"cluster3":

["€", "per
maand","30,00"]

}]

R
ec

o
g
n
it

io
n

[{

"plan1":

[{"currency":"€"},
{"period":"per maand"},

{"price:":"12,00"}]},{

"plan2":

[{"currency":"€"},
"period":"per maand"},

{"price:":"21,00"]},{

"plan3":

[{"currency":"€"},
"period":"per maand"},

{"price:":"30,00"]

}]

Figure 15: Method extraction vs recognition

 33

4.4.2 Dataset Collection

To validate the proposed method and system design we need a stream

of web pages as an input (see Section 4.2.1). This section outlines the

process of web data collection at scale.

For this research, a publicly available data is collected from the

Dutch Chamber of Commerce. The choice obtaining own dataset gives

the research more flexibility and control. The data contains

information about registered businesses in the Netherlands such as the

official business name, website URL, and location address. For this

research, only the website URL is needed.

Figure 16 illustrates the dataset collection process. The process

starts with the collected companies’ data. The records that are not

reachable or do not include website URL are ignored; since the URL is

the only required field needed for the rest of the pipeline. Furthermore,

the homepage HTML content for each active website is collected and

passed to the relevancy filter. The purpose of this filter is to classify

and filter out irrelevant websites. Section 5.1 discusses in more details

how this relevancy filter works.

Given only the relevant websites, external and internal links are

extracted. External links are the URLs that link to other websites, and

therefore treated as new websites. Internal links are all the nested links

found under the same domain name. Finally, a limited sample (e.g., 10

web pages per website) is taken of the internal links, and the HTML

content is collected and appended into the final dataset.

 34

Figure 16: Dataset collection process

 35

4.4.3 Experiments

This section briefly outlines the two experiments (further explanation

is provided in the system design components sections 5.1 and 5.3)

As mentioned earlier, the goal is to extract and classify information

from web pages and convert it into a structured form. The input is a

web page, and output is a JSON object. As an example, two web pages

with the desired structured output are listed in Appendix C.

Table 2 outlines the two experiments for the relevancy filter and

clustering components. Note that the clustering is evaluated manually

on a small sample proportion. The evaluation metrics are explained in

detail in Section 4.5.

 Relevancy Filter Clustering

Input Collection of web pages XPath features

Output Collection of relevant

web pages

List of clusters

Dataset Three datasets: English

(240 web pages) and

Dutch (260 web pages,

and a larger one

containing 437 web

pages)

Three web pages

containing 1177

XPaths

Model Custom binary

classification

XPath-based similarity

distance clustering

Evaluation metrics Recall, F1, and Area

under the curve

Purity and Percentage

purity

Table 2: Experimental setup

 36

4.4.4 Use case, Need of Structured Information

Section 2.9 discussed the need for structured information and some

applications. Section 4.1 discussed the system requirements. In the

research, we focus on the following use case based on the requirements,

in particular on websites with blocky structure and exclude other

irrelevant and private websites that are locked by the login screen.

A website is considered blocky when it has repetitive blocks like

pattern. This pattern is often found in the following website categories

(See Appendix D for figure examples):

• Business informative websites: sites that include only

information and present media content, for example, self-

starters, product offering business, non-profit, marketing-

oriented websites, and other informative landing pages.

• Ecommerce websites/webshops: sites that offer and sell

products online, both digital and physical. For example, B2C

webshops that sell primarily products online and delivery

directly to homes. B2B webshops that sell technical products

to other companies and factories.

• Pricing packages included websites: such websites can be

seen as ecommerce websites in its nature; however, the key

difference is that webshops often include many products, but

pricing packages included websites don’t. They do include

few-tiered pricing packages, for instance, as seen in freemium

business models (e.g., free, basic, premium), SaaS offering

platforms, service offerings, self-starters, and businesses that

sell educational content and courses.

 37

 Evaluation Metrics

The method is evaluated based on commonly used metrics among

researchers in web information extraction: precision, recall, F1, and

area under the curve for the relevancy filter component and purity and

percentage purity for the clustering component.

Usually, the following characteristics are needed to evaluate

information extraction systems:

• A single score measure is needed to reflect on how well the

system is performing.

• Extraction systems are often evaluated using a relevance

judgment, in which the relevancy of one record does not

affect other records.

• Relevance judgment is a binary classification choose, which

means a record is either relevant or not.

• An ideal system should be able to classify relevant records

and filter out irrelevant records.

Practically speaking, it is often hard and time-consuming to judge

the full dataset; therefore, the evaluation is instead done on a smaller

sample. Thus, the final measures are calculated from the sample

proportion.

The next subsections outline in more details each of the evaluation

metrics, but first, we define the following symbols which will be used

to describe the metrics:

Symbol Description

record A data record referring to a website web page

r The total number of relevant records correctly classified

n The total number of records

R The total number of relevant records

TP True positive is where the model correctly classifies a

relevant record

TN True negative is where the model correctly classifies an

irrelevant record

FP False positive is where the model incorrectly classifies a

relevant record

FN False negative is where the model incorrectly classifies an

irrelevant record

Table 3: Evaluation metrics symbols

 38

4.5.1 Precision

Precision also known as a positive predictive value, which is defined as

the percentage of results (predictions) made that are classified correctly

as relevant by the model (TP) out of all the checked records (TP +

FP). Precision is represented by the following formula:

4.5.2 Recall

Recall is the percentage of relevant records correctly classified by the

system (𝑇𝑃) out of all relevant records (𝑇𝑃 + 𝐹𝑁). This percentage is

also known as hit rate, coverage, or sensitivity and can be represented

by the formula:

4.5.3 F1

F measure (aka F1 score) is considered a sort of accuracy measure. It

combines both precision (P) and recall (R) in a single score measure;

therefore, it gives an overall estimate of the system performance. F

measure can be calculated by the following formula:

4.5.4 AUC (Area Under the Curve)

Area Under the Curve is a measure that describes the ability of a

classifier to discriminate between two classes (Ling et al., 2003). When

the AUC value is equal to one, that means the classifier can classify a

record with a 100% confidence that it belongs to one class over the

other.

4.5.5 Purity

The previous metrics are good to evaluate classification tasks, however

other metrics are found to better measure the quality of clustering

tasks. Clustering is the task of grouping similar objects in the same

cluster. The quality of clustering can be measured based on the notion

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 OR 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑟

𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 OR 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑟

𝑛

 39

of cluster purity. Purity is a simple and popular evaluation measure

that describes how pure is one cluster with respect to a particular class

(Amigó et al., 2009).

Purity can be computed by the following: For each cluster, the

number of elements from the most dominant class is counted, and the

sum over all clusters is calculated and divided by the total number of

elements (Y. Zhao & Karypis, 2001).

where Ω = {𝜔1, 𝜔2, . . . , 𝜔𝐾} is the set of clusters and 𝐶 =

 {𝑐1, 𝑐2, . . . , 𝑐𝐽} is the set of classes. 𝜔k and cj are the subsets of elements

from the total set of elements (Manning et al., 2008).

Purity can be viewed as the weighted precision of all clusters

(Huang, 2011), and the greater the value of purity indicates good

clustering (Sripada & Rao, 2011). A perfect clustering has a purity

score of 1 and is achieved by placing each of the elements in its own

cluster.

Percentage purity is a similar metric that can better describe what

proportion of the total elements within clusters is relevant. It can be

calculated by the following formula:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑃𝑢𝑟𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 𝑥 100%

𝑝𝑢𝑟𝑖𝑡𝑦(Ω, 𝐶) =
1

𝑁
 ∑ max

𝑗
|ω

𝑘
⋂ c

𝑗
 |

𝑘

 40

System Design and Components

Section 4.2 presented the method global design. In this section, we

research in more detail each of the pipeline components.

 Relevancy Filter

The web is messy as it comes in many different shapes and forms and

might contains irrelevant content. Therefore, this relevancy filter

component is introduced to filter out irrelevant websites. The filtering

challenge is seen as a binary classification task, in which a custom

classifier is trained and evaluated on manual annotations for this

purpose.

To train the custom classifier a library named Spacy10 was used.

Spacy is a free and open-source python library for advanced natural

language processing tasks, including text classification. Spacy v3.0 just

came out recently which introduced many new features and

improvements, including end-to-end workflows11 and pipelines.

Although we chose Spacy for this component due to its simplicity, any

other text classification library should reproduce similar results.

Two custom classifiers were trained on English dataset and another

on Dutch dataset. This decision was made because both of these

languages include different keywords and training a single multilingual

model would be expensive, time-consuming, larger and less accurate

than a focused model. However, note that this component can be

retrained or extended on different data to narrow down the websites

or include other languages based on the user use case and needs.

The next subsections present the models, annotation process,

training the custom classifier, and evaluation metrics. The last

subsection discusses and presents ideas on how to improve this

component further.

10 https://spacy.io
11 https://spacy.io/usage/projects

 41

5.1.1 Annotations

In order to train a custom binary classifier, manual annotations were

needed, namely relevant and irrelevant examples.

A widget called pigeon12 was used as an annotation interface due to

its simplicity and compatibility with the rest of the pipeline. Figure 17

shows an example of the interface, which includes the following three

options for each website: accept to consider the website as relevant,

reject to count the website as irrelevant and ignore to disregard the

record in case of any doubt. The interface includes additional helpful

information, including the website to be annotated is shown, and the

number of remaining and annotated examples so far.

Figure 17: Annotation interface using Jupyter notebook pigeon widget

The table below outlines the criteria that were set and followed

during the annotation process for both languages. See Appendix E for

figures of several example annotation cases.

Action Criteria

accept - Websites with a blocky structure. As mentioned

earlier (in Section 4.4.4), a website is considered

blocky when it has repetitive blocks like pattern.

For example, a page with a section that shows a

list of products, brands, or team members etc.

reject - Default web server pages

- Default web hosting pages

- Pages full of ads

- Under construction pages

- Under maintenance pages

- Password-protected pages

- Pages that include text content only without

clear structure pattern

- Pages that show no content but technical errors

ignore - In case of unclear classification

- In case of doubt

12 https://github.com/agermanidis/pigeon

 42

Table 4: Annotating criteria

Websites in both languages English and Dutch were annotated

according to the mentioned criteria. Annotations are divided into two

subdatasets training and evaluation, as shown in the table below.

Training data: a pre-labelled dataset which is given to the model

with its label during the training process and is used to fit the model

parameters and measure wights.

Evaluation data: an unseen dataset, in which labels are kept hidden

in order to evaluate the trained model.

Dataset Accepted Rejected Total

English

E1 Training 40 100 140

Evaluation 30 70 100

Dutch

N1 Training 80 80 160

Evaluation 50 50 100

N2 Training 80 135 215

Evaluation 50 172 222

Table 5: Annotations dataset

5.1.2 Workflow

This workflow was inspired by a Spacy example project13. The aim is

to train the custom relevancy filter classification models on the manual

annotations we collected earlier (mentioned in the previous section

5.1.1).

The workflow includes the following steps:

1. preprocess: to convert the data to a binary format which can

be understood by spacy. A blank Spacy instance is initialized

for each of the target languages.

2. train: to train a text classification model. Two models for

each language were trained, resulting in a total of four

models. The English models are trained on the same dataset

(E1) but using two different configurations (C1, C2).

Similarly, the Dutch models on the same configurations (C1,

C2) but trained on two different datasets (N1, N2).

13 https://github.com/explosion/projects/tree/v3/tutorials/textcat_docs_issues

 43

3. evaluate: to evaluate the model and output evaluation

metrics.

5.1.3 Pre-processing

In this step, the input dataset is cleaned by removing the HTML tags

and comments. The data is then tokenized using Tokenizer.v114 to

convert text into words/tokens. The tokenizer batch size is set to 1000

records to process the input as a batch stream rather than one text at

a time, which makes it faster and more efficient.

The tokenization step is followed by two processing components

Tok2Vec15 and TextCat16.

Tok2Vec basically converts tokens to vector embeddings which can

be understood and processed by the machine. MultiHashEmbed.v117

embedding layer is used to embed features using hash embedding and

build a mixed data representation. MaxoutWindowEncoder.v218 is used

to encode the features using maxout units as activation functions.

Figure 18 shows the tok2vec parameters we used to build the models.

Here we include more details for some of the parameters. The

include_static_vectors parameter is set to false because we do not have

any pretrained vectors but aim to train the models from scratch on the

annotated data. The rows parameter represents the number of rows for

each embedding tables. This value is left the same as it was

recommended by Spacy. The encoder depth represents the number of

layers. Increasing the layers from 4 (in C1) to 5 (in C2) has improved

the model performance.

14 https://spacy.io/api/tokenizer
15 https://spacy.io/api/tok2vec
16 https://spacy.io/api/textcategorizer
17 https://spacy.io/api/architectures#MultiHashEmbed
18 https://spacy.io/api/architectures#MaxoutWindowEncoder

 44

Figure 18: Tok2Vec processing component

TextCat is a text categorizer component that is used for single label

(binary) text classification. The categorizer predicts classes over a

whole record (web page). A record can have exactly one true label

(either relevant or irrelevant). The categorizer threshold is set to 0.5

to cutoff the result and consider a prediction. TextCatEnsemble.v119

model instance is used to predict scores for each class. No additional

pretrained vectors were used but only the feature encodings from the

previous step. Therefore, the pretrained_vectors parameters were set

to null. Figure 19 outlines the parameters we tuned to optimize the

model performance. The width value refers to the output dimension of

the feature encoding step. The ngram_size determines the maximum

length of the ngrams in the model. Increasing the width from 64 (in

C1) to 128 in (C2) in addition to the ngram size from 3 (in C1) to 5

in (C2) have accelerated the performance. This way larger number of

text phrases and co-occurring words are captured as candidate

matches, leading to better classification.

19 https://spacy.io/api/architectures#TextCatEnsemble

 45

Figure 19: TextCat processing component

To sum up, all the four models had similar configuration parameters

but with some tuning to optimize performance (As mentioned earlier

in this section). Table 6 presents the parameters we changed.

Parameter C1 C2

tok2vec.model.depth 4 5

textcat.model.width 64 128

textcat.model.ngram_size 3 5

Table 6: Processing components parameter optimization

5.1.4 Training

This section outlines settings and controls that are used for the training

process. Figure 20 outlines the exact parameters we used. Most of the

parameters are set to the default value recommended by Spacy.

Spacy's training documentation20 is rich and has explained all the

parameters. Nevertheless, here we discuss most important ones. The

dropout parameter is the probability of training a given node in a layer.

Training batcher batch_by_words.v121 is used to split the text into a

set of small batches of words. The batcher.size represents the target

number of words per batch. Adam.v122 replacement optimization

algorithm is used as a training optimizer. Optimizer learning rate

warmup linear over the first 250 steps and 20000 total steps. This

warmup setting is necessary in order to use a low learning rate than

base learning rate for the initial few steps and prevent model

overfitting.

20 https://spacy.io/api/data-formats#config-training
21 https://spacy.io/api/top-level#batch_by_words
22 https://thinc.ai/docs/api-optimizers#adam

 46

Figure 20: Training parameters

 47

5.1.5 Evaluation Metrics and Experimental Results

Out of the commonly used evaluation metrics (previously mentioned

in Section 4.5) for extraction and classification tasks, we select and

calculate Recall, F1 and AUC. These metrics make more sense for this

task because they represent what we want to measure: the total

relevant websites correctly classified by the models.

The table below outlines the evaluation metrics for the two models.

The English models were assessed on the same dataset while the second

Dutch model was evaluated on a different (slightly larger) dataset. As

shown, the second models are the winners which we use further to

classify relevant websites to use in the rest of pipeline.

Model

configuration

Dataset Recall F1 AUC

English

C1 E1 66.00 79.52 0.52

C2 E1 97.00 98.48 0.32

Dutch

C1 N1 76.00 86.36 0.66

C2 N2 97.75 98.86 0.46

Table 7: Relevancy filter evaluation metrics

 48

5.1.6 Discussion and Future Work

The custom trained models perform very well to classify relevant

websites from others. However, they support only two languages

English and Dutch. Additional different models are required in case

other languages are needed. Two approaches to tackle this multilingual

challenge:

• Training a custom model for each additional language.

• Training one larger language-agnostic multilingual model.

Another challenge linked to training larger models is the need for

manual annotations which is an expensive and time-consuming task.

A solution direction to this issue is to use what is known as

Bootstrapping approach for text learning (Jones et al., 1999)

(McCallum & Nigam, 1999). Bootstrapping annotations is the idea to

use a small set of seed annotations to train an initial classifier. Then

applying it to predict labels for a large collection of unlabelled data

and incorporating some of the then new labels to train a final large

classifier.

Another purpose and motivation to training own custom models is

the adaptability to specific use cases. Someone could be interested only

in webshops for example. In this case, annotations for webshops are

marked as relevant and other types of websites are ignored. Thus, the

advantage of this component that it can be easily adapted to other

domains and use cases.

 Feature Extraction

This step aims at extracting features from the relevant websites that

were filtered and selected in the previous component. The extracted

features could be useful for the following components, for example, to

identify and group similar elements together in the clustering

component and recognize named entities in the entity

tagging/recognition step.

This section outlines candidate features, a list of possible features

that could be extracted from web pages. In addition to that, it discusses

the feature selection process and XPath extraction.

 49

5.2.1 Candidate Features

This section presents a list of candidate features that can be extracted

from three different web page representations: 1. visual page

presentation is what people see visually and can be extracted using

computer vision-based algorithms (see Section 3.5). 2. The actual

source code of the web page (e.g., HTML, JavaScript, and CSS). 3.

DOM tree representation which is parsed from the HTML source code

(see Section 2.2).

All these features could be studied and leveraged to enhance the

overall system performance, especially in the clustering and entity

recognition components.

Table 8 outlines a list of candidate features.

Feature class Candidate feature

Style Font size, type, color, weight (e.g., bold,

light, thin), style (e.g., normal, oblique,

italic, underline), and background color

Dimensions and location Offset/margin/padding width, height, top,

right, and left. Border width and height,

scroll height and width, z-index

Element information Element attributes, classes, values, tag type

(e.g., heading <h1>…<h6>, <a> link,

image etc.)

DOM information Tag name, children, inner text,

bounds/bounding client rectangle, XPath,

parent XPath

Meta data Title, description, type, site name, site page

name, keywords

Other calculated values Length of the text, average and standard

deviation, average number of nodes, text

density, number of attributes

Table 8: List of candidate features

The literature has also proposed similar features, for example,

(Vogels et al., 2018) distinguish between two types of features, namely

block features which capture information on each block of text in the

web page and edge features which capture information on each pair of

neighboring text blocks. Table 9 outlines a list of features proposed by

(Vogels et al., 2018). These features study binary attributes (e.g., has

duplicate, has parent, and has grandparent), the content structure of

elements (e.g., what an element contains, what does it end with) and

 50

compute additional unique features (e.g., the number of stopwords,

number of words with capital letters).

Feature name

Has duplicate: is there another element with the same text?

Relative position of the element in the source code

Has parent

Has grandparent

Contains form element

Contains punctuation

Contains URL

Contains email

Ends with punctuation

Ends with question mark

Has a commonly used word (stopword)

Number of stopwords

Average word length

Number of words with capital letters

Has multiple sentences

Table 9: List of features proposed in Web2Text (Vogels et al., 2018)

5.2.2 Feature Selection

The previous section 5.2 listed many candidate features; however, in

this thesis, we focus the feature selection process for the clustering

component to one simple but informative feature, namely XPath.

Nevertheless, we describe the feature extraction component generically,

as it would enable future experiments to leverage the multiple features.

In general, the aim of the feature selection step is to select useful

attributes and eliminate non-informative and redundant ones. In

addition to that, to enable faster training time of machine learning

algorithms, reduce model complexity and help in model

interpretability. Below we outline several feature selection approaches

found in the literature (Chandrashekar & Sahin, 2014; Khalid et al.,

2014; Miao & Niu, 2016):

• Filter methods: typically, generic and does not incorporate a

specific machine learning algorithm. The relevancy of each

individual feature is analyzed and evaluated as a single

factor.

• Wrapper methods: evaluate on a specific machine learning

algorithm in mind to find optimal features. Wrapper

 51

methods use combinations of features to find the best

performing combination that determines the desired output.

• Embedded methods: filter out features during the model

building and training process. The model takes care of the

feature selection process since it has this function built in.

Feature selection methods aim at selecting relevant features and

filtering out irrelevant ones without changing them. Another approach

is to use dimensionality reduction methods to reduce the number of

features by transforming them to lower dimension (Raymer et al., 2000;

Sorzano et al., 2014). Most popular dimensionality reduction methods

are: Principal Component Analysis (PCA) (Tipping & Bishop, 1999;

Wold et al., 1987), Linear Discriminant Analysis (LDA) (Ioffe, 2006;

Izenman, 2013), and Canonical Correlation Analysis (CCA)

(Thompson, 1984, 2005).

 52

 Clustering

This clustering component aims at grouping similar HTML elements

into clusters. Clustering is typically categorized as an unsupervised

learning task of dividing and grouping a set of elements into several

clusters such that elements in the same group are more likely similar

to other elements in the same groups than those in other groups. In

this thesis, the general assumption is that HTML elements with similar

features will group under the same cluster; a cluster which most likely

represents a named entity or entity attribute.

This section first presents several clustering methods found in the

literature followed by a discussion on XPath feature, the main selected

feature to perform the clustering. Levenshtein edit distance, which

measures the difference between two strings, in terms of edit distance

score is described and evaluated. Finally, future work and discussion

on the clustering component is presented in 5.3.6.

5.3.1 Existing Methods

This section outlines a list of existing clustering methods which could

be suited for grouping similar web page elements into clusters. Since

the selected feature of the clustering component is XPath, which is a

computed text-value reference of each element in the web page, we

compiled the list focusing on text similarity techniques (see Table 10).

The list was collected from different survey papers and scientific

sources; below, references are provided.

Text similarity methods can be categorized into the four similarity

approaches, String-based (includes Character-based and Term-based),

Corpus-based, Knowledge-based, and Hybrid-based (Gomaa et al.,

2013; Vijaymeena & Kavitha, 2016).

Figure 21: Text similarity categories

 53

• String-based measures operations between strings and

represents similarity in terms of distance scores. Usually, a

small distance score represents a high similarity between

strings and vice versa. String-based similarity includes

character-based in which edit distances is measured between

characters and term-based on words and phrases of text.

• Corpus-based measures semantic similarity between words

based on information gained from large corpora/dataset.

• Knowledge-based determines similarity between words using

information obtained from semantic knowledge bases (e.g.,

WordNet23 a lexical database for English).

• Hybrid-based uses multiple similarity measures, basically, a

mix of the former methods.

Category Method Reference

E
d
it
-b

a
se

d

Levenshtein distance (Levenshtein, 1966)

Damerau-Levenshtein distance (C. Zhao & Sahni,

2019)

Hamming distance (Bookstein et al.,

2002)

Jaro–Winkler distance (Winkler, 1990)

Needleman-Wunsch distance (Needleman &

Wunsch, 1970)

Smith-Waterman algorithm (Smith et al., 1981)

T
o
k
en

-b
a
se

d

Cosine similarity (Li & Han, 2013;

Sidorov et al., 2014)

Sørensen–Dice coefficient (Dice, 1945)

Tversky index (Tversky, 1977)

Jaccard coefficient, aka Jaccard index (Jaccard, 1912;

Kosub, 2019)

Szymkiewicz–Simpson coefficient, aka

Overlap coefficient

(Vijaymeena &

Kavitha, 2016)

Tanimoto distance (Lipkus, 1999)

23 https://wordnet.princeton.edu

 54

Bag distance (Bartolini et al.,

2002)

Monge-Elkan (Monge & Elkan,

1997)

Token sort ratio, aka fuzzy matching

score

(Rao et al., 2018)

O
th

er

K-means (MacQueen & others,

1967)

K-NN (K-nearest neighbor) (Fix, 1985)

EM (Expectation-maximization) (Moon, 1996)

GMM (Gaussian mixture model) (Reynolds, 1993)

Brown clustering (Brown et al., 1992)

 Table 10: Clustering methods

5.3.2 XPath Feature

The web page consists of many elements, this step aims at identifying

each of the elements by an XPath locator. Normally, an element can

be located by multiple different ways, for example by element ID, CSS

selector, text of the element, element class, or raw Full XPath24. The

XPath provide us a simple, effective, and unified way to locate all

elements from the web page. Therefore, it was selected as the main

feature to perform the clustering task.

The general assumption is a similarity-based clustering approach,

in which elements that have similar XPaths are likely to cluster under

the same group. In order to better illustrate this concept, consider the

following example. Figure 22 shows a section of a pricing page (from

Figure 39), where one XPath locates all the prices (the yellow boxes).

24 A raw Full XPath traverses the hierarchy from the root element of the web

page to the target element.

 55

Figure 22: Prices located using XPath

As mentioned above, the price can be located in different ways, for

example, by the element class name (//div/h2[@class='price'])[*], or by

the Full XPath. In order to provide a generic solution that works on

any website regardless of how it was built (e.g., if elements include

class names or not), we intentionally use the Full XPath for locating

elements in the web page.

Figure 23 outlines XPaths of the three prices. As shown above, the

difference between XPaths is only one character (marked in bold).

Hence, the potential of using character-based string similarity as a

clustering method is encouraging. The next section outlines

Levenshtein distance, a metric for measuring the difference between

two strings.

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[1]/div/h2

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[2]/div/h2

/html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div/h2

Figure 23: Prices located by the Full XPath

 56

5.3.3 Levenshtein Distance

Levenshtein distance is a character-based (aka edit distance) metric

for measuring the difference between two strings. It is defined as the

number of the smallest edit operations required to transform one string

into the other (Levenshtein, 1966). A possible edit operation is a single

character edit, including insertion, deletion, and substitution.

Levenshtein distance between two strings 𝑎, 𝑏 (of length |𝑎| and |𝑏|

respectively) is calculated by the following formula, 𝑙𝑒𝑣(𝑎, 𝑏):

Figure 24: Levenshtein distance formula, credits to wikipedia.org25

Where:

• 𝐿𝑒𝑣(𝑎, 𝑏) is the smallest number of edits to change 𝑎 to 𝑏.

• The 𝑡𝑎𝑖𝑙 function of some string 𝑥 is a string of all characters

except the first character of 𝑥.

• 𝐿𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎), 𝑏) corresponds to deletion (from 𝑎 to 𝑏).

• 𝐿𝑒𝑣(𝑎, 𝑡𝑎𝑖𝑙(𝑏)) corresponds to insertion.

• 𝐿𝑒𝑣(𝑡𝑎𝑖𝑙(𝑎), 𝑡𝑎𝑖𝑙(𝑏)) corresponds to substitution

(replacement of 𝑎 and 𝑏).

The next example illustrates the calculation of the Levenshtein edit

distance between two strings kitten and sitting.

25 https://en.wikipedia.org/wiki/Levenshtein_distance

kitten → sitten (substitution of s for k)

sitten → sittin (substitution of i for e)

sittin → sitting (insertion of g at the end)

Figure 25: Levenshtein distance example calculation

 57

The transformation had three edits to change the word kitten to

sitting, and there is no other way to achieve the same with fewer

changes than three edits, hance 𝑙𝑒𝑣(𝑘𝑖𝑡𝑡𝑒𝑛, 𝑠𝑖𝑡𝑡𝑖𝑛𝑔) = 3.

5.3.4 XPath-based Clustering

As mentioned previously (see Section 5.3.2), the goal is to cluster

similar XPaths into groups using the Levenshtein edit distance metric

(Lev distance). Levenshtein edit can measure the distance between two

strings only, therefore, we must look at XPath locators that best suit

the clustering task.

Table 11 presents XPath-based candidate features that can be

derived from the XPath feature. Let us first define the following

concepts:

• Target: the target element that we wish to cluster.

• Root: the root element, top element in the DOM tree; it is

typically the HTML tag and can be located by /∗ [1].

• Next: the following sibling of the target element.

• Previous: the preceding sibling of the target element.

• Parent: the parent of the target element.

Note that Levenshtein edit score is calculated on the XPaths of

these elements.

Key Description

D1 𝐿𝑒𝑣(𝑅𝑜𝑜𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡)

D2 𝐿𝑒𝑣(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡)

D3 𝐿𝑒𝑣(𝑁𝑒𝑥𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡)

D4 𝐿𝑒𝑣(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡)

D5 Depth of the target element by counting its ancestors (which

include the parent, the parent of the parent, until the top end of

the DOM tree). The depth can be calculated using the following:

count(/html/ancestor-or-self::*), which equals to 1.

D6 Weighted Levenshtein distance to specify different weights for

edit operations. In a default Levenshtein distance setting, all edit

operations have a cost of one. It could be interesting to give

different weights to some characters (e.g., give high weights to

numbers since they refer to the position of an element in the

XPath).

Table 11: XPath-based candidate features

 58

Figure 26 illustrates some of the XPath-based candidate distances

for the target element (the price on the right tire). In this example, the

shortest distance is found between the target element 𝑇 and its parent

element 𝑃. Note that knowing the shortest distance by itself is not

helpful at this stage, however such information might be useful in the

rest of the pipeline. For the clustering task, it is useful to know that

similar elements will have the same or nearby distances, hence they

will cluster in the same group. For example, in the figure below, the

prices 12, 21, and 30 have the same Levenshtein distance (Figure 27);

therefore, they will group under the same cluster.

Figure 26: Levenshtein distances illustration

 59

In this clustering component, given a web page input, we start by

extracting XPaths of elements with a filter using the following

expression: //body//*[not(self::script or self::br)]. The goal of the filter

is to reduce unnecessary XPaths that do not link to actual informative

elements, visible to the user. The following are cleaned out:

• Elements which are located outside the <body> tag (e.g.,

elements in the <head> tag, styles, and fonts).

• <script> JavaScript code, even the ones inside the body.

•
 empty line breaking tags, this tag does not include

information.

• Empty elements which have no content.

• Hidden elements which are present in the DOM but not

visible on the web page to the user. These elements are

identified by searching for the term hidden in the element

attributes or class values.

• Element wrappers/containers (e.g., <div> tags) which group

a set of child elements to define a division or section in the

Html document. These containers often do not include any

information (e.g., text content) but used for styling and

structuring. Childless containers may contain unique text

or additional text to what is in the child elements; in these

cases, containers are kept (not removed).

Note that these elements are filtered out locally for the purpose of

this component, and such meta information should be kept because it

could be useful for the rest of the pipeline (e.g., for entity recognition).

The removal of element containers is applied to reduce the number

of irrelevant XPaths prior to the clustering. The idea is simply to

match short and long XPaths. For example, /html/body/div[1]/div is

a container that is matched with /html/body/div[1]/div/img an

XPath of an image element. Note that elements which contain

additional unique text are not removed (e.g., /html/body/div[1]/div/p).

T: /html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div/h2

P: /html/body/div[2]/main/section[1]/section[1]/div[2]/div/div/div[3]/div

𝐿𝑒𝑣(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑇𝑎𝑟𝑔𝑒𝑡) = 3

Figure 27: Example of XPaths distance between the target element and its parent

 60

Figure 28 presents an example of 8 input XPaths were reduced to

5.

First, consider this example of three web pages from different

websites (WP126, WP227, WP328) which explores the effectiveness of the

cleaning process and possible clustering patterns. Table 12 shows the

number of XPaths before and after the cleaning process, which achieves

a reduction average of 55.66% of the total XPaths.

Web page Before After Reduction %

WP1 265 148 44.15%

WP2 1818 879 51.65%

WP3 521 150 71.20%

Table 12: Number of XPaths before and after the cleaning process

26 https://www.moneybird.nl/prijzen
27 https://www.imes.be/gereedschap-handling-en-

bevestigingen/handgereedschappen/lampen-en-verlengkabels.html
28 https://www.st-group.com/our-brands

Input:

 /html/body/div[1]

 /html/body/div[1]/div

 /html/body/div[1]/div/img

 /html/body/div[1]/div/p

 /html/body/div[1]/div/p/a

 /html/body/div[1]/div/span

 /html/body/div[1]/div/span/button[1]

 /html/body/div[1]/div/span/button[2]

Output:

 /html/body/div[1]/div/img

 /html/body/div[1]/div/p

 /html/body/div[1]/div/p/a

 /html/body/div[1]/div/span/button[1]

 /html/body/div[1]/div/span/button[2]]

Figure 28: Example of element containers reduction

 61

Figure 29 and Figure 30 visualize the values of candidate features

extracted from WP1, which shows a clear clustering pattern; as shown

horizontally, similar values can form a possible cluster.

Figure 29: Line chart of XPath-based Levenshtein distances

Figure 30: Scatter chart of XPath-based Levenshtein distances

 62

The general idea to achieve clustering is to do sorting and grouping

by a Levenshtein distance value (other approaches are possible; see

Section 5.3.6). In order to validate which of the XPath-based candidate

features fit the clustering best, we explore further the same web pages

and present the results below. Note that the Weighted Levenshtein

distance (D6) remains unexplored for future work, which requires an

additional variable for each distance.

 Number of clusters

Candidate feature WP1 WP2 WP3

D1 26 53 5

D2 8 8 5

D3 8 8 5

D4 7 7 5

D5 12 15 5

Table 13: Number of clusters by XPath candidate feature

The next section presents evaluation and experiment results

performed on D2 (the Levenshtein distance between the target element

and its parent). This distance was selected in particular because it

outputs the best clusters in terms of the number of clusters (average

size as seen in Table 13) and their quality. The quality was evaluated

visually by looking at the output clusters of each distance across the

three web pages, using a visual evaluation interface (More in the next

section). Figure 31 shows an example of a brands section that was

clustered given D1 and D2. The left side (D1) had two clusters (C16

and C17) of the same thing, but the correct expected result should

have been one cluster. D2 clusters are correct, (C2) refers to the brand

boxes (e.g., entity object of name and image) and (C3) represents the

entity attribute (e.g., brand name).

Figure 31: A section taken from WP3 shows the difference between D1 (left side) and

D2

 63

5.3.5 Evaluation and Experimental Results

Evaluating the quality of a clustering result is an important yet can be

a difficult challenge because it is subjective task. It depends on the

task specifics; for example, in this section the goal is evaluate how well

is the proposed clustering component performs on the web pages (e.g.,

whether similar elements are grouped correctly or not). In order to

evaluate this, several measures can be considered to capture

performance at different levels: across various websites, different web

pages within a website, across clusters within a web page or all pages

to capture relevancy of clusters, and finally, across XPaths, to capture

relevancy of locating target elements, and the XPaths relation with

respect to the cluster.

The purity of clusters is considered as a metric (see Section 4.5.5)

to evaluate the clustering of similar XPaths. It fits well this clustering

component and the generic approach followed in the global design. A

good clustering should include pure clusters and have less impure

clusters.

In order to evaluate the XPath-based clusters and compute the

purity metric, a simple visual evaluation interface was developed. The

interface generates a color scheme automatically, containing the color,

cluster id, and number of XPaths in the cluster (Figure 32). The

interface then maps the different but unique colors (and cluster id tags)

to each cluster, making it easy for the human eye to interpret and

judge the resulted output. A bounding box is drawn on each cluster.

Finally, the interface presents an image of the web page visually,

including all the annotated information.

Figure 32: Clustering color scheme generated by the evaluation interface

 64

Figure 33 shows an output example of a questions (FAQ) section.

As shown, two main clusters were annotated (C0 and C1). C0 refers

to the question attribute and C1 to the answer attribute; these

attributes can relate to a FAQ entity object.

Figure 33: XPath-based clustering performed on FAQ section (WP1)

The previous section introduced a removal mechanism to reduce

the number of irrelevant XPaths (e.g., element containers) prior to the

clustering. Although progress has been made in cleaning up more than

half of the XPaths, some XPaths passed through, which can lead to

misevaluating the quality of the clustering. The purity metric is

calculated based on the number of XPaths in the majority class. High

purity is easy to achieve when irrelevant XPaths are left uncleaned,

because they might represent the majority class in most of the cases.

To overcome this, we introduce the concept of XPath relevancy

within a cluster. A relevant XPath is the one that locates an element

that has similar elements within the cluster; single elements are

considered irrelevant. Elements are considered relevant if they can

represent a candidate entity attribute/class (e.g., price, product name).

A candidate attribute is a possible output representation (e.g., the

price attribute in WP1 can be represented as 21, 21,00, or €21,00); a

follow up step should predict the best attribute given the candidates.

Furthermore, the concept of percentage purity which describes

what proportion of the total XPaths is relevant; it can be calculated

by dividing the total number of relevant XPaths by the total of all

XPaths, and then multiplying this number by 100.

Figure 34 illustrates an annotated example of a pricing packages

section used for clustering evaluation. The green bounding boxes

represent the elements were located by the XPaths under one cluster.

The red markings are annotated manually by a human judge. /I/ is a

 65

single irrelevant element which can be ignored. Although A1, A2, and

A3 are clustered under the same cluster, they represent different

candidate attributes (e.g., A1 a price, A2 a period, A3 part of a feature

name). The majority class in this example is 15 (A3).

Figure 34: pricing packages cluster annotated by candidate entity attribute (WP1)

Table 14 outlines the evaluation results for the three randomly

selected web pages. The size of a cluster is determined by the number

of XPaths it has. Note that clusters which include only one XPath

were ignored prior to the clustering.

Web page WP1 WP2 WP3

of clusters 8 8 5

of XPaths 148 879 150

Largest size 40 276 51

Smallest size 2 13 11

Mean size 18.5 109.9 30

Median size 16.5 80.5 25

of irrelevant XPaths 58 572 44

of relevant XPaths 90 307 106

of relevant candidate

entity attributes/types

15 29 14

% purity 60.81% 34.93% 70.67%

Purity 64.44% 43.32% 76.42%

Table 14: XPath-based clustering evaluation

The purity is computed by counting the number of XPaths of the

majority class (in each cluster) and diving by the number of relevant

XPaths. The average of percentage purity is 45.47% and purity is

61.39%.

The next section provides a detailed discussion on the results and

outlines possible directions to improve the results in future work.

 66

5.3.6 Discussion and Future Work

The clustering results presented in the previous section show that this

research direction is promising and has enormous potential. Using a

simple feature (XPath), the system was able to group similar elements

groups correctly more than sixty percent of the time. The clustering

could be enhanced further by leveraging the multiple features (see

Section 5.2.1); for example, by applying k-means clustering on

additional features besides the XPath (or other methods, see Section

5.3.1). In this case, additional work is needed to encode the various

features into machine-learning ready features (e.g., element location as

numerical feature, color, and tag type as categorical, and convert text

content into vectors). In addition to that, to normalize large numbers

and independent features of data (e.g., using z-scaling to ensure that

feature distributions have a zero-mean and standard deviation of one)

(Bejarano et al., 2011; Kumar & others, 2014). Although, K-means

may capture better clusters, it comes with some disadvantages: the

number of clusters (K) must be known beforehand and chosen

manually; this could be challenging since the number of clusters varies

between different web pages, as it depends on the web page structure

and content.

Various features can be extracted from the structure of web pages

(e.g., DOM tree, location of elements, neighboring elements); in

addition to that, the text content of web page elements can be a useful

attribute for clustering elements. Methods to measure the content

similarity such as paragraph and word similarity (e.g., Word2Vec and

Doc2Vec (Le & Mikolov, 2014)) can be applied on each element to

group elements with similar content together.

The clustering experiment was done using simple sorting and

grouping by the XPath-based distances. However, more complex

approaches can be performed to optimize the process of forming

clusters; for example, using Jenks natural breaks to normalize and

group close numbers together (Jiang, 2013). The method minimizes the

variation within each similarly distances range, resulting in fewer

clusters.

The clustering component was evaluated using a visual evaluation

interface on a small sample of web pages due to the manual work

involved. At present, the visual evaluation interface generates colors

randomly; this can be improved further by displaying distinct colors

and colors that do not look alike to the human-eye. Furthermore, in

 67

the future, more research should be done to investigate automated

clustering evaluation methods that fit the web information extraction

task; once found, evaluation on a larger sample size becomes easy.

 Global System Discussion

This section lists the contributions of this study and reflects on the

results of each component. Furthermore, it outlines a multi-clustering

nested challenge and provides ideas for the entity recognition

component.

As previously mentioned, the system's goal is to extract and

structure information from web pages generically; given web page as

input, the system produces a structured output in JSON format.

The main contribution of this study is the proposed pipeline system

design, consisting of the relevancy filter to filter out irrelevant web

pages, feature extraction to study and extract candidate features from

web pages, clustering component to group similar web page elements

together, and finally, entity recognition to identify and link extracted

clusters to entities. In addition to the global design, we have discussed

each component in detail and proposed a list of candidate features

which can be extracted from web pages (e.g., style-based, element and

DOM information, and location-based features).

Furthermore, we have implemented and evaluated two components:

relevancy filter and clustering. The relevancy filter performed well on

classifying irrelevant web pages; however, it supports only English and

Dutch. Training a larger language-agnostic multilingual model would

improve the system further. In the clustering component, we provided

a list of existing clustering methods focusing on techniques suited for

web information extraction and text similarity. Moreover, we

experimented with XPath-based Levenshtein distance features to form

clusters of similar web page elements. Although the XPath-based

clustering results are promising and show potential in this generic

research approach, they can be improved further by leveraging the

multiple web page features besides the XPath.

The similarity-based clustering performed well on clustering entity

attributes; however, linking these attributes to an entity object remains

challenging. We define this challenge as a multi-clustering nested task.

Figure 35 illustrates an ideal clustering example of a pricing packages

section. In a similarity-based clustering, the system will output price

(C0) and period (C1) as entity attributes; however, to produce a fully

 68

structured JSON, more work is needed. The attributes should be

flattened and grouped vertically to form entity objects (C2, the

packages), and since the objects relate to the same entity type, they

must be grouped under one parent cluster (C3). In this example, C0

and C1 have no feature similarity (only the location of elements).

Hence, we must look beyond the similarity-based clustering to link the

entity attributes with their objects. A possible solution is to look at

the DOM tree and investigate the parent-child relation; child elements

represent the entity attributes, and parent element corresponds to the

entity object.

Figure 35: Pricing packages multi-clustering example

Finally, the entity recognition component solves the last task to

tackle the generic web information extraction. The evaluation of

component remains for future work, but here we provide general ideas

about the component and outline future directions. Given the

clustering component's output clusters, the system assigns named

entity attributes and entity object names. For this component to work

correctly, the system must have a knowledge base containing

information about possible entities and how they can be described.

The meta information of all steps carried out in the previous

components can help the recognition process; therefore, it should be

kept and passed on to this step. Given an entity knowledge base,

components meta information and additional entity descriptions from

open graphs (e.g., schema.org), the system should suggest possible

entities automatically. In addition to that, the user may provide the

system with extra entity definitions of interest. The entity definitions

can be provided in a knowledge base as a set of rules or training

examples (to train a machine learning model). The main challenge is

to identify what features describe each entity. Consider this example

of a pricing page that includes at least a price entity. The knowledge

base should define what the price entity looks like; for example, a price

is a number next to a currency sign, and the currency is a euro or

dollar symbol. This way the system can resolve the entity attribute

 69

name. The system may recognize a name for the entity object (e.g.,

object names are often located in the parent section and have a large

bold font). This simple idea can generalize on many examples,

including web tables. Figure 36 illustrates a web table example; when

we apply the ideas presented above. The entity attributes will be the

name and color because they are in bold font, centered in the middle,

separated by lines, and use headline style capitalization.

Figure 36: Simple web table example

In the future, we could study and list common entities (with

features for each entity) that occur in web pages; by taking a random

sample of web pages and annotating interesting entities. Finally, an

easy way to model and integrate user specific entities in the system is

needed.

 70

Conclusions

This thesis reviewed different approaches on how to extract and

structure information from web pages and proposed a component-

based system design. The goal is to extract and recognize web

information and convert it into a structured form (JSON format) in a

generic way. The resulted structured information is beneficial and

increasingly needed to support the business demands of building smart

applications and system integrations (Section 2.9).

In general, some literature was found on the topic of web

information extraction; however, no system or method could be found

that can fulfill all the desired requirements for a generic and automatic

extraction (Section 4.1). Extracting structured information from web

data is challenging as it contains many web pages in different shapes

and forms. Current methods are limited and fail to scale across

different websites; some methods tackle parts of the challenge such as

WebTables and TableMiner for HTML tables; others are limited to a

pre-defined schema, require manual user input, visual-driven

interaction, or training examples.

In the following subsections, we summarize the global system design

and provide conclusions to each pipeline component. Furthermore,

answer the research questions we defined at the beginning in Section

4.3 and outline future work suggestions.

 71

 Conclusions

This thesis proposed a novel component-based web information

extraction system based on the well-established design science

methodology (Wieringa, 2014). Given a collection of web pages as

input, the system can extract and cluster web information generically.

The global design consists of four pipeline components; we studied

literature and listed existing methods for each component.

Relevancy filter aims to clean out irrelevant websites based on

custom binary classification models for two languages (English and

Dutch). We trained and evaluated four models with different

configurations on companies’ dataset obtained from the Dutch

Chamber of Commerce. The winning models did well on classifying

irrelevant web pages (98.86% F1).

Feature extraction component aims at extracting helpful candidate

features from the relevant websites, including XPath (Section 5.2.1).

We studied and extracted the candidate features from three different

web page representations: the visual presentation (what people see

visually via browsers), source code, and DOM tree. The XPath feature

was selected because of its simplicity in locating web page elements.

Clustering aims at grouping similar web page elements into clusters

based on XPath-based Levenshtein distance. We listed existing

clustering methods and focused on text similarity approaches, which

are better suited for this research (Section 5.3.1). We extracted several

features from the XPath-based Levenshtein distance and focused on

the distance between target element and its parent to perform the

clustering. Furthermore, a rule-based cleaning process was introduced

to filter out unnecessary XPaths. Finally, the clustering was manually

evaluated using a visual evaluation interface on three web pages

(average purity of 61.39%).

Entity recognition is the last component in the pipeline; its goal is

to link clusters with their corresponding entities. Although this

component has remained for future work, we presented a knowledge-

based approach to recognizing entities and proposed future research

questions (see Section 5.4 and Section 4.3).

 72

 Research Questions

This thesis involves several research questions, as explained in Section

4.3. Below we discuss each of them based on the system global design

and findings of this research.

Q1: How can irrelevant web pages be filtered out?

In general, the relevancy of web pages is subjective and depends on

the business use case. We solve this challenge by annotating a dataset

of web pages and training a custom binary classifier. This same process

can be adapted to different use cases (see Section 5.1).

Q2: What candidate features can be extracted from web pages?

Web pages contain feature-rich semi-structured information. In

Section 5.2.1, we studied and proposed a list of candidate features

(style, dimensions and location, element information, DOM

information, meta data, and other calculated features). These features

could be leveraged to enhance the overall system performance.

Q3: How can XPaths be constructed to effectively locate web page

elements?

There are several ways to construct XPaths; we preferred the Full

XPath, which traverses the DOM tree hierarchy from the root element

of the web page (/html/) to the target element. This way, we get a

standard and unified way to locate elements from web pages, making

it easy to perform clustering experiments.

Q4: What existing clustering methods can be effectively used for

clustering web page elements?

Several existing methods were found from the literature, which have

potential in clustering similar web page elements. We focused on

character-based text similarity methods, including the Levenshtein

distance, mainly because it fits well with the XPath feature. (see the

complete list in Section 5.3.1).

Q5: What evaluation metrics can be used to measure the

performance of clustering?

Clustering evaluation is challenging and specific to the task. For

this thesis, we adopted the purity and percentage purity to evaluate

the quality of clusters. Purity measures the number of pure clusters

among all clusters, while percentage purity estimates the percentage of

relevant clusters.

 73

 Future work

Future research includes further optimization to the global system

design to achieve better performance. Carrying out additional

exploratory studies to the candidate features might be beneficial to

uncover unseen patterns among web pages.

Training a large language-agnostic multilingual model can help the

relevancy filter component in supporting additional languages. Hence,

the ability to filter out web pages that include unseen languages

correctly.

As for the clustering component to leverage and apply multiple

features not only the XPath-based features. In the current

implementation, all Levenshtein features had the same weights in the

similarity distance calculation; it could be useful to apply a weighted

distance by specifying different weights for each edit operations; for

example, by giving larger weights to numbers than characters, since

numbers refer to the element position in the XPath. Moreover, further

research for automated clustering evaluation methods can come in

handy to evaluate the same clustering experiment but on a larger

sample size. Alternatively, improvements to the visual evaluation

interface are needed to carry out the evaluation manually faster (e.g.,

print out a distinct color for each cluster). Finally, more research is

needed for methods to group entity attributes with their objects.

Lastly, the entity recognition component needs more extensive

study. The knowledge-based approach has good potential in resolving

named entities. In this direction, a study of entities must be done on a

sample of web pages or public knowledge bases (e.g., schema.org) to

identify common entities and list their features. The following

knowledge questions are listed for future research.

FQ1: How can candidate features be leveraged to identify entities?

FQ2: What is an effective method for constructing a knowledge

base to hold entity representations?

FQ3: What is the best way to generate key-value structured

information?

 74

References

Abiteboul, S., Buneman, P., & Suciu, D. (2014). Data on the Web:
From Relations to Semistructured Data and XML.
https://books.google.com/books?hl=en&lr=&id=hYnUJY7FlBE
C&oi=fnd&pg=PR5&dq=Abiteboul,+S.,+Buneman,+P.,+Suciu
,+D.:+Data+on+the+Web:+from+relations+to+semistructured
+data+and+XML.+Morgan+Kaufmann+Publishers+Inc.+San
+Francisco,+CA,+USA+(1999)&ots=HB28AgMhqn&sig=b1gQ
CedplEMFzfLH9ZRyLh78vLI

Amigó, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison
of extrinsic clustering evaluation metrics based on formal

constraints. Information Retrieval, 12(4), 461–486.
Bartolini, I., Ciaccia, P., & Patella, M. (2002). String matching with

metric trees using an approximate distance. International
Symposium on String Processing and Information Retrieval, 271–
283.

Bejarano, J., Bose, K., Brannan, T., Thomas, A., Adragni, K.,
Neerchal, N. K., & Ostrouchov, G. (2011). Sampling within k-
means algorithm to cluster large datasets. UMBC Student
Collection.

Berners-Lee, T., & others. (1998). Semantic web road map.
Bookstein, A., Kulyukin, V. A., & Raita, T. (2002). Generalized

hamming distance. Information Retrieval, 5(4), 353–375.
Brown, P. F., Della Pietra, V. J., Desouza, P. V, Lai, J. C., & Mercer,

R. L. (1992). Class-based n-gram models of natural language.

Computational Linguistics, 18(4), 467–480.
Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E., & Zhang, Y. (2008).

WebTables: Exploring the power of tables on the web. Proceedings
of the VLDB Endowment, 1(1), 538–549.
https://doi.org/10.14778/1453856.1453916

Cai, D., Yu, S., Wen, J.-R., & Ma, W.-Y. (2003). VIPS: a Vision-based
Page Segmentation Algorithm VIPS: a Vision-based Page
Segmentation Algorithm VIPS: a Vision-based Page Segmentation
Algorithm. https://www.microsoft.com/en-
us/research/publication/vips-a-vision-based-page-segmentation-
algorithm/

Califf, M. E., & Mooney, R. J. (1999). Relational Learning of Pattern-
Match Rules for Information Extraction. In aaai.org.
www.aaai.org

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection

methods. Computers & Electrical Engineering, 40(1), 16–28.
Chang, C.-H., & Hsu, C.-N. (1999). Automatic Extraction of

Information Blocks Using PAT Trees. Academia.Edu.
https://www.academia.edu/download/51171402/autoextract.pdf

Chang, C. H., Hsu, C. N., & Lui, S. C. (2003). Automatic information
extraction from semi-structured Web pages by pattern discovery.

Decision Support Systems, 35(1), 129–147.
https://doi.org/10.1016/S0167-9236(02)00100-8

 75

De Mol, R., Bronselaer, A., Nielandt, J., & De Tré, G. (2015). Data
driven XPath generation. Advances in Intelligent Systems and
Computing, 322, 569–580. https://doi.org/10.1007/978-3-319-
11313-5_50

Dice, L. R. (1945). Measures of the amount of ecologic association

between species. Ecology, 26(3), 297–302.
Fayzrakhmanov, R. R., Michels, C., & Neumann, M. (2018).

Introduction to OXPath. ArXiv Preprint ArXiv:1806.10899.
Feng, J., Zou, L., Ye, O., & Han, J. (2020). Web2Vec: Phishing

Webpage Detection Method Based on Multidimensional Features

Driven by Deep Learning. IEEE Access, 8, 221214–221224.
Fix, E. (1985). Discriminatory analysis: nonparametric discrimination,

consistency properties (Vol. 1). USAF school of Aviation
Medicine.

Furche, T., Gottlob, G., Grasso, G., Schallhart, C., & Sellers, A.
(2013). OXPath: A language for scalable data extraction,
automation, and crawling on the deep web. The VLDB Journal,
22(1), 47–72.

Goebel, M., & Ceresna, M. (2009). Wrapper Induction. In

Encyclopedia of Database Systems (pp. 3560–3565). Springer US.
https://doi.org/10.1007/978-0-387-39940-9_1160

Gomaa, W. H., Fahmy, A. A., & others. (2013). A survey of text
similarity approaches. International Journal of Computer
Applications, 68(13), 13–18.

Grasso, G., Furche, T., & Schallhart, C. (2013). Effective web scraping
with oxpath. Proceedings of the 22nd International Conference on
World Wide Web, 23–26.

Hotho, A., Ba Nguyen, D., Cheatham, M., Martinez-Rodriguez, J. L.,
Hogan, A., & Lopez-Arevalo, I. (2016). Information Extraction
meets the Semantic Web: A Survey; 2 Anonymous Reviewers
Open review(s). In content.iospress.com. http://prefix.cc.

Hu, D. D., & Meng, X. F. (2004). Automatically extracting Web data
using tree structure. Jisuanji Yanjiu Yu Fazhan/Computer
Research and Development, 41(10), 1607–1613.

Huang, L. (2011). Concept-based text clustering. University of
Waikato.

Introduction to robots.txt - Search Console Help. (2020).
https://support.google.com/webmasters/answer/6062608?hl=en

Ioffe, S. (2006). Probabilistic linear discriminant analysis. European
Conference on Computer Vision, 531–542.

Izenman, A. J. (2013). Linear discriminant analysis. In Modern
multivariate statistical techniques (pp. 237–280). Springer.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. 1.

New Phytologist, 11(2), 37–50.
Jiang, B. (2013). Head/tail breaks: A new classification scheme for

data with a heavy-tailed distribution. The Professional
Geographer, 65(3), 482–494.

Jones, R., McCallum, A., Nigam, K., & Riloff, E. (1999).
Bootstrapping for text learning tasks. IJCAI-99 Workshop on

 76

Text Mining: Foundations, Techniques and Applications, 1(7).
JSON. (2020). https://www.json.org/json-en.html
Jundt, O., & Van Keulen, M. (2013). Sample-based xpath ranking for

web information extraction. 8th Conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT-13).

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature
selection and feature extraction techniques in machine learning.

2014 Science and Information Conference, 372–378.

Klettke, M., Störl, U., & Scherzinger, S. (2015). Schema Extraction
and Structural Outlier Detection for JSON-based NoSQL Data
Stores. Undefined.

Kosub, S. (2019). A note on the triangle inequality for the Jaccard

distance. Pattern Recognition Letters, 120, 36–38.
Krishnan, R., Parashar, A., & Sarkar, S. (2019). Automatic generation

of structured data from semi-structured data. Google Patents.
Kumar, S., & others. (2014). Efficient K-Mean Clustering Algorithm

for Large Datasets using Data Mining Standard Score
Normalization. Int. J. Recent Innov. Trends Comput. Commun.,
2(10), 3161–3166.

Laender, A. H. F., Ribeiro-Neto, B. A., Da Silva, A. S., & Teixeira, J.
S. (2002). A brief survey of Web data extraction tools. In

SIGMOD Record (Vol. 31, Issue 2, pp. 84–93).
https://doi.org/10.1145/565117.565137

Lanthaler, M., & Gütl, C. (2012). On using JSON-LD to create
evolvable RESTful services. Proceedings of the Third
International Workshop on RESTful Design, 25–32.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences
and documents. International Conference on Machine Learning,

1188–1196.
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,

insertions, and reversals. Soviet Physics Doklady, 10(8), 707–710.
Li, B., & Han, L. (2013). Distance weighted cosine similarity measure

for text classification. International Conference on Intelligent Data
Engineering and Automated Learning, 611–618.

Lin, Y., Jun, Z., Hongyan, M., Zhongwei, Z., & Zhanfang, F. (2018).
A method of extracting the semi-structured data implication rules.

Procedia Computer Science, 131, 706–716.
https://doi.org/10.1016/j.procs.2018.04.315

Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: a better measure
than accuracy in comparing learning algorithms. Conference of the
Canadian Society for Computational Studies of Intelligence, 329–
341.

Lipkus, A. H. (1999). A proof of the triangle inequality for the
Tanimoto distance. Journal of Mathematical Chemistry, 26(1),

263–265.
Liu, W., Meng, X., & Meng, W. (2006). Vision-based Web Data

Records Extraction. WebDB.
MacQueen, J., & others. (1967). Some methods for classification and

analysis of multivariate observations. Proceedings of the Fifth

 77

Berkeley Symposium on Mathematical Statistics and Probability,

1(14), 281–297.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Flat clustering.

In Introduction to Information Retrieval (pp. 321–345).
Cambridge University Press.
https://doi.org/10.1017/CBO9780511809071.017

McCallum, A., & Nigam, K. (1999). Text classification by
bootstrapping with keywords, EM and shrinkage. Unsupervised
Learning in Natural Language Processing.

Miao, J., & Niu, L. (2016). A survey on feature selection. Procedia
Computer Science, 91, 919–926.

Monge, A., & Elkan, C. (1997). An efficient domain-independent
algorithm for detecting approximately duplicate database records.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE
Signal Processing Magazine, 13(6), 47–60.

Muslea, I., Minton, S., & Knoblock, C. (1999). Hierarchical approach
to wrapper induction. Proceedings of the International Conference
on Autonomous Agents, 190–197.
https://doi.org/10.1145/301136.301191

Needleman, S. B., & Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino acid sequence

of two proteins. Journal of Molecular Biology, 48(3), 443–453.
Rao, G. A., Srinivas, G., VenkataRao, K., & Prasad Reddy, P. (2018).

A partial ratio and ratio based fuzzy-wuzzy procedure for
characteristic mining of mathematical formulas from documents.

IJSC—ICTACT J Soft Comput, 8(4), 1728–1732.
Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A., & Jain,

A. K. (2000). Dimensionality reduction using genetic algorithms.

IEEE Transactions on Evolutionary Computation, 4(2), 164–171.
Reynolds, D. A. (1993). A Gaussian mixture modeling approach to

text-independent speaker identification.
Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft

similarity and soft cosine measure: Similarity of features in vector

space model. Computación y Sistemas, 18(3), 491–504.
Sint, R., Schaffert, S., Stroka, S., & Ferstl, R. (2009). Combining

unstructured, fully structured and semi-structured information in

semantic wikis. CEUR Workshop Proceedings, 464, 73–87.
Smith, T. F., Waterman, M. S., & others. (1981). Identification of

common molecular subsequences. Journal of Molecular Biology,

147(1), 195–197.
Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of

dimensionality reduction techniques. ArXiv Preprint
ArXiv:1403.2877.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström, N.
(2014). JSON-LD 1.0. W3C Recommendation, 16, 41.

Sripada, S. C., & Rao, M. S. (2011). Comparison of purity and entropy
of k-means clustering and fuzzy c means clustering. Indian Journal
of Computer Science and Engineering, 2(3), 343–346.

 78

Thompson, B. (1984). Canonical correlation analysis: Uses and
interpretation (Issue 47). Sage.

Thompson, B. (2005). Canonical correlation analysis. Encyclopedia of
Statistics in Behavioral Science.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal
component analysis. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 61(3), 611–622.

Trieschnigg, D., Tjin-Kam-Jet, K., & Hiemstra, D. (2012). Ranking
XPaths for extracting search result records. CTIT Technical
Report.
https://research.utwente.nl/files/5092970/techrep.2012.trieschnig
g.pdf

Tversky, A. (1977). Features of similarity. Psychological Review,
84(4), 327.

Varlamov, M. I., & Turdakov, D. Y. (2016). A survey of methods for
the extraction of information from Web resources. Programming
and Computer Software, 42(5), 279–291.

Vijaymeena, M. K., & Kavitha, K. (2016). A survey on similarity
measures in text mining. Machine Learning and Applications: An
International Journal, 3(2), 19–28.

Vogels, T., Ganea, O.-E., & Eickhoff, C. (2018). Web2text: Deep
structured boilerplate removal. European Conference on
Information Retrieval, 167–179.

Wieringa, R. (2014). Design science methodology for information
systems and software engineering.
https://books.google.com/books?hl=en&lr=&id=xLKLBQAAQ
BAJ&oi=fnd&pg=PR5&dq=Design+Science+Methodology+for
+Information+Systems+and+Software+Engineering&ots=bWBr
cvYnGv&sig=bvXgVKSqzaZH1BjcPUQMXXgZg1o

Winkler, W. E. (1990). String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record Linkage.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component

analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–

3), 37–52.
Yuchen Lin, B., Sheng, Y., Vo, N., & Tata, S. (2020). FreeDOM: A

Transferable Neural Architecture for Structured Information
Extraction on Web Documents. Dl.Acm.Org, 2020.
https://doi.org/10.1145/3394486.3403153

Zhang, Shuo, & Balog, K. (2020). Web Table Extraction, Retrieval
and Augmentation: A Survey. http://arxiv.org/abs/2002.00207

Zhang, Suzhi, & Shi, P. (2009). An efficient wrapper for Web data
extraction and its application. Proceedings of 2009 4th
International Conference on Computer Science and Education,
ICCSE 2009, 1245–1250.
https://doi.org/10.1109/ICCSE.2009.5228403

Zhang, Z. (2009). Start small, build complete: Effective and efficient
semantic table interpretation using tableminer. In semantic-web-
journal.org (Vol. 1). http://semantic-web-
journal.org/system/files/swj668.pdf

Zhao, C., & Sahni, S. (2019). String correction using the Damerau-

 79

Levenshtein distance. BMC Bioinformatics, 20(11), 1–28.
Zhao, Y., & Karypis, G. (2001). Criterion functions for document

clustering: Experiments and analysis.

 80

Appendices

A. Google Rich Results Features

Feature Description

Article A blog article displayed with a

highlighted headline and larger

images.

Book Actions to enable users to buy books

directly.

Breadcrumb Navigation to move users to a

specific content position

Carousel Rich results that display in a gallery

view

Course Display course title, provider, and a

short description for educational

courses

Critic review A snippet review from a larger

article about a book, movie, or local

business.

Dataset Dataset files that appear in Google

Dataset Search

EmployerAggregateRating An evaluation review of a hiring

process displayed from many users

to enhance a job search experience.

Event Shows a list of events such as

festivals and concerts that start at a

particular time and place in order to

help people attend and small

business to increase their sales.

Local Business Show information about a local

business including opening hours,

ratings, google maps directions, and

actions to book appointments or

order products directly.

Logo Shows an organization logo in

search results and on the side as

part of google knowledge panel.

Podcast Shows podcasts in a playable link in

Google Search and Google Podcasts

app.

 81

Product Information about a product,

including price, stocks availability,

and review ratings.

Recipe Shows what are the recipe

ingredients, cooking time and

temperature, and calories.

Review snippet A short description, review or rating

from a review site about a book,

recipe, product, software app, and

local business.

Software App Information about a software app

such as rating, reviews and a link to

download the app.

Subscription and paywalled content Show a paywalled content on a site.

Video Shows information about a video or

live-stream content with the option

to enable users to play it right away.

Other features, including: Fact Check, FAQ, Home Activities, How-to,

Image License, JobPosting, Job Training, Speakable, Sitelinks Search box,

Q&A, Movie, and Estimated salary.

Table 15: Google Rich Results features29 explained

29 https://developers.google.com/search/docs/guides/search-gallery

 82

B. Vision-based Page Segmentation

Figure 37: An example of web data extraction using a vision-based technique

C. Web Pages Input and Output

Figure 38: Example of webshop product detail page and it’s structured output

 83

Figure 39: Example of pricing packages web page and it’s structured output

 84

D. Website Categories

Business informative website

Figure 40: Business informative websites: present information and media content

Ecommerce websites

Figure 41: Ecommerce websites/webshops: sell many products online

Pricing packages included websites

Figure 42: Pricing packages included websites: include few-tiered pricing packages

 85

E. Relevancy Filter Annotation Examples

Good Examples

Figure 43: Accepted example 1 (aannemeraanzet.nl)

Figure 44: Accepted example 2 (active-hydration.com)

 86

Figure 45: Accepted example 3 (agiocigars.com)

Figure 46: Accepted example (alijt.nl)

 87

Bad Examples

Figure 47: Rejected example 1 (12motiv8.nl)

Figure 48: Rejected example 2 (180gradenom.com)

 88

Figure 49: Rejected example 3 (1816media.nl)

Figure 50: Rejected example 4 (a2eco.com)

 89

Figure 51: Rejected example 5 (aceauctions.eu)

Figure 52: Rejected example 6 (adit-services.nl)

Figure 53: Rejected example 7 (admarsol.com)

 90

Figure 54: Rejected example 8 (adrenalinemedia.net)

 91

F. XPath-based clustering examples

Figure 55: XPath-based clustering performed on pricing packages page

 92

Figure 56: XPath-based clustering performed on products page

 93

Figure 57: XPath-based clustering performed on brands page

