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Management summary 
Introduction and research objective 

Brynild Gruppen AS is one of Norway’s largest confectionery manufactures. Brynild is located in 

Fredrikstad, and mainly sells its products in the Scandinavian countries. In this research we focus on 

the planning of the confectionery production at Brynild at the Master Production Schedule (MPS)-

level. Presently, the MPS is created manually. This is a time consuming endeavour, which leaves 

limited time for optimization. Although the current method suffices for now, an increase in demand 

requires a more efficient planning in the near future. At the same time the costs of production need 

to be kept within bounds, explaining the need for a cost-efficient MPS. 

Our objective is to construct a method for creating a cost-efficient MPS for one of Brynild’s production 

lines, the Stǿperi Sukker line. This method takes the form of an algorithm. The benefits of using an 

algorithmic method over a manual approach are twofold. First, an algorithmic method, run on a 

computer, can process much more information than a human. This allows it to consider a larger 

number of possible improvements to make a more cost-efficient MPS. Second, an algorithmic method 

can create an MPS much faster than a human. We show that our method creates an MPS within 30 

seconds, compared to multiple hours by hand. This leaves the planner with much more time to 

finetune the schedule provided by our method. 

Problem solving approach 

Many variants of the problem of creating a cost-efficient MPS are studied in literature. We can classify 

the Stǿperi Sukker line as a process with multiple capacitated resources, since we need to take into 

account the capacity of both the moulding machine and the drying cabinets. In our literature review 

we encountered a heuristic proposed by Boctor & Poulin (2005). Their research shows that this 

heuristic performs well for planning problems with multiple capacitated resources. We therefore build 

our own method based on this heuristic. 

The biggest hurdle we needed to tackle when building our candidate planning method was how to 

deal with the capacity constraints of the drying cabinets in which the confectionery is dried. We came 

up with an efficient method, based on a partition algorithm, to check whether a certain schedule is 

feasible with respect to these drying cabinets. This method essentially tries to distribute the 

production orders over the different drying cabinets without violating the capacity constraints on any 

of them.  

This partition algorithm enabled us to do the following: We used Boctor & Poulin’s heuristic in 

combination with a linear approximation of the capacity constraints of the drying cabinets to create 

an MPS that is approximately feasible. We then used our partition algorithm to locate the 

infeasibilities and solved them through small tweaks to the schedule, thus obtaining a feasible MPS. 

Solution validation 

We use our proposed method to create 32 schedules from historical input data and compared those 

with the current method historical production numbers. We found similar behaviour between the 

schedules created by both methods with respect to the number of products per week, the average lot 

size and the average workload per week. 

Discussing the schedules created by both methods with the human planner provided the insight that 

the candidate method works ahead only the minimum amount to meet demand, to save holding costs. 
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In contradiction, the human planner tends to work ahead more in order to prepare for the uncertainty 

of the future. 

The real world instances of the problem are too large to find near-optimal solutions against which we 

can benchmark our candidate method. We measured the performance through  smaller instances of 

5 products and 5 weeks (as opposed to the 41 products and 26 weeks of a real world case). We used 

our method to create approximately feasibly schedules of those instances and compared these 

schedules with those of an MIP-solver. We found that our candidate method approaches the best 

solutions, with on average 4% higher costs than the best found solution. We expect this performance 

to translate well to larger cases, since Boctor & Poulin’s heuristic, on which our method is based, is 

known to achieve better result when the problem size increases. 

Recommendation 

Our proposed method provides feasible, cost-efficient MPSs. These MPSs require only minor tweaking 

by the planner before they can be implemented. We want to emphasize that the our method should 

be viewed as a support tool for the human planner and not as a replacement. The schedules created 

by our method need some finetuning to comply with certain aspects of reality that are not captured 

in our model. The most prominent of these aspects are the availability of operators. This is especially 

true for the decision in which weeks to employ night shifts.   
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1. Introduction 
This thesis researches the long term planning of sugar confectionary at Brynild. This chapter 

introduces the research. Section 1.1 introduces the parties involved in this project. We describe the 

research motivation and problem identification in Sections 1.2 and 1.3 respectively. We present the 

research objective and the research questions in Section 1.4 and 1.5 respectively. 

1.1 Parties involved 
The two parties involved in this project are SINTEF and Brynild. 

SINTEF 

SINTEF is a Norwegian research organization headquartered in Trondheim. SINTEF is currently working 

on a project for Brynild Gruppen AS, a Norwegian confectionery manufacturer. The goal of the project 

is to improve planning & scheduling of Brynild’s sugar confectionary production process. Within this 

project, we conduct this research. 

Brynild Gruppen A.S. 

Brynild Gruppen is a Norwegian company that produces and sells branded consumer goods like 

sweets, chocolate, nuts and dried fruits. The products are sold in the four Scandinavian countries 

(Norway, Sweden, Finland and Denmark). The company operates one production facility, located in 

Fredrikstad, Norway. 

Within this production facility, they produce confectionery, chocolate and nuts. There is some 

interaction between the production processes of chocolate and nuts, since some products contain 

chocolate covered nuts. The production of confectionery is completely separated from the production 

processes of chocolate and nuts to ensure that the nuts do not contaminate the confectionery. There 

is an exception for some confectionery items as they that are covered in chocolate as well. These items 

are moved to the chocolate section of the facility after being moulded and further processed there. In 

this research, we only consider the confectionery production. 

Brynild sells its confectionery products to wholesalers, who in turn supply one or multiple chains of 

grocery stores. The wholesalers demand short lead times. They expect orders to be sent to them 

within two or three days after placing them. These lead times are in fact shorter than the production 

time of the confectionery, so Brynild needs to fulfil its orders from its finished goods warehouse. 

Therefore Brynild produces most of its confectionery in a make-to-stock (MTS) fashion. 

1.2 Research motivation 
Brynild sells its confectionery products mainly on the Norwegian market. They experience a lot of 

competition from larger, international companies on this market. To stay competitive, Brynild has to 

ensure it can meet the demands set by the wholesalers they supply. The wholesalers demand 98% of 

their orders to be delivered on time and in full. To meet this requirements, Brynild requires accurate 

demand forecasts and cost-efficient planning. 

Brynild is currently focusing on improving its planning processes. The main goal is to reduce 

overcapacity and secure shorter lead times. Planning for confectionery production at Brynild is mostly 

done by experience based techniques. This task is complex because they produce more than 30 

different candies and therefore many possible schedules exist. The combination of experience based 

methods and the complexity of the task makes them believe that this approach does currently not 

result in the most cost-efficient planning. 
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The workload at the confectionery production process is variable. The current production capacity is 

not sufficient for certain peaks in expected workload. Some extra capacity is available, but this comes 

at a cost. It also makes planning ahead difficult. In turn, this leads to problems when creating the work 

rosters because the operators need to be informed when they have to work at least two weeks in 

advance. In addition, there is a stage in the production process where no extra capacity is available. 

This is the drying of the confectionery products. During peaks in workload, the drying stage limits the 

total production capacity, which threatens the fulfilment of demand. Therefore the motivation of this 

research is to find a way to lower the variation in workload so that demand can be fulfilled and so that 

this happens in a cost-effective manner. 

1.3 Problem identification 

 

Figure 1.1 Problem cluster. 

There are many problems related to the fluctuating workload. Figure 1.1 visualizes the relationship 

between the different problems in a problem cluster. Since not all problems can be dealt with at the 

same time, we select one problem to be solved for this research. We select this problem through the 

method of Heerkens & Van Winden (2012). The selected problem is called the core problem. A core 

problem is not caused by another problem and must be influenceable.  

Figure 1.1 shows that the fluctuating workload (in yellow) is the cause of other problems. Employees 

need to work overtime to fulfil demand during peaks in the workload. This overtime comes with 

increased salary costs, which in turn increase the production costs. Another consequence is that 

sometimes, the fixed capacity of the drying of the confectionery is reached. This limits the entire 

production, causing demand to remain unfulfilled. 

The fluctuating workload is caused by three other problems. We explore each of these causes further, 

to identify the core problem.  

The first cause (below yellow) is that there is a lot of variation in demand for the products. This 

variation is caused by promotional campaigns, which temporarily increase demand, and the seasonal 

nature of demand for confectionery products. Demand for confectionery products peaks around 
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Easter, Halloween and Christmas and to a lesser degree during the summer. The seasonality is hard to 

influence. The temporal increase in demand from promotional campaigns can be influenced, but only 

by turning down campaigns proposed by the wholesalers. Turning down campaigns is not 

recommended because these campaigns have a positive effect on sales. This excludes both problems 

(in red), from being the core problem. Therefore, the variation in demand is something that needs to 

be dealt with, rather than something that needs to be solved. 

The second cause (left of yellow) is that the demand forecasts deviate from the actual demand. Since 

Brynild produces its confectionery on a MTS basis, forecasts of demand are highly important for 

capacity planning. Deviation between the forecasts and realization of demand can disrupt the 

planning, leading to an fluctuating workload. The forecasts for regular and seasonal demand are 

accurate, but those for promotional campaigns have a relative high error. This problem (in blue) would 

be a good candidate for the core problem, but another research project is already focussing on this. 

Therefore, we do not choose it as the core problem. 

The third cause (above yellow) is the performance of the planning method. At Brynild, production 

planning more than one week into the future is done through the use of a master-production-schedule 

(MPS). The MPS specifies how much of each product needs to be produced in each week, taking into 

account demand forecasts for the next 28 weeks. The MPS does not create exact schedules. These are 

created afterwards and only for the upcoming week, as the production quantities of later weeks might 

change later. The function of the MPS is to level the workload between different weeks. This reduces 

peaks in workload so that demand can be met in a cost-effective manner. 

The MPS is created by the planner. The planner uses his knowledge of the production process to 

estimate whether a set of production quantities can fit together in a certain week. Hereby he aims to 

fit as much production volume into the upcoming one or two weeks to maximize capacity utilization 

and leave capacity in the weeks that are further ahead for future orders. This is done by manually 

moving orders between weeks in a spreadsheet program. Creating the MPS manually has two big 

disadvantages. First, it takes a lot of time to create a schedule since all moves must be thought of and 

executed manually. Second, the number of options that can be considered by a human is very limited 

so cost-efficient improvements to the schedule are overlooked. Therefore the created MPS is 

suboptimal at best. 

The lack of an advanced planning method is the cause of the MPS not fulfilling its potential with 

respect to levelling the workload. This problem (in green) has no other causes and can be influenced. 

Therefore we identify it as the core problem. 

1.4 Research objective and scope 
The core problem is that the method for creating the MPS is not advanced enough. The current 

method of manually moving orders does not consider and evaluate many different alternative 

solutions. Based on this problem, the main research objective is defined: 

To construct a method for creating a cost-efficient MPS for Brynild’s confectionery production process. 

Through the research objective we determine the scope of this research. We focus on improving the 

MPS with MPS-like planning methods. We conduct no research into improving other areas of the 

planning process like forecasting and demand management. 

1.5 Research questions and approach 
To achieve the research objective, we formulate the following four research questions: 
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1) What is the current situation regarding the planning of the confectionery production process 

at Brynild? 

a. What does each stage of the confectionery production process look like? 

b. Which stages of the confectionery production process impose which constraints 

regarding planning? 

c. What determines the performance of an MPS? 

d. What is the performance of the current planning process? 

The answer to this research question provides insights in the planning problem at Brynild. This 

information is required to create a solution that is tailored for Brynild’s needs and can be implemented 

within the existing planning process. The research question is answered through supplied information 

and analysis of data provided by Brynild. This research question is discussed in Chapter 2. 

2) What methods for the creation and optimization of an MPS are there in literature that are 

applicable to Brynild’s confectionery production? 

a. How can the problem of creating an MPS be defined and how is this problem studied 

in literature? 

b. What methods for the creation and optimization of an MPS are there in literature? 

c. What are the (dis)advantages of the different methods? 

This research question provides an overview of the ideas and solutions that exist in literature. This 

information is used as a basis to design a solution for the research objective. The research question is 

answered through a literature review. The results are discussed in Chapter 3. 

3) What method or methods are promising candidate solutions for achieving the research 

objective? 

a. How can the task of creating an MPS for Brynild’s confectionery process be 

formulated as a model? 

b. Which of the methods found in literature is best suited for solving the formulated 

model? 

c. How can these methods be tailored or combined into promising candidate solutions 

for Brynild? 

This research question provides the creation of candidate solutions. To create solutions for the general 

task of creating an MPS for Brynild’s confectionery process, we need an exact formulation of this task 

as some type of model. The sub-questions, are answered by combining the information obtained in 

Chapters 2 and 3. The candidate solutions are described in Chapter 4.  

4) How do the candidate solutions perform compared to the current method used at Brynild? 

a. How to evaluate the candidate solutions and the current method? 

b. How do the performances of the candidate solutions and the current method 

compare to each other? 

c. How does the performance of the candidate solutions compare to the optimal 

solution? 

This last research question is concerned with evaluating the performance of the candidate solutions 

and the current method. We evaluate these solutions based on their scores on predefined 

performance indicators. This process is described in Chapter 5. 

Chapter 6 describes the main conclusions of this research and the recommendations to Brynild.  
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2. Current situation 
In this chapter, research question 1 is answered: What is the current situation regarding the planning 

of the confectionery production process at Brynild? Section 2.1 describes each stage of the 

confectionery production process and the constraints each step puts on planning. Section 2.2 

describes the current planning process. This chapter concludes with the performance of the current 

planning process in Section 2.3. 

2.1 Confectionery production process 
In this section, a detailed description of the confectionery production process at Brynild is provided. 

Brynild currently produces 38 different candies, which are referred to as intermediates. Each 

confectionery product that Brynild sells consists of one or more intermediates combined into a 

packaging type. Some intermediates are only sold solo (one kind of intermediate in a packaging type), 

while others are only sold in a mix with others. Lastly, there are also intermediates that are both sold 

solo and in a mix.  

All intermediates are produced by the same production line called Stǿperi Sukker. Some intermediates 

are afterwards coated on the coating line called Drage Sukker. Finally, all intermediates are packed by 

one of the four packaging lines. Between the lines, intermediates are referred to as work-in-progress 

(WIP) and are stored at designated parts of the shop floor. The storage space for WIP is limited to 200 

storage pallets. For comparison, the average daily production is 20 storage pallets. Figure 2.1 gives a 

schematic overview of the production process. Each production step is described in detail in the 

remainder of this section. Hereby the focus is on the considerations each step induces on the planning 

process. 

 

Figure 2.1 Confectionery production process at Brynild. 

2.1.1 Cooking & moulding 
The process begins by cooking the raw materials together. While cooking, colour and taste are also 

added. Once ready, the cooked mass is transported to the moulding machine through pipes. There, it 

is sprayed into trays that contain the shape of the produced intermediate. Depending on the 

intermediate, each tray contains 96 to 800 pieces. The trays, now containing moulded intermediates, 

are stacked on pallets that contain 150 trays each. These pallets are then automatically transported 

to the drying stage. The cooking, moulding and transporting of pallets to the drying section, all happen 

at the same time in a continuous fashion.  

When switching from producing one intermediate to another, the process needs to be stopped so that 

the settings of some machines can be changed and the pipes can be cleaned. The duration of these so 

called changeovers depends on both the previous and the subsequent intermediate, i.e., they are 

sequence dependent. The changeover times vary between 60 and 120 minutes. In addition to the loss 

of production time, there is also a loss of product material at each changeover. This is due to material 

that stays behind in the pipe from the cooking machine to the moulding machine. This loss is around 
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50 kg of material per changeover. Cooking and moulding is done in shifts, from Monday to Friday and 

sometimes on Saturdays. The number of 8-hour shifts per day varies between one and three. 

From a planning perspective, there are two main things to consider regarding the cooking and 

moulding. The first consideration is the sequence in which intermediates are produced. The loss of 

capacity due to changeovers and the loss of material are incentives to minimize the number of 

required changeovers. 

The second consideration is the number of shifts that is needed in a certain week. The cooking and 

moulding is done on a 2-shift or 3-shift basis, depending on how busy it is. In a 2-shift system, there 

are 9 available shifts in a week (5 morning shifts on Mondays to Fridays and 4 afternoon shifts on 

Mondays to Thursdays). In a 3-shift system, there are 14 available shifts (5 additional night shifts are 

added Sunday to Thursday nights). Each week the cooking and moulding is done on either a 2-shift or 

3-shift basis. It is not possible to switch during the week. The decision to run a 2-shift or 3-shift system 

in a certain week must be made at least two weeks in advance to comply with labour regulations. 

It is possible to plan an extra shift on Friday afternoon and on Saturday morning, but these come with 

increased salary costs. Table 2.1 shows the different shifts systems with the 2-shift system (in blue), 

the additional shifts of the 3-shift system (in green) and the possible extra shifts (in orange). 

 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Morning 06:30-
14:30 

       

Evening 14:30-
22:30 

       

Night 22:30-
06:30 

       

Table 2.1 The different shift systems used by Brynild. 

2.1.2 Drying 

 

Figure 2.2 The 5 drying cabinets of Brynild. 



14 
 

After moulding, the intermediates need to be dried to reduce their moisture content. Drying happens 

in temperature controlled cabinets, of which Brynild has 5. Figure 2.2 shows that there are two new 

cabinets and three old cabinets, each of which has a capacity of 72 pallets. The new cabinets are 

heated and the air within is circulated, while the old cabinets are only heated. Once all pallets of a 

batch have been automatically transported from the moulding machine to the allocated drying 

cabinet, the cabinet closes and the drying begins. 

The drying of the intermediates is the most time consuming step in the confectionery production 

process. The drying takes between one and four days depending on the intermediate. Due to the air 

circulation most intermediates need a shorter time to dry in the new cabinets than they would in the 

old ones. Additionally, there are some intermediates that have stricter drying needs and can therefore 

only be dried in the new cabinets. Lastly, there are intermediates that need to dry at room 

temperature. For these intermediates, no time can be saved by drying them in the newer sections. 

They do however still need to be dried in a drying cabinet, because no other space is available for this. 

Once the drying is finished, the cabinets are opened and the trays are automatically transported back 

to the moulding machine. There the moulding trays are automatically emptied and the trays are 

directly fed back to the moulding machine. Each moulding tray is therefore always either in a drying 

cabinet, at the moulding machine or travelling to one of these locations. 

The drying stage creates two challenges for the planning of the whole process. There should be 

suitable drying space available for intermediates once they finish the cooking and moulding. If this 

cannot be achieved, production needs to be stopped until drying space becomes available, resulting 

in a loss of productivity. Additionally, the moulding of intermediates can only happen while a drying 

cabinet is being emptied. This is because there are no spare trays available and otherwise no trays are 

available at the moulding machine. 

The constraints of the drying stage must be taken into account when sequencing the production of 

intermediates at the moulding stage. This is to ensure the availability of moulding trays and suitable 

drying cabinets. On the level of MPS planning this means that besides the capacity constraints of the 

moulding machine the capacity of the drying cabinets must be taken into account. The planner must 

ensure that the capacity constraints of the drying cabinets are respected. 

2.1.3 Oiling and sanding 
After being separated from the trays. The intermediates are automatically conveyed to either the 

oiling drum or the sanding drum. All intermediates are either oiled or sanded depending on the type 

of intermediate. Both the oiling and the sanding are completely automatic steps and take a negligible 

amount of time. After this step, the intermediates are stored into boxes. All oiled intermediates are 

now ready for packaging. However, some of the sanded intermediates also need a coating. They are 

sent to the coating line. 

2.1.4 Coating and glancing 
The intermediates that need a coating are further processed on Drage Sukker, the coating line. The 

process consists of two steps, coating and glancing. First the intermediates are put into a coating drum 

where colour and flavour are added. There are two types of coating: sugar and sugar-free. Once this 

is finished the intermediates are put in a glancing drum where some wax is added to polish their 

surface. The coated products are afterwards ready for packaging. 

The Drage Sukker line can be run with a 2-shift or a 3-shift system similar to Stǿperi Sukker (see Table 

2.1). During the day shifts there are 2 operators, while during the night shift there is only one operator. 

The coating involves a lot of manual labour and therefore the available capacity of a night shift is only 
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half the capacity of a day shift. Each operator can process 1400 kg of sugar coated intermediates or 

700 kg of sugar free coated products per shift. Setup costs and changeover times are negligible for this 

stage. 

The storage space for WIP between the Stǿperi Sukker and Drage Sukker lines is limited. This has been 

a problem in the past; therefore the planner must ensure that WIP between these lines stays under 

the maximum capacity of the storage space. 

2.1.5 Packaging 
All intermediates need to be packed to become finished products. The type of packaging differs 

between products. As mentioned earlier, some types of intermediate need to be packed into multiple 

products. Brynild has multiple packaging lines, each of which is dedicated to a different type of 

packaging. Each product can be packed only at a specific packaging line. The intermediates are packed 

into consumer packages, which are in turn packed into distribution packages. These are then stacked 

on pallets and transported to the finished goods warehouse. 

Before packaging, the intermediates are stored as WIP on the shop floor. The storage space is limited 

and so there is a restriction on the amount of intermediates that can be waiting to be packed. 

2.2 Current production planning & scheduling process 
In this research, the focus is on the method of creating the MPS for Brynild’s confectionery process. 

However, to fully understand the MPS, its limitations and potential, it is necessary to understand how 

it interacts with the other components of the planning & scheduling process. In this section, the entire 

planning process that is currently used for confectionery production at Brynild is described. At the end 

of this section, a visualization of the process is given in Figure 2.5. 

2.2.1 Types of product demand and product demand forecasting 
The confectionery production of Brynild is mostly MTS, so the quantities that need to be produced are 

based on forecasts. Therefore demand forecasting is paramount for planning. Four different types of 

product demand are distinguished. We now describe each type of demand and the method used for 

forecasting this demand: 

1) Regular demand 

Regular demand consists of the regular sales of products. These products are produced in an 

MTS fashion. Brynild’s enterprise-resource-planning (ERP) provides demand forecasts for six 

months into the future. 

2) New product introductions 

For new products, demand is forecasted based on experience. Before the product is sold in 

stores, the supply chain needs to be saturated with the new product. Achieving this takes 

approximately 20% of the expected annual demand. 

3) Campaign demand 

Promotional campaigns temporarily increase sales of a certain product at a specific retail 

chain. To anticipate this, an agreement is made with the retail chain 5 to 10 weeks in advance. 

4) Seasonal demand 

Seasonal products are products made for a specific season or holiday. These products have a 

high demand in the couple of weeks and cannot be sold afterwards. Brynild makes these 

products for Christmas, Easter, Halloween and the summer season. In addition to seasonal 

products, certain regular products also see a sharp increase in demand during these holidays. 

Figure 2.3 shows the weekly sales of such a product (Supermix) from the start of 2012 until 

week 9 of 2014. Supermix is a regular product, which sees sharp increases in demand during 
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Easter (påske) and Christmas (jul). The demand for seasonal product and increased demand 

for regular products are called seasonal demand. Seasonal demand must be produced well in 

advance because the demand is many times higher than regular demand and production 

capacity. Volumes for seasonal demand are determined four months in advance. The forecasts 

are based on historical numbers and regular demand. 

 

Figure 2.3 Demand for Supermix, a regular product, from the start of 2012 till the beginning of 2014. Figure provided by 
Brynild. 

2.2.2 From product demand to production demand 
This section describes the process of converting the different types of product demand to the demand 

for the different intermediates. 

The ERP only creates forecasts for regular product demand. These numbers are pulled out of the ERP 

system. The new product, campaign and seasonal demand forecasts are then added to create the total 

weekly demand for all products. From this point in the process, the different types of demand are no 

longer distinguished. 

The forecast for the total weekly product demand spans six months. However, it is important to note 

that this forecast is not complete. As previously described, campaign demand is only known five to 

ten weeks ahead and seasonal demand is decided upon four months in advance. Demand that lies 

further into the future is therefore systematically forecasted too low. 

The total weekly product demand, the so called external demand, is then fed back into the ERP system. 

The ERP combines the weekly product demand with the bill-of-materials (BOM) to determine the 

demand for each product and intermediate at respectively the packaging and the production line. The 

demand for the intermediates that is generated by the external demand is the so called internal 

demand. To do this the ERP uses a systematic procedure that assumes a fixed lead time of one week 

between each of the production and packaging lines. Other than assuming a fixed lead time, the ERP 

system uses no planning logic and neither does it consider any capacity constraints. 
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The procedure that the ERP uses consists of the following steps: 

1) For each week t, the product demand in that week is set as demand for that product at the 

corresponding packaging line. 

2) The uncoated intermediates that are part of these demanded products are set as demand at  

the Stǿperi Sukker line in week t-1. 

3) The coated intermediates that are part of these demanded products are set as demand at the 

Drage Sukker line in week t-1. 

4) The demanded coated products at the Drage Sukker line are set as demand at the Stǿperi 

Sukker line in week t-2. 

The output of this procedure is called the material-resource-planning (MRP) data and is a database 

where each entry specifies a product or intermediate, a due date, an order size in kilogram and a 

production line. An entry in this database is referred to as a production order. 

Figure 2.4 shows the production orders generated for one product in one week (the actual data 

consists of all products for six months). The blue production order shows a demand of 6300 kilogram 

for a product called “Jelly Beans XXL” in week 14 of 2021. This product is packed on the Lǿsvekt Boks 

packaging line, so this is where the demand is located. Jelly beans are a coated product, therefore this 

induces another production order (in green) of 6300 kilogram for the corresponding coated 

intermediate at the Drage Sukker line in week 13. In turn, this induces a production order (in red) of 

4900 kilogram of the corresponding uncoated intermediate at the Stǿperi Sukker line in week 12. The 

demand at the Stǿperi Sukker is lower because the coating adds weight to the intermediates. 

 

Figure 2.4 An example of the input data for the MPS, with production orders for Stǿperi Sukker in red, for Drage Sukker in 
Green and production orders for the packaging lines in blue. 

The output data as shown in Figure 2.4 is essentially a so called lot-for-lot schedule. A lot-for-lot 

schedule plans the production of an intermediate or product in the week that it is due, while ignoring 

capacity constraints. Typically, such a schedule is almost always infeasible. The planner uses this lot-

for-lot schedule as the main input for the creation of the MPS. 

2.2.3 Creating the MPS 
The MPS dictates the amount of each intermediate that needs to be produced and the amount of each 

product that needs to be packed in each week. The MPS is made manually by the planner, who uses 

his experience and knowledge of the production process to create a feasible planning. The MPS is 

updated at irregular intervals varying from multiple times a week, to once a month. The decision when 

to update the planning is made by the planner. 

The ERP data, like the example in Figure 2.4, is loaded into a spreadsheet program. There it is displayed 

as a lot-for-lot schedule. The planner tries to make the schedule feasible by dragging (partial) 

production orders to earlier weeks, hereby he takes the capacity constraints into account. 

The planner first makes the schedule for the Stǿperi Sukker line. He tries to fit as many production 

orders as possible into the first week, by looking at which future production orders can be dragged to 

this week, either in whole or partially. This process is repeated for the second week and the third 

week. The philosophy behind this approach is that by producing as many production orders as possible 

material material description due date order size (kg) line

107270 Korpus Frutti beans xxl 2021-12 4900 Støperi Sukker

113540 Drage Frutti Beans XXL 2021-13 6300 Drage Sukker

107246 Brynild LV Jelly Beans XXL 2,70kg 2021-14 6300 Løsvekt Boks
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in the upcoming three weeks, enough capacity remains in future weeks to fulfil demand that lies 

further into the future. 

The schedules for the Drage Sukker line and the packaging lines follow from the schedule of the Stǿperi 

Sukker line. For these lines the planner applies a simple policy where they package what has been 

produced earlier, which is now WIP on the factory floor. This policy works because the capacity of the 

packaging lines is higher than that of the production lines. The scheduling for the Stǿperi Sukker line 

is much more complex than that of the packaging lines and consumes therefore the most of the 

available time. 

The MPS is created for the upcoming three weeks based on the forecasts for the next six months. It is 

necessary to create the MPS for at least the upcoming three weeks because the decision whether to 

run a 2-shift or 3-shift system on a production line needs to be made at least two weeks in advance. 

This decision is made by the planner and is part of the MPS planning. 

The planner is hesitant to create an MPS for more than three weeks into the future because this is a 

time consuming task and the demand forecasts are incomplete for future weeks. Instead, it is 

considered more useful to spend this time on the creation of weekly schedules based on the MPS. 

2.2.4 From MPS to weekly schedule 
The planner uses the MPS to create a detailed schedule for the next week. In this schedule he specifies 

the sequence in which batches are produced by the different production lines (Stǿperi Sukker, Drage 

Sukker and the packaging lines) and assigns drying cabinets to each batch produced at the moulding 

machine. 

The MPS is created based on estimates of the available capacity and productivity rates. In practice 

there are slight deviations. The planner can tweak the schedule by slightly increasing the length of 

shifts by asking people to work overtime or slightly reduce the production quantities. When necessary, 

he can run an extra overtime shift on Friday afternoon or Saturday. From the perspective of the labour 

regulations, these overtime shifts are different from the night shifts. Overtime shifts do not have to 

be announced two weeks in advance and are therefore the operators are compensated with an 

increased wage. This makes overtime shifts more expensive than night shifts. 

2.2.5 Summary of the planning process 
A summary and visualization of the different steps in the planning process and their interaction is 

given in Figure 2.5. Decisions are made on two levels, the MPS level and the weekly schedule level. 

Figure 2.5 shows that the planning process is a collaboration between the ERP system and manual 

interventions. In general, the manual interventions cover the tasks the ERP system is not able to 

perform. 
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Figure 2.5 The entire planning & scheduling process of confectionery production at Brynild. 

2.3 Performance of the planning process 
In Section 2.2 the planning process is described in detail. In this section, the performance of this 

process is discussed. The most interesting performance metrics to production schedules are: the 

feasibility of the schedule, the quality the schedule, and the time needed to generate and report a 

schedule. The quality of the schedule is the extent to which the schedule achieves the objective 

(Harjunkoski, et al. 2014). In our case, this objective is the cost-effective fulfilment of the demand. 

Each of these performance metrics are discussed separately in relation to the MPS. 

2.3.1 The feasibility of the MPS 
In the current planning process the feasibility of the MPS is guarded by the planner. He uses his 

knowledge of the process to check whether capacity constraints are violated. On the MPS level he 

estimates whether a set of production orders fits into one week. In the weekly schedule he can solve 

small infeasibilities by allowing for some overtime or by reducing certain production quantities. The 

high degree of human control provides flexibility and makes it possible to solve infeasibilities in the 

planning in an ad hoc manner. However, it also makes the process time consuming. This leaves little 

time for improving the quality of the MPS. 
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2.3.2 The quality of the MPS 
In the current situation the quality of the MPS is not evaluated. Therefore a method for evaluating the 

MPS is not directly available. In this section we propose a method for evaluating the quality of an MPS. 

The planner gets a set of production orders that serve as input for the MPS. His task is to create an 

MPS that ensures the fulfilment of these production orders in a cost-efficient manner. The quality of 

an MPS can therefore be evaluated by calculating the costs associated with an MPS. 

Not all costs of production are influenced by the MPS. The costs of the production equipment and the 

procurement costs of the packaging materials are examples of costs that are not influenced by the 

MPS. When calculating the costs of an MPS, only those costs influenced by the MPS should be taken 

into account. For Brynild’s confectionery production process, we consider the following costs to be 

influenced by the MPS: 

1) Changeover costs 

When changing from the production of one intermediate to another at Stǿperi Sukker, the 

pipeline between cooking and moulding needs to be cleaned, resulting in the loss of material. 

The number of changeovers and therefore the height of this loss is influenced by the MPS. 

2) Holding costs 

Holding costs are incurred for the finished product that lay in the warehouse. The MPS 

determines when products are produced and therefore influences the time products spend in 

the finished goods warehouse. Therefore these holding costs are influenced by the MPS too. 

3) Costs of lost sales 

When demand exceeds the available capacity, not all demand can be fulfilled. Costs are 

incurred for these lost sales. In such a case the MPS determines which demand is fulfilled, 

therefore the costs of lost sales are influenced by the MPS. 

4) Operator salaries 

The MPS determines the production quantities in each week and simultaneously whether a 2-

shift or 3-shift system is used for each production line. Therefore the additional salary costs 

of running a 3-shift system are influenced by the MPS. 

2.3.3 The time needed to generate a schedule 
In the current situation the planning of the confectionery process, which spans the creation of the 

MPS and the weekly schedules is a full-time job executed by one person. The MPS is only created for 

the next three weeks because of time constraints. For both the MPS and the weekly schedules most 

of the available time is spent on the creation of a feasible schedule. This leaves little or no time for the 

optimization of these schedules. 

2.3.4 Summary of the performance of the current planning process 
The current planning process consists mostly of manual tasks. This makes the planning process time 

consuming. Since most of the available time is needed to create a feasible schedule, there is little or 

no time for improving the quality of the schedule. The quality of the MPS of Brynild’s confectionery 

production process is not evaluated in the current planning process and a method for evaluating the 

MPS is non-existent. Therefore we propose such a method here. We use this method to evaluate our 

candidate solution in Chapter 5.  
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3. Literature review 
In this chapter, research question 2 is answered: What methods for the creation and optimization of 

an MPS are there in literature and which are applicable to Brynild’s confectionery production? Section 

3.1 formally defines the problem of constructing an MPS and relates it to problems and models studied 

in literature. Section 3.2 describes different methods for the creation and optimization of an MPS that 

are found in literature. This chapter is concluded with a tabular overview of which solution methods 

excel when applied to different versions of the problem in Section 3.3. 

3.1 Problem definition and extensions 
According to our research objective, the problem of our interest is that of constructing an MPS that 

levels the workload at multiple stages of a production process. An MPS is a plan with the goal of 

scheduling production quantities in each period of the planning horizon, minimizing the cost and 

maximizing the bottleneck utilization (Herrera & Thomas, 2009). By this definition, an MPS should 

dictate when to produce a product and how much to produce of it. The production quantity is referred 

to as a so called lot. Constructing an MPS is equivalent to lot sizing, which seeks to determine the 

optimal timing and level of production (Clark, Bernardo, & Almeder, 2011). 

Lot sizing problems can be divided into two classes based on whether the lot sizes to be determined 

should be static or dynamic. When the lot size of a product is determined once and then this lot size 

is used frequently, this is called static lot sizing. Static lot sizes are normally used when the underlying 

model assumes constant demand. An example of such a model is that of the economic-order-quantity 

(EOQ) model. When lot sizes are determined based on current (non-constant) demand, the lot size 

can change every time a product is produced. This is called dynamic lot-sizing (Broecke, Landeghem, 

& Aghezzaf, 2007). 

Another criterion based on which lot sizing problems can be divided into two classes is whether the 

resources needed for production have a maximum capacity or unlimited availability. These problem 

classes are referred to as capacitated-lot-sizing-problems (CLSP) and uncapacitated-lot-sizing-

problems respectively (Hein, Almeder, Figueira, & Almada-Lobo, 2018). 

When resources have unlimited availability, determining the optimal lot size of a product is a trade-

off between the setup costs for production and the holding costs for holding finished products, while 

taking into account the constraints imposed by demand. There is no interaction between products, 

allowing the problem to be solved one product at a time (Buschkühl, Sahling, Helber, & Horst, 2010). 

When resources have limited capacity, determining the optimal lot size becomes harder. Florian et al. 

(1980) have proven that a single product CLSP without setup times is NP-hard. In the case of multiple 

products, the lot sizes of the different products can no longer be determined independently, since all 

products are competing for the same limited resource. 

The confectionery production process at Brynild that is the subject of this research has capacitated 

resources and demand for products is variable. The variable demand implies dynamic lot sizes. 

Therefore the remainder of this chapter focusses on the dynamic CLSP. 

3.1.1 The dynamic capacitated-lot-sizing-problem 
The dynamic CLSP describes the following scenario. A finite planning horizon is divided into a number 

of discrete time periods (weeks). There are multiple products with period specific demands that must 

be met without delay. All products are produced on the same machine with limited capacity. The goal 

is to determine the production amounts for each product in each period such that the sum of setup 

and holding costs are minimized while capacity restrictions are respected (Dixon & Silver, 1981). 
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The dynamic CLSP has been intensively studied in the last decades so that different mixed-integer-

programming (MIP) formulations, model extensions and solution approaches exist (Hein, Almeder, 

Figueira, & Almada-Lobo, 2018). 

The original dynamic CLSP as formulated by Dixon and Silver (1981) is based on the following 

assumptions: 

1) All products are produced on the same capacitated resource. 

2) All demand is deterministic and must be fulfilled on time.  

3) Production in a time period can be used to satisfy demand in this period. 

4) Each time that production of a product is initiated, a setup costs is incurred. 

5) Unit production costs are constant for each product. (Total production costs excluding setup 

costs are therefore constant and not included in the model.) 

6) Setups have fixed costs per product and do not influence available capacity. 

7) Holding costs are incurred for each unit of product that is carried from one period to the next. 

These assumptions often do not hold in real world production processes. Numerous extensions to the 

original model have been proposed in order to make the model applicable to real world applications 

(Buschkühl, Sahling, Helber, & Horst, 2010). In the remainder of this section, we describe extensions 

proposed in literature that are relevant for making the dynamic CLSP applicable to Brynild’s 

confectionery production process.   

3.1.2 Multi-level extension and different product structures 
The original dynamic CLSP assumes a singular product structure. Products with a singular structure are 

produced on one machine. In reality, products often need to be processed on multiple machines in a 

specific order (serial product structure). Products can also consist of multiple intermediate parts that 

also need to be produced (assembly structures) and those intermediate parts can in some cases even 

be used in different products (general structures). Figure 3.1 illustrates these different product 

structures. 

 

Figure 3.1 The 4 different types of product structures. 

The extension of the CLSP to the multi-level CLSP (MLCLSP), sometimes referred to as the multi-stage 

CLSP, was introduced by Billington et al. (1983). They assume a fixed product structure in which the 

number of intermediate parts needed for an end-product or other intermediate part is known. This 

fixed structure is used to convert demand for an end-product, so called external demand, into demand 

for the intermediate parts, so called internal demand. Producing an end-product lowers the inventory 

levels of the required intermediate parts by the necessary amounts. Since inventory levels cannot be 

negative, this ensures availability of the intermediate parts. 
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This extension can also take into account fixed lead times for the intermediate parts. This is achieved 

by modifying the inventory constraints so that produced parts are added to the inventory in a later 

period, instead of in the time period that their production starts. 

The extension proposed by Billington et al. (1983) makes it possible for the model to account for 

general product structures and fixed lead times. Since all other product structures are simplifications 

of the general structure, the MLCLSP can deal with those as well. 

3.1.3 Capacitated resources extensions 
Both the original CLSP and the MLCLSP assumes that only one capacitated resource is needed to 

produce a part or product. In reality, multiple capacitated resources might be needed. This can be 

incorporated in the model by adding additional capacity constraints for the operations that require 

multiple resources (Xie & Dong, 2002). 

An original application of multiple capacitated resources has been researched by Boctor & Poulin 

(2005). They show that a multi-stage production process with serial product structures can be reduced 

to a single-stage production process with multiple capacitated resources by adding the assumption 

that lot sizes are the same for each stage. This reduces the complexity of the model, since the number 

of binary and continuous decision variables (for the setup costs and the production quantities) is 

reduced by a factor equal to the number of stages. The reduced complexity makes it easier to find 

good solutions for the model. 

Another extension relates to the nature of the capacity constraints. The majority of CLSP related 

research assumes that the amount of a resource needed for production is proportional with the 

production quantity. This allows for linear capacity constraints. In reality this might not be the case. A 

MLCLSP with nonlinear capacity constraints is researched by Koken et al. (2017). They conclude that 

the nonlinearity of the constraints makes the problem much harder to solve. 

3.1.4 Setup costs and setup times extensions 
The original CLSP assumes fixed setup costs for each product, but no resources are used in this setup. 

In reality, this is not always the case. When a resource is capacitated by its available time, a time 

consuming setup reduces the remaining capacity. To model this, the capacity constraints can be 

altered to include the setup times for each product (Buschkühl, Sahling, Helber, & Horst, 2010). Some 

model formulations do not include setup costs at all. Instead, setup costs are only indirectly induced 

by the reduction of the available capacity through setup times. This approach is common when the 

costs of a setup are negligible compared to the labour costs and capacity loss caused during the setup 

time (Özdamar & Bozyel, 2007). 

Regardless of whether setup costs, setup times or both are included in the model formulation, the 

standard assumption is that setups cannot be carried over to the next period. It is assumed that the 

setup needs to be done twice when the same product is produced at the end of a time period and the 

beginning of the subsequent period. In reality it might be possible to continue production of this 

product without a setup. 

Integrating setup carryovers into the model is not straightforward because the CLSP model and its 

variations do not provide any information regarding the sequence of production within a time period 

(Buschkühl, Sahling, Helber, & Horst, 2010). Setup carryovers have been integrated into the CLSP 

(Dillenberger, Escudero, Wollensak, & Zhang, 1993) and into the MLCLSP (Sürie & Stadtler, 2003). 

However, both extensions add a significant number of additional variables to the model. This adds to 

the complexity of these models, making them harder to solve. 
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The absence of information regarding the sequence of production becomes an even bigger problem 

when sequence dependent setups are considered. Haase & Kimms (1999) study a standard CLSP with 

sequence dependent setup times. They were able to find good solutions by predetermining and 

storing efficient product sequences, but only for relative small problem instances of up to 10 items 

and up to 3 periods. 

3.1.5 Possible overtime extension 
In the original CLSP and all extensions discussed so far, the capacity of one or multiple recourses was 

assumed to be fixed. In reality, it is sometimes possible to increase the capacity of certain recourses 

in a given time period against increasing costs (Özdamar & Bozyel, 2007). An example of such a 

resource is manpower. Employees can work overtime to increase capacity, but usually against an 

increased hourly wage. 

When the capacity of the resource is time based, this extra capacity is referred to as overtime capacity. 

Özdamar & Bozyel (2007) provide a formulation of a CLSP model with overtime decisions. In their 

model, capacity is constrained by the sum of the normal capacity and the maximum overtime capacity. 

The used overtime capacity is a decision variable and the total overtime costs are part of the cost 

function to be minimized. Özdamar & Bozyel (2007) apply their extension only to time based 

capacitated resources. However, their formulation can also be used for capacitated resources that are 

not time based, but whose capacity can still be increased against extra costs. 

3.1.6 Extending the scale of the model 
The scale of the model refers to the number of variables and constraints needed to formulate the 

model. Increasing the scale of the model is technically not an extension, since it does not change the 

structure of the model. However, like the extensions covered in the preceding part of this section, 

increasing the scale of the model increases the runtime, making it more difficult to find a good 

solution. This is why it is included in this section.  

The reason that a larger model takes more time to solve is because more variables and constraints 

need to be taken into account. A common metric for the scale of a CLSP is the product of the number 

of items and the number of time-periods included in the model, because this largely determines the 

number of decision variables and constraints (Buschkühl, Sahling, Helber, & Horst, 2010). 

3.1.7 Summary of the extensions for the CLSP 
In this section, the original dynamic CLSP was introduced, after which the numerous extensions to this 

model that are studied in literature were described. These extensions cover different aspects of the 

model: product structure, capacity, setups and overtime. These extensions aim to make the model 

more realistic for real world applications. Thereby, they make the model more complex, making it 

harder to find feasible and (sub-)optimal solutions. The choice “What to include in the model?” is 

therefore almost always a trade-off between realism and solvability. Table 3.1 combines the different 

extensions covered in this section into a single overview. The extensions are grouped by aspect and 

ordered based on the complexity they add to the model. 

The original CLSP is marked in yellow. Table 3.1 shows that all extensions discussed in this section lead 

to an increase of the models complexity. It possible to freely combine extensions for different aspects 

together into new models. 
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Less complex 

 
More complex 

Product 
structure 

Singular Serial Assembly General 

Capacity 
Capacitated single 

resource 
Capacitated multiple 

resources 
Nonlinear capacity 

constraints 

Setups Setup costs Setup times Setup carryovers 
Sequence 

dependent setups 

Overtime 
possible 

No overtime possible Overtime possible 

Scale of the 
model 

Small-scale Large-scale 

Table 3.1 Extension to the CLSP, grouped by aspect and ordered by added complexity. The original CLSP is marked in yellow. 

3.2 Solution methods for the CLSP and its extensions 
In the previous section, the CLSP and several extensions were introduced. Many different solution 

methods for the CLSP have been studied in literature. In this section, these solution methods are listed. 

Since there are many different solution methods and numerous versions of the CLSP, the focus of this 

section is on identifying the combinations of methods and problems that have shown to yield good 

results. This knowledge is critical for the construction of a solution for Brynild in Chapter 4. 

Buschkühl et al. (2010) studied more than 100 papers, published between 1970 and 2010, regarding 

different solution methods for CLSPs. They classify the different solution methods studied in literature 

in one of five categories: Mixed integer programming (MIP)-based approaches, Lagrangean heuristics, 

decomposition and aggregation heuristics, metaheuristics and problem-specific heuristics. MIP-based 

methods, metaheuristics and problem specific heuristics are identified as the most promising 

categories for solving real world applications. Meanwhile, Lagrangean and decomposition heuristics 

show a decline in research after the year 2000.  

Therefore, the latter two categories are left out of this section. Instead, the focus is on MIP-based 

methods, metaheuristics and problem-specific heuristics. In the remainder of this section we discuss 

each of these 3 categories in detail. 

3.2.1 MIP-based methods 
MIP-based methods cover a broad category of solution methods. Every approach that models the 

problem as a MIP-model can be considered to fit into this category. MIP-models can be solved to 

optimality, but the time required to do so grows unacceptably large for models of realistic size. 

Therefore most MIP-based methods focus on strategies to reduce the computation time. Examples of 

such strategies are relaxing the binary variables such that they can take real values and pruning the 

solution space to exclude unpromising regions. A disadvantage of these methods is that when the 

model is too large, either the computation time increases or the solution quality decreases beyond 

acceptable bounds. 

Another disadvantage is of MIP-based methods is that they are not applicable to all variations of the 

CLSP. This is for example the case when a CLSP has complex constraints that cannot be expressed in a 

MIP-formulation.  
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LP-based methods 

LP-based methods are a distinguished class within the set of MIP-based methods. The LP-based 

approach is to identify a set of promising values for the binary variables of the MIP-model and fixate 

these variables. Once all binary variables are fixated, the MIP-model becomes a linear programming 

(LP)-model. LP-based methods exploit the fact that LP-models are easier to solve than MIP-models 

(Buschkühl, Sahling, Helber, & Horst, 2010). 

The quality of the solution found by LP-based methods depends largely on the quality of the set of 

values used to fixate the binary variables. Determining this set can be done through other optimization 

routines like most metaheuristics. Metaheuristics are discussed in Section 3.2.3. Regardless of the 

method used to find a set of values for the binary variables, each candidate solution needs to be 

evaluated by solving the resulting LP-model. Therefore the efficiency with which the resulting LP-

model can be solved is paramount for the success of LP-based methods (Jans & Degraeve, 2007). 

When the resulting LP-model is very large, solving it might take a considerable amount of time. Since 

LP-based methods require solving multiple LP-models the total runtime can become quite long. In this 

case, the strategy of fixing the binary variables can still be applied, but heuristics need to be used to 

determine the production quantities. This strategy is studied by Xie and Dong (2002) amongst others. 

The use of these heuristics means deviating from an LP-based approach. 

3.2.2 Problem-specific heuristics 
The majority of the problem-specific heuristics are simple and intuitive methods. Because these 

methods are relative simple compared to other solution categories, they are by far the fastest way for 

creating a feasible solution to the CLSP (Hein, Almeder, Figueira, & Almada-Lobo, 2018). Their speed 

makes these heuristics suitable for solving large scale CLSPs.  

Problem-specific heuristics can be split into 2 categories: Constructive and improvement heuristics. 

Constructive heuristics 

Constructive heuristics generate a solution from scratch, starting with an empty schedule. For the 

original CLSP, a constructive heuristic converts the given demand matrix into a feasible production 

plan. Most heuristics do this in a period-by-period fashion through either a forwards or backwards 

routine. Forward routines start at the first time period and work their way towards the last time 

period, while backward routines start at the last time period and work their way back towards the first 

time period (Buschkühl, Sahling, Helber, & Horst, 2010). 

Most forward heuristics consider adding future demand orders to the production in the current week, 

thereby combining them and reducing the total number of lots. The idea behind this approach is that 

combining lots reduces the number of setups required and therefore the setup costs and time.  

Moving production of future demand orders to earlier weeks increases the holding costs and might 

therefore not be profitable overall. Therefore most forward heuristics use some sort of savings index. 

A savings index is a formula that assigns a value to each future demand order based on certain 

parameters of that order. Common parameters include the setup and holding costs for the product 

and the number of time periods between the demand order and the current week. The assigned value 

indicates the attractiveness of adding the demand order to the current week’s lot (Hein, Almeder, 

Figueira, & Almada-Lobo, 2018). Some forward heuristics also increase production in the current week 

because future capacity might not be sufficient to satisfy all future demand. 
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Backward routines work by moving demand from the current week to earlier weeks in order to solve 

infeasibilities in the schedule. An advantage of backward routines compared to forward routines is 

that they do not need to consider all lots in the weeks they have not worked through yet because 

moving lots past their due date is in general not possible in a CLSP (unless backorders are allowed).  

Improvement heuristics 

Improvement heuristics generate a better feasible solution from an inferior and possibly infeasible  

starting solution (Buschkühl, Sahling, Helber, & Horst, 2010). The starting solution is often a so called 

lot-for-lot production schedule. In a lot-for-lot schedule, the lot size of a period equals the demand in 

that period. Since a lot-for-lot schedule does not consider the capacity constraints, it is typically 

infeasible. An advantage of a lot-for-lot schedule is that it can be instantly created from the demand 

matrix. Therefore it is a simple starting solution for improvement heuristics that do not rely on the 

starting solution being feasible. This approach is for example used by Boctor & Poulin (2005). 

Improvement heuristics that do rely on the starting solution being feasible usually use a constructive 

heuristic to obtain this feasible starting solution, after which the improvement heuristic tries to 

improve this solution. 

As opposed to constructive heuristics, that often work either backwards or forwards through the 

planning horizon. Improvement heuristics do not limit themselves to a specific order, but rather make 

changes all over the schedule. Improvement heuristics try to improve the schedule by shifting partial  

complete lots backwards or forwards, while chasing two objectives: make the schedule feasible and 

reduce the costs. There are heuristics that focus on reducing the costs first (Dogramaci, 

Panayiotopoulos, & Adam, 1981), while others first ensure a feasible schedule (Boctor & Poulin, 2005). 

Some heuristics pursue both goals simultaneously (Franca, Armentano, Berretta, & Clark, 1997). 

Applying problem-specific heuristics to other CLSPs 

As the name suggests, problem-specific heuristics are problem specific. Not all heuristics can be 

applied to all the variations of the CLSP. For example, a heuristic that relies on the assumption that 

total required capacity is independent of the schedule cannot be applied directly to a CLSP that 

includes setup times, since the total required capacity in a model with setup times depends on the 

number of setups, that in turn depend on how the production schedule combines lots together. 

Therefore care must be taken when applying an existing heuristic to another problem. Many heuristics 

for the CLSP have been researched in literature and successfully applying a heuristic to a specific CLSP 

is a matter of choosing the right heuristic (Buschkühl, Sahling, Helber, & Horst, 2010). The right 

heuristic is should be applicable to the target problem and should preferable have shown good 

performance in previous research. 

3.2.3 Metaheuristics 
Metaheuristics are high level searching strategies for solving optimization problems (Buschkühl, 

Sahling, Helber, & Horst, 2010). They are high level strategies in the sense that they only guide the 

process of exploring the search space. They do not specify what the neighbourhood structure must 

be, how candidate solution are generated or how these candidate solutions should be evaluated. 

Therefore, metaheuristics do not contain any problem specific knowledge. This makes them applicable 

to a large variety of problems that are relative large and complex. 

Metaheuristics need to incorporate other heuristics for generating neighbouring solutions and 

evaluating them. These are the so called lower level heuristics. The lower level heuristics can contain 

problem specific knowledge. Through this path, metaheuristics can exploit problem specific 
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knowledge, while still being applicable to many different problem types (Buschkühl, Sahling, Helber, 

& Horst, 2010). 

Most metaheuristics contain mechanisms that allow them to escape local optima. This enables them 

to explore a broader section of the search space. The search space of metaheuristics can also include 

infeasible solutions. When this is the case, a penalty function regarding the infeasibility is usually 

included in the objective function (Xie & Dong, 2002). 

Genetic Algorithms (GA), Tabu Search (TS) and Simulated Annealing (SA) are three of the most well-

known metaheuristics and are widely applied for solving complex combinatorial problems in general 

(Jans & Degraeve, 2007). Their popularity comes from the fact that they can be applied to a broad 

spectrum of optimization problems. They are also the most researched metaheuristics in lot-sizing 

literature (Buschkühl, Sahling, Helber, & Horst, 2010). In the remainder of this subsection, we describe 

these three methods and their appliances to the CLSP and related problems. 

Genetic Algorithm (GA) 

GAs are inspired by the principles of natural selection. They consider multiple solutions 

simultaneously, that are together referred to as a generation. In each iteration, a new generation of 

solutions is created by performing certain operations on the previous generation. These operations 

are carried out in such a way that the best solutions from the previous generation have a higher chance 

of reappearing and influencing the solutions in the new generations (Buschkühl, Sahling, Helber, & 

Horst, 2010).  

Since GA considers multiple solutions simultaneously, it has the advantage that its performance is not 

heavily influenced by the quality of the original solutions. It is common that the first generation of a 

GA consist of random generated solutions. The lack of dependence on a good starting solution is a 

great advantage when it is hard to create good starting solutions. 

A drawback of GA is that the operations that create a new generation of solutions become 

computationally heavy when a large number of variables is needed to represent a solution. This is 

often the case in CLSP problems of realistic size and the main reason why GA’s fail to find good 

solutions for these problems (Xie & Dong, 2002). 

Özdamar and Bozyel (2007) used a GA to solve a CLSP with overtime decisions and setup times. They 

concluded that the GA gave good solutions for small problem instances, but that the heavy data 

structure needed made it impossible to achieve good solutions for larger instances. Xie and Dong 

(2002) solve a similar problem, but only include the binary setup variables of the solution into GA. 

They use another heuristic to derive a complete solution from a set of fixed binary variables. This 

reduces the computational burden somewhat, but they are still only able to solve small and medium 

problem instances of up to 21 items and 6 time periods. 

Tabu search (TS) 

TS explores a search space from a starting solution by moving to the best of its current neighbouring 

solutions, regardless of whether this neighbour is better than the current solution. To prevent itself 

from hopping between two neighbouring solutions forever, it uses a so called Tabu list. The Tabu list 

stores information on recent moves to prevent their reversal. This allows TS to escape local optima. 

The length of the Tabu list is decisive for the performance of TS. The optimal length depends on 

problem specific characteristics (Buschkühl, Sahling, Helber, & Horst, 2010). 
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A drawback of TS is that it evaluates all neighbouring solutions before making a move. Depending on 

the neighbourhood structure this can be a computationally heavy procedure. Within CLSP, neighbours 

are usually generated by moving a particular lot of one item, either partially or completely (Jans & 

Degraeve, 2007). This means that large CLSP problems have equally large neighbourhood structures. 

Hung et al. (2003) partially solve the problem of a large neighbourhood by defining a neighbourhood 

structure based on minor changes to the setup variables. They solve the remaining LP model to 

optimality to evaluate a set of fixed setup variables. This approach means that less neighbours have 

to be evaluated before making a move. However, an LP model needs to be solved for the evaluation 

of each neighbour. Therefore the scale to which this approach can be applied depends on how efficient 

the resulting LP model can be solved (Jans & Degraeve, 2007). 

Simulated Annealing (SA) 

SA is a metaheuristic for optimizing combinatorial problems that was first proposed by Kirkpatrick et 

al. (1983). SA starts with an initial solution and tries to improve on this solution by exploring random 

neighbouring solutions. Better solutions are always accepted, while worse solutions are accepted with 

a certain probability. This probability depends on how much worse the solution is and a parameter 

called the temperature. At the start, the temperature is high and almost all solutions are accepted. 

Slowly, the temperature decreases so that in the end only better solutions are accepted. This simple 

mechanism allows SA to escape local optima and explore the search space, while still ensuring that 

local optima are exploited in the end. 

SA holds the advantage over GA that it can solve larger instances of the CLSP (Özdamar & Bozyel, 

2007). SA requires only a relative simple neighbourhood structure and it only needs to remember one 

solution, the best solution so far. GA needs to remember all solutions in a generation and requires 

relative complex operations to create the new generation. 

Both SA and TS need to be able to roam the solution space in order to obtain good results. They are 

best abled to do so when the solution space is continuous. Although the original CLSP has a fairly 

continuous solution space, certain extensions make the solution space fragmented. Examples of such 

extensions are more complex product structures. More complex product structures increase the 

constraints on inventory and availability of parts that in turn cause discontinuities in the solution 

space.  
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3.2.4 Summary of solution methods for CLSP 
We conclude with a summary of the (dis)advantages of the 3 categories of solution methods we 

discussed in this section. Table 3.2 shows this summary. 

Category Advantages Disadvantages 

MIP-based 
methods 

• Less dependent on problem 
characteristics. 

• Not all CLSP variations can be 
formulated as MIP-models. 

• Not suitable for solving large 
problems 

Problem-
specific 
heuristics 

• Faster than methods from 
other categories. Therefore 
suitable for solving large 
problems. 

• Choosing the right heuristic might 
be difficult. 

• Not clear what approach works 
best. 

Metaheuristics • General methods that can be 
applied to many different 
variations of the CLSP. 

• GAs are not suitable for solving 
large problems. 

• SA and TS are not suitable for 
very discontinuous solution 
spaces. 

Table 3.2 Overview of the (dis)advantages of the different solution categories.  
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4. The proposed planning method 
In Chapter 3, we showed that many variants of the CLSP are studied in literature and that multiple 

solution method are available. In this chapter, we answer research question 3: What method or 

methods are promising candidate solutions for achieving the research objective? To do this we 

combine the insights from Chapter 3 with the knowledge of Brynild’s confectionery production from 

Chapter 2 to achieve two things. First, in Section 4.1, we define a variant of the CLSP that represents 

the planning of Brynild’s confectionery production. Second, in Section 4.2 we choose an existing 

solution method from literature as a basis for our own method. In Section 4.3 we make modifications 

to this method to make it applicable with the capacity constraints. In Section 4.4 we make other 

modifications to make this method applicable to our problem. We conclude this chapter with a 

summary of the proposed planning method in Section 4.5. 

4.1 Brynild’s confectionery production planning as a CLSP 
The first step in the construction of a new planning method for the MPS is to decide which parts of 

the production process should be included in this method. We then determine which of the extensions 

to the original CLSP, we need to include in our method to represent the chosen parts of the production 

process. 

4.1.1 The process parts covered by the method 
In Section 3.1 we concluded that the decision of what to include in our method is a trade-off between 

realism and solvability. We need to include enough in the method so that the solution is useful in 

practice, but not so much that the method becomes too complex. When the method becomes too 

complex, the runtime can become too long. As a consequence, the method might fail to find a good 

solution. 

As described in Section 2.1, the confectionery production process consists of two production lines 

(Stǿperi Sukker and Drage Sukker) and four packaging lines. In the current method, the MPS for the 

Stǿperi Sukker line is created first. The MPS of the subsequent lines is then created based on that of 

the Stǿperi Sukker line. The assumed independence of the MPS of the Stǿperi Sukker line from the 

MPS’s of the other lines does not cause significant problems in practice. The practice of scheduling 

the Stǿperi Sukker line prior to the packaging lines makes the scheduling of the latter simpler, since 

this is now mostly dictated by what is produced at the production lines. Because of these reasons, a 

planning method for the MPS that only includes the Stǿperi Sukker line can provide a solution that is 

useful in practice.  

As explained in Section 3.1.6, a common metric for the scale of a CLSP type model is the product of 

the number of items and the number of time periods. Excluding the packaging lines and the Drage 

Sukker line from our model reduces the scale of the model by around half, since it reduces the number 

of items from 85 to 48. This reduction moves our model closer to the range of those we encountered 

in our literature review, since largest model we encountered had 34 items. Therefore we consider a 

planning method for the MPS that only includes the Stǿperi Sukker line, a good trade-off between 

usefulness and solvability. We therefore exclude the packaging lines from our model and include only 

the two production lines Stǿperi Sukker and Drage Sukker. 

4.1.2 Notation 
Before we go into the details of the proposed planning method we introduce some notation for the 

decision variables and parameters used through this chapter. For the sake of consistency all product 

quantities are in kilos and all time units are in shifts (1 shift = 8 hours). The only exception are the 

periods in the planning horizon, which are weeks. 
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Sets: 
T set of all weeks in the planning horizon, weeks are numbered 111 to T, 𝑡 ∈ 𝑇 
K set of all intermediates, 𝑘 ∈ 𝐾 

Decision variables: 
Qkt production quantity of intermediate k at in week t in kilos 
Ykt is 1 if intermediate k is produced in week t, 0 otherwise 
Ot is 1 if night shifts are enabled in week t, 0 otherwise 
Ikt inventory level of intermediate k at the end of week t in kilos 
Ukt lost sales of intermediate k in week t in kilos 

Parameters: 
cchange costs of 1 changeover 
cnight additional costs of running a 3-shift system for 1 week 
cuk costs of a kilo of lost sales of intermediate k 
at number of shifts available in week t in 2-shift system 
ant this parameter has value 1 if night shifts are available in week t, 0 otherwise 
ns extra shifts available if a 3-shift system is used 
dkt demand for intermediate k in week t in kilos 
hk holding costs of 1 kilo of intermediate k for 1 week 
pk kilo of intermediate k that can be produced during a full shift 
lk the amount of intermediate k that fits into 1 drying cabinet 
ndk the drying time of intermediate k in a new drying cabinet in shifts (1 shift = 8 hours) 
odk the drying time of intermediate k in an old drying cabinet in shifts (1 shift = 8 hours) 
st setup time in shifts 

4.1.3 Objective function 
The objective of the method is to create a cost-efficient MPS, meaning that the objective is to 

minimize the sum of the related costs. We identified the related costs in Section 2.3. With the 

notation introduced in the previous section, we can formulate the objective function. The total costs 

are the sum of four different types of cost: The setup costs (in red), the holding costs (in yellow), the 

costs for using night shifts (in green) and the costs of lost sales (in blue). 

min 𝑧 = 𝑐𝑐ℎ𝑎𝑛𝑔𝑒 ∙ ∑ ∑ 𝑌𝑘𝑡𝐾𝑇 + ∑ ∑ ℎ𝑘 ∙ 𝐼𝑘𝑡𝐾𝑇 + 𝑐𝑛𝑖𝑔ℎ𝑡 ∙ ∑ 𝑂𝑡𝑇 + ∑ ∑ 𝑐𝑢𝑘 ∙ 𝑈𝑘𝑡𝐾𝑇   

4.1.4 The drying constraints 
Most of the CLSP formulations we encountered in the literature only use linear capacity constraints. 

This means that there is a limited amount of a resource available and that the amount of the 

resource that is needed to produce a certain lot size of a product is proportional with the lot size. 

In Section 2.1.2 we described the workings of the drying process. We now show that this leads to 

nonlinear capacity constraints. We do have a capacitated resource since there are a limited number 

of drying hours available each week. There are only 5 drying cabinets, that have finite capacity, each 

of which can dry products for at most 24 hours a day. As explained in Section 2.1.2, the number of 

drying hours consumed by the production of a certain lot equals the moulding time plus the drying 

time. The drying time depends on the number of cabinets that is required to fit all the produced 

products and the drying time depends on whether these cabinets are old or new cabinets. We need 

to take into account this uncertainty, since at the moment we create the MPS, it is not yet known in 

what type of cabinet the product will be dried. The number of drying hours consumed by the 

production of a certain lot of product k is therefore equal to: 



33 
 

𝑑𝑟𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑖𝑛 𝑤𝑒𝑒𝑘 𝑡 = 8 ∙
𝑄𝑘𝑡

𝑝𝑘

+ 8 ∙ ⌈
𝑄𝑘𝑡

𝑙𝑘

⌉ ∙ {
𝑛𝑑𝑘    𝑖𝑓 𝑑𝑟𝑖𝑒𝑑 𝑖𝑛 𝑎 𝑛𝑒𝑤 𝑐𝑎𝑏𝑖𝑛𝑒𝑡
𝑜𝑑𝑘      𝑖𝑓 𝑑𝑟𝑖𝑒𝑑 𝑖𝑛 𝑎𝑛 𝑜𝑙𝑑 𝑐𝑎𝑏𝑖𝑛𝑒𝑡

 

As an example, we plotted the drying hours required for a lot of a product called “HF Jordbærfisker” 

in Figure 4.1. The blue and orange lines show the drying hours required if all products are dried in new 

and old cabinets respectively. However, once at least two drying cabinets are required, a mixture of 

old and dry cabinets is also possible. Therefore these lines should be viewed as the lower and upper 

bound of the required drying hours. The plot shows the nonlinear relation between lot size and 

consumption of the capacitated resource. 

 

Figure 4.1 The drying hours required vs the lot size for "HF Jordbærfisker". 

This section shows that the capacity constraints imposed by the drying cabinets, make Brynild’s 

confectionery production are more complex than the linear capacity constraints we encountered in 

our literature review. In Section 4.3 we propose how to deal with this added complexity. 

4.1.5 Included extensions 

 
Less complex 

 
More complex 

Product 
structure 

Singular Serial Assembly General 

Capacity 
Capacitated single 

resource 
Capacitated multiple 

resources 
Nonlinear capacity 

constraints 

Setups Setup costs Setup times Setup carryovers 
Sequence 

dependent setups 

Overtime 
possible 

No overtime possible Overtime possible 

Scale of the 
model 

Small-scale Large-scale 

Table 4.1 Extension to the CLSP, grouped by aspect and ordered by added complexity. The extensions needed to model 
Brynild’s confectionery production process are marked green. 

We concluded Section 3.1 with an overview of the different extensions to the CLSP. Table 4.1 provides 

a similar overview, with the extensions we need to incorporate in our model marked in green. 
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Product structure 

 

Figure 4.2 The different product structures present in the confectionery production process. 

 

Figure 4.3 The different product structures present in the model. 

Figure 4.2 shows the different product structures that can be found within Brynild’s confectionery 

production. We only include the Stǿperi Sukker line in our model. This simplifies the product structures 

found in our model to only singular products, as is shown in Figure 4.3. 

Capacity 

The Stǿperi Sukker line has two capacitated resources, the moulding machine and the space in the 

drying cabinets. Therefore the model needs to incorporate multiple capacitated resources. In addition 

the capacity constraints of the drying cabinets are nonlinear as we have shown in Section 4.1.3. 

Setups 

The moulding machine at the Stǿperi Sukker line incurs both setup costs (through the loss of material) 

and setup times (because the machine needs to be stopped). Therefore we incorporate both into the 

model. 

Overtime 

It is possible to run night shifts against additional costs. The model should therefore incorporate the 

possibility of overtime. All literature we found that incorporated overtime into CLSP models 

considered the costs of overtime to be proportional with the extra time needed. However, in our 

model this is a binary decision, since it is only possible to run an entire week with night shifts or an 

entire week without night shifts. 

Scale 

The Stǿperi Sukker line produces 41 different intermediates and the timespan of the MPS is 26 time 

periods (weeks). This places the model in the large-scale category, since the largest models we found 

in our literature review consists of 34 items and 15 time periods. 
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4.1.6 Positioning of our problem to CLSP literature 
The main thing that separates our problem from the CLSP variants we encountered in the literature 

is the set of capacity constraints for the drying cabinets. Ensuring that the proposed planning 

method can work with these constraints is the main challenge of this research. Besides this major 

difference, there are 4 other differences between our problem that we did not encounter in 

literature: 

1) The scale of our model, measured in the number of items and number of time periods, is larger 

than any of the models we encountered in our literature review.  

2) The decision to use overtime, through the use of night shifts, against additional costs is binary. 

The reviewed papers that incorporated overtime decisions into their models made this a 

proportional decision where it is possible to include just enough overtime to finish the 

required production. 

3) The possibility to include lost sales into the model. We have not found a paper that 

incorporates the possibility to not fulfil all demand in a CLSP. The papers that we found either 

check the feasibility beforehand or stop the method if it discovers that a feasible schedule 

does not exists. In both cases they deem the problem infeasible and do not provide a (partial) 

solution. This is not possible in our case because even if demand is higher than the available 

capacity, a production schedule is still needed. 

4) Our model has one production line with multiple capacitated resources: the moulding 

machine and the drying cabinets. There are papers that cover multiple capacitated resources, 

but their number is significantly smaller than those covering singe capacitated resources. Not 

all solution methods that are proposed for model with single capacitated resources can be 

applied to models with multiple capacitated resources. Therefore this characteristic must also 

be taken into account when choosing a solution method. 

4.2 Choosing a solution method 
In Chapter 3 we described the three main categories of solution methods for the CLSP and their 

respective (dis)advantages: MIP-based methods, metaheuristics and problem-specific heuristics. To 

decide in which of these 3 categories we look for a solution method, we first take a closer look at the 

model we formulated in the previous section and how this model is different from the models we 

encountered in our literature review. We then consider all 3 categories and look for a solution method 

in the most suitable category. 

4.2.1 The most suitable solution category 
In this subsection we identify the most suitable solution category for our model. We consider the three 

main categories of solution methods for the CLSP: MIP-based methods, metaheuristics and problem-

specific heuristics. 

All MIP-based methods require that the underlying model is a MIP-model. Because of the capacity 

constraints of the drying cabinets, our model is not a MIP-model. A possible course of action would 

be to approximate the nonlinear capacity constraints with a linear approximation. This would result 

in an unfeasible schedule that would have to be adjusted to meet the nonlinear capacity constraints. 

However, this MIP-model would be considerably larger, in terms of the number of variables and 

constraints, than any MIP-model we encountered in the reviewed papers. Our literature review 

showed that MIP-based methods are the least suitable of the three categories to solve large models. 

This means that finding a good solution within reasonable time is a difficult task. These arguments 

makes us consider the category of MIP-based methods to be not suitable for our model. 
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Metaheuristics can be applied to a wide variety of problems, including the CLSP. The most common 

used metaheuristics are GA, TS and SA. With the exception of GA, these metaheuristics are better able 

to solve large models than MIP-based methods. However, in order to achieve good results TS and SA 

need to be able to explore the entire solution space. They are best able to do this when the solution 

space is continuous or close to continuous. The need for a close to continuous solution space is why 

these metaheuristics are less suitable for our model. Even when the binary variables are fixed, the 

solution space of feasible production quantities is discontinuous. This discontinuity is a result of the 

nature of the capacity constraints of the drying cabinets. This nature is illustrated by the following 

example: If the size of a lot currently fills exactly one drying cabinet, increasing the lot-size by just 1 

kilo would almost double the amount of drying capacity required, as now 2 cabinets are needed. The 

discontinuous behaviour is also illustrated in Figure 4.1. This discontinuous solution space makes 

metaheuristics less than ideal solution methods for our model. 

Problem-specific heuristics are in general faster than the methods from the other two categories. This 

is an important advantage because our model is larger than any model we encountered in literature. 

Many different problem-specific heuristics exists in literature. Which one performs best depends on 

the characteristics of the model and the pattern of the demand. The logic behind most problem-

specific heuristics is relative simple compared to that of metaheuristics. This makes it easier to modify 

the method to fit another model. This is a useful characteristic for our case, since our model has 

features that are not encountered in literature. Therefore some modification is necessary to fit our 

model, regardless of which method is chosen. 

Their ability to handle large scale models and the relative easiness with which they can be modified 

make the category of problem-specific heuristics the most suitable to find solution methods for our 

model. 

4.2.2 A basis for the proposed planning method 
Our solution method should incorporate the unique characteristics of our model that are not found in 

literature. However, we can use a method from literature and use it as a basis for our own method. In 

the previous section we concluded that the category of problem-specific heuristics is the most suitable 

category for looking for a solution method for our model. In Section 3.2.2 we explained the importance 

of choosing the right heuristic when applying a problem-specific heuristic to another model. The 

choice must be made based on the performance of the heuristic in the original model and the 

similarities between the original and the target model.  

There are many problem-specific heuristics researched in literature. We compare the planning 

problems that these heuristics are applied to with our own planning problem, that we formulated in 

Section 4.1. The problem that we found in our literature review that seems closest to our own problem 

is studied by Boctor & Poulin (2005). They study a production process that consists of a number of 

sequential machines, but show that, under the constraint that the lot sizes must be equal for all 

machines, they can model the process as a single level CLSP with multiple capacitated resources. This 

is similar to our problem, which is also a single level CLSP with multiple capacitated resources. 

Boctor & Poulin propose a constructive heuristic to solve this problem. They test the performance of 

their heuristic for small to medium sized problem instances. Their experiments show that their 

heuristic finds solutions that are on average 6.6% worse than the optimal solution for small problem 

instances. When the size of the problems increases the average solution gap decreases to 3.3% for the 

medium sized problem instances. These results show that the performance of the heuristic increases 

with the problem size. This is a useful characteristic for our research because the size of our problem 

instances is larger than any problem we encountered in literature. 
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Because the problem of Boctor & Poulin is similar to our problem and because their heuristic shows 

good performance for increasing problem sizes we choose to use the heuristic proposed by Boctor & 

Poulin as a basis for our own proposed planning method. In the remainder of this section we give a 

detailed description of their proposed heuristic. 

Boctor & Poulin’s heuristic 

The heuristic developed by Boctor & Poulin is a constructive heuristic. It is based on a forward routine. 

This means that the heuristic starts by considering the first week of the planning horizon, after which 

it considers the second week and continues in this way until it reaches the last week of the planning 

horizon. 

In each week, the production quantities are initially set to the net demand. For each item, the net 

demand is the gap between the demand for that week and the inventory level at the beginning of the 

week. Or in other words, what needs to be produced in that week to meet demand. 

Once the initial production quantities are set, there are two possibilities: Either there is some residual 

capacity in this week or the initial production exceeds the available capacity. 

When there is residual capacity, the heuristic tries to increase the lot sizes in the current week. This is 

done by calculating the savings index for each future demand order. The heuristic then tries to 

incrementally add the orders with a positive savings index to the current week’s production, starting 

with the order with the highest savings index. Once all orders with a positive savings index have either 

been added or disregarded the heuristic continues with the next week. 

When the initial production exceeds the available capacity the heuristic uses the following procedure. 

First it sets all production quantities in the current week to zero. Then it tries to add this week’s 

demand orders incrementally to the production in the current week. The orders are added in 

decreasing order of their unit holding costs. Since we initially did not have enough capacity in this 

week, some orders cannot be added to the current week. For these orders the heuristic applies a so 

called backtrack procedure. In this backtrack procedure the heuristic tries to allocate the remaining 

orders to earlier weeks, given that there exists available capacity in those weeks. First it tries to do 

this by increasing the lot sizes in previous weeks, since increasing the size of existing lots does not 

create extra setup costs. When it is not possible to allocate all remaining orders by increasing existing 

lot sizes, the procedure tries to allocate the remaining orders by creating new lots in the previous 

weeks. 

This process is repeated for all weeks in the planning horizon. The result is a feasible production 

schedule, given that one exists (Boctor & Poulin, 2005). The pseudo code for the heuristic is given in 

Box 4.1. 
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Box 4.1 Pseudo code for the Boctor & Poulin heuristic. 

4.3 Boctor & Poulin heuristic and the drying constraints 
In this section we show how we make the heuristic of Boctor & Poulin work with the capacity 

constraints of the drying cabinets. A detailed explanation of this heuristic is given in Section 4.2.2. 

From this description it becomes clear that the heuristic needs to calculate the remaining capacity 

for a product in a week, given an initial set of production quantities. With the remaining capacity of a 

product, we mean the maximum amount of that product that can be added to that week’s 

production without violating the capacity constraints. From the explanation in Section 4.1.3 it is clear 

that this is not a straightforward calculation as the drying hours consumed by the initial set of 

production quantities depend on the drying cabinets that they are allocated to.  

Boctor & Poulin heuristic: 
 
For t = 1 to T { 
 Set initial production in week t equal to net demand 

If (used capacity < available capacity) { 
  Calculate the savings index for all orders in future weeks 
  Sort all future orders in decreasing order of savings index 
  For each order with a positive savings index { 

Add the order to this week’s production if it does not break capacity 
constraints 

  } 
} Else If (used capacity > available capacity) { 

  Set production in the current week to zero 
  
  For each unallocated order { 

Add the order to this week’s production if it does not break capacity 
constraints 

  } 
 
  For each unallocated order { 
   For w = t-1 to 1{ 
    If (there exists a lot of this product in week w) { 

Increase the lot size with the minimum of the 
unallocated amount and the residual capacity in week w 

    } 
   } 
  } 
 
  For each unallocated order { 
   For w = t-1 to 1{ 
    If (there does not exists a lot of this product in week w) { 

Create a lot with a size the minimum of the unallocated 
amount and the residual capacity in week w 

    } 
   } 
  } 

} 
} 
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Even determining whether a set of weekly production quantities is feasible with respect to the 

drying constraints is not straightforward as this requires that one checks whether the products can 

be distributed over the 5 drying cabinets such that the capacity of none of the 5 cabinets is 

exceeded. 

To solve this problem, we created an efficient method to determine whether a set of weekly 

production quantities is feasible. We describe this method in Section 4.3.1. Through the use of this 

method we also find a method to make the Boctor & Poulin heuristic work for solving our problem. 

We describe this method in Section 4.3.2. 

4.3.1 Determining the feasibility of a set of weekly production quantities 
In this section we describe our proposal for an efficient method to determine whether a set of weekly 

production quantities is feasible. We first define 𝑄𝑡 as a vector containing all production quantities 

𝑄𝑘𝑡 for a certain week t. We represent our method as a Boolean function that takes 𝑄𝑡 as input and 

that returns true when this set can be dried within a week and false otherwise: 

𝑓(𝑄𝑡) = {
𝑡𝑟𝑢𝑒     𝑖𝑓 𝑄𝑡  𝑐𝑎𝑛 𝑏𝑒 𝑑𝑟𝑖𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑤𝑒𝑒𝑘

𝑓𝑎𝑙𝑠𝑒     𝑖𝑓 𝑄𝑡  𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑑𝑟𝑖𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑤𝑒𝑒𝑘
 

From a mathematical point of view checking whether a given set of weekly production can be dried 

within a week is somewhat similar to a more complex version of the optimization version of the 

partition problem. In the optimization version of the partition problem, one aims to partition a given 

multiset S of positive integers over k different buckets such that the difference between the sum of 

the elements of the different buckets is minimized. 

In our function, we cut the production quantities in the function’s input into smaller batches that each 

fit into a drying cabinet. The number of batches for each intermediate can be calculated by dividing 

the production quantity 𝑄𝑘𝑡 of intermediate k in week t, by the amount of intermediate k that fits into 

one drying cabinet. In formula notation: 

#𝑏𝑎𝑡𝑐ℎ𝑒𝑠𝑘𝑡 = ⌈
𝑄𝑘𝑡

𝑙𝐾
⌉     ∀𝑘 ∈ 𝐾 

The time each batch occupies a drying cabinet is equal to the sum of the drying time of the 

intermediate and the moulding time of the batch. The moulding time, but not the setup time, needs 

to be included because the drying cabinet must be available while moulding. Assuming all batches of 

k are of the same size, the total occupation time of each batch can be calculated with the following 

formula: 

𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  𝑓𝑜𝑟 𝑎 𝑏𝑎𝑡𝑐ℎ𝑘𝑡 =
1

𝑝𝑘

∙
𝑄𝑘𝑡

#𝑏𝑎𝑡𝑐ℎ𝑒𝑠𝑘

+ {
𝑛𝑑𝑘  𝑖𝑓 𝑑𝑟𝑖𝑒𝑑 𝑖𝑛 𝑎 𝑛𝑒𝑤 𝑐𝑎𝑏𝑖𝑛𝑒𝑡
𝑜𝑑𝑘  𝑖𝑓 𝑑𝑟𝑖𝑒𝑑 𝑖𝑛 𝑎𝑛 𝑜𝑙𝑑 𝑐𝑎𝑏𝑖𝑛𝑒𝑡

     ∀𝑘 ∈ 𝐾 

Note that our assumption that all batches of k are of the same size only affects the moulding time of 

each batch, not the drying time. As the drying time is many times higher then the moulding time, the 

effect of this assumption is limited. 

We now have a list of batches and the occupation time of each batch on this list when it is dried in a 

new cabinet and when it is dried in an old cabinet. If we can divide the batches over the 5 drying 

cabinets in such a way that the sum of the occupation time of the batches in each drying cabinet is 

lower than a week, the production in this week is assumed to be feasible. We make this assumption 

because each drying cabinet is available 24 hours a day, 7 days a week. When this is not possible the 

production in this week is infeasible. If the production is feasible, the function 𝑓(𝑄𝑡) returns true, 

otherwise it returns false. 
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As shown in the above formula, the occupation time of a batch depends on whether it is put in a new 

or and old drying cabinet. This makes checking whether a feasible partition exists more complex. 

To prove that a feasible partition exists, one only needs to provide a feasible partition, but too prove 

no feasible partition exists, one must in general enumerate over all possible partitions and show that 

each one is infeasible. However, we consider the approach of total enumeration too time consuming 

for our purpose. Instead we let a greedy partition algorithm try to find a feasible allocation. If this 

algorithm succeeds the function returns true, otherwise the function returns false. This approach 

leaves the possibility of a false negative, where the function returns false while the production in 

that week is in fact feasible. However, a positive is always a true positive. 

The greedy partition algorithm 

The greedy partition algorithm tries to partition this set of batches over the 2 new and the 3 old drying 

cabinets such that the sum of the occupation time of the batches in each cabinet does not exceed a 

week. A complication of this task is that the occupation time of a batch is dependent on whether it is 

put in a new or and old drying cabinet. 

To work around this complication our version of the greedy partition algorithm uses a priority ranking, 

where the batches with the highest priority are allocated first. The idea behind this priority ranking is 

that the batches that profit the most from being dried in a new drying cabinet are allocated first. The 

priority of a batch is equal to 𝑛𝑑𝑘 − 𝑜𝑑𝑘. 

For each batch the algorithm first tries to allocate the batch to the new drying cabinet with the most 

available time. If it is not possible to add the batch to this new drying cabinet without exceeding the 

seven days cap, it is also not possible to add it to the other new drying cabinet and the algorithm tries 

to allocate the batch to the old drying cabinet with the most available time. When it is also not possible 

to allocate the batch to this old drying cabinet without exceeding the seven days cap, the algorithm 

stops and the function returns false. When all batches can be allocated through this method the 

function returns true. The pseudo code for this greedy partition algorithm is shown in Box 4.2. 

 

Box 4.2 Pseudo code for the greedy partition algorithm. 

4.3.2 The linear approximation and backwards feasibility routine 
With the method described in Section 4.3.1. we can determine whether a set of weekly production 

quantities is assumed to be feasible. It can however not calculate the remaining capacity of a 

product in a week, which is a requirement for Boctor & Poulin’s heuristic.  

Greedy partition algorithm 

For each batch in order of decreasing priority { 
 If (current batch fits in new drying cabinet) { 
  Add current batch to emptiest new drying cabinet 
 } Else If (current batch fits in emptiest old drying cabinet) { 
  Add current batch to emptiest old drying cabinet 
 } Else { 
  Return: false 
  Stop 
 } 
} 
Return: true 
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If the capacity constraints of the drying cabinets were linear, calculating the remaining capacity 

would be straightforward. Therefore we propose the following approach: 

1. Run the Boctor & Poulin heuristic, while using a linear approximation of the capacity 

constraints of the drying cabinets. This results in an approximately feasible MPS. 

2. Run a backwards feasibility routine that uses the method described in Section 4.3.1 for 

determining the feasibility of a set of weekly production quantities. This results in a feasible 

MPS. 

In the remainder of this section we describe both steps in more detail: 

Boctor & Poulin heuristic with linear approximation 

The pseudocode for the linear approximation is the same as that of the original heuristic that is shown 

in Box 4.1. The only difference is that we use a linear approximation for the remaining capacity of the 

drying cabinets. This linear approximation works as follows: 

• There are 24 hours in a day, 7 days in a week and 5 drying cabinets. Therefore the total 

available drying hours each week is 24 ∙ 7 ∙ 5 = 840 𝑑𝑟𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠. 

• The filling of a drying cabinet starts during the moulding, therefore the moulding time is 

included in the drying time. 

• In the linear approximation we pretend that the drying time of each item to be as if it is dried 

in a new drying cabinet. 

• In the linear approximation we pretend that the drying hours used by an item to be 

proportional with the occupation of the cabinets. So if a half filled drying cabinet is used for 

an hour this consumes half a drying hour. 

• Example: If an item needs to dry for 48 hours and we produce enough to fill 1.5 drying cabinet, 

which takes 4 hours of moulding time. This consumes a total of 4 + 48 ∙ 1.5 =

76 𝑑𝑟𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠. 

From the linear approximation method described above, we can derive the following formula for the 

drying hours used by a set of production quantities in a certain week 𝑡: 

𝐷𝑟𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑢𝑠𝑒𝑑(𝑡) = ∑
𝑄𝑘𝑡

𝑝𝑘
+ 𝑛𝑑𝑘 ∙

𝑄𝑘𝑡

𝑙𝑘
𝐾

 

From the above formula we can deduce the formula for the remaining drying capacity. We have 

defined the remaining drying capacity as the kilos of intermediate 𝑘 we can add to the production of 

week 𝑡 without breaking the linear approximation of the drying capacity constraint. This results in the 

following formula: 

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑘, 𝑡) =  
840 ℎ𝑜𝑢𝑟𝑠 − 𝑑𝑟𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑢𝑠𝑒𝑑(𝑡)

1
𝑝𝑘

+
𝑑𝑟𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑘

𝑙𝑘

 

Figure 4.4 is an expansion of Figure 4.1. It shows the linear approximation of the drying hours used 

plotted against the lot size for the product “HF Jordbærfisker”. It also shows the actual drying hours, 

which are the same as those in Figure 4.1. From this figure it becomes clear that the linear 

approximation is always lower or equal to the actual drying hours used. 
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Figure 4.4 The actual drying hours and the linear approximation vs the lot size. 

Backwards drying feasibility routine 

This procedure fixes possible infeasibilities in the schedule that occurred because a linear 

approximation of the capacity constraints of the drying cabinets was used to create this schedule.  

The procedure starts at the last week of the planning horizon and checks the feasibility of the 

production in each week through the method described in Section 4.3.1. If the production in a certain 

week turns out to be infeasible, the procedure calculate the surplus of all intermediates produced in 

that week from the next full drying cabinet. For example: If the production of a certain intermediate 

in a certain week is enough to fill 3.015 drying cabinet, the surplus of this intermediate is 0.15. 

It then identifies the intermediate with the lowest surplus and tries to move this surplus to an earlier 

week. It firs tries to move the surplus to week t-1 and then backwards to week 1. When it is not 

possible to move this surplus to an earlier week, it is instead regarded as lost sales. Moving the surplus 

reduces the number of times a cabinet is needed in the current week by one. After each move the 

procedure checks the feasibility again. The procedure repeats this loop until the production in this 

week is feasible, after which it continues with the previous week. Once the procedure has looped over 

all weeks, the resulting schedule is feasible. Pseudo code for this procedure can be found in Box 4.3. 
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Box 4.3 Pseudo code for the backwards drying feasibility routine. 

4.4 Other modifications 
In the previous section we described how we modified the heuristic proposed by Boctor & Poulin to 

work with the capacity constraints of the drying cabinets. Although this is the major modification, 

there are some additional modifications necessary to the original heuristic. These minor 

modifications are described in this section. 

4.4.1 Deciding on night shifts 
In addition to deciding on the production quantities in each week, creating an MPS for Brynild’s 

confectionery production also involves deciding in which weeks to employ night shifts. Since the 

Boctor & Poulin heuristic does not involve decisions on whether to use additional capacity, we need 

another way to make this decision. 

Our solution is the following: We decide beforehand in which weeks we use night shifts and fixate this 

decision. Once the capacity in each week is fixed we can run the modified Boctor & Poulin heuristic. 

This creates a new problem because now we need to decide beforehand in which weeks to use night 

shifts. To make this decision we propose a heuristic based on the following two principles: 

1) To reduce labour costs we want to use night shifts in the minimum number of weeks that is 

required to meet demand. We calculate the minimum number of night shift by calculating the 

accumulated demand in terms of moulding time for each week. 

2) We want to use this minimum number of weeks with night shifts as late as possible in the planning 

horizon, while still on time to meet demand, to reduce holding costs. 

Night shift heuristic 

The idea of this heuristic is to calculate the accumulated demand in terms of moulding time for all 

weeks and use this to determine the minimum number of weeks in which night shifts must be enabled 

before a certain week to meet all demand. This results in a set of constraints of the form:  

To meet all demand up to week t, at least x weeks up to week t must have night shifts. 

Backwards_Drying_Feasiblity_routine: 

For t = T to 1{ 
 While (𝑓(𝑄𝑡) = 𝑓𝑎𝑙𝑠𝑒) { 
  Find the intermediate k in week t with the lowest surplus 
 
  For w = t-1 to 1 { 
   If (𝑄𝑘𝑤 > 0) { 

Increase the lot size with the minimum of the unallocated surplus 
and the residual capacity in week w 

   } Else If (𝑄𝑘𝑤 = 0) { 
Create a lot with size the minimum of the unallocated surplus and 
the residual capacity in week w 

   } 
  } 
 } 
} 
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These constraints still allow some degree of freedom regarding which exact weeks have night shifts. 

Within this limited freedom we want to have the night shifts as late as possible in the planning horizon. 

The idea behind this approach is that production is higher in weeks with nights shifts and that holding 

costs can be reduced by planning this increased production as late as possible 

Since the setups of the moulding machine also consume capacity and no production schedule has yet 

been made, the exact demand for moulding capacity is unknown. Therefore we use a lot-for-lot 

schedule to estimate this demand. Furthermore it is possible that the required number of weeks with 

night shifts before a certain week is higher than the number of weeks where night shifts are possible. 

In that case the maximum number of night shifts is planned before this week is planned. Box 4.4 shows 

the pseudo code for this heuristic. 

 

Box 4.4 Pseudo code for Procedure 1. 

4.4.2 Lost sales 
The Boctor & Poulin heuristic tries to allocate all the demand, inexplicitly assuming that this is possible. 

However, this might not be the case in some of our scenarios. Demand that cannot be fulfilled is 

regarded as lost sales. 

We want to minimize the lost sales and the costs associated with it. Therefore we propose a 

straightforward greedy algorithm that can be run after the Boctor & Poulin heuristic. This algorithm is 

reduces lost sales by filling the gaps between production and capacity after the whole schedule is 

created. 

Night_shift_heuristic: 

Create a lot-for-lot schedule and calculate the total moulding time for each week: 
𝑄𝑘𝑡 = 𝑑𝑘𝑡     ∀𝑘 ∈ 𝐾     ∀𝑡 ∈ 𝑇 

𝑌𝑘𝑡 = {
1 𝑖𝑓 𝑄𝑘𝑡 > 0
0 𝑖𝑓 𝑄𝑘𝑡 = 0

     ∀𝑘 ∈ 𝐾     ∀𝑡 ∈ 𝑇 

𝑚𝑜𝑢𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑡) = 𝑠𝑡 ∙ ∑ 𝑌𝑘𝑡

𝑘∈𝐾

+ ∑
𝑄𝑘𝑡

𝑝𝑘
𝑘∈𝐾

 

Calculate the accumulated moulding time and from there the minimum number of accumulated night 
shifts weeks required for each week: 

𝑎𝑐𝑐. 𝑚𝑜𝑢𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑡) =  ∑ 𝑚𝑜𝑢𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑤)

𝑡

𝑤=1

 

𝑎𝑐𝑐. 𝑟𝑒𝑞. 𝑛𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡 𝑤𝑒𝑒𝑘𝑠(𝑡) =  ⌈
(𝑎𝑐𝑐. 𝑚𝑜𝑢𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑡) −  ∑ 𝑎𝑡

𝑡
𝑤=1 )

𝑛𝑠
⌉ 

While (max(acc. req. night shift weeks) > 0) { 
Find the t that maximizes acc. req. night shift weeks(t) and plan a night shift in the first possible 
week, starting at week t and moving backwards to week 1 
If (impossible to add night shift in week t or earlier){ 
 𝑎𝑐𝑐. 𝑟𝑒𝑞. 𝑛𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡 𝑤𝑒𝑒𝑘𝑠(𝑡)  =  𝑎𝑐𝑐. 𝑟𝑒𝑞. 𝑛𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡 𝑤𝑒𝑒𝑘𝑠(𝑡)  −  1 
} Else { 
 𝑎𝑐𝑐. 𝑟𝑒𝑞. 𝑛𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡 𝑤𝑒𝑒𝑘𝑠(𝑤) =  𝑎𝑐𝑐. 𝑟𝑒𝑞. 𝑛𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡 𝑤𝑒𝑒𝑘𝑠(𝑤) −  1    ∀𝑤 ≥ 𝑡 
} 

} 
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4.5 Overview of the proposed planning method 
In this chapter we described the various parts of our proposed planning method. We end this 

chapter with an overview of how the various parts work together to create an MPS for Brynild’s 

confectionery production. Figure 4.4 shows this overview. 

The night shift heuristic is run first, which produces a decision in which weeks to use night shifts. 

Once this is decided, the capacity in each week is fixed and the modified Boctor & Poulin’s heuristic 

can be used to create an approximately feasible MPS. This MPS is only approximately feasible 

because it uses a linear approximation for the capacity constraints of the drying cabinets. 

This approximate feasible MPS is than given to the backwards drying feasibility routine, which fixes 

the small infeasibilities resulting from the approximation. The result is a feasible MPS. This MPS is 

than given to a greedy algorithm that aims to reduce the lost sales by filling unused capacity. The 

final result is a feasible MPS with fewer lost sales. 

 

Figure 4.4 Overview of the various parts of the proposed planning method. 
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5. Evaluation 
In this chapter we answer research question 4: How do the candidate solutions perform compared to 

the current method used at Brynild? To do this we first determine values for all parameters required 

by the candidate method in Section 5.1. In Section 5.2 we compare the schedules created by the 

candidate method with those created by the current method. In Section 5.3 we benchmark the 

performance of the candidate method against the best solutions found by an MIP-solver for smaller 

instances. Section 5.4 presents the conclusions of our evaluation. 

5.1 Parameter values 
The planning method we proposed in Chapter 4 uses a number of decision variables and parameters. 

The decision variables are used to represent the solution, while the parameters provide information 

to the planning method. In this section we list the decision variables and parameters that are used in 

our planning method and provide values for the parameters. 

Changeover costs (cchange) 

The changeover costs are incurred at the moulding machine and consists of the value of the raw 

material that is thrown away when the pipe between the cooking and moulding machine is cleaned 

between the production of different intermediates. A previous data collection initiative at Brynild has 

calculated the average amount of raw material that is thrown away and the average value of this raw 

material. The average costs of a changeover can therefore simple be calculated: 𝑐𝑐ℎ𝑎𝑛𝑔𝑒 =

1,301.8 𝑁𝑂𝐾 

Additional costs of running a 3-shift system (cnight) 

The bulk of the additional costs of running a 3-shift system are the salary costs of the operators, other 

additional costs are considered insignificant and not included in the model. The salary of an operator 

varies depending on the education he received and the years of employment. Brynild estimates the 

total costs of an operator to be 2850 NOK for a normal shift. However, night shifts pay 33% extra.  

The Stǿperi Sukker line needs 3 operators and therefore the additional costs of running a 3-shift 

system at this line are 2850 𝑁𝑂𝐾 ∙ 1.33 ∙ 5 𝑠ℎ𝑖𝑓𝑡𝑠 ∙ 3 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 56857.5 𝑁𝑂𝐾 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘. So: 

𝑐𝑛𝑖𝑔ℎ𝑡 = 56857.5. 

Costs of lost sales (cuk) 

Only a small fraction Brynild’s customers allow backlogging. To simplify the model we therefore 

assume all demand that cannot be met to be lost. We estimate the costs of lost sales of an end product 

by multiplying the costs-of-goods-sold (COGS) for that product with an estimated profit margin that is 

the same for all products. This results in the following formula: 

𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑠𝑎𝑙𝑒𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑥 𝑝𝑒𝑟 𝑘𝑖𝑙𝑜 = 𝐶𝑂𝐺𝑆𝑥 ∙ 𝑝𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 

Our model however, does not include the end products. It only includes the intermediates produced 

at the Stoperi Sukker line. Therefore we need to transfer the costs of lost sales from the end products 

to the intermediates. This is straightforward for the intermediates that are only packaged into one 

product, but for those intermediates that are packaged into multiple products it is unclear from our 

model in which product they will end up. For those intermediates we use the weighted average of the 

COGS of those products. 

In Appendix A we provide an example of these calculations for an intermediate that is packaged into 

multiple end products. These calculations result in a positive value 𝑐𝑢𝑘 for each k. 
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Available capacity in a 2-shift system in week t (at) 

As described in Section 2.1.1, the moulding machine is available for 9 shifts a week in a 2-shift system. 

We add the index t to this parameter to be able to take into account the reduced capacity during 

certain weeks of the year, for example during Christmas or the summer holidays. In all normal weeks 

𝑎𝑡 = 9. 

Availability of night shifts in week t (ant) 

When it is not possible to fill all the normal day shifts in a week because of, for example, holidays. It is 

also not possible to have night shifts in this week. This parameter has value 1 if night shifts are 

available in week t, otherwise it has value 0. So 𝑎𝑛𝑡 = {
1 𝑖𝑓 𝑎𝑡 ≥ 9
0 𝑖𝑓 𝑎𝑡 < 9

     ∀𝑡 ∈ 𝑇 

Additional capacity when running a 3-shift system (ns) 

As described in Section 2.1.1, running a 3-shift system increases the number of shifts in a week from 

9 to 14. We do not add the index t to the parameter for the extra capacity because in practice it is not 

possible to run a 3-shift system in the weeks where even the 9 shifts of a 2-shift system cannot be 

filled. So 𝑛𝑠 =  5. 

Demand (dkt) 

Section 2.2.2 describes the MRP data that is the input for the MPS. The MRP data consists of the 

demand on all production and packaging lines. The input of our model consists of the demand at only 

the Stǿperi Sukker line. Therefore we filter the MRP data and convert it to a demand matrix 𝑑 of 

dimensions 𝐾 × 𝑇 where the element 𝑑𝑘𝑡 is the demand for intermediate k in week t. Figure 5.1 shows 

part of such a demand matrix for illustration. 

 

Figure 5.1 Part of a demand matrix used in the model. 

Holding costs (hk) 

As explained in Section 2.3.2, holding costs are only incurred for the finished products. The finished 

products are not included in our model. However, the MPS for the packaging lines is created based on 

the MPS for the production lines, which is part of our model. Therefore we must take these holding 

costs into account. We can assume that if a certain intermediate is produced a week earlier than that 

it is due, it is also packaged a week earlier and an extra week of holding costs is incurred.  
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113717 HF Barnetime skumgelé 0 0 0 0 0 0 0

113680 HF Dent Bærmiks 900 0 0 0 0 0 900

111916 HF Dent Eukalyptus 0 0 0 4800 0 0 0

113723 HF Dent Oi Cherry 0 100 0 0 0 0 0

112812 HF Dent Oi Fuzz 0 0 0 0 0 0 0

111918 HF Dent Salt Lakris 0 0 0 0 0 400 0

112189 HF Dent Trio 0 0 0 4500 0 0 0

113492 HF Figurskumgele Jul 0 0 0 0 4500 0 0

113482 HF Fruktgele jul 0 0 0 0 0 0 0

105994 HF Gelepynt rød, grønn, gul Freia 0 0 0 0 0 0 0

113541 HF Gompegele 0 0 0 0 0 0 0

107935 HF Jellymen, ekstra tykke 0 0 0 0 0 1000 0

112958 HF Jordbærfisker 0 0 0 0 0 3400 0

113515 HF Lakrisbåter 0 0 0 0 0 22000 0

113771 HF Løsvekt Myke Rakkere 0 0 0 0 0 0 0

113713 HF Løsvekt Sure Rakkere 0 0 0 0 0 3300 1200
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Under this assumption we can transfer the holding costs incurred by the finished products to the 

intermediates that are packaged into these products. We calculate the holding costs per ton of 

finished product per week and transfer these to the intermediates that make up this finished product. 

This is straightforward for the intermediates that are only packaged into one product, but for those 

intermediates that are packaged into multiple products it is unclear from our model in which product 

they will end up. For these intermediates we use a weighted average of the holding costs of these 

finished products. This is similar to the procedure we used to determine the costs of unfulfilled 

demand for these intermediates. 

Brynild considers two types of costs to make up the holding costs for the finished products. The 

storage costs and the capital costs. The finished goods warehouse is owned by a third party and 

charges Brynild 2 NOK per day per pallet for all storage costs. The costs of capital are estimated by 

Brynild to be around 5% per year. This can be combined with the costs-of-goods-sold (COGS) for each 

finished product to calculate the capital costs. We can therefore use the following formula for the 

total holding costs of each finished product: 

ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑝𝑒𝑟 𝑘𝑖𝑙𝑜 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 =
2 𝑁𝑂𝐾 ∙ 365 + (𝑘𝑖𝑙𝑜 𝑝𝑒𝑟 𝑝𝑎𝑙𝑙𝑒𝑡)𝑘 ∙ 𝐶𝑂𝐺𝑆𝑘 ∙ 0.05

52
 

In Appendix A we provide an example of the calculation of the holding costs for an intermediate that 

is packaged into multiple end products. These calculations result in a nonnegative value ℎ𝑘 for each 

k. 

Production rates (pk, lk) 

The production rates per shift and the capacity per drying cabinet differ between the intermediates. 

These production rates are known and are provided by Brynild. Based on this data we determine 𝑝𝑘 

and 𝑙𝑘  for each k. 

Drying times (nk, ok) 

The drying times differ between the intermediates and between the new and the old drying cabinets. 

These times are known and are provided by Brynild. Based on this date we determine 𝑛𝑘 and 𝑜𝑘 for 

each k. For the intermediates that can only be dried in the new cabinets we use 𝑜𝑘 = ∞. 

Setup times at the moulding machine (st) 

As explained in Section 2.1.1 the setup times at the moulding machine vary between 1 and 2 hours 

and the exact time of a setup is hard to predict in advance. To ensure a feasible schedule we assume 

a fixed setup time of 2 hours. In our model we measure the available capacity in shifts. 1 shift is 8 

hours long, so 𝑠𝑡 = 0.25 

5.2 Comparison with the current planning method 
We want to know how our candidate method compares with the current planning method used by 

Brynild. We describe the current planning method in Section 2.2. The clear advantage of the 

candidate method compared to the current method is the time it takes to generate an MPS. With 

the current method it takes the planner a day of work to create an MPS. The runtime of the 

candidate method is around 30 seconds. Of course, data preparation and minor tweaks to this 

schedule mean the human planner requires more than only the run time. Regardless, the candidate 

method a huge time saver.  

In the remainder of this section we compare both methods by the schedules they generate. We first 

motivate our choice for the test data and the performance indicators. After this we discuss the 
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results. Finally we conclude this section with the findings of a discussion with the human planner 

regarding the differences between the schedules.  

5.2.1 Test data 
In this section we motivate why we use historical data and why we choose the time period from 

September 2019 until August 2020. 

Historical data 

The candidate planning method is completely defined in Chapter 4. It is an algorithm that takes a set 

of parameters and demand data as input and gives a production schedule as output. The algorithm 

does not involve any randomness, therefore, given the same input data, the output data is always the 

exact same. 

The current planning method however, is based on the process specific knowledge of the human 

planner. It consists of a set of habits and routines that are not explicitly defined. Since the current 

method is not explicitly defined, it is not possible for us to create new production schedules from the 

input data that resembles the schedule the planner would create. The human planner would be able 

to create these schedules, but he is not available to do so. This limits us to the use of historical 

schedules that the planner has created in the past. 

The chosen time period 

Since we rely on historical data, we need to select a time period from the past to be used for our 

comparison. Brynild produces multiple products with seasonal demand. This seasonality is mainly 

caused by events that occur annually like Christmas, Easter and summer. We want to know how our 

method performs in these different situations. To capture this seasonality in our comparison, the time 

period should have a length of one year. We want to use historical data that is as recent as possible, 

because this better resembles the current situation than data from longer ago. Therefore we use most 

recent year of which we have all required data. This is the period from September 2019 until August 

2020. 

5.2.2 Overwriting schedules 
The candidate planning method creates a schedule with a timespan equal to that of the MRP data that 

is used as its input. However, not the entire schedule is used in practice. As time passes, forecasts 

change and after a while, a new schedule is made that overwrites the current schedule. Therefore the 

only part of any schedule that is actually executed is the part until the next schedule is created. The 

schedule is updated when the planner deems it necessary. The length of the executed part of a 

schedule varies between 1 and 8 weeks. 

Figure 5.2 Illustrates how the schedule is constantly overwritten. It shows that in week 37 of 2019 

schedule number 1 was made, which spans the time period until at least week 2 of 2020. In week 45 

of 2019 however, a new schedule was created that overwrote the previous schedule. Therefore only 

the first eight weeks of schedule number 1 were executed. 
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Figure 5.2 A visualization of when schedules are made, in red, and what part of the schedules are actually executed, in 
green. 

In Section 5.2.1 we described why we need to rely on historical data for the comparison of both 

planning methods. Complete historical production plans are not available, but the historical 

production quantities are. These historical production quantities are de facto the parts of the historical 

schedules that were executed in practice (the green parts in Figure 5.2). 

5.2.3 Performance indicators 
Since we only have data of the parts of the historic schedules that were executed in practice, we can 

only compare partial schedules of the candidate and the current method. As the planning methods 

try to minimize the costs of the entire schedule, a fair comparison on the costs of partial schedules is 

not possible. Instead we measure the performance of our candidate planning method in Section 5.3 

and focus here on performance indicators that say something about the general character of the 

schedules generated by a method with respect to lot size and workload. 

1) The average number of different products per week. A setup is required before the 

production of every type of product, hence this indicator also measures the average number 

of setups per week in each partial schedule.  

2) The average lot size per week in shifts. The tons of a product that can be produced within 

one shift vary with more than a factor four. We measure the average lot size in shifts instead 

of tons to allow for a better comparison in workload.  

3) The average production per week in shifts. This includes all time that was spend producing 

products. Setups are therefore not included. 

5.2.4 Results of the comparison 
Figure 5.3 shows the boxplots of the three indicators. The number of products per week shows a 

similar distribution between both methods. The average lot sizes have a similar mean, but the 

candidate method shows less variation in lot sizes. A possible explanation for this is that, in reality, 

unexpected events like machine failure cause lots to be smaller than their planned size. These smaller 

lots need to be compensated afterwards by lots that are larger than originally scheduled. This could 

explain the increased variation.  

The average production shows a similar mean, but once again the candidate schedules show less 

variation. This is a consequence of the larger variation in lot sizes. 

Schedule nr. 1 2 3 4 5

2019-37 Plan

2019-38

2019-39

2019-40

2019-41

2019-42

2019-43

2019-44

2019-45 Plan

2019-46 Plan

2019-47

2019-48

2019-49 Plan

2019-50 Plan

2019-51

2019-52

2020-1

2020-2
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Figure 5.3 Boxplots for the three behavioral indicators. 

5.2.5 Discussion with the human planner 
In addition to the comparison method discussed in the preceding parts of this chapter, we discussed 

the schedules created by the candidate planning method with the human planner. Our discussion 

focussed on the differences between the candidate’s schedules and his own. During this conclusion 

the following three main differences where identified: 

• When the planner sees that future capacity is not enough to meet future demand, he tries to 

maximize the production in the early part of the schedule. The candidate planning method 

only increases early production to the level required to meet future demand, as to not incur 

more holding costs than necessary. This can be seen as a trade-off between saving holding 

costs and preparing for uncertainty. In this case, the candidate method focusses more on 

saving holding costs, while the human planner focusses more on preparing for uncertainty. 

• When demand needs to be produced early because of capacity constraints, one must decide 

which product should be produced early. The planner bases this decision mainly on which 

product can be added to the current schedule the easiest, while taking into account the 

available moulding time and the space in the drying cabinets. The candidate planning method 

bases this decision mainly on the holding costs. It first tries to fit the products with the lowest 

holding costs for early production. Both methods result in the early production of some 

products, but the candidate method has the advantage that it explicitly considers the holding 

costs in the decision which product is produced early.  

• When demand needs to be moved between different weeks, the human planner is inclined to 

move or merge entire lots. The main reason for this behaviour being that this is the most 

simple and straightforward way to do so. The candidate planning method prefers to increase 

existing lots compared to creating new lots since this reduces the total setup costs. To do so 

the candidate planning method will spread demand over multiple existing lots. Thereby 

increasing all lots a bit so that future demand is met. This is an advantage of the candidate 

method, but its effects are reduced by the relative low setup costs, relative to the holding 

costs, of the production process. 

5.3 Performance measurement 
In Section 5.2 we compared our candidate method with the current method. This does however not 

tell us anything about the performance of the candidate method compared to the optimal solution. 

In this section we compare the performance of the candidate method with that of near-optimal 

solutions. 
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5.3.1 Method for performance measurement 

 

Figure 5.4 Solution overview, with the linear approximated schedule marked in red. 

There is no known method for finding optimal solutions for nonlinear or large scale CLSPs. However, 

up to the point where the approximate feasible schedule is created, see Figure 5.4, our problem is 

assumed to be linear and can be modelled as an MIP-problem. The MIP-formulation can be found in 

Appendix B. 

The solver can find good solutions to MIP-problems of smaller scale. We can reduce the scale of our 

problem by reducing the number of weeks in the planning horizon and the number of products. We 

can then use the candidate method to solve these smaller instances up to the red-marked step in 

Figure 5.4 and compare this solution with the solution provided by an MIP-solver. 

We perform this comparison through the following method. We used the candidate method to find 

solutions for each of the instances. We put these solutions in Excel and looked for improvement to 

these solutions with an MIP-solver. We evaluate the quality of a solution through the total costs of 

the schedule. We measure the performance of the candidate method as the percentage gap between 

the total costs of the candidate method’s solution and the total costs of the best found solution.   

There are two main drawbacks to this method of performance measurement. The first one being that 

the smaller instances may not be representative for the larger instances encountered in reality. The 

second one being that this method only measures the candidate methods ability to create 

approximately feasible schedules and not completely feasible schedules. However, given that the 

backwards drying feasibility routine only moves small amounts of production quantities, this problem 

is mitigated. 

5.3.2 Creating smaller instances 
To create smaller instances we reduce the scale of the problem to 5 weeks and 5 products. The 5 

products are randomly chosen from the 41 existing products. These 5 products are shown in Figure 

5.5. All parameter values are consistent with those provided in Section 5.1. For the sake of simplicity 

we assume that all 5 weeks in the planning horizon have 9 normal shifts available and that night shifts 

can be enabled in all 5 weeks. 
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Figure 5.5 Parameters of the 5 chosen products. 

Demand generation 

With these 5 products, we generate 10 different scenarios, or demand patterns, to test the 

performance. Amongst other things,  we are interested in our candidate method’s ability to make 

efficient decisions regarding when to use night shifts. Therefore, scenarios in which night shifts are 

never, or almost always required are deemed less interesting. Since these scenarios leave less room 

for the method to make decisions. 

Without night shifts, there are a total of 45 shifts available in our smaller instance (9 shifts for each of 

the 5 weeks). We create demand patterns with a total amount such that the production including 

setups takes around 50 shifts. This way, one or two night shifts will be necessary to meet demand. For 

each scenario, the total demand is randomly distributed over the 5 weeks and the 5 products. The 10 

scenarios can be found in Appendix C. 

5.3.3 Results of the performance measurement 

 

Figure 5.6 Comparison of the costs of the solutions found by the candidate and the solver. 

Figure 5.6 shows the costs of the solutions found by the candidate method and the solver compare. 

In scenario 1 and 5, the candidate method and the solver find the exact same solution and therefore 

the cost differences are zero for these scenarios. In the other scenarios, the solver is able to improve 

product_code product_name p h cu l nd od

104452 HF søte gelehjerter 8500 0.853 0.913013 13162 3 3

112812 HF Dent Oi Fuzz 4000 2.9615 3.191445 7271 4.5 Inf

112958 HF Jordbærfisker 7500 0.7345 1.218397 9754 6 9

111918 HF Dent Salt Lakris 4500 2.6535 2.052817 7271 7.25 Inf

113515 HF Lakrisbåter 8000 0.972517 0.959015 14283 6 9

Scenario Method setup holding lost sales night shifts total

Candidate 27338 5509 0 113715 146562

Solver 27338 5509 0 113715 146562

Difference 0 0 0 0 0

Candidate 22131 67422 0 113715 203267

Solver 23432 47332 0 113715 184479

Difference -1302 20090 0 0 18788

Candidate 27338 11018 0 113715 152070

Solver 28640 7321 0 113715 149676

Difference -1302 3696 0 0 2394

Candidate 26036 27544 9138 113715 176433

Solver 27338 27544 0 113715 168597

Difference -1302 0 9138 0 7836

Candidate 29941 23635 0 113715 167291

Solver 29941 23635 0 113715 167291

Difference 0 0 0 0 0

Candidate 26036 12395 0 113715 152146

Solver 27338 5509 0 113715 146562

Difference -1302 6886 0 0 5584

Candidate 26036 0 20560 170573 217169

Solver 27338 0 4569 170573 202479

Difference -1302 0 15991 0 14690

Candidate 23432 49579 0 113715 186726

Solver 24734 39938 0 113715 178388

Difference -1302 9640 0 0 8339

Candidate 27338 20658 2284 113715 163995

Solver 28640 17903 0 113715 160258

Difference -1302 2754 2284 0 3737

Candidate 26036 27260 18276 113715 185287

Solver 27338 27260 2284 113715 170598

Difference -1302 0 15991 0 14690

10

5

6

7

8

9

costs per category in NOK

1

2

3

4
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the solution found by the candidate method, resulting in lower total costs. The solver improves the 

solution in scenarios 2, 3, 6 and 8, by increasing the number of lots to reduce the holding costs. This 

increases the setup costs, but the total costs are still lower. 

In scenarios 4, 7, 9, the solver lowers the total costs by lowering the costs of lost sales. Again, this is 

achieved by increasing the number of lots, but the total costs are still lower. In scenario 10, the 

solver reduces both the holding and the lost sales costs. In all scenarios where the solver improves 

the solution of the candidate method, it does so by increasing the total number of lots. This can be 

seen in Figure 5.6, as the total setup costs are proportional with the number of lots. 

The solver did not find a better night shift pattern than the candidate method for any of the 10 

scenarios. This indicates that the candidate’s heuristic for deciding on the night shift pattern is near 

optimal, at least for these small instances. 

In Figure 5.7 we measure the performance of the candidate method by comparing the total costs of 

its solution with those of the solution found by the solver. On average, the solution found by the 

candidate method is 4% more expensive than the best solution found by the solver. Assuming this 

performance translates to the larger real world instances, we believe this shows the quality of the 

schedules created by our method. 

 

Figure 5.7 Candidate method’s solution as percentage of the best solution. 

5.4 Conclusions of the evaluation 
In this chapter we evaluated the candidate planning method through two different ways. We 

compared its schedules with the current planning method and found it to be a huge time saver for the 

human planner. Through historical data we compared the schedules of both methods and found that 

the candidate method creates schedules similar to those created by the current method, but much 

faster. 

The comparison with the current method did not provide us with any insights regarding the absolute 

performance of the candidate method. Therefore, we also measured the performance of our method 

against an MIP-solver for smaller instances with a linear approximation. We found the solutions 

provided by the candidate method to be of good quality, as they are on average, 4% more expensive 

than those found by the solver. A point of attention here is that the best solutions found by the solver 

often involved a higher number of lots than the solutions found by the candidate method.  

Scenario % of best solution

1 100%

2 110%

3 102%

4 105%

5 100%

6 104%

7 107%

8 105%

9 102%

10 109%

average 104%
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6. Conclusion, discussion and recommendations 
Section 6.1 states the conclusions of this research. Section 6.2 discusses the limits of this research. 

Section 6.3 and 6.4 respectively state the recommendation for future research and Brynild. 

6.1 Conclusion 
The objective of this research is to construct a method for creating a cost-efficient MPS for Brynild’s 

confectionery production process. Presently, the MPS is created manually. This is a time consuming 

endeavour, with limited room for optimization. For now the current method suffices, but an increase 

in demand means a more efficient planning is required in the near future. 

From a literature review we concluded that the problem of creating a cost-efficient MPS is similar to 

solving a capacitated-lot-sizing-problem. Combining our insights from this literature review and those 

of Brynild’s confectionery production we found problem-specific heuristics to be the recommended 

type of solution method for this problem. 

We took an existing heuristic that literature has shown to achieve good results for problems similar to 

ours. We modified this heuristic such that it is applicable to our problem. The biggest hurdle in this 

process was the set of capacity constraints of the drying cabinets. To make the heuristic applicable, 

we came up with a partition algorithm that can efficiently check whether a given schedule is feasible. 

Our method first creates an approximately feasible schedule, after which we use our partition 

algorithm to solve small infeasibilities. 

The clear advantage of the candidate planning method compared to the current planning method is 

that it is a huge time saver. With the current method it takes the planner a day of work to create an 

MPS. The runtime of the candidate method is around 30 seconds and requires only some data 

preparation and minor tweaks by the planner. 

We compared the schedules created by our candidate planning method with 32 partial  historical 

schedules. The behaviour of the schedules in terms of number of products per week, lot size and 

workload per week is similar between both methods. 

A discussion with the human planner regarding the main differences between both methods showed 

the main difference to be that when it comes to producing demand early because of a lack of future 

capacity, the candidate planning method does just enough to meet demand, while the human planner 

maximizes the early production as a form of protection against uncertainty. The necessity of this 

protection is outside the scope of this research, but it is important to be aware of this difference. 

To measure the performance of our candidate method we compared its approximately feasible 

schedules against those of an MIP-solver for smaller instances of 5 weeks and 5 products. We found 

the solutions of our candidate method to be, on average, 4% more expensive than the best solutions 

found by the MIP-solver. 

6.2 Discussion 
The results of the performance measurement of our method are positive, as our method is only 4% 

away from the best solution found. However, it should be noted that there is no guarantee that this 

performance translates well to larger instances. Despite this uncertainty, there are reasons to believe 

that it translates well. Our method is based on the Boctor & Poulin’s heuristic and their research shows 

that the performance of this heuristic increases with the problem size (Boctor & Poulin, 2005). 

Two of the five drying cabinets consists of two halves that can be operated separately. The partition 

algorithm we used to check the feasibility of a set of production quantities with respect to the drying 
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cabinets does not include the possibility to exploit this feature. Extending the partition algorithm to 

allow this would make it much more complex, while providing a limited amount of flexibility. Therefore 

we chose not to do so. The impact of this is that in reality there is a bit more flexibility than in our 

model. 

In this research we assumed that machines, raw materials and personnel are always available, while 

in reality there are bound to be some productivity losses. We did also not consider the possibility for 

overtime, which is used in reality to make up for these losses. The main thing regarding the gap 

between this research and reality is that reality is both more uncertain and more flexible. 

In this light we want to stress that the planning method proposed in this research is not to be viewed 

as a replacement for a human planner. Rather it is to be viewed as a support tool that requires the 

steering of a person to navigate the uncertainty inherit to the real world. 

6.3 Recommendations for further research 
Varying demand patterns 

The performance of our method has been tested for a limited number of small scenarios. To provide 

insights in the performance of our method in different situations, one could apply the evaluation 

method used in this research to scenarios that represent those different situations. Some interesting 

situations in which the performance of our method can be researched are: 

• Demand increases beyond capacity and lost sales must be accepted to some extent. 

• Demand decreases and efficient production becomes more important. 

• Demand becomes more irregular. 

• The volume of products relative to total production changes. 

• Products with completely different characteristics are introduced (characteristics like 

production rate, drying time etc). 

Robustness of the schedules 

Since the planning method proposed in this research is to be used in a rolling-horizon fashion, the 

variation between different versions of the created schedules is an interesting aspect. When this 

variation is low, the schedule is called robust. We did not research the robustness of the schedules in 

this thesis because the required data is not available. However, we recommend the collection of the 

necessary data and the further research of this aspect of our method, since a more robust planning 

brings stability to a production process. The data that needs to be collected for this purpose consists 

of: 

• The absolute demand data. Presently only the net demand data (demand minus production) 

is stored. 

• The historical schedules. Presently the schedules are lost, once they are overwritten by new 

schedules.  

6.4 Implementation by Brynild 
Implementation 

The candidate planning method determines the efficient use of night shifts based on accumulated 

demand. The model does not include all the labour restrictions that are applicable in reality. Therefore 

we recommend to view the suggest night shift pattern as an ideal, that should be adjusted to the 

possibilities of reality by the human planner. Since the night shift pattern is an important part of the 

input for the actual MPS we recommend the following workflow: 
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1) The algorithm gives a suggestion when it is efficient to use night shifts. 

2) The human planner adjusts this suggestion so that it is feasible with the labour regulations. 

3) The adjusted suggestion is fed back to the algorithm. 

4) The algorithm gives a suggestion for an efficient MPS. 

5) The human planner tweaks the MPS according to his wishes.  
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Appendix A: Calculating 𝑐𝑢𝑘 and ℎ𝑘 
In this appendix we show how we calculate the value of the lost sales parameter 𝑐𝑢𝑘  and the holding 

costs parameter ℎ𝑘 for the intermediate called Korpus Knatter (code = 112815). The data used for this 

calculation is from the time span September to December 2019. 

Lost sales parameter (cuk) 

The intermediate Korpus Knatter is packaged into 5 different end products. Table A.1 shows the data 

relevant for the calculation of 𝑐𝑢𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟 for these 5 end products. The numbers in the last 

column that show the profits per kilo are calculated by assuming a 5 percent profit margin over the 

COGS. 

 

Table A.1 Required data of the 5 products that Korpus Knatter is packaged into. 

The value of 𝑐𝑢𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟 can now be calculated by taking the weighted average of the last column 

of Table A.1 the weights are the production quantities in the third column. Therefore: 

𝑐𝑢𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟 =
5068 ∙ 1.47 + 4435 ∙ 1.46 + 36533 ∙ 0.91 + 3024 ∙ 1.35 + 72701 ∙ 0.97

5068 + 4435 + 36533 + 3024 + 72701
= 1.00 𝑁𝑂𝐾/𝑘𝑔 

Holding costs parameter (hk) 

 

Table A.2 Required holding costs data of the 5 products that Korpus Knatter is packaged into. 

Table A.2 shows the data relevant for the calculation of ℎ𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟 for the 5 end products that Korpus 

Knatter is packaged into. The holding costs in the 9th column are the sum of the storage and the capital costs in 

the 7th and 8th column. The value of ℎ𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟  can now be calculated by taking the weighted average of the 

last column of Table A.2. The weights are again the production quantities in the third column. Therefore: 

ℎ𝐾𝑜𝑟𝑝𝑢𝑠 𝐾𝑛𝑎𝑡𝑡𝑒𝑟 =
5068 ∙ 0.09 + 4435 ∙ 0.09 + 36533 ∙ 0.07 + 3024 ∙ 0.13 + 72701 ∙ 0.7

5068 + 4435 + 36533 + 3024 + 72701
= 0.07 𝑁𝑂𝐾/𝑘𝑔 

  

product code product name production quantity (kg) COGS/kg (NOK) profit/kg (NOK)

113844 Brynild Knatter Frukt 80g 15st 5068 29.39 1.47

113843 Brynild Knatter Skogsbær 80g 1 4435 29.13 1.46

111843 Brynild LV Bærmix 2,00kg 36533 18.27 0.91

113300 Brynild Frukttoppar 140g 15stk 3024 27.06 1.35

104364 Brynild LV Skogsbærmix 2,00kg 72701 19.43 0.97

product code product name

production 

quantity (kg)

COGS / 

kg (NOK)

kg / 

pallet

value / 

pallet (NOK)

storage costs / 

pallet / year 

(NOK)

captial costs / 

pallet / year 

(NOK)

holding costs / 

pallet / year 

(NOK)

holding costs / 

kilo / week 

(NOK)

113844 Brynild Knatter Frukt 80g 15st 5068 29.39 210.6 6189.53 730.00 309.48 1039.48 0.09

113843 Brynild Knatter Skogsbær 80g 1 4435 29.13 210.6 6134.78 730.00 306.74 1036.74 0.09

111843 Brynild LV Bærmix 2,00kg 36533 18.27 272 4969.44 730.00 248.47 978.47 0.07

113300 Brynild Frukttoppar 140g 15stk 3024 27.06 136.8 3701.81 730.00 185.09 915.09 0.13

104364 Brynild LV Skogsbærmix 2,00kg 72701 19.43 300 5829.00 730.00 291.45 1021.45 0.07
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Appendix B 
The MIP-formulation of the smaller instances used for the performance measurement in Section 5.3. 

Sets: 
T set of all weeks in the planning horizon, weeks are numbered 1 to T, 𝑡 ∈ 𝑇 
K set of all intermediates, 𝑘 ∈ 𝐾 

Decision variables: 
Qkt production quantity of intermediate k at in week t in kilos 
Ykt is 1 if intermediate k is produced in week t, 0 otherwise 
Ot is 1 if night shifts are enabled in week t, 0 otherwise 
Ikt inventory level of intermediate k at the end of week t in kilos 
Ukt lost sales of intermediate k in week t in kilos 

Parameters: 
cchange costs of 1 changeover 
cnight additional costs of running a 3-shift system for 1 week 
cuk costs of a kilo of lost sales of intermediate k 
at number of shifts available in week t in 2-shift system 
ant this parameter has value 1 if night shifts are available in week t, 0 otherwise 
ns extra shifts available if a 3-shift system is used 
dkt demand for intermediate k in week t in kilos 
hk holding costs of 1 kilo of intermediate k for 1 week 
pk kilo of intermediate k that can be produced during a full shift 
lk the amount of intermediate k that fits into 1 drying cabinet 
ndk the drying time of intermediate k in a new drying cabinet in shifts (1 shift = 8 hours) 
odk the drying time of intermediate k in an old drying cabinet in shifts (1 shift = 8 hours) 
st setup time in shifts 

Objective function: 

min 𝑧 = 𝑐𝑐ℎ𝑎𝑛𝑔𝑒 ∙ ∑ ∑ 𝑌𝑘𝑡𝐾𝑇 + ∑ ∑ ℎ𝑘 ∙ 𝐼𝑘𝑡𝐾𝑇 + 𝑐𝑛𝑖𝑔ℎ𝑡 ∙ ∑ 𝑂𝑡𝑇 + ∑ ∑ 𝑐𝑢𝑘 ∙ 𝑈𝑘𝑡𝐾𝑇   (1) 

Subject to: 

𝐼𝑘,𝑡−1 + 𝑄𝑘,𝑡 − 𝑑𝑘𝑡 + 𝑈𝑘𝑡 = 𝐼𝑘𝑡     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇    (2) 

∑ (𝑠𝑡 ∙ 𝑌𝑘𝑡 +
1

𝑝𝑘
∙ 𝑄𝑘𝑡)𝐾 ≤ 9 + 5 ∙ 𝑂𝑡      ∀𝑡 ∈ 𝑇     (3) 

∑
𝑄𝑘𝑡

𝑝𝑘
+ 𝑛𝑑𝑘 ∙

𝑄𝑘𝑡

𝑙𝑘
𝐾 ≤ 105    ∀𝑡 ∈ 𝑇      (4) 

𝑄𝑘𝑡 ≤ 𝑀 ∙ 𝑌𝑘𝑡         (5) 

𝑄𝑘𝑡, 𝐼𝑘𝑡, 𝑈𝑘𝑡 ≥ 0     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇      (6) 

𝐼𝑘0 = 0     ∀𝑘 ∈ 𝐾        (7) 

𝑌𝑘𝑡, 𝑂𝑡 ∈ {0,1}     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇      (8) 

1) The objective function minimizes the sum of the costs affected by the MPS. These costs 

consists of the changeover costs (in red), the holding costs (in yellow), the additional costs of 

running a 3-shift system (in green) and the costs of not fulfilling demand (in blue). 

2) Ensures that the holding level of next week is equal to that of this week plus the production 

of this week minus the demand for this week. Together with constraints (6), that state that 
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the holding levels must be nonnegative, this constraint forces the shortage variable Ukt to 

increase to fill the gap between production and demand. 

3) Capacity constraints for the moulding machine. Both setups and the actual moulding use 

capacity. Available capacity depends on whether a 2 or 3-shift system is used. 

4) Linear approximation of the capacity constraints of the drying cabinets 

5) Ensures that setups are included at the moulding machine. 

6) Ensures that production quantities and holding levels are nonnegative. 

7) Assume that the starting inventory for each product is zero. If this is not the case, the demand 

can be adjusted accordingly to meet this assumption. 

8) Ensures that the binary decision variables are binary. 
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Appendix C 
The 10 different scenarios used for the performance measurement in Section 5.3 are shown in 

Figure C.1. 

 

Figure C.1 The 10 different scenarios. 

 

 

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 8500 25500 34000 8500 0

112812 HF Dent Oi Fuzz 12000 8000 4000 0 16000

112958 HF Jordbærfisker 15000 15000 7500 22500 7500

111918 HF Dent Salt Lakris 4500 4500 9000 9000 13500

113515 HF Lakrisbåter 16000 32000 0 8000 8000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 0 8500 8500 25500 25500

112812 HF Dent Oi Fuzz 8000 24000 16000 4000 4000

112958 HF Jordbærfisker 0 7500 7500 0 7500

111918 HF Dent Salt Lakris 22500 13500 0 13500 4500

113515 HF Lakrisbåter 0 32000 0 16000 16000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 17000 8500 25500 17000 25500

112812 HF Dent Oi Fuzz 12000 12000 8000 4000 0

112958 HF Jordbærfisker 7500 0 22500 0 7500

111918 HF Dent Salt Lakris 4500 9000 4500 13500 9000

113515 HF Lakrisbåter 40000 8000 8000 8000 24000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 25500 17000 25500 8500 17000

112812 HF Dent Oi Fuzz 0 0 8000 12000 0

112958 HF Jordbærfisker 0 7500 30000 30000 0

111918 HF Dent Salt Lakris 4500 9000 9000 4500 13500

113515 HF Lakrisbåter 16000 16000 16000 24000 16000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 8500 17000 25500 17000 8500

112812 HF Dent Oi Fuzz 4000 12000 12000 12000 16000

112958 HF Jordbærfisker 0 7500 22500 7500 15000

111918 HF Dent Salt Lakris 9000 4500 4500 4500 9000

113515 HF Lakrisbåter 8000 16000 8000 24000 8000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 8500 17000 8500 17000 17000

112812 HF Dent Oi Fuzz 4000 16000 0 4000 16000

112958 HF Jordbærfisker 45000 0 30000 7500 15000

111918 HF Dent Salt Lakris 22500 4500 4500 4500 4500

113515 HF Lakrisbåter 0 24000 8000 8000 0

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 34000 42500 17000 8500 0

112812 HF Dent Oi Fuzz 12000 12000 8000 8000 4000

112958 HF Jordbærfisker 15000 15000 15000 0 7500

111918 HF Dent Salt Lakris 4500 4500 9000 4500 0

113515 HF Lakrisbåter 24000 16000 24000 0 16000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 17000 8500 17000 0 0

112812 HF Dent Oi Fuzz 4000 16000 4000 8000 8000

112958 HF Jordbærfisker 22500 22500 22500 22500 15000

111918 HF Dent Salt Lakris 4500 22500 9000 0 0

113515 HF Lakrisbåter 0 8000 24000 24000 8000

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 17000 25500 25500 0 8500

112812 HF Dent Oi Fuzz 4000 4000 0 8000 8000

112958 HF Jordbærfisker 22500 30000 7500 7500 37500

111918 HF Dent Salt Lakris 9000 9000 4500 4500 13500

113515 HF Lakrisbåter 8000 8000 16000 24000 0

product_code product_name 2020-7 2020-8 2020-9 2020-10 2020-11

104452 HF søte gelehjerter 0 25500 17000 8500 8500

112812 HF Dent Oi Fuzz 12000 20000 16000 8000 8000

112958 HF Jordbærfisker 0 7500 15000 22500 0

111918 HF Dent Salt Lakris 0 4500 9000 9000 4500

113515 HF Lakrisbåter 8000 16000 24000 8000 24000
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