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Management summary 
Annually, Grolsch has to buy new containers to make up for losses in the market, losses during 

production or to support sales growth. Currently, the planning for the procurement of new 

containers (injection) is done using a long-term container-planning model. This model forecasts 

container returns and then decides based on the production plan when new bottles are needed. 

However, the injection plan is not always accurate and how the input parameters for this model are 

calculated is questioned. A more accurate injection plan can lead to a reduction in overstocking- and 

understocking costs. These costs include investment costs, holding costs, changeover costs and 

stockout costs. We have started this research with the intention to only improve the calculation of 

the input parameters of the container-planning model for two bottle types: the 30cl green bottle 

(Apollo) and the 30cl brown bottle (BNR). These input parameters are:  

• Trade Loss (TL), the percentage of containers lost in the market 

• Internal Loss (IL), the percentage of containers lost at the brewery 

• Trade Population (TP), the number of containers currently in the market 

• Weeks in Trade (WiT), the number of previous weeks of sales that are currently still in the 

market and have not yet returned  

• Days of Cover (Doc), the working days of production that the empty container stock should 

cover (safety stock) 

After analyzing the current situation of how Apollo and BNR returns are currently forecasted, we 

have decided to also improve the return forecasting model. After making a parameter calculation 

model in Excel and improving the return forecast, we have extended the research further by also 

proposing a different purchasing policy for new Apollo and BNR bottles. We propose to calculate the 

safety stock of empty bottles with a well-known formula instead of the current way based on experts 

opinions. The main research question of this research is therefore:  

“How can the injection planning for Apollo and BNR be improved, by improving the long-term 

container-planning model’s input parameter calculation, return forecast and purchasing policy?“ 

Current situation 

The first part of the research is the analysis of the current container return process and the 

description of how the current container-planning model works. We describe the inputs, the outputs 

and how these different inputs and outputs of the current model are currently calculated. 

Afterwards, the performance of the current container-planning model is measured by the KPI 

“Return forecast accuracy”. The Mean Absolute Percentage Errors (MAPE) of the weekly return 

forecasts are considered high with 25% for Apollo and 44% for BNR. We conclude that the way 

Grolsch currently forecasts returns (using WiT) can be improved. 

Literature review 

The literature review is used to see what is written about return forecasting and procurement in 

reverse logistics. The first takeaway from the literature is that there is a difference between general 

sales forecasting and return forecasting. With return forecasting, the variable’s values should depend 

on another explanatory variable (sales) instead of just the variable’s own past values. This makes 

standard forecasting methods as moving-average, exponential smoothing or Holt’s method less 

appropriate.  

Because Grolsch does not register the production code of each individual returned bottle, the real 

time that a container stays in the market is unknown. There are only aggregate data available: total 
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returns per container type per period. This makes return forecasting for Grolsch different than return 

forecasting for companies in other industries, where an individual item’s time in the market is 

known. There are several methods and models proposed in literature that work with only aggregate 

return data. In our opinion, the return forecast for Grolsch can best be modeled as a finite 

Distributed Lag Model (DLM), that can be solved using time series analysis techniques. 

For the injection planning problem (order policy) there is one particular model that is interesting. 

This is the model of Kelle and Silver (1989b), which can deal with uncertainty in demand and supply 

(returns) while these uncertainties can also be correlated with each other. With this model, the 

safety stock (of empty bottles) can be calculated using a well-known formula.  

Parameter calculation and return forecast results 

First, the parameter calculation of TL is improved. This is done by updating the calculation of the 

realized returns and looking at the TL stability to choose a period over which to calculate the TL. The 

updated values are X% for Apollo and X% for BNR. The TL for Apollo is assumed to be stable. For 

determining the TL of BNR, human input is necessary to make sure sudden market changes are 

incorporated in the TL calculation. 

The proposed return forecasting model for Grolsch is a finite Distributed Lag Model (DLM), which we 

have solved with a lognormal distribution structure for the time in the market of bottles. This results 

in a Time in Trade (TiT) distribution, the probability that a container returns in a certain week after it 

is sold. The parameters of the lognormal distribution are estimated in Excel by including 52 weeks in 

the calculation after which bottles can still return, and scaling the remaining probability mass after 

the 52 weeks over the included 52 weeks. After we have seen the cumulative error of using one TiT-

distribution for the whole year, we have concluded that a two period seasonality needs to be 

incorporated in the model. The average TiT we found for Apollo is X weeks and for BNR X weeks. The 

improvements in terms of MAPE for 2020, with the TiT-distribution fitted on data from 2018-2019 

are: 

  Return forecast MAPE Apollo   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 24.0% 26.1% 

Improved return forecast 12.6% 14.3% 

Table 0.1: Return forecast MAPE Apollo 

  Return forecast MAPE BNR   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 35.7% 38.7% 

Improved return forecast 14.8% 16.1% 

Table 0.2: Return forecast MAPE BNR 

We conclude that the improvement to the return forecast is significant and would likely lead to a 

more accurate injection planning. After the TiT-distributions are estimated, the TP can be estimated 

because it is known how many sales of each week are still expected to be in the market on each point 

in time.  In Chapter 5 we used the improved return forecasting model in a new injection planning 

model based on the model of Kelle and Silver (1989b).  
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Expected costs  

The new injection planning model outputs an injection plan based on the well-known formula for 

safety stock. In the end we have calculated the expected holding-, changeover- and stockout costs 

for three scenarios by simulating sales and returns with an expected normally distributed sales 

forecast error. These three scenarios are: 

1) The current injection planning model with the current return forecast (CIP+CRF) 

2) The current injection planning model with the new return forecast (CIP+NRF) 

3) The new injection planning model with the new return forecast (NIP+NRF) 

The results for Apollo are as follows: 

Scenario 
Expected total 
costs 

Expected holding 
costs 

Expected 
changeover costs 

Expected 
stockout costs Injection 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 0.3: Expected costs Apollo 

The results for BNR are: 

Scenario 
Expected total 
costs 

Expected holding 
costs 

Expected 
changeover costs 

Expected 
stockout costs Injection 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 0.4: Expected costs BNR 

Stockout costs and holding costs both decrease from scenario 2 to 3 for BNR. This is the case because 

the timing of the injection was too late in Scenario 2 compared to Scenario 3. Sales for BNR can be 

volatile and the current safety stock does not protect against this.  We conclude that the total costs 

for Apollo and BNR together can be reduced with 5%. 

Recommendations 

The first recommendation for Grolsch is to use the updated parameters in the current container-

planning model. These parameters can be updated annually with the parameter calculation tool. 

Second, we recommend Grolsch to incorporate the improved return forecasting model in the current 

container-planning model. Not only is the improved method more realistic and accurate, the old 

method is very prone to changes in sales and a WiT-profile cannot just be copied to a next year. We 

also recommend to look into the new injection planning model as holding costs can be saved. Finally, 

we recommend Grolsch to keep track of where returns crates came from (from which customer), so 

a more accurate analysis can be done and uncertainty in the return forecast can be further reduced. 

Roadmap 

The container-planner of the Supply Chain Planning department can update the input parameters of 

the container-planning model annually by using the parameter calculation tool. The improved return 

forecasting model can be implemented in the current container planning model of Grolsch, which 

has already been tested during the research. For the improved injection planning model, a simulation 

needs to be done in Microsoft Excel which can also be done by the container-planner annually. 
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1. Introduction 
Grolsch is a more than 400 years old Dutch beer brewery and is characterized by its taste, 
strength and its unique own character. Grolsch produces a wide range of beers at its brewery in 
Enschede, from normal beer to many special beers as Radler, Kornuit, and Seasonbok. Even though 
currently the most demand comes from within the Netherlands, the export market is also a big part 
of Grolsch. Within Grolsch there are a lot of departments that together make sure enough beer is 
brewed and filled to fulfill the demand.  
 
As we have been working in the team of the Supply Chain Planning department (SCP) during this 
research, we briefly describe the roll of this department within Grolsch: 
SCP is responsible for planning the production on the eight production lines, material planning and 
the brew planning. SCP therefore has a central role within Grolsch. If SCP changes the planning this 
has consequences for other departments (for example operations and warehouse) as well.  
Planning is split in long-term (tactical planning) and short term (scheduling).  
 
At the SCP, two people are responsible for the tactical planning and they create a production plan on 
week level for up to 78 weeks. After the tactical planners release their plan, the two schedulers plan 
the output amounts of the tactical plan on the production lines. In practice this plan changes a lot, 
because of issues on the production lines or problems with material availability. It is the goal to 
change the planning as little as possible. 
 
Another important part of SCP is the material planning. No material means no 
production. The two material planners use sophisticated tools to help them determine which 
materials are needed at what moment in what amount. They then communicate this to the 
suppliers and make sure that the suppliers deliver the materials on time. If there are any 
problems the material planners communicate with the other team members so they might 
change up the production plan. 
 
The last part within the SCP department is the brewing and filtration. The location of Grolsch is 
called a brewery for a reason: there is not just a filling line, Grolsch brews its own beers as well. 
One person is responsible for planning this process that takes approximately X weeks per beer 
depending on the type of beer that is brewed. 
 
The part of the SCP that we have been working on is container-planning, which is a subpart of the 
material planning. Grolsch has planning models for determining the returns of bottles and crates and 
is unsure if the input parameters for these models are correct. Because a lot of money is spent each 
year on new bottles and crates it is expected that savings can be realized when the models are 
optimized. 
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1.1. Problem statement 
Annually, Grolsch has to procure new containers to make up for the container losses in the market, 

the breakage of containers on the filling lines and possibly sales growth. The procurement decisions 

are made the year before the containers are needed for production, as the supplier needs time to 

plan and produce the containers. Currently, these decisions are supported by a long-term container-

planning model, that forecasts how many new containers (injections) are needed based on the 

returns of previously sold containers. Grolsch faces high costs for planning too little or too much 

injection. 

First, we look at the costs of planning too much container injection. If Grolsch expects to need too 

many containers, the suppliers have to hold a big amount of stock. This is not only costly for the 

suppliers, but after some time Grolsch has to decide what to do with the stock: inject (buy the 

containers and move them to storage at the brewery), relocate to other beer brewing companies 

(possible for some bottles) or destroy. Costs that could have been saved here are: investment costs 

that could have been postponed (including depreciation of the assets), stock costs at the supplier 

(that Grolsch might pay for) and costs for relocating or destroying.  

In the case of planning too little container injection, the suppliers don’t hold enough stock. They 

might hold some safety stock, but this is often limited. The lead times on new containers from order 

are too long to flexibly handle additional demand. The feasibility of Grolsch’ production plan depends 

on the number of containers that comes back from the market when suppliers are unable to deliver 

more containers.  

The returns from the market are influenced by customer return behavior, but also by the logistics of 

the pick up at the client. For example: When a client of Grolsch has a promotion period, Grolsch 

brings many full crates to the client. In these periods Grolsch gets back more returned containers, as 

the policy is to take a full truck of returned containers back to the brewery after a delivery. But when 

the promotion has ended, there is an accumulation at the client. Now the containers that were sold 

during promotion get returned but Grolsch has no logistical capacity to pick them up.  

Currently, Grolsch also faces high costs for the manual sorting of containers, which is needed when 

there are no empty containers left in storage and the automated sorting line has no capacity. This 

manual sorting is inefficient, costly and should be prevented if possible. Another possibility when 

there are too few empty containers available is to change up the planning and postpone the 

production for which these containers are needed. This option is also limited as changing up the 

planning has consequences for many departments and should be avoided if possible. Eventually, 

when Grolsch is unable to realize the production plan this can lead to stock-outs, lost sales and 

unsatisfied clients. 

It all comes down to an accurate planning of the injections. In the first place so that not too much 

new material is ordered and in the second place that suppliers are still able to have sufficient stock to 

flexibly respond to higher demand of Grolsch.  

Grolsch currently uses a long-term container-planning model as a decision support  tool for planning 

the injections. However, the performance of this model is questioned as there are regularly problems 

with the availability of some containers. The following input parameters go into the current model:  

• Trade Loss (TL), the percentage of the containers lost in the market 

• Internal Loss (IL), the percentage of the containers lost at the brewery 

• Trade Population (TP), the number of containers currently in the market 
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• Weeks in Trade (WiT), the number of previous weeks of sales that are currently in the market   

• Days of Cover (DoC), the working days of production that the empty container stock should 

cover (safety stock) 

The problem is that these input parameters are not updated for some years, and the way in which 

they are calculated is questioned. Besides, the way the current model forecast returns and plans 

injections based on these parameters can likely also be improved. The procurement decision based 

on this return forecast is now a simple order-up-to policy, with safety stock that is manually 

determined. The expectation is that with improvements to (1) the parameter calculation, (2) the 

return forecast and (3) the purchasing policy or safety stock calculation, the annual injection plan will 

be more accurate and overstocking- and understocking costs can be reduced. 

The abovementioned problems are shown in the problem cluster in Figure 1. At the top we see the 

main problem. Below every problem is the cause of that problem. This results in possible “core 

problems” at the end of the tree. The light red problems are the problems we (indirectly) want to 

better, dark red problems are the core problems we tackled and yellow problems are our of scope 

for this research.  

Figure 1: Problem cluster 
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1.2. Scope  
In this research we improve Grolsch’ current long-term container-planning model. We are going to 

improve the input parameter calculation, the long-term return forecast and the long-term injection 

planning for the two main bottle types: the trademark green Grolsch bottle 30cl (Apollo) and the 

Dutch Brown Returnable Bottle 30cl (BNR).  

Improving other processes in the return process, such as: improvements to the sorting line, pick-up 

logistics of empty bottles, market research on why consumers return their crates and bottles in a 

certain time or trying to influence their behavior is out of scope. Some ideas about these topic are 

described in Chapter 8. These topics remain interesting for further research. 

Because the returns depend on the sales, the return forecast accuracy depends on the sales forecast 

(in)accuracy. The focus lies on improving the return forecast and improving the sales forecast 

accuracy is therefore out of scope for this research.  

1.3. Research questions  
This section is about the research questions and the way to solve them. From the problem statement 

follows the main research question:  

“How can the injection planning for the two main bottle types be improved, by improving the long-
term container-planning model’s input parameter calculation, return forecast and purchasing 
policy? “ 
 
As this main research question is too comprehensive to answer at once we split the question up in 

multiple sub research questions regarding current situation, literature review and solution design: 

Current Situation 
Before a parameter calculation model can be build, we need to develop a deeper understanding of 
the container return process and how the long-term container-planning model works. In order to 
come up with improvements for the calculation of the input parameters for this long-term model, a 
detailed analysis of the last parameter determination (done in 2018) is needed. Besides, it is 
unknown how good the current long-term model performs in terms of accurate planning of container 
injections (based on the current input parameters). We use the following research to describe the 
current situation: 
1) What is meant with “containers”? 

2) How is the current container return process set up?  

3) How does the current long-term container-planning model forecast returns and plan injections? 

4) How are the current input parameters of this model (TL, IL, TP, WiT and DoC) calculated? 

5) How did the model perform over the last years in terms of accuracy?  

Literature review 
Grolsch does not register the time in the market of each returned container. The only data that are  
available (after some cleaning) are: the total amount of sales per container type per week and the 
total amount of returns per container type per week. It is unknown when the returned containers are 
sold. The literature review serves as means to see if there are solutions to similar problems where 
returns need to be forecasted (using a loss percentage and a time in the market) based on aggregate 
data. In this part we also look for papers in which ideas are presented to calculate the return 
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parameters. Finally, some background on useful models is needed as a guide for the later parts of 
this report. The research questions for the literature part include:  
 
6) How are container returns related to returns in different industries? 

7) How are return parameters determined in comparable industries? 

8) Which methods and models are proposed for forecasting container returns? 

9) Which methods and models are proposed for procurement of new materials in reverse logistics? 

10) What is the theory behind the methods and models that are interesting for this research?  

Solution design 
When it is clear which methods are available, we describe them in detail and determine which 
method to use to calculate the parameters TL, IL, WiT and TP. After updating the parameters, the 
performance of the updated long-term container-planning model can be compared to the current 
situation in terms of forecast accuracy and cost savings. The research questions for the solution 
design are: 
 
11) How can the parameter calculation of TL, IL, TiT and TP be improved?  

12) How can the return forecast be improved?  

13) How can the purchasing policy be improved? 

14) How accurate is the updated model?  

15) What are the expected savings per year when using the improved container-planning model over 

the current model? 

 

 

1.4. Research design 
The research questions about the current situation are mainly answered by interviews with experts 

from Grolsch that are involved in the container return process and use the long-term container-

planning model in their daily activities. To determine the performance of the long-term model the 

sales data, return data and data about the sorting process are required. These data are provided and 

validated by Grolsch. How to measure forecast accuracy is based on literature. 

The literature review includes papers found in the scientific databases that are connected to the 

University of Twente.  

The solution design is based on the useful methods found in literature, Grolsch’ experts opinions and 

own ideas. Especially the practicality of the solution is important as Grolsch is part of a bigger 

organization and any changes to the current container-planning model should be a clear 

improvement, user friendly and usable for other breweries that are part of the same organization. 

Interviews with the people that will use the updated container-planning model are needed to make 

sure the solution meets these standards.   
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The deliverables of this research are: 

• An analysis of the performance of the current long-term container-planning model. 

• A literature review on container return forecasting and purchasing.  

• Main deliverable: A parameter calculation model that can be used to (annually) update the 

input parameters of Grolsch’ current long-term container-planning model. 

• An improved return forecasting method, that can be built into the current long-term 

container-planning model of Grolsch. 

• An improved purchasing policy. 

• An implementation plan. 

Chapter outline 

We start in Chapter 2 by analyzing the current situation. We describe the current container return 

process, describe the current container-planning model and measure its performance in terms of 

return forecast accuracy. In Chapter 3 we review the literature on reverse logistics to find 

possibilities for improving the return forecasting model of Grolsch and to see if there are methods 

and models for the procurement decision in reverse logistics. In Chapter 4 we calculate the input 

variables for the container-planning model of Grolsch and propose a new return forecasting model. 

The improved return forecast of Chapter 4 is used as input in Chapter 5 in which we propose a new 

injection planning model. In Chapter 6 we review the injection plan output by the injection planning 

model of Chapter 5 in terms of holding, changeover and stockout costs. Afterwards, we describe the 

implementation plan in Chapter 7. In the final chapters we give our conclusions, recommendations 

and discuss topics for further research. 
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2. Current situation 
In this chapter we describe the current situation of the container return process and the 

performance of the current long-term container-planning model. The first section is about what is 

meant with containers  and the different types of containers. Then the return process is described 

from when a container is sold till it is available again for production. The explanation of the current 

long-term model is found in Section 2.3 and the performance of this model is the end of this chapter.   

2.1. Containers 
Containers are all materials that “contain” something. The returnable containers are the returnable 

bottles and crates and also the returnable kegs. As mentioned in the scope, the focus lies on the two 

main bottle types in this research: the 30cl green bottle, and the 30cl brown. Important to note that 

the same bottle type is used for the filling of different types of beer. Specific bottles are needed in 

specific crates for production. The different bottle-types that Grolsch uses are: 

Figure 2: Bottle types. (From left to right) Apollo bottle 30cl, Bruine Nederlandse Retourfles (BNR) 

30cl, Kornuit bottle 30cl, Brown Swingtop bottle 45cl, Green Swingtop bottle 45cl.  

The standard green 30cl Grolsch bottle, the Apollo bottle, is used for normal beer and the Radler 

variants. BNR, or in English “Brown Dutch Returnable Bottle” is a bottle that is used among more 

breweries and is also used for the most sorts of beers within Grolsch. The fourth bottle in Figure 2 is 

the characteristic Swingtop bottle with the famous “plop” sound upon opening. This bottle also has a 

brown variant and both have 1.5L variants. The percentage of sales of brown compared to green is 

small and the brown and 1.5L variants are not included in the current container-planning model. The 

Kornuit bottle is introduced in 2018, but has already earned his spot in the container-planning model. 

In this research we focus on the Apollo and BNR bottles. 

Bottles are sold and returned in the following types of crates:  

Figure 3: Crate types. (From left to right) Top: Eagle crate, Swingtop Crate, De Klok crate. Bottom: 
Pinolen crate, Pelican crate, Kornuit crate. Bron: Grolsch’ handboek emballage artikelen (2019) 
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The Pinolen and Pelican crates are also used by other brewing companies. As quickly mentioned, a 
bottle can be needed for production in different types of crates.  

2.2. Return process 
The return process consists of many steps with multiple parties involved. To get a good 

understanding of the process, we first describe these steps in detail. The process is mapped in the 

flowchart in Figure 4 and the different steps are described in the rest of this section. Green lines are 

return streams, red lines are waste streams and black lines are general flows. 

 

Figure 4: Container return process 

From filling the beer till return to the brewery 

After the beer has been filled on a filling line it gets stored in the warehouse, waiting for departure to 

a client. The beer is moved out in a First In First Out (FIFO) manner to reduce the amount of 

obsoletes. The time in the warehouse is different per type of beer as it is mainly determined if the 

type of beer is a slow-moving or fast-moving. A general assumption is that the beer stays in the 

warehouse approximately one full week.  
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After the beer is delivered to a client it takes some time before the consumer buys the beer from the 

client. In a supermarket the beer is waiting on the shelves to be bought by a consumer. In bars and 

restaurants it takes time before the beer is ordered and consumed. On top of the beer price Grolsch’ 

clients, or the end consumer who buys the beer in the supermarket, need to pay a deposit as a 

motivation to return the bottles and crates. How long a crate or bottle stays in the market depends 

on the return-behavior of the consumer and the pickup logistics of Grolsch. Empty bottles could be 

available at the supermarket, but they don’t return to Grolsch if there is no logistical capacity to pick 

them up.  

The time that the bottle stays at the consumer is dependent on multiple factors. The first factor is 

the type of beer as some types of beer are consumed faster than others (standard beer vs special 

beers). Another factor is the time of the year, as in the summer more beer is consumed than in the 

winter period. A certain percentage of the containers does not return at all, leaving the need for 

yearly new injections to make up for this “trade loss”. 

When the consumer returns the bottles and crates, the crates are filled by the workers at the bars, 

restaurants or supermarkets. Because crates are not filled completely with the right bottles, this 

results in the following types of pollution in the crates: 

• Empty spots 

• Unusable bottles 

• Bottles that Grolsch needs in other crates  

• Bottles from other brewing companies 

Some crate types have more pollution than others. Eagle and Swingtop crates (with normal beer) are 

often purchased by the consumer as a full crate. They are therefore often returned as a full crate as 

well, resulting in little pollution. However, special beers are usually purchased in smaller quantities 

and without a crate. When these bottles return, they are put together in a Pinolen or Pelican crate by 

the workers at the supermarkets, resulting in more pollution.  

There is not always a good balance between bottles and crates in the market. During periods of six-

pack and gift-pack promotions, when a lot of bottles get sold without a crate, Grolsch may send 

empty crates into the market to restore the balance. The crates are brought to the client’s depot by 

Grolsch itself. 

Grolsch is responsible for returning the bottles and crates from the customers to the brewery. Most 

of the time a delivery of filled containers to the customer’s depot gets combined with taking 

available empty containers back. But when Grolsch desperately needs a certain container-type for 

production, Grolsch may actively get containers back from the market by sending empty trucks as 

well. Some Grolsch bottles end up in crates that go to other breweries and the other way around. 

Since a few years there is an agreement to trade these “lost” bottles with each other. 

When the bottles and crates get back to the brewery, the number of crates of each type is registered 

together with the date and time. The production codes of the bottles are not registered. Millions of 

bottles get returned to the brewery each week, so to (manually) register all production codes of the 

bottles is too much work. It is therefore unknown how long each bottle really stayed in the market as 

a returned crate can contain bottles from different production batches. 
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Sorting process 

As the returned crates can contain different bottle types, even bottles from other breweries, most 

crates need to get sorted before they can be used on the filling lines. Grolsch has one automated 

sorting line that can output around X sorted crates per hour. A few workers at the sorting line make 

sure the machines correctly sort the correct bottles into a wanted crate type.  These workers make 

sure there are no problems during the sorting process. When a truck arrives with returned crates, the 

crates can be automatically unloaded from the truck onto the sorting line. 

When there is not enough capacity on the sorting line to fulfill the demand of the filling line, 

containers can be sorted by manual sorting. This is however a time consuming process and should 

only be used when really necessary. The manual sorting can also get to the output per hour of X 

crates if there are enough workers available. This manual sorting is costly and inefficient. 

Storage of empty containers 

If there is no capacity to unload trucks right away, or the types of crates are not needed yet, the 

unsorted containers are placed in storage in the crate park outside of the brewery. Unsorted 

containers are always stored outside, except for the crates with little pollution (empty spots, bottles 

from other breweries). To make it clear for the warehouse personnel to visually see which containers 

are already sorted, unsorted containers are placed wide (A) in storage and sorted empty containers 

are placed small (B): 

 

 Figure 5: Wide (A) and Small (B) pallet placement   

          

Some crates have more pollution than other crates. Eagle crates are for example relatively “clean”. 

These crates are not sorted before production but can be used on the filling line right away. The few 

spots in the crate that are polluted are corrected at the filling line.  

There is a limited capacity of 2.378 pallets for empty containers inside the brewery. This area is called 

“De Hoogbouw” and as a pallet can hold 70 crates (60 for Swingtop crates), the total capacity of this 

area is 167.160 crates. De Hoogbouw is a storage area inside the brewery where only sorted 

containers are stored that are ready to use for production. Because of the limited capacity of De 

Hoogbouw it is important to consider which bottles and crates are stored here.  

Sorted containers for which there is no space in De Hoogbouw are stored outside at the brewery or 

at the harbor of Enschede. Initially it was the idea to store everything inside the brewery, but it is 

clear that this is impossible looking at the size of the crate park outside. There is a lot of storage 

capacity outside, but bottles that are stored outside have a change of breaking in bad weather 

conditions such as frost. Even if they don’t break outside, cold bottles still have a change to break 

when they are moved into the hot washer on the filling line. These losses are considered the internal 

losses. Wet bottles also give problems during production, as they are too slippery to grab by the 

machines. Newly purchased bottles are also stored outside but are generally well packaged against 
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damage. New bottles are not stored in crates, and therefore take less space in storage. New bottles 

are put on the production line together with empty crates. 

From De Hoogbouw the containers are automatically picked up and moved to the production lines. 

On the production lines the unusable bottles are sorted (as the sorting line is not perfect and some 

crates were not sorted before) and go into the glass waste bin. Bottles that can be used in other 

production batches are put in other Grolsch crates. Bottles from other breweries are filtered as well. 

Because other breweries also filter bottles from Grolsch, since a few years there are arrangements 

between (some of the) brewing companies to trade these “lost” bottles with each other.  

On average a bottle goes through the return process X times before it is (taken) out of roulation. 

Because of the market loss, production loss and possibly sales growth, every year new containers 

need to be injected.  

2.3. Current long-term container-planning model  
To support the decisions regarding the procurement of new containers, Grolsch uses a long-term 

container-planning model. In this section we describe the inputs and outputs of the model and how 

the model goes from input to output. In Section 2.4. we describe how the inputs and outputs are 

currently calculated. 

It plans the expected injections per week for each container for about one and a half years ahead. 

This is also the model that we will focus on during this research. The output of the model is used to 

distribute the budget across the different container types and to order new containers from 

suppliers. The container return forecast is currently based on the forecasted weekly sales, the tactical 

production plan and the input parameters TL, IL, TP, WiT and DoC. The inputs and outputs of the 

current model are illustrated in Figure 6:  

 

      Figure 6: Current container-planning model    

2.3.1. Current model inputs 
“Trade Loss” is the percentage of the sold containers that does not return to the brewery. It is hard 

to determine when containers are specified as lost, as they can still be returned even after years in 
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the market. Trade loss should be stable over the years. If it is not stable, the events should be 

identified that could have caused the change in trade loss. How this parameter is currently 

determined is described in Section 2.4. 

“Internal Loss”. Containers are not only lost in the market, but also at the brewery in outside storage 

and during production. In outside storage bottles are mainly lost because of bad, cold weather. Glass 

expands when it gets cold and can also break when put into the hot washer at the filling line. During 

production there can also be breakage of glass due to machine failure or breakage caused by the 

workers.  

“Trade Population” means how many containers are in the market. This is an important parameter 

for the finance department as the containers remain property of Grolsch while they are in the 

market. What finally ends up on the balance sheet is the “total population” which consists of empty 

container stock at the brewery, full container stock at the brewery and the number of the containers 

in the market. The input for the model is a starting Trade Population, based on an estimation for the 

starting period of the model. 

“Weeks in Trade” is the number of weeks of sales that the TP consists of. A WiT of 20 means that the 

model expects that the sales of the last 20 weeks are still in trade and that all containers sold before 

20 weeks ago are either returned to the brewery or lost in the market. WiT should not be confused 

with Time in Trade (TiT), the time in the market. TiT is currently not used in the return forecast. 

“Days of Cover” (Safety Stock) 

In the current long-term container-planning model, uncertainties in demand and returns are not 

directly included in the calculation of the injection planning. The model uses some safety stock to 

protect against these uncertainties, but the determination of this safety stock is based on experts 

opinions and it is filled in manually. In current model terms, the safety stock is called Days of Cover 

(DoC). DoC is the number of working days of planned production that the stock of empty bottles 

should cover. Most of the year the standard value of DoC is five working days (one production week).  

In the summer period, when sales are high, the DoC for Apollo is set to one to three days to limit the 

amount of injection that the model plans. This does not directly mean that the absolute values of 

safety stock are lower, as Grolsch also produces more in peak season. Namely, the amount of 

production during five production days in peak season is more than during five production days in 

off-season. But it still seems counterintuitive to have the same or lower safety stock in peak season, 

as that is the period with high volatility in weekly sales volumes. Our feeling is that in this period the 

safety stock should be higher instead of the same or lower than in other periods of the year. In 

Figures 7 and 8, we see the current required safety stock can change quite a lot from week to week. 
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          Figure 7: Current safety stock Apollo 2021 

 

Sometimes there is less money for injection available than is needed based on the model’s injection 

planning. DoC is then one of the first variables that is played with. Lowering the DoC by two days for 

some weeks can significantly reduce the amount of planned injection. This results in a bigger risk of 

production postponements, especially if the DoC is lowered in periods with high volatility in sales. As 

these peak periods of sales are the periods where injections are usually planned, the risk of 

production postponements and stockouts is real. 

For BNR the safety stock is sometimes even 0, as there are some weeks for which no production is 

planned: 

Figure 8: Current safety stock BNR 2021 

 

Sales forecast 

The sales forecast is made by the Demand Planning department (DP). Every week the long-term and 

short-term sales forecasts are sent to the SCP. These forecasts are input for the SCP to come up with 

production plans. The sales forecast can be uncertain and volatile (especially if measured per week)  

as Grolsch’ sales are mainly based on uncertain price promotions of customers.  Every day the DP 

gives an update to the SCP how the sales are going in comparison with the forecasted sales so the 

SCP can make changes to the production plan if necessary. The long-term sales forecast is input for 

the container-planning model. 
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Production plan 

The tactical planners of the SCP come up with a long-term production plan every week. This 

production plan is based on the long-term sales forecast, inventory capacity, minimum batch sizes 

and safety stock. In the long-term container-planning model, the production plan is seen as demand 

that needs to be fulfilled. The safety stock measure DoC is also based on days of production that the 

empty bottle stock needs to cover. 

2.3.2. Current model outputs 
In Figure 6 the outputs of the current model are shown: the return forecast, injection planning and 

budget plan for the next year. First, the return forecast is made based on the input parameters 

described in the previous section. In this section we describe how the model currently forecasts 

returns. When the returns are forecasted, the model can make the injection planning. In this section 

we also describe the current purchasing policy and how this translates to a budget for the next year. 

Return forecast 

In this part we explain how the model currently forecasts returns. This is based on the parameters TL, 

WiT and TP. In Figure 9 can be seen that historic WiT-values are found using historic data. Every week 

of the year has its own WiT value. So, how many previous weeks of sales are present in the market in 

a certain week. As an example: If in week 10 the previous 3 weeks of sales are still in trade (the sales 

of week 10, 9 and 8), then the WiT value of week 10 is 3.The assumption is that these values for WiT 

should be the same in the next year. This means that in week 10 in the coming year, the expected TP 

also consists of the sales (forecast) of week 10,9 and 8. 

 

Figure 9: Current return forecast 
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To obtain the historic WiT-values, first an estimate of an historic starting TP needs to be made. This 
estimate is currently made based on the average sales, expected average time in the market, 
estimated losses and realized injections. One the starting TP is estimated for the starting week of the 
historic data, the historic TP of every week of the previous year can be estimated with the following 
formula:  
 

𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 + 𝑺𝒂𝒍𝒆𝒔 –  𝑹𝒆𝒕𝒖𝒓𝒏𝒔 –  𝑻𝒓𝒂𝒅𝒆 𝑳𝒐𝒔𝒔  
 
In Table 1 and the explanation underneath, we show how the WiT-values translate to forecasted 

returns. 

Week WiT Sales 
Target 
TP 

End TP previous 
week 

TP before 
returns 

Returns End TP 

1 3 300 300 300 600 300 300 

2 3 300 300 300 600 300 300 

3 2.5 250 250 300 550 300 250 

4 2 200 450 250 450 0 450 

5 2.5 250 250 450 700 450 250 

  Table 1: Current forecasting of the returns 

Target TP 

With the values of WiT and values of sales of previous weeks, an estimate of TP can made for every 

week. In blue in Table 1: The TP of week 4 is believed to consist of the previous two weeks of sales, so 

200+250=450. This 450 is the target value for TP for week 4: the expected value of TP based on the 

historic values of WiT. For every week, the model makes sure that the TP is equal to the target TP by 

modifying the returns.  

TP before returns 

So in week 4, the starting TP is the target TP of week 3 (which is the ending TP of week 3). The 

amount of sales (that are put in trade) of week 4 are then added to the starting TP of week 4 to 

obtain the TP before returns of week 4: 

𝑻𝑷 𝒃𝒆𝒇𝒐𝒓𝒆 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 =  𝑻𝒂𝒓𝒈𝒆𝒕 𝑻𝑷 𝒐𝒇 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒘𝒆𝒆𝒌 + 𝑺𝒂𝒍𝒆𝒔 𝒐𝒇 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒘𝒆𝒆𝒌  

Returns 

Because the model makes sure the ending TP of week 4 has the value of the target TP of week 4, the 

difference between the TP before returns of week 4 and the target TP of week 4 are the expected 

returns. 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 =  𝑻𝑷 𝒃𝒆𝒇𝒐𝒓𝒆 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 − 𝑻𝒂𝒓𝒈𝒆𝒕 𝑻𝑷 

It is an interesting method, but as we will see the historic values of WiT cannot just be copied to the 

next year. The change of WiT over time (also present Table 1) does also not mean that containers are 

returning faster. This is a hard thing to grasp, and has to do with how the WiT-values are calculated. 

We explain this in Section 2.4. 
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Injection plan and budget for next year 

The current container injection planning is made by using a simple order-up to policy. For each week 

in the planning horizon, the planned injections are as big as needed to get the stock on hand to the 

required level described by the DoC value. The injection plan does not indicate when to order the 

new containers, but when the containers are needed. The supplier then has to make sure the 

containers are available at these times. You could say the order is made right after the model is run, 

and the replenishment lead time is the time from the order (t=0) till when the containers are needed. 

The budget plan is a direct consequence of the planned injections. However, the amount of money 

needed to do the planned injections may not available. If this is the case, the DoC is lowered for 

some weeks in which injections are planned. This results in less planned injections, but the risks of 

production problems because of bottle unavailability increase.  

We have seen that the safety stock can fluctuate quite a lot from week to week for both Apollo and 

BNR. What service level is implied with the current values for DoC (and thus the current injection 

plan) is not known and is worth investigating. In Chapter 6 we calculate what Grolsch currently 

implies as a service level. 

2.4. Current input parameter calculation 
One of the main goals of this research is to improve the input parameter calculation of the current 

model. In this section we therefore look at how the parameters of the current model were calculated 

the last time, which was in 2019.  

“Trade Loss” 

First Grolsch determined how many of Eagle- and Pelican crates returned to the brewery in the years 

2016, 2017 and 2018. These are the unsorted crates. The number of crates is multiplied by 24 bottles 

to obtain the total number of (potential) bottles returned. This is the number of bottles returned 

before sorting so pollution is not taken into account yet. This is a questionable method because 

returned crates are not always sorted right away and sorting input (and sorting losses) can differ a lot 

from week to week.  

As Eagle crates are not sorted on the sorting line, the sorting loss for the Apollo bottle only includes 

the sorting loss of pelican and other crates. The sorting data includes: amount of empty positions, 

amount of other bottles used by Grolsch and amount of bottles from other breweries.   

After the sorting line losses per week are subtracted from the returns per week, the inline sorting 

losses are subtracted as well to find the realized returns per week. Inline sorting is the sorting that is 

done on the filling lines. Crates that are sorted on the filling lines are Eagle and DeKlok crates, as 

these crates have generally very little pollution. The amount of total returns finally is determined by 

taking the sum over all weeks included in the Trade Loss calculation. Finally, the TL is determined by 

the following formula: 

𝑻𝒓𝒂𝒅𝒆 𝒍𝒐𝒔𝒔𝒊,𝒚  =
𝑻𝒐𝒕𝒂𝒍 𝒔𝒂𝒍𝒆𝒔𝒊,𝒚 − 𝑻𝒐𝒕𝒂𝒍 𝒓𝒆𝒕𝒖𝒓𝒏𝒔𝒊,𝒚

𝑻𝒐𝒕𝒂𝒍 𝒔𝒂𝒍𝒆𝒔𝒊,𝒚 
  

with: 

• i = container type and y = year(s) 
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A period of three years is used to determine Trade Loss. As a rule, the minimum period to calculate 

the TL over is one full year. The assumption is that TL is stable during the year and shows no 

seasonality. 

“Internal Loss” 

The breakage of the bottles on the filling lines and the amount of breakage in outside storage is the 

amount considered as “Internal Loss”. Now, this loss is determined by dividing the amount of 

breakage by the total filling line input. These data are taken from the inline sorting data, that the 

Warehouse departments sends to the SCP every week. 

 “Trade Population” 

As mentioned in the model explanation, the TP is the amount of containers in the market. In the last 

parameter calculation, the TP can be calculated in three different ways: 

Formula 1:  
𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 + 𝑺𝒂𝒍𝒆𝒔 –  𝑹𝒆𝒕𝒖𝒓𝒏𝒔 –  𝑻𝒓𝒂𝒅𝒆 𝑳𝒐𝒔𝒔  

 
Formula 2:  

𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 + 𝑰𝒏𝒋𝒆𝒄𝒕𝒊𝒐𝒏𝒔 –  𝑻𝒓𝒂𝒅𝒆 𝑳𝒐𝒔𝒔 
 
Formula 3:  

𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝑾𝑰𝑻 ∗ 𝑺𝒂𝒍𝒆𝒔 
 
Grolsch is not sure which of these formulas is the best, but Grolsch uses Formula 1 in its current 
model. An interesting thing to notice is that Formula 3 includes WiT while WiT is based on Formula 1. 
It is also clear that with using Formula 3 the TP is very unstable as the TP varies greatly from week to 
week. This may be the case because the method is in no way based on the previous trade population. 
 
“Weeks in Trade” 

As mentioned in the model explanation, WiT is the amount of weeks of sales that the TP consists of. 

It is one of the most important parameters in the current model as it is currently used for the timing 

of the container returns. In the current parameter calculation, the WIT estimation is made based on 

the TP (method 1) and the sales. WiT is determined for each week of the year. The most important 

thing to mention is that WiT is not the same as TiT, because WiT does not say how long containers 

stay in the market. WiT and TiT are confusing terms and are easily mixed up.   

Seasonality of WiT 

When you see the WiT-values change over time, the feeling is that this means the time in the market 

is assumed to be seasonal. But that is not necessarily the case. Recall that WiT is not the time in 

market, but the amount of weeks of sales that the TP consists of. In the example below we show that 

WiT is heavily dependent on differences in sales from week to week, and that the values will change 

even when the time in the market (TiT-distribution) stays the same.                

After week Return % 

1 20% 

2 40% 

3 40% 

                Table 2: TiT-profile 
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Table 3: WiT-calculation with constant sales                    Table 4: WiT-calculation with sales peak 

In Table 3, the TP keeps being the sum of 5 weeks of sales. In Table 4 the TP changes because of the 

change in sales (10→100→10). Note that the TP of 140 is still 5 weeks of sales (100+10+10+10+10). 

When the returns of these 100 sales come, the WiT is going to change even if the TiT-distribution 

stays the same. 

Because this WiT parameter changes so much with sales differences, a WiT-profile cannot just be 

copied to a new year to obtain an accurate target TP-estimate. In the new year, sales peaks may 

come in different weeks. We will see in Section 2.5 that the return forecast is inaccurate, mainly 

because of the usage of the parameter WiT. 

2.5. Performance of the current model  
Before we make improvements to the parameter calculation, it is important to know how accurate 

the current model is using the current parameters. In this section we will discuss the performance of 

this current model in the past few years.  

2.5.1. Key Performance Indicators (KPIs) 
The goal of the current model is to provide an injection plan of new containers for the next budget 

year. As lead times on new containers are long and suppliers need to know Grolsch’ injection plan 

long in advance, the budget is made around May-June for one and a half years ahead. We are 

interested in how accurate the injection planning was in the last years.  However, we don’t use this 

injection accuracy directly as a Key Performance Indicator (KPI), as the injection planning is a decision 

based on the return forecast. The return forecast accuracy is therefore the main KPI for this research, 

as a high accuracy of the return forecast will translate to an accurate injection planning. 

Uncertainty in the sales forecast (not considered influenceable in this research) can contribute to 

inaccuracy of the return forecast. We therefore let the current model forecast returns based on 

forecasted sales data as well as on realized sales data. With the realized sales data, the forecasted 

returns by the current model should in theory be (almost) the same as the realized returns. If this is 

not the case it is says something about possible improvements to the current model’s- and current 

input parameters’ validity. To conclude, we measure the performance of the current container-

planning model by the following KPIs: 

1) Accuracy of the return forecast (based on realized sales data) 

2) Accuracy of the return forecast (based on forecasted sales data) 

Sales Returns TP WiT 

10 10 50 5 

10 10 50 5 

10 10 50 5 

10 10 50 5 

10 10 50 5 

10 10 50 5 

10 10 50 5 

Sales Returns TP WiT 

10 10 50 5 

100 10 140 5 

10 28 122 3.2 

10 46 86 2.66 

10 46 50 3.2 

10 10 50 4.1 

10 10 50 5 
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To measure the accuracy of the forecasted returns, we use the Mean Absolute Percentage Error 

(MAPE). The MAPE is a widely used method for determining accuracy of forecasts (Silver, Pyke & 

Thomas, 2017). The formula for the MAPE is: 

𝑴𝑨𝑷𝑬 =  
𝟏

𝒏
 ∑ |

𝑨𝒕 − 𝑭𝒕

𝑨𝒕
|

𝒏

𝒕=𝟏

 

with:  

• At = the realized values at time t 

• Ft  = the forecasted values at time t  

• n = the amount of observations  

The MAPE gives only the absolute errors and does therefore not say something about under- or over-

forecasting. Thus, we also want the (non-absolute) percentage errors to see if the model is generally 

under-forecasting, over-forecasting or a mixture of the two. This is important as there are different 

costs involved for under- and over-forecasting.  It also gives an indication if the used values for TL are 

in the right range. An important note: under-forecasting container returns will lead to planning too 

much injection. 

2.5.2. Calculation of the realized returns per week 
To measure the return forecast accuracy, we first need to determine the realized returns. Obtaining 

these realized returns per container type is not an easy task. Returns are only registered on crate 

level. So, the only thing that is registered at return is how many crates of each crate type are 

returned at which date. At the registry stage, it is still unclear how much bottles of each bottle type 

are present in these returned crates. In the current parameter calculation, the realized returns per 

week are calculated by taking the crate returns of the specific week and subtracting the sorting 

losses of that week. The problems with this approach is that not all crates are sorted right after they 

return. So the sorting loss of a certain week is actually the sorting loss from crates that returned 

weeks earlier. And, in some weeks more crates are sorted than in other weeks, resulting in 

differences in sorting losses between weeks. This will become clear in next the part: “sorting delay”. 

Sorting delay  

The returned crates are not always sorted right away. The sorting output per week can therefore not 

be taken as the realized returns per week. Also the current approach of subtracting the sorting losses 

per week from the crate returns is considered inaccurate. Figure 10 and Figure 11 shows the delay 

between the unsorted crate returns and when these returned crates are input to the sorting line. In 

some weeks no sorting is done at all, and in other weeks sorting peaks exist for a specific crate type. 

Using this sorting loss per week results in spiky returns per week. Because these (spiky) realized 

returns are used to calculate the WiT- and TP values, it is the question how accurate the WiT- and TP-

estimates currently are.   
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    Figure 10: Sorting delay Pinolen 

 

       Figure 11: Sorting delay Pelican 

 

Sorting percentages 

Instead of the current method, we calculate sorting percentages (for each year) that say how many 

of each bottle type is present in each crate type. The crate returns per week can be multiplied by 

these percentages to obtain the realized container returns per week. The formula to calculate these 

sorting percentages is: 

𝑺𝒐𝒓𝒕𝒊𝒏𝒈𝒃,𝒄,𝒚 % =
𝟐𝟒 ∗ 𝑺𝒐𝒓𝒕𝒊𝒏𝒈 𝒊𝒏𝒑𝒖𝒕𝒄,𝒚

𝑺𝒐𝒓𝒕𝒊𝒏𝒈 𝒐𝒖𝒕𝒑𝒖𝒕𝒃,𝒄,𝒚
 

with: 

• b = the bottle type 

• c = the crate type  

• y = the year 

The sorting input is measured in amount of crates and therefore needs to be multiplied with 24 so 

we have the amount of bottle spots. The sorting output is the amount of bottles that were actually 

present in the returned crates. The standard of the sorting process is that it should be 99% accurate. 
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Filling line sorting 

As mentioned before, not all crate types get sorted on the sorting line. And even the crates that do 

get sorted are not always sorted 100% correctly. The pollution that (still) exists in the crates that go 

to the filling line (empty spots, foreign bottles and unusable bottles) is removed there. Unusable 

bottles go into the glass bin. Incorrect bottles (bottles of the wrong type) that can be used during 

other production batches are generally filtered out and stored, as long as the amount of filtered 

bottles can be handled. Sometimes the filling line cannot handle the amount of filtered bottles. In 

that case not only the unusable bottles go into the glass bin, but also the filtered reusable bottles to 

prevent line breakdown.  

The input of the filling line consists of returned containers and injected containers. Injected 

containers can be considered as “sorted” 100% correctly. The filling line sorting loss percentage 

should therefore be calculated by using only the returned container input, and not the full input. To 

calculate the percentage correctly we use the following formula: 

𝑭𝒊𝒍𝒍𝒊𝒏𝒈 𝒍𝒊𝒏𝒆 𝒔𝒐𝒓𝒕𝒊𝒏𝒈 𝒍𝒐𝒔𝒔𝒊,𝒚 % =
𝑻𝒐𝒕𝒂𝒍 𝒊𝒏𝒑𝒖𝒕 𝒓𝒆𝒕𝒖𝒓𝒏𝒔𝒊,𝒚

𝑭𝒊𝒍𝒍𝒊𝒏𝒈 𝒍𝒊𝒏𝒆 𝒔𝒐𝒓𝒕𝒊𝒏𝒈 𝒍𝒐𝒔𝒔𝒊,𝒚
 

We end up with a filling line sorting loss percentage per container type for each year between 2017 

and 2021. The assumption here is that all sorted returns are used for production. This seems a fine 

assumption as every year the returns alone are not enough to fulfill the demand.  

Realized returns per week 

To end up with the realized returns per week, we first take the unsorted crate returns and multiply 

with the sorting percentages of the specific bottle from the type of crate. We then add up all 

incoming bottles from the specific bottle type from all different crates. Then we multiply this 

outcome with the filling line sorting loss percentage to end up with the realized returns per week: 

𝑹𝒆𝒂𝒍𝒊𝒛𝒆𝒅 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 = 𝑪𝒓𝒂𝒕𝒆 𝒓𝒆𝒕𝒖𝒓𝒏𝒔 ∗ 𝟐𝟒 ∗ 𝑺𝒐𝒓𝒕𝒊𝒏𝒈 % ∗ 𝑭𝒊𝒍𝒍𝒊𝒏𝒈 𝒍𝒊𝒏𝒆 𝒔𝒐𝒓𝒕𝒊𝒏𝒈 𝒍𝒐𝒔𝒔 %   

 

2.5.3. Return forecast accuracy 
For determining the accuracy of the forecasted returns, we use the realized sales and calculated 

realized return data from 2017 onwards. 

Apollo 

We start with analyzing the performance of the current model for the Apollo bottle. The Apollo 

bottle is the standard green 30cl Grolsch bottle and is the most important bottle in terms of 

production, sales and budget for new injection. For the Apollo bottle, we calculated the realized 

returns as outlined in the procedure in Section 2.5.2. In Figure 12 the comparison between the 

realized returns and the forecasted returns is shown. Because the forecasted returns are here based 

on realized sales data, the two lines in the graph should in theory be close to each other (the 

uncertainty of the sales forecast is taken out of the equation). The difference between the lines is in 

theory influenceable by adjusting the input parameters and the way the model forecasts the returns.  
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          Figure 12: Apollo realized returns vs expected returns 

Year Expected hl Realized hl % Trade loss used MAPE 

2018 X X X X 29% 

2019 X X X X 21% 

2020 X X X X 26% 

Total X X X X 25% 

    Table 5: Apollo current return forecast accuracy 

The expected returns are not in sync with the realized returns considering the total amounts per 

year. Even though the error percentages are smaller than X%, this is an indication that values for TL 

should be higher, and the error of the total returns per year should not be higher than X%. Also recall 

that these return expectations are based on the realized sales.   

The next thing to notice is that the expected return line is less smooth than the line of the realized 

returns. A week of few forecasted container returns is often followed by a week of many forecasted 

container returns. This is indication that the input parameter WiT is not yet optimized as we expect a 

smoother line even when the values of TL are not optimal. We notice seasonality in the returns with 

a peak around weeks X and less returns during the autumn- and winter months, highly correlated 

with respectively the higher consumption of beer in these periods. 

A high return forecast error per week does not immediately translate to lost production, stock-outs 

or lost sales. If the under-forecasting for one week is accounted for by over-forecasting for the next 

week, the two-week total is still accurate. In practice it can be assumed that the planning can be 

changed up if the two-week totals are accurate. However, problems occur when the under- and over-

forecasting gets out of hand, even when the two-week totals are accurate.  
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        Figure 13: Percentage errors return forecast 

In Figure 13 we show the percentage errors of the return forecast for Apollo. The main thing to take 

away from this graph is that the under-forecasting (percentages > 0) of one week is not directly 

compensated by over-forecasting (percentages <0 ) in the next week. We notice many consecutive 

weeks of either over- or under-forecasting. This poses problems for the container-planning. If the 

percentage errors over two-week periods were minimal, SCP would have some flexibility to change 

the planning. Because the current model under- or over forecasts returns for consecutive periods, 

the injection planning is likely to be less accurate.  

 

Figure 14: 4 week sum - Apollo realized returns vs expected returns 

We also take a look at the case with a 4 week rolling horizon, which is shown in Figure 14. The line is 

more smooth but the same pattern is present as before. 

The MAPE of this period (2018 and 2019) is X% per 4 week sum, which seems high as the peaks and 

lows are still not smoothened enough over a period of a month. This X% of the amount of hectoliter 

(hl) that is returned is a large amount and the money involved in the injections of these amounts 

cannot be disregarded. The error should be close to 0% as the model should forecast the returns 

accurately when based on realized sales data (especially over longer periods like four weeks).  
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The feeling is that the MAPE is too high and can likely be improved by calculating the input 

parameters in a better way and changing the way the model forecasts returns. 

To see the impact of the sales forecast error on the expected returns we now use the forecasted 

sales instead of the realized sales. Figure 12 shows the graph of the expected returns based on 

realized sales of 2019, and Figure 15 shows the graph based on forecasted sales. 

 

 Figure 15: Apollo returns based on forecasted sales 

We are convinced that the error of the forecasted returns compared to the realized returns will get a 

lot smaller when the error of the expected returns based on realized sales compared to the realized 

returns is minimized. The return forecast based on forecasted sales has a slightly lower accuracy, but 

the shape of the graph is similar to the graph of the forecasted returns based on realized sales. We 

therefore think the improvement based on realized returns will also translate to improved 

performance based on forecasted sales. 

BNR 

The returns of the BNR are harder to forecast as BNR is a bottle shared with other breweries, which 

has an impact on the loss in the market. Some years the loss in the market is big (X%) and some years 

the loss in the market can even be negative, when Grolsch gets more BNR back than was sold. 

Overall we see the same pattern as we have seen with Apollo. We again notice decent accuracy 

(apart from 2019) of annual returns, but high inaccuracy of the timing of these returns: 
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Figure 16: BNR realized returns vs expected returns 

Year Expected hl Realized hl % Trade loss used MAPE 

2018 X X X X 41% 

2019 X X X X 40% 

2020 X X X X 43% 

Total X X X X 44% 

Table 6: BNR current return forecast accuracy 

The expected returns are based on X% TL in the market for 2018 and X% for 2019 and 2020. These TL 

values are checked with the supply chain manager of Grolsch. This lead to the drop in the TL for 2019 

and 2020. Looking at the realized returns in 2019 compared to the expected returns, we conclude 

that the loss percentage drop from X% to X% might have been too big. For 2020 the X% looks a 

better estimate and Grolsch expects the loss percentage in the market to slowly rise again for the 

coming years. The peaks in expected returns can be explained by the fact that the model expects a 

week of high sales to return almost all at once (Figure 17).  

 

Figure 17: BNR expected returns vs sales (confidential) 
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We notice that a peak in sales is often followed by a spike in the expected returns. As we have seen, 

the expected return line should be more smooth. We again question the usage of the parameter 

WiT, which makes the return forecast very receptive to spikes in sales.  

2.5.4. Accuracy of the planned injections 
As the goal of the current long-term container-planning model is to provide an estimate of the 

amount of injection needed for the year ahead, it is important to see if the model’s expectations in 

the past years are in line with what Grolsch actually injected. Injection means Grolsch buys the 

bottles from the supplier’s stock and becomes owner of the stock. 

Apollo 

 

Figure 18: Apollo realized injection vs expected injection 

Year Expected hl Realized hl 

2017 X X 

2018 X X 

2019 X X 

Total X X 

    Table 7: Apollo expected injection vs actual injection 

The first thing to notice is that the timing of the realized injections is roughly in line with the timing of 

the expected injections. Realized injections are often done in weeks X to X, which is peak season for 

the Apollo bottle. The amount of injection is a different story as the model expected only X% of the 

realized injections over the course of 3 years, which is a difference of roughly X euros. For the past 

years it was possible to redistribute the budget over different containers during the year, so more 

Apollo injection could be made than were expected in advance. Grolsch expects that this 

redistribution is unlikely to be possible in the same way in the coming years, so it is important to get 

the budgeting right the first time.  

For 2018, the realized production and sales were X% lower than forecasted back in 2017. In this case 

we would expect that the amount of realized injection is also lower or in line with expected injection. 

The model expected around X hl injection in 2018, but Grolsch actually injected around X hl.  When 

we let the model forecast injections in 2018 based on realized production and sales data, the model 

suddenly expects X hl injection. The timing of production is dictating the injection planning, together 

with the measure of safety stock DoC. Even if the total production over a year is less than another 

year, there could be still more bottles needed if there is a lot of production planned in the peak 

period. 
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If we then fill in the realized returns instead of letting the model forecast returns based on the 

realized sales data, the planned injection becomes 0. This again shows the importance of the timing 

of the returns, as the difference in total hl is minimal while the difference in expected injections is 

significant. It is strange that the realized returns were around X hl higher than expected, while 

Grolsch injected more than the model expected. In this case we would expect Grolsch to inject less 

than the model initially planned as Grolsch got more back than expected.  

For 2019 it is a different story. The total Apollo production (filling) was X% below what was expected 

a year before, but the amount of realized injection is higher than the model forecasted. Even if we 

base the injection forecast on realized production sales data for 2019 the model still only predicts 

around X hl injection. The difference with the X hl realized injection is for a big part (X hl) additional 

production at the supplier and Grolsch decided to inject even when it was not needed (yet). We 

conclude that this injection was not needed based on the fact that the model does not plan injection 

when we remove the X hl realized injection. If these X hl were needed, the model would have 

planned them after we removed X hl incoming injection.  

One reason for additional injection could be that there are bottles available at Grolsch, but in a 

different type of crate than that is needed for production. So if Apollo is needed in Eagle crates, but is 

only present in Pelican crates, the model says there are enough bottles but in practice Grolsch needs 

to repack these bottles in different crates which is a time consuming and cost inefficient procedure. 

Grolsch can therefore decide to already inject new additional Apollo in Eagle crates, despite the 

investment costs.  

In 2020 less injection was needed than was forecasted because of Covid-19.  The total production 

and sales in the first 8 months were X% lower than expected. And the more bottles Grolsch expects 

to sell, the more bottles are expected to be lost in the market (and need to be replaced). When we 

take the injection planning of 2020 based on realized production and sales data, we see that the 

model forecasts the injections with good accuracy: X/X = X% . This means that the model would have 

calculated the injections quite well if the production and sales forecast for 2020 would have been 

accurate. 

BNR 

For BNR we see that the total amount of realized injections in the last two and a half years is lower 

than the total amount of expected injections. This can be the consequence of injecting more Apollo 

than planned and therefore distributing less money to BNR. The experience is that BNR does not 

have a good availability in some periods of the year. Recently, the planning has been changed up 

quite some times because there was simply too little BNR available and Grolsch actively had to get 

BNR back from the market. It is unknown to how much backorders and lost sales this has led, but at 

least there have been production inefficiencies. Batch sizes were lowered and changeover costs rose 

because of the unavailability of the BNR bottle.  A good thing to mention is that an out of stock at 

Grolsch not directly means that there is an empty shelf at the customer. 

The overall feeling is that more BNR injections should be planned so more initial budget can be spent 

on BNR. Another reason for the gap between realized- and expected injections could be that the TL 

of 2018 was estimated too high with X%.  The model expected that much BNR bottles needed to be 

replaced, while this was not the case (explaining  X hl of the X hl difference). 
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      Figure 19: BNR actual injection vs expected injection 

Year Expected hl Realized hl 

2018 X X 

2019 X X 

2020 X X 

Total X X 

  Table 8: BNR expected injection vs actual injection 

Supplier flexibility 

In this section we have seen that the realized injections can deviate from the expected injections. 

The expected injections are done 1 to 1.5 years before the bottles are needed, and apparently 

Grolsch can update this forecast up to 6 months before the bottles are needed. The order lead time 

of new containers is in general very long (several months). The production plan of Grolsch’ glass 

suppliers is often full. Therefore there are very few changes possible when Grolsch gets the injection 

planning wrong. For Apollo there are no more changes possible from six months before the bottles 

are needed.  

For BNR there is some flexibility with the supplier. Because BNR is a shared bottle, the supplier can 

sell bottles allocated to Grolsch to other breweries and the other way around (for example if one 

brewing company over-forecasts and another under-forecasts). The limit of extra available BNR for 

Grolsch is around X hl, as this was tested last year when Grolsch had problems with BNR availability. 

In that period production batches were postponed because there were simply too few BNR bottles 

available.  

The general feeling is: If there is little possible with suppliers, why does Grolsch not keep a lot of 

safety stock of empty bottles when the depreciation costs are minimal and there is enough storage 

capacity? Grolsch does simply not want to invest in new bottles when they are not expected to be 

needed as the money can be used for other important production related investments. It is 

necessary to make the injection planning as accurate as possible to avoid costs for production 

postponements, holding costs and costs for injecting less than forecasted. 
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2.6. Conclusion  
We have started this chapter by explaining the term “container” and showed which containers we 

focus on in this research. We then described the return process from when the filled beer leaves the 

warehouse to when the returned containers can be used again for production. Next we explained the 

models that are used for forecasting the returns and planning the procurement of new containers.  

We explained the input parameters that the model requires (TL, IL, WiT, TP and DOC) and described 

the steps and calculations the model uses to get to the output: the planned injections for the 

upcoming year. 

The goal of this research is to improve the performance of the injection planning model, so to set a 

standard we analyzed the performance of this model in the past few years.  

Planned injection can deviate from realized injection for many reasons: 

1) Too much realized injection to prevent repacking to other crates 

2) Too much realized injection because supplier has too much stock 

3) Too little realized injection because of budget constraints 

4) Sales forecast uncertainty 

Because planned injection is a decision based on forecasted returns, we use the accuracy of the 

return forecast as Key Performance Indicator (KPI). The Mean Absolute Percentage Errors (MAPE) per 

week of the return forecasts are considered high with 25% for Apollo and 40% for BNR.  The 

conclusion is that the accuracy of the return forecast can significantly be improved as the returns are 

forecasted based on realized sales. This means based on the realized sales, when does the model 

expect returns? In this way, the inaccuracy of the sales forecast is let out of the equation and the 

inaccuracy of the return forecast is purely based on the return forecasting model. Especially the 

timing of the returns, which has a big impact on when to do injections, can be improved. This holds 

for Apollo and BNR. 

In the next chapter we review the literature on reverse logistics to find possibilities for improving the 

return forecasting model. 
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3. Literature review 
The main conclusion of the previous chapter is that the injection planning is heavily dependent on 

the weekly returns, and that the forecast of these weekly returns is inaccurate. The focus in this 

research will therefore lie on container parameter estimation and improving the return forecast to 

indirectly improve the injection planning. In this chapter, we start with a short introduction to 

reverse logistics and then present a literature review on return forecasting in general and container 

return forecasting in particular. Other interesting literature sources that are included in this chapter 

are about calculation of return parameters such as time in the market, trade loss and trade 

population. In the end of this chapter we give theoretical background on the most promising method 

for this research. 

3.1. Reverse logistics  
Before we move to return forecasting, we give some background information on the research field 
reverse logistics. Reverse logistics is about “activities associated with the handling and management 
of equipment, products, components, materials or even entire technical systems to be recovered” 
(De Brito and Dekker, 2002). The research field of reverse logistics is still widely unexplored 
(Mahmoudi and Parviziomran, 2020), but more and more companies try to become sustainable 
enterprises that reduce their environmental impact with their activities. In the coming years 
companies (and researchers) are therefore expected to put more emphasis on reusing products. 
With optimizing the return process of these products “efficient resource utilization and 
environmental protection could be achieved” (Senthil & Sridharan, 2014). Reverse logistics provides a 
“fertile and attractive research area in the field of operations management” (Mahmoudi and 
Parviziomran, 2020). This operations research field of reverse logistics and in particular reusable 
packaging is split into four areas in a literature review by Mahmoudi and Parviziomran (2020) (Figure 
20): 

1. Inventory management 
2. Scheduling and routing 
3. Procurement and repairing 
4. Performance measures 

 

 
Figure 20: Research fields reusable packaging (from Mahmoudi and Parviziomran, 2020) 

 



31 
 

From these four areas, particularly procurement and inventory management (including return 
forecasting) are interesting for our research problem. It is stated by Toktay, Van der Laan and De 
Brito (2003) that forecasting returns is an essential part in optimizing the reverse logistics supply 
chain and in this research we focus on this forecasting of returns (which is a part of inventory 
management),  purchasing policies (procurement) for new containers and performance measures as 
circulation time and asset utilization.  

 
  Figure 21: Reverse logistics process (from Mahmoudi and Parviziomran, 2020) 

3.2. Return forecasting  
Return forecasting versus traditional sales forecasting 

The first thing to note is that return forecasting is very different from sales forecasting as returns are 

not only dependent on its own past values but also on another variable’s past values: sales. This 

means returns should in principle be forecasted based on historic sales data in combination with 

historic return data, rather than only on historic return data (Kiesmüller and Van der Laan, 2001).  

Kiesmüller and Van der Laan (2001) modelled an inventory system in a reverse logistics supply chain 

with returns dependent on sales with a fixed lag as well as with returns independent of sales. They 

conclude that modelling returns independent of sales gives a worse performance than letting the 

returns depend on sales. In literature multiple standard forecasting techniques based on solely 

return data, like moving average models, exponential smoothing and Holt’s method have been found 

inaccurate for forecasting returns ((Ma & Kim, 2016);(Krapp, Nebel & Sahamie, 2013b);(Geda & 

Kwong, 2019)). Besides, these methods often focus on updating parameters (after observations of 

realized returns) which makes them less suitable for long-term forecasts. The augmentation of the 

data on realized returns cannot be utilized for long-term forecasts (Toktay, Van der Laan and De 

Brito, 2003) that are only made a few times per year mainly to the determine the procurement 

budget. Toktay, Van der Laan and De Brito (2003) also mention that for short-term forecasting it does 

make sense to use these methods with updating as they can utilize the augmentation of new data 

that come available each week. A nice overview of the forecasting modeling process is given in the 

book of Silver, Pyke and Thomas (2017): 
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   Figure 22: Forecasting framework, retrieved from Silver, Pyke and Thomas (2017) 

 

Returns in other industries versus container returns 

In other industries (like for example e-sales, clothing stores or toy stores) each individual item return 
is usually registered. Besides, return forecasts are made for product categories instead of individual 
items (Shang, McKie, Ferguson & Galbreth; 2019). For container returns it is usually the other way 
around: only aggregate return data are available (Kelle and Silver, 1989a), but forecasts are made for 
each individual container type. The return data in our case are on container-type level, so it is not 
registered which beer was filled in which bottle. Items in other industries are generally returned 
relatively quickly after purchase (Shang, McKie, Ferguson & Galbreth; 2019), while it may take several 
months for containers to return in the brewing industry ((Van Dalen, Van Nunen & Wilens; 2005); 
(Widi, 2009)). Item-level return data of containers may however “represent a valuable resource that 
allows for production cost savings or additional revenues” (Fleischmann & Minner; 2004). For low 
demand items, Toktay, Van der Laan and De Brito (2004) state that it might be beneficial to collect 
item-level information as there are less items to keep track off than with high demand items. For 
now, Grolsch finds it too costly to register every individual container upon return, so the focus in this 
literature review lies on methods and models that use aggregate return data to forecast future 
returns. 

3.3. Past contributions on container returns 
In this section we describe different methods and models that are proposed in literature on 

container returns. 

 

 

 

 



33 
 

Distributed lag model (DLM) 

Goh and Varaprasad (1986) were one of the first to successfully implement a model that uses the 

relationship between sales and aggregate returns. They used a Box-Jenkins transfer function (Box & 

Jenkins, 2016) to estimate the distribution of the turnaround time for Coca-Cola bottles and the 

proportion that is lost in market. The main idea is that the input, sales, undergoes a transformation in 

a black box resulting in the output, the returns (see Figure 23 below). 

Figure 23: Time series transformation with a distributed lag (from Box & Jenkins, 2016) 

Their model estimates the proportions of the past months of sales that contribute to this months’ 

returns. The main drawback of their model is the data requirement, as they suggest to use at least 50 

data points while using monthly data. Daily data are too prone to short-term disturbances and gives 

problems estimating (too many) parameters. Using weekly or two-weekly data can still be 

appropriate, when the type of industry and the design of the supply chain don’t allow spurious 

changes in the return process from week to week. They also mention to be careful with calculating 

the recovery rate by dividing the total sales in a year by the returns in a year. The problem is that last 

year’s sales are not taken into account that contributed to the returns of this year.  Similarly, the last 

weeks of sales of this year are included, for which the returns don’t come until early next year.  

Ma and Kim (2016) added to the model of Goh and Varaprasad (1986) and showed by using the same 

dataset that their proposed “mixed model” performs better than a Distributed Lag Model (DLM) 

when there is a weak relationship between sales and returns. A DLM is used to model the 

relationship between an independent variable and a dependent variable based upon a lag that 

follows a distribution (Ravines, Schmidtz, Migon; 2006). The model of Ma and Kim (2016) is “mixed” 

in the sense that it uses past sales as well as past returns to forecast future returns instead of only 

estimating the weights of the lags based on sales like in a traditional DLM. They also state that the 

problem with solving a DLM is the multicollinearity (correlated input variables) (see also Geda and 

Kwong (2019)), not allowing for the traditional Ordinary Least Squares technique with linear 

regression. However, the time series in a transfer function approach used by Goh & Varaprasad are 

first made stationary (by removing the correlation of a variable with its own past values) to eliminate 

the problem of multicollinearity (Box & Jenkins, 2016). This makes the transfer function approach 

appropriate for modeling the relationship between sales and returns. 

Kelle and Silver (1989a) proposed four methods for estimating container returns. The difference 

between the methods is based on differences in data availability. One method that is particularly 

interesting is the method that only requires sales and aggregate return data. This method is based on 

using binary variables for if and when a container is returned. Seeing returns as binary variables can 

be interesting as sums of independent (but not necessarily evenly distributed) binary variables are 

approximately normally distributed (Krapp, Nebel, and Sahamie (2013)) if there are enough 

observations and the percentages are not too low (Chevallier, 2006) (in general n*p >10). This 

normal distribution can then be used to construct confidence intervals and to say something about 

the reliability of the amount of returns as done by Kelle and Silver (1989a). However, Clottey (2016) 
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talked about interesting statistical methods for forecasting returns and mentions that using a DLM 

for forecasting product returns “is considered superior to the normal approximation approach (from 

Kelle and Silver (1989a)) due to its dynamic nature”.  

Kelle and Silver (1989b) added to their previous paper (Kelle and Silver, 1989a) by implementing the 

forecasting of returns in a purchasing policy for new containers. They opted to minimize holding 

costs while maintaining high service levels. It is a very useful model and works with cumulative net 

demand (cumulative sum of demand-returns up to each time period). The cumulative net demand is 

the difference between demand and returns and needs to be fulfilled with new bought bottles. 

Because this cumulative net demand is approximately normally distributed for each time period, a 

standard formula for safety stock can be used to calculate order-up to levels. This could be very 

useful model for Grolsch, as the current measure of safety stock is determined by experts’ opinions. 

Carrasco-Gallego and Ponce-Cueto (2009) proposed a dynamic regression model that can be 

estimated by using transfer functions (using historical time series data) or other distributed lag 

techniques. They used transfer functions to solve the dynamic regression model to forecast the 

returns of LPG-cylinder containers. They also mention that besides estimating the turnaround time 

distribution in the way of Goh and Varaprasad (1986) and Kelle and Silver (1989a) one could try to fit 

an existing theoretical distribution on the data instead. Commonly used distributions for this purpose 

are geometrical and negative binomial distributions. However, Clottey and Benton (2014) found the 

gamma distribution superior to these distributions because of more flexibility and therefore higher 

accuracy.   

A possible addition to these distributions is the lognormal distribution (Widi, 2009). Widi (2009) 

analyzed the returns of beer bottles with item-level data in her master thesis, in her case a known 

day of return per bottle. She fitted different distributions to the data using multiple statistical tests 

and the lognormal distribution provided the best fit. She then used this distribution in a simulation 

model of an inventory system to determine optimal order quantities and inventory levels. Geda and 

Kwong (2019) state that fitting of the parameters of the return lag distributions is not yet studied 

sufficiently, and they propose to use maximum likelihood estimators for this purpose. A drawback of 

this idea is that a large sample size is needed when calculating parameters with maximum likelihood 

estimators (Geda & Kwong, 2019). They used a negative binomial distributed lag in their own 

forecasting model, which gave good results for the short-term but got more inaccurate further in the 

time horizon. 

Widi (2009) also found that return time significantly differs per season and per product (same bottle, 

different products). This was also found in a case study of Heineken described in the book of Van 

Dalen, Van Nunen and Wilens (2005) and expected by Bierkens et al. (2013) who set up a statistical 

procedure based on item-level data collection to test this. In the case study of Heineken (Van Dalen, 

Van Nunen & Wilens; 2005), RFID chips were placed in the crates so the time between two 

production batches with the same crate could be precisely measured. The returns were found to 

follow a distribution similar to a lognormal distribution: only few returns in the first three weeks, 

followed by a large amount of returns in the next seven weeks and then diminishing returns from 

week ten onwards. However, the time of a return in this case study includes sorting and storage time 

and this might be the reason there are few returns during first weeks after production. The average 

return time of the crates was 12.5 weeks. The actual time in the market was estimated by 

determining the average time at the brewery and subtracting it from the total circulation time. But as 

“FIFO rules were probably not strictly followed” (Van Dalen, Van Nunen & Wilens; 2005), the average 

time at the brewery of four weeks of warehouse time could be unreliable, especially with crates 

already being returned in the first week after production. 
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Markov Chain 

Bierkens et al. (2013) tried to find the trade population of beer bottles by modelling the return 
process of these bottles as a Markov-process using four states: full, empty, broken and returned. 
They see the transition time from full to empty as the time the consumer takes to consume the beer. 
But as the storage and delivery times are included in the transition time from full to empty, we 
question their approach of using only these states. Because of the poison arrivals in the Markov-
chain, they used exponentially distributed times for the transition from full to empty and from empty 
to returned. They then estimated the parameters of the hypo exponential distribution of the total 
return time by fitting the distribution to observed total return time data. Based on the graph we 
think the hypo exponential distribution with only two parameters is a poor fit. They do address the 
problems of seasonality, unreadable bottle labels and the difference in circulation time per 
distribution channel, bars/restaurants versus supermarkets. The trade population should be big 
enough for the company to be able to fulfill demand, but not too big as the company will then 
experience holding costs and underutilization of assets (Carrasco-Callego, Ponce-Cueto & Dekker, 
2012). 
  
Grey box modeling 

Ene and Özturk (2017) proposed a so called “grey box model” for the forecasting of the returns of 

end-of-life vehicles. A grey model uses a theoretical formulation together with only a small amount 

of data. This is different than black box modeling where no theoretical formulation is used at all. The 

method of Ene and Özturk (2017) could be useful for forecasting returns for newly introduced 

container types, as there are not much data of these container types available yet. Besides, a 

theorethical form of other container types could be included. 

 
Wave function 

Xiaofeng and Tijun (2009) forecasted the returns of products with a wave function, incorporating 

cyclical behavior in the function using a cosine. They compared their results in terms of forecast 

accuracy with a grey model and a Markov-chain model.  Their wave function provided the best 

results. This type of method is useful for modelling seasonality, but has a big drawback of not using 

sales data in the return forecasting. Another potential problem of using a wave function is overfitting 

the return curve. Overfitting is trying to explain every data point of the return curve in a function, 

while these points are also made up out of random noise (Box & Jenkins, 2016). This random noise 

does not describe the actual process and the function inaccurately forecasts the future of the time 

series if the noise is incorporated in fitting the function. However, it could be interesting to see if a 

wave function can be incorporated with statistical techniques such as transfer functions to account 

for the seasonality between two time series. We did not find any contributions on explaining 

seasonality between two time series (time series having stronger cross-correlation in different 

periods of the year). The transfer function approaches used by Goh and Varaprasad (1986) and 

Carrasco-Callego and Ponce-Cueto (2009) assume a distributed lag that does not change over time. 

Neural network 

There are also some contributions for forecasting returns based on machine learning. These methods 

are particularly useful when there are many explanatory variables or when there is vagueness about 

how variablesinteract with each other and models can be set up by experts’ rules (Cui, Rajagopalan & 

Ward, 2020). This is also done by Gomez et al. (2002) who proposed a neuro-fuzzy approach to 

forecast the returns of photocopiers. The input variables included sales, life-cycle stage, usage 

intensity, life-expectancy and reasons why photocopiers do not return. Experts’ rules are needed to 



36 
 

set up the relationship between these variables and the return rate and timing. The system is then 

trained with historic data. Neural networks need a vast amount of training data and in practice these 

data are not available for all product-types that need forecasting (Ene & Özturk, 2017). 

3.4. Theoretical background  
In the first part of the literature review, we have described methods that are used in the past to 

determine the important parameters for container returns. In this part we describe the theory 

behind the most interesting approach for our case: modelling the return forecast problem as a DLM 

and solving the model with time series analysis. 

Time series analysis 
A time series is a set of data points (observations) taken sequentially in time (Holmes, Scheuerell & 

Ward; 2020). The analysis of time series has two main goals: 

1. To understand the structure of the time series (how it depends on time, itself, and other time series)  

2. To forecast/predict future values of the time series 

There are many methods and models present for time series analysis ranging from quite simple to 

very sophisticated. We start by describing some simple regression techniques to give some 

background on time series analysis. We then describe the transfer function approach that is 

particular interesting for our research as seen in the previous section about container return 

forecasting.  

Simple linear regression 

In the simple case of having one explanatory variable xt , the output yt can be explained by the simple 

linear regression formula (Hyndman & Athanasopoulos, 2018): 

𝒚𝒕 = 𝜷𝟎 +  𝜷𝟏𝒙𝒕 +  𝜺𝒕 

With B0 the intersect value at X=0, B1 the slope of the linear line and Et the error term. In order to 

find the values of B0 and B1, the ordinary least squares technique can be used which minimizes:  

∑ 𝜺𝒕
𝟐

𝑻

𝒕=𝟏

= ∑(𝒚𝒕 − 𝜷𝟎 + 𝜷𝟏𝒙𝟏,𝒕  +  𝜷𝟐𝒙𝟐,𝒕 + …  +  𝜷𝒌𝒙𝒌,𝒕) 𝟐
𝑻

𝒕=𝟏

 

This will result in the best fit linear line that explains the points, as shown in Figure 24: 

          Figure 24: Simple linear regression (From Hyndman and Athanasopoulos, 2018) 
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Multiple linear regression 

In multiple linear regression, the output yt is explained using multiple explanatory variables 

(Hyndman & Athanasopoulos, 2018): 

𝒚𝒕 = 𝜷𝟎 +  𝜷𝟏𝒙𝟏,𝒕  +  𝜷𝟐𝒙𝟐,𝒕  + … +  𝜷𝒌𝒙𝒌,𝒕 +  𝜺𝒕 

The problem with applying multiple linear regression to our case is that the explanatory variables are 

probably correlated with each other, which will give poor regression results. This phenomenon is 

called multicollinearity. As Goh and Varaprasad (1986) mention: “more sophisticated techniques are 

necessary”. 

Autocorrelation 

In order to find out if the explanatory variables are correlated we can make an autocorrelation plot. 
Autocorrelation is the correlation of a variable’s value with its own past values. It is a very important 
measure for seasonality within a time series and it is needed to identify if multiple linear regression 
techniques can be used without encountering multicollinearity (Box & Jenkins, 2016). The 
autocorrelation at lag k is determined by dividing the autocovariance sk by the sample variance s0: 
 

𝒓𝒌 =
𝒔𝒌

𝒔𝟎
 

with: 

𝒔𝒌 =  
𝟏

𝒏
∑(𝒚𝒕 − �̅�)(𝒚𝒕+𝒌 − �̅�) =   

𝟏

𝒏
∑ (𝒚𝒕 − �̅�)(𝒚𝒕−𝒌 − �̅�)

𝒏

𝒕=𝒌+𝟏

𝒏−𝒌

𝒕=𝟏

 

A plot of rk against the lag k is called a correlogram. When a time series shows no autocorrelation, 

the time series is called “stationary”.  

Cross-correlation 

Cross correlation is the correlation of a variable’s value with another variable’s past values. Cross-

correlation rxy,k is calculated using the following formula (Box & Jenkins, 2016): 

 

𝒓𝒙𝒚,𝒌 =
𝒔𝒙𝒚,𝒌

𝝈𝒙𝝈𝒚
 

with:  

𝒔𝒙𝒚,𝒌 = 𝑬[(𝒚𝒕 − 𝝁𝒕)(𝒚𝒕+𝒌 − 𝝁𝒙)] 

Cross-correlations are used in the transfer function approach to estimate the delay distribution (Box 

& Jenkins, 2016). 

Box-Jenkins transfer functions 
A delayed change in a variable caused by a change in another variable is called a dynamic response. A 

dynamic response can be modeled by a transfer function model with the general form: 

𝒚𝒕 = 𝜷𝟎 + 𝜷𝟏𝒙𝒕  + 𝜷𝟐𝒙𝒕−𝟏  + … +  𝜷𝒌𝒙𝒕−𝒌−𝟏 +  𝜺𝒕 

Where yt is the output at time t, xt is the input at time t, Bt is the weight of the input and Et is the 
error or “noise”. The form of formula is very similar to the multiple linear regression formula, except 
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that the output is not dependent on multiple variables but on lagged values of one variable. Besides, 
the transfer function approach makes up for correlation between the independent variables. 
 
The process of modelling such a dynamic response by a transfer function model consists of three 

steps: identification of the transfer function, fitting and diagnostic checking (Box & Jenkins, 2016). 

We give a summary of these steps as the total procedure is too long to describe here. A detailed 

description of transfer functions can be found in the book of Box and Jenkins (2016). Another paper 

with a clear description of the transfer function approach is a paper by Helmer and Johansson (1977).  

Figure 25: The steps in identification, fitting and diagnostically checking a transfer function (from 

Helmer and Johansson, 1977) 

They studied the relationship between the independent variable advertising (which would be sales in 

case of Grolsch) and the dependent variable sales (which would be returns in case of Grolsch) by the 

means of a transfer function. They give a nice overview of the process and divided the identification 

into multiple steps (see Figure 25).  

Safety stock 
Safety stock is the amount of extra inventory to protect against uncertainties in both supply and 
demand (Silver, Pyke & Thomas, 2017). How much safety stock is needed, is based on what level of 
customer service is desired (Cycle Service Level (CSL)). The safety factor can be determined as 
follows: 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑘 =𝛷−1(𝐶𝑆𝐿) 
 
The safety stock can be calculated with the following formula: 
 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 =  𝑘 ∗ 𝜎𝐿 
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with:  

• k = the safety factor 

• σL  = the standard deviation of the demand during the lead time. 
 
The reorder point is the inventory point at which a new order has to be made to be able to fulfill the 
demand during the lead time: 
 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 =  �̂�𝐿  +  𝑆𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 
 
with:  

• �̂�𝐿 = the mean demand during the lead time 

3.5. Conclusion  
For long-term forecasting, updating approaches such as moving average, exponential smoothing, 

Holt’s method and Bayesian methods are considered inappropriate. The main reason these methods 

are undesirable is the weekly augmentation of sales and return data can’t be utilized to update the 

parameters as the long-term forecast is only made a few times per year, mainly to determine the 

procurement budget. (These methods make more sense for short-term forecasting.) Besides, 

univariate methods seem inappropriate for this research as they fail to take sales into account to 

forecast the returns and sales can differ significantly from week to week. For long-term return 

forecasting the better approach is to perform time series analysis, which is the analysis of trends, 

seasonality (cycles) and correlation between sales and returns. The DLM is in our opinion the best 

way to model the return forecast for Grolsch, because it only needs aggregate data and can be solved 

using time series analysis. 

Other methods such as machine learning (for example neural networks) are typically used for 

forecasting with more explanatory variables (features) than we have in our case (Cui, Rajagopalan & 

Ward, 2020). This makes them more suitable for return forecasting in other industries, but less 

suitable for container return forecasting. The purchasing model of Kelle and Silver(1989b) can be 

adapted as purchasing policy. Although Kelle and Silver do not use restrictions on production 

capacity, these restrictions could be added to the model to make it realistic for Grolsch. It is a useful 

model because the safety stock formula can be used as the cumulative net demand in a time period 

(the cumulative sum of demand-return up to the specific time period) is approximately normally 

distributed. This could be an improvement to Grolsch current measure of safety stock, the standard 

of five working days of production. 
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4. Improved return forecast and parameter calculation  
This chapter describes the proposed return forecasting model and the improved calculation of the 

parameters Trade Loss (TL), Internal Loss (IL) and Trade Population (TP). The parameters TL and IL are 

input for the improved return forecast, the expected TP is output. We did explicitly not mention the 

parameter Weeks in Trade (WiT). As we have seen in Chapter 2, forecasting returns with the 

parameter WiT is inaccurate because of its sensitivity to large changes in sales from week to week. 

The realized WiT-values of a previous year can also not be copied to the next year, which is currently 

done. We have seen in the literature review in Chapter 3 that the container returns can be best 

modeled by using a distributed time in the market. In this chapter we therefore propose to forecast 

returns using a different parameter: Time in Trade (TiT). TiT is the time that a container stays in the 

market. Grolsch is already familiar with the term TiT but currently does not use TiT in its return 

forecast. The TiT-distribution is the probability distribution of the time that a container returns in.  

In Section 4.1 the proposed return forecasting model is outlined and in Section 4.2 the improved 

parameter calculations and the improved return forecast are described. In Section 4.4 we try to 

validate the improved return forecast model.  

4.1. Proposed return forecasting model 
In Chapter 3 we described several methods and models that can be used to forecast container 

returns. As a summary, these are shown in Figure 26:  

 

Figure 26: Alternative methods and models 

In Chapter 3 we came to the conclusion that multivariate time series modeling is a good method to 

forecast returns for the long term with aggregate data and with only two variables (sales and 

returns).  

The problem can be modeled as a Distributed Lag Model (DLM), but there are some choices to be 

made on how to exactly do this. First there is the choice between an infinite- and finite DLM. The 

difference between the infinite and finite DLM is the number of parameters (lags) that is included in 

the return forecasting model.  

With infinite distributed lag models a certain structure needs to be assumed to solve the model as no 

technique is able to determine an infinite number of parameters. In literature we found several 
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distribution structures that are generally used for this purpose: the geometrical distribution, the 

gamma distribution and the lognormal distribution.  

Another option to find a solution to the infinite distributed lag model is the transfer function 

approach of Box and Jenkins (2016). This method uses correlation between a variable’s own values 

together with the cross-correlation between the two variables to say something about the maximum 

amount of significant lags, while allowing an infinite amount of lags. To drawback of this method is 

that many years of data are needed and the validity of the method is determined by the quality of 

the data. The data should for example not show spurious effects. Time periods longer than weeks are 

therefore preferred, probably a monthly lag seems appropriate. Especially because the feeling is that 

containers are still returning after longer than a year. As Grolsch needs the return forecast per week, 

as this is used organization-wide, we need to see if this approach will be accurate. Grolsch has some 

idea about a maximum significant lag length and we therefore propose to model the return forecast 

as a finite distributed lag model.  

The proposed return forecasting model is: 

𝑅𝑡  =  𝑌(𝑆𝑡 − 𝑆𝑡−1) + 𝑏1(𝑆𝑡−1 − 𝑇𝐿) + 𝑏2(𝑆𝑡−2 − 𝑇𝐿) + ⋯ + 𝑏𝑛(𝑆𝑡−𝑛 − 𝑇𝐿) 

with:  

• Rt = Forecasted returns in week t  

• St = Forecasted or realized sales in week t, depending on for which t the return forecast is 

calculated. (The return forecast of four weeks in the future depends on the sales forecast of 

the next four weeks as well as on the realized sales of past weeks.) The realized sales are 

known. The sales forecasts of Apollo and BNR for 78 months ahead are updated on a weekly 

basis by the Demand Planning department and are also available for our research. 

• TL = Trade loss 

• bt = Lag weight of week t (b1 = % of bottles that return one week after they are sold). 

Together, the bt values should sum up to 100% as the sold bottles (St) minus the bottles lost 

in the market (TL) are the returns (Rt).  

• n = The maximum amount of weeks before week t, from which the sales still contribute to 

the return forecast of week t. 

• Y = Extra parameter (index) indicating extra returns if more is sold than a week earlier and 

less returns if less is sold than a week earlier. We have to note that an accurate return 

forecast is not just based on the TiT-distribution of an individual bottle. There is likely a high 

correlation between sales in a week and returns in the same week, because Grolsch gets 

more back the more customers are visited (more is sold). This can however not be the same 

bottles that are sold this week as they have to go through selling, returning and transport 

phases that together take at least a week. This parameter is explained in Section 4.2.3. 

To illustrate how the return forecast is found, we give a small example: 

Consider the sales of week 1 are 10 and of week 2 are 20,TL is 10% and we want the return forecast of 

week 3. The calculation becomes: R3 = Y(18-9) + b1*18 + b2*9. Because the realized returns are known, 

the Excel solver can be used to find the best fit parameters Y, M and V. M and V are the mean and 

variance of the lognormal distribution of TiT. b1 and b2 are probabilities of that lognormal distribution 

at x=1 and x=2 respectively. b1 is the probability of return after one week and b2 the probability of 

return after two weeks.  
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Maximum lag length 

With a finite DLM, the maximum lag length needs to be determined. In our case the maximum lag 

length is the number of weeks in the market after which Grolsch does not expect any containers 

back. This maximum lag length is crucial for determining the TP. The cumulative effect of containers 

staying in market gets bigger the longer the maximum lag length is. This is the case because the 

longer a container is expected to be in the market, the more the TP grows before it returns. We solve 

our DLM with a maximum lag length of 52 weeks, as this is the best guess by Grolsch and a sample of 

2019 showed very few bottles returning after 52 weeks. 

With a maximum lag length of 52 weeks, we need to specify what happens to the remaining 

probability mass after 52 weeks. As 100% of sales-TL is expected back, all remaining probability mass 

has to be scaled over the 52 lags that are included in the model. How this is modeled becomes clear 

in the next part: “Finding the parameters of the return forecast model”. 

Finding the parameters of the return forecast model 

There are different techniques to solve a finite DLM, of which the most standard one is regression 

analysis. Standard regression is however not a possible solution to our model as both the sales and 

return data are auto-correlated. From literature it becomes clear that using regression in this case 

will lead to multicollinearity which gives poor lag weight estimates. 

In Figure 26 there are two other methods present that can be used to solve this model: 

1) Assuming a lognormal distribution structure 

2) Using a Box-Jenkins impulse response estimate 

Both methods are interesting for our case, even though the Box-Jenkins approach might not be 

optimal with weekly time intervals. These methods differ from each other in terms of how much the 

data can dictate the shape of the return distribution. The feeling is that letting the data dictate the 

shape is a good thing. However, this is not always the best approach. Especially with weekly data 

compared to monthly data, overfitting can become an issue because of short-term disturbances in 

the return process. Besides, many parameters have to be estimated and the accuracy of this method 

is unknown beforehand. With weekly disturbances in the data, assumed structures could provide 

better results.  

If we assume a maximum lag length of 52 weeks, 52 parameters need to be estimated. Assuming 

logical structures drastically reduces this amount of parameters that needs to be estimated. The 

lognormal distribution has been identified to accurately describe the return distribution in other 

cases of beer container returns and makes sense to Grolsch as well. We tested multiple distributions, 

but the lognormal distribution indeed gave the best fit. Instead of estimating every lag weight, the 

model now only has to estimate the two parameters of the lognormal distribution: the mean and the 

variance. We choose to test both methods. We now move to the inputs of our return forecasting 

model: 

Inputs  

1) Realized sales per container type per week 

2) Realized returns per container type per week (determined in the same way as outlined in 

Section 2.5.2) 

3) Sorting line output data: % of each bottle type present in each crate type per year 

4) Filling line sorting loss and bottle breakage per bottle type per year 
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5) Trade Loss which is based on inputs 1), 2) , 3) and 4) as explained in Section 4.2. 

6) Internal loss based on inputs 3) and 4) as explained in Section 4.2. 

Our parameter calculation model translates these inputs to the following outputs (for each container 

type) for the coming year: 

Outputs 

1) A TiT-distribution of the returns (Section 4.2.2) 

2) Return forecast (Section 4.3) 

3) Expected TP per week (Section 4.2.4)  

(When the TiT-distribution is estimated, it is also clear how much percent of the sales of each 

week are still expected to be in the market. Needs an appropriate maximum lag length to 

ensure the cumulative aspect of trade population is accounted for.) 

In Section 4.2 the parameter calculation for Trade Loss, Internal Loss, Time in Trade, Trade 

Population and the impact of the difference in total sales is explained. 

4.2. Parameter calculations 
In this section is explained how the parameters Trade Loss, Internal loss, Time in Trade and Trade 

Population are calculated. Trade loss is needed as input to calculate TiT. Internal loss does not 

influence the return forecast, but does influence the purchasing decisions in Chapter 5 and 6.  

4.2.1. Trade Loss and Internal Loss 
In this section we describe the calculation for Trade Loss and Internal Loss. We start with Trade Loss. 

Trade loss is currently determined by Grolsch using the following formula:  

𝑇𝑟𝑎𝑑𝑒 𝐿𝑜𝑠𝑠𝑖,𝑝  =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑙𝑒𝑠𝑖,𝑝 − 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖,𝑝

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑙𝑒𝑠𝑖,𝑝 
  

with:  

• i = container type  

• p = period over which to take TL 

Realized returns 

The first thing that is important for the TL-calculation is that the realized returns are calculated 

correctly. We have seen that the current calculation of TL is based on a biased calculation of the 

realized returns. The realized returns are currently calculated by subtracting sorting losses per week. 

This results in spiky realized returns as some weeks more is sorted than in other weeks. Above all, 

not all containers that are returned in a period are sorted in the same period. This results in a slightly 

too low estimate of TL because too few losses are subtracted. We therefore propose to use the 

realized returns calculation of Section 2.5.2 for TL-calculation that uses sorting percentages instead. 

As a small recap, the number of returned crates of each type is known and with sorting data we work 

out how many of each bottles are returned in these crates.  
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Time period 

The second thing to consider is that it is not set in stone over how long of a period to calculate TL and 

how often it should be updated. Grolsch may not use a period of less than a full year for the reason 

that returns follow later than sales.  

For example: Consider two years of sales and returns, 2018 and 2019. The TL is going to be calculated 

for 2019 so we would take the total sales and returns of 2019 in the TL formula. However, the 

returns of the first weeks of 2019 are based on sales of the final weeks of 2018, which are not 

included in the calculation. Besides, the sales of the final weeks of 2019 are included, but they have 

not yet been returned. If there is no clear sales trend present, the sales of the final weeks of 2019 

correspond with returns in the first weeks of 2019. This is the case because the sales in the final 

weeks of 2019 are comparable to sales in the final week of 2018. This is why TL should be calculated 

over full years.  

There is a trade-off for the time period over which to calculate the TL. If TL is calculated over a too 

short period, the values will be very volatile. If TL is calculated over a too long period, the market 

might have been changed. For example: Grolsch might have introduced SKUs that are sold without a 

crate, which could lead to an increase in Trade Loss. 

In Figure 27 the sales- and return sums of 1 year are shown with a rolling horizon. The difference 

between the lines in each graph are the TL values calculated over a period of one year, starting in the 

week that is indicated on the x-axes. The values for TL that are calculated over a period of 1 year, 

fluctuate a lot based on which starting week is taken. This is the case because sales and returns per 

week can differ a lot from year to year as shown in Figure 29.  

For example: If the TL for Apollo is calculated from week 1 to week 52 of 2018, the TL is X%. If the TL 

for Apollo is calculated over week 2 of 2018 to week 1 of 2019, the TL is X%. This is a significant 

difference as X% difference equals X hl and translates to X euros that might be unrightfully included 

in the injection budget.    

  Figure 27: Trade loss 1 year rolling                            Figure 28: Trade loss 2 year rolling 

The TL calculated over a period of two years is already more stable as shown in Figure 28. Currently a 

three-year average TL is used. However, the longer the period, the more changes in the market can 

have occurred. For example: if more Radler beer is sold without a crate over the years, more could be 

lost in the market. For Apollo the TL should be relatively stable throughout multiple years as this 

bottle is only used by  
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             Figure 29: Sales differences year to year (confidential) 

Grolsch and not much changed in the market landscape. The differences in sales and returns in the 

same week of different years can be significant.  

Then there is the delay between sales and returns. When returns come on average X to X weeks later 

than the sales, taking a period less than 52 weeks can lead to serious inaccuracies. For this reason the 

minimum period is one year.  

Then there are periods in which more is returned compared to sales than other periods. If we for 

example take a period of 1.5 years, ending with a peak season, this includes a high amount of sales 

while the returns are not yet followed. For this reason Grolsch always uses full years as periods. 

Returns in the first weeks of the period over which TL is taken, can be roughly compared with the 

returns of the sales of the last weeks of the period if the sales remains stable.  

Stability of Trade Loss 

Stability is not directly mentioned in the formula of Trade Loss. We are concerned with stability 

because Grolsch uses Trade Loss as a constant value, while in reality the market can change and TL  

needs to be updated. Also if there is a trend in sales present, the Trade Loss calculation is biased 

because returns follow later than the sales. If sales are increasing, Trade loss is increasing because 

the increase in returns comes on average X weeks later. So we consider two types of stability: 

stability of TL based on the market and stability of TL based on trends in sales.  

There is a big difference in market stability between Apollo and BNR. Apollo is only used by Grolsch 

and BNR is shared among different brewing companies. For that reason, for Apollo the Trade Loss 

can be assumed to be stable throughout multiple years. For BNR Grolsch’ experience is the TL differs 

more from year to year. One reason is that the amount of BNR that is put into Grolsch crates at the 

supermarkets can differ from year to year.  This is also a reason that new brewing companies have a 

hard time breaking into the market. They need to invest in BNR and the bottles may end up at 

Grolsch. The stability of TL for BNR in terms of sales is shown in Figure 30. We see that the trend is 

upwards and that the TL values are increasing, even if TL is taken over a relatively long period of two 

years. This is mainly due to the fact that BNR returns follow on average X weeks after the sales 

(which is calculated later on in Section 4.2.2.). When more is sold, the additional returns are 

expected X weeks later. We need to shift the returns with X weeks to get a more stable TL. This is 

needed because the data indicate an increasing TL, while in reality the returns corresponding with 

the increased sales are not taken into account.  
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Figure 30: Trade loss BNR returns not shifted                      Figure 31: Trade loss BNR returns shifted 

Figure 32: Trade loss calculation  
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For Apollo we propose to use an average TL, based on the previous three full years. For BNR we also 

propose to use a three-year average, but with a correction for the sales trend by shifting the returns 

by X weeks. Besides, for BNR there always needs to be human input to react to changes in the 

market. For example: When a brewing company stops producing with BNR, the TL value needs to be 

adjusted accordingly (lowered). For Apollo this results in a TL value of X% and for BNR X%. 

A small validity check is done to see if the amount of injection is in line with the expected TL. The 

amount of Apollo injection in the years 2018, 2019 and 2020 together was around X hl. The amount 

of sales in these years was around X hl. This indicates a maximum TL of X%. As background 

information from Grolsch, we know that at the end of 2020 more was injected than needed as the 

supplier had the stock available. In this X% an Internal Loss  of around X% needs to be taken into 

account, which means the TL for Apollo should indeed be around X%. 

Internal loss 

For internal loss we propose to keep using the current method of taking the average production line 

breakage of the last three years. There is no direct data of how many containers are lost during 

storage, but broken bottles may stay in the crates till they arrive at the production line. Overall the 

current approach seems appropriate. The IL is calculated with the following formula: 

𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝑳𝒐𝒔𝒔𝒊,𝒑 % =
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒍𝒊𝒏𝒆 𝒃𝒓𝒆𝒂𝒌𝒂𝒈𝒆𝒊,𝒑

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒍𝒊𝒏𝒆 𝒊𝒏𝒑𝒖𝒕𝒊,𝒑
 

with:  

• i = container type  

• p = period over which to take IL 

The calculation using the formula above results in X% and X% IL for Apollo and BNR respectively. 

Unlike Trade Loss, Internal loss is stable. 

4.2.2. Time in Trade 
The TiT-distribution is the distribution of when a container is expected to be returned (% per week up 

to 52 weeks). When the TL value is estimated, the Sales-TL is the total amount of returns of a certain 

week of sales. The TiT-distribution says how these returns are divided over the weeks after the 

containers are sold. TiT can be estimated using a discretized lognormal distribution. The estimated 

TiT is the best possible fit in terms of MAPE. With the lag limit of 52 weeks, the part of the returns 

that is expected after these 52 weeks needs to be scaled over the 52 weeks that are included. The 

scaling is done by assuming the same distribution. So if X% is expected to come back after 52 weeks, 

this X% is scaled over the 52 weeks in the same way the 52 weeks are distributed (most of the X% is 

added to the week where most % of returns are expected.  This keeps the TiT-distribution smooth. 

This does result in a difference between the average TiT of the 52 weeks and the actually implied TiT 

with no time limit. This is important to keep in mind for calculation the TP in Section 4.2.3. The 

percentage that is allowed after 52 weeks is set to X% for Apollo, deliberated with Grolsch and 

validated by a small sample from 2019 that showed very few bottles returning after 52 weeks.  

There is a trade-off for allowing too much or too little % returns after 52 weeks. The model has more 

freedom with more % allowed after 52 weeks, as more shapes of the lognormal distribution are 

allowed. However, because the part after 52 weeks has to be scaled, more % allowed means a bigger 

difference in the average TiT and implied average TiT for TP estimation. For BNR the TiT is in general 

longer than for Apollo and we therefore set the percentage for BNR to X%. 
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Excel calculates the best fit lognormal TiT-distribution, by minimizing the MAPE. The interface in 

Excel looks as follows: 

      

Confidential 

 

 

 

Figure 33: Interface TiT-distribution 

This fitting results in the following TiT-distribution for Apollo and BNR, fit over 2018-2019: 

Figure 34: TiT-distribution Apollo         Figure 35: TiT-distribution BNR 

We notice that both have generally the same shape (which is not necessarily the case as the 

lognormal distributions can have many shapes), but BNR is returning slower than Apollo. After three 

weeks the total expected returned amount for Apollo is around X%, while for BNR this is around X%. 

The average implied TiT for Apollo is X weeks and for BNR X weeks. 

Seasonality of TiT 

Till now we used one distribution for TiT, which does not change over the year. We minimized the 

MAPE with the fitting of the TiT-distribution. The return forecast MAPE of the fitted data is already 

significantly reduced by using one TiT-distribution compared to the current method using WiT 

However, the weekly absolute return forecast errors may be small, but if there is constant over- or 

under-forecasting of returns, this can have an impact on the injection planning. As an example: 

If the return forecast errors for weeks 1 and 2 are -3000 hl and +3000 hl respectively, the MAPE over 

these two weeks is 3000 hl, but the two week total error is 0 hl. If  the return forecast errors for weeks 

1 and 2 are +2000 hl and +2000 hl respectively, the MAPE is reduced to 2000 hl. However, the two 

week total error is 4000 hl, compared to 0 hl in the first case. 

We have the feeling that bottles return faster in the peak-season, because people drink more beer in 

this period. To check this, we plot the cumulative hl-error of the fitted TiT-distributions of Apollo and 

BNR in Figure 36 and Figure 37 respectively. Note that at the peak the underforecasted returns is at X 

hl. As this peak also lies the period in which injections are generally necessary, around X euros on 

injections might be unrightfully included in the budget. There will always be some error and the 

current model has errors of more than X hl in one week, but the seasonality needs to be adressed in 

our proposed return forecasting model. 
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The main split we can identify in the “One TiT-distribution” lines in Figure 36 and Figure 37 is a split 

between two periods. Apparently, Apollo and BNR are returning faster in one period than the other 

seen the increasing and decreasing of the cumulative error. Seasonality of TiT needs to be included 

to make the forecast more accurate. Note that the peaks for Apollo are around weeks 36 of 2018 and 

2019 and that the low  is around week 10 of 2019. Week 36 is the end of the peak-season for Apollo, 

with the summer and holidays coming to an end. Till week 10, with a small peak in demand for Apollo 

bottles in week 49 before Christmas. From week 10, the beginning of Spring, the beer consumptions 

rises again. 

This validates our feeling that the main split should be two periods of 26 weeks. A peak in week 36 in 

Figure 36 means that from week 10 till week 36 containers are in reality returning faster than is 

currently modeled with one distribution for TiT. From week 37 till week 9 containers are in reality 

returning slower than currently modeled.  

For BNR we see in Figure 37 that there are no clear peaks, but rather some horizontal parts in the 

graph. This means that the hl-errors of the weeks 36 to 46 are around the same as those of weeks 10 

till 20. This would call for a split in three different distributions for BNR:  

• One TiT-distribution for weeks 21-35 (faster BNR return than average, based on increased 

sales over all containers) 

• One TiT-distribution for weeks 36-46 and weeks 10-20 (start peak season of BNR with 

introduction of Herfstbok in week 36 and beginning of Spring in week 10) 

• One TiT-distribution for weeks 47- 9 (slower BNR return than average, based on lower sales 

over all containers) 

An optimal model might even include a different distribution for every week in the year, but the risk 

of overfitting becomes large. We see this as a topic for further research and stick to a two period split 

of TiT for Apollo as well as for BNR because Grolsch does not want different solutions for different 

container types if the improvements are expected to be minimal. This makes the solution more 

interpretable and easier to implement for Grolsch. However, even this split in two periods makes the 

model more complicated than using one distribution for TiT.  Summarized: For Apollo we split the 

year in weeks 10 till 36 and weeks 37 till 9. For BNR we split the period in weeks 15 till 40 and 41 till 

14. This is only done for TiT. The TL and IL are assumed constant throughout the year. 

 If we have a different distribution for peak season and off-season, how do we make the switch 

between these periods in the return forecast? It has to do with looking backward or forward. Looking 

backward means: In a certain week, how many returns do we expect from the sales of previous 

weeks? Looking forward means: When do we expect to get the sales of the current week back? If we 

look backward with a different distribution in let’s say week 20 and week 21, the sales of week 10 (10 

weeks before) might already be expected back in the week 20 and expected to be in trade again in  

week 21. This results in an invalid return forecast. If we make a split in distribution, we need to look           

forward and keep track of each week of sales how much percent returns in which week after the 

sales. Then for each week, we distribute when the sales are returned. 
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Figure 36: Apollo cumulative return forecast error    Figure 37: BNR cumulative return forecast error 

Most seasonality is indeed captured by using two different distributions for peak-season and off-

season. There is no systematic over- and under-forecasting anymore in the same periods in both 

years. The pattern that still exists is likely because TL varies over the year instead of the assumed 

constant TL. Especially for BNR the TL can variate throughout the year. Overall the cumulative error is 

staying in a good range and will not cause problems for the injection planning.  

If returns are under-forecasted this may result in a too big amount of planned injection. This is only 

the case if there is less stock of empty bottles available than the amount of returns that is under-

forecasted. If the empty bottle stock is big enough, under-forecasting of returns does still not lead to 

planned injections. If returns are over-forecasted, this may result in a too small amount of planned 

injection. But if too much injection is planned, this amount is added to the expected stock and is  

used (needed) at one point or another. This is why the range of the cumulative error is important. As 

long as the cumulative error is relatively small, the impact on the injection planning will be small. 

4.2.3. Extra return parameter Y: difference in total sales in consecutive periods 
Before the final improved return forecast is made, we determine the return parameter Y from the 

DLM of Section 4.1. The reason why this parameter was included in the DLM of Section 4.1. is that 

weekly returns follow a very spiky pattern, similar to weekly sales. Grolsch gets more bottles back if 

customers’ depots are visited more often. So in periods of more total sales (sales sum over all bottle 

types), more total returns are expected as well. To go one step further, if Grolsch has more total 

sales in the current week compared to the previous week, most of the spare returns that are                     

available at the customers’ depots are returned to the brewery. The next period (even when sales 

are also high), the returns will likely be lower. As an indication that this may be true we plot the 

graph of the difference in sales versus the differences in returns in Figure 38. 

For 2020, X% of the time the sign of difference in total sales (+ or -) was the same as the difference in 

total returns. One would expect this value to be 50% if this parameter’s influence was completely 

random. As returns are influenced by way more variables, this X% is certainly a reason to check the 

impact on the return forecast accuracy by including the total sales as input parameter to the return 

forecast. However, extra returns in the current week caused by more sales in that week are not the 
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same bottles that are sold in that week. These bottles first have to go through transportation, selling 

and returning phases that together usually take at least one week.   

Figure 38: Difference in total sales vs difference in total returns  

Keeping the return forecast model valid 

Instead of working with correlations that are hard to interpret for Grolsch (which would be the case 

when using for example linear regression), we want to keep working with Time in Trade of a bottle. 

Recall that the updated return forecast expects every bottle of the sales- trade loss back according to 

a lognormal distribution. When in a certain week the returns are higher (or lower) than expected 

based on total sales, we need to define when these bottles were sold so they cannot return for a 

second time later based on the lognormal distribution. Several policies can be implemented to 

determine when these extra or fewer returns were sold. For example: on FIFO basis (if there are 

extra returns these are the containers that are in the market for the longest amount of time) or 

working backwards with the lognormal distribution of returns (If there are extra returns they are 

proportionally returned from the weeks of sales that are currently in the market). The return 

forecasting model should save how many of each week of sales are still expected to return. The 

solution therefore becomes harder to implement in the current container-planning model of Grolsch, 

but it might be worth it. The MAPE only decreases by around 0.5% for both Apollo and BNR 

compared to using only the seasonal lognormal distribution. Probably, the sales differences are 

already caught by the two period seasonality of the implemented lognormal distribution. 

4.2.4. Trade Population 
Grolsch currently uses a TP starting estimate of week 1 in 2017 which is based on average sales, 

expected TL, WiT and injections. This starting estimate was calculated years ago and how this is 

exactly done is unknown even for the people that currently work with the container-planning model.  

Because we estimated for each week of sales when the sold bottles are expected to return (TiT-

distribution), we also have the number of bottles that are expected to still be in the market. Note 

that we included a maximum lag length of 52 weeks in the estimated TiT-distribution. The returns 

that were expected after these 52 weeks based on the lognormal distribution, are scaled over the 52 

weeks that are included. This results in an underestimation of the average TiT, which is the 

sumproduct of the weeks and their respective return percentages. The average TiT that is actually 

implied with the used lognormal distribution can be calculated as the limit of this distribution. As the 

percentage of the returns that is allowed after 52 weeks is an input and set to only X% for Apollo, the 

difference between the average used TiT of the 52 weeks and the implied average TiT is minimal. In 

general: The larger this allowed percentage after 52 weeks becomes, the larger the part that is scaled 

and the larger the difference between the used average TiT and the implied average TiT. 
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The approach to deal with this issue is to calculate the expected average TP based on the implied 

average TiT. This is done by multiplying the average sales over the same period that is input to the TP 

with the average implied TiT.  This average is then compared with the average TP based on the used  

TiT of the 52 weeks and the difference is added to the latter. This results in the TP-estimates for 

Apollo and BNR in Figures 39 and 40: 

The TP of Apollo seems to remain stable throughout the years 2018 to 2020. The trend is only slightly 

downwards, which matches with the slightly downward trend of Apollo sales in the last years. 

For BNR the trend of the TP is clearly up. This also matches with the sales trend of the last years. 

Figure 39: Trade Population Apollo         Figure 40: Trade Population BNR 

The estimate can be used as a starting TP in the current model of Grolsch. The TP can then be 

updated with the formula that is currently already used: 

𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝑻𝒓𝒂𝒅𝒆 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 + 𝑺𝒂𝒍𝒆𝒔 –  𝑹𝒆𝒕𝒖𝒓𝒏𝒔 –  𝑻𝒓𝒂𝒅𝒆 𝑳𝒐𝒔𝒔 

4.3. Improved return forecast 
In the previous section we talked about the different parameters that are included in the return 

forecasting model. In this section the calculation of the improved return forecast is described. The 

inputs to fit the return forecast are (as mentioned in Section 4.1): 

• Realized returns 

• Realized sales 

• Improved TL 

 

Before the distribution of the time in the market and the impact of differences in sales can be 

estimated, first the Trade Loss must be subtracted from the sales of each week. This is needed to find 

how many bottles that are sold are expected to return of each week of sales. Then the following 

parameters have to be determined at once with the Microsoft Excel solver while minimizing the 

MAPE:  

• Mean and variance of two lognormal distributions  

• Extra returns caused by difference of total sales (Y) of Section 4.2.3  

(more total sales results in more returns and less total sales in less returns).  
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An extended example on how the return forecast is found  

Consider the sales of week 1 are 10 and of week 2 are 20,TL is 10% and we want the return forecast of 

week 3. The calculation becomes: R3 = Y(18-9) + b1*18 + b2*9. Because the realized returns are known, 

the Excel solver can be used to find the best fit parameters Y, M and V by minimizing the  MAPE. M 

and V are the mean and variance of a log-normal distribution. b1 and b2 follow from this lognormal 

distribution, as b1 is the probability of return after one week and b2 the probability of return after two 

weeks (probabilities at t=1 and t=2 from lognormal distribution with mean M and variance V). The 

remaining probability after two weeks needs to be scaled over the amount of weeks included in the 

calculation (b1 and b2) in the same proportions. So if b1 = 5% and b2 is 15% before scaling than 80% 

needs to be scaled and b1 becomes 5%*1/0.2 = 25% and b2 =15%*1/0.2 = 75%.  

This procedure results in the following fit on the data for Apollo and BNR in Figure 41 and Figure 42: 

Figure 41: Apollo lognormal return forecast FIT  Figure 42: BNR lognormal return forecast FIT               

        

In Table 9 the MAPE of return forecast fit on 2018-2019 is shown, which is the average absolute 

percentage error of the weekly returns. The return forecast fit is based on realized sales data. 

Grolsch’ current return forecast is explained in Section 2.3.2. Including two period seasonality in the 

return forecast is not only effective for eliminating the cumulative return forecast error but also the 

MAPE of the fitted data reduces further compared to the case where no seasonality is used. 

 Return forecast FIT MAPE 2018-2019 

 Apollo BNR 

Current return forecast 25.1% 40.1% 

Improved return forecast without seasonality 10.2% 14.8% 

Improved return forecast with seasonality 9.3% 12.5% 

      Table 9: Return forecast FIT MAPE 2018-2019 

The MAPE-fit is reduced significantly compared to the current method for both Apollo and BNR. This 

will likely lead to more accurate return forecasts and injection plans, but first we try to validate the 

return forecast in Section 4.4. 
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4.4. Validation 
In this section we try to validate our return forecast assumptions and test the fitted TiT-distributions 

on test data to see if they are realistic. In this way we can see if the improved fit from Section 4.3 

does indeed lead to a higher forecast accuracy. We do this by comparing our results from Section 4.3 

with a small sample that was done in 2019 and with benchmarks found in the literature review. 

4.4.1. Comparison with realized returns 
To validate the improved return forecast we calculate the return forecast accuracy in 2020, with the 

TiT-distribution and parameter Y fitted on 2018-2019 respectively. Just like in Section 2.5, we 

forecast returns based on the realized sales and the forecasted sales. In this way the impact of the 

sales forecast inaccuracy can be seen. Are the returns accurately forecasted if the sales are 

accurately forecasted? 

  Return forecast MAPE Apollo   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 24.0% 26.1% 

Improved return forecast 12.6% 14.3% 

 Table 10: Apollo return forecast MAPE  

  Return forecast MAPE BNR   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 35.7% 38.7% 

Improved return forecast 14.8% 16.1% 

   Table 11: BNR return forecast MAPE  

As can be seen in Table 10 and Table 11, the improvement from the fit also translates to 

improvements to the unfitted data. Even with possible changes in the return timing because of 

Covid-19, the improved forecast still manages to get a good weekly MAPE.  

4.4.2. Benchmark comparison  
In this chapter we are going to discuss the validity of the updated return forecasting model. We are 

interested in how the parameter values change if we change our assumptions about the underlying 

distribution structure and the maximum lag length.  

Comparison to sample 2019  

An indication that the return forecasting model is in the right direction could be to compare the 

model with a small sample from 2019. In 2019 a small sample of returned Apollo bottles were 

checked for their production batch code (which is present on every bottle). For every bottle an 

estimate for Time in Trade could be made. But the time in the warehouse was set to one week which 

is also questionable for all bottles.  

    Figure 43: Sample TiT vs best lognormal TiT-fit 
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We conclude that this sample is too small to base conclusions on as this sample size is only X hl/X hl = 

X% of total average Apollo returns per week. We would expect a more smooth realized TiT-line. 

Using the exact return distribution of the sample (light green line in Figure 44), even for the period in 

2019 that the sample was taken in, did not results in better performance than the proposed 

lognormal distribution. 

Based on this graph we conclude that the real average TiT is shorter than the average TiT found in 

the sample (X weeks), as expected return line should be more towards the left.       

               Figure 44: Return forecast fit with sample TiT-distribution 

One explanation for the difference could be that the assumed fixed warehouse time before 

distribution of one week is too short. Another explanation is that it is unknown if this sample is 

representative in terms of customers and the frequency that they are visited. Besides, in several 

studies from the literature review the main bottle of a brewery turns out to have an average Time in 

Trade of around 8-9 weeks (Van Dalen, Van Nunen & Wilens (2005); Widi(2009)).  

4.5. Conclusion 
In this chapter we first concluded that the return forecast for Grolsch can be well modeled as a finite 

Distributed Lag Model, with lognormal distributed lag weights. This means that the time in the 

market (Time in Trade) of a bottle is assumed to be lognormally distributed.  

We then calculated the parameters Trade Loss and Internal Loss, from which Trade Loss is needed as 

input for the return forecast.  Before the return forecast can be made, the Trade Loss per week 

needs to be subtracted from the sales per week. Then the expected returns from that week of sales 

are known and can be distributed to the weeks after the sales. First we used one TiT-distribution for 

the whole year. This means bottles have the same expected time in the market during the whole 

year. We concluded assuming only one TiT-distribution for the whole year results in a biased 

forecast. The returns are structurally over-forecasted in the off-season (quarters 1 and 4) and under-

forecasted in peak-season (quarters 2 and 3) for both Apollo and BNR. We therefore included 

seasonality by using two separate TiT-distributions for peak- and off-season.  
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Because Grolsch gets more bottles back when more clients are visited, we added another parameter 

to the Distributed Lag Model. This parameter is about the difference in total sales, which means that 

extra returns are expected in the current week if more is sold in the current week compared to the 

previous week. These parameters are found using the Microsoft Excel solver. 

The MAPE of the improved return forecast is significantly reduced in comparison to the current 

return forecast. The MAPE for Apollo decreased from 25% to 13% and the MAPE of BNR from 40% to 

16%. 

As the timing of the returns is assumed to follow the TiT-distributions, the amount that is not yet 

returned is assumed to be known as well. So after we found the TiT-profiles, we were able to 

calculate the expected Trade Population for both Apollo and BNR. 

The improved return forecast of this chapter is used as input to a new injection planning calculation 

in the next chapter.  
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5. Improved injection planning 
In the previous chapter we improved the return forecast for Apollo and BNR. The goal of this 

research is to improve the planning of the procurement of new bottles. In this chapter we therefore 

use the improved return forecast from Chapter 4 as input for an improved injection planning model. 

We model the injection planning problem of Grolsch based on the purchasing policy for container 

purchasing proposed by Kelle and Silver (1989b). First we describe the goal of the improved injection 

planning model, then we give our assumptions and describe how we calculated the different inputs 

that are needed for this injection planning model. In the final part of this chapter we give the 

mathematical formulation of the model.  

5.1. Goal of the new injection planning model 
Grolsch currently does not directly use uncertainty in the planning of new buys (injections). There is a 

measure of safety stock in place (Days of Cover), but it is based on by experts’ opinions and the 

values are low for peak season.  

The improved parameter calculation and return forecast can be incorporated in the current 

container-planning model of Grolsch to calculate an improved injection plan. However, the safety 

stock (of empty bottles) that is included in the current injection planning model of Grolsch is based 

on experts’ opinions. After the updating of the parameters and improving the container return 

forecast, there is still a sales forecast error present and therefore also the returns are uncertain. 

Grolsch does not know what service level is implied by using the current values for DoC. The risks of 

lowering the DoC in the peak season (so that the model plans less injections and less budget is 

needed) are also unknown. As mentioned in the chapter introduction, we model the injection 

planning problem based on the purchasing policy model proposed by Kelle and Silver (1989b). 

Because their model uses the concept of “cumulative net demand”, which is approximately normally 

distributed, the standard formula for service level and safety stock (Section 3.4) can be used. 

Cumulative net demand of a certain week is the sum of demand-returns up to this week. An example 

to make the term cumulative net demand more clear:  

In period 1 the sales are expected to be 100 and the returns 60, then 40 new bottles are needed to 

fulfill the sales forecast (when we assume that returned bottles can be used for production in the 

same week). The net demand of period 1 is 40. If in period 2 the sales are 200 and the returns 120, the 

net demand of period 2 is 80. The cumulative net demand up to period 2 is 40+80=120. This means 

that up till period 2, 120 new bottles need to be injected. The injections of 120 bottles total can be 

planned in every period up to period 2.  

In the model of Kelle and Silver(1989b) the cumulative net demand up to every period must be 

satisfied. This means that the net demand of week 1 from the example above needs to be injected in 

week 1. The net demand of week 2 can be injected in week 1, or in week 2.  

The advantage of the model of Kelle and Silver is that it is relatively simple, but can be extended with 

constraints of production capacity, service level or by using different assumptions. 
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Safety stock 

In Figure 45 is shown that unlike in standard inventory management, the stock that is replenished 

from procurement is the “raw material” stock (empty bottle stock) instead of the “serviceable 

inventory” (full bottle stock). The standard scenario is having demand and supply for only the 

serviceable inventory. In our case we have to think about how to model the translation from demand 

to when bottles are needed. 

Figure 45: Difference Grolsch with remanufacturing 

One thing that is important is that the safety stock at the serviceable inventory is in reality included 

in the production plan. On average the safety stock covers one week of demand at the serviceable 

inventory. This means that the production has to be done on average one week before the expected 

demand. Note that safety stock at the serviceable inventory is to protect against uncertainty in 

demand but also against problems during production.  

Safety stock at the empty container stock is for protection against uncertainties in supply. The empty 

container stock also includes protection against internal losses, but the internal loss percentage is 

assumed to be known and does not contribute to uncertainty. The uncertainty in supply is assumed 

to only include uncertainty in returns as suppliers are considered reliable on the long term. What 

makes it complex is that uncertainty in returns is based on return forecast inaccuracy but also on 

uncertainty in demand. Because if more bottles are sold, more bottles are expected to return. The 

model of Kelle and Silver uses the cumulative net demand which includes both the uncertainty in 

supply and demand. We can assume that the demand is known one week before it has to be satisfied 

and that the production plan can be adjusted accordingly. The net demand of a certain week then 

becomes the demand of the next week minus the returns of the current week.  

5.2. Assumptions and injection planning model inputs 
In this section we describe our assumptions and the inputs that go into the proposed injection 

planning model. We make the following assumptions:  

1) Amounts are expressed in Grolsch’ main calculation unit: hl. One bottle = 0.003 hl. 

2) To determine the cumulative net demand, the return times of Apollo and BNR are 

assumed to follow the TiT-distribution solutions of the DLM with seasonality fit on 2018 

and 2019 outlined in Chapter 4.  

3) The time horizon is finite (78 weeks) and split up in deterministic periods of one week. 

The impact of this is that it might be hard to get a highly accurate injection plan. It is 

easier to get the return forecast and injection planning more accurate if longer periods 
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are taken, but Grolsch uses weekly periods across the whole organization so we stick to 

weeks. 

4) The returns in a certain week can be used to fulfill production in that week. This 

assumption means there is no sorting delay for returned bottles. Bottles could be 

sorted with priority. This is also currently assumed in the current injection planning 

model and is also realistic. The impact of this assumption is that bottles can be filled 

earlier than compared to when there is a sorting delay. Therefore: the longer the time 

before a bottle can be filled again, the bigger the total population of that bottle type 

needs to be. 

5) Production in a certain week can be used to fulfill customer demand one week later. 

This is a realistic assumption because the current safety stock of filled bottles is on 

average five days and there is a small buffer against problems during production. The 

impact of this assumption is that we do not need to translate changes in sales in 

changes in the production plan. The past three years the sales per week did not exceed 

the theoretical production capacity per week. The production demand becomes the 

external demand shifted by one week. As this assumption has a big impact on when 

bottles are needed, we validate this assumption in Section 6.1.   

6) The bottles are ordered one and a half years before the bottles are needed. With this 

time horizon, the supplier has enough flexibility to plan their own production 

accordingly. Grolsch does not directly work with replenishment lead times in their 

current container-planning model. The outcome of Grolsch’ model is when the bottles 

are needed, not when they should be ordered.  

In the model we see the lead time as the difference between t=0 and the period in    

which the new bottles are needed(t=t). Lead time is therefore increasing with t.  

7) Reused bottles are as good as new ones. 

8) Storage capacity of empty bottles is unrestricted, as they can be stored outside and 

there is enough space available. This impacts the holding costs as there is no real risk of 

purchasing more bottles apart from investment costs. The new bottles are also well 

packaged against damage, so breakage is also no big risk. 

9) More bottles than the demand are needed to fulfill the demand because of internal 

losses. The internal loss percentages are assumed to be X% for Apollo and X% for BNR 

(Section 4.2.1). 

Normal approximation of the cumulative net demand of bottles  

As showed by Kelle and Silver (1989b) the cumulative net demand can be approximated by a normal 

distribution when returns per week are sums of binomials and mixed binomials  and demand is also 

normally distributed (as mentioned in the literature review). By using the normal distribution the 

safety stock can be calculated using the standard formula from Section 3.4. It is however hard to 

theoretically obtain the parameters for the normal distributions, that need to be estimated for each 

period in the time horizon. The injection planning  for an upcoming year is already determined in 

summer of the current year. The return forecast for the upcoming year heavily depends on the sales 

forecast for the upcoming year.  

Silver, Pyke and Thomas (2017) mention that “for purposes of establishing the safety stock of an 

individual item (to provide an appropriate level of customer service), we will need an estimate of the 

standard deviation (σL) of the errors of forecasts of total demand over a period of duration L (the 

replenishment lead time)”. We have the sales forecast for 2021 available. To check if we can indeed 
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assume a normal distribution for the cumulative net demand, we first check if the sales-forecast 

errors can assumed to be normally distributed. 

 Figure 46: Q-Q plots sales forecast error Apollo   Figure 47: Q-Q plots sales forecast error BNR  

Goodness-of-fit  Apollo BNR 

Df 10 10 

Mean -X% -X% 

Std. dev. X% X% 

p 0.05 0.05 

Critical value 3.94 3.94 

Test statistic 3.31 3.72 

              Table 12: Goodness-of-fit 

Based on the QQ-plots and the goodness-of-fit test, we assume the forecast errors to be normally 

distributed. One thing to note is that the mean forecast error for Apollo is -X%. This mean error is 

based on the sales forecast for 2020. In the summer of 2020, when the Covid-19 situation was 

looking brighter, the new sales forecast for 2021 was made. It was expected that at the start of 2021 

things would be close to the old normal. We assume the sales forecast for 2021 will likely also be too 

high. The sales forecast for Apollo over 2021 is more than X hl, which is more than the realized sales 

in 2019 and 2020. As the mean weekly forecast error of Apollo was -X% in the second half of 2019 

and 2020, we assume the weekly forecast error of the second half of 2020 and 2021 to be equally 

distributed (~N(-X%,X%)). Besides, the last 20 weeks of 2020 are included in the new sales forecast, 

and the average forecast error over these 20 weeks (comparing this new sales forecast with realized 

sales) was also close to -X%, namely -X %. However for normal years without Covid-19, the expected 

sales forecast error should be close to 0%. 

With the sales forecast for 2021 and the forecast errors, the sales for 2021 and corresponding 

returns can be simulated. De Brito and Van der Laan (2009) used simulation to estimate the mean 

and variance of the net demand during the lead time with the formulas proposed by Kelle and Silver 

(1989a). As Kelle and Silver (1989a) mentioned: “Neither the distribution nor even the standard 

deviation of the relative error could be expressed in appropriate analytic form”. Simulation of 

demand and returns therefore seems an appropriate method to calculate the distribution 

parameters of the normally distributed cumulative net demand and gave De Brito and Van der Laan 

(2009) clear and useful results. These distribution parameters (mean and variance) of the normally 

distributed cumulative net demand need to be determined for every period in the time horizon. This 

is needed because the sales forecast is different for every period, and every period has its own 

cumulative net demand normal distribution. These normal distributions are then used to determine 

safety factors per period, that are used in the new injection planning model’s constraints. 
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Simulation setup 

Here we simulate the sales and corresponding returns for week 33 of 2020 till week 52 of week 

2021.We obtain the cumulative net demand for each period in each simulation run and can estimate 

the parameters of the approximately normally distributed cumulative net demand. As input we need 

the sales forecast and error distribution. 

Sales 

The injection planning period runs from week 33 in 2020 to week 52 of 2021, while the budget is 

purely determined for 2021. As the returns for 2020 still depend on the sales from the same week a 

year before, we include the realized sales from week 33 of 2019 to week 33 of 2020 as simulation 

input. For the forecast period we use the sales forecast as input. The sales from week 33 of 2020 till 

week 52 of 2021 are simulated based on the sales forecast and the normally distributed sales 

forecast errors. 

Returns 

We use the updated TL values for Apollo and BNR together with the TiT-distributions obtained in 

Chapter 4 to determine how much and when the sold bottles come back to the brewery.  

The forecasted sales per week, even with an negative expected sales forecast- error, are sums of 

millions of bottles. We don’t simulate the return arrivals, but just use the TiT-distribution as it is 

expected that with millions of bottles the simulated return curve is the same as the distribution they 

are taken from. If sales would have been much lower we would have simulated the returns as well.  

Even with an expected error of 0 and some standard deviation, some simulation iterations will have 

infeasible returns based on the sales. The total returns over a period cannot be more than the sales 

they come from, and the loss is also not expected to be lower. The uncertainty in returns should 

come from timing and not totals. 

Simulation results From theory we know the cumulative net demand can be approximated by a 

normal distribution when the demand is normally distributed and the returns are seen as mixed 

binomials (Kelle and Silver, 1989a). When we plot the distributions of 10000 simulation runs, we see 

that we can indeed assume a normal distribution for the cumulative net demand (shown for t=1, but 

this is the case for every t in the time horizon). 

Figure 48: Normal distribution cumulative net        Figure 49: Normal distribution cumulative net 

demand of Apollo          demand of BNR        
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Cumulative net demand of bottles over the time horizon: 

In Figure 50 and 51 we show the cumulative net demand for Apollo and BNR respectively. The line 

indicates in each time period how much new bottles are needed to be injected up to that period. For 

example: the peak lies at t=50 (week 30 of 2021), with the corresponding value X hl. This means that 

up to t=50 X hl needs to be injected and after t=50 no more injections are needed. 

     Figure 50: Apollo cumulative net demand   

For Apollo we see that the mean cumulative net demand is negative for every period up to t=45, 

which is week 25 of 2021. This means no new bottles are expected to be needed yet. This is logical as 

peak season (in terms of sales and production) is already coming to an end at the start of the time 

horizon. The next peak season starts from t=40 onwards, which is why the graph is increasing from 

that point on. More bottles are needed for production while there is a significant amount lost in the 

first 40 weeks of the time horizon. Also the returns of the sales during peak season follow later and 

cannot be used to fulfill demand on average nine weeks for Apollo. The maximum of the line at t=50 

is the total amount of injection needed over the time horizon of 72 weeks. This total amount has to 

be injected before t=51. (An period’s cumulative net demand needs to be satisfied in any period up 

to or in the specific time period.) 

          Figure 51: BNR cumulative net demand 

For BNR we notice that the peak season is early in the time horizon, because the graph increases to 

around X hl right from t=0. This is logical as t=0 is week 33 and the peak season for BNR starts around 

week 36 (t=56) with the introduction of the specialty beer Herfstbok. Sales are expected to increase 

for BNR as Grolsch is increasing its specialty beer segment. A bigger amount injection is needed to 

support this sales growth and the cumulative net demand does not drop under 0 hl again.  
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Service level 

Another input to the model is the service level. The service level is the probability that the demand in 

a replenishment cycle can be fully satisfied (no stockout occurs). Grolsch uses a service level of X% 

for final products. In our lot sizing model this means that for each period in the time horizon the 

probability that the cumulative net demand (the net demand up to the specific period) can be fully 

satisfied should be X%.  

Safety stock calculation 

Figures 50 and 51 only show the mean cumulative net demand. Because the cumulative net demand 

in each period can be approximated with a normal distribution, we can use the standard deviation to 

calculate the safety factor and safety stock for each period.  

Capacity constraints 

The model of Kelle and Silver (1989a) can be used, but it is quite simple and does not consider 

capacity restrictions: “We are effectively assuming that container requirements match the demand 

requirements period by period. In other words, we are ignoring the complicating effects of production 

(container filling) scheduling logic, including capacity considerations.” 

Generally the model of Kelle and Silver (1989b) would work fine as the service level constraint should 

be met up to every period. In practice however, production (container filling) with new bottles is 

restricted as there is only one production line that can use new 30cl bottles. We need to extent the 

model of Kelle and Silver with some form of production capacity constraint, to make sure the model 

does not implicitly plan too much production by ordering containers for later in the time horizon to 

save holding costs.  

Production Line 2:  

On Production Line 2 both Apollo and BNR can be filled. The filling capacity of Production Line 2 is X 

hl per week. Production Line 2 is the only production line that can use new 30cl bottles. The X hl is 

therefore also the maximum amount of hl of new 30cl bottles that can be used in a week. (The 

production with new bottles of Apollo and BNR can together not exceed X hl.)  

Storage capacity 

As new- as well as returned bottles can be stored in the large crate park outside of the brewery, we 

can assume there is no storage capacity restriction. Besides, new bottles are not stored in crates, 

which means that there is less space needed to store them in comparison to returned bottles.  

5.3. Costs 
Before the new injection planning model can be implemented and evaluated the costs need to be 

specified. In the new injection planning model we only need holding costs as we work with a service 

level as input. The holding costs are needed because otherwise the injection planning model will plan 

all injections at the start of the time horizon so the bottles are already stored and available. The 

injection planning model outputs an injection plan that fulfills the required service level with minimal 

holding costs. After the plan is output by the model, we calculated the total expected costs of the 

plan in a simulation in Chapter 6. In this simulation we also take into account changeover- and 

stockout costs. In this section we describe the different costs and how they are calculated. 
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Holding costs 

Holding costs are the costs associated with holding a unit on stock for a certain period. There are 

many factors that should be included in the holding costs, but most of them are hard to put a value 

to. For example risks of breaking (by bad weather or handling by workers) , costs of space and 

opportunity costs of the investment.  

In outside storage there is (still) a lot of space for empty (newly purchased) bottles. As mentioned 

before, new bottles are generally well packaged against damage. They are not put in crates either, 

which reduces the used storage space by X% compared to returned bottles. 

Because space is not limited for empty bottles (they can be stored outside), the main cost for 

ordering too much material is the cost of capital. Money that is used for investments that are not 

needed yet cannot be used for other investments. For example it cannot be invested against the risk 

free rate. 

Another part of the costs of ordering too much material are the depreciation costs. For (extra) empty 

bottles the depreciation costs can however considered to be minimal when they are only stored and 

not used for production yet. With extra bottles, we mean injected bottles that are not needed for 

short-term production. Also, when these new bottles are used for production instead of returned 

bottles, the depreciation of the new bottles would start, but the depreciation of the returned bottles 

slows down. And new bottles, unlike new cars, are valued the same for years to come as long as the 

bottle design does not change. As new bottles are also well packaged against damage, we assume 

that the depreciation costs of extra new bottles are zero. 

For holding costs per week we use the Weighted Average Cost of Capital (WACC). The formula for 

holding costs is: 

ℎ = 𝑊𝐴𝐶𝐶 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 ∗ 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑜𝑛𝑒 ℎ𝑙 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ∗ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 ℎ𝑙 

Grolsch uses a weekly WACC rate of X%.  

The purchasing price of one hl of new 30cl bottles is X euros for Apollo and X euros for BNR. 

Production inefficiency costs 

In the final months of 2020, Grolsch had problems with the BNR bottle and had to produce more 

frequently with smaller batch sizes. This resulted in higher changeover costs and the overall 

production volume that can be filled was lower in the same amount of production time. The average 

batch size on Production Line 2 is X hl. When there are less empty bottles available than needed to 

fulfill the demand, the batch sizes generally become smaller. Grolsch has to produce more frequently 

because the bottles need to come back first. This results in an increase in changeover costs. 

The average changeover time on Production Line 2 is X minutes and the average costs per hour are X 

euros. So we can assume the costs of moving X hl to the next week costs X euros. These costs can be 

used in the costs savings calculation in Chapter 6.  

Stockout costs  

It can be the case that the production cannot be done on time to prevent a stockout occurrence. 

Recall that a stockout at Grolsch does not necessarily means a stockout at the customer. The general 

rule is that one week of stock out of a certain Stock Keeping Unit (SKU) is not yet a problem. It is hard 

to determine the exact value stockout costs as the impact at the customer is hard to estimate. 

Stockouts are always communicated with the customer and often mean backorders and not lost-
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sales. In deliberation with Grolsch we assume that demand can still be satisfied one week later. If 

there are not enough bottles in the next week to add this additional production in the next week, the 

amount that cannot be satisfied is considered lost sales. This means there are changeover costs if the 

backordered demand can be fulfilled in the next week, and stockout costs for the amount that 

cannot be satisfied. 

5.4. Mathematical formulation 
Below we describe the proposed injection planning model of Section 5.1 and 5.2 in terms of sets, 

input parameters, objective function, variables and constraints. We use the model of Kelle and Silver 

(1989b) and extended it with capacity constraints. We program the model in AIMMS, a solving tool 

we are familiar with.  

Sets 

𝑪 =  𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓𝒔 𝒕𝒚𝒑𝒆𝒔  (𝒄 = 𝟏, 𝟐)  

The container types that are included are Apollo (1) and BNR (2). More container types could be 

added to the set in the future. 

𝑻 =  𝑻𝒊𝒎𝒆 𝒑𝒆𝒓𝒊𝒐𝒅𝒔 𝒊𝒏 𝒘𝒆𝒆𝒌𝒔 (𝒕 = 𝟏, 𝟐, . . , 𝟕𝟖)  

The time horizon is now set to 78 periods (weeks), but in some years this time horizon may be a little 

shorter or longer depending on when the container budget for the upcoming year is made. 

Input parameters 

𝒉 =  𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 𝒉𝒐𝒍𝒅𝒊𝒏𝒈 𝒄𝒐𝒔𝒕 𝒐𝒇 𝒐𝒏𝒆 𝒉𝒍 𝒑𝒆𝒓 𝒘𝒆𝒆𝒌  

This input parameter is calculated with the WACC in Section 5.3 and equals X euros per hl per week. 

Holding costs are needed so that the model does not plan all injections at the start of the time 

horizon so they are already available for whenever they are needed in the time horizon. This 

parameter is used in the objective function. 

𝒆𝒊𝒄,𝟎  =  𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 𝒐𝒇 𝒆𝒎𝒑𝒕𝒚 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓𝒔 𝒐𝒇 𝒕𝒚𝒑𝒆 𝒄 

This input parameter is needed because there is already a stock of empty containers of Apollo and 

BNR present at the brewery. Less new bottles are needed if the initial stock of empty bottles is larger.  

𝒇𝒊𝒄,𝟎  =  𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 𝒐𝒇 𝒇𝒊𝒍𝒍𝒆𝒅 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓𝒔 𝒐𝒇 𝒕𝒚𝒑𝒆 𝒄  

The same goes for full bottle stock. Less extra production is needed to fulfill demand because there is 

already a stock of filled bottles present at the brewery.  

𝒏𝒅𝒄,𝒕 = 𝑵𝒆𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓 𝒕𝒚𝒑𝒆 𝒊 𝒊𝒏 𝒑𝒆𝒓𝒊𝒐𝒅 𝒕 

Net demand is the demand minus the returns. 

𝒙𝒄,𝒕 = 𝑴𝒆𝒂𝒏 𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝒏𝒆𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓 𝒕𝒚𝒑𝒆 𝒊 𝒖𝒑 𝒕𝒐 𝒂𝒏𝒅 𝒊𝒏𝒄𝒍𝒖𝒅𝒊𝒏𝒈 𝒑𝒆𝒓𝒊𝒐𝒅 𝒕 

The mean cumulative net demand is found using the simulation explained in Chapter 5. The sales and 

returns are simulated and the amount of new bottles that are needed to be injected up to and 

including each period to fulfill the demand are found. The cumulative net demand can be assumed to 

be normally distributed as seen in Section 5.2. Each period in the time horizon has its own cumulative 

net demand normal distribution.  
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𝒌𝒄,𝒕  =  𝑺𝒂𝒇𝒆𝒕𝒚 𝒇𝒂𝒄𝒕𝒐𝒓 𝒇𝒐𝒓 𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝒏𝒆𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 𝒐𝒇 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓 𝒕𝒚𝒑𝒆 𝒄 𝒊𝒏 𝒑𝒆𝒓𝒊𝒐𝒅 𝒕  

Just making sure the mean cumulative net demand of bottles is met does not protect against 

uncertainties in supply and demand. The safety factor is based on a X service level. 

𝒛𝒄,𝒕 = 𝑬[𝒙𝒄,𝒕] + 𝒌𝒄,𝒕 ∗ 𝑽𝒂𝒓[𝒙𝒄,𝒕]                                                                             𝑭𝑜𝑟 𝑐 = 1,2 & 𝑡 = 1,2, . . ,78                   

Zc,t is the order-up-to level. The amount that needs to be ordered for period t is the order-up-to level 

minus the initial inventories and the stock in the pipeline (planned injections in the time periods 

before t). Why do we use the order-up-to level? The injection plan is a plan when bottles are needed. 

The order-up-to level makes sure that enough injection is planned in each period. The order-up-to 

level is calculated by taking the mean cumulative net demand of period t  plus safety stock to protect 

against uncertainties in demand and supply. The mean cumulative net demand follows from the 

simulation outlined in 5.2. 

𝒇 = 𝑭𝒊𝒍𝒍𝒊𝒏𝒈 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒐𝒇 𝒏𝒆𝒘 𝒃𝒐𝒕𝒕𝒍𝒆𝒔 = 𝑿 𝒉𝒍 

Only X hl per week can be injected because new 30cl bottles can only be used on Production Line 2 

and the capacity of this line is X hl. 

 

Decision variables 

𝑸𝒄,𝒕  =  𝑷𝒍𝒂𝒏𝒏𝒆𝒅 𝒊𝒏𝒋𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓𝒔 𝒐𝒇 𝒕𝒚𝒑𝒆 𝒄 𝒊𝒏 𝒑𝒆𝒓𝒊𝒐𝒅 𝒕 

Planned injection is when the bottles are needed, not when they are ordered. The injection plan is 

already communicated to the bottle suppliers a year before the bottles are needed. The supplier 

then makes sure the bottles are available when Grolsch needs them. 

Other variables 

𝑬𝑰𝒄,𝒕  =  𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 𝒐𝒇 𝒆𝒎𝒑𝒕𝒚 𝒏𝒆𝒘 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓𝒔 𝒐𝒇 𝒕𝒚𝒑𝒆 𝒄 𝒂𝒕 𝒕𝒉𝒆 𝒔𝒕𝒂𝒓𝒕 𝒐𝒇 𝒑𝒆𝒓𝒊𝒐𝒅 𝒕 

This variable is kept track of by the model over the time horizon and is used to calculate the holding 

costs.  

Objective function 

𝑴𝒊𝒏 𝒁 =  ∑(𝒉 ∗

𝟕𝟖

𝒕=𝟏

(𝑬𝑰𝟏,𝒕 + 𝑬𝑰𝟐,𝒕))  

This objective function makes sure the model minimizes the sum of inventory holding costs of Apollo 

and BNR. Backorder costs are not included here as this injection planning model is based on a service 

level and some backorders are allowed. Besides, sales have the be simulated in order to find the 

backorder costs. This model outputs an injection plan based on a service level of X, and the 

corresponding backorder costs are found in Section 6.3. 

Constraints  

𝑸𝒄,𝒕 ≥ 𝟎                                                                                                                         𝑭𝑜𝑟 𝑐 = 1,2 & 𝑡 = 1,2, . . ,78                                                 
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Planned injection should be non-negative. Especially because net demand (demand-returns) can be 

negative if returns exceed the demand, this constraint is necessary to make sure the injection 

planning model does not plan negative injection.   

∑ 𝑸𝒄,𝒋

𝒕

𝒋=𝟏

+ 𝒆𝒊𝒄,𝟎 +  𝒇𝒊𝒄,𝟎 ≥ 𝒛𝒄,𝒕                                                                               𝑭𝑜𝑟 𝑐 = 1,2 & 𝑡 = 1,2, . . ,78                       

Cumulative net demand and safety stock should be satisfied up to or in every period t. Demand can 

also be met out of the initial inventories. 

𝑸𝟏,𝒕 + 𝑸𝟐,𝒕 ≤ 𝒇                                                                                                          𝑭𝑜𝑟  𝑡 = 1,2, . . ,78                            

Filling capacity (hl)  per week of new bottles. More new bottles cannot be filled so if more new 

bottles are needed to fulfill the demand, they are needed earlier in the time horizon. 

 

Balance equations: 

𝑬𝑰𝒄,𝒕  =  𝑬𝑰𝒄,𝒕−𝟏 + 𝑸𝒄,𝒕 − 𝒏𝒅𝒄,𝒕                                                                             𝑭𝑜𝑟 𝑐 = 1,2 & 𝑡 = 1,2, . . ,78                       

Calculation of inventory with new containers available and net demand goes out for each period t. 

Needed to calculate holding costs. 

The injection planning model is a mixed linear program and can be solved in the program AIMMS 

that uses the well-known CMPLX solver. The exact solution of the model without capacity constraints 

can also be found using the Wagner-Whitin algorithm (Kelle and Silver, 1989b). The single item 

capacitated lot-sizing problem is already NP hard as the running time is of the order O(4^t) (Bitran & 

Yanasse, 1981). The multiple item case under capacity restrictions like our case, is also NP- hard. 

However, the problem for Grolsch is not that big as the number of container types and capacity 

constraints is low. It only takes a total of 15 minutes for the whole process from simulating the 

cumulative net demand to calculating safety stock and running the injection planning model. The 

model can be solved exactly in a reasonable amount of time. As this only has to be done once in a 

year this is considered acceptable.  

The output of this model is an improved injection plan for the next 78 weeks based on a service level 

of X. We use this improved injection plan in Section 6.3 to calculate the expected costs and compare 

these costs to the current injection planning model to see if savings are possible.    

5.5. Conclusion 
In this chapter we proposed a new container purchasing policy, which is based on the standard safety 

stock formula (for the empty bottle stock) instead of the current method of a fixed amount of safety 

stock (which covers 5 days of production demand). We used the model of Kelle and Silver (1989b) for 

this purpose, extended with some production capacity constraints. The main thing to take away from 

this chapter is the concept of cumulative net demand. The net demand of a certain week is the 

demand for empty bottles minus the returned bottles. So the net demand is the amount of new 

bottles that is needed to fulfill demand. The cumulative net demand of a certain week is the amount 

of new bottles that needs to be injected up to this week. The injections can be planned in any period 

up to when they are needed. The model is described mathematically in Section 5.4. and can be 

solved using the program AIMMS.  
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The over- and understocking costs are also explained in this chapter. The main costs are: the holding 

costs, calculated with the Weighted Average Cost of Capital (WACC), the changeover costs for 

delaying a production and stockout costs. All these costs are used in the next chapter in which we 

simulate sales and returns to find the expected costs of three different injection plans. The injection 

plan based on the injection planning model of this Chapter 5 is one of these three. This new plan is 

compared with two other injection plans to see if there is a costs reduction possible. One of these 

other plans is output by the current injection planning model of Grolsch with the current return 

forecast, and the other plan is based on the current injection planning model with the new return 

forecast. 
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6. Improved injection planning results 
The new injection planning model has been described in previous chapter. In this chapter we present 

the results that can be achieved by adapting this model. To make sure our model is in line with 

reality, first the assumption of when bottles are needed is validated. We then see what service level 

Grolsch currently implies with the used safety stock (Days of Cover) so it can be compared to the 

required service level. Afterwards, three injection plan scenarios (based on current- and proposed 

return forecasting- and injection planning models) are tested in a simulation to obtain the expected 

costs of each scenario. 

6.1. Validation 
Because the translation from sales error to production plan changes is hard to make, we made 

assumptions about when bottles are needed. To validate these assumptions in the simulation model 

we check if the simulated demand for bottles is realistic compared to the actual production plan.  

To see how the production is implied, we can plot the (empty bottle) stock on hand. The realized 

stock on hand based on the production plan can be compared with the stock on hand values from 

the simulation model. To test our assumption of producing one week before demand, we compare 

the stock on hand output with the production plan for 2021. We don’t compare with realized 

production, because the realized production can be changed in various ways for example because of 

bottle unavailability. While we assume safety stock always has to be in place, which is also the case in 

the production plan of Grolsch, the realized production may be lower because demand was fulfilled 

from safety stock. Even if bottles where available, production problems might have contributed  

Figure 52: Empty bottle stock Apollo    Figure 53: Empty bottle stock BNR 

towards this usage of safety stock. We therefore use the production plan for validation. For Apollo 

we consider the fit reasonable and the holding costs are only slightly higher than using the 

production plan. There are no periods with over and underproduction in the same period in both 

years.  

For BNR we consider the fit not good enough. The first point of attention is that production with BNR 

is only done in uneven weeks. Instead of producing one week up front, for BNR this should be two 

weeks. Besides, from the data of the last three year we notice that in the beginning of a new year 

around X hl extra is produced with BNR than needed based on sales. Around week 40 around X hl less 
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is produced. With these new assumptions included in the simulation model the fit becomes 

reasonable as shown in Figure 54: 

Figure 54: BNR empty bottle stock new assumption 

6.2. Current implied service level  
The service level that Grolsch implies with the current injection planning model is unknown. Recall 
that the current injection planning is based on the safety stock measure DoC. Currently a standard 
value of five working days of planned production should be possible with the stock of empty bottles. 
If less stock is available than needed to fulfill the required five working days of planned production, 
the current injection planning model plans an injection so that the safety stock is met again. It was 
unknown what service level this current policy implies. In Section 5.2 we simulated sales and returns 
and found the approximate normal distributions of the cumulative net demand. Because we know 
the required safety stock of the current model, we can calculate the implied service level when we 
compare the required safety stock with the cumulative net demand.  

     Figure 55: Current implied service level Apollo 

As shown in Figure 55, Grolsch implies a service level (X) with the current injection plan. The feeling is 

that this current policy results in high holding costs, and a slightly lower service level might decrease 

holding costs significantly. The current injection planning model has safety stock in periods were 

there it is certain that there are enough bottles available. In these non-peak sales periods, less safety 

stock is needed based on the new injection planning model of Chapter 5. In the next section we see if 

cost savings are indeed possible.  
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6.3. Costs savings 
In this section we calculate the expected holding-, changeover- and stockout costs based on three 

scenarios (three different injections plans). These three scenarios are: 

1) The current injection planning model with the current return forecast from Section 2.4.4. 

(CIP + CRF) 

2) The current injection planning model with the new return forecast from Chapter 4 (CIP + 

NRF)  

3) The new injection planning model from Chapter 5 with the new return forecast from Chapter 

4 (NIP + NRF) 

We again simulate the sales for 2021 based on the sales forecast and the normally distributed 

forecast errors. For all three injections plans, we evaluate the overstocking- and understocking costs. 

Each simulation run has expected sales, returns and stock. Because each injection plan is put into the 

simulation, the total costs (holding costs +changeover costs) can be calculated. 

The expected costs for Apollo over the time horizon of 78 weeks are: 

Scenario 
Expected 
total costs 

Expected 
holding costs 

Expected 
changeover costs 

Expected 
stockout costs Injection 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 13: Expected costs Apollo 

For Apollo using the updated return forecast with the current safety stock measure of a DoC of 5 

already results in a holding costs saving of X euros. The old return forecast can have large errors and 

the old model is likely to plan more injections if the returns are under-forecasted in certain weeks. 

The updated return forecast is more smooth and more accurate as well. Likely less injections are 

needed and the timing of the injections is more accurate, resulting in less holding costs.  

One point for discussion is that the simulation to determine the costs uses the new return forecast, 

but this is the most realistic return simulation that we can use. Even though the return forecast 

errors are normally distributed, simulating with the standard deviation of the error can result in 

invalid return forecasts. This is the case as more returns are forecasted than the amount that is sold, 

and forecasting too few returns (when the simulated errors together sum up to a negative amount) is 

also not realistic.  

Planning the injections based on a DoC of 5 (the current method) results in very few problems with 

empty bottle availability. The implied service level by Grolsch is X. Therefore the holding costs are 

currently high, and with a slightly lower service level (X) the holding costs can be reduced while the 

stockout  costs are not likely to increase much.  

With the new purchasing policy based on a cycle service level of X the amount of injection is lower, 

the holding costs can be reduced with 8% while the expected stockout costs only increase with X 

euros. Total savings for Apollo are expected to be 7%. 

The expected costs for BNR over the time horizon of 78 weeks are: 
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Scenario 
Expected 
total costs 

Expected 
holding costs 

Expected 
changeover costs 

Expected 
stockout costs Injection 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 14: Expected costs BNR 

For BNR the holding costs are also reduced as less injections are planned, and the timing will be more 

accurate with the updated improved forecast. However, we see that the stockout costs increase with 

the injection plan based on the old model with the new return forecast.  Because the standard 

deviation of the weekly sales forecast is almost X%, injecting less is risky. In some periods the safety 

stock measure DoC needs to be higher than 5. We conclude this based on the fact that the proposed 

method with a service level of X injects even less, while the stockout costs are lower. The timing of 

these injections is better. We notice that both the holding costs and the stockout costs decrease in 

Scenario 3 compared to Scenario 2. In Scenario 2 more injection is done compared to Scenario 3, but 

the timing was slightly worse. If more injection is done, but too late, stockouts first occur and then 

too much is injected after the stockouts, resulting in higher holding costs. The current safety stock, 5 

Days of Cover, is not enough for weeks where the sales can deviate much.  Overall we see that the 

new proposed purchasing policy saves 5% of total costs. This is mainly a saving in holding costs, as 

the expected understocking costs increased.  

6.4. Conclusion 
In this chapter we first validated the assumption that bottles are filled one week before the demand. 

We conclude that Apollo has a reasonable fit and for BNR the assumption can also be used with a 

slight alteration. BNR is only filled once every two weeks and at the start of the year slightly more 

BNR is filled than in the end of the year. 

Then we simulated the sales and returns for week 33 of 2020 till week 52 of 2021 and calculated the 

expected costs for three scenarios:  

1) The current injection planning model with the current return forecast from Section 2.4.4. 

(CIP+CRF) 

2) The current injection planning model with the new return forecast from Chapter 4 (CIP+NRF)  

3) The new injection planning model from Chapter 5 with the new return forecast from Chapter 

4 (NIP+NRF) 

One conclusion of this chapter is that the total amount of planned injection is lower with the 

improved return forecast. The current return forecasting method of Grolsch is very sensitive to sales 

differences from week to week. In a week where only few bottles are expected to return, it is likely 

that more injection is planned, which may or may not be needed later in the time horizon. With more 

accurate return forecast the injections are expected to be more accurate as well. However, a smaller 

amount of injection may result in more changeover- and stockout costs because of the uncertainty in 

the weekly sales. The total costs savings for Apollo are X euros and the costs savings for BNR are X 

euros. These savings are a reduction in holding costs as stockout costs slightly increased for both 

bottle types. The total costs savings of using the new injection planning model with the new return 

forecasting model compared to the current injection planning model with the current return 

forecasting model are 5% for Apollo and BNR combined. In Chapter 7 we describe the plan to 

implement the new parameter calculation, the new return forecasting model and the new injection 

planning model. 
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7. Implementation 
In Chapters 4 to 6 we updated the input parameters, improved the return forecasting and the 

injection planning. Throughout this research we have been focusing on making the proposed 

solutions to the research problem interpretable and easy to implement for Grolsch. We chose to 

implement most problem solutions in Microsoft Excel, as Grolsch’ existing models are also made in 

Excel and it’s a widely used program in the whole organization. In this chapter we describe how 

Grolsch can implement our solutions. 

The implementation is split into three parts:  

1) Updating of parameters Trade Loss, Internal Loss, Time in Trade and Trade Population 

2) Implementing the new return forecasting model  

3) Implementing the new injection planning model  

In this chapter each part of the implementation is described. 

7.1. Updating of parameters TL, IL, TiT and TP 
The wish of Grolsch was that the input parameters are not only recalculated, but can also be updated 

each year. The parameters should be annually updated to include new market data and trends. For 

this purpose we built an Excel tool to make this updating easy when new data becomes available. 

The dashboard of the tool is shown in Figure 56: 

 

 

     Confidential 

 

 

 Figure 56: Dashboard Excel tool 

There are some manual inputs needed for this tool to work. These inputs are: 

• Sorting input and output needs to be input manually into the parameter calculation model. 

The Warehouse department sends an Excel-file containing sorting input and output and 

production losses every week to the Supply Chain Planning department. The Excel-file that is 

send at the start of each year includes the sorting input and output data of the full previous 

year. This needed tabs can be manually copied to the parameter updating tool. Once the 

sorting input and output are manually input, the parameter calculation tool will 

automatically update the sorting percentage table (% per crate of each bottle type). 

• Return data on crate level need to be manually input as well. These data can be easily 

exported from the ERP system SAP and it is outlined in the Excel File how to exactly do this. 

Within the Excel tool, we wrote an explanation on how to use the model and how the model 

calculates. The tool is made and improved based on feedback from Grolsch and can be used right 

away. 
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7.2. Implementing the new return forecasting model  
In the current container-planning model of Grolsch the return forecasting model and injection 

planning model are built in. Grolsch wants to keep using the current container-planning model, 

because this model is also used among other breweries in the Asahi group that Grolsch is part of.  We 

had to think how we can include our proposed solutions in the current container-planning model. It 

is good to say that we already implemented the new return forecasting model in the container-

planning model of Grolsch during the research. Two things needed to be altered:  

1) The current container-planning model needed one extra column (containing the TiT-

distribution that followed from the parameter calculation tool)  

2) The return forecast column needed to be altered so the forecasted returns of a week are 

based on the TiT-distribution and the sales instead of on Weeks in Trade and TP.  

The mother organization needs to be convinced that the updated method should be used in practice. 

To do this we need to present the improved solution and show the return forecast becomes more 

accurate and holding costs can be saved. A meeting will be planned in the near future. 

7.3. Implementing the new injection planning model 
To improve the current injection planning model, we need to implement our new injection planning 

model in the container-planning model of Grolsch just as with the improved return forecast. To be 

able to do this we need to know the required safety stock. The required safety stock is calculated in 

Chapter 5. This is done as follows: the cumulative net demand is currently simulated in Excel and this 

Excel-File can be used by Grolsch with a clear explanation on how to do this. The Supply Chain 

Planning department of Grolsch can run this simulation every year (or when significant changes to 

the sales forecast are made) to calculate new levels of safety stock. The safety stock follows from the 

standard formula from Section 3.4 and the calculation is incorporated in this Excel-File. This is 

however a separate file from the current container-planning model, so the safety stock output has to 

be copied to the current model for budget analysis. Based on the improved return forecast and the 

improved required safety stock of empty bottles, the improved injection plan is output by the current 

container-planning model.   
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8. A look towards the future 
In the previous chapters we improved the return forecast and injection planning of Apollo and BNR 

for Grolsch. However, reverse logistics remains a relatively unexplored research area. Literature on 

reverse is logistics is still scarce and the data on returns that Grolsch currently has available could be 

extended. Technology is ever evolving and environmental issues are becoming more and more In the 

coming years which raises more interest for recycling of materials. In this chapter we give our ideas 

on how these trends could lead to further improvements of the return process for Grolsch. 

RFID-chips 

The first thing that comes to mind is Radio-Frequency Identification (RFID) tracking. This technology 

is becoming cheaper with the years, and its benefits are already seen in the pilot at Heineken in 

Section 3.3. RFID chips can be put into the crates and with a sensor at the production line the time 

between successive filling batches can be accurately measured. If Grolsch registers which production 

batches go to which clients, the time the crates stayed in the market is known while no manual 

reading of labels is needed for this purpose.  

Reading labels at the sorting line 

But not all bottles are sold in crates. Besides, when the time in the market of a crate is known the 

time in the market of the bottles is still not precisely known. So instead of RFID tracking, there is 

another possibility of improving the data availability of returned containers namely: reading the 

labels of the bottles at the sorting/ filling line. Currently, at the sorting line a picture is made from 

above a crate to identify how many bottles of each type are in the crate. This could first be extended 

to making pictures of all individual bottles and reading them with machine learning with a computer. 

Our feeling is that the return process of bottles can be improved a lot more when real circulation 

times are known. The time in the warehouse needs to be tracked as well.  

New beers and deposit on cans 

One trend in the beer market is that customers want to have more and more choice. Grolsch 

currently introduces new beers every year. New beers sold without crates can contribute to more 

Trade Loss in comparison to bottles sold in crates. In the near future, deposits on cans becomes a 

reality. It is not yet known how consumers will react to this. Consumers might choose more for 

bottles instead of cans. This might be the case when cans get more expensive and consumers find it 

harder to save the empty cans than empty bottles in a crate.  

Transport optimization 

Currently Grolsch tries to combine full bottle deliveries to clients with taking empty bottles back. 

However, sometimes more bottles are needed in the short term so trucks are sent into the market to 

collect more bottles. When more accurately can be forecasted where bottles are in the supply-chain, 

better decisions can be made regarding pickup of extra bottles in times of need. For example when it 

is known at which clients’ depots bottles of a certain type are present, trucks can be send there to 

pick these bottles up. In this way there may be a smaller bottle population needed overall, which can 

save purchasing costs. 
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9. Conclusions and recommendations 
In this chapter we provide the answer to our main research question and give our recommendations 

to Grolsch. The main research question was:  

“How can the injection planning for the two main bottle types be improved, by improving the long-

term container-planning model’s input parameter calculation, return forecast and purchasing 

policy? “ 

We have split the question into sub-research questions based on three parts: Current situation, 

Literature review and Solution design. The questions of these three parts are answered in this 

chapter. 

Current situation 

In this part we described the current return process of containers and talked about how the current 

container-planning model works. We described the inputs, the outputs and how these different 

inputs and outputs of the model are currently calculated. The most important questions this part is: 

1) How did the model perform over the last years in terms of return forecast accuracy?  

The model is considered inaccurate in terms of total amounts of returns forecasted (mainly based on 

TL) as well as the timing of the returns (mainly based on WiT and TP). The MAPE per week is high for 

both Apollo (25%) and BNR (40%), with the return forecast based on realized sales. 

The conclusion from the current situation is that the accuracy of the return forecast can significantly 

be improved and that the calculation of the parameters TL, WiT, TP and DoC can also be improved. 

Especially the timing of the returns, which has a big impact on when to do injections, is inaccurate. 

Literature review 

2) How are container returns related to returns in different industries? 

Grolsch does not register the production code of every returned bottle and does therefore not know 

how long each bottle stayed in the market. In other industries each individual item return is usually 

registered. Besides, return forecasts are made for product categories instead of individual items. For 

container returns it is usually the other way around: only aggregate return data are available, but 

forecasts are made for each individual container type. Items in other industries are generally 

returned relatively quickly after purchase, while it may take several months for containers to return 

in the brewing industry.  

3) Which methods and models are proposed for forecasting container returns? 

There are different methods and models proposed in literature: Univariate methods (ARIMA, 

exponential smoothing and Holt’s method) and multivariate methods (DLM, regression and machine 

learning). Univariate methods seem inappropriate for this research as they fail to take sales into 

account to forecast the returns and sales can differ significantly from week to week. For long-term 

return forecasting the better approach is to perform time series analysis, which is the analysis of 

trends, seasonality (cycles) and correlation between sales and returns. The DLM is in our opinion the 

best way to model the return forecast for Grolsch, because it only needs aggregate data and can be 

solved using time series analysis. 

Other methods such as machine learning (for example neural networks) are typically used for return 

forecasting with more explanatory variables (features). These methods are more suitable for return 
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forecasting in other industries, but less suitable for container return forecasting. We only have 

aggregate return data available (total returns per period) and do not know the exact times that 

bottles stay in the market. We have more detailed sales data (for example on SKU level), but we do 

not know what SKU-number a returned bottle belongs to. It is therefore hard to train a model and to 

find accurate relationships between sales and returns.  

4) Which methods and models are proposed for lot-sizing in reverse logistics? 

We have seen multiple models for purchasing but most were models for remanufacturing, which 

differs from Grolsch’ situation because the “raw material” stock is filled with purchasing at Grolsch 

instead of the serviceable inventory in typical remanufacturing. Besides, there is no disposal decision 

or workforce scheduling in our research problem. However, we found one particular model on 

container purchasing decisions that can indeed be used. It uses cumulative net demand (demand-

returns) to determine how many new containers are needed up to each period in the time horizon. 

Solutions 

5) How can the parameter calculation of TL, IL, TiT and TP be improved?  

We conclude that the parameter calculation for TL and TP can be improved and that the usage of TiT 

instead of WiT improves the accuracy of the timing of the forecasted returns. In the TL-calculation 

the unsorted returns need to be taken into account. For BNR specifically, the upwards sales trend 

needs to be included. The updated values for TL are X% and X% for Apollo and BNR respectively. The 

current IL calculation seems appropriate resulting in updated values of X and X% for Apollo and BNR 

respectively. The expected TP can be calculated using the TiT-distribution as it is estimated how 

many percent of the sales are still expected in the market each week. 

6) How can the return forecast be improved?  

The finite DLM is in our opinion the best way to model the return forecast for Grolsch, because it 

only needs aggregate data and can be solved using time series analysis. TiT-distribution can be 

estimated with the lognormal distribution in Excel. Seasonality needed to be included to prevent 

under-forecasting of returns in peak periods and over-forecasting in the off-season. The average TiT 

for Apollo is X weeks and for BNR X weeks. 

7) How can the purchasing policy be improved? 

We used the model of Kelle and Silver (1989b) to improve the purchasing policy. The standard 

formula for safety stock can be used because of the normally distributed cumulative net demand. 

This results in different amounts of safety stock than the current usage of DoC, which indicates a 

service level of X. 

8) How accurate is the improved return forecasting model?  

The improvements in terms of MAPE for 2020, with the return forecasting model fitted on data of 

2018-2019, are: 

  Return forecast MAPE Apollo   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 24.0% 26.1% 

Improved return forecast 12.6% 14.3% 

Table 15: Expected costs Apollo 
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  Return forecast MAPE BNR   

  2020 (based on realized sales) 2020 (based on forecasted sales) 

Current return forecast 35.7% 38.7% 

Improved return forecast 14.8% 16.1% 

Table 16: Expected costs BNR 

We conclude that the improvement to the return forecast is significant and will likely lead to a more 

accurate injection planning. 

9) What are the expected savings per year when using the improved container-planning model 

over the current model? 

We calculated the expected holding-, changeover- and stockout costs based on three scenarios 

(three different injections plans). These three scenarios are: 

1) The current injection planning model with the current return forecast 

2) The current injection planning model with the new return forecast 

3) The new injection planning model with the new return forecast 

The results for Apollo are as follows: 

Scenario 
Expected 
total costs 

Expected 
holding costs 

Expected 
changeover costs 

Expected 
stockout costs Injections 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 17: Expected costs Apollo 

The results for BNR are: 

Scenario 
Expected 
total costs 

Expected 
holding costs 

Expected 
changeover costs 

Expected 
stockout costs Injections 

1.CIP+CRF X X X X X 

2.CIP+NRF X X X X X 

3.NIP+NRF X X X X X 

Table 18: Expected costs BNR 

We conclude that total costs (Apollo + BNR) can be reduced with 5%. 

Recommendations 

We recommend Grolsch to use updated parameters and return forecast in their current long-term 

container-planning model. The accuracy is significantly improved in comparison with the old method 

based on WiT. The parameters should be updated annually with the Excel tool. 

The next recommendation Is to keep track of the return data per customer. This is easier than 

checking the production code of all bottles and can still give good insights in how containers are 

returning. These data are mainly interesting to analyze returns for example based on the different 

sold SKUs, delivery frequency and geographical location. With more explanatory variables the 

proposed return forecasting model can still be used. For example to find an Time in Trade 

distribution of a specific region. Other methods such as machine learning become suitable as well. 
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In 2019 a small sample of Apollo bottles is checked for their production code. If sampling is done 

again, there are some considerations. The main concern is obtaining a representative sample in 

terms of size, customers from which the containers are selected and time in the year that the 

sampling is done. Another consideration is for which container to take a sample. A bigger impact for 

Grolsch is knowing how the distribution looks for the main bottle type Apollo. However, it might be 

hard to get a representative sample, while for Kornuit the sample needed to get a good estimate may 

be way lower.  

With the new injection planning model 5% of total costs can be saved, so although stockouts may 

occur more frequently because of lower safety stock of empty bottles, holding costs can be reduced 

significantly.  
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10. Discussion and further research 
This chapter is about the limitations of the research and the possibilities to extend it in the future. 

Trade Loss is assumed to be constant during the year. In reality, the TL might vary throughout the 

year. Trade Loss can be dependent on the SKUs that are sold. Bottles that are sold without a crate 

might have a lower possibility to return than bottles sold in a crate. In different times of the year 

different SKUs are sold. For BNR the Trade Loss is also dependent on how well the workers at the 

supermarkets put BNR bottles in Grolsch crates as BNR bottles also go to other brewing companies.   

The main point for discussion of the return forecast is the amount that is still allowed to come back 

after 52 weeks, and how this amount is scaled. This needs to be further investigated, but it was the 

best guess of experts from Grolsch and our own insights. Over time Grolsch might get a better feeling 

about how much comes back in each week. The percentage that comes back after 52 weeks may for 

example be estimated with greater precision. Another example could be that not more than 10% is 

expected back in the first week. All this knowledge can be put into the model to hopefully optimize 

the return forecast year by year. 

We now used two Time in Trade distributions to capture the seasonality and we have seen that this 

is reasonable. In reality the seasonality over the weeks may be more smooth and in the future it can 

be researched if a smart algorithm can be made to determine how the seasonality over the weeks 

can be found, even without data of realized times in the market of containers. 

Over-stocking and understocking costs in the simulation model are based on Apollo and BNR on 

aggregate level instead of on SKU level. The changeover and stockout costs may differ from SKU to 

SKU. In reality however, the SKUs that have a big impact on are generally prioritized with production. 

This means that the stockout costs in reality might be slightly lower. In the future the injection 

planning model could be extended with a production planning to further optimize the process of 

procurement of new containers and then Grolsch exactly knows when they are needed instead of 

procurement based on assumptions. 

We have briefly described new technologies in Chapter 8. But if there will not be an technological 

idea to help determine the TiT of bottles like RFID, it will be very hard to determine TiT based on 

samples. A sample of one period does not say anything about another period as TiT is expected to be 

seasonal over the year. Also TiT is very much based on where the bottles came from. Supermarkets 

will have lower TiT than Liquor stores. We do not advise on doing more sampling for these reasons. 

Grolsch has to keep data about where each crate came from, so a better and more accurate analysis 

can be done to further reduce the uncertainty in the return process.  

When the return quantities per time period are known per customer instead of only on aggregate 

level, the return forecast can be improved on a deeper level. Analysis on how different customers are 

clustered together in deliveries and returns. How much do you get back based on the frequency of 

visiting customers and the kind of products that you sell them?  
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