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Summary

Automation in agriculture is a growing topic in operations research. Deploying a
swarm of robots to perform precise agricultural tasks is a possible solution to vari-
ous problems, such as soil compaction and decreasing biodiversity. However, this
solution brings along some challenges. Path planning and target assignment is
a computationally complex problem, which becomes increasingly difficult for larger
numbers of robots or large agricultural topologies. This research thesis continues
a previous project from the University of Twente, in which a first step was taken in
solving the challenges of path planning for robotic swarms. In this iteration of re-
search into the subject, a broader range of algorithms is investigated. Moreover,
several of these algorithms are compared against each other to find the most suit-
able approach to different kinds of tasks. Lastly, a step is taken towards a real-world
implementation of a path planning system. In general, this research project is a
design problem; it aims to create a system with the best possible approach to path
planning and target assignments for robotic swarms in agricultural fields.

As a starting point, the problem and previous work is described in more detail,
after which the problem is identified as a kind of Vehicle Routing Problem (VRP).
Some agricultural tasks can also be seen as Coverage Path Planning (CPP).

This project includes a state of the art research, in which a range of algorithms is
explored. A number of approaches to solve the VRP are discussed, including exact
methods, heuristic methods and metaheuristic methods. Moreover, some research
is done into Multi-Agent Reinforcement Learning (MARL), to see if it is a viable
solution to the path planning problem. Some other approaches are also discussed,
including a few other reinforcement learning and deep learning approaches.

The algorithms from the state of the art research are compared against each
other in a design space exploration in order to make a selection. A number of spec-
ifications for the path planning system are provided, after which the assumptions
under which the system operates are discussed.

An interface to import real-world topologies from Google Earth into a simula-
tion environment is used to create ten different representations of agricultural tasks.
Moreover, a setup is created to test how well methods scale against increasing num-
bers of agents (robots) and landmarks (points of interest).
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VI SUMMARY

Each of the selected algorithms is used to produce a path planning solution for
each of the ten tasks. The resulting solution is given a score (cost), and the compu-
tation time necessary to produce the solution is recorded as well.

The obtained results show how well each algorithm scales, as well as how well
each algorithm performs on the different tasks. There appears to be no clear differ-
ence between the separate tasks, only in problem size. The only limiting factor is
the computation time of the algorithms, as expected. Two possible heuristic algo-
rithms, Clarke-Wright and Christofides produce fast solutions, that are solid but can
be improved upon. Christofides, the best-performing of the two, is thus most suitable
for larger problems or problems that change during operation (and thus needing re-
calculations). For smaller problems, more robust solutions can be obtained using
one of the metaheuristics available in Google’s OR-Tools toolkit. These have higher
computation times, but produce better solutions. Using them is thus infeasible for
larger problems, and when not enough computation time is available for the problem.
The best-performing of the available metaheuristics is Tabu Search.

The final system selects which of these algorithms to use for path planning based
on the problem size, number of available agents and possibly other factors. Real-
world GPS data can be used as an input using Google Earth, and the system returns
its solution in GPS coordinates as well, ready to be used by robots in the field. More-
over, a Graphical User Interface (GUI) is made to allow accessible use of the system
and to easily recreate the experiments described in this thesis. Some recommenda-
tions for improving the system and continuing the research are given as well.
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Chapter 1

Introduction

1.1 Motivation

Since global population has grown significantly over the past few decades, and is
projected to grow by another 40% in the coming 50 years [1] (see Figure 1.1), the
demand for food keeps growing. Efficient and responsible farming can be the so-
lution to this problem, and agricultural automation plays a large role in this. Agri-
culture is one of the sectors which have seen the most automation in the previous
century, mainly in the form of large field machinery and in dairy production [2]. The
increased automation means a decrease in the amount of human labour necessary
on farms, and thus a single farmer can cultivate a larger area. However, current
farming approaches are largely monoculture, which leads to soil exhaustion and a
higher change of pests and crop disease [3]. Moreover, the large and heavy machin-
ery used causes soil compaction, restricting natural water and nutrient cycles [4].
Thus, automation in agriculture will need to adapt to more biodiversity in fields and
more lightweight machinery [5].

Figure 1.1: Population size and annual growth rate for the world: estimates for
1950-2020, and medium-variant projection with 95 percent prediction
intervals for 2020-2100. United Nations Population Facts [1]
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2 CHAPTER 1. INTRODUCTION

Nowadays, automation comes mainly in the forms of robotics and artificial intel-
ligence. The advances in technology have made precision agriculture a possibility,
with Global Positioning System (GPS) and satellite images playing the lead role [6].
Precision agriculture increases crop efficiency, for example through monitoring veg-
etation health and soil quality. Robots deployed in precision agriculture are often
small robots, such as drones, which have a shorter battery life than their larger
counterparts. If a group of smaller robots cooperates in order to cover a larger area
of ground, their short battery life becomes less of a problem, as the work can be
divided such that each robot is working for approximately the same amount of time.
This will also distribute maintenance needs more evenly. Moreover, cooperation can
lead to better and more efficient coverage of a field, as well as the possibility for
deploying different robots with different tasks in more diverse fields [7].

Notably, deploying robots for agricultural tasks will mean a decrease in expenses
for the farmer as well; especially since autonomous robots are becoming cheaper
and cheaper. The purchase of one or more industrial drones combined with their
maintenance and electricity costs, outweighs the cost of manual labor combined
with the machinery used for large-scale monoculture farming [8].

Thus, deploying robots in swarms for precision agriculture could be the solution to
making agriculture more efficient and sustainable. However, path planning and task
assignment for the robots in a swarm is a difficult topic. There are several algorithms
and approaches that solve similar problems, but it is unclear which of these perform
optimally under which circumstances. Furthermore, the speed and computational
complexity of these methods may vary based on the environmental constraints and
the number of robots involved. Lastly, this approach can also be extended to non-
agricultural applications, such as monitoring wildlife or spotting forest fires.

1.2 Clarification of terms

Before the project and its goals are defined, some of the terminology used in this
report is defined. This section aims to clarify the most important terms used, for a
more understandable reading experience of the thesis and to avoid any misconcep-
tions on what the terms represent.

Agents

This research investigates path planning for agricultural robots in a group (also re-
ferred to as swarm). Individuals in such a group are referred to as agents. Agents
represent either ground-based robots or aerial robots (drones or UAVs). Depending
on the application, agents might also be referred to as vehicles.
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Landmarks, spawns, routes

In precision agriculture or field monitoring, an agent can be tasked with visiting a
number of locations (points of interest). These points either represent a spread
across a field such that the agents cover the entire field, or single points of interest,
for example sick crops that need treatment. These points will often be referred to as
landmarks, nodes, or customers in some specific situations.

A special type of landmark is the point where agents start and end their tasks.
This point is referred to in various ways. Depending on the application, it might be
referred to as the agent origin, spawn, depot or nest.

A list of landmarks that an agent should visit sequentially is referred to as that
agent’s route, tour or path. A group of routes, one for each agent, is a solution to
the problem at hand.

Topology, Scenario, Task

A topology is a representation of a real-world agricultural field. A topology has a
boundary, which can normally not be crossed by the agents. A topology with a
number of landmarks and an agent origin represents a planning task - a scenario.
The scenario and the topology together form the environment in which the planning
tasks will be simulated.

Approach, System

To formulate a solution to the routing problem in an environment, a specific approach
will be used. An approach consists of an algorithm, or combination of algorithms,
which transforms the information from the environment into a solution. The total
application which takes the environment data as input and produces a viable solution
as output is referred to here as the system.

1.3 The project

This research project aims to combine existing methods in such a way that the prob-
lem described in Section 1.1 can be solved for various practical scenarios. This the-
sis is the continuation of a previous research project from the Robotics and Mecha-
tronics group at the University of Twente [9]. The work on this topic is continued,
taking previous conclusions into account. A broader spectrum of algorithms is in-
vestigated, and compared against the already tested ones. Furthermore, the simu-
lation scenarios are expanded in two main ways: the number of agents is increased
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and field topologies are made more complex, for example by increasing the num-
ber of landmarks, adding different kinds of obstacles and using irregular shapes of
fields. Lastly, another step towards practical implementation of a path planning sys-
tem is made; by using GPS coordinates of actual fields, by creating a Graphical User
Interface (GUI) for accessible use and by producing sets of target GPS coordinates
for the robots.

1.4 Goal

This research project has two main goals:

• Optimization of a path planning and target assignment
system for robotic swarms in agriculture

• Working towards a real-world application for the system

Combining these goals leads to the main research question:

How to design a system for efficient path planning and
target assignment for robotic swarms in agricultural applications?

This main question will be answered by finding an answer to the following, more
specific questions:

• How can be ensured that the system scales well with regard to the number of
agents in the swarm?

• Which approach is best suited for which individual topologies and/or combina-
tions of topologies?

• How to simulate a realistic scenario of a robotic swarm in an agricultural field,
taking into account the robots’ constraints and limitations?

1.5 Thesis structure

This thesis is structured as follows. First, the background of the project is discussed
in Chapter 2, whereas the state of the art can be found in Chapter 3. In Chapter 4,
the requirements and assumptions of the project are specified. Next, the simulation
and test specifics, and the approach for answering the research questions can be
found in Chapters 5 and 6, respectively. In Chapter 7 the results of the simulations
and testing are provided, and in Chapter 8 these results and the general approach
are discussed and evaluated. Finally, in Chapter 9 conclusions are drawn and rec-
ommendations are done for future work.



Chapter 2

Background

In this chapter, some background is provided on the research project. Firstly, the
previous work on the project is described. Next, some background is provided on
the problem and different uses for robotics in agriculture. Lastly, the following path
planning problems are explained: coverage path planning, the traveling salesman
problem and the vehicle routing problem.

2.1 Previous work

In the previous iteration of this project [9], the problem of path planning for a robotic
swarm is transformed to a Vehicle Routing Problem (VRP) - partially as an extension
to Coverage Path Planning (CPP). Both of these concepts are explained further in
Sections 2.3 and 2.4. Describing the problem as a VRP is done in this thesis as
well.

To solve the path planning and target assignment problem, a few promising algo-
rithms were investigated through the use of simulations in Python. This includes the
testing of various simple scenarios and topologies, as well as a distinction between
ground-based and aerial robots. Scenarios with up to five agents were considered.

The algorithms that yielded the best results were Christofides’ algorithm and Ant
Colony Optimization (ACO). Christofides’ algorithm is used in combination with a
clustering algorithm to extend it to a multi-agent approach - the method by itself is
not suitable for solving a VRP. The clustering method with the best results is k-
means clustering. Both ACO and Christofides’ algorithm are considered in the rest
of this research and compared to other discussed methods (see also Section 3.1).
Moreover, the system is expanded to account for larger numbers of agents, as well
as more complex topologies. Also, some of the previously made assumptions are
relaxed whenever possible. Lastly, this thesis takes another step towards practically
implementing a path planning system for agricultural applications.

5
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2.2 Drones & ground robots in precision agriculture

Aerial robots in precision agriculture can be deployed to serve various means [10]
[11]. The most common occurrence is in crop monitoring, where a drone or group
of drones surveys a field to identify crop conditions, such as their health, color and
density. At the same time, the field itself can be monitored to observe soil quality
and elevation. In general, the effect of climate change can be tracked, as well as
diseases and the emergence of new types of bugs. However, monitoring is not
the only application for these types of drones. From the air, a Unmanned Aerial
Vehicle (UAV) can fulfill seeding and planting tasks. It can also be used for small
irrigation tasks and the spraying of pesticides.

Ground-based robots are harder to use for global crop monitoring. However,
they can be deployed for more precision-based work, such as crop treatment and
harvesting. Other tasks for these robots can include seeding, planting, weeding,
irrigation and fertilization. An advantage of ground robots over UAVs is that they
usually have a longer battery life, since they are less weight-restricted. However,
they are restricted in other ways, such as their slower movement speed and possible
obstacles on the ground.

2.3 Coverage Path Planning

In coverage path planning, the goal is to explore an area in such a way, that all
relevant locations are mapped or visited [12]. For example, this can be relevant in
aerial crop monitoring: in order to do this, images have to be taken of all crops in the
field. Using CPP to approach this, means that drones fly a path over the field such
that their camera is able to capture all of the necessary data.

There are various approaches for solving the CPP problem [13], including de-
scribing it as a type of vehicle routing problem. Other examples include initializing
geometric patterns on the field, and finding the paths from there. A recent project,
which is explained in depth in Section 3.3, solved the problem in a different way - by
deploying a Satisfiability Modulo Theory (SMT) solver [14]. Furthermore, there exist
deep learning approaches, which are also discussed in Section 3.3.

2.4 Vehicle Routing Problems

Generally, the problem of path planning for a group of robots can be described as
a type of vehicle routing problem (VRP) to come to an efficient solution [15]. CPP
can also be formulated as a type of VRP. VRPs are a generalization of the Traveling
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Salesman Problem (TSP), which is elaborated in the next section. Finding an ef-
ficient solution to the VRP has been a highly relevant topic ever since it was first
formulated in 1959 by Dantzig and Ramser [16]. A large number of possible solu-
tions have been proposed thus far, of which a few promising ones are discussed in
Section 3.1.

Traveling Salesman Problem

The Traveling Salesman Problem can be formulated as follows: given a set of cities,
what is the shortest path through all the cities - without visiting any city more than
once. This is an NP-hard problem, meaning that finding an optimal solution becomes
increasingly difficult if the number of cities increases. There exist two types of TSPs:
the symmetric and asymmetric case, where in the symmetric case the distance be-
tween two points is the same in both directions (undirected), and in the asymmetric
TSP this is not the case. For this research, the focus is on the symmetric TSP, since
most solving methods assume the problem to be symmetric. However, the asym-
metric case might be relevant as well, for example if slopes (for ground robots) or
wind direction (for aerial robots) have to be taken into account.

Any VRP is an extension of the TSP, and is therefore also NP-hard. To circum-
vent the complexity problem, solutions often use a set of heuristics to approximate
an optimal solution instead.

Types of Vehicle Routing Problems

Over the years, various types of VRPs have been specified to describe different
problems. The most common one is the Capacitated Vehicle Routing Problem
(CVRP), which assumes a single starting depot for all vehicles, and a maximum
carrying weight capacity for each vehicle. Another common type is the VRP with
time windows, which specifies times at which locations can be visited by the vehicle.
The problem can be extended to include pick-up at multiple locations, backhauls and
multiple depots.

All of these could be translated into the case of multiple robots: when each
location is a point of interest on a field to be visited, the robot’s carrying capacity
could be relevant when it has to carry pesticide. Harvest tasks can be viewed as
a pick-up and delivery system. On a large-scale farm, the agents might be stored
in multiple depots to reduce travel times to their location of operation. Lastly, some
tasks might require a specific time at which they need to be performed, making the
problem related to the VRP with time windows.
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2.5 Background conclusion

In this chapter, the background on the project has been described. The most
straightforward way to formulate the problem at hand is to transform it into a type
of vehicle routing problem. However, this is not the only possible approach. In the
next chapter, a wide range of algorithms are discussed; both approaches for solving
the vehicle routing problem, and other approaches as well.



Chapter 3

State of the Art

This section outlines the state of the art in solving path planning and target as-
signment problem. Firstly, several traditional path planning approaches are dis-
cussed, divided in exact methods, heuristic methods and metaheuristic methods.
Next, the possibility for applying multi-agent reinforcement learning to this problem
is discussed. Lastly, some other noteworthy approaches are mentioned, several of
which are based on reinforcement learning and deep learning. In Chapter 4, the in-
formation on these approaches is compared to draw conclusions on which methods
are most suitable to start implementing and testing.

3.1 Traditional path planning approaches

There are various approaches to solving VRP-related problems, many of which are
more general combinatorial optimization methods. In this section, various path plan-
ning and optimization algorithms are explored. The algorithms are split into three
subcategories: exact algorithms, heuristic algorithms and metaheuristic algorithms.

3.1.1 Exact algorithms

There exist various algorithms that can calculate an optimal path for the basic TSP,
including dynamic programming and iterative linear programming approaches. How-
ever, these algorithms have a high complexity and scale dramatically when the num-
ber of points increases, due to the problem being NP-hard, as described earlier. For
example, the most straightforward algorithm to give an exact solution (sometimes
referred to as brute-forcing the solution) calculates every possible path and finds
the best one, with a substantial complexity of O(n!). There are faster approaches
available, of which Concorde [17] is often regarded as the fastest. Because of their
complexity, exact algorithms are infeasible solutions to the problem and are not con-
sidered any further in this research. However, an exact solver like Concorde can

9
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be useful for verifying whether a solution is indeed the optimal one, which has been
done for VRP solutions already [18].

3.1.2 Heuristic algorithms

Heuristic algorithms aim to reduce the complexity of finding a VRP solution by using
a set of heuristics. The solution is found in a much shorter time than the exact
solution, at the cost of losing guarantees about the solution being optimal. Some
examples of heuristic solutions are shown in Figure 3.1, comparing them to the
exact solution.

Figure 3.1: Different heuristic approaches (NN, Christofides and 2-opt improve-
ment) compared to the exact solution for a single TSP (n = 10).

The Nearest Neighbour heuristic

On of the simplest heuristic approaches to path planning is the Nearest Neighbour
(NN) heuristic [19]. The path is planned in a greedy way: by always moving to
the closest point that has not been visited yet. The complexity of this algorithm is
O(n2), with n the number of points. This heuristic works fine for small-scale planning,
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however, for larger planning problems the path is often far from optimal. This is
because it only considers one point at a time, often backtracking (see Figure 3.1).
The performance of the algorithm can be slightly improved by repeating the search
method from each possible starting point, and selecting the best solution from these.
The complexity then increases to O(n3) [20]. The main advantage of this method is
its simplicity.

Christofides’ algorithm

The best worst-case performance out of the researched heuristics is achieved by
Christofides’ algorithm [21]. Based on calculating minimum spanning trees between
groups of points and Euler tours, the algorithm has a complexity of O(n ∗ log(n)).
The worst case path length is at most 1.5 times the optimal path length, i.e.:

PathChristofides
Pathoptimal

≤ 3

2

Since this is one of the few available algorithms that gives a worst-case performance
bound, it can be used efficiently to validate other methods - especially in combination
with its low execution times.

k-opt

The k-opt swapping method [22] [23] is a heuristic often deployed by other ap-
proaches to improve path lengths for shorter segments. The heuristic has a com-
plexity of O(nk). It is a local search method, where in each iteration k edges of the
current path are replaced by k new ones such that the total path length decreases.
This is repeated until no improvement is found. Deploying k-opt as a main approach
is often too computationally expensive, especially for values of k = 3 and higher.
However, it is used to further optimize the paths in some of the mentioned heuristic
and metaheuristic approaches in this chapter. An example of using 2-opt to improve
a Nearest Neighbour solution is shown in Figure 3.1.

The Lin-Kernighan-Helsgaun algorithm

Another early effective heuristic for the TSP has been established by Lin and Kerni-
ghan [24]. Their method was later adapted into a more successful implementation
by Helsgaun [25], often referred to as the Lin-Kernighan-Helsgaun (LKH) algorithm.
The algorithm works as follows: an initial path through all points is made using an-
other method, for example NN. Then, a k-opt approach is used, where k is varied
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in each iteration, based on which value yields the best result. Both the original al-
gorithm and the implementation by Helsgaun have a runtime complexity of approx-
imately O(n2.2), slightly worse than the NN heuristic. Often, especially for smaller
numbers of cities, LKH is able to find an optimal path either on the first run or within
a few runs with other initial paths. Therefore, it has a high average result quality.
However, there is no performance guarantee such as with Christofides’ algorithm,
since the results can vary based on the type of problem.

The Clarke-Wright savings heuristic

The Clarke-Wright (CW) savings heuristic was developed specifically to solve the
CVRP, being one of the first approximate solutions to this problem [26] that is still
used nowadays. It is a greedy method, which calculates a savings value Sij for each
possible combination of points, based on the saved transportation cost by combining
the points on a single route. The higher this value, the more attractive it is to include
this route in the vehicle routing. An ordered list of point pairs is made, sorted by their
savings value. From this list routes are constructed, either sequentially or in parallel,
as explained by Lysgaard [27]. The parallel approach often yields better results, at
the cost of being more computationally expensive. The routes are only considered
valid if the vehicles’ capacity is not exceeded. Other VRP methods often use the
solution generated by CW as a starting point to improve upon.

3.1.3 Metaheuristic algorithms

Heuristic path planning algorithms use heuristics to generate a solution to optimiza-
tion problems. Metaheuristic algorithms apply heuristics in another way: instead of
generating one specific solution based on heuristics, they use more abstract heuris-
tics to find a heuristic approach which generates sufficiently good solutions to the
problem. In this way, metaheuristics make few assumptions about the problem it-
self and more about the way of finding an acceptable solution, for example by using
heuristics to reduce a problem’s search space. Six of these approaches are dis-
cussed in this section, all of which can be used to find a solution to the VRP.

Simulated Annealing

Simulated Annealing (SA) is a probabilistic global optimization method, which arose
as an analogy to annealing; the natural principle of heating and cooling a material to
alter its physical properties. It has proven to be a successful method to approximate
difficult combinatorial problems, such as the TSP [28]. The method needs an initial
current state (path), and then considers a neighbouring state (for example, the same
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path but with two cities swapped). For both states, their cost / energy is compared,
and if the neighbouring state has a lower cost, it has a possibility of becoming the
new current state. Otherwise, the current state stays the same as before. This de-
cision is made based on a probability function, that takes as input the costs of both
paths and a time-varying factor called the Temperature (T ). T decreases over time,
and once it becomes zero, the algorithm simply keeps moving to the state with the
lower cost (greedy approach). In this way, the global energy is minimized to approx-
imate an optimal solution while avoiding getting stuck in local minima. Osman [29]
shows in his algorithm comparison that SA can be applied to achieve good results
on the VRP, however, it is outperformed by Tabu Search in both computation time
and solution quality.

Tabu Search

Tabu Search (TS) is a method used for solving combinatorial optimization problems,
which operates in a similar manner as SA. It also moves from a possible solution
towards an improved possible solution, based on a local search. For each solution,
its neighbourhood is evaluated through the use of various memory structures, which
combined form the tabu list. The best solution in the neighbourhood is selected
and becomes the new current best solution. The tabu list outrules the exploration
of certain solutions that violate predefined rules or have been visited recently. The
memory structures of this tabu list can differ per method, for example using only
a short-term memory, a long-term memory, or a combination of both. Similar to
SA, Tabu Search can be applied to both the TSP and the VRP. In the work of
Osman [29], Tabu Search is the best performing algorithm on the VRP, and the
version by Gendreau [30] achieves even a slightly better performance.

Guided Local Search

Guided Local Search (GLS) can be seen as a special case of Tabu Search. It is
another metaheuristic method that uses heuristics to guide a local search and avoid
local minima [31]. Each solution feature (in this case the order of cities, for example)
is given a penalty when a local minimum is found, to guide the search out of it. This
approach is repeated iteratively until a stopping criterion is reached, after which the
best recorded solution is reported. The method is implemented in Google’s OR-
Tools [32], together with SA and TS, and is reported to have the best results of the
three when it comes to VRPs. However, as with any heuristic-based approach, this
may vary depending on the problem.
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Genetic Algorithms

A Genetic Algorithm (GA) is a meta-heuristic algorithm based on biological genetics,
as the name suggests. It can apply the concepts of evolution and natural selection
to optimization problems and search problems. In each iteration, a population of
solutions is created. Each of these solutions receives a fitness score, which in the
case of a VRP would be based on total path length, for example. For the next
iteration, offspring solutions are generated by slightly modifying and/or combining
the parent solutions, where parent solutions with a better fitness score are more
likely to reproduce. Various GA approaches to the VRP exist, though early versions
cannot compete with the Tabu Search and SA approaches mentioned earlier. The
implementation of Baker and Ayechew for the basic VRP [33] is able to approach
the optimal solution within 0.5% of the best known values on average. In another
approach, it is shown that a GA can be used to solve various extensions of the VRP,
including the multi-depot variant [34].

Ant Colony Optimization

A different category of algorithms that solve combinatorial problems is found in
swarm intelligence, where social structures and interaction of social insects are stud-
ied. In ACO, a set of artificial ants are deployed to solve an optimization problem.
When applied to a path planning problem, ants start by moving in a semi-random
fashion from location to location, depositing pheromone on each path they take. This
pheromone increases the probability for other ants to take this path. Pheromone lev-
els decrease over time (evaporate), meaning that if only a small number of ants take
a certain path or if traveling this path takes a lot of time, a lot of the pheromone on
the path will be gone and the path is thus less desirable. After repeating the pro-
cess for a number of iterations, a path has been produced for each ant based on the
pheromone levels. The approach can be used successfully to find good solutions
to the VRP, and with minor extensions to multi-depot problems as well [35]. An im-
proved version is able to compete with the solutions of SA and TS, achieving a high
benchmark solution quality [36].

Particle Swarm Optimization

Another approach based on swarm intelligence is Particle Swarm Optimization (PSO).
Of the investigated metaheuristic methods, this one has the least literature available
on applying it to the VRP. However, there exist approaches that show that PSO can
be applied to find proper solutions, for example in a hybrid form combined with a
GA [37]. This hybrid approach is able to achieve high benchmark results that are
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able to compete with other methods successfully. PSO has also been applied to
a few specific types of VRPs [38] [39], which might be relevant if the researched
problem is to be extended with more constraints. In PSO, a population of particles
update their position constantly, based on both their individual best position and
the overall best position. Each ’position’ here represents a possible solution to the
problem being evaluated.

3.2 MARL for path planning and target assignment

A useful tool that is becoming increasingly more popular in robotics and operations
research is Reinforcement Learning (RL). This method has been used to tackle the
problem of path planning and target assignment already, but often literature only
considers a single agent [40]. Moving from single agent learning to Multi-Agent
Reinforcement Learning (MARL) is a difficult step in RL - a step which is neces-
sary to model path planning for a swarm of robots in any environment. The step
is a difficult one due to the fact that, generally, RL is based on a Markov Decision
Process (MDP), which needs a number of assumptions to hold. One of these as-
sumptions is that the observed environment is stationary - which is not the case
if multiple agents are present in the environment, each with their own policy that
is being updated constantly. However, there are several options to circumvent this
problem, for example creating independent ’oblivious’ agents, having a centralized
critic that evaluates the agents’ actions, or simple communication structures be-
tween agents. Another aspect that has to be taken into account with MARL, is that
the state space can grow rapidly when more agents are added.

In MARL, three different types of problems are defined: cooperative, competitive
and mixed learning problems, where mixed problems are a combination of competi-
tive and cooperative elements. The problem of this research project is a cooperative
problem: the robots have no reason to compete with each other.

3.2.1 Independent agents

The simplest way of approaching the multi-agent learning problem is by training
agents that are unaware of any other agents in the environment. This can be done,
for example, by training a Deep Q Network (DQN) for each agent. This method en-
sures that the computational complexity increases significantly slower compared to
when all agents observe each other’s policies. However, there is also a big down-
side: the agents observe only their own (local) reward, and thus not actually learn
to cooperate with each other. This is less of a problem in the competitive variant of
MARL, but it is a significant issue in cooperative MARL.
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3.2.2 Centralized critic

A solution to the problems of MARL begins with each agent learning their own pol-
icy, like with the independent agents. To make sure that the agents learn to work
together properly, a critic can be added which evaluates each agent’s policy, while
having access to each agent’s observations. This method has been quite successful
in the past four years, and several different approaches are discussed in this section.

MADDPG

One of the first successful ways of applying a centralized critic was Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [41]. In a more recent implementation,
MADDPG is used for UAV path planning [42]. This project, which is similar to this
research, shows that good results can be obtained with MADDPG. However, the
method becomes infeasible for a large number of agents - scaling up from three to
five agents, the large computing times become prevalent. This is mainly caused
by the fact that the critic evaluates the policies of all the agents simultaneously.
MADDPG might be interesting for the cases with only a few agents, but not suitable
for large robot swarms.

COMA

Counterfactual Multi-Agent (COMA) [43] uses a single centralized critic. It is a
method that scales well due to the fact that its main complexity - and all of its learn-
ing - is in its critic network. The agents networks are merely used for inference.
When choosing an action for an agent, a counterfactual baseline is used to single
out that agent and keep all other agents’ actions fixed. This is a solution to the MDP
violations that MARL poses, and keeps the critic from evaluating all agent policies
simultaneously, like in MADDPG. The method achieves good results, and is suitable
for navigation-like cooperation tasks, as is shown in the practical applications.

Multiple actor-attention critic

In Multiple Actor-Attention Critic (MAAC) [44], each agent has their own critic. Be-
cause training each critic based on observations from all agents would be too ex-
pensive, an attention mechanism is created which directs the critics; they are given
guidance to which agent they should pay attention for the learning process. The
method is able to deal with larger number of agents than MADDPG successfully,
although no computation times are reported.
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Mean field reinforcement learning

Mean field reinforcement learning was first introduced by Yang et al. [45], and is
based on mean field theory. The method was developed for dealing with large num-
bers of agents, and therefore naturally scales well. The main concept is as fol-
lows: as with other actor-critic approaches, there are two entities that determine an
agents’ policy: the agent itself and, in this case, the group dynamics of the agent’s
neighbours. In this way, a local group of agents functions as its own critic through
their average actions, although the method could also be viewed as a communica-
tion method (see Section 3.2.3 below). Moreover, the authors also propose Mean
Field Q-Learning (MFQ), which outperforms mean field actor-critic in multiple cases,
despite its lower complexity. In practice, mean field RL has already been applied
to solve a ride-sharing order dispatching problem, which has a few similarities to
VRPs [46].

3.2.3 Learning to communicate

Another way of reducing the state space problem, is having a simple form of com-
munication between agents, allowing them to exchange basic information on their
policies. This communication is often learned behaviour itself, as shown for example
by Foerster et al. [47] Learning to communicate can be used as an extension to other
RL methods, although it can increase the computational complexity in a significant
way, even when sharing small amounts of information. However, not much literature
is available on using communication in path planning or navigation reinforcement
learning problems.

Message dropout

Decreasing large input state spaces in reinforcement learning with communica-
tion can be done through applying message dropout [48]. In this method, a num-
ber of messages between agents are blocked, similar to how dropout can occur
in real-world communication systems. This reduces the input space significantly,
while not trading in performance. The authors test the method for communication-
based MADDPG and various other communication approaches, but discuss that the
method might be applied to non-communication-based methods such as COMA as
well.



18 CHAPTER 3. STATE OF THE ART

3.3 Other noteworthy approaches

In this section, a few other approaches to the path planning problem are discussed.
The CPP problem is cast as a type of VRP in previous sections. However, there
also exist other approaches to tackle CPP, of which one is described in this section.
Moreover, a few machine learning approaches to solve path planning are covered
that do not fit into the category of multi-agent reinforcement learning.

3.3.1 Coverage path planning using an SMT solver

Quite recently, the problem of multi-agent aerial monitoring was tackled in a differ-
ent way [14]. In this project, a group of drones were deployed to monitor penguin
colonies on Antarctica. Their coverage path planning approach called POPCORN
tries to minimize backtracking, to make sure the drones’ paths meet their battery
constraints. A grid is constructed within a predetermined geofence, and this grid is
modeled as a graph. A path is planned through the graph through an SMT solver,
guided by various predefined constraints. This solution is fast, flexible and often
produces better results than other CPP methods. Although this method is only not
suitable for every scenario, it is still a highly promising one.

3.3.2 Reinforcement learning for path planning

Reinforcement learning can also be deployed directly for path planning, as is shown
by the implementation by Zhang et. al. [49]. Their Geometric Reinforcement Learn-
ing (GRL) approach plans paths for single UAVs or groups of UAVs, taking into
account threat areas (which could be obstacles or non-fly zones in agriculture) and
collisions between agents. This risk calculation is combined with a straightforward
grid-based path planning approach. Although not very well-documented, and only
tested for up to three UAVs at the same time, this method can be useful for linking
other approaches to the problem at hand.

Another reinforcement learning approach attempts to solve the VRP directly,
through the use of a recurrent neural network decoder and an attention mecha-
nism [50]. The main advantage of this approach is that only training the model is
computationally expensive: if a model is successfully trained, new VRP scenarios
can be solved almost instantly by the inference model. The results for this method
are able to compete with those of other state-of-the-art VRP methods. Similarly,
approaches to solve the TSP exist [51].
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3.3.3 Deep learning for path planning

Apart from reinforcement learning, other machine learning methods can be used to
approach path planning problems as well. For example, Mazzia et al. implement
a deep learning approach called DeepWay for path planning in row-aligned crop
management scenarios [52]. Although this method is only applicable to a specific
scenario, in that scenario it is a light-weight and robust solution.

Recently, an approach that is applied in Natural Language Processing (NLP), a
transformer network, was deployed successfully to solve TSP problems [53] in an
efficient and near optimal way. Solving the TSP with deep learning is still a hot topic
in combinatorial optimization, which is why probably more advances will be made in
this field in the near future. Deep learning approaches have also been extended to
multiple traveling salesmen, which is highly similar to the VRP [54].

Deep learning approaches to CPP also exist, such as the method by Yang and
Luo [55]. Although this method is highly flexible, including obstacle avoidance, it
scales badly to larger environments, which is why it is not considered any further.
On the other hand, deep learning can also be used to control a robot’s dynamics
in path planning, often used for obstacle avoidance. This has been discussed as
a possible approach as early as 1997 [56], where a neural network combined with
a genetic algorithm steers a robot during path planning. However, this approach
focuses mainly on the control part of the robots, which is outside the scope of this
research.

3.4 State of the art summary

In this chapter, various state-of-the-art approaches to the path planning and target
assignment problem have been considered. A comprehensive overview of the ap-
proaches and their relevant citations are shown in Table 3.1. Three main types of
algorithms for solving the VRP have been discussed: exact, heuristic and meta-
heuristic approaches. Coming in from a different angle, multi-agent reinforcement
learning (MARL) and a few of its most promising methods are discussed. A few
other related projects are discussed as well. Based on the literature found in this
chapter, a number of methods are selected for testing, through various criteria. This
is achieved through an algorithm comparison in the form of a design space explo-
ration, shown in Table 4.1.
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This research project contributes to the state of the art in the following ways:

• It focuses on complex agricultural topologies and considers a variety of real-
world fields.

• It considers and compares various algorithms and methods, choosing the most
suitable one for each type of field and number of agents available.

• It demonstrates an end-to-end solution, from the satellite image of the agricul-
ture field to the target assignment of the agents.

• It evaluates the scalability of the methods used by testing for large numbers of
landmarks and agents.

Category Approaches
Exact solvers Concorde [17] [18]

Heuristics Nearest Neighbour (NN) [19], Christofides [21], k-
opt [22] [23], Lin-Kernighan-Helsgaun (LKH) [24] [25],
Clarke-Wright (CW) [26]

Metaheuristics Simulated Annealing (SA) [28] [29], Tabu
Search (TS) [29] [30], Guided Local Search
(GLS) [31], Genetic Algorithm (GA) [33], Ant Colony
Optimization (ACO) [35] [36], Particle Swarm Opti-
mization (PSO) [37]

Multi-Agent Rein-
forcement Learning
(MARL)

Independent Agents, MADDPG [41] [42], COMA [43],
Multiple Actor-Attention Critic (MAAC) [44], Mean
Field [45], Learn To Communicate [47], Message
Dropout [48]

Reinforcement
Learning and other
Deep Learning

GRL [49], RL-VRP [50], RL-TSP [51], DeepWay [52],
Transformer Network for TSP [53], Multi-Salesmen
Pooling Network [54], DL-CPP [55], DL for Control [56]

Other POPCORN [14]

Table 3.1: Overview of investigated state of the art methods and citations.



Chapter 4

Specification

In this chapter, the problem and approach are further specified. First, a design
space exploration is done, which gives an overview of the discussed algorithms in
Chapter 2 and results in a way to compare them against each other. Moreover, the
requirements for the system design are given. Lastly, the assumptions under which
the system operates are specified.

4.1 Algorithm comparison

To make a selection from the state-of-the-art algorithms that were investigated, a
design space exploration is done in the following way. Each of the discussed algo-
rithms (or groups of algorithms) is given a score in five different categories, which
represent the relevance of the algorithm and the feasibility of including it into the
comparison. This score reflects the expected performance of the algorithm in the
respective category, based on literature and assumptions - note that this holds a
significant amount of subjectivity. These scores will be used to make a primary
selection of which algorithms to test.

The full design space exploration can be found in Table 4.1. The five categories
on which the algorithms are scored are, from left to right: computational complex-
ity, result quality, ease of implementation, scalability and consistency. Computa-
tional complexity and scalability reflect the amount of computing time necessary
and how well the algorithm scales for larger problems. Result quality is an estimate
of how good the average result of the algorithm will be (where ”good” means shorter
path lengths and/or travel time). The score for ease of implementation depends on
whether code for the algorithm is publicly available, and if not, how convoluted the
method would be to implement manually. Lastly, consistency reflects how much de-
viation there will be between the algorithm’s results and/or performance, which could
for example be caused by randomness or change with problem complexity. Each of
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these categories is also given a weight, which is used to calculate a weighted aver-
age score - shown in the right-most column.

Algorithms are listed in order of appearance in Chapter 2. Each method includes
the most relevant reference for a practical implementation. The given scores can
either be - -, -, +/-, + or ++, represented by the integers -2 to 2 for calculating the
total score and weighted average score.

4.1.1 Selected algorithms

To select the algorithms to be used for further testing, the average score of each al-
gorithm is evaluated. A threshold is set; each algorithm that scores a + or higher (1
or higher) will be considered. That results in the following algorithms: Christofides
and CW from the heuristic methods; all discussed meta-heuristic approaches ex-
cept for PSO; and also POPCORN and RL-VRP. One exception are the MARL
approaches; due to their complexity and how different they are from the other ap-
proaches, implementing them for the problem at hand is a difficult and time-consuming
process. Therefore, only one is selected, the most promising one: Mean Field RL.

Christofides will be used as a benchmark: since it has a worst-case guarantee,
it can be used as a baseline to compare the other test results to. POPCORN is
only suited for coverage path planning applications without obstacles or predefined
points of interest, but for those applications it is highly promising. The average score
for message dropout is not above 1, however it might be useful to improve on MARL
methods in a later stadium. The same holds for DeepWay, which is (like POPCORN)
only suitable for a specific application, but promising for that application: row-based
coverage path planning for ground robots.
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Algorithm Compl. Res.Q. E.o.I. Scale Cons.
Total
score

Avg.
score

Weight 0.2 0.3 0.1 0.3 0.1 1
Exact methods* - - ++ ++ - - ++ 2 0

Heuristic methods
Nearest Neighbour [19] + +/- ++ + - - 2 0.5
Christofides [21] ++ +/- + ++ ++ 7 1.3
k-opt [22] [23] +/- ++ ++ - - ++ 4 0.4
LKH [25] +/- ++ +/- +/- +/- 2 0.6
CW [27] + + + + + 5 1

Metaheuristics
SA [32] + + ++ + + 6 1.1
TS [32] + ++ ++ + + 7 1.4
GLS [32] + ++ ++ + + 7 1.4
GA [33] + + + + + 5 1
ACO [36] + + + + + 5 1
PSO [37] + + +/- + +/- 3 0.8

Multi-agent RL
Independent agents* + - + + +/- 2 0.3
MADDPG [41] - ++ - - + 0 0.1
COMA [43] + ++ - + + 4 1.1
MAAC [44] + ++ +/- + + 5 1.2
Mean field RL [45] + + +/- ++ + 5 1.2
Mess. dropout** [48] + + - + +/- 2 0.7

Other approaches
POPCORN [14] +/- ++ + + ++ 6 1.2
Geometric RL [49] + + - - +/- + 1 0.4
RL-VRP [50] + ++ + + + 6 1.3
DeepWay [52] + + - + ++ 4 0.9

Table 4.1: Design space exploration. Scores given range from -2 (–) to 2 (++).
* Generalization or combination of various methods.
** Not really a method in itself, more of an extension.
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4.2 Requirements

To properly answer the research questions, a number of requirements need to be
formulated. This is done using a MoSCoW analysis [57], where each requirement is
placed into one of the four MoSCoW categories: Must haves, Should haves, Could
haves and Won’t haves.

The system must have:

• A variable number of agents

• A representative cost function to evaluate problem solutions

• A link between real world and simulation; for example GPS coordinates as
input and output

The system should have:

• Support for different types of topologies; for example obstacles, row-based
crops, and random/clustered/grid-based points of interest

• Agent specifics and/or characteristics that are based on a real-world analogy

• At least one implemented method from each of the following categories, to
observe the difference between different approaches: heuristic path planning
approaches, meta-heuristic path planning approaches, multi-agent reinforce-
ment learning, and other noteworthy approaches

The system could have:

• Mixed topologies; for example a combination of row-based crops and open
field

• Asymmetric distance representations that model wind direction or slopes

• Partially obscured information, to represent a limited agent visibility range

• A Graphical User Interface (GUI) for accessible use

The system won’t have:

• Agent dynamics and/or an accurate agent control system

• A dynamic planning environment
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4.3 Assumptions

A number of assumptions need to be defined to create and evaluate the system.
Some of these assumptions arise from the previous iteration of this project, others
come from the aforementioned requirements. Possible future relaxations to these
assumptions are discussed in Section 9.2.

• There is only one type of agent. All agents are either aerial robots or ground-
based robots, a mix between the two is not considered.

• The environment is static. All environment conditions stay the same during
simulation, except for the agents’ location.

• The environment is two-dimensional. All relevant topology locations can be
expressed in (x, y) coordinates. This means that aerial agents always operate
from the same altitude.

• There is only one agent origin, which is both a starting point and end
location. All agents start at the same location in the environment, which is
also their end destination.

• All environment information is globally available. The environment layout
is fully observable during simulation.

• Agents always move at maximum speed. This means that traveled distance
by an agent is directly proportional to the time traveled. Stopping times at
points of interest are not included, and wind / terrain friction forces are not
taken into account.

• The distance between two points is symmetric. Slopes and wind direction
are not taken into account; traveling from one point to another is exactly as fast
as vice versa.

• Accurate GPS coordinates are available and can be used to control the
robots. The system uses GPS locations as input and produces a list of target
GPS coordinates as output for a robot to use.
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Chapter 5

Experiment design

In this chapter, experiment specifics and the system pipeline are described. This
includes the extraction of real-world topologies, the necessary calculations and fur-
ther specification of the problem for some of the approaches used. Subsequently,
the generated task scenarios for the tests are listed. Lastly, some details are given,
for example the used agent specifics and the used hardware and software.

Figure 5.1 shows the full pipeline of the system, which takes a Google Earth
topology as input, converts it to a simulation scenario, applies a number of methods
and outputs the resulting solution in GPS coordinates and its cost. For more infor-
mation about the cost function used, see Section 6.1. This schematic gives a global
overview of the discussed points in this chapter. In Section 6.2.3, the addition of a
GUI to the system is discussed, where the pipeline from Figure 5.1 is simplified into
just a few inputs and outputs for the user.

5.1 Scenario setup

In this section, the setup for creating a test environment is described, including the
following: importing a real-world topology, transforming the problem to a VRP and
calculating the distance lookup table. Moreover, obstacle avoidance is discussed.
This approach will be used to generate the scenarios and tasks described in Sec-
tion 5.2.

5.1.1 Extracting topologies from Google Earth

Scenarios are based on real-world topologies extracted using Google Earth. How
to construct such a topology is described in Appendix B. The resulting .kml file is
loaded into the simulation environment, where the GPS coordinates are scaled such
that the topology fits into a coordinate system ranging from -1 to 1 on both axes and
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Figure 5.1: System pipeline overview

the origin at the center ([−1, 1] × [−1, 1]) - which will from hereon be referred to as
the local coordinate system. During this process, a scale factor to convert distances
in the local system to meters is stored. This scale factor is calculated using the
haversine formula1:

a = sin2(
1

2
∆φ) + cosφ1 · cosφ2 · sin2(

1

2
∆λ)

d1,2 = 2R · arctan2(
√
a,
√

1− a)

With R the mean radius of the earth in meters, φ the latitude and λ the longitude,
both in radians. The result d1,2 is the distance between two lat-lon coordinate pairs
in meters.

The distance in meters is calculated both in the horizontal and vertical direction,
and these are combined into the scaling factor. This scale factor results in an ap-
proximate conversion factor from local distances to meters, the error margin of which
is discussed futher in Chapter 8. The normalization factors used in the coordinate
system conversion can be reverted at the end to transform a path planning solution
back to GPS coordinates.

After coordinate normalization, landmarks are added either randomly or based
on a grid. Row-like obstacles can be added as well (based on the same grid) to sim-
ulate row-based crop fields. Moreover, the agent origin (or spawn) can be randomly

1http://www.movable-type.co.uk/scripts/latlong.html

http://www.movable-type.co.uk/scripts/latlong.html
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relocated. The spawn and landmarks are always initialized such that they lie within
the field boundary and not inside any obstacles. A topology in Google Earth and the
resulting scenario in the simulation environment can be seen in Figure 5.2.

(a) topology b.kml (b) scenario bgrid40

Figure 5.2: Google Earth topology and resulting simulation environment. The land-
marks (grey dots) are based on a grid. The agent origin (red dot) is ran-
domly relocated. Row obstacles are added to simulate rows of crops.

5.1.2 Precalculated distances and obstacle avoidance

Most of the methods that are used for testing make use of a precalculated distance
Lookup Table (LUT), which is an n by n matrix which stores each distance between
two points. The LUT is calculated during the setup of the environment, where the
Euclidean distance is used to find the straight line distance between two points:

di,j =
√

(jx − ix)2 + (jy − iy)2

However, direct paths between points might be infeasible, for example when they
pass through an obstacle or cross the topology boundary. If this is the case, an
A* search [58] [59] is deployed to find a valid path between the two points. For
this, an underlying grid is used, of which the nodes are used for path planning in
8 directions (horizontally, vertically and diagonally). The resulting path is stored in
another lookup table, which is used for rendering and producing output coordinates.
The total length of the found path is stored in the aforementioned distance LUT.
Both the direct paths and the obstacle avoidance paths distances are stored in both
directions, since the problem is symmetric.
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In rare cases, A* search can fail to find a route, for example if a point is unreach-
able via the underlying grid due to obstacles or the world boundary. In that case,
the edge (path between points) is considered invalid and a large value2 is added
to the distance LUT to represent the infeasible cost of taking that edge. Points that
have invalid edges to more than 25% of the other landmarks are considered in-
feasible and discarded, or in the case of random initialization, randomly relocated
until the landmark is considered feasible. This point selection is based on prelimi-
nary results obtained for different methods, since some path planning methods try
to take invalid edges if there are too few valid options to reach a point, regardless of
whether enough valid edges are available. With 25% of the edges being valid, there
is enough leeway for the methods to never take an invalid edge wrongly, but it does
not oversimplify the environment. Note that A* search not finding a path happens
rarely. As an example of the procedure, in scenario bgrid40 (Figure 5.2b) there
were a few points in the bottom left corner that had to be removed according to this
heuristic since they could only find valid paths to each other and not to the rest of
the points. The entire point initialization and selection procedure is summarized in
Figure 5.3.

All these calculations can add up in computation time, which will be taken into
account for the methods that use the functionalities. To avoid doing the calculations
each time, the tables and obstacle avoidance paths can be stored locally so that
they can be loaded from file almost instantly when necessary.

Initialize
point

Valid
location?

Feasible?
(reachable

from >25% of
points)

Discard
point

Done!
Yes

No, point=grid

No, point=random

No, point=random

Yes

No, point=grid

Calculate
distance
LUT and
A* paths

Figure 5.3: Point generation and selection procedure.

5.1.3 VRP specification

Most of the algorithms to be tested require a specification of the problem as a basic
Vehicle Routing Problem. The agent origin is considered the depot, and the land-
marks (points of interest) are the customers. The distance LUT from the previous
section is used, and a fixed number of vehicles (agents) is available. Note that some
methods (CW, POPCORN, RL-VRP and all the OR-Tools methods) determine how

21000 times the maximum distance possible in the local coordinate system (2000
√
2)
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many vehicles to use independently. If less vehicles are needed than there are avail-
able vehicles, the excess agents will stay at the depot. If more vehicles are needed
than available, the shortest two routes are combined iteratively until the number of
used vehicles matches the number of available vehicles.

Several of the used VRP solvers solve the CVRP, which means each customer is
assigned a demand and each vehicle is assigned a maximum loading capacity. This
functionality could be deployed in the future to accommodate, However, for these
methods the demand of each customer is set to 0, such that each vehicle is allowed
to visit an infinite number of customers. The vehicles are limited by another factor:
their maximum allowed travel distance, which is shown in Table 5.2. There are two
methods (GA and RL-VRP) which do not use a demand of 0, but instead an equal
distribution of demand across all customers in order for them to function properly.
See Section 6.3 for more details.

5.2 Scenarios

In order to find the best method for different agricultural tasks, five tasks will be
simulated, based on the available options for creating a scenario. Coverage path
planning (CPP) tasks have the landmarks arranged in a grid, to structurally cover
as much of the field as possible. Precision tasks use instead randomly scattered
landmarks, either fully random or in clusters. The ground-based tasks have row
obstacles added in to simulate row-based crops.

For each of these tasks, two scenarios are constructed: one large problem
(around 200 landmarks) and one small problem (around 50 landmarks). In Table 5.1,
more specifics of these scenarios are presented. In Figures 5.4-5.8 the layout of
each scenario can be found. Each scenario is based on a real-world agricultural
field, manually extracted from Google Earth as described in Section 5.1.1.

Task Large Size Small Size Agents Other
Aerial CPP bgrid20 126 cgrid10 54 Aerial -
Ground-based CPP bgrid40 262 dgrid20 116 Ground Rows
Aerial precision z200 200 e50 50 Aerial -
Aerial precision (cluster) hcl200 200 acl50 50 Aerial Clustered
Ground-based precision i200 200 l50 50 Ground Rows

Table 5.1: Overview of the different tasks and problem sizes.
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5.3 Robot specifications

A number of constants are used to describe the specifications of the agents, taking
into account the specified assumptions from 4.3. The aerial agents are modeled
after the Parrot ANAFI3. Ground robots are modeled after the AVO weeding robot by
Ecorobotics4. The used variables can be found in Table 5.2. Given the assumptions,
the maximum distance is simply calculated by multiplying the battery life and the
maximum horizontal speed. The vertical speed and range of the robots are currently
not used, but have been included for completeness. In Section 9.2, a use for these
variables is discussed.

Agent model Battery Hor. speed Ver. speed Max. distance Range
Aerial (ANAFI) 1500 s 15 m/s 4 m/s 22.5 km 4000 m
Ground (AVO) 8 h 1 m/s - 28.8 km ∞

Table 5.2: Specifications used for modelling the agents

5.4 Hardware and software

The experiments are performed on the computing cluster of the CTIT group at the
University of Twente, which has various types of GPUs and CPU cores available.
Due to how the experiment tasks are scheduled, it is not possible to determine
which of these hardware components are used for which experiment.

All experiments are done using Python 3.8. GPU support is added using NVIDIA
CUDA 10.15. Google Earth Pro 7.3.36 is used to set up the scenarios.

For a full list of used Python packages and external repositories, see Appendix A.

3https://www.parrot.com/en/drones/anafi/technical-specifications
4https://www.ecorobotix.com/en/avo-autonomous-robot-weeder/
5Available from https://developer.nvidia.com/cuda-10.1-download-archive-base
6Available from https://www.google.com/earth/versions

https://www.parrot.com/en/drones/anafi/technical-specifications
https://www.ecorobotix.com/en/avo-autonomous-robot-weeder/
https://developer.nvidia.com/cuda-10.1-download-archive-base
https://www.google.com/earth/versions
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(a) scenario bgrid20 (b) scenario cgrid10

Figure 5.4: Aerial coverage path planning tasks.

(a) scenario bgrid40 (b) scenario dgrid20

Figure 5.5: Ground-based coverage path planning tasks with rows of crops.
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(a) scenario z200 (b) scenario e50

Figure 5.6: Aerial precision tasks.

(a) scenario hcl200 (b) scenario acl50

Figure 5.7: Aerial clustered precision tasks.
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(a) scenario i200 (b) scenario l50

Figure 5.8: Ground-based precision tasks with rows of crops.



36 CHAPTER 5. EXPERIMENT DESIGN



Chapter 6

Method

In this chapter, the methodology for answering the research questions is given. First,
a definition of the cost evaluation function for the generated solutions is given. Next,
the testing approach is explained, as well as how the research questions will be
answered. Lastly, details and parameter settings are provided for each evaluated
algorithm.

6.1 Cost evaluation function

To objectively evaluate the performance quality of an algorithm, a cost function has
to be defined. A function is chosen which represents not only the distance or time
traveled by the agents, but also the fairness or standard deviation between agents.
This is done to evaluate whether the paths are divided evenly between agents.

Given are m, the total number of agents, and D, the set of distances travelled by
each agent. Then, the average distance per agent dµ and the standard deviation in
distance between agents dσ can be calculated as follows, both in meters:

dµ =

∑
D

m
dσ =

√∑
(D − dµ)2

m

The average and standard deviation ignore empty routes, i.e. any route k is not
considered if dk = 0.

The maximum of D is the distance traveled by the slowest agent, which is directly
proportional to the total operation time because of the assumption that the agent al-
ways travels at maximum speed. The cost function will be as follows, balancing total
operation time against a combination of the average agent distance and standard
deviation between agent distances:

cost = zmaxD + (1− z)(qdµ + (1− q)dσ)

37
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With balancing factors q and z, which are constants:

0 ≤ q ≤ 1 0 ≤ z ≤ 1

This cost function is partially based on the cost function in the previous iteration of
the project, which comes from the work of Seyyedhasani and Dvorak [15]. For the
experiments, the following values for q and z are used, to represent an equal balance
between solution speed and fairness between agents:

q = z = 0.5

The value for q and z can be used to shift the balance of the cost function towards
the more important factors for the target application, for example based on what
type of agents are used. However, the more general equal balance is used for the
experiments in this research.

6.2 Test goals

In this section, the approach for answering the research questions is given. Each
of the sections corresponds to one of the subquestions defined in Section 1.4. The
three of these methods combined will result in a design which answers the main
research question.

6.2.1 Evaluating method scalability

To evaluate how each of the methods selected in the design space exploration
scales, computation times are recorded for each of them. Two parameter sweeps
are done. The first is for an increasing problem size, where the number of agents
is kept constant (10) and the number of landmarks is increased from 10 to 270 in
increments of 10. The second sweep uses a fixed number of landmarks (100) and
increases the number of agents from 1 to 50 in increments of 1. All this is summa-
rized in the top part of Table 6.1. Both of these parameter sweeps use the same base
topology (h.kml, see also Figure 5.7a), where the agents are aerial and the land-
marks are distributed randomly and not clustered. This topology is chosen because
it is relatively straightforward: the obstacles are not taken into account because the
agents are aerial, and the boundary has a relatively simple shape. However, any
of the topologies discussed in this chapter would have been suitable for these mea-
surements - except when testing RL-VRP, since it does not get obstacle information
as explained in 6.3.
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Parameter Smallest Largest Increment
Agents (aerial, 100 landmarks) 1 51 1
Landmarks (10 agents) 10 270 10
Optimal num. agents per topology 2 30 2

Table 6.1: Parameter sweep settings

6.2.2 Finding the best method for each topology

To find the best method for each topology, first the optimal number of agents for the
scenario is determined. This is either done as a part of the method itself (for CW,
RL-VRP and POPCORN), or by doing a parameter sweep for the number of agents
and evaluating the results using the cost function explained in 6.1. The sweep values
are given in the bottom part of Table 6.1.

Next, two main variables are measured and recorded for the final comparison:
the previously mentioned cost and the computation time. Based on the resulting val-
ues for these variables, conclusions can be drawn on the suitability of each method
for the specific topology. Apart from this, to observe the relative performance of each
algorithm, the total agent operation time for each solution is calculated as follows,
with v the agents’ horizontal velocity:

ttotal =
maxD

v

This ttotal will be evaluated for each method by comparing it to the average operation
time for each topology. This is done by calculating the percentage difference from
the average ttotal.

6.2.3 Towards a real-world application

To ensure that the simulations done represent realistic scenarios, the topologies
are based on real-world agricultural fields. Moreover, the agent specifics are based
on real robots that could be deployed in such scenarios. To ensure that the step
towards real-world implementation is made, the possibility is added to convert path
planning solutions to GPS coordinates, which can then be used for robot navigation
given that the robot has access to accurate GPS data.

Finally, a simple Graphical User Interface GUI is made that increases accessi-
bility for two tasks: both for using the system to solve new path planning problems
using the tested algorithms, and for repeating the experiments done in this project.
With a GUI added, the system pipeline as shown in Figure 5.1 can be changed to
match the one in Figure 6.1.
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Google Earth .kml file
or premade scenario

Input settings from
user

GPS coordinate path
for each agent

Solution cost, render,
etc.

GUI

Path planning and
target assignment

system

Figure 6.1: Simplified system pipeline with added GUI.

6.3 Algorithm details and parameters

In this section, the specifics for each approach used during the experiments are
explained in more detail. For each method, the relevant section in Chapter 3 is
included as well.

Christofides

See Section 3.1.2. Christofides’ algorithm [21] is in itself a method for finding single
TSP path. To apply it to a VRP, the points have to be subdivided between the
available vehicles before calculating the TSP solution for each vehicle separately.
This is done using k-means clustering [60], where k is set equal to the number
of available agents. After clustering, the path through all points in the cluster is
connected to the agent spawn by finding the point closest to the spawn, and making
that the starting and return point of the route.

Clarke-Wright

See Section 3.1.2. The Clarke-Wright savings heuristic [26] is deployed with the
parallel approach (as explained in [27]). As mentioned previously, the demand for
all points is set to 0 such that each vehicle can visit an infinite number of points until
its distance limit (battery life) has been reached.

Google OR-Tools

See Section 3.1.3. The routing suite of Google OR-Tools [32] contains three of the
meta-heuristics to be tested: Simulated Annealing, Tabu Search and Guided Local
Search. The same settings are used for all three methods. The initial solution is
generated using the PATH CHEAPEST ARC setting, which is a solution based on the
Nearest Neighbour heuristic. A time limit is used as a stopping criterion, and it is
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determined through the following equation:

tmax =
n3

28
if n > 50, else tmax =

503

28

In this way, the problem size n determines the time limit (in seconds). Problems for
which n ≤ 50 are all allowed to use the time limit for n = 50, of around 490 sec-
onds. This time limit formula is based on two factors: the time needed to converge
to a good and possibly near-optimal solution, and the time available for running the
experiments. It is definitely possible that, with larger computation times, better solu-
tions are found.

Genetic Algorithm

See Section 3.1.3. The Genetic Algorithm VRP approach of Baker and Ayechew
[33] is used, with a few modifications. The initial solution uses an equal demand
distribution between points to ensure all vehicles are used. The demand for each
point is chosen such that each vehicle is allowed to visit nv points, where:

nv =
n

m

with n the number of points and m the number of vehicles. Moreover, the cost
function from Section 6.1 is used instead of the fitness function used in the paper.
As in the paper, small problem sizes (n ≤ 50) use a population size of 30 and larger
problems use a population size of 50.

The algorithm stops reproducing solutions either when no improvement is found
in the last 100,000 generations, or when the computation time limit has been reached.
The time limit is calculated in a similar way as for the OR-Tools approach, but with
a different formula, since the GA often converges faster than OR-Tools (based on
some initial observations).

tmax =
n3

210
if n > 100, else tmax =

1003

210

Again, tmax is given in seconds. This formula results always yields a tmax that is
4 times smaller than the tmax of Google OR-Tools, however, problems for which
n ≤ 100 are all allowed to use the computation time of n = 100, which is around 980
seconds.

Ant Colony Optimization

See Section 3.1.3. The version of ACO used is based on the one used in the pre-
vious version of this project [9] [61] [62]. Although parameters should be adjusted
to match each specific scenario, the same parameters are used for all experiments.
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These are based on the optimal parameters found by Gaertner and Clark [63] for a
specific TSP instance of comparable size to the smaller problems, and are shown in
Table 6.2. Moreover, the ants are allowed to share pheromone data. Although these
parameters might be far from optimal for the experiment scenarios, they present a
general starting point with which to test the ACO performance.

The way the scenarios are set up, it is not possible to produce results for ACO for
the clustered tasks (acl50 and hcl200). Because the points are grouped far away
from each other, ACO does not converge to a solution for these scenarios.

Parameter α β ρ q tolerance max. iterations
Value 3 12 0.6 0.2 5 ∗ 10−2 50

Table 6.2: Parameters used for Ant Colony Optimization

Mean Field Reinforcement Learning

See Section 3.2.2. An attempt is made to apply mean field reinforcement learning to
find path planning solutions. The Mean Field Q-Learning approach (MFQ) is used,
with the DQN network that the original authors use to solve the battle game [45].
The network is simplified to contain just two dense layers, of 256 units each. One
network is instantiated for each agent.

Each agent has their own observation and reward. For the observation, the agent
is allowed to observe only a limited number of landmarks. Only the n closest unvis-
ited landmarks are observed, where n = 5 for the initial experiments. If not enough
unvisited points are available, the observation is appended with the agent starting
location to keep it the same size. The action each agent can take corresponds with
visiting the landmarks from the observation. Thus, if 5 landmarks are observed, the
agent can take 5 different actions: move to either of them instantly - there are no
dynamics used.

The agent observation consists of three pieces of information per possible action:
the distance to the point (taking into account obstacle avoidance), whether there is
another agent present at that point, and the mean field action from the other agents
- where only the 5 closest agents are considered. The reward the agent receives are
as follows: it gets 1 point whenever it visits an unvisited location, and -0.01 points
for every move multiplied by the distance of that move. The agent gets -0.1 points
whenever it stays in the same location, which only happens at the end when not
enough unvisited locations are left. Each episode is done once all points have been
visited, or if 1000 timesteps have passed (1000 actions taken by each agent).

With all of the above settings, several training setups are tested. However, none
of these seem to converge to a good cost result. As an example, one of the training
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curves is shown in Figure 6.2. Because of time constraints for the experiments,
MFQ will not be compared to the other results in Chapter 7, since no viable results
can be produced for this method yet. Options for how to get the training to converge
are discussed in Section 8.2.

Figure 6.2: Result for training five MFQ agents on random problems with n = 50.
The running average of the cost is plotted on the y-axis, and the number
of episodes is on the x-axis.

RL-VRP

See Section 3.3.2. For the RL-VRP approach [50], the greedy approach is used. A
model is trained for various problem sizes, with demand constraints based on the
values supplied in the paper. An overview of the trained models can be found in
Table 6.3. How well each model performs on the test set is shown in Figure 6.3,
where the average path length is the average over the full test set (1000 instances).

The model closest to the problem is selected, with regards to the number of
nodes. This model is used for finding an inference solution. Like with the GA ap-
proach, the demand for each point is chosen such that each vehicle is allowed to
visit nv points, where:

nv =
n

m

with n the number of points andm the number of vehicles. Moreover, the coordinates
of all locations are transformed such that they all fit in the [0, 1] × [0, 1] unit square,
to match the network input used in the paper. Note that RL-VRP takes as input only
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the location of each node and its demand, and thus the precomputed paths and
distance LUT are not used for this approach.

Number of nodes 10 20 30 40 50 70 100 150 200 250
demand 20 30 34 37 40 45 50 60 65 70

Table 6.3: Trained models for the RL-VRP approach.

Figure 6.3: Average test set results for each of the trained RL-VRP models.

POPCORN

See Section 3.3.1. The POPCORN approach [14], or wadl-planner is deployed di-
rectly from its respective python package. The system takes the agent specifics and
GPS coordinates of the field boundary as inputs, and the grid size is set equal to
the used grid size in the scenario. The method then produces its own grid for doing
coverage path planning, which has approximately the same number of landmarks,
making the solution comparable to a solution using the actual points in the prede-
fined scenario task. As mentioned before, POPCORN will only be deployed to solve
the aerial CPP tasks, namely bgrid20 and cgrid10 (Figure 5.4).



Chapter 7

Results

In this chapter, the results are shown after applying the methodology from the pre-
vious chapter. First, the scalability of each algorithm is reported with regards to the
number of landmarks and number of agents. Next, computation times and scores
are reported for each of the predefined agricultural tasks. Lastly, the real-world ap-
plication of the system is explained.

7.1 Method scalability

In this section, the effect of increasing the number of landmarks and the number of
agents is discussed, in an attempt to visualize how each method scales. Note that
the POPCORN method is not included at all in this chapter. This is because it fits
only a specific type of scenario and it is hard to control the number of landmarks
used in one of its CPP surveys. Also note that for the time limited approaches, OR-
Tools and GA, the full parameter sweep is not completed. This is due to the limited
amount of experiment time available.

7.1.1 Scaling of computation time

In Figure 7.1, the computation time is plotted against the number of agents. As
expected, GA stays at its fixed time limit for 100 landmarks, at around 1000 seconds.
ACO scales badly against the number of agents, quickly increasing in computation
time. Christofides performs the best, with almost no time necessary to produce
the solution. Note that POPCORN, RL-VRP and Clarke-Wright and the OR-Tools
approaches are excluded. Because they optimize their own number of agents, it is
hard to reproduce this sweep experiment for them in a meaningful way.

In Figure 7.2, a similar graph is shown, but now with an increasing number of
landmarks. Christofides shows that it scales very well, together with Clarke-Wright.

45
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Figure 7.1: Computation time measured against an increasing number of agents,
for a topology with 100 landmarks.

RL-VRP scales the best, which is expected when only using inference on a pre-
trained network. In contrast to how it scales to the number of agents, ACO scales
fine with regards to the number of landmarks.

To be able to see how the slower metaheuristic algorithms differ from these re-
sults, they are plotted separately, in Figure 7.3. This plots includes all methods which
use a time limit. As GLS, SA and TS have the same formula for determining their
time limit, they yield almost exactly the same result. GA uses a different formula,
which can clearly be seen in this plot.

7.1.2 Scaling of cost

How well the cost scales against the number of agents is shown in Figure 7.4. Since
adding extra agents is not penalized directly in the cost function, it can be seen that
after adding a certain number of agents for each method, the cost levels out at a
certain level. For more stochastic approaches such as ACO and GA, this level is
more noisy than for Christofides. As in Figure 7.1, the Google OR-Tools methods,
RL-VRP and POPCORN are excluded since they optimize the number of agents
used by themselves.

As a final evaluation of how each method scales, the number of landmarks is
compared to the cost (Figure 7.5). As can be seen, none of the methods’ costs
scale badly against the number of landmarks. Given enough computation time, each
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Figure 7.2: Computation time measured against an increasing number of land-
marks, with 10 agents available for each method.

method should be able to produce similar results between different problem sizes.
However, there is a clear difference in performance level between the algorithms.
ACO performs the worst, followed by RL-VRP. The OR-Tools methods get the best
scores for most topologies, with some exceptions where Christofides and/or CW
score better.

7.2 Best method per topology

Next, results for the method comparison per predefined environment are given. First,
for each method the optimal number of agents is determined. Next, a solution is
generated for each environment, with that number of agents.

7.2.1 Optimal number of agents

As described previously, the optimal number of agents is determined by doing an-
other sweep for the number of agents, this time per environment. This approach
is only used for the methods that do not optimize the amount as a part of their ap-
proach. The optimal amount of agents is found by inspecting plots such as the one
in Figure 7.6. If it is unclear which value is the best, the value with the smallest num-
ber of agents is chosen - using more agents than necessary is never considered
positive. A collection of all plots used can be found in Appendix C.
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Figure 7.3: Computation time measured for GA and OR-Tools against an increasing
number of landmarks, with 10 agents available for each method.

An overview of the optimal number of agents for each method per scenario can
be found in Table 7.1. For POPCORN (SMT), RL-VRP (DRL), Clarke-Wright (CW),
Simulated Annealing (SA), Tabu Search (TS) and Guided Local Search (GLS), the
number of agents is determined by the method itself. Note that the amount of
agents for bgrid20 and hcl200 when applying RL-VRP are infeasible - this might
be because the models for larger sizes have not been optimized fully. Moreover,
Christofides can obtain solid results (the best even in some cases, as will be dis-
cussed further on), but it needs a large number of agents to do so compared to the
other methods. The large number of agents needed also holds for the other methods
that do not optimize the number of agents internally, namely the Genetic Algorithm
(GA) and Ant Colony Optimization (ACO).

7.2.2 Best method

Now that the optimal number of agents has been determined, the final tests for each
scenario can be performed. The results of these tests are shown in Table 7.3 and Ta-
ble 7.2. Moreover, the difference from the best operation time per topology is shown
in Table 7.4, where 0% represents the best total operation time. For completeness,
a scatter plot is made for each topology, plotting the cost against the computation
time for each scenario and per method, like the one in Figure 7.7. The other scatter
plots can be found in Appendix D.
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Figure 7.4: Cost measured against an increasing number of agents, for a topology
with 100 landmarks.

Note that for RL-VRP (DRL in the tables) the results for ground-based instances
are not entirely representative; the network did not know where the obstacles were,
but in the calculating the cost, the obstacle avoidance paths of the other methods
were used.

As expected based on the results from the parameter sweep in 7.1, RL-VRP is by
far the fastest method for most tasks, mainly because inference is fast but also due
to the fact that the precalculation times do not have to be taken into account since
no distance table or obstacle avoidance is used. This can be observed in Table 7.2.
Christofides and Clarke-Wright are also fast, but have to take precalculation times
into account for using the distance tables.

Christofides appears to be the best method cost-wise for some of the topologies,
but it uses a relatively large number of agents to get to these numbers. Clarke-Wright
also obtains good scores for most topologies, while keeping the number of agents
low. The best scoring method overall is Tabu Search, with Guided Local Search a
close second. However, Clarke-Wright, Christofides and Simulated Annealing can
compete with this, with average cost results that are all within 15% of Tabu Search,
also when looking at the difference from the best found solution.
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Figure 7.5: Cost measured against an increasing number of landmarks, 10 agents.

7.3 Real-world application

The current system has several elements which allow it to be used as a real-world
application. Any solution can be converted back into GPS coordinates, an example
of which can be found in Figure 7.8. Moreover, a GUI has been developed for ac-
cessible use of the system. An image of the interface can be found in Figure 7.9. As
can be seen in this screenshot, the interface allows the user to specify a variety of
input settings and load custom files, after which any of the tested algorithms in this
research can be used to find a solution and output it to a list of target GPS coordi-
nates. A guide on how to use the GUI in more detail can be found in Appendix E.
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Environment SMT* DRL* CW* CHR GA ACO SA* TS* GLS* Average
bgrid20 2 98 8 20 20 16 5 6 5 20
cgrid10 1 4 3 22 20 26 5 5 5 10
bgrid40 20 7 26 18 16 5 7 5 13
dgrid20 20 7 20 18 12 6 7 7 12
z200 21 16 16 18 22 7 8 8 15
e50 6 5 20 20 22 5 5 5 11
hcl200 96 15 10 20 8 8 8 24
acl50 7 6 8 18 5 5 5 8
i200 25 20 26 20 28 6 6 6 17
l50 9 8 26 16 26 3 4 3 12

Table 7.1: Found optimal number of agents per method. Averages are rounded.
* Number of agents determined by method itself

Figure 7.6: Determining the optimal number of agents for Christofides in bgrid20
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Env. SMT DRL CW CHR GA ACO SA TS GLS
bgrid20 253.2 20.3 4.1 4.4 1963 95.6 7817 7817 7817
cgrid10 65.2 0.6 19.8 20.3 1180 135.9 634.8 634.8 634.8
bgrid40 3.1 5531 5531 21920 6272 75782 75782 75782
dgrid20 1.2 345.3 345.6 1874 496.2 6442 6442 6442
z200 2.4 88.5 88.5 7910 622 31338 31338 31338
e50 0.6 0.3 0.6 1098 51.7 488.6 488.3 488.3
hcl200 3.1 5.3 5.2 7827 31255 31255 31255
acl50 0.6 0.2 0.4 980.0 488.2 488.2 488.2
i200 2.4 7017 7017 14839 8215 38266 38267 38266
l50 0.7 205.1 205.6 1273 660.3 693.1 693.1 693.1
Avg. 159.2 3.5 1322 1322 6087 2069 19321 19321 19321

Table 7.2: Computation times (s) for each method. Number of agents per method
can be found in Table 7.1. The fastest algorithm is shown in bold.

Env. SMT DRL CW CHR GA ACO SA TS GLS
bgrid20 2508 1931 502.5 431.1 597.3 1982 631.5 530.9 587.4
cgrid10 824.5 688.0 386.9 251.3 259.0 600.4 271.1 265.8 273.0
bgrid40 3567 1020 1044 1451 2170 939.0 825.2 817.1
dgrid20 777.4 376.9 374.7 504.4 919.8 390.0 363.9 363.7
z200 1120 828.3 816.6 975.2 2747 797.6 792.0 800.7
e50 468.5 415.6 329.0 346.6 601.2 362.2 358.8 363.3
hcl200 473.4 296.3 325.7 425.6 295.0 295.3 294.2
acl50 505.9 284.6 268.9 258.0 276.9 275.9 279.2
i200 1721 829.1 989.8 1282 2732 1013 981.1 925.3
l50 1982 1167 1105 1166 1305 1128 1114 1168
Avg. 1666 1323 610.7 593.6 724.8 1638 610.4 580.3 586.8

Table 7.3: Cost function results for each method. Number of agents per method can
be found in Table 7.1. Best performing algorithm is shown in bold.
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Env. SMT DRL CW CHR GA ACO SA TS GLS
bgrid20 464% 406% 16% 0% 36% 479% 44% 21% 31%
cgrid10 217% 165% 52% 1% 3% 211% 2% 0% 1%
bgrid40 375% 34% 39% 87% 256% 17% 0% 2%
dgrid20 116% 6% 9% 40% 259% 9% 0% 0%
z200 54% 14% 10% 30% 376% 4% 0% 0%
e50 35% 25% 0% 4% 126% 1% 0% 0%
hcl200 76% 6% 15% 51% 0% 1% 0%
acl50 95% 10% 4% 0% 0% 0% 0%
i200 120% 0% 19% 43% 313% 14% 10% 2%
l50 92% 14% 11% 11% 64% 2% 0% 3%
Avg. 341% 153% 18% 11% 30% 261% 9% 3% 4%

Table 7.4: Percentage difference from the best agent operation time per scenario,
where 0% represents the best found total agent operation time.

Figure 7.7: Scatter plot of the computation time - cost tradeoff for task bgrid40.
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(a) CW solution (b) CW solution transformed to GPS

Figure 7.8: Solution (CW) to bgrid40, both in the simulation environment and in
Google Earth after outputting the paths to GPS coordinates.

Figure 7.9: Screenshot of the Graphical User Interface (GUI)



Chapter 8

Discussion

In this chapter, some points for discussion are given. This includes some discussion
on the experiment design, the method and also some discussion about the results
from Chapter 7.

8.1 Experiment design

This section raises some discussion about the design of the experiment.
In the current system, a real-world topology consisting of geographic coordinates

is transformed to a two-dimensional local coordinate system. However, geographic
coordinates cannot be transformed into two dimensions linearly; they take into ac-
count the curvature of the earth, making a line between two points an arc rather
than a straight line. This is why the haversine formula is used to determine a scaling
factor to meters, instead of a standard distance formula such as the Euclidean dis-
tance. All this results in the fact that transforming back to geographic coordinates will
have a slight error margin, and that the calculated distances also have a slight error
margin. For a simple single geographical field this error is negligible (the surface
area is almost flat), however for larger topologies this might pose a problem. A way
to circumvent this for larger problems would be to calculate all distances using the
haversine formula instead of the Euclidean distance, keeping the original latitude-
longitude coordinates. In this way all of the discussed approaches should still work
and provide a solution that matches the real world more accurately.
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8.2 Algorithms

This section includes a few discussion points for the used methods, listed under their
respective approach.

Christofides

Currently, k-means clustering is used to transform the VRP into k TSPs, where k

is the number of available agents. k-means is one of the clustering methods avail-
able which is least susceptible to noise and outliers, and thus produces overall good
results for many problems. However, for clustering problems which do not have a cir-
cular shape k-means performs worse. In this project, row-like tasks were evaluated,
where the best clustering approach would be to group points based on the rows in-
stead of using k-means. Apart from this, investigating other clustering methods for
each type of scenarios could result in a more robust Christofides-based solution to
the VRP of this project. Moreover, if clustering methods are found to produce robust
results, they could be used to transform other promising TSP methods into VRP
solutions, such as the deep-learning based TSP solvers discussed in Section 3.3.3.

Clarke-Wright

The sequential approach for Clarke-Wright is not used, only the parallel approach. In
some cases, the sequential approach might yield better results at the cost of longer
computation times.

OR-Tools metaheuristic approaches

To improve the results for the OR-Tools approaches, there are a few options that can
be explored. Firstly, the initial solution is generated each time using the PATH CHEAPEST ARC

setting, while the other settings remain untested. Moreover, the current time limit is
based on some initial observations. More extensive research into the optimal time
limit for different problem sizes could improve result quality even further. Contrarily,
a solution limit can be set to limit the number of explored solutions.

Genetic Algorithm

As with the OR-Tools, the solution limit and time limit for the GA could be improved
by performing some more experiments, as the current limits are merely based on
some initial observations.
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Ant Colony Optimization

As explained by Gaertner and Clark [63], any TSP-related problem needs tailored
parameters when applying ACO. The best approach would be to define some gen-
eral heuristics for each type and size of problem, such that the selected parameters
match the problem to some degree. This is not the case in the current implementa-
tion, but could be an improvement when using ACO for this type of problem in the
future. However, since the results for ACO are significantly worse than the other
metaheuristic approaches, it is deemed unlikely that, even with fine-tuned parame-
ters, the high accuracy of these other approaches can be matched.

As explained previously, it is not possible with the current system to produce
results for ACO for scenarios in which the points are clustered. This problem can
likely be avoided by adjusting some of the parameters or the construction of the
visibility matrix, which has not been done in this research.

POPCORN

The current implementation of POPCORN does not use the pre-selected landmarks,
but instead creates its own grid for CPP. This results in the fact that POPCORN
solutions are not one-on-one comparable to the actual aerial grid-based CPP tasks.
However, the amount of landmarks generated by POPCORN is similar to the actual
value (167 instead of 126 for bgrid20 and 60 instead of 54 cgrid10). Moreover, the
grid size matches exactly. Nonetheless, for the best one-on-one comparison with
other algorithms the grid used for POPCORN should be constructed such that it
matches the predefined landmarks exactly.

Mean Field RL

Unfortunately, the current approach for using mean field MARL did not result in a
converged cost result within the project’s time limit. However, this approach, as well
as the other discussed MARL approaches are still seen as promising methods that
could provide a new type of solution to vehicle routing problems.

There are various reasons that could cause the current approach to not con-
verge. The DQN structure could not be deep enough for the problem. Moreover,
the observation and rewards of the agents might not provide sufficient information
for the agents to learn from. It could also be that simply more training is necessary.
Lastly, something to consider is the decay function of ε, which could allow for better
initial exploration during training.
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RL-VRP

The models for RL-VRP cannot be assumed to produce on average the most opti-
mal solution for their respective problem sizes. The scores on the test set (see Fig-
ure 6.3) are worse than the scores reported by the method’s creators [50], although
for the smaller problem sizes the scores are close. As can be seen in the graph, the
test score does not increase linearly. Longer training, perhaps with some random
resets could solve this problem. Also, the demand constraints used during training
could be chosen such that they match the problem demand more closely. For an
explanation of how the demand was included as a part of the problem, see 6.3.

As another discussion point for the RL-VRP approach, its solutions are presented
also for the problems with obstacles, but the method does not take those into ac-
count. Thus, all paths between landmarks are considered straight edges, which
makes the solutions for those problems far from optimal. The boundary of the en-
vironment is also not taken into account. Added some way of feeding this data to
the network would improve the algorithm’s performance on concave topologies and
topologies with obstacles, for example adding some convolutional layers to the net-
work and passing an image of the environment with obstacles as input.

Lastly, better results could be obtained with RL-VRP when using the beam search
approach instead of the greedy approach. This increases training times and com-
plexity, but could improve overall model performance.

8.3 Results

This section contains some discussion and takeaways about the results.

Number of available agents

Currently, used the cost function includes only two main factors: fairness between
the agents and the total operation time. However, as can be seen with for example
Christofides and RL-VRP, sometimes the best solution (cost-wise) includes a large
number of agents, which often might not be available for the task. It is assumed
that medium-scale farmers will often not have more than 5 to 10 agents available.
Of course, there is the option of combining agent routes until the number of routes
matches the number of available agents, as described in Section 5.1.3, or of select-
ing a method which uses less agents at a still acceptable cost.

To better reflect on the best methods found and feasibility of the number of
agents, the overview in Table 8.1 is created. In the left side of this table, the best
algorithm is reported for the case that only 10 agents are available. On the right, the
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best algorithm is shown for the case that any number of agents can be used.

m ≤ 10 Accurate m Fastest m m ≤ ∞ Accurate m Fastest m

bgrid20 CW 8 CW 8 CHR 20 CHR 20
cgrid10 TS 5 CHR 10 CHR 22 CHR 22
bgrid40 GLS 5 CW 7
dgrid20 GLS 7 CW 7
z200 TS 8 TS 8 CW 16
e50 TS 5 CHR 10 CHR 20 CHR 20
hcl200 GLS 8 CHR 10
acl50 CHR 8 CW 6 GA 18
i200 CW 10* CW 10* CW 20 CW 20
l50 TS 4 CW 8 CHR 26

Table 8.1: Best scoring algorithms per scenario. The left table is limited to 10
agents, and on the right are possible improvements with larger m (num-
ber of agents). The cost of the fastest algorithm should be within 5% of
the most accurate result.
*Clarke-Wright with shortest routes combined until 10 routes remain.

Cost function

As explained in Section 6.1, the balancing factors q and z are set to 0.5 for all ex-
periments. They could be changed to better fit the scenario during the experiments.
For example, for aerial robots the total flight time is more important than the distance
division between agents, which could be reflected by making z larger than 0.5. This
is something to take into account in future experiments.

Demand constraint

Some of the algorithms tested solve the capacitated vehicle routing problem (CVRP),
which means that they also solve for a demand constraint; each landmark is a cus-
tomer and a vehicle can supply a limited number of these customers before returning
to the depot. In most cases, the demand of each landmark was set to 0 such that
each vehicle can supply an infinite number of customers. The demand could be
used to get a more equal distribution between agents. The idea is that each cus-
tomer has a demand such that a vehicle can visit 1/φ times the expected number of
customers on its route, with φ a constant smaller than or equal to one, n the num-
ber of customers and m the number of vehicles. The following formula is used to
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determine the demand of each node, where each vehicle has a capacity of 1:

demandn = φ
m

n

To recreate the situation used in the results in Chapter 7, φ is simply equal to 0,
except for GA and RL-VRP, which use a φ of 1 as explained in Section 6.3. The result
for different values of φ (phi) for the Clarke-Wright algorithm is shown in Figure 8.1.
As can be seen, there is a decrease in cost for larger values of φ.

Figure 8.1: Resulting cost for Clarke-Wright on the bgrid40 scenario, for different
values of φ. 20 agents are available for each experiment.
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Conclusion and recommendations

In this chapter, the research questions will be answered in the form of a conclusion.
Moreover, some recommendations for future work are provided.

9.1 Conclusion

To answer the main research question of this research, first the subquestions will be
answered.The questions are discussed in the order they are presented in Chapter 1.

• How can be ensured that the system scales well with regard to the number of
agents in the swarm?

Ensuring proper scaling can be done through selecting the right method for the prob-
lem size. Thus far, the only method which scales badly with regards to the number
of agents is ACO (see Figure 7.1), which makes it unsuitable for situations with
larger numbers of agents. For other methods, scaling problems do not occur with
larger numbers of agents, but with larger numbers of landmarks (see Figure 7.2).
Time-limited iterative approaches such as the Genetic Algorithm and OR-Tools ap-
proaches are unable to converge to a good solution within a small time limit for
problems with larger number of landmarks. Christofides scales well in both regards,
and Clarke-Wright does not show any scaling issues either.

• Which approach is best suited for which individual topologies and/or combina-
tions of topologies?

Looking at the results discussed in Section 7.2, the method that performs the best
on average is Christofides. However, to obtain these results, a large number of
agents had to be deployed, as discussed before. Looking at the agent operation time
savings in Table 7.4, Clarke-Wright is a close second in terms of cost. Both of these
two methods are not as fast in terms of computation time as RL-VRP, however the
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scores for RL-VRP are too bad to compete with CW and Christofides. POPCORN is
slow and results in high-cost solutions, and the same holds for ACO. The three OR-
Tools approaches (SA, TS, and GLS) result in the best achieved scores for some of
the topologies, and are expected to score even better given more computation time
budget.

There is always a tradeoff between computation time and result quality when
comparing these types of algorithms. If computation time is the bottleneck, and fast
solutions are necessary (for example for an environment which changes during op-
eration, requiring recalculations), Christofides appears to be the best method if a
large number of agents is available. If this is not the case, Clarke-Wright might be a
better option. However, if calculations are done beforehand, and more computation
time budget is available, one of the OR-Tools metaheuristics is the better option,
with Tabu Search showing the best cost results. Based on how the methods scale,
the metaheuristic approaches are better suited for smaller problems, since they are
likely to produce better results within a reasonable amount of time. For larger prob-
lems, the amount of time needed to find a better solution than CW or Christofides
might become infeasible.

Looking at which specific topology requires which method, it is hard to make a
clear distinction between the scenarios. The problem size seems to impact the per-
formance of the methods much more than the type of task at hand. This means that
most of the methods presented are flexible enough to cover a wide range of prob-
lems. For a quick overview of the best method per topologies for different numbers
of available agents, Table 8.1 can be consulted.

• How to simulate a realistic scenario of a robotic swarm in an agricultural field,
taking into account the robots’ constraints and limitations?

A realistic simulation scenario is constructed for this research, using geographical
coordinates of actual agricultural topologies. Row-like crops are simulated by adding
rectangular obstacles. The robot’s constraints are modeled using their speed to find
the maximum distance they can travel before their battery is depleted. However,
there are still quite some limitations to the simulations which should be removed
if the simulations are to match the real world more closely. This can be done by
relaxing some of the constraints, such as taking into account the time certain tasks
take or that the agent is not able to travel at full speed at all times. For more ideas
on which assumptions to relax, see 9.2.
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Main conclusion

With these answered subquestions, now the main research question can be ad-
dressed:

How to design a system for efficient path planning and
target assignment for robotic swarms in agricultural applications?

In this research, a system is designed. Currently, it is mainly used to evaluate the
performance of different path planning methods to find the most suitable method for
different jobs. A more finalized version of this system contains a number of path
planning algorithms and selects the most suitable approach based on the topology
size, the number of available agents and the computation time available. To keep
computation times reasonable, any solution produced by the system will often not
be the optimal solution, however it will be efficient enough for the specified job.

The system is transformed into an accessible real-world application through the
creation of a Graphical User Interface (GUI). The system contains many useful fea-
tures, such as for example obstacle avoidance and generation of row-like structures.
User input from Google Earth is used, and the system output can be plotted into
Google Earth as well. The output solution can be transformed into GPS coordinates
which can be used by the robots directly.

The system meets all specified must have and should have requirements from
Section 4.2, and it also meets one of the could have requirements: the GUI.

9.2 Recommendations

There are various recommendations for continuing this research. Some concern im-
proving the solution quality for a better system output, others discuss extending the
tested methods with untested promising approaches. Moreover, some recommen-
dations are given for extending the system functionalities, for example by relaxing
some of the assumptions. Apart from these recommendations, it would be good
to keep an eye on the robotics business sector, since deploying robot swarms in
agriculture is in development at several companies, for a wide range of applications.
For example, it was announced recently that drones are being developed for fruit
picking jobs in orchards [64]. Projects like these can provide useful insights into the
relevance of this type of research and possible applications and solutions.

Improving solution quality

The solution quality of the system could be improved in various ways. If there is
enough computation time available, the individual agent routes could be improved
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(or verified) using an exact TSP solver such as Concorde [17]. Moreover, adding a
demand constraint could be used to increase fairness between agents, as discussed
in Section 8.3.

To verify the output solution quality, the methods included in the final system
could be used to produce results to know VRP datasets, for example the VRP-
REP database instances1, or the instances tested on in the surveyed literature, for
example the problems evaluated by Osman [29] in his comparison.

Other promising algorithms

In this research, the use of multi-agent reinforcement learning (MARL) approaches
is investigated. However, applying them in practice has thus far been unsuccessful.
It is recommended to further explore this group of algorithms for the topic of path
planning, and the literature supplied in this thesis might be a good starting point for
that.

Another largely unexplored method in this thesis is the DeepWay coverage path
planning approach [52], which is a promising method to look into for the case of
row-aligned crop fields.

Using deep learning and reinforcement learning for combinatorial optimization
problems such as the VRP is an active field of research at the moment. It is likely
that, in the near future, a method will become available which fits this problem glob-
ally and is able to produce solid solutions at very low computation (inference) times.

Extending system functionality

To add more functionalities to the system, the type of VRP used can be adjusted. For
example, a VRP with time windows can be used to represent specific times at which
crops have to be inspected. Apart from the demand constraint discussed earlier,
making the VRP a CVRP could account for an actual agent capacity and delivery
load, for example to represent the amount of pesticide which a drone can carry.

Another way of extending functionality would be relaxing some of the assump-
tions made in Section 4.3. This would result in a system taking into account more
real-world factors. For example, if the VRP would be asymmetric, wind direction or
slopes could be taking into account when calculating the distance tables. Another
example would be to add start-up or takeoff times, and service times at at each point
of interest, such that the agent is no longer traveling at full speed the whole time.
Also, the distance from the controller could be another constraint to add to the case
of aerial agents.

1Available from http://www.vrp-rep.org/

http://www.vrp-rep.org/
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Appendix A

Python packages and code
repositories

The packages and repositories for each method and the base environment can
be found in Table A.1. The other packages used, which can also be found in the
requirements.txt file of the project, are as follows:

• gym (0.10.5)

• numpy (1.19.5)

• pyglet (1.5.0)

• scikit-learn (0.23.2)

• shapely (1.7.1)

• torch (1.6.0)

Packages used for making plots and outputting the Google Earth visualization:

• cycler (0.10.0)

• matplotlib (3.3.2)

• pandas (1.2.1)

• simplekml (1.3.2)

Each of these packages can be installed separately using pip install (...), or
all at once using pip install -r requirements.txt. Note that wadl-planner re-
quires at least Python 3.8. The used wadl-planner version is 1.0.1, and the used
ortools version is 8.2.0.
tensorflow 2.3.0 was used to test the Mean Field approach, however it is not used
in the rest of the project. When using Anaconda, it can be installed with conda

install tensorflow.

71



72 APPENDIX A. PYTHON PACKAGES AND CODE REPOSITORIES

Environment Available
Multi-Agent Particle Environment Github (openaia)

Method Reference Available
Christofides [21] Github (Retsedivb)
SA, TS, GLS [32] pip install ortools

POPCORN [14] pip install wadl-planner

RL-VRP [50] Github (mveres01c)
ACO [9] [61] [62] From previous project
CW, GA [27] [33] Programmed based on references
Mean Field Q-Learning [45] Github (mliid)

Table A.1: Used repositories and packages for the tested algorithms and base en-
vironment.

aAvailable from https://github.com/openai/multiagent-particle-envs
bAvailable from https://github.com/Retsediv/ChristofidesAlgorithm
cAvailable from https://github.com/mveres01/pytorch-drl4vrp
dAvailable from https://github.com/mlii/mfrl

https://github.com/openai/multiagent-particle-envs
https://github.com/Retsediv/ChristofidesAlgorithm
https://github.com/mveres01/pytorch-drl4vrp
https://github.com/mlii/mfrl


Appendix B

Generating simulation environments
from Google Earth

This is a step-by-step guide of how to create a topology in Google Earth for use with
the simulation environment.

B.0.1 Step-by-step process

1. Navigate to the area you’re interested in in Google Earth Pro1 (desktop version,
free to download).

2. Create a new folder.

3. Add any number of Polygons and Placemarks on the map, and store them in
your folder. An overview of which objects to create can be found below.

4. Make sure your topology has at least one boundary polygon and at least one
agent placemark.

5. Right-click your folder and select Save as...

6. Save the file as a .kml file.

7. You can now import the topology as a simulation world by passing the file path
to the .kml file as the top argument when creating the Topology class for the
system.

1Available from https://www.google.com/earth/versions
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74 APPENDIX B. GENERATING SIMULATION ENVIRONMENTS FROM GOOGLE EARTH

B.0.2 Object options

Boundary

Only one instance allowed. Adding a boundary is obligatory.
Create a polygon to mark the simulation environment’s boundary. Make sure its

name contains ”boundary”. Can be either convex or concave.

Obstacle / Wall

Any number of instances allowed.
Create a polygon to mark an obstacle or wall. Obstacles should be convex poly-

gons. If they are not convex, their convex hull will be imported instead when creating
the environment.

Add the word ”hard” to an obstacle’s name to make sure it is not possible for
drones to fly over the obstacle. If it is not ”hard”, ground agents will collide with
it, but drones will be able to fly over it. Besides this, the obstacle’s name does not
matter, but it should not contain ”boundary”.

Agent / Agent spawn location

Any number of instances allowed. At least one instance is obligatory for correct
functioning of the simulator.

Create a placemark to either mark the starting spot for a single agent, or a group
of agents. Its name should contain the word ”agent”.

Landmark / point of interest

Any number of instances allowed.
Create a placemark to mark a point of interest. The point’s name does not matter,

although it should not contain the word ”agent”.

B.0.3 Other tips

If you set a polygon area to outlined instead of filled or filled+outlined, it is much
easier to work with.



Appendix C

Agent optimization plots

In this appendix, the plots used to find the optimal number of agents per scenario
are shown for reference. See Figure C.1 and Figure C.2.

(a) bgrid20 (b) cgrid10

(c) bgrid40 (d) dgrid20

Figure C.1: Optimal agent plots, part 1
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76 APPENDIX C. AGENT OPTIMIZATION PLOTS

(a) z200 (b) e50

(c) hcl200 (d) acl50

(e) i200 (f) l50

Figure C.2: Optimal agent plots, part 2



Appendix D

Cost - computation time plots

In this appendix, a scatter plot is presented for each scenario. In each of these plots,
the cost is plotted against the computation time for each method that is used to find
a solution.

(a) bgrid20

(b) cgrid10

Figure D.1: Cost - computation time tradeoff scatter plots, part 1
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78 APPENDIX D. COST - COMPUTATION TIME PLOTS

(a) bgrid40

(b) dgrid20

(c) z200

Figure D.2: Cost - computation time tradeoff scatter plots, part 2



79

(a) e50

(b) hcl200

(c) acl50

Figure D.3: Cost - computation time tradeoff scatter plots, part 3
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(a) i200

(b) l50

Figure D.4: Cost - computation time tradeoff scatter plots, part 4



Appendix E

Usage guide for the Graphical User
Interface

E.0.1 Getting the GUI

The GUI for the path planning tool and installation instructions can can be found at
https://github.com/jmpostmes/Multi-Agent_GPS_Planning_Tool

E.0.2 Usage guide

Press ‘Exit‘ to exit the tool.

File input

As input, there are two options to choose from: load a Google Earth kml file or load
a premade scenario from file. For instructions how to create a topology in Google
Earth for use with the tool, see Appendix B

To load an earlier stored scenario, select either the scenario.dictionary,
topology.dictionary or world.dictionary file for loading. The others will be in-
cluded automatically.

After choosing a file to load, press the make environment button. An environment
for planning will now be created with the settings from Input settings. If loading
a premade scenario, Input settings will be updated to match the settings of the
loaded scenario.

File output

To select a custom output folder, click Select output directory and select the
folder where you want the output of the tool to be stored. By default, this is the root
folder containing the tool files.
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Input settings

There are various input settings that can be set when creating an environment.
Random spawn location randomly relocates the agent starting location if set.
Ground-based agents sets the agents to aerial agents when unchecked, and

ground agents when checked.
Amount sets the amount of agents, or landmarks, respectively.
Under Type the type of landmarks generated can be selected, from one of the fol-

lowing four options: From topology, Grid, Random (default) or Random (clustered).
Row obstacles creates row-based obstacles based on the underlying grid when

checked.
Grid size sets the grid size in local coordinates - a grid size of 1.0 would divide

the environment in the middle in both directions.
Grid rotation sets the grid rotation in degrees.

Output settings

Under Output settings, the algorithm used to create a solution can be selected
from the list of available algorithms.

If Render output is unchecked, the environment and output solution will not be
rendered.

If all settings are as they should be, press Create solution to generate a solu-
tion to the loaded environment for the specified number of agents.
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