
 

 

 

  

Algorithms for Automated Scoring of 

Respiratory Events in Sleep 
Rule-based models and deep neural networks  

Author: 

T. E. Nassi 

Graduation Chairman: 

Prof. Dr. Ir. M.J.A.M. van Putten 

Medical Supervisor: 

Assoc. Prof. Dr. M.B. Westover, MD 

Technical Supervisor: 

Assst. Prof. Dr. E. Mos – Oppersma 

Daily Supervisor: 

Drs. W. Ganglberger 

Process Supervisor: 

Drs. B.J.C.C Hessink – Sweep 

External member: 

Dr. R.C.L Schuurmann 

A thesis submitted in fulfillment of the requirements of the master program: 

Technical Medicine – Medical Sensing & Stimulation 

May 7, 2021 



       Contents 

1 | P a g e  
 

Table of Contents 

1 ABSTRACT 3 

2 INTRODUCTION 5 

3 BACKGROUND 8 

3.1 SLEEP DISORDERS 8 

3.2 AUTOMATION AND ALGORITHMS 11 

3.3 RESEARCH OBJECTIVES 14 

4 ASSESSMENT OF THE GOLD STANDARD 16 

4.1 SCORING OF RESPIRATORY EVENTS 16 

4.2 SCORING GUIDELINES IN A FLOWCHART 17 

4.3 AMBIGUITY WHEN ASSESSING FLOW LIMITATION   18 

4.4 AMBIGUITY WHEN ASSESSING DESATURATION DROPS 20 

4.5 CONCLUSION 20 

5 DEEP NEURAL NETWORKS FOR AUTOMATED RESPIRATORY EVENT SCORING 23 

5.1 INTRODUCTION 23 

5.2 METHODS 23 

5.3 RESULTS AND DISCUSSION 24 

5.4 CONCLUSION 26 

6 RULE-BASED ALGORITHMS FOR AUTOMATED RESPIRATORY EVENT SCORING 28 

6.1 DATASET DESCRIPTION AND FORMATTING 29 

6.2 AIRFLOW ANALYSIS 32 

6.3 SATURATION ANALYSIS 35 

6.4 RESPIRATORY EFFORT ANALYSIS 39 

6.5 CREATING EEG AROUSALS 42 

6.6 EVENT INDEXING AND LABELLING 44 

6.7 MODEL EVALUATION 47 

6.8 RESULTS 50 

6.9 DISCUSSION 64 

6.10 CONCLUSION 66 

7 INTER-RATER AGREEMENT EXPERIMENT 68 



       Contents 

2 | P a g e  
 

7.1 SAMPLE SELECTION 68 

7.2 EXPERIMENT SETUP 69 

7.3 PRELIMINARY RESULTS 72 

7.4 CLINICAL IMPLICATIONS 77 

8 FINAL THOUGHTS 81 

9 REFERENCES 84 

 

 



  Abstract 

  3 | P a g e  
 

1 Abstract 

Manual scoring of polysomnography (PSG) data, in particular respiratory event labelling, is a time-

consuming task. Scoring patient recordings with highly irregular breathing and frequent apneic 

events is an iterative operation that may take up to multiple hours. In recent years the development 

and application of computer algorithms that assist manual labor has been growing immensely. 

Automation by such computer models has a great impact on the medical field, but interpretation 

of medical data is often exceptionally heterogenous. For instance, the American Academy of Sleep 

Medicine (AASM) provides rules for manual scoring that contain  several arbitrary thresholds. 

This allows for dynamic interpretation of these criteria that can be manipulated between patients. 

In turn, this leads to increased inter-rater variability which reduces scoring consistency among 

annotators. Both rule-based models and machine learning algorithms offer a pallet of potentially 

more robust opportunities that may be applicable for automated respiratory event scoring. In this 

work a deep neural network and a rule-based model were designed and experimented on the worlds 

largest available PSG database by the Massachusetts General Hospital. 

The proposed approach using a deep neural network (WaveNet) showed that a performance 

comparable to literature can be obtained while using a minimally invasive methodology. 

Differentiation between event types was possible with limited accuracy and may reflect in part the 

complexity of human respiratory output and some degree of arbitrariness in the clinical thresholds 

and criteria used during manual annotation.  

Next, a completely original rule-based modelling approach to automatically score respiratory 

events during sleep is introduced. The AASM criteria were used as a blueprint to design a 

compartmentalized rule-based model architecture including hyperparameters that can be adjusted 

to mimic the ambiguity encapsulated in manual scoring. Global patient assessment by the model 

resulted in a strong agreement with the original single scorer labels. Per-event scoring led to 

comparable performance with current state-of-the-art models and clinical implementation 

opportunities seem feasible.  

Preliminary results from an experiment studying the inter-rater agreement among human scorers 

indicates significant misclassification on event-level granularity. These findings demonstrate that 

new approaches should be put in relative perspective to human-to-human agreement, and not in 

direct contrast to single scorer data. Comparison of the inter-rater agreement between human 

scorers and the model showed an average decrease in Cohen’s kappa value from 0.43 to 0.30. The 

already promising results of the proposed prototype model is expected to improve up to human-

level scoring performance with future development iterations.   

 

 

 



       1    Abstract
  

4 | P a g e  
 

  



       2    Introduction
  

5 | P a g e  
 

2 Introduction  

On average every person spends about a quarter to a third of their life sleeping. This is very natural 

behavior, yet for most it is a mysterious state of mind. You close your eyes, lose consciousness, 

possibly experience some vivid dreams, and with a little luck you wake up rested and ready for the 

upcoming day. However, sleeping properly is not obvious for everyone, or rather, a good night 

rest is not possible every single night. Each of us experienced nights of little sleep, which does not 

feel great, both physically and mentally. You might encounter difficulties getting out of bed, and 

your mood may disagree with you being proactive.  

Questions such as, ``What physiological processes determine sleep?” and ``What happens in case 

of sleep deprivation?’’ have gotten significant attention the past decades and much research has 

been dedicated to reveal sleep’s complex processes. Sleep is believed to serve a pallet of functions 

affecting a person’s health and well-being, and impairments in sleep quantity and quality may lead 

to detrimental health problems, such as excessive fatigue and neurologic decline [1]. Most of these 

implicated functions of sleep are based on observational studies and lack the ability to establish 

causality, however, building upon such associations, better neurophysiologic measurements of the 

impact of sleep and sleep deprivation is an increasing area of research [1]. This results in exciting 

discoveries that continue to elucidate the underlying mechanisms of sleep and wake state 

coordination, paving the way for new interventions that preserve and promote optimal health.  

Sleep disorders affect millions of people worldwide [2], [3]. This may lead to development of 

persistent fatigue which has enormous impacts on the population health [4], [5]. Accurate and 

timely diagnosis of a patient’s sleep disorder is therefore essential. Symptoms such as 

sleeplessness and excessive fatigue are common, yet not specific when it comes to defining the 

underlying sleep disorder. Numerous disorders can lead to excessive daytime sleepiness and a 

thorough and detailed patient history is paramount when deciding if a patient requires laboratory 

evaluation [6]. Sleep disorders are divided into two classes: dyssomnias and parasomnias [2]. Both 

dyssomnias, abnormalities in the quantity or quality of sleep, and parasomnias, behavioral 

manifestations associated with the partial arousals from sleep, affect patients severely. Usually 

patients report having difficulties falling or remaining asleep, experiencing breathing complication 

during sleep or notice unusual movements during sleep [6]. 

Sleep apnea and related respiratory events are common types of sleep-disordered breathing that 

causes problems during sleep. Long periods of interrupted breathing or severe forms of obstructed 

respiration, often manifested as snoring, may lead to decreased oxygen intake, limiting the 

necessary physiological recovery during sleep. Patients experiencing such symptoms can visit a 

sleep laboratory where a full assessment of a person’s nighttime can be performed. The gold 

standard to measure sleep objectively is laboratory-based polysomnography (PSG). Generally, 

sleep staging, respiratory events and limb movements are the three primary categories considered 
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while assessing patients. Experts score each of the categories to help differentiate between the 

various sleep disorders.  

Manual scoring of PSG recordings is a time-consuming task performed by specialists in dedicated 

sleep centers, making this an expensive process both in time and costs. Automation of PSG 

analysis would decrease the required analysis time and reduce costs. Moreover, automated PSG 

analysis computer models could be implemented in clinical centers anywhere in the world and 

across a variety of data acquisition options, including home sleep testing, testing in acute care 

environments, specific operational conditions such as high altitude, and consumer wearable 

devices. 

Currently at the Massachusetts General Hospital (MGH) in Boston, US, a large project aims to 

create algorithms that write fully automated clinical reports based on PSG data. For this report 

sleep staging, respiratory event scoring, and assessment of limb movement must be analyzed 

independently and with respect to another. Currently, automation of each individual category is 

studied and automated sleep staging already seems feasible [7]. Proper automated scoring of limb 

movement is also being researched and reasonable to good accuracy is expected, remaining 

respiratory event assessment as a last category that requires in-dept experimentation.  

This thesis contains a description of sleep disordered breathing and the associated types of 

respiratory events. In addition, the current gold-standard of respiratory event scoring is evaluated 

and automation by algorithms is discussed. Two computer modelling methods to automatically 

identify apnea, hypopnea and RERA are proposed and tested on world’s largest available PSG 

database. Finally, as an alternative to conventional single-scorer comparison, an experiment on 

inter-rater agreement is provided.  
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3 Background 

3.1 Sleep disorders 

Sleep-disordered breathing refers to cyclical stagnation of breathing (apneas) or reduction in 

inspiratory airflow amplitude (hypopneas) that leads to arterial hypoxemia or hypercapnia. These 

apneas and hypopneas often result in transient arousals from sleep and sleep state fragmentations 

throughout the night and cause overcompensatory responses of the autonomic nervous system [8]. 

Both apneas and hypopneas can both be classified as obstructive or central. Obstructive meaning 

that upper airway occlusion occurs, while central refers to the absence or reduction of neural 

stimulation to the upper airway muscles. In practice, the pattern of neural output and resulting 

upper airway muscle activation determines the phenotype of a respiratory event [9].  

Patients with apnea, especially obstructive sleep apnea, are at increased risk for traffic accidents, 

postoperative complications and delirium [8]. Moreover, untreated apnea is associated with 

arrhythmias, cardiac arrest, myocardial infraction, unplanned reintubation, pulmonary embolism 

and pneumoniae [10], [11]. Studies that measure the apnea-hypopnea index show that an estimated 

49.7% of male and 23.4% of female adults have moderate-to-severe sleep-disordered breathing, 

though a lower percentage are clinically symptomatic [11]. 

3.1.1 Obstructive sleep apnea 

Sleep has pronounced effects on the respiratory system. Experimental studies have shown 

decreased electrical activity in medullary inspiratory neurons with efferent output to the upper and 

lower respiratory muscles, reflected in decreased activity of diaphragm and dilator muscles of the 

upper airway [8]. This can cause the tongue to fall backwards at the onset of sleep, which may in 

turn cause upper airway obstruction. In particular, individuals with altered mechanical properties 

of the upper airway are prone to local obstruction, though, anatomical processes such as alterations 

in craniofacial structures, enlarged tonsils, upper airway edema, decreased lung volume, and most 

importantly, obesity may have significant effect on upper airway airflow [9].  

Obstructive apnea is strongly associated with many forms of cardiovascular morbidity and 

mortality [8]. And not surprisingly, weight loss and exercise are encouraged when treating 

obstructive apnea. Continuous positive airway pressure (CPAP) therapy is often recommended for 

patients with mild to severe OSA, especially in case of coexisting hypertension [9]. Other possible 

treatments include oral appliances, sleep position training, hypoglossal stimulation, and jaw 

surgery.  

 



       3    Background
  

9 | P a g e  
 

3.1.2 Central sleep apnea 

When ventilation stops due to limited neural drive of nerves that innervate inspiratory muscles, it 

may result in central apneic events. During the transition from awake to sleep, cortical regulation 

of respiration diminishes, and metabolic regulation remains the main controlling ventilatory 

mechanism [12]. Arterial pressure of carbon dioxide (PaCO2) plays a large role in this purely 

metabolic mechanism that regulates breathing, and disturbance may cause central sleep apnea. 

Lowering of the PaCO2 in case of heart failure and other hypoxic conditions causes cessation of 

breathing until the PaCO2 rises above the apneic threshold [13].  

In contrast to obstructive sleep apnea, CPAP is only beneficial in about half of the patients 

suffering from central apnea [14], [15]. The remaining fraction of patients may endure unfavorable 

effects of CPAP when central apnea is not suppressed by medications, i.e., theophylline and 

acetazolamide [16]. Supplemental nasal oxygen might be helpful to stabilize PaCO2 levels and 

therefore a patient’s breathing pattern.  

3.1.3 Cheyne-Stokes respirations 

The occurrence and severity of central apnea highly depends on the underlying autoregulated 

ventilatory closed-loop regulation. Disturbances of this metabolic control may cause recurrent 

ventilatory overshoot and undershoot, so called “periodic breathing” [17]. Named after researchers 

John Cheyne and William Stokes, the Cheyne-Stokes respirations are characterized by a 

crescendo-decrescendo pattern of respiration between central apneic events. The magnitude of 

increased ventilation and decreased ventilation may amplify and continue for periods of 45 to 90 

seconds [12].   

Cheyne-Stokes respirations are highly correlated to central apneic events, but rarer, and the exact 

prevalence in the general public is unknown [12]. Since Cheyne-Stokes is believed to be a resulting 

pathophysiological phenomenon of heart failure and therefore associated with sudden cardiac 

death [17], [18].  

3.1.4 Hypopnea 

Apneic events vary in severity and a grey area lays between an apnea event and regular breathing. 

Rather than complete closure of the upper airways due to obstruction, partial narrowing and 

periods of hypoventilation may appear. Even so, limited neural drive to the inspiratory muscles 

rather than complete absence of muscular activity is possible. When an apnea-like event occurs 

that causes a drop in arterial oxyhemoglobin saturation and or an electroencephalographic (EEG) 

arousal but does not meet the criteria associated with apnea, such an event is described as a 

hypopnea. Hypopneas may in turn be differentiated in obstructive and central hypopneas, yet are 

generally grouped during scoring since differentiation is oftentimes difficult. Together with their 
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considered more severe apnea events, hypopneas contribute to daytime somnolence and fatigue 

[9].  

3.1.5 Apnea hypopnea index 

In clinical practice, obstructive apnea, central apnea, and hypopnea events are grouped together to 

compute an apnea-hypopnea index (AHI). This index describes the number of apnea and hypopnea 

events per hour of sleep and indicates the severity of sleep apnea in patients using the following 

criteria: 

▪ Normal breathing:            AHI < 5 

▪ Mild sleep apnea:      5 ≤ AHI < 15 

▪ Moderate sleep apnea:   15 ≤ AHI < 30 

▪ Severe sleep apnea:            AHI ≥ 30 

3.1.6 Respiratory effort related arousals 

Even more moderate forms of sleep disordered breathing may still have negative effects on a 

person’s sleep health. Together with a brief change in sleep state or arousal, nonhypopneic events 

such as respiratory effort related arousals (RERAs) are characterized by increased activation of the 

respiratory muscles without concomitant oxygen desaturation [19]. Such events may induce both 

cortical and autonomic arousals that can be illustrated by EEG measurements. Such events are 

believed to have milder yet sometimes similar effects on sleep fragmentation when compared to 

apnea and hypopnea events [20], [21]. There is no consensus on the clinical relevance of RERAs 

with respect to the more adverse apneas and hypopneas, but most clinics do score RERA events 

as it does provide additional information on a patient’s sleep quality. Next to the AHI, a common 

index used to quantify sleep fragmentation is the respiratory disturbance index (RDI). This is 

defined by the number of apneas, hypopneas and RERAs divided by the hours of sleep.  
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3.2 Automation and algorithms 

The past decades rule-based computer algorithms have assisted in iterative processes, saving great 

amounts of time for its users. Automation of tasks usually performed by medical staff is a 

development with a great impact on the medical field. Interpretation of medical data, however, can 

be complicated. It often requires many variables and context which is difficult to encompass by 

programs based on a set of rules. In recent years the development and application of machine 

learning has been growing immensely. This scientific study of algorithms and statistical models 

relying on patterns and inference rather than explicit instructions is affecting many disciplines. 

Especially deep neural networks, which are algorithms that can learn extremely intricate 

relationships between features and labels from huge amounts of data. Implementing neural 

networks has become very relevant in analyzing the heterogeneous kinds of data generated in 

modern clinical care. Many variations of neural architectures are being explored. These include 

convolutional neural networks (CNN), recurrent neural networks (RNN), recursive neural 

networks and various others, each having their own specific characteristics of processing data. For 

instance, a CNN can obtain great performance in the recognition of features in data such as images. 

Typical CNN architectures are not ideal when analyzing temporal data. This domain is better 

exploited by RNNs. It is very important to consider the nature of the to be analyzed data when 

selecting a neural network design because proper design choice in network architecture is crucial 

regarding its overall performance. Recently, Deepmind by Google designed a new innovative deep 

neural network called WaveNet [22]. Its architecture resembles a typical CNN, yet the application 

of dilated causal convolutions creates an increased overall receptive field. This enforces the 

WaveNet model to handle long-range temporal data. Though originally this model was designed 

to synthesize speech, its characteristics appeared applicable for the analysis of other signals. In 

2018 a challenge organized by the PhysioNet Computing in Cardiology aimed to detect sleep 

arousals from a variety of physiological signals. Considering that the winners used a modified 

WaveNet model led to the conclusion that this state-of-the-art CNN architecture could indeed be 

applied for other purposes, such as respiratory analysis [23]. 

The ability of deep neural networks to learn complex patterns in large amount of data can also be 

disadvantageous, for instance when performing error analysis. The term ‘black box’ is regularly 

used in deep learning approaches as it is sometimes difficult to decipher and understand  

underlying architectural effectiveness of deep neural networks. Using large networks with many 

hidden layers, such as the WaveNet model, accentuate this problem. Underfitting, inefficient 

training leading to inaccurate model results, and overfitting, the inability to generalize well on new 

data, are common complications. Moreover, when it comes to clinical data it is important to look 

beyond statistical performance metrics, i.e., accuracy, sensitivity, specificity. For example, 

systematic bias is something of great concern. Traditional rule-based algorithms such as decision 

trees are easier to comprehend as its behavior is typically more predictable, and thus better 

understandable for its users. This is particularly true for relatively simple modelling tasks. 
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Performing error analysis may be easier when using rule-based algorithms. For this reason, 

automation of simple tasks might still favor the more traditional rule-based approaches, while deep 

neural networks are increasingly interesting for complex tasks, e.g., high-dimensional multi-

classification tasks.  

3.2.1 Automated sleep apnea detection 

In the last three years a significant number of papers have been published on the detection of sleep 

apnea with deep neural networks, as described by recent review papers [24], [25]. Finding a 

patient-friendly and accurate sensor or signal, especially in combination with a suitable analysis 

model, is clearly an ongoing area of high relevance.  

Sleep apnea detection methods typically use various breathing measurements and oximetry [25]. 

Alternative methods using signals derived from electrocardiography have shown some promise 

for predicting AHI as well, although such data has an indirect relationship to the respiratory system 

and therefore to sleep apnea [24], [26]. This more indirect method of analyzing respiration requires 

additional processing and can be affected by other illnesses including heart failure and cardiac 

arrhythmias, rather than sleep apnea [27]. Classification of respiratory events typically requires 

measuring both airflow and respiratory effort signals. Using multiple physiological signals to 

detect sleep apnea can provide good performance [28], [29]. However, this leads to similar 

problems as the current gold standard; using many different sensor signals is considered 

uncomfortable, expensive, and time-consuming.  

The fact that automation approaches in literature use different sensors and varying model 

architectures makes comparison with state-of-the-art models difficult, especially since the 

provided performance metrics oftentimes differ as well. Moreover, most state-of-the-art models 

only perform global assessment and therefore lack the relevant clinical information that can be 

attained with evaluation on a event-level granularity [29]–[35]. Some studies do perform per-event 

assessment, but group all events together for binary classification,  by discriminating any type of 

respiratory event from normal breathing [27], [28], [36]–[38]. When assessing performance, the 

scoring granularity (classifier type) is very relevant. A low output granularity, e.g., global AHI 

classification, likely leads to a better performance when compared to event classification of each 

second. Conversely, a higher output granularity, e.g., event level scoring, may yield more clinical 

information.  

Below, a table with current state-of-the-art models and their performance is shown. Only studies 

that used a large dataset , at least 96 patients, were included.  [29] [27] [28] [36] [30] [31] [32] [33] [39] [34] 

[37] [35] [38] [40] 
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Study Dataset 

Size 

Signal type Analysis  

model 

Classifier  

type 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

AUCROC 

(%) 

AUCPR 

(%) 

[29] 10.000 Airflow, respiration chest, 

abdomen, oxygen 

saturation 

RCNN G 88.2 - - - - - - 

[27] 2100 Abdominal effort LSTM A/N 77.2 62.3 80.3 39.9 - 77.5 45.3 

[28] 1507 Nasal airflow, abdominal  

and thoracic effort 

CNN1D-3ch OA/H/N 83.5 83.4 - 83.4 83.4 - - 

[36] 1507 Nasal airflow CNN2D A/H/N 79.8 79.9 - 79.8 79.7 - - 

[30] 545 ECG CNN1D-LSTM MHLNN G 79.5 77.6 80.1 - 79.1 - - 

[31] 520 Airflow MHLNN G 87.2 88.3 87.8 - - - - 

[32] 285 Voice and facial features GMM G 72 73 65 - - - - 

[33] 188 Airflow and respiratory 

rate variability 

LR G 72 80 59 - - - - 

[39] 187 Pulse oximetry CTM G 87 90 83 - - - - 

[34] 186 Breathing sounds Binary-RF G 86 - - - - - - 

[37] 179 Nasal pressure CNN1D A/H/N 96.6 81.1 98.5 87 - - - 

[35] 120 Breathing sounds MHLNN G 75 - - - - - - 

[38] 100 Nasal pressure GNN1D OA/N 74.7 74.7 - 74.5 - - - 

[40] 96 Nasal pressure GMM OA/CA/H/N 83.4 88.5 82.5 46.6 42.7 86.7 - 

  Analysis models: RCNN = recurrent and convolutional neural networks, LST = long short-term memory, CNN = convolutional neural  

  network, MHLNN = multiple hidden layers neural network, GMM = gaussian mixture model, LR = logistic regression, CTM = central 

  tendency measure, RF = random forest. Classifier types: A = apnea, H = hypopnea, N = normal, O = Obstructive, C = Central, G = global. 
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3.3 Research objectives 

An important question remains: “What performance obtained by a model is sufficient for clinical 

application?” This question is not easily answered since it is unknown what sufficient performance 

really means. Human scorers show significant variability when labelling respiratory events and an 

inter-rater agreement around 85% is considered high reliability [41], [42]. Training and evaluation 

of new model approaches with single scorer data, which is conventional in most literature 

including work that uses the MGH and Sleep Heart Health Study (SHHS) dataset, cannot exceed 

this 80-90% efficiency range with statistical significance. The inherent inaccuracies within single 

scorer data restricts any advanced training process. In the realm of data science the term label noise 

is often used for this problem. To identify and possibly quantify the level of label noise, it 

important to understand how apnea labels are currently created. 

 

The main objective of this thesis is to design a computer model architecture that has the potential 

to score respiratory events with clinically acceptable performance. 

 

To achieve this objective, first, the current gold standard of scoring respiratory events, manual 

labelling, is researched and its limitations are highlighted. Next, a new automated scoring method 

using a deep neural network is introduced. And third, an innovative approach to score respiratory 

events with a rule-based algorithm is explained. Both models will be assessed on individual event 

scoring performance and the ability to globally evaluate patients by classifying the AHI. Besides 

comparison with proposed approaches in literature, the scoring performance will be put in 

perspective with the current gold standard by studying inter-rater agreement among human-

scorers. While research on the deep learning approach is currently being revised by the IEEE 

Journal of Biomedical and Health Informatics, in-depth analysis on the rule-based model is the 

main focus for thesis. Rules by the American Academy of Sleep Medicine (AASM) were used as 

a blueprint for the design of the model architecture which leads to unique clinical opportunities. 

Elucidation of the according advantages, and disadvantages, is included in this work. 
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4 Assessment of the gold standard 

4.1 Scoring of respiratory events 

As mentioned earlier, the MGH dataset is annotated according to a set of rules defined by the 

AASM. These criteria are used by technicians to systematically score apnea, hypopnea, and RERA 

events using a minimum of three signals including oronasal thermal airflow, oxygen saturation, 

and respiratory effort via respiratory inductance plethysmography (RIP), together with EEG 

arousals. In the upcoming sections the rules by the AASM are detailed and evaluated. 

4.1.1 Apneas 

▪ Score a respiratory event as an apnea when BOTH of the following criteria are met: 

I. There is a drop in peak signal excursion by ≥ 90% of pre-event baseline (flow 

limitation) using an oronasal thermal sensor. 

II. The duration of the ≥ 90% drop is ≥ 10 seconds. 

▪ Score an apnea as obstructive if the flow limitation is associated with continued or 

increased inspiratory effort throughout the entire period of absent airflow.  

▪ Score an apnea as central if the flow limitation is associated with absent inspiratory effort 

throughout the entire period of the flow limitation.  

▪ Score an apnea as mixed if the flow limitation is associated with absent inspiratory effort 

in the initial portion of the event, followed by resumption of inspiratory effort in the second 

part of the event. (Scoring of mixed apneas is considered optional) 

4.1.2 Hypopneas 

Scoring hypopneas are defined by two rules, a recommended rule (III. A) and an acceptable rule 

(III. B). According to the AASM scorers can employ either one of the rule options, commonly 

based on varying insurance policies by different sleep centers. In practice this often leads to 

ambiguity when scoring hypopneas.  

▪ Score a respiratory event as a hypopnea when ALL the following criteria are met: 

I. There is a drop in peak signal excursion by ≥ 30% of pre-event baseline (flow 

limitation) using an oronasal thermal sensor. 

II. The duration of the ≥ 30% drop is ≥ 10 seconds. 

III. A) There is a 4 ≥ oxygen desaturation from pre-event baseline.   

B) There is a 3 ≥ oxygen saturation from pre-event baseline or the event is associated 

with an EEG arousal   
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4.1.3 Respiratory effort related arousals 

▪ Score a respiratory event as RERA if there is a sequence of breathing ≥ 10 seconds 

characterized by increasing effort or by flattening of the inspiratory portion of oronasal 

airflow in combination with an EEG arousal.  

Note: When the criteria for multiple types of events are met simultaneously, the respiratory event 

type with the highest severity is scored. (apnea > hypopnea > RERA).  

4.2 Scoring guidelines in a flowchart 

The rules to score respiratory events can be interpretated as a decision tree. Below I have created 

a flowchart encompassing these rules.   

 

  

Flow 

limitation? 

Arousal? 

Hypopnea 

4% 

Hypopnea 

3% 

RERA 

Desaturation 

drop? 

> 90% 

> 30% 

 No 

Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Inspiratory 

effort? Increased or 

stable Decreased 

Absent to 

resumed 

Yes 

4% 

3% 

Nasal pressure 

flattening or increased 

effort 

Yes 
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At first impression these guidelines seem straightforward. Yet, after careful assessment one might 

notice that there is significant room for interpretation. Each of the “white oval” questions in the 

flowchart embodies a disturbance in respiratory functioning. Such changes may in turn result in a 

measurable alteration in its represented physiological signal. However, elaborate instructions that 

describe what methodology must be applied to compute and quantify the level of disturbance is 

unaccounted for. Besides, respiratory signals measured in different patients is highly 

heterogeneous, meaning that one set of rules is unlikely to be suitable for everyone. In the sections 

below examples of potential ambiguity during scoring are illustrated.  

4.3 Ambiguity when assessing flow limitation  

 

 

In the above figure a schematic signal segment of a patient’s oronasal airflow is depicted. The 

sinusoidal waveform reflects measured inspiration (positive) and expiration (negative). This 

example depicts a typical flow limitation associated with apneic events. Note that 30% peak 

excursion drop is equivalent to a 70% peak excursion value with respect to its baseline. In the 

middle of the segment, peak excursion is vastly reduced, and nearly flat signal is observed. This 

exceeds a peak excursion drop of 90% with respect to its baseline excursion, for a duration greater 

than 10 seconds.  

Now let us consider example I. and example II. in the figures on the next page. These figures 

represent identical events, however, for example II. 5 more seconds of context after the respiratory 

event is shown. In both example I and example II the baseline peak excursion is computed based 

on the largest peak excursion present in each segment. Example II shows more context after the 

respiratory event, and as a result, a large peak excursion is identified and used to compute a greater 

baseline value with respect to the segment shown in example I. This evidently leads to a larger 

70% and 10% excursion range. When scoring the respiratory event in example I, a hypopnea would 

be assigned as the signal remains within the 70% range for >10 seconds, while in example II an 

apnea would be scored since the signal does not only remain within the 70% range for >10 seconds, 

but also within the 10% range. Comparison of both examples shows that a slight difference in 

computing method can lead to a different resulting annotation. This is a conceptual problem which 

shows that unspecific instructions may lead to variable diagnostic outcome.  

Baseline peak 

excursion 

 
10% peak 

excursion 

range 

Oronasal  

airflow 
70% peak 

excursion range 
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Pathophysiological ventilation by a patient may also create ambiguity during scoring. For instance, 

ataxic breathing or bradypnea makes for poor scoring using the rules of the AASM as the 

respiratory rate may be severely reduced. Increased inspiratory intervals may show very similar 

characteristics to short respiratory events, see figure below.  

 

  

Patient recording showing oronasal airflow with an apnea event followed by bradypnea 

 

  

35 sec 

70% peak excursion range 

10% peak excursion range 

Baseline peak 

excursion 30 sec 

70% peak excursion range 

10% peak excursion range 

I. 

 

II. 

 

Time in seconds  

10                    30                                 50 

Oronasal 

airflow 

apnea event      bradypnea 
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4.4 Ambiguity when assessing desaturation drops 

The next figure shows a typical oxygen saturation trace for an apneic patient. A chain of respiratory 

events causes recurrent arterial oxyhemoglobin desaturation followed by recovery to (near) 

baseline levels. All below desaturation drops are associated with an airflow limitation >30%.  

 

 

When quantifying the height of each drop with respect to pre-event baseline levels, arguments can 

be made for multiple approaches. When looking at drop I, a 4% drop is observed, without much 

ambiguity. However, when looking at drop II, two options may be considered. Option A (red 

arrows), using a global pre-event baseline at 95%, and option B (blue arrows), using a more local 

pre-event baseline determined at 94%. These alternatives will lead to a 4% desaturation drop for 

option A, and a 3% desaturation drop for option B. Using the “acceptable” rule to score hypopneas 

in combination with option B will result in disregarding the hypopnea events such as associated 

with desaturation drop II.     

4.5 Conclusion 

The guidelines for scoring respiratory events manually have evolved over the years but remained 

largely driven by consensus. Thus, for example, the requirement of a 50% or 30% reduction in 

signal amplitude is arbitrary; there is no data to suggest that a 35% or 60% would be less ore more 

clinically meaningful. Moreover, visual discrimination of small percentage differences is likely 

poor. Besides, the differentiation of obstructive and central events is not as pathophysiologically 

clear as clinical scoring may suggest. Airway collapse is common during central apnea, and high-

loop gain can drive obstructive events. This biological reality of blurred boundaries will be 

reflected in any manual or automated scoring approach.  

A degree of ambiguity leaves room for interpretation while assessing a patient’s respiration, as 

illustrated in the previous examples for the analysis of ventilatory airflow and oxygen saturation. 

For respiratory effort and the detection of arousals also no specifics on the extent of change in 

respiratory functioning are available. During scoring such subtle yet effective details matter, but 

are not provided by the AASM. It is, however, not self-evident that additional, more stringent, 

rules will improve the quality of clinical scoring, because a certain level of ambiguity does allow 

for dynamic interpretation of the current criteria that can be manipulated between patients. 

drop I                                      drop II  

local pre-event              

baseline 

global pre-event baseline  
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Nonetheless, purely considering consistency during scoring a lack of details reduces robustness 

and is likely to increase inter-rater variability.  
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5 Deep neural networks for automated respiratory event scoring 

This chapter details an approach in which a deep neural network can be applied to perform 

automated respiratory event detection. The following sections describe a shortened version of this 

work while an in-depth paper can be found in the Appendix.  

5.1 Introduction 

Recent studies show that automated apnea scoring with limited sensors (i.e., airflow or respiratory 

effort) can still yield acceptable performance [27], [40], [43]. Oronasal airflow measures need 

access to the nose/mouth, which may be difficult in specific environments. In situations where the 

airflow signal may not be readily acquired, an effort-belt based classification could overcome this 

limitation. Examples include in intensive care units, home tracking in heart failure or chronic 

obstructive pulmonary disease, those using nasal oxygen, and war fighter conditions. The effort 

belt is highly convenient, and this input signal can be acquired by a range of contact and contactless 

technologies in nearly every possible environment. 

The ability to identify and discriminate between the specific respiratory events that are typically 

scored in PSG while using fewer signals is unknown to the current clinical setting. In this research 

we aimed to create a fully automated method that can detect respiratory events, discriminate 

between the different types of respiratory events, and assess the AHI with sufficient efficiency for 

clinical implementation using only a single respiratory effort belt.  

5.2 Methods 

To test whether sleep apnea prediction is feasible using minimal input information, we trained a 

neural network (WaveNet) to predict apneas, hypopneas, and RERAs based on a single respiratory 

effort signal, without the use of additional sensors that are conventional in PSG measurements. 

Using ~10k recordings for the MGH and ~8k recordings from the SHHS we permed respiratory 

event detection on global- and event-level granularity with minimal preprocessing steps. The 

availability of such large datasets is very valuable when training deep neural networks to prevent 

underfitting and restrict overfitting. 5-fold cross-validation was applied to increase the test-set size 

and further examine the model’s ability to generalize.  

The original WaveNet architecture as defined by van Oord et al was modified by transforming 

convolutions from causal to non-causal and adjusting the receptive field to match our input 

segment size of ~7 minutes. The length of the input segments was selected to ensure sufficient 

context for the model to learn both spatial and temporal characteristics in the provided data. A 

stride of 1 seconds was used to score the complete recording with an output resolution of 1Hz. The 

output was later smoothed to obtain and compute a performance with event-level granularity 

(~18sec).   
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To address the large class imbalance in our data we introduced a boosted model approach by 

applying a binary WaveNet classifier over multiple iterations. This resulted in the removal of a 

large proportion of segments with regular breathing without removing many segments including 

respiratory events.  

Next to event-level performance assessment we computed the AHI and RDI for each patient using 

the predicted events and the originally defined sleep duration. Next to confusion matrices, we 

computed the accuracy, sensitivity, specificity, precision, f1-score, and Cohen’s kappa for both the 

event-level assessment and the global patient evaluation. Furthermore, the receiver operating 

characteristic (ROC) curve, the precision-recall (PR) curve and AHI correlation metrics were 

computed.  

5.3 Results and Discussion 

Using the methods detailed in the previous section a deep neural network method was developed 

to classify typical breathing disorders during sleep based on a single respiratory effort belt used in 

PSG. Below, some segments and associated labels are shown.  

  

 

Example signal segments and the according labels and model predictions with in blue obstructive apneas, green central apneas, 

red RERAs and in pink hypopneas. (a), accurate predictions. (b), miss-classifications between obstructive and central apneas. (c), 

true positive and false negative RERA detections. (d), false positive event detections. 

 

After smoothing our WaveNet model successfully discriminated respiratory events from regular 

breathing on the MGH dataset with an accuracy of 96%, and sensitivity, specificity, precision, F1-

score, and Cohen’s kappa of 68%, 98%, 65%, 67%, and 64%, respectively. Besides a high 

accuracy, a metric that is affected by class imbalance, the model also showed high AUC values for 

ROC (0.93) and PR (0.71). This means the model not only has an excellent agreement in sensitivity 

and specificity but also has a clinically acceptable precision in specific situations, similar to the 

use of home sleep apnea testing, where tolerance to especially false negatives is required [44]–
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[46].We have included the F1 score and the AUCPR, as such performance metrics are not 

influenced by the imbalance of negative-positive classes but rather by sensitivity and precision of 

the positive class. The low standard deviation between the 5 folds of cross-validation (AUCROC 

and AUCPR mean and std of 92 ±0.5 and 71 ±1.2) emphasizes the robustness of our model on a 

large dataset.   

 

 

ROC and PR curves for binary classification 

 

AHI was predicted for each patient from the number of respiratory events with an accuracy of 

69%. The correlation between expert-scored AHI and algorithm-predicted AHI showed a 

correlation value (r2) of 0.90. It is notable that most misclassifications of the model resulted in 

false positives into the neighboring AHI categories.  

  

    

AHI classification confusion matrix with Cohen's kappa      Scatter plots showing the correlation between the       

values of 55%          expert-scored AHI and the model predicted AHI 
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Despite decent overall accuracy, discrimination of the specific respiratory events resulted in a 

decreased per-event performance with respect to the first experiment. Central apneas were detected 

with high sensitivity of 81%, expectedly due to the apparent effect of the disorder on respiratory 

effort. Often markedly reduced respiratory effort is observed during central apnea events, resulting 

in clear features for algorithms to recognize. This is true to a lesser extent for obstructive apnea 

events, hence the slightly lower performance when compared to the central apneas. The 

recognition of hypopneas and RERAs was considered poor, with an F1-score of 29% and 31% 

respectively. Without additional information derived from other physiological signals the 

identification of hypopneas and RERAs appears difficult. It should be noted that scoring RERAs 

and central hypopneas are considered so difficult that the AASM scoring guidelines leaves these 

as “optional”, and most clinical services do not score such events. There are also several biological 

inconsistencies with the conventional rules for scoring central hypopneas, adding to the probability 

of misclassification during “gold standard” scoring. 

Comparing the above performance metrics with literature (Section 3.2.1) shows that our proposed 

method can compete and often outperform state-of-the-art methods. Besides, discrimination 

between individual respiratory events while using a single respiratory effort signal is unknown in 

current literature.  

5.4 Conclusion  

The proposed method shows that a performance comparable to literature can be obtained while 

using a minimally invasive methodology. Differentiation between event types is possible with 

limited accuracy and may reflect in part the complexity of human respiratory output and some 

degree of arbitrariness in the clinical thresholds and criteria used during manual annotation. The 

use of a respiratory effort belt at the abdomen for sleep apnea analysis bears the advantage of wide 

implementation options ranging from acute care settings to wearable devices for home usage. 

Promising results were obtained in automated apnea detection with limited resources, creating new 

sleep assessment opportunities applicable to the clinical setting. 
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6 Rule-based algorithms for automated respiratory event scoring 

Rule-based algorithms for respiratory event scoring has advantages over deep learning approaches, 

especially when it comes to performance analysis. Rule-based models often use stepwise 

conditional decisions to automate iterative processes. Systematic hyperparameter tuning of the 

underling architecture is ideal to help precisely identify the effectiveness of a given rule-based 

model and its encompassing decisions. Thus, evaluation of a modular algorithm may provide more 

insight in the underlying decisions and its effectiveness instead of considering predictive 

performance only. Besides, in contrast to a deep learning approach, a model based on the rules 

defined by the AASM will be forced to use a similar methodology as human scorers. By modelling 

the interpretation ambiguity present in the rules, limitations of the gold standard can be studied 

since manipulation of the associated hyperparameters may result in accuracy fluctuations, 

demonstrating limited robustness.   

In the following paragraphs I explain a modelling approach to automatically score respiratory 

events based on the AASM scoring criteria using world’s largest available PSG database. The 

architecture of this algorithm is modular and uses hyperparameters that can be modified to adjust 

for the scoring ambiguity when interpretating the required physiological signals. Modularity refers 

to the compartmentalized assessment of the respiratory signals, i.e., ventilatory airflow, oxygen 

saturation, RIP, and arousals from EEG. For this algorithm to be truly modular and allow full 

control for its user, all code including its design choices have been created from scratch and are 

completely original. Each of the three signals, i.e., airflow, oxygen saturation, and respiratory 

effort, are individually preprocessed, analyzed, and ultimately combined for respiratory event 

detection. Arousals were computed using an existing model found in literature.  
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6.1 Dataset description and formatting 

The database used in this work was from the MGH sleep 

laboratory, summarized in the Table on the right. The 

MGH Institutional Review Board approved the 

retrospective analysis of the clinically acquired PSG 

data. Patients with and without breathing assistance by 

CPAP were included. In total ~13k PSG recordings were 

used containing diagnostic, split night and all-night 

CPAP PSGs.  

A major challenge for this work was arranging all 

available data into a structured and organized format. To 

do this automatically, customized algorithms were 

designed as manual formatting for a dataset of this size 

is not feasible. First, all relevant signals were retrieved 

from the online database, including: 

▪ Ventilatory airflow, (i.e., nasal pressure or CPAP) 

▪ Respiratory effort, (i.e., RIP at the ABD and 

CHEST) 

▪ Oxygen saturation 

Typically, EEG arousal computations requires an in-

depth analysis of all EEG traces. For this work the EEG arousals were created using a separate 

model designed by the winners of the 2018 PhysioNet challenge. In this “PhysioNet model” the 

following 8 additional EEG signals were used to compute a continuous arousability index for the 

complete duration of the original PSG recording. Further details of this PhysioNet model can be 

found in the original study [47].   

▪ F3_M2  

▪ F4_M1 

▪ C3_M2 

▪ C4_M1 

▪ O1_M2 

▪ O2_M1 

▪ E1_M2 

▪ Chin1_Chin

 

Textual annotations from the experts were analyzed for tags, indicating the start and the end time 

of the recording, and if possible, the moment of CPAP start for recordings where CPAP was 

applied (all-night and split nights). When a CPAP tag was found a matching timestamp was 

computed relative to the start and end recording time from the expert annotation file. Next, both 

the nasal pressure data array and the CPAP data array were cut accordingly and combined into a 

single ventilatory airflow data array, see figure below. For diagnostic recordings where no CPAP 

is used, the full oronasal airflow data array was used.  
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6.1.1 Preprocessing 

All signals from the MGH data consisted of a single channel with a sampling frequency of 125 

Hz, 200 Hz or 250 Hz. To extract the relevant respiratory information and remove present noise 

for our model, minimal preprocessing techniques were applied to each signal, but oxygen 

saturation. A notch filter of 60 Hz was applied to reduce line noise. Consequently, a low-pass filter 

of 10 Hz was applied to the airflow and respiratory effort data to remove higher frequencies not of 

interest. For the EEG traces a low-pass filter of 20 Hz was used. Down sampling data always 

comes at a cost of losing valuable information. However, a low pass filter of 10 Hz used for down 

sampling our airflow and effort signals. This was not expected to remove significant event 

characteristics that limit us in identifying respiratory events, since regular breathing for adults 

normally ranges between approximately 0.2 - 0.3 Hz. Z-score normalization was performed using 

the mean and standard deviation of the 1st to 99th percentile clipped signal to improve data 

uniformity. For the PhysioNet model all signals were resampled to 200 Hz. Further preprocessing 

for the PhysioNet model was identical to the original work [47]. A complete workflow for the data 

processing is shown below.  

▪ Start time recording 

▪ End time recording  

Find CPAP tag if possible and match with 

noted start and end time from annotation file. Expert annotation file  

st                     end 

Oronasal airflow 

data array  

st                     end 

CPAP 

data array 

CPAP tag  

st           start CPAP                  end 

Combined ventilatory airflow 

data array               
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Numerous types of artifacts were identified and removed, including lost signals, missing data 

segments, noisy data, false annotations, movement artifacts, line noise, sampling errors, wrongly 

clipped data, etc. Furthermore, clinically unrealistic values were tagged and removed, e.g., oxygen 

saturation < 50%, Heart rates < 20 or > 250. Sleep stages were analyzed and recordings without 

sleep were excluded. From all successfully preprocessed data from both models (N= ~9300) a total 

of 500 unique patient recordings were selected for hyperparameter optimization. All other data 

was used for the performance analysis of our model.  
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6.2 Airflow analysis 

Analysis of the oronasal airflow consists of the identification of unregular breathing, especially 

intermittent breathing. Regular breathing is characterized by a smooth sinusoidal excursion with a 

near stable amplitude and frequency. Among patients the amplitude and frequency may however 

vary. This makes any fixed characterization parameters poor in describing regular breathing for a 

vast and heterogeneous population. Per patients some sort of regular breathing needs to be 

determined to in turn identify patient specific irregularities. Such irregularities, such as apneic 

events, are characterized by a decrease in excursion amplitude of > 90% for a duration of > 10 sec.  

The following steps were used to assess the airflow signal: 

1. To assess changes in amplitude height for the entire recording a running envelope of the 

positive and negative peak excursion was computed together with a ventilatory midline. An 

example of an airflow segment (yellow) and its determined running envelope (blue) and 

midline (black) can be seen below. To compute the excursion envelope first a peak detection 

was performed. By connecting peaks using a cubic interpolation (order=2) a continuous 

envelope was created. The ventilatory midline was computed by taking the mean of the positive 

and negative envelope. To reduce local fluctuations a moving mean with a sliding window of 

10 seconds for the envelope and moving mean with a sliding window of 30 seconds for the 

baseline was applied.   

 

 

2. Using the distance between the positive excursion envelope and the midline, a positive* 

baseline peak excursion was computed by using a rolling quantile with a window of 30 

seconds. Varying this quantile value allows for increasing and decreasing the baseline peak 

excursion height. This effect is most pronounced when the ventilatory envelope is unstable, 

e.g., very irregular breathing. By increasing the quantile values the model computes a baseline 

peak excursion based on the maximal amplitude of all inspirations including possible outliers 

(i.e., recovery breaths after a respiratory event). Reducing the quantile value will lead to a 

lower baseline excursion value, which results in more conservative scoring behavior. Using 

the baseline excursion, the 70% and 10% excursion ranges were computed to determine if 
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present flow limitations exceed the criteria for hypopnea and or apnea events. In the figure 

below the effects of reducing the quantile range from 100% to 80% when computing the 

baseline peak excursion can be observed. In example I both the 70% and the 10% excursion 

ranges are reduced with respect to example II.   

 

 

 

 

*  Note that this slightly differs from the baseline peak excursion described in the previous chapter, in which both positive and 

negative excursion is considered to compute the peak excursion ranges. Future analysis will show whether using both positive and 

negative excursion yields better performance.  

  

I. II.

Positive baseline 

peak excursion 

70% peak 

excursion range 

10% peak 

excursion range 

Peak excursion ranges computed using 

the 100% quantile inside a 30 second 

window of the airflow data. 

Dynamic peak excursion ranges 

computed using the 80% quantile inside 

a 30 second window of the airflow data. 
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3. Apnea and hypopnea events will be identified if the airflow signal trace remains below the 

according peak excursion ranges for a duration > 10 seconds. In the following figure three 

consecutive hypopnea events can be observed, since the oronasal pressure remains below the 

70% peak excursion range for approximately 25 seconds but stays above the 10% peak 

excursion range.   

 

 

 

During visual assessment it may be difficult to determine the exact duration of an event. 

Specifically considering the ambiguity with respect to an unclear peak excursion baseline. Short 

lasting respiratory events with a duration around 10 seconds may therefore lead to questionable 

results, which is one of the uncertainties leading to increased inter-rater variability during manual 

scoring. In this model I therefore implemented parameters that allow varying the detection 

sensitivity for flow limitation duration. Increasing the minimal duration for a flow limitation will 

result in more conservative scoring, whereas decreasing this parameter may lead to an increment 

in total detected events.   

Flow limitations 
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6.3 Saturation analysis 

Analysis of the oxygen saturation consists of the identification of temporary saturation declines 

with respect to a pre-event baseline level. When a patient limits or halts ventilation a decrease in 

percentual oxygen-saturated hemoglobin in their blood is expected. If a patient shows a severe 

oronasal flow limitation, i.e., severe apneic event, with a duration of 30 seconds, a temporary 

decline in oxygen saturation levels is practically imminent. A patient that exhibits many severe 

respiratory events in sequence may even reach hypoxic levels which can be harmful for numerous 

reasons. However, when a flow limitation of 35% for a duration of approximately 10 seconds 

occurs, i.e., mild hypopnea, a drop in saturation may be limited or absent. Considering the level of 

saturation drop with its associated flow limitation is essential when assessing the severity of 

respiratory events.  

 

The following steps are used to compute saturation drops using the 4% desaturation rule: 

1. The rolling maximum (red) and rolling minimum (blue), with a window of variable size, of the 

saturation signal was used to compute pre-event baseline saturation levels and drops in 

saturation, respectively. Using a large sliding window (Section 6.2 step 1) caused short 

consecutive drops to be indistuiguisshable, whereas a small window disregarded slow 

decreasing drops. Analyzing the saturation trace in multiple iterations and varying the window 

size from 5-30 seconds will cause early iterations to detect sudden drops while later iterations 

will identify long slow declines in the saturation signal. 

 

 
 

  

variable window size 
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2. Whenever the saturation trace dropped below pre-event baseline represented by the rolling 

maximum, locations with saturation drops were tagged (red arrows). When the saturation trace 

started increasing from its lowest saturation level represented by the rolling minimum, possible 

end points for saturation drops were tagged (blue arrows).   

 

 

    
 

3. Matching start and end locations were grouped and the respective height of each drop was 

determined (green arrows). If a saturation drop was > 4%, the associated location was marked.  

 

  

 

The described method to quantify saturation drops uses the local baseline approach as explained 

in Section 4.4. Multiple scorers from the MGH and the MST confirmed that this is applied most 

commonly. 

% 

∆ 5% 

Saturation drops 

% 
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6.3.1 Matching flow limitations and desaturation drops 

Halted breathing during flow limitations reduces oxygen uptake in blood, however, a drop in 

saturated blood percentage is not instant. Rather, delayed coexisting physiological disturbance 

(typically ~10 seconds) is observed when comparing saturation measurements with recorded 

airflow. Such shifts in time have to be accounted by the model but may become difficult for 

patients with events that are in rapid succession. In the example below can be observed that 

desaturation drops do follow flow limitations with a delay that is not consistent. Moreover, some 

desaturation drops show a decrease of 4% while others only a decrease of 3%, which must be 

handled in a different manner. The red arrows show flow limitation that are associated with a 4% 

desaturation drop.  

 

 
 

 

 

The duration of delay is difficult to quantify as the start and end location of flow limitations may 

be unclear during assessment. Besides, the exact start and end location are not of great importance 

during manual scoring, but for algorithms it may create difficulties since specific instructions are 

required to match events. In this work the following matching method was applied.   

  

Oronasal 

airflow  

Oxygen 

saturation  
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▪ Flow limitations and desaturations were matched if a detected desaturation drop 

commenced within 30 seconds of the start of the flow limitation, I. When a desaturation 

was found outside of the 30 second range, events were not matched II.   

  

 

    

 

 

▪ The 30 second matching range of events was reduced to the start of a following event, if a 

following event commenced within the 30 range. This prevented matching of flow 

limitations with desaturation drops associated with neighboring events.    

 

  

  
 

 

 

flow limitation  

matching range of 30 sec 

desaturation  

flow limitation  

desaturation 

I. 

II. 
matching range of 30 sec  

reduced matching range matching range of 30 sec  

flow limitation flow limitation flow limitation 

desaturation  desaturation  
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6.4 Respiratory effort analysis 

Analysis of RIP signals for respiratory event analysis consists of the identification of increasing 

and decreasing signal amplitudes during flow limitations or arousals measured with EEG. When 

apneic events are observed in the airflow trace, characteristics in the respiratory effort signals help 

differentiate apnea types. Increased respiratory effort indirectly indicates increased neural drive to 

the respiratory muscles, often seen with obstructive events, whereas decreased respiratory effort 

suggests limited or absent neural innervation of the inspiratory muscles, associated with central 

events. Sudden magnification in amplitude of the respiratory effort signals associated with an EEG 

arousal is a hallmark for RERAs, if the criteria for an apnea or hypopnea event at that location are 

not met. Below, examples are shown of typical increased and decreased respiratory effort during 

apnea events.   

 

 

Abdominal RIP trace showing decreased respiratory effort (left) and increased respiratory effort (right) for an apneic patient.  

 

In this work the following steps were used to assess respiratory effort signals measured at the 

abdomen and chest area. Both signals were individually analyzed and averaged to ultimately 

evaluate the combined change in characteristics. In this way, less false results were expected due 

to poor signal quality in one of the channels. Respiratory effort traces regularly show significant 

baseline shifts, which may make visual analysis of peak excursion more difficult. Using a static 

threshold to determine changes in amplitude height will often be inaccurate when large baseline 

shifts are present. Therefore, a dynamic approach was used to determine local alterations in 

amplitude height.  

1. Effort signals were smoothed using a moving median with a sliding window of 0.5 seconds to 

remove unrealistic high frequency fluctuations. Using this smoothed signal, a positive 

envelope and according midline were computed by applying the same approach as used when 

assessing flow limitations. In the figure below on the right can be observed how a baseline 

shift present in the sinusoidal effort trace is captured by the model. The midline (black) follows 
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the trend of the effort trace (yellow) while the positive envelope (blue) accurately connects all 

peak amplitudes.  

 
 

2. By computing the difference between the midline and the positive envelope, increasing, and 

decreasing peak excursion height can be captured dynamically. In the figures below the peak 

excursion height over time is visualized (green). A clear decrease in peak excursion is observed 

in the middle of the segment (blue arrow), indicating decreased respiratory effort for a duration 

of approximately 20 seconds.  

 

 
 

3. Using the peak height excursion measured before, after, and during an event, an inspiratory 

peak excursion ratio was computed. The baseline peak excursion before and after the event 

was averaged and divided by the peak excursion during the event, see example below. A ratio 

threshold to discriminate between central and obstructive apneas was 20. Flow limitations that 

meet the criteria associated with an apnea event that also show an inspiratory peak excursion 

ratio ≥ 20 were classified as central apnea. Events with an inspiratory peak excursion ratio < 

20 were classified as obstructive apnea.  

Decreased peak 

excursion during 

central apnea 
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4. Apnea events that show an inspiratory ratio of ≥ 20 are believed to encompass a central aspect, 

meaning that during the event limited neural drive of the respiratory muscles is present. This 

central aspect does not necessarily demonstrate itself for the entire duration of the apnea. 

Mixed apneas are characterized by an initial central component, that later develops into 

resumes respiratory effort. Apnea events with a central component were therefore cut in half, 

and consecutively compared in peak height excursion. If peak excursion of the latter part is ≥ 

2 times greater than the respective leading part of the event, the model classified this event as 

mixed apnea.   

 

 

 

The inspiratory ratio threshold was based on ~500 scored apnea events. Ranging the ratio threshold 

between 0-100 the optimal discriminatory ratio value was determined by selecting the value that 

corresponded with the highest agreement with the expert apnea events. A similar method was used 

to determine the optimal excursion height value to discriminate between central and mixed apnea 

events.  

 

0.05 

2.1 1.8 

▪ ratio ≥ 20: event is central 

▪ ratio < 20: event is obstructive 

𝑝𝑒𝑎𝑘 𝑒𝑥𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜:   
ሺ1.8 + 2.1ሻ / 2
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1 : 2 



       6    Rule-based algorithms for automated respiratory event scoring
  

42 | P a g e  
 

6.5 Creating EEG arousals 

Typically, human technicians use 6 EEG traces to score EEG arousals. Even though arousals are 

not required for scoring apnea and hypopnea events, commonly arousals do present themselves 

when such events are detected. Arousals are required for scoring the less severe RERA events, 

which are characterized by an EEG arousal in combination with either flattening of the inspiratory 

portion of oronasal airflow or joined with increased effort. As mentioned, in this work I used an 

existing model in literature that creates a continuous arousability index. A fixed threshold value 

was used to identify EEG arousals. For all segments exceeding the arousal threshold, peak 

detection was performed to find locations where the PhysioNet model resulted areas with the 

highest arousal conviction. Detected peaks were converted into arousals with a fixed duration of 3 

seconds. In the figure below can be observed how the converted EEG arousals correspond with 

consecutive flow limitations in the oronasal airflow trace. By finding the highest agreement with 

~500 originally scored arousal events a value of 0.3 was used as a threshold to create EEG arousals. 

Short events were removed, meaning that the complete segment above the arousal threshold had a 

duration < 3 seconds.    

 

 

 

 

Continuous arousability index converted into separate 3 second arousals (blue) according to peak detection (black dots) 

in all segments exceeding the arousal threshold (blue). Comparison with the oronasal airflow, peak excursion drops 

seem to match the location of the EEG arousals, indicating potential areas with a respiratory event.   

Oronasal  

airflow 

PhysioNet model output - 

arousability index 

arousal threshold 

Flow limitations 

arousals removed 

arousal 

Peak 

3sec 
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6.5.1 Flattened inspiratory peak detection 

All areas with EEG arousals were assessed for possible RERA events, only if no flow limitation 

were found which would indicate a more severe apnea or hypopnea event. Either local increased 

inspiratory effort or flattening of the inspiratory portion of the airflow would be required to score 

RERA events. To identify flattened inspiratory peak excursion of the airflow, kernel convolution 

matrices were used, commonly known for image processing applications.  

1. 30 real examples of regular inspiratory peaks and flattened airflow peaks and were normalized 

and stored. Scaled copies of the examples were added using a scaling factor of 0.75 and 1.25 

to increase heterogeneity and help encompass the large variability in peaks observed in 

different patients. 2 separate groups were formed, 1 with regular peaks, and 1 with flattened 

peaks.  

 

 

2. All example peaks were projected on the airflow trace and the group with the highest 

agreement determined classification of the segment as regular or flattened. To limit the effect 

of outliers in both peak groups, the 80% quantile among the peaks in the respective groups was 

used.   

  

Regular peaks Flattened peaks 

Oronasal  

airflow 
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6.6 Event indexing and labelling 

After analysis of the individual signal traces the 4 signals were evaluated together, relative to time. 

For computational assessment of simultaneous disturbance, areas with flow limitations, 

desaturation drops, changes in respiratory effort and EEG arousals were using the following steps: 

1. For each signal all marked locations were converted into a 1-dimensional data array. These 

data arrays were constructed so that a single array corresponded with a full recording by using 

the same sampling frequency of 10 Hz. Thus, each index of these arrays related to one datapoint 

in the corresponding signal. In the figure below and schematic visualization is shown where 

flow limitations derived from an oronasal airflow signal were converted using the according 

indexing table.   

 

 

 

2. Stacking the indexed version of the four signals resulted in a 2-dimensional representation of 

a complete PSG recording. A complete schematic figure of the indexing approach is displayed 

on the next page.  

Indexing Table: 

90% drop 30% drop 30% drop 90% drop 

2 2 2 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 2 2 2 0 0 2 2 0 0 

 

Signal trace index == 0 index == 1 index == 2 

Flow 

limitation 

no 30% drop 90% drop 

 

Marked flow 

limitations 
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Signal trace index == 0 index == 1 index == 2 index == 3 

Flow 

limitation 

regular 

breathing 

30% drop 90% drop  

Effort 

change 

stable increased  decreased decreased 

→ resumed 

Desaturation 

drops 

no drop 3% drop ≥ 4% drop  

EEG 

arousals  

no arousal  arousal   

 

Flow limitation 

For computational assessment of coexisting physiological disturbance, the 4 signals were stacked. All 

event locations and the according type of disturbance was extracted.  

Resulting in stacked 2-dimensional structures with all events of the 4 signals 

Data arrays were constructed with all 

event types and locations for each full 

PSG recording. 

              

 

Desaturation drops 

 

Effort change 

 

EEG arousals 

Indexing Table: 

1 1 0 0 1 1 0 0 0 0 0 0 2 2 0 0 1 1 0 0 2 2 0 0 2  2 0 

2 2 0 0 2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 3 3 0 

0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 1 1 0 0 

0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 
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3. The organized structures allowed for systematic labelling of the respiratory events using the 

AASM scoring rules. Apneas and hypopneas were scored based on the locations of found flow 

limitations. Associated change in respiratory effort dictated the type of apnea, whereas the 

height of desaturation drops defined the type of hypopnea. EEG arousals matched with airflow 

disturbance or increased effort respiratory effort led to the detection of either hypopneas or 

RERAs.  

▪ All flow limitations with a ≥ 90% excursion drop were scored as apnea. To differentiate 

between the types of apnea, i.e., obstructive, central, or mixed, change in effort was 

evaluated. If simultaneous stable or decreased effort was found, an obstructive apnea 

or central apnea, respectively, was scored. When decreased effort was found in the 

initial part of the flow limitation, that later developed into resumed respiratory effort, a 

mixed apnea was scored. (see Section 4.1.1) 

▪ Flow limitations that did not meet apneic thresholds were matched with desaturation 

drops. Events matching with a drop ≥ 4% resulted in the identification of a hypopnea 

using the acceptable rule (III.A). Also including events associated with 3% 

desaturation drops or matching arousals lead to the detection of hypopneas using the 

recommended rule (III.B). (see Section 4.1.2) 

▪ All areas with EEG arousals were evaluated if the criteria for apnea and hypopnea at 

that are were not met. When matching increased inspiratory effort or flattening of the 

inspiratory portion of the airflow was found, the associated area was labelled as RERA. 

(see Section 4.1.3)  

 

 

 

 

 

 

1 1 0 0 1 1 0 0 0 0 0 0 2 2 0 0 1 1 0 0 2 2 0 0 2  2 0 

2 2 0 0 2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 3 3 0 

0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 1 1 0 0 

0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 

 

Flow limitation 

Desaturation drops 

 

Effort change 

 

EEG arousals 

Hypopnea Mixed 

apnea 
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6.7 Model evaluation 

After analysis of the signals and the labelling of their indexed representation, the rule-based 

algorithm was evaluated by comparison with the original labels. The original labels were projected 

on the signal traces, also in 10 Hz granularity. Sleep and wake time for the patients was computed 

using the already scored sleep stages from the original annotations. All events detected during 

wake time for patients were disregarded.   

 

 

6.7.1 Per-event evaluation 

Since the exact start and end location of respiratory events is not all too meaningful, an algorithm 

event was considered correct when more than 50% of its duration overlaps with an expert label. 

Confusion matrices were computed to assess per-event performance of our algorithm. The true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were computed 

for each of the 6 classes (5 respiratory event types and a ‘no-event’ class).  

In the following figure three evaluation examples of algorithm events are shown. In situation I. 

the length of the overlap is greater than the 50% of the original event, therefore regarded as a TP. 

In situation II. the length of the overlap is smaller than the 50% of the original event, therefore 

regarded as a FP. In situation III. is a more complex. Similar to the first example a TP is found. 

Additionally, a FP is found because the length of the algorithm event is >2 times the length of the 

original event.  

Situation III. would indicate that the algorithm was extremely sensitive to an extend that that is 

multiple events could have been found in this location. By using the 50% rule we therefore both 

complimented and penalized the performance of the algorithm.  

 

  

 

Original labels 

Algorithm labels 

Flow limitation 

Desaturation drops 

 

Effort change 

 

EEG arousals 

1 1 0 0 1 1 0 0 0 0 0 0 2 2 0 0 1 1 0 0 2 2 0 0 2  2 0 

2 2 0 0 2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 3 3 0 

0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 1 1 0 0 

0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 

 

Hypopnea Mixed 

apnea 

RERA Obstructive 

apnea 

Central 

apnea 

False positive 

False negative Misclassification 
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overlap 

 Oronasal Airflow 

length algorithm event 

length original event 

overlap 

 Oronasal Airflow 

length algorithm event 

length original event 

overlap 

 Oronasal Airflow 

length algorithm event 

length original event 

I. True positive 

III. True positive & False positive 

II. False positive 
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The TP, TN, FP, and FN values were used to determine the following event-per-event performance 

metrics of the algorithm.  

 

Additionally, Cohen’s kappa values were determined using the formula in Cohen’s original work.  

6.7.2 Global evaluation 

In addition to event-per-event evaluation the global scoring performance was assessed. Global 

assessment of sleep apnea severity is typically used for clinical diagnosis [24]. We determined the 

AHI and RDI value per patient using the following equations.  

 

With the AHI score all patients were categorized as normal, mild, moderate, or severe sleep apnea. 

Categorization was according to the conventional criteria as defined by the AASM (see 3.1.4). The 

classification accuracy was obtained by creating a confusion matrix for the four AHI scores. The 

classification accuracy displays the ability of the model to assign a patient to any of the four AHI 

categories. To gain insight into accuracy of the AHI / RDI prediction disregarding the discrete 

borders used in categorization, histograms were computed to show the difference between AHI / 

RDI value scored according to the original labels and the AHI / RDI predicted by our algorithm. 

Scatter plots visualizing the correlation between the originally score AHI / RDI and the algorithm-

predicted AHI / RDI were computed. A robust linear regression model with bi-squared cost 

function was fitted to the data to compute the correlation between the scored and predicted AHI / 

RDI [35]. This model was selected to mitigate the effect of outliers. Also, Cohen’s kappa values 

were determined for AHI and RDI prediction.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁 

𝑇𝑁 + 𝐹𝑃
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 

𝐴𝐻𝐼 =  
𝑂𝑏𝑠𝑡𝑟𝑖𝑣𝑒 𝑎𝑝𝑛𝑒𝑎𝑠 + 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑎𝑝𝑛𝑒𝑎𝑠 + 𝐻𝑦𝑝𝑜𝑝𝑛𝑒𝑎𝑠

ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑠𝑙𝑒𝑒𝑝
 

𝑅𝐷𝐼 =  
𝑂𝑏𝑠𝑡𝑟𝑖𝑣𝑒 𝑎𝑝𝑛𝑒𝑎𝑠 + 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑎𝑝𝑛𝑒𝑎𝑠 + 𝐻𝑦𝑝𝑜𝑝𝑛𝑒𝑎𝑠 + 𝑅𝐸𝑅𝐴𝑠

ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑠𝑙𝑒𝑒𝑝
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6.8 Results 

6.8.1 Per-event performance 

The algorithm was successfully applied on 8803 patient recordings including almost 800k human 

labeled respiratory events. Applying the rule-based model on the same recordings resulted in the 

detection of more than 900k respiratory events. This shows that the algorithm exhibits more 

sensitive scoring behavior compared to the original 

scorers. When looking at the binary confusion matrix, 74% 

of all events scored by the experts are also identified by the 

algorithm while the number of false positive events is 

about 50% higher than the false negative events, indicating 

higher sensitivity rather than precision by the algorithm.  

 

Comparison of the type of events identified by the experts versus the algorithm shows quite some 

disagreement, as can be observed in the more elaborate multiclass confusion matrix. Much 

misclassification between events is observed, while the overall specificity is considered high. 

There must be considered, however, that the specificity is affected by the large class imbalance 

(regular breathing vs respiratory events).  

 

On the next page notes on the detection capabilities of the different respiratory event types are 

given. A more detailed discussion is provided in following sections.   

Algorithm → 

Expert ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea RERA 

No-event 8727155 

0.96 

64166 

0.01 

76160 

0.01 

9521 

0.00 

72627 

0.01 

114488 

0.01 

Obstructive apnea 13718 

0.10 

54415 

0.38 

48467 

0.34 

7289 

0.05 

15696 

0.11 

3381 

0.02 

Central apnea 22935 

0.15 

22036 

0.14 

73735 

0.48 

14802 

0.10 

17148 

0.11 

3719 

0.02 

Mixed apnea 318 

0.03 

2766 

0.29 

4292 

0.46 

1266 

0.13 

674 

0.07 

63 

0.02 

Hypopnea 41775 

0.17 

52723 

0.21 

35438 

0.14 

4343 

0.02 

105363 

0.42 

10309 

0.04 

RERA 122372 

0.55 

31679 

0.14 

17677 

0.08 

1798 

0.01 

8409 

0.04 

37830 

0.17 

 

Algorithm → 

Expert ↓ 
No-event Event 

No-event 8727155 

0.96 

336873 

0.01 

Event 200964 

0.26 

581388 

0.74 
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Obstructive apnea: 

The algorithm agreed on 38% of all obstructive apneas found by the experts. About the same 

number of obstructive apnea events were classified as central, indicating that our model does 

correctly identify the 90% flow limitations for apneic events most of the time, but may lack 

discriminatory capabilities when assessing the associated respiratory effort. From these results can 

be derived that the algorithm is too sensitive in the identification of a central aspect in respiratory 

effort and its according thresholds require improvement. For other misclassification by the 

algorithm resulted in hypopnea classification, implying potential inaccuracies when assessing  

flow limitations.  

Central apnea: 

The highest agreement among the event types was found with the detection of central apnea events. 

About half of all central apneas detected by the experts were also identified by the algorithm. 15% 

of the central apnea events were missed by the algorithm, expectedly due to disagreement on the 

duration of such events. During visual assessment, regularly, short apnea events were scored by 

the experts, which were disregarded by the algorithm.  

Mixed apnea: 

Detection of mixed apnea events by the algorithm was considered poor, with an overall sensitivity 

of 13%. Most mixed apneas scored by the experts were identified as either obstructive or central 

apnea by the model. In clinical setting mixed apneas are reluctantly scored by experts since 

differentiation from the other types of apnea is not obligatory. Therefore, much label noise 

considering this type of event was expected, which may explain in part the low agreement between 

the experts and the algorithm. 

Hypopnea: 

Hypopnea events were by far the most occurring event type among the respiratory events. An 

accuracy of 81.5% with similar precision and sensitivity around 45% is considered reasonable 

performance. Most misclassified events were scored as apnea, indicating disagreement on the peak 

excursion drop height of the airflow signal.  

RERA: 

Identification of RERAs was a difficult task for the algorithm. A sensitivity of 17.2% and a F1-

score of 19.4% shows extensive considerable disagreement between the model and the experts. 

The definition given by the AASM is relatively lenient and allows a lot of room for interpretation 

by the human scorers. Notably, even though most RERA events were missed by the algorithm, a 

similar number of FP RERAs were found by the algorithm.  
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An overview of the per-event performance metrics for each type of respiratory event is given in 

the table below, with all values are in percentages.  

 

Even though the performance metrics vary greatly between the respiratory event types, 

misclassification of events often resulted in classification of other event types. Moreover, the 

binary confusion matrix show that the algorithm and experts agree on almost ¾ of all respiratory 

events. Grouping the apnea events together and creating a new confusion matrix with 4 classes, 

i.e., no-event, apnea, hypopnea, and RERA, shows encapsulates the apnea misclassification by the 

algorithm, see table below. When the algorithm was used to detect apneas, hypopneas and RERAs, 

an increasing sensitivity is observed corresponding with the severity of the event types. Similar to 

human scorers, the detection of the prominent apnea events was easier to distinguish from regular 

breathing than the more obscure RERA events. Besides, disagreement between the apnea and 

hypopnea type by the human scorers and the algorithm resulted mostly in the detection of the other 

event type.    

 

 

 

 

 

 

 

 

 

 

 Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea RERA 

Accuracy  97.2 97.2 99.5 97.2 96.6 

Sensitivity 38.1 47.8 13.5 42.2 17.2 

Specificity 98.1 98.0 99.6 98.7 98.5 

Precision 23.9 28.8 3.2 47.9 22.3 

F1- score 29.4 36.0 5.2 44.8 19.4 

 

 

Algorithm → 

Expert ↓ 
No-event Apnea Hypopnea RERA 

No-event 8727155 

0.96 

149847 

0.02 

72627 

0.01 

114488 

0.01 

Apnea 36971 

0.14 

185447 

0.70 

33518 

0.13 

7163 

0.03 

Hypopnea 41775 

0.17 

92504 

0.37 

105363 

0.42 

10309 

0.04 

RERA 122372 

0.55 

51154 

0.24 

8409 

0.04 

37830 

0.17 

  Apnea Hypopnea RERA 

Accuracy  96.1 97.2 96.6 

Sensitivity 70.5 42.2 17.2 

Specificity 96.8 98.7 98.5 

Precision 38.7 47.9 22.3 

F1- score 50.0 44.8 19.4 
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6.8.2 Example segments 

On the following nine pages example segments are shown. These segments highlight the scoring 

behavior of the designed algorithm. For each example, the preprocessed signals are displayed 

together with the projected original labels and algorithm labels, above and below the airflow signal 

in the first subplot, respectively. For the second subplot, the blue line represents respiratory effort 

measured at the abdomen, while the red line reflects respiratory effort determined around the chest. 

The third subplot shows the oxygen saturation trace. 
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1. 

Notes: 

This example shows agreement on a chain of hypopnea events by the experts and the algorithm. Flow limitations lay between 30% 

and 90% and severe saturation drops are present. A leading hypopnea event scored by the experts is disregarded by the model 

since no matching saturation drop is found. These results highlight the scoring consistency by the algorithm.  

Expert 

labels 

↑ 

↓ 

Algorithm 

labels 
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Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

  

2. 

Notes: 

This example shows decent overall apnea agreement by the experts and the algorithm. There is concurrence on the first three apneas 

with one misclassification (central apnea → mixed apnea). Consequently 2 apneas are scored by the experts and not by the model. For 

both these events the 90% flow limitation with a duration of >10 seconds is not observed by the model and it therefore does not score 

the last 2 events as apnea. Also, no misclassification as hypopnea occurred since there is no observed 4% desaturation drop. 
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3. 

Notes: 

This segment shows a chain of 3% and 4% hypopneas scored by the experts. The algorithm, however, disregards the 3% hypopneas 

as instructed. A leading hypopnea was missed by the experts for unclear reasons. Although the experts are instructed to follow the 

4% rule when scoring hypopneas, inconsistency is observed regularly. Especially when severe flow limitations of near apneic criteria 

are observed (e.g., 60-90% drop from baseline peak excursion). 

Expert 

labels 

↑ 

↓ 

Algorithm 

labels 
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4. 

I.       II.         III.                IV.   

  

Desaturation drop  

Notes: 

Both the experts and the algorithm agree that multiple respiratory events are present in this segment, yet there is disagreement on the 

location and type. The algorithm does not agree with the 90% airflow peak excursion for events (I. & IV.). Instead, for event I., a 

RERA is detected by the algorithm while for event IV. a hypopnea is found matching the following 4% desaturation drop. For the 2 

RERAs scored by the experts (events II. and III.) the model only identifies a single large RERA indicating that our model might 

have difficulties accurately determining start and end locations of events. 

Expert 

labels 

↑ 

↓ 

Algorithm 

labels 
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Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

5. 

Notes: 

This example segment shows that very irregular breathing with many spikes may lead to false positive predictions. The model did 

not accurately determine a ventilatory flow envelope, as high spikes increase baseline excursion. Very large apneas may be the result, 

and perhaps a good indicator for this problem.  
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6. Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

Notes: 

This segment shows a chain of missed central apneas by the algorithm. Likely due to the high AHI of this patient, the respiratory 

flow envelope was inaccurately determined, leading to inaccurate determined baseline peak excursion (lower). For this reason, the 

algorithm did not identify the flow limitations to exceed the 90% excursion drop rule, hence no prediction of apnea events. Since no 

4% desaturation drops were detected, also no hypopneas were identified by the model. 
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Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

  

7. 

Notes: 

This example shows that highly irregular breathing may lead to very large apneas detected by the model. The duration of these 

apneas is not physiologically feasible and need to be addressed in later model improvement. An easy solution would be removing 

such long events. Better would be reassessing such areas and identifying possible shorted events within that area. 
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Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

8. 

Notes: 

Low respiratory rates (e.g., bradypnea) display similar characteristics as flow limitations (see Section 0), which resulted in false 

positive respiratory events.  
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Expert 

labels 

↑ 

↓ 

Algorithm 

labels 

  

9. 

Notes: 

This example shows regular breathing (according to the experts), whereas the algorithm detected numerous RERAS. Respiratory 

effort shows spikes with a stable frequency around 0.08 Hz caused the model to detect EEG arousals, which lead to FP RERA events. 

This emphasizes a limitation of automated scoring by algorithms. Automated models are prone to artifacts in data which may lead 

to false results. Experienced human scorers easily recognize such artifacts and will disregard such spikes during scoring.  
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6.8.3 Global performance 

By grouping together all respiratory events detected in a patient the AHI and RDI values were 

computed using the equations from Section 6.7.2. For all patients AHI categorization by the 

experts and the algorithm was compared, resulting in the AHI confusion matrix below. The 

original labels and the algorithm agreed on apnea severity for 72% out of all patients resulting in 

an according Cohen’s kappa value of 0.59. It is notable that most misclassifications of the 

algorithm resulted in false positives into the neighboring AHI categories. This effect is best 

visualized in the histograms where the difference between the experts and the algorithm for both 

event indexes can be observed. The unimodal and symmetrical shape shows a decrease in number 

of false positives as the difference between the AHI / RDI scored by the experts and the algorithm 

increased. With respect to the 17% overall RERA sensitivity by the algorithm, the global RDI 

performance seems relatively accurate. The bell curved shape of the RDI histogram indicates that 

the large numbers of FP and FN RERAs, as seen the in per-event confusion matrices, are quite 

evenly distributed among all patients, with and without a large overall RDI. Therefore, while the 

per-event performance of RERA detection is quite poor, prediction of the RDI of patients is 

significantly better.   

 

 

 

The AHI and RDI correlation can be nicely displayed in scatterplots. An according r2 value of 0.92 

for the AHI and r2 value of 0.89 for the RDI was found. Also here, tendency to overpredict 

respiratory events by the algorithm is observed. Besides, the RDI scatter plots shows a larger 

variability than the AHI scatter plot, implying an increased detection error when scoring by the 

algorithm includes the detection of RERA events. 
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6.9  Discussion 

This chapter described how rule-based algorithms can be used to automatically detect respiratory 

events during sleep. The implementation of hyperparameters that incorporate the important 

ambiguity within the rules of the AASM scoring manual, allows manipulation and hyperparameter 

tuning to mimic the scoring behavior exhibited by human annotators. Evaluation on event-per-

event granularity and global patient level was performed. The per-event performance varied much 

between the different types of respiratory events and the overall detection efficiency increased 

with the severity of the respiratory event types, demonstrating that more harmful events in fact 

more clearly display discernible physiological change that is detectable by automated models. 74% 

of all events identified by experts were also found by the proposed model, which is comparable to 

current state-of-the-art models (see Section 3.2.1), but among these events much misclassification 

of other event types occurred. Accurate discrimination between the individual event types holds 

important clinical value. For instance, the type of breathing assistance and overall apnea treatment 

may vary for different underlying pathology leading to apnea. Specifying the type of apnea will 

therefore provide aid in improving personalized patient care. The ability to discriminate various 

respiratory events appears promising using a rule-based algorithm. Work by ElMoaqet et al (2020) 

is the only study in literature that shows that discrimination between apnea types (not hypopnea or 

RERA) is possible with a respective accuracy, sensitivity, specificity, precision, and F1-score of 

83.4%, 88.5%, 82.5%, 46.6%, and 42.7%. Comparison with the rule-based model shows very 

similar performance metrics with an accuracy, sensitivity, specificity, precision and F1-score of 

96.1%, 70.5%, 96.8%, 38.7%, and 50.0%, respectively. This shows that the proposed model can 

already identify respiratory events on event-level granularity with equivalent efficiency as the 

current leading models.  

The high global performance indicates that AHI prediction based on the specific respiratory events 

is feasible regardless of reduced discriminatory accuracy by the rule-based model. An r2 value of 

0.92 for the AHI and 0.89 for the RDI shows a strong correlation between the algorithm and human 
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scorers and the AHI confusion matrix displays an overall agreement range of 70-90%. A Cohen’s 

kappa value of 0.59 was determined. Global assessment of patients appears an easier automation 

task compared to per-event granularity assessment and the proposed rule-based model can compete 

with state-of-the-art models found in literature [29]–[35]. 

The 50% rule to assess the correctly classified respiratory events by the algorithm with respect to 

the original labels was an arbitrary decision and might be strict considering the limited clinical 

relevance to any exact start and end location of an event. Small events that are slightly shifted 

might be unfairly penalized by our assessment method. In addition, the duration of expert 

annotations is questionable. “Event hot-keying”, using a predefined event duration rounded to tens 

of seconds, is a common strategy to accelerate manual scoring. Events with a duration just below 

the 10 second minimum but also longer events are prone to incorrect labelling by human scorers, 

possibly decreasing the performance metrics determined for the algorithm.  

Since the proposed algorithm is a first attempt in building a fully rule-based model to score and 

differentiate between respiratory event types, the performance is considered highly promising. 

This prototype model is likely to improve in accuracy with future optimization iterations. Experts 

in the field of sleep medicine from various leading medical institutions are involved in the 

assessment during such optimization iterations and future work will focus on the following 

limitations.  

Main limitations of this work come forth out of the arbitrary decision making during the algorithm 

design. As discussed in chapter 0, the AASM manual is a textual description of the respiratory 

events and stringent specifics are absent, purposely to prevent excessive demarcation. Yet, 

ambiguities become accentuated when trying to comply to these rules in an ultimately literal 

language, Boolean logic. The proposed algorithm will never consider clinical information outside 

of the “learned” AASM criteria or exhibit patient-dependent behavior during scoring, like human 

scorers. Strict compliance by any rule-based algorithm for automated scoring holds advantages 

when it comes to robustness, but its limitation shows when dynamic interpretation is required.  

Additional in-depth hyperparameter-tuning will help identify the important event characteristics 

that human scorers use to differentiate between event types. Tweaking the compartmentalized 

modules of the algorithm might even hint to specific signal features that are not described by the 

AASM criteria yet can prove to be excellent hallmarks in the detection of events, e.g., recovery 

breaths.  

The more extreme errors by the algorithm as seen in example segments 5, 6, and 7, indicate that 

the computation of the airflow envelope can be improved. Patients with a large RDI often display 

very irregular breathing, which causes inaccurate results when using the current method to 

compute a baseline peak excursion. Even though such errors do not occur in most patients, 

improvement is needed to enhance the robustness and reliability when applying this model in 
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clinical practice. Future development will include revision of the envelope computation method. 

Introduction of a negative baseline peak excursion might be useful, which can serve as an 

additional information feature when assessing peak excursion drops. Segments where inspiration 

and expiration display asymmetrical amplitudes are examples of interest in which a combination 

of positive and negative peak excursion might yield better performance than solely focusing on 

inspiratory signal features.  

Effort signals appear to be highly irregular and vary substantially among, but also within, patient 

recordings. Large and sudden amplitude changes outside of realistic underlying physiological 

representation, likely due to movement artifacts, constrain detection of actual physiological change 

caused by respiratory events. RIP signals are prone to artifacts by movement due to its 

measurement location and high measurement sensitivity [48]. Assessing the quality of the 

individual effort signals measured at the abdomen and chest before combining both might improve 

better results when discriminating between obstructive and central apnea. Besides, 

thoracoabdominal asynchrony reflected in the effort signals is a hallmark for obstructive apnea. 

Like human scorers, the algorithm may be able to identify this hallmark which may in turn lead to 

improved discrimination between apnea type.   

In manual analysis, experts learn to implicitly visually discount artifacts. As seen in example 

segment 9, artifacts easily lead to erroneous results by an automated rule-based model. More 

elaborate preprocessing may reduce the probability of present artifacts in data.  

Even though the preprocessing applications were limited, down sampling of the data and the use 

of filters may still have impacted the signal quality and thus affect the model performance. The 

applied preprocessing steps in this work were expected to vastly reduce artifacts while having a 

limited negative impact on the quality of the included signal and their reflected physiological 

information.  

6.10  Conclusion 

This work proposed an innovative and completely original modelling approach to automatically 

score respiratory events during sleep, which unlike deep learning approaches is constrained by 

human knowledge. Global patient assessment by the model resulted in strong agreement with the 

current gold standard, manual scoring. While per-event scoring performance showed comparable 

to current state-of-the-art models, further development is required before clinical implementation 

is feasible. Building upon the current results, iterations of experimental assessment of the model 

compartments and the according hyperparameters is likely to increase current performance metrics 

up to human level scoring. Using the AASM criteria as a blueprint to design a rule-based model 

architecture is a promising supervised automation method to capture and imitate human scoring 

behavior within a data-driven framework.  
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7 Inter-rater agreement experiment 

The guidelines for scoring respiratory events manually have evolved over the years but remained 

largely driven by consensus. The AASM therefore updates regularly as consensus by experts 

changes over time. This dynamic aspect of the gold standard makes it difficult to assess automated 

scoring models. Not only since often older data is used to validate new models, but also because 

multi-scorer data is rare. Manual scoring of a single recording is tedious and requires up to multiple 

hours and requesting various human scorers to assess the same recording is practically challenging. 

Instead of rescoring full patient recordings, interesting segments can be cut from original records 

and provided to different assessors for scoring. AASM accredited sleep centers, such as the MGH, 

have stringent ongoing requirements for documenting and maintaining inter-scorer reliability of 

over 85%. Monthly, sleep technicians are required to label numerous event segments, which 

thereafter get assessed by a board of experts who are responsible for governing the inter-rater 

variability among all associated local scorers. In this way, inter-rater agreement can thus be 

assessed without the need of scoring complete recordings by all AASM accredited technicians. A 

limitation of this method, however, is that it is not possible to compute AHI related performance 

metrics based on recording segments since these should be based on full recordings. To reconstruct 

this assessment method by the AASM I created a tool (with help from MGH colleagues) to rescore 

segments that could also be evaluated by our rule-based model. 

7.1 Sample selection 

Multiple experts were asked to use the tool and rescore 1020 3-minute sample segments. This 

experiment ideally includes segments containing each of the different respiratory event types, 

encompassing samples that are relatively simple and relatively difficult to identify. By 

manipulation of the hyperparameters of our rule-based algorithm I could alter the model to exhibit 

more, or less, sensitive scoring behavior, i.e., by increasing and decreasing the thresholds within 

the compartmentalized assessment modules. For instance, decreasing computed airflow envelope 

thresholds lead to more sensitive flow limitation detection, which in turn leads to increased apnea 

and hypopnea detection. This effect was nicely captured when looking at the histograms showing 

the respiratory index difference between the model and the original labels for three different 

settings: loose, mild, and strict. The left histogram shows how “loose” hyperparameter settings 

lead to more respiratory event detections reflected in an increased AHI and RDI with respect to 

the original labels. This resulted in increased overprediction by the model. Conversely, the “strict” 

hyperparameter settings resulted in a clear peak around 0, indicating that for most patients the AHI 

/ RDI computed by the algorithm was similar as the AHI / RDI determined by the human scorers.  
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All events from 600 patients were scored by the algorithm using all three hyperparameter settings. 

When all three models agreed on a specific event, this event was tagged with ‘high-conviction’, 

while events that were only found by the loose model were accredited with the tag “low-

conviction”. Next, all events were compared with the original labels, from which TP, FP, and FN 

events could be determined. An even number of high- and low-conviction TP, FP, and FN events 

were sampled among the different event types (including obstructive apnea, central apnea, mixed 

apnea, 3% hypopnea, 4% hypopnea, and RERA). This heterogenous group of event segments with 

all including preprocessed (using similar steps explained in the previous chapter) respiration and 

EEG signals were extracted from original recordings using customized algorithms. Besides the 

three AASM required signals, we included all signals human scorers may use to score respiratory 

events in their conventional setting.  

7.2 Experiment setup  

All 1020 segments extracted from 600 patients were presented to the rescoring experts. The 

guidelines presented on the next two pages were sent to all included scorers. This rescoring 

experiment is ongoing, and preliminary results are currently coming in. Once we obtain results 

from approximately 5 scorers, we will use a majority vote system to label each segment. Creating 

new labels using the combined expertise of multiple scorers is expected to result in labels of better 

quality than the current 1-scorer labels. 
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Respiratory event rescoring 

tool guidelines 

 

Currently, we have constructed a prototype computer model that detects the conventional 

respiratory events scored in clinical PSG’s according to the AASM. With this model we can 

automatically identify and discriminate obstructive, central, and mixed apneas, hypopneas 

(3% + arousal and 4% desaturation) and respiratory effort related arousals. The next step 

consists of validating and optimizing the sub-algorithms. We have built a tool that allows for 

easy rescoring of ±1000 respiratory events. With this tool we aim to: 

1. Gain more insight in the scoring behavior of sleep experts. By analyzing the results 

from experts from various institutions we can identify the important scoring 

characteristics on event-level and quantify the inter-rater variability. 

2. Perform parameter optimalization of our algorithm. Using new labels derived from 

multiple experts we can further improve our model using labels that are more robust 

and of better quality than current 1-scorer data.  

 

AIM: 

Instructions: 

The goal of this experiment is to assess and score each example by selecting one of the 

following options: ‘obstructive apnea’, ‘central apnea’, ‘mixed apnea’, ‘3% hypopnea’, ‘4% 

hypopnea’, ‘RERA’, or ‘No event’. This is how to interpret each example: 

 

- The location of the possible event is specified by the red-dotted line 

- Each event shows 2 minutes of leading context, and 1 minute of trailing context, 

except for the EEG traces that show 15 seconds of both leading and trailing context.  

 

Note: Only if and when an event overlaps the location of the red-dotted line, the event 

should be scored accordingly. Other present events withing the example window should be 

ignored! 

 

Besides the EEG traces for arousal detection, only ventilation, saturation, and respiratory 

effort signals are required for scoring according to the AASM. However, to aid the 

participants of this experiment ECG, heart rate, oxygen plethysmography and EEG 

spectrogram signals are provided for each example. On the next page an example of the tool 

layout can be found.  
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Key: Function:  
arrow →  next example 
arrow ←  previous example  
arrow ↑  scale up EEG 
arrow ↓  scale down EEG 

 

Key:  Function:  
number 0  No Event  
number 1  Obstructive Apnea 
number 2  Central Apnea 
number 3  Mixed Apnea  
number 4  3% Hypopnea (3% desaturation drop and/or 

arousal)  
number 5  4% Hypopnea (4% desaturation drop)  
number 6  Respiratory effort related arousal 

 

Keyboard functions: 

The tool is designed for simplicity and 

efficiency use. Therefore, we assigned the 

following keyboard keys to use while 

scoring.  

event to score! ignore these events 
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7.3 Preliminary results 

With the results from the first two scorers that completed the experiment confusion matrices and 

Cohen’s kappa values were determined to assess the level of agreement. The binary confusion 

matrix shows that expert 2 identified 96% of all event segments determined by expert 1. Grouping 

all detected apneas together resulted in a 95% agreement by both experts, while this was true for 

77% of all hypopneas. Nearly all disagreement of apnea and hypopnea segments resulted in 

detection of the other type of respiratory event. The full multi-class confusion matrix indicates that 

misclassification significantly increases, and the overall event agreement declines when experts 

try to differentiate between all included respiratory events. A Cohen’s kappa value of 0.43 was 

determined. The below results demonstrate that considerable inter-rater variability is observed 

when two experts score the exact same PSG segments on event-level granularity. Global 

assessment by AHI and RDI computations is unlikely to show a large variability among the human 

scorers, since a high agreement is observed when events are grouped together.  

 

Scorer 1 → 

Scorer 2 ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea 

(3%) 

Hypopnea 

(4%) 

RERA 

No-event 0.46 0.05 0.11 0.01 0.16 0.07 0.14 

Obstructive apnea 0.01 0.61 0.32 0.00 0.00 0.06 0.00 

Central apnea 0.00 0.01 0.91 0.04 0.03 0.00 0.00 

Mixed apnea 0.03 0.14 0.48 0.34 0.00 0.00 0.00 

Hypopnea (3%) 0.07 0.08 0.05 0.00 0.65 0.13 0.01 

Hypopnea (4%) 0.01 0.11 0.09 0.02 0.11 0.66 0.00 

RERA 0.30 0.03 0.03 0.00 0.32 0.11 0.22 

 

Scorer 1 → 

Scorer 2 ↓ 
No-event Apnea Hypopnea RERA 

No-event 0.46 0.18 0.23 0.14 

Apnea 0.01 0.95 0.04 0.00 

Hypopnea 0.03 0.20 0.77 0.00 

RERA 0.30 0.05 0.43 0.22 

 

Scorer 1 → 

Scorer 2 ↓ 
No-event Event 

No-event 0.46 0.54 

Event 0.04 0.96 

 
Binary:   Cohen’s kappa: 0.40 

semi-Multi: Cohen’s kappa: 0.47 

Multiclass: Cohen’s kappa: 0.42 
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The overall event agreement of 96% as observed between the two human scorers decreased to 72% 

and 79%when comparing the results of the algorithm with scorer 1 and 2, respectively. Apnea and 

hypopnea agreement among the included event segments reduced to 66% and 43% with scorer 1 

and 71% and 45% with scorer 2. Increased misclassification between the no-event and 

apnea/hypopnea class was observed. RERA detection between experts and the algorithm appeared 

similarly poor. Cohen’s kappa values within the range of 0.25-0.35 were determined. These results 

suggest that the current algorithm does show a clear agreement with human annotators when 

scoring respiratory events. Human-level scoring performance, however, is not yet achieved and 

requires further experimentation.  

  

Algorithm → 

Scorer 1 ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea 

(3%) 

Hypopnea 

(4%) 

RERA 

No-event 0.58 0.04 0.04 0.03 0.09 0.05 0.17 

Obstructive apnea 0.14 0.52 0.13 0.05 0.05 0.11 0.00 

Central apnea 0.22 0.17 0.25 0.19 0.05 0.08 0.04 

Mixed apnea 0.09 0.13 0.43 0.30 0.00 0.00 0.04 

Hypopnea (3%) 0.36 0.11 0.04 0.01 0.30 0.08 0.11 

Hypopnea (4%) 0.28 0.15 0.03 0.00 0.10 0.38 0.06 

RERA 0.48 0.06 0.00 0.01 0.24 0.01 0.20 

 

Algorithm → 

Scorer 1 ↓ 
No-event Apnea Hypopnea RERA 

No-event 0.58 0.10 0.14 0.17 

Apnea 0.19 0.66 0.13 0.02 

Hypopnea 0.32 0.17 0.43 0.08 

RERA 0.48 0.07 0.26 0.20 

 

Algorithm → 

Scorer 1 ↓ 
No-event Event 

No-event 0.58 0.42 

Event 0.28 0.72 

 
Binary:   Cohen’s kappa: 0.27 

semi-Multi: Cohen’s kappa: 0.34 

Multiclass: Cohen’s kappa: 0.26 
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In Section 6.9 I discussed the unimportance of a precise start and end location of a respiratory 

event. Both visually, but also computationally, it is hard to determine exactly when a respiratory 

event initiates, which does not make much difference when identifying severe flow limitations, 

but when computing the duration of an event, it becomes crucial. Especially short events that 

barely exceed the minimum 10 second duration threshold may result in a significant number of 

false positives and false negatives by scorers. Since it is difficult to visually assess the exact 

duration of an event, human scorers are expected to regularly include shortened events. To test this 

hypothesis, I increased the algorithm sensitivity for the detection of flow limitations by decreasing 

the duration threshold to 8 seconds. Expectedly this leads to increased event detection combined 

with reduced specificity by the algorithm. On the following pages new confusion matrices are 

shown for the more sensitive algorithm with respect to the same 2 human scorers.  

 

 

  

Algorithm → 

Scorer 2 ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea 

(3%) 

Hypopnea 

(4%) 

RERA 

No-event 0.49 0.10 0.05 0.04 0.13 0.06 0.13 

Obstructive apnea 0.13 0.45 0.20 0.05 0.06 0.11 0.01 

Central apnea 0.19 0.14 0.33 0.19 0.09 0.06 0.01 

Mixed apnea 0.07 0.24 0.31 0.34 0.00 0.00 0.03 

Hypopnea (3%) 0.27 0.21 0.07 0.00 0.35 0.08 0.03 

Hypopnea (4%) 0.23 0.14 0.07 0.04 0.09 0.37 0.07 

RERA 0.41 0.08 0.00 0.03 0.14 0.03 0.32 

 

Algorithm → 

Scorer 2 ↓ 
No-event Apnea Hypopnea RERA 

No-event 0.49 0.19 0.19 0.13 

Apnea 0.14 0.71 0.13 0.02 

Hypopnea 0.24 0.25 0.45 0.05 

RERA 0.41 0.11 0.16 0.32 

 

Algorithm → 

Scorer 2 ↓ 
No-event Event 

No-event 0.49 0.51 

Event 0.21 0.79 

 
Binary:   Cohen’s kappa: 0.27 

semi-Multi: Cohen’s kappa: 0.30 

Multiclass: Cohen’s kappa: 0.25 
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A rather significant increase in sensitivity was observed when decreasing the minimum duration 

for event detections. Now, instead of 72% and 79%, the algorithm detected 93% and 88% of the 

events identified by the experts. 90%  and 56% of all apneas and hypopneas found by expert 1 

were identified by the modified algorithm, compared to 66% and 43% agreement of the original 

model with expert 1. For expert 2, the apnea and hypopnea agreement increased from 71% and 

45% to 86% and 54%, for apneas and hypopneas, respectively. Apart from mixed apneas and 

RERAs, the number of agreed upon events between the algorithm and the experts increased. The 

decreased number of congruent no-event segments indicates a decreased specificity by the model.  

 

 

 

 

  

Algorithm → 

Scorer 1 ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea 

(3%) 

Hypopnea 

(4%) 

RERA 

No-event 0.43 0.11 0.06 0.02 0.20 0.07 0.11 

Obstructive apnea 0.03 0.64 0.20 0.09 0.03 0.02 0.00 

Central apnea 0.07 0.26 0.33 0.22 0.03 0.06 0.02 

Mixed apnea 0.00 0.22 0.57 0.22 0.00 0.00 0.00 

Hypopnea (3%) 0.20 0.20 0.04 0.03 0.40 0.10 0.05 

Hypopnea (4%) 0.09 0.23 0.06 0.01 0.09 0.50 0.03 

RERA 0.33 0.17 0.02 0.02 0.34 0.02 0.09 

 

Algorithm → 

Scorer 1↓ 
No-event Apnea Hypopnea RERA 

No-event 0.43 0.19 0.27 0.11 

Apnea 0.05 0.86 0.07 0.01 

Hypopnea 0.14 0.27 0.54 0.04 

RERA 0.33 0.22 0.36 0.09 

 

Algorithm → 

Scorer 1 ↓ 
No-event Event 

No-event 0.43 0.57 

Event 0.12 0.88 

 
Binary:   Cohen’s kappa: 0.33 

semi-Multi: Cohen’s kappa: 0.40 

Multiclass: Cohen’s kappa: 0.29 
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There must be considered that these results are preliminary and conclusive statements are yet to 

be determined. The main rationale for adding these exploratory results is providing a relative 

perspective on the model performance showed in Chapter 6, when comparing the algorithm labels 

with the original labels. Clearly, significant misclassification occurs among human-scorers, 

indicating that  single-scorer data can not be treated as a perfect measure of comparison. Human-

to-human agreement is more meaningful and should be regarded as the correlative gold standard 

of respiratory event scoring when evaluating new scoring methods. Even though the results in this 

section are preliminary, early speculative conclusions about the clinical implications can be made. 

 

 

  

Algorithm → 

Scorer 2 ↓ 
No-event Obstructive 

apnea 

Central 

apnea 

Mixed 

apnea 

Hypopnea 

(3%) 

Hypopnea 

(4%) 

RERA 

No-event 0.33 0.19 0.10 0.04 0.20 0.07 0.07 

Obstructive apnea 0.03 0.48 0.29 0.11 0.02 0.05 0.01 

Central apnea 0.06 0.24 0.36 0.29 0.01 0.03 0.01 

Mixed apnea 0.00 0.31 0.41 0.24 0.00 0.00 0.03 

Hypopnea (3%) 0.07 0.29 0.05 0.01 0.47 0.08 0.03 

Hypopnea (4%) 0.06 0.23 0.08 0.04 0.10 0.46 0.01 

RERA 0.27 0.16 0.00 0.03 0.27 0.05 0.22 

 

Algorithm → 

Scorer 2 ↓ 
No-event Apnea Hypopnea RERA 

No-event 0.33 0.33 0.27 0.07 

Apnea 0.04 0.90 0.05 0.02 

Hypopnea 0.06 0.36 0.56 0.02 

RERA 0.27 0.19 0.32 0.22 

 

Algorithm → 

Scorer 2 ↓ 
No-event Event 

No-event 0.33 0.67 

Event 0.07 0.93 

 
Binary:   Cohen’s kappa: 0.23 

semi-Multi: Cohen’s kappa: 0.30 

Multiclass: Cohen’s kappa: 0.25 
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7.4 Clinical implications  

For patients with presumed sleep disordered breathing, a PSG test helps clarify the underlying 

pathological mechanics and it provides an objective measure of the severity. Patients with 

persistent fatigue regularly show significant sleep fragmentation, often accompanied with a large 

AHI / RDI. While treatment of normal to mild sleep apnea (AHI < 15) focusses on behavioral 

therapy, moderate to severe apnea may be treated with more invasive options. The predominant 

occurrence of obstructive or central events both require different types of treatment methods. 

Treating severe obstructive apnea starts with an attempt to improve sleep hygiene, together with 

suggested weight loss, adjustment of sleeping positions, and optionally, oral applications. If these 

types of treatment appear unsuccessful, breathing assistance with CPAP may be considered. 

Therapy options for patients with mild central apnea are rather limited, often solely focusing on 

the improvement of a patient’s sleep hygiene. Severe central sleep apnea can be treated with CPAP 

or supplemental nasal oxygen, however, many patients do not experience substantial improvement. 

Long-term treatment with medication remains an additional possibility, but they often come with 

side-effects.  

Different treatment options implicate varying price-tags, which may or may not be covered by 

health insurance companies. Particularly in the US, this may be the decisive factor for patient to 

opt for cheaper treatment options, while more invasive approaches are recommended. Coverage 

by an insurance company is mainly based on apnea severity indicated by a PSG recording. 

Therefore, accurate evaluation of PSG results are vital for finding the appropriate treatment 

method and the according financial regulations. Inconsistent scoring of PSG recordings can have 

detrimental implications for a patient.  

While the criteria by the AASM are based on consensus by experts in the field of sleep medicine, 

many of its rules are established arbitrarily. In clinical and research environments significant 

critique is concentrated on the fixed threshold values for the duration of flow limitations and the 

decrease in amplitude in the according airflow signals. Only considering flow limitations with a 

minimum duration of 10 seconds, instead of using an 8-second or a 12-second minimum, does not 

rest on clinical relevance, but is merely based on arbitrary grounds. Similarly, there is no data to 

suggest that a 70% or 35% would be less ore more clinically meaningful than a reduction of 90% 

and 30% in signal amplitude for apneas and hypopneas, respectively. In practice, clinicians often 

apply this minimum duration and fixed percentual amplitude decrease reluctantly when identifying 

apnea and hypopnea events. In addition to inconsistent scoring behavior, the difficulty to visually 

assess respiration signals, together with the intrinsic ambiguity on how to precisely compute flow 

limitations, leads to a large inter-rater variability.  

Differentiation of obstructive and central events is not as pathophysiologically clear as clinical 

scoring may suggest. Airway collapse is common during central apnea, and high-loop gain can 

drive obstructive events. This biological reality of blurred boundaries leads to disagreement during 
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scoring, which may in part explain the significant misclassification observed in the inter-rater 

agreement experiment.  

Thus, evaluation of a new scoring approach is difficult since the quality of manual labels is poor. 

Significant inter-rater variability and misclassification is observed in the gold standard of scoring, 

which restricts innovative data-driven approaches both in development and during performance 

analysis. This becomes particularly problematic when training deep learning models to perform 

respiratory event detection on event-level granularity. The performance analysis of the rule-based 

model detailed in Chapter 6 highlights the limited robustness of the AASM criteria. Assuming that 

the proposed algorithms adhere acceptably to the scoring criteria, the substantial number of false 

positives and false negatives indicate that strict compliance to the rules does not lead to optimal 

agreement with practitioners. Deviation from the predefined AASM thresholds would expectedly 

lead to the inverse effect, decreased agreement with human scorers. Instead, increasing the 

sensitivity of the model seems to obtain higher agreements with both included human participants.  

A more sensitive scoring approach with respect to manual labelling does not necessarily result in 

decreased precision. Manual labelling is tedious and time-consuming, and scoring fatigue among 

human scorers is presumable. Therefore, the likelihood of events being missed during manual 

scoring is high, especially for patients with a large AHI. For these patients, often a quick diagnosis 

of the apnea severity can be identified, and the clinical importance to classify each single 

respiratory event in full night recordings deteriorates. When comparing routine manual labels to 

labels from an automated approach, high numbers of false positives may be the result since 

computer models are not possible to exhibit scoring fatigue.   

An optimal balance in sensitivity and specificity performance by the model is difficult to 

determine. However, a strong argument can be made to prefer a highly sensitive model over its 

counterpart, a very specific algorithm with reduced sensitivity. Possibly, limited sensitivity leads 

to missing diagnoses of sleep apnea, which in turn directly restricts patients from receiving 

necessary treatment, whereas an overly sensitive model might suggest treatment for patients that 

may not (yet) require it. Expectedly, most clinicians are able to condone the latter and prefer a 

model with great sensitivity when screening patients for sleep apnea. In clinical setting a patient’s 

symptoms are always considered in combination with any respiratory assessment when deciding 

treatment. This confines possible application of redundant therapy solely based on a potential false 

positive apnea diagnosis via automated PSG analysis.  

The clinical advantages for automated respiratory event analysis are tremendous. Clearly, 

automation of PSG analysis would decrease the required analysis time and reduce costs in places 

where PSG analysis is already implemented. In most sleep labs, the process of manual assessment 

is the bottleneck that restricts the number of viable patient evaluations per day. Automation of the 

analysis process would allow for upscaling of the patient assessment efficacy, by multiplying the 

number of patient evaluations. 
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Moreover, automated PSG analysis computer models could be implemented in clinical centers 

anywhere in the world and across a variety of data acquisition options. Places without trained 

scorers could easily implement sleep assessment methods. Nurses and laboratory personnel would 

only be required to connect patients to the medical devices and oversee the measurements while 

all recordings can be labelled by a computer model, bypassing the most time-consuming task 

normally done by sleep scorers. Once automated scoring with a reduced number of input sensors 

is feasible, numerous additional scoring opportunities would become available including home 

sleep testing, testing in acute care environments, specific operational conditions such as high 

altitude, and consumer wearable devices. Clinically, this becomes very relevant when assessing 

respiratory stability and instability/events in intensive care or environmentally hostile conditions. 

Using limited resources, such as a respiratory effort belt, to assess respiratory abnormalities can 

be successfully applied in combination with other simple and small sensors necessary for 

monitoring patients in diverse clinical situations. Patients receiving breathing aid using CPAP 

would now be eligible for event detection.  
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8 Final thoughts  

Automation approaches found in literature use different sensors and varying model architectures 

to detect respiratory events, which makes comparison with state-of-the-art models difficult, 

especially since the provided performance metrics oftentimes differ as well. Most models seem to 

reach a maximal global efficiency (accuracy, sensitivity and specific) within the 70-90% range, 

which is comparable to the human-to-human agreement observed in Chapter 7. In Chapter 5-6, I 

showed that both deep learning approaches and a rule-based model can compete and outperform 

current state-of-the-art models when globally assessing patients for apnea severity. However, 

differentiation between event types reduces the overall precision and leads to considerable 

misclassification between the event types. These findings may be explained by limited inter-rater 

agreement on event-level granularity, which indicates that the performance obtained with new 

automation approaches are confined by the provided validation data, and not only due to any 

inadequate model architecture or training process. The results from Chapter 7 indicate that 

manually scored data contains significant levels of label noise, which is related to the ambiguity 

and arbitrariness present in the AASM scoring guidelines that makes visual assessment of 

respiratory events a challenging task, as discussed in Chapter 4. In-depth assessment of inter-rater 

variability is unavailable in current literature, which stresses the need for a large dataset scored by 

multiple experts. Not only can the inter-rater variability among humans be studied, new automated 

approaches can be tested and verified using such a large multi-scorer dataset. Instead of using 

single-scorer data as the ground truth when validating models, equivalent inter-rater agreement as 

observed with human scorers should be pursued, and regarded as the gold-standard for validation.  

The availability of multi-scorer data also creates new exciting research opportunities for the rule-

based algorithms proposed in Chapter 6. Optimizing different rule-based models on individual 

scorers will likely lead to divergence of hyperparameter settings. Changes in hyperparameter 

combinations may in turn reflect the specific characteristics in signals that individual scores deem 

most important. In this way, scoring behavior exhibited by the human labelers can studied and 

variability can be quantified. Such findings will eventually help elucidating what causes inter-rater 

variability and may even provide support in creating more stringent rule definitions that will 

eventually increase scoring consistency among both automated and manual scorers.  

In this work I showed that automation of respiratory event scoring is complex, yet feasible. 

Machine learning approaches already obtain promising results, even when reducing the input 

signals, but seem constrained by single-scorer data which is flawed by inherent label noise. The 

use of human made scoring criteria to create rule-based algorithms can obtain a similar scoring 

performance as deep learning approaches, but holds an important additional advantage. Automated 

respiratory event labelling can be achieved that closely mimics human scoring behavior, which 

allows for transparent hyper-parameter tuning. This makes rule-based algorithms useful tools to 
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study inter-rater agreement among scorers and may eventually evolve into an automated and more 

robust scoring method than the prevailing gold standard, manual labelling.  
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