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Summary

Lung cancer is a highly prevailing disease and early detection and treatment is crucial to increase
the likelihood of survival. In many lung cancer procedures, the segmentation of lung nodules in
CT-images is an essential step. However, manual annotation of the nodules is a difficult and time-
consuming task, which relies heavily on the experience of a radiologist. To assist radiologists in this
process, computer-assisted segmentation systems could be a promising tool. The aim of this study
was to explore the feasibility of applying generative adversarial networks (GANs) to automatically
segment lung nodules from entire 2D CT-images.
The network architecture proposed in this thesis was designed to address three commonly occurring
segmentation challenges: (i) variability in lung nodule appearance, (ii) class imbalance, and (iii)
GAN training instability. The overall network followed the structure of a conditional image-to-image
translation GAN, in which a U-Net was used as the generator network. To alleviate the aforemen-
tioned challenges, the following measures were adopted: atrous spatial pyramid pooling (ASPP)
modules to reduce the influence of appearance variability, an additional Dice loss to counteract the
class imbalance and a multiscale-L1 critic for adversarial training stability. The added value of each
module to the generator network was evaluated in an ablation study. Additionally, the usefulness
of GANs compared to the state-of-the-art segmentation network, the U-Net, was explored.
The results of the ablation study showed that the addition of ASPP modules to various locations of
the generator network achieved inferior or comparable results to the results of the generator without
ASPP modules. The Dice loss appeared to be an essential addition to produce accurate segmen-
tation results for both the U-Net and the GAN. The GAN with a multiscale-L1 critic did show a
stable training course, in contrast to more conventional GANs. However, introducing adversarial
training by adding a critic did not improve the performance of the generator network alone. Overall,
the GAN-based method obtained worse results than the U-Net, whereas the U-Net itself achieved
excellent, state-of-the-art segmentation results compared to other works.
These results suggest that the Dice loss and the multiscale-L1 critic did facilitate in solving the seg-
mentation challenges, whereas the ASPP modules were not of added value. Although the GAN with
an additional Dice loss showed sufficient performance and comparable results to other GAN-based
methods, it could not outperform the U-Net. In conclusion, this study showed that GANs can be
applied for lung nodule segmentation in entire 2D CT-images, but the proposed GAN-architecture
is not advantageous over the current state-of-the-art segmentation methods for this application.
Future work could focus on expanding and balancing the dataset, using more suitable loss functions
or extending the 2D models into 3D models.
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Samenvatting

Longkanker is een veelvoorkomende ziekte en tijdige diagnose en behandeling ervan is cruciaal om de
overlevingskans van patiënten te vergroten. De segmentatie van long nodules in CT-afbeeldingen is
een essentiële stap voor de detectie en diagnose van longkanker. Handmatige annotatie van nodules
is echter een ingewikkelde en tijdrovende taak, die sterk afhankelijk is van de ervaring van een ra-
dioloog. Computerondersteunde segmentatiesystemen zouden een veelbelovend hulpmiddel kunnen
zijn om radiologen bij dit proces te assisteren. Het doel van deze studie was om te onderzoeken in
welke mate Genenerative Adversarial Networks (GANs) gebruikt kunnen worden om automatisch
long nodules uit volledige 2D CT-afbeeldingen te segmenteren.
De architectuur van het netwerk dat in deze studie voorgesteld wordt, is ontworpen om drie veel
voorkomende segmentatie-uitdagingen aan te pakken: (i) variabiliteit in het uiterlijk van long nod-
ules, (ii) ongebalanceerde klasseverdeling en (iii) GAN-trainingsinstabiliteit. Het netwerk heeft
de structuur van een conditionele GAN die beelden van het ene domein naar het andere domein
transleert. Hierin is een U-Net, een state-of-the-art segmentatie netwerk, gebruikt als generator
netwerk. Om de bovengenoemde segmentatie-uitdagingen te verlichten, zijn de volgende modules
geïmplementeerd in het netwerk: Atrous Spatial Pyramid Pooling (ASPP) modules om de invloed
van de uiterlijke variabiliteit te verminderen, een Dice loss om het probleem van ongebalanceerde
klassen tegen te gaan, en een multiscale-L1-critic om de stabiliteit van de GAN tijdens het trainen
te vergroten. De toegevoegde waarde van iedere module aan het generator netwerk is beoordeeld
met behulp van een ablatiestudie. Daarnaast is onderzocht of GANs ten opzichte van het U-Net
toegevoegde waarde hebben voor het segmenteren van long nodules in volledige 2D CT-afbeeldingen.
De resultaten van de ablatiestudie toonden aan dat de toevoeging van ASPP-modules op verschil-
lende locaties van het generator netwerk resulteerde in inferieure of vergelijkbare resultaten ten
opzichte van de resultaten van het generator netwerk zonder ASPP-modules. De toevoeging van
een Dice loss bleek essentieel te zijn om accurate segmentatieresultaten te verkrijgen voor zowel
het U-Net als de GAN. In tegenstelling tot meer conventionele GANs vertoonde de voorgestelde
GAN met een multiscale-L1-critic stabiele training. Echter, de toevoeging van een critic netwerk
verbeterde de prestaties van het generator netwerk niet. Het GAN-model behaalde slechtere resul-
taten dan het U-Net. Het U-Net zelf behaalde superieure segmentatieresultaten in vergelijking met
andere onderzoeken.
Deze resultaten suggereren dat een Dice loss en de multiscale-L1-critic positieve invloed hebben
op het verminderen van de segmentatie-uitdagingen. De ASPP-modules bleken geen toegevoegde
waarde te hebben. Hoewel de GAN met een Dice loss in staat was om long nodules te segmenteren
en vergelijkbare resultaten vertoonde met andere GAN-methodes voor nodule segmentatie, was
deze niet in staat om beter te presteren dan het U-Net. Alles overziend toonde deze studie aan
dat GANs kunnen worden gebruikt voor long nodule segmentatie in volledige 2D CT-afbeeldingen,
maar dat de voorgestelde GAN-architectuur hiervoor geen toegevoegde waarde heeft ten opzichte
van de huidige state-of-the-art segmentatiemethoden. Toekomstige onderzoeken zouden zich kunnen
richten op het uitbreiden en balanceren van de dataset, het gebruiken van geschiktere loss functies,
of het uitbreiden van de 2D-netwerken naar 3D-netwerken.

S. van Elst University of Twente



iv

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Deep learning for medical image analysis . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Automatic lung nodule segmentation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 GANs for lung nodule segmentation . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Challenges lung nodule segmentation . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical background GANs 9
2.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Challenges GAN training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Types of GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Variations in architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Variations in loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 16
3.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Corrected dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Proposed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Generator network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Critic network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 ASPP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Comparison original and corrected dataset . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results 29
4.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 ASPP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Critic network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Overall results ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Comparison original and corrected dataset . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Performance on high and low subtlety-score nodules . . . . . . . . . . . . . . 33
4.3.3 Visual results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

S. van Elst University of Twente



v

4.3.4 Comparison state-of-the-art methods . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.5 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Discussion 38
5.1 Interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Evaluation of the modules and their impact on the segmentation challenges . 38
5.1.2 Overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions and Future work 43
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendices 45

A Theoretical solution GAN training 45
A.1 Derivation optimal D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Derivation optimal G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B Additional results ablation study 47
B.1 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2 ASPP Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C Results GAN without additional dice loss 50

D Training graphs 51

E Comparison patch-based models 52

F Multiscale L2 GAN 53

G Unstable GANs 54
G.1 Pix2Pix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

S. van Elst University of Twente



1 Introduction

1.1 Motivation

Lung cancer is one of the highest prevailing types of cancer and remains the most common cause
of cancer death worldwide. In 2020, 2.21 million cases of lung cancer were registered, accounting
for 1.80 million deaths. [1] The mortality rate of lung cancer could be reduced by early detection
and treatment of malignant tumors. In an early stage, the treatment of cancer is more effective,
resulting in an increased likelihood of survival. [2] Screening programs have been set up that aim
to detect cancer even before a patient develops symptoms. [3]
The most reliable and most commonly used imaging technique for the diagnosis of lung cancer is
Computed Tomography (CT). [4] This non-invasive imaging technique constructs multiple 2D cross-
sectional image slices which, when stacked together, generate a 3D image of the patient that shows
the internal structures as well as any abnormalities. Lung cancer is characterized by the existence of
small lesions, also known as lung nodules, that are visible on thoracic CT-images. [5] The detection
and diagnosis of these nodules require examination of the CT-images by a radiologist, in which lung
nodule segmentation has a crucial role. Nodule segmentation is the task of identifying the boundaries
of nodules appearing on a thoracic CT-scan. Accurate nodule segmentation is an important step in
many lung cancer procedures, such as diagnosis of tumor malignancy, detecting changes in nodule
volume and monitoring the tumor response to therapy. [6] It assists the radiologist in diagnosing lung
cancer and helps in training new radiologists. [7] However, nodule segmentation is often challenging
due to variances in intensity and the heterogeneous nature of lung cancer. [4, 8] Moreover, as one
CT-scan contains about 150 to 500 slices, it is a time-consuming and labor-intensive task. The
accuracy and outcome rely heavily on the experience of the radiologist, making it subjective and
prone to interobserver variability. [9] To assist the radiologist in accurately detecting and segmenting
lung nodules, computer-aided diagnosis (CAD) systems could be a promising tool in the process of
clinical decision making. [4, 6] CAD intends to provide a second, objective opinion and to reduce
the interobserver variability by applying image processing, computer vision and machine-and deep
learning techniques. [10,11] The use of machine learning and deep learning for medical applications
has progressed rapidly in the last years. [12] A relatively new type of deep learning method is the
generative adversarial network (GAN). This image generation technique can be used to enlarge
datasets, to improve image quality or to convert images from one domain to another. [13] However,
when segmentation is viewed as the generation of an image containing an annotated area of interest,
image generation techniques could, ideally, also be used for segmentation. In this research, the
potential use of GANs for the automatic segmentation of lung nodules from thoracic CT-images is
studied.

1.2 Background and related work

1.2.1 Deep learning for medical image analysis

With the increase in computing power and the emergence of big data, artificial intelligence (AI)
has attained increased attention and wide application in recent years. One of the subfields of
AI is machine learning. This includes techniques that, based on hand-crafted features, enable
computers to acquire patterns from raw data and learn from experience. These mathematical
models can be trained to generalize their learned expertise and deliver useful predictions on new,
unseen data. [14] One of the areas of machine learning that has been evolving most recently is deep
learning. [10] Deep learning is characterized by computation models that consist of multi-layered
artificial neural networks. By automatically extracting features from raw data, these networks show
improved performance in comparison to the more traditional machine learning methods. [15] The
advancements in deep learning techniques have inspired researchers to incorporate deep learning
to the field of medical image analysis. This was mainly triggered by the development of efficient
convolutional neural networks (CNNs). [16, 17] CNN is a powerful method for image analysis by
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Chapter 1 Introduction

learning useful representations and recognizing visual patterns from image data. It is a specific
type of artificial neural network designed to preserve spatial relationships in the data. The input
to a CNN is a grid-like structure, which can be a 2D or 3D image, and is fed through multiple
layers of convolutions and pooling. In the convolution layers, filters are applied to automatically
extract relevant features from the input by convolution operations. CNNs make use of parameter
sharing, in which the same filter is applied over all locations of the input, producing a tensor of
feature maps. This leads to a great reduction in the total amount of parameters that need to be
learned, making them highly efficient. The pooling operations are applied to reduce the dimensions
of the data, which decreases the computational cost and makes the network more robust. [14] CNNs
are widely used for medical image analysis and show promising results in numerous tasks, such as
classification, detection and segmentation. [18,19]

1.2.2 Automatic lung nodule segmentation

Since manual annotation of nodule boundaries is time-consuming and subjective, researchers have
been searching for accurate and reliable automated segmentation methods, which could be valuable
for both clinical and research purposes.

Conventionally, automatic segmentation of lung nodules was performed using traditional image
processing techniques [6], such as thresholding [20], morphological operations [21], region grow-
ing [22], and energy minimization based methods [23]. The CAD systems used for lung nodule
detection generally consisted of two phases: nodule candidates detection and false positive reduc-
tion. The goal of the first phase was to detect nodules at a very high sensitivity based on the
aforementioned traditional image processing techniques. In the second phase, the false positive
nodules were reduced using a feature-based classifier. [6] These methods usually utilized constraints
about nodule appearance or image intensity for segmentation. Later on, machine learning tech-
niques became dominant for segmentation, which classified each pixel independently and required
hand-crafted features designed by experts. [24, 25] However, these methods were not optimal for
lung tumor segmentation, due to their limited ability to segment the challenging nodule types, their
robustness on heterogeneous, low contrast CT-images and their automation level. [6]

Since 2012, the application of deep and efficient CNNs has rapidly become a prominent method
for computer vision and medical image analysis. [16, 18] Although CNNs are typically applied for
classification, numerous researchers have studied the use of CNNs to address the problem of medi-
cal image segmentation in the last years. [26] One of the first papers that covered the use of CNNs
for medical image segmentation was published by Ciresan et al. [27] They employed a CNN for
pixel-wise segmentation of biological membranes in electron microscopy images by predicting the
label of each center pixel individually in a sliding-window fashion. [27] CNN-based methods were
also adopted for segmenting lung nodules in CT-images, by predicting whether the center voxel of
a patch belongs to the nodule or background. [28, 29] However, this method is time consuming, as
the network has to be run separately for all windows and much overlap occurs between the patches.
In addition, there is a trade-off between the amount of local and global context that is taken into
account during classification. [30]
Long et al. [31] proposed to extend the traditional classification networks to the task of segmentation
by using Fully Convolutional Networks (FCN). In a FCN, the fully connected layers are removed
and replaced by convolutional layers to obtain a likelihood map, which is then upsampled to get per
pixel prediction results. [31] This development enabled the network to obtain pixel-wise predictions
from entire images instead of patch-wise predictions and made it possible to acquire a prediction
for the entire image in just a single pass [32]. This caused the state-of-the-art segmentation per-
formance to improve greatly [33]. Anthimopoulos et al. [34] applied a FCN, called LungNet for
semantic segmentation of pathological lung tissue on high-resolution CT-images. Hossain et al. [35]
extended LungNet with 3D convolutional blocks to incorporate the 3D information available in
CT-scan volumes.
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Chapter 1 Introduction

Inspired by the FCN, Ronneberger et al. [30] proposed the U-Net for segmentation, which outper-
formed the previously mentioned CNN-based model of Ciresan et al. [27] on the same dataset. The
U-Net’s architecture comprises a downsampling path, which follows the architecture of a CNN, and
an upsampling path, consisting of transposed convolutions. The downsampling path, referred to
as encoder, aims to capture both spatial and context information. The upsampling path is called
the decoder, which is used to regain details and locate the object’s position. More importantly, the
U-Net contains skip-connections that connect the layers of the decoder with the same sized layers of
the encoder. This allows the passage of high-resolution location and context features to the decoder
path to regain the spatial information that got lost during down-sampling. [30] A schematic of
this architecture is illustrated in Figure 1.1. Generally, segmentation networks, such as the U-Net,
are optimized by minimizing the pixel-wise difference between the predicted output and its ground
truth. The cross entropy loss is the most frequently used loss function for this application. [36]
Other per-pixel loss functions are the L1 loss, which measures the mean absolute error, or the L2
loss, that measures the mean squared error. These errors are measured between each pixel of the
segmentation prediction and its ground truth independently and then averaged over all pixels.

Figure 1.1: Schematic overview of the U-Net architecture, consisting of an encoder (with convolutional
and pooling layers) and a decoder (consisting of transposed convolutions), which are connected by skipcon-
nections.

Nowadays, the U-Net is still one of the most used and widely-known structures for medical image
segmentation tasks [32], including lung nodule segmentation. Lan et al. [37] suggested a residual
U-Net for automatic detection and segmentation of lung nodules, in which the lung parenchyma
was segmented prior to nodule segmentation, achieving a Dice overlap score of 71.9%. Keetha et
al. [38] developed the U-Det, a modified U-Net that incorporated a bidirectional feature network
to segment lung nodules. They obtained a state-of-the-art Dice overlap value of 82.82% on entire
thoracic CT-slices. In addition to these papers, many other researchers have used U-Nets as the
base of their segmentation methods for patch-based lung nodule segmentation. [39–42]

1.2.3 GANs

Although the aforementioned methods managed to obtain promising results for segmentation, they
still suffer from some limitations. Most of the methods are limited by the pixel-wise loss functions,
predicting each pixel independently from each other. [43], [33] This causes them to be insufficient
in learning both global and local relations between pixels. [44] To alleviate this lack of spatial con-
tiguity (e.g. holes), they require post-processing methods as an additional step, such as connected
component analysis or Conditional Random Fields (CRF) [43], [33]. However, this additional post-
processing comes at the cost of computational efficiency. [45] Although U-Nets try to overcome this
limitation by allowing spatial information passage via skip connections, spatial consistency can-
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Chapter 1 Introduction

not be assured in the eventual predicted segmentation. [46] They still rely on a pixel-wise loss and
sometimes lack to produce realistic images. [44] For example, blurry results could be produced when
minimizing the (Euclidean) distance between ground truth pixels and generated output pixels. [47]
These limitations were mitigated by the development of GANs, which made it possible to train a
network to generate realistic images in and end-to-end manner, without requiring additional post-
processing methods. A GAN consists of two networks; a generator network that produces images
and a discriminator network that classifies whether they are real or not. Instead of minimizing a
pixel-wise loss, GANs pursue the more general, high-level goal of generating output that is indis-
tinguishable from reality. Blurry images or images that contain discontinuities will not be tolerated
since they do not look realistic. [47] In segmentation tasks, the existence of a discriminator is an
additional constraint on the generator network, which urges the generator to generate more accurate
segmented images. [48]

Since their development in 2014 by Goodfellow et al. [49], GANs have been widely used in the field
of biomedical image analysis, such as image synthesis [47, 50], image quality enhancement [51–53],
multi-modality image translation (e.g. generating CT-images from MRI images) [54], segmenta-
tion [44,45,55], classification [56] and detection [57,58].
Luc et al. [43] were the first to present GANs and adversarial training to the task of semantic seg-
mentation in 2016. They trained a convolutional segmentation network together with an adversarial
network with the motivation that it could detect and repair inconsistencies between the predicted
segmentations and the ground truths. Isola et al. [47] developed a framework based on conditional
GANs for image-to-image translation, which is the widely-known, openly available Pix2Pix frame-
work. This framework can be used for segmentation tasks by translating paired images from one
domain (input image) to another (segmented image). GANs have also been studied for segmen-
tation challenges in the medical field. Moeskops et al. [59] used adversarial training to advance
CNN-based segmentation of brain MRI scans. They showed that, by including an additional ad-
versarial loss function, inconsistencies could be captured that the normal pixel-wise loss alone did
not capture. This resulted in an elevated Dice overlap score compared to training without an ad-
versarial loss function. Kohl et al. [45] proposed to use purely adversarial training by omitting
the pixel-wise loss function. They applied a FCN in combination with a discriminator network for
semantic segmentation of prostate cancer on MRI images. This purely adversarial approach showed
improved segmentation performance than training with a pixel-wise loss function. GANs have also
been implemented for pseudo-healthy synthesis, which is the task of generating ’healthy’ images
from pathological ones. [57,58,60] These images can be helpful in tasks like anomaly detection and
image segmentation, since additional information is provided about what the image should look
like if it were healthy. Moreover, pseudohealthy synthesis is based on unsupervised learning, which
eliminates the need for labor-intensive, annotated training data. However, this method is mostly
used for detection rather than for precise, pixel-wise segmentation and difficulties arise in images
with low contrast differences between healthy and pathological images. [60]

1.2.4 GANs for lung nodule segmentation

For the usage of GANs in segmentation tasks, a discriminator network is added to a segmentation
network, e.g. a U-Net. This introduces an adversarial loss based on the real/fake output of the
discriminator, which is often combined with a pixel-wise loss function to not only generate realis-
tic segmentations, but also generate segmentations that are near the ground truth. A schematic
overview of the general architecture of such a GAN-based segmentation network for lung nodule
segmentation is shown in Figure 1.2.
Due to the success of GANs for other medical applications, the implementation of GANs for lung
nodule segmentation has recently been explored by few other researchers. Pang et al. [61] devel-
oped the CTumorGAN, which is an unified framework based on generative adversarial learning for
the segmentation of lung, liver, and kidney tumors on CT-images. They use a U-Net with strided
convolutions as generator network and combine three different loss functions in their network: A
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Figure 1.2: Schematic overview of a GAN architecture for segmentation tasks. In this case, the generator
network is a U-Net, to which a discriminator network is added.

L2 loss, to push the generator’s prediction to correspond to its ground truth; a Dice loss, to over-
come the class imbalance; and the adversarial loss, to produce realistic segmentations without fuzzy
boundaries. They train and test their network on entire 2D images of the non-small cell lung cancer
(NSCLC)-Radiomics dataset to assess the performance of their network on the lung tumor segmen-
tation task. Around the same time, Shi et al. [7] introduced a GAN-based framework for automatic
lung nodule segmentation as well. They propose a patch-based network named Aggregation-U-net
GAN (AUGAN), in which the generator is a U-Net with deep aggregation (based on U-Net++) and
the discriminator is a classification network. Their argument for using a GAN is that adversarial
learning could make anatomical tissue details better presented. The loss of their generator includes
a L2 loss, a VGG los and the adversarial loss. They demonstrate that adversarial training can be
of added value to a U-Net for lung nodule segmentation.

1.2.5 Challenges lung nodule segmentation

Accurate segmentation of lung nodules in CT-images is a difficult task. Three challenges that
need to be taken into account, when creating an automatic segmentation method for lung nodule
annotation based on GANs, are: (i) The variation in lung nodule characteristics, (ii) the class
imbalance that arises with medical image segmentation, and (iii) the instability problems of GANs.

Lung nodule variability There are two main types of lung cancer, non-small-cell lung cancer
(NSCLC) and small-cell lung cancer (SCLC), from which the latter is known to grow and metastasize
more rapidly. [62] Lung cancer is characterized by the existence of nodules or masses. The definition
of a lung nodule is a tissue abnormality that appears on a CT-scan as a roughly rounded opacity
with a diameter of up to 3 cm, which can be benign or malignant. [63] Lesions that have a diameter
of > 3 cm are known as lung masses and are always considered as malignant, until biopsy proves
otherwise. [5]
The detection, classification and segmentation of lung cancer is a complicated procedure due to
variability in the appearance of lung nodules on CT-images. They come in various sizes, intensities,
shapes, and locations. [6, 50] A major difficulty in lung nodule segmentation is to create a method
that is able to take into account these variations in both internal texture as external surrounding. [39]
According to variations in internal texture, nodules can be classified into three different types, based
on their attenuation in CT-images. (i) Solid nodules, represented by a well-defined shape and a
high contrast, (ii) ground glass opacity (GGO), which have fuzzy boundaries and a low contrast to
their surrounding, and (iii) part-solid nodules, containing both ground-glass and solid properties.
GGO and part-solid nodules occur less frequent than solid nodules, but have a greater possibility
to be malignant. [5, 64] Nodules can also be categorised into three groups based on their external
surrounding: (i) Well-circumscribed, where the nodule is located completely inside the lung, with
no connections to its neighbouring structures, (ii) juxta-vascular, where the nodule is connected to
neighbouring vasculature and (iii) juxta-pleural, where the nodule has connections with the pleural
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surface. [25] Typical cases for each type of nodule are shown in Figure 1.3.

Figure 1.3: Typical examples of each type of nodule. Upper row: Nodules are categorized based on internal
texture. (a) Ground glass opacity; (b) part-solid; (c) solid. Lower row: Nodules are categorized based on
external surroundings. (d) well-circumscribed; (e) juxta-vascular; (f) juxta-pleural. Source: [39].

The visual similarity of the nodules and their surrounding structures makes it difficult to obtain
an accurate segmentation. In case of juxta-pleural and juxta-vascular nodules, the intensity of
the nodule is comparable to the intensity of the pleural wall and vasculature, making it difficult
to distinguish them from their surroundings. GGO nodules have low contrast to the background,
causing conventional methods based on thresholding-and morphological operations to be useless.
In addition, small nodules (<4 mm) are hard to distinguish due to their size and intensity, which
is comparable to surrounding noise. [38] Moreover, there is much variety in lung nodule size, with
diameters ranging from 3 to 30 mm [39] Therefore, conventional methods based on image processing
techniques, which are often solely useful for the segmentation of well-circumscribed solid nodules,
cannot be simply applied to all types of nodules. [29]

Class imbalance Class imbalance is often a severe problem in medical image segmentation and
is caused by an uneven distribution of the classes in the data. This occurs if pixels corresponding to
a common class are far more numerous than pixels corresponding to a minority class. This causes
the learned model to classify most of the pixels as members of the majority class, as the rarity of
the minority class inhibits accurate learning and labeling. [65] The segmentation of lung nodules
in CT-images is one of the applications that is affected by this class imbalance, as the volume of
a lung tumor is often significantly smaller than the volume of healthy tissue. This causes pixels
in the tumor class to be outnumbered by the pixels in the background class. Consequently, the
tumor region is often missing or partly detected. Shi et al. [7] addresses this problem by training
their GAN based network on patches of lung nodules. This reduces the amount of background
pixels and therefore decreases the class imbalance. However, it is desirable to create a network that
takes entire images as input, to avoid the need of detecting the lung nodules prior to segmentation.
Pang et al. [61] used an additional Dice loss in their CTumorGAN to overcome this problem. This
loss was first introduced by Milletari et al. [66] and was adapted from the Dice coefficient, one
of the most prevailing measures for region overlap in image analysis. [66] It was advantageous
over previous approaches that used loss functions based on sample re-weighting [30, 31]. In these
approaches, foreground regions were allocated more importance than background pixels, but the
choice of weights was hard to optimize and inappropriate selection could easily cause bias towards
rare classes. [66]

GAN training instability Despite their successes, GANs face many problems, of which training
instability is the most substantial. [67] The emergence of these problems will be discussed in more
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detail in section 2.2. Various methods have been suggested to address the instability problems
during training. However, all these methods rely on the single value yielded by the discriminator,
which categorizes the entire image as real or fake. Since medical image segmentation involves dense,
pixel-level labeling, only the real/fake classification could be too easy for the discriminator. [44] This
results in an unstable network with lack of sufficient gradient feedback to improve the generator
network. Salimans et al. [68] proposed an adversarial feature matching loss for the generator to
stabilize adversarial training. Instead of only maximizing the output of the discriminator, this loss
ensured that the features, extracted at each layer of the discriminator network, matched between the
real data and the generated data. Xue et al. [44] adopted this feature matching loss and extended it
by using this loss for the generator as well as the discriminator (i.e. critic) network. They proposed
an architecture called SegAN, which employs an adversarial multiscale L1 feature loss that captures
the difference between the generated segmentation and its ground truth at each layer in the critic
network. This forced both the segmentation and critic network to learn discriminative global and
local features. The multiscale L1 feature loss prevents the gradient feedback to the networks from
vanishing, making the adversarial training stable, as well as avoiding the segmentation network from
overfitting. [69] Since its first application by Xue et al. a number of researchers have employed the
multiscale L1 loss for segmentation tasks. [70,71]

1.3 Objective

The goal of this thesis is to implement a GAN-based segmentation method that is capable of anno-
tating lung nodules and to investigate whether this method could be of added value for improved
segmentation performance compared to the existing techniques. The main research question this
work is trying to answer is:

To what extent can a GAN-based network be used for automatic segmentation of lung nodules in
entire 2D CT-images?

The method proposed in this thesis has the intention to overcome the three aforementioned segmen-
tation challenges. It is a GAN-based network with a U-Net as generator network, to which three
main modules are added:

• To address the problem of nodule size variations and their correspondence to the surroundings,
parallel dilated convolution modules are added to capture both local and global context.

• In order to solve the problem of class imbalance, an additional Dice loss is employed, which
focuses on maximizing the overlap between the ground truth and the predicted segmentation.

• The classic discriminator network of a GAN is replaced by a critic network that extracts a
multiscale L1 loss at all the layers of the critic’s network. Using a multiscale loss function
could prevent instable and insufficient gradient feedback to the network, which can make the
network train more stably than normal GANs.

The sub-questions that will help answer the main research question are:

1. To what extent do the additional modules solve the segmentation challenges and contribute
to a more accurate segmentation performance of the proposed method?

2. How does the performance of the proposed method compare to the other GAN-based methods
for lung nodule segmentation?

3. What are the performance differences between the proposed method and the U-Net and could
the proposed method be of added value for the task of automatic lung nodule segmentation
compared to this state-of-the-art segmentation network?
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1.4 Report outline

The remainder of this report is structured as follows. Chapter 2 will provide some background
information on GANs. It will explain the working principle of a GAN, the challenges GANs face,
and the various types of GANs. The method used in this thesis will be described in Chapter 3,
covering a description of the database used, the proposed architecture, and the experimental set-up.
The results of the experiments will be demonstrated in Chapter 4. These results will be discussed
and related to other studies in Chapter 5. Finally, Chapter 6 will conclude this thesis and some
recommendations will be given towards future work in this area of research.
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2 Theoretical background GANs

In this study, GANs are used as an extension of the U-Net by the addition of a discriminator network.
To understand how GANs can be used for image segmentation tasks, we first need to understand
the basics of the conventional GAN. The relevant theoretical background is provided in the current
chapter. Section 2.1 covers the theory and working principle of GANs. The main limitations the
original GANs face and possible solutions are described in Section 2.2. Lastly, various types of
GANs that could be of interest for this study are given in Section 2.3.

2.1 Working principle

GANs consist of two competing networks. The generator network focuses on the generation of
new data by learning the underlying distribution of a given dataset, often images. This network is
optimized with a second network, known as the discriminator, which aims to distinguish whether
the provided data is sampled from the generated data distribution or the real data distribution.
The result is adversarial training: the discriminator’s objective is to discern the real and the fake
images, while the generator aims to produce output images that can confuse the discriminator. [13]

In Figure 2.1, a schematic overview of a GAN network is shown. The generator network (G) is
a differentiable function controlled by some set of parameters θg. G transforms noise vectors z
from a random distribution pz into a distribution pg with samples x̂ = G(z). The generator’s goal
is to generate perceptually convincing samples that resemble the real data distribution pdata. In
other words, it tries to minimize the difference between pdata and the generated distribution pg.
The discriminator network is introduced to be able to determine this difference. The discriminator
(D) is a differentiable function controlled by parameters θD, and can be considered as a binary
classification network. D is provided with real samples x from pdata and generated samples x̂, and
tries to differentiate which ones originate from the real data distribution and which ones originate
from the synthesized data distribution. [49]

Figure 2.1: Schematic representation of a GAN. The generator takes a noise vector z as input, which
was sampled from a random distribution pz, and transforms it into an output sample x̂. The discriminator
attempts to categorize these samples as fake and the samples drawn from the real data distribution, pdata,
as real. Both the discriminator and generator are optimized through backpropagation of the discriminator’s
output

2.1.1 Training process

GAN training is performed by sequentially updating the discriminator and the generator. Both the
discriminator and the generator try to minimize their own cost function; JD(θD, θG) and JG(θD, θG)
respectively. These cost functions are defined by both the networks’ parameters, θG and θD, but
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the networks are only able to adjust their own parameters. In the training procedure, two phases
can be identified; updating the discriminator D and updating the generator G. In the first phase,
D is updated by introducing real samples drawn from pdata to D. The output, D(x) ∈ [0, 1], is
the probability that a real sample x came from pdata. Thereafter, D is updated using fake samples
drawn from pg. The output, D(G(z)), is a probability in the range of [0,1] that a fake sample x̂
originated from pdata. The cost function measures the discrepancy between the predictions and
their target labels (0 for fake samples, 1 for real samples). The error is then backpropagated and
the parameters of the discriminator network are updated accordingly. In this phase, the parameters
of the generator are kept fixed. [49]
Secondly, G is updated with a minibatch of noise vectors drawn from pz. The output of D is the
probability that G(z) (i.e. x̂) originated from pdata. G tries to minimize the probability that a
sample x̂ is classified as fake. The loss is backpropagated to G to update the parameters of the
generator network, while the discriminator is fixed. [49]
The parameters of the networks are updated using an iterative stochastic gradient descent (SGD)
optimization method with two gradient steps: one updating θD to reduce JD and one updating
θG to reduce JG. Different gradient-based optimization algorithms could be used, of which the
Adaptive Moment Estimation (Adam) optimizer is usually a good choice. [67]

2.1.2 Objective function

The GAN training situation, in which the cost functions are defined by both the networks’ pa-
rameters but the networks are only able to adjust their own parameters, is often described as a
non-cooperative, zero-sum game to which a Nash equilibrium is the solution. In this context, a
Nash equilibrium is reached when a point (θG, θD) has been found such that both JG and JD reside
in a local minimum. [67] This results in a two-player minimax game, where the discriminator tries
to maximize the following objective function and the generator tries to minimize it [49]:

min
G

max
D

V (D,G) = Ex∼pdata [log D(x)] + Ez∼pz [log (1−D(G(z)))] (2.1)

In Equation 2.1, V (D,G) is the objective function, pdata is the real data distribution and pz is the
random distribution from which the noise vectors are extracted. This objective function can be
derived from the binary-cross entropy (BCE) loss, which is defined as:

L(ŷ, y) = −[y · log(ŷ) + (1− y) · log(1− ŷ)] (2.2)

Where ŷ is an output prediction and y is the target label.

In case of training D with real samples, the label of the data coming from pdata(x) is y = 1
and the predicted output ŷ = D(x). By substituting this in the equation of the BCE loss function,
the resulting loss function becomes:

L(D(x), 1) = −log(D(x)) (2.3)

When updating the discriminator with samples from the generated data distribution pg, the input
label is y = 0 and the predicted output ŷ = D(G(z)). This results in the loss function:

L(D(G(z)), 0) = −log(1−D(G(z))) (2.4)

The loss functions above are only valid for one single sample. When considering the entire dataset,
the functions must be converted into expectations. Taking this into consideration and combing the
equations above, the loss function of the discriminator is given as:

JD(θD, θG) = −[Ex∼pdata log(D(x)) + Ez∼pz log(1−D(G(z)))] (2.5)
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The objective of the discriminator is to correctly categorize the data from pdata(x) as real and the
data from pg(z) as fake. Instead of minimizing the the loss, the objective of D can also be achieved
by maximising the opposite of the loss, resulting in:

max
θD

[Ex∼pdata log(D(x)) + Ez∼pz log(1−D(G(z)))] (2.6)

After updating the discriminator for one minibatch, the generator is updated. The generator com-
petes with the discriminator, attempting to minimize the probability that the discriminator will
classify a sample drawn from pg(z) as fake, i.e. y = 0. Therefore the generator’s loss relies directly
on the discriminator’s performance:

JG(θD, θG) = Ez∼pz [log(1−D(G(z)))] (2.7)

The generator’s objective is to maximize D(G(z)) and thus to minimize the loss function:

min
θG

[Ez∼pz [log(1−D(G(z)))]] (2.8)

By combining the objective functions for the generator and the discriminator, the overall loss func-
tion can be written as Equation 2.1.

The iterative training process of GANs tends to be unstable, which makes the optimization of
the networks challenging. In practice, Equation 2.8 may not provide sufficient gradients for the
generator to train well. [49] In the early stages of the process, the discriminator can easily differen-
tiate the real and fake samples. In that case, the gradient for the generators loss function is close
to zero. As a result, the generator will not be able to adjust its parameters and minimize the loss.
Generally, this is solved by applying an alternative loss function for the generator:

min
θG

[−Ez∼pz [log(D(G(z)))]] (2.9)

In this equation, the goal of the generator is to maximize the probability that the discriminator
classifies the generated samples as real, instead of minimizing the probability of classifying the
generated samples as fake. This objective function especially provides much stronger gradients in
early training. Therefore, this type of GAN is called the Non-Saturating GAN (NS-GAN). [49]

2.1.3 Theoretical results

The minimax game of Equation 2.1 has a global optimum for pg = pdata [49], which can be proven
by the derivation of the optimal discriminator and optimal generator. This section shows a concise
version of the derivation. The reader is referred to Appendix A for the extensive derivation of the
optimal discriminator and generator and the theoretical solution.

The optimal discriminator D∗ for fixed G is:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(2.10)

The optimal G, G∗, can be calculated by minimizing Equation 2.1 with respect to G and im-
plementing the optimal discriminator:

G∗ = min
G
V (D∗G, G) (2.11)

This problem can be solved using the Jensen-Shannon-Divergence (JSD) [72], resulting in:

V (D∗G, G) = −log 4 + 2JSD(pdata ‖ pg) (2.12)
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The JSD between two distributions is always positive and zero only when the distributions are
equal. [72] Therefore, the global minimum of equation 2.12, and thus the solution for G∗, is −log 4.
This is achieved if and only if pg = pdata. The optimal values for D and V then are:

D∗G(x) =
pdata

pdata + pg
=

1

2

min
G

max
D

V (D,G) = Ex∼pdata [log
1

2
] + Ez∼pz [log (1− 1

2
)]

= −2 log 2

At this point, both D and G have reached a situation in which they cannot improve. The discrimi-
nator then is unable to differentiate between the two distributions. [49]

2.2 Challenges GAN training

GANs are a powerful technique for image generation in many fields. Nonetheless, the original GAN
suffers from instability problems due to non-convergence, such as vanishing or exploding gradients
and mode collapse. [67, 73] As a consequence, the process of training GANs is a challenging task.
Finding balance between the generator and discriminator is of great importance for stable training.
However, because both networks are simultaneously trying to minimize their own costs, there is
no guarantee of reaching a Nash equilibrium, provoking a chance that one network becomes more
powerful than the other. [67] Most often the discriminator becomes too strong compared to the
generator. The generated segmentations then become easily distinguishable from real ones, causing
the gradients from the discriminator to approach zero. Without gradients, there is no guidance for
further training the generator. [46]
Another problem is mode collapse, which occurs when the generated distribution pg(x) learned by
the generator concentrates only on a few modes of the distribution pdata(x). Consequently, the
generator produces only a small subset of samples, instead of generating diverse images, resulting
in poor output diversity. [49] Complete mode collapse is rare, but partial mode collapse is very
common, e.g. when the generator creates multiple images, but they all contain the same texture or
color. Mode collapse may arise because simultaneous gradient descent does not prioritize minmax
over maxmin. [67] Although this seems like a minor difference, the maximin solution to the GAN
game differs considerably from the minimax solution. When the model behaves like a maximin
game instead of a minimax game:

G∗ = max
D

min
G
V (G,D) (2.13)

the generator will learn to map every noise vector z to the one x sample that the discriminator most
likely considers as real rather than fake, instead of mapping every z vector to different x samples.
Therefore, it tries to optimize and perfect one mode, instead of performing well, but average, on all
modes. [67]

2.2.1 Solutions

Various solutions have been proposed that are motivated to encourage convergence and thus solve
training instability. Three main solutions are the use of mini-batch features, applying one-sided
label smoothing and using feature matching. [68] Beside these solutions, adapting the objective
function could also improve training stability. This is further explained in Section 2.3.2.

Mini-batch features An attempt to mitigate the mode collapse problem is to use mini-batch
features, which allows the discriminator to compare each sample to a minibatch of generated samples
and a minibatch of real samples. This provides the discriminator the ability to detect if the sample
is unusually similar to other generated samples. If so, the discriminator can penalize the generator
to avoid collapse of the generator. [68]
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One-sided label smoothing One-sided label smoothing is a regularization method to prevent
overconfident predictions of a neural network. [74] The discriminator of a GAN is prone to producing
extremely confident outputs that identify the correct class, but with a too extreme probability, which
is not optimal for the generator. By replacing the label for real images with a value slightly less
than 1, e.g. 0.9., the discriminator is encouraged to estimate soft probabilities instead of extremely
confident classification. The discriminator is then penalized when its prediction for any real image
goes beyond 0.9. This technique prevents the discriminator from returning extremely large gradient
signals to the generator. It is important to mention that only the labels for real data are smoothed,
not for the fake data, as this could reinforce incorrect behaviour in the generator. When the label
for fake data is non-zero, the optimal discriminator function (Equation 2.10) changes: pg enters
in the numerator of the function. The presence of pg in the numerator is problematic because, in
regions where pdata is very small and pg is larger, fake samples from pg will not be stimulated to
move nearer to the real data distribution. Hence, only the positive labels are smoothed. [67]

Feature matching Feature matching is a method that addresses GAN instability by intro-
ducing a regularization objective for the generator. The new objective function is defined as:
||Ex∼pdataf(x) − Ez∼pzf(G(z))||, where f(x) represents any statistics computation of intermediate
layer features, such as mean or median. This objective function pushes the generator to produce
data that corresponds to the statistics of the real data. The generator network is trained to match
the statistics of real data features on any layer of the discriminator. The discriminator is used to
extract these feature vectors at each intermediate layer. By training the discriminator, it is asked
to find those features that are especially discriminative of real data versus generated data. This
ensures the generated images to have features that resemble the real images. It has been shown
that feature matching is effective in situations where an original GAN becomes unstable. [68]

Beside the solutions mentioned above, numerous improvements to the original GAN have been
proposed, both in architecture as in loss functions, which will be further elaborated in the next
section.

2.3 Types of GANs

As GAN research has obtained increased interest over the last years, numerous variations on the
original GAN’s architecture and loss function have emerged. Mentioning all the variations is beyond
the scope of this study, so only the ones that could be of interest for this study will be pointed out
in the next sections.

2.3.1 Variations in architecture

Initial applications of GANs adopted multilayer perceptrons (MLPs) for the generator and discrim-
inator network. Although these MLPs could be sufficient for smaller images, these networks weren’t
suitable for the synthesis of larger images, such as medical images. [13] Therefore, these multilayer
perceptrons were replaced by convolutional neural networks. Nowadays, multiple architectural vari-
ations on the original GAN exist. For this study, two architectural variations are especially of
interest: the Deep Convolutional GAN and the conditional GAN.

Deep Convolutional GAN Deep Convolutional GANs (DCGAN) were introduced by Radford et
al. [75] in 2015 and most of the GANs nowadays are (loosely) based on the DCGAN architecture. [67]
Although GANs were already deep and convolutional prior to the introduction of DCGANs, the
name refers to a specific style of architecture. The architectural restraints ensured stable training
and allowed for training deeper and higher resolution generative models. [75] The architectural
adaptions for stable DCGANs were:

• Pooling operations were replaced with strided (transposed) convolutions in both D and G.
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• Batch normalization was applied to most layers in D and G.

• A Rectified Linear Unit (ReLU) activation was used in G. Only the output layer used a
hyperbolic tangent (Tanh) activation.

• All fully connected hidden layers were removed for deeper architectures.

• In D, LeakyRelu was used as activation in all layers.

• The Adam optimizer is used instead of SGD.

Conditional GAN For segmentation applications, it is necessary to be able to control the gen-
erated output, as the segmentation must correspond to the input image. The original GAN was
not suited for this task, and therefore conditional GANs (cGANs) were introduced to segmentation
challenges. [43] CGANs are widely applied for various image generation tasks, among which seg-
mentation is one. They were first proposed by Mirza et al. [76] and allow, in contrast to the original
GAN, control over the characteristics of generated samples by adding an additional condition (c)
to the generator and discriminator network. This is shown in the schematic of Figure 2.2.

Figure 2.2: Schematic representation of a conditional GAN. In addition to the noise vector z, the generator
takes an additional condition c as input, which is also inserted into the discriminator

If paired images are available, which is the case for segmentation tasks where input images and
annotated ground truths are available, cGANs can be used to translate images from one domain
to another domain, i.e. from input image to segmented image. In this case, noise vector z can be
omitted and the condition c is equal to the input image (y), making it an image-to-image translation
task. [47] The objective function of Equation 2.1 then changes to:

min
G

max
D

V (D,G) = Ex∼pdata,y∼py [log D(x|y)] + Ey∼py [log (1−D(G(y)|y))] (2.14)

Where y is the input image and x the corresponding ground truth segmentation. Aditionally, it
is regarded beneficial to add a more traditional, pixelwise loss (e.g. L1 or L2 loss) to this GAN
objective, to not only generate perceptually convincing images, but also generate images that are
near the ground truth output. [47] A widely-known framework for image-to-image translation tasks
based on cGANs is the Pix2Pix model. [47]

2.3.2 Variations in loss function

Unstable GAN training is partly caused by the way in which the discriminator measures the differ-
ence between preal and pg, namely by computing the Jensen-Shannon (JS) divergence to express the
distance between these probability densities. [13] The JS divergence is a smooth, symmetric diver-
gence measure, but does not provide usable gradients when two distributions are non-overlapping.
Therefore, the JS divergence is not applicable for computing the distance between distributions
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that have disjoint parts. [77] Alternative objective functions have been proposed to address this
limitation by using a different divergence, such as f-divergence (f-GAN) [78], Pearson χ2 diver-
gence [77] and Wasserstein distance [73], among which Wasserstein GAN (WGAN) is the most
popular approach. [46]

Wasserstein GAN Arjovski et al. [73] proposed to use a new distance measurement method
in GANs to determine the divergence between the real and fake distribution: the Earth Moving
Distance or Wasserstein distance. It can be interpreted as the minimum energy cost to convert one
data distribution into another. A WGAN objective function is defined as:

min
G

max
D

V (D,G) = Ex∼pdata [D(x)]− Ez∼pz [D(G(z))] (2.15)

Discriminators in WGANs are often referred to as critics, as they do not return a real/fake prob-
ability, but a scalar value that quantifies the similarity between two distributions. [13] Compared
to the original GAN, the WGAN has two more adaptions: the Adam optimizer is replaced by a
RMSProp optimizer and weight clipping or, more commonly, gradient penalty is used. [73] The
advantage of Wasserstein distance compared JS divergence is that when the distributions are non-
overlapping, the Wasserstein distance is still able to reflect their distance and vanishing gradients
are avoided. [73]

Least Squares GAN Least Squares GAN (LSGAN), proposed by Mao et al. [77], adopts a least
squares loss for both the generator and the discriminator. They can provide stronger gradients
to update the generator since they penalize samples by their distance to the decision boundary.
Therefore, disjoint samples can be pulled closer to the boundary, even when correctly classified.
This mitigates the vanishing gradient problem and results in more stable training. By minimizing
the objective function of a LSGAN, the Pearson χ2 divergence is minimized, which equates a L2
loss. [77] The objective functions for LSGANs are formulated as:

min
D

VLSGAN (D) =
1

2
Ex∼pdata [D(x)− b)2] +

1

2
Ez∼pz [D(G(z))− a)2] (2.16)

min
G
VLSGAN (G) =

1

2
Ez∼pz [D(G(z))− b)2] (2.17)

Where a and b represent the labels for fake samples (0) and real samples (1), respectively.
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This chapter covers the details about the database and preprocessing strategy (Section 3.1), the
proposed network architecture (Section 3.2), the training procedure (Section 3.3), the experimental
set-up (Section 3.4) and the evaluation for performance assessment of the networks (Section 3.5).

3.1 Database

In this study, the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-
IDRI) public database was used for training and validation of the proposed segmentation methods.
This openly available database was initiated by the National Cancer Institue and is intended to
facilitate the development, training and evaluation of CAD-methods for lung cancer diagnosis and
detection. The LIDC-IDRI database consists of 1018 thoracic computed tomography scans with
corresponding annotated nodules, which were collected retrospectively from seven academic centers.
The nodules were manually annotated by four experienced radiologists in a two-stage process. In the
first, blinded-reading phase, the radiologists independently reviewed each CT-scan and annotated
suspicious lesions. Each lesion was categorized as nodule ≥ 3 mm, nodule < 3 mm or non-nodule.
Manual segmentation was only performed for the lesions classified as nodule ≥ 3 mm. In addition,
the radiologists also rated the nodules on a scale of 1-5 for nine common characteristics: calcification,
sphericity, texture, internal structure, subtlety, lobulation, margin, spiculation and malignancy. In
the second, unblinded-reading phase, the annotations of the other three radiologists were provided
and each radiologist could decide to modify their original annotations based on the annotations
of their colleagues. The aim of this two-stage reading process was to improve the quality of the
ground-truth annotations and to identify all the nodules in the scans as completely as possible
without needing to force consensus among the radiologists. [79]

3.1.1 Data preprocessing

Multiple preprocessing methods needed to be applied before the images could be accepted for the
task of segmenting lung nodules. For retrieving and analysing the data, Python’s pylidc library was
used, which is an object-relational mapping for the data provided in the LIDC dataset. [80] In the
database, there were numerous redundant slices that could be discarded. Moreover, the images in
the database were collected by different imaging devices from multiple institutions. Hence, it was
essential to implement a normalization procedure. The necessary preprocessing steps applied in this
study are described more extensively in the paragraphs ’Slice and nodule selection’, ’Ground truth
masks preparation’ and ’Normalization’.

1. Slice and nodule selection

The 1018 CT-scans available in the LIDC-IDRI database all comprise multiple slices. The slice
thickness of the scans varies from 0.6 mm to 5.0 mm. In consideration of image quality, scans with
a slice thickness greater than 2.5 mm were excluded since these were not recommended for CAD
analysis. [39, 81] In total, 897 CT-scans were included. Each scan consists of a series of 2D image
slices with a size of 512 x 512 pixels. A majority of the slices could be discarded as they did not
include any nodule. For our application, only slices that contained nodules categorized as ≥ 3 mm
were taken into consideration. Nodules smaller than 3 mm were not included since they were not
marked by a contour, but by their central point, which is not sufficient for the formation of a ground
truth segmentation. In addition, only the nodules accepted by a majority of the radiologists, i.e. at
least 3 out of 4 radiologists, were selected as valid nodules. This resulted in a set of 1179 nodules.
Since a nodule is a 3D structure, it spans multiple slices. Instead of only including the center slice
of a nodule, as many applicable slices of one nodule were included to obtain the largest possible
dataset. Only the slices in which the nodules contour was (1) marked by at least 3 radiologists and
(2) still reached a diameter of ≥ 3 mm, were included. This amounted to a final dataset of 6915
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images emanating from 1179 nodules. In Figure 3.1, the histogram of nodule amount and diameter
distribution is shown.

Figure 3.1: Histogram of lung nodule diameters across the processed dataset.

2. Ground truth masks preparation

Once the correct slices were selected, the ground truth (GT) masks were created by combining the
annotations from all radiologists into a single GT boundary. This was based on a 50% consensus
criterion, which implies that two or more radiologists should have included a given pixel in the nodule
boundary to mark that pixel as part of the consensus contour. An example of a nodule annotated
by all four radiologists and its corresponding 50% consensus boundary is shown in Figure 3.2. All
pixels inside the 50% consensus boundary were set to 1 and all pixels outside this boundary were
set to 0 to create the binary GT masks.

Figure 3.2: Lung nodule annotated by all four radiologists and its corresponding 50% consensus boundary.

3. Normalization

The images in the database were collected by different imaging devices and different acquisition
protocols, causing a variety in pixel spacing and intensities to occur. A normalization procedure
was applied to achieve equal pixel spacing and intensity values in all images. To maintain as much
original information as possible, the resampling step preceded the intensity normalization step in
order to prevent interpolation with normalized intensity values.
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• Pixel spacing The pixel spacing in the entire dataset varied from 0.461 to 0.977 mm, with
an average spacing of 0.688 mm. The images were resampled to achieve the same, average
pixel spacing of 0.688 mm. Resampling was applied to the input images and the GT masks
using second order b-spline interpolation and nearest-neighbour interpolation, respectively.
The difference in interpolation method between the input image and GT image arises due
to the difference between continuous and binary images. For continuous images, B-spline
interpolation appeared to be optimal, while for the discrete, binary GT images, the usage
of nearest-neighbour interpolation was crucial to obtain accurate results. Equation 3.1 gives
the definition of pixel spacing, in which the physical size equals the real size of the imaged
object. From this formula it can be seen that, due to the resampling procedures, images
with an original pixel spacing smaller than the average pixel spacing will become smaller than
512 × 512 pixels, whereas images with a pixel spacing larger than the average pixel spacing
will become larger than 512× 512 pixels.

pixel spacing =
physical size

number of pixels
(3.1)

In order to obtain same-sized images, the images smaller than the original size were enlarged
by applying zero padding until they re-reached the original size of 512 × 512 pixels. The
images that became larger were cropped to this size. A size of 512 × 512 was chosen as this
was the original size of the images. We also experimented with smaller sizes, since this would
be beneficial to the computation time, but this caused relevant structures of the lungs to be
lost during cropping.

• Pixel intensity For the same reason as for the pixel spacing, the pixel intensity was nor-
malized as well. Pixel intensities in CT-images are given in Hounsfield Units (HU), which
depicts the relative density of organs and tissues on CT-images. [82] The HU values varied
greatly between the different CT-images. After analysis, the meaningful pixel intensities for
nodule segmentation were determined to lie in the range of [-1000, 400 HU]. It was essential
to use appropriate window settings to avoid missing lesions and structures of interest. There-
fore, the range was chosen based on experimental analysis as well as on literature findings.
Mukhopadhyay et al. [83] noted that the HU-values of non-solid nodules are ranged between
-750 and 300 HU, whereas solid nodules have a density distribution range of [-200, 200 HU].
Part solid nodules are a mixture of solid and non-solid nodules and thus fall in between these
ranges. [83] Moreover, for lung images, a window setting of level -600 HU and width 1000
HU is often used to appropriately visualize the lungs. [84] Based on these results, the range
of [-1000, 400 HU] was considered appropriate for our application. For each CT-slice, the
intensities were first clipped in the selected range. Then, the pixel values were normalized to
[-1,1].

3.1.2 Characteristics

The dataset was randomly partitioned into three subsets for training, testing, and validation with a
partition rate of 0.8, 0.1 and 0.1 respectively. This corresponds to 5533 images in the training dataset
and 691 images in both the validation and test set. The distribution of the nodules’ subtlety scores
in each subset is plotted in Figure 3.3. The subtlety score represents the difficulty of detection and
ranges from 1-5. Higher values indicate easier detection. Nodules that are difficult to detect, which
are expected to be the small nodules, GGO nodules and adhesion-type nodules (juxta-vascular and
juxta-pleural nodules), are graded with a low subtlety score. The nodules were graded by multiple
radiologists, causing the final subtlety score to be the mean score of all radiologists. As can be
seen in Figure 3.3, the subtlety scores are equally distributed between the three different datasets,
which is of importance for accurate training and testing of the proposed method. However, the
distribution of the subtlety scores in each dataset is imbalanced; higher scores are more frequently
occurring than lower scores. This is a common problem in medical image databases [85], which
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could be solved by generating additional images of the underrepresented classes, but this is beyond
the scope of this study.

Figure 3.3: Subtlety score distribution in train, test and validation dataset

3.1.3 Corrected dataset

At the end of this study, it appeared that the dataset described above was not completely correct,
as the GT masks were created for each nodule separately. This led to erroneous results for slices in
which multiple nodules occurred: The network would segment nodules correctly, but due to the GT
only including one of the nodules, it would obtain a falsely low performance score on such slices.
Therefore, a corrected dataset was created in which the GTs of nodules that appeared in the same
slice were superimposed. This resulted in a dataset of 6663 images, which was split into a training,
test and validation set of 5331, 666 and 666 images, respectively.

3.2 Proposed architecture

The method proposed in this thesis aims to overcome the three segmentation problems that arise in
the task of lung nodule segmentation, which were described in Section 1.2.5. The overall network
follows the structure of a conditional image-to-image translation GAN, which is conditioned on
the input CT-image. The method is an end-to-end architecture trained on entire 2D input images
instead of patches, averting the need to detect and extract lung nodules first. Therefore, it combines
the detection and segmentation procedure in one framework. The proposed network comprises
multiple subcomponents: a generator network, a critic network, an additional loss function and
atrous spatial pyramid pooling (ASPP) modules. The overall proposed architecture is shown in
Figure 3.4. The three modules proposed in Section 1.3 to alleviate the segmentation challenges
(multiscale L1 loss, Dice loss, and parallel dilated convolutions (ASPP)) are shown as orange boxes.
All subcomponents will be further explained in the next sections.

3.2.1 Generator network

The generator network is based on the U-Net of Ronneberger et al. [30] The skip connections in
the U-Net allow fusion of low-level spatial information with the high-level features to increase the
tumor localization accuracy. [30] Contrary to the basic U-Net, the generator network in the proposed
method exploited strided convolutions instead of pooling operations to reduce the information loss
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Figure 3.4: Schematic representation of the proposed GAN architecture. The three proposed modules are
shown in light orange boxes; Multiscale L1 loss, Dice loss, ASPP module. GT = Ground Truth

from pooling operations, which are sensitive for small tumors. [61] Downsampling was realized by
convolutions with stride two and upsampling by transposed convolutions with stride two. Moreover,
the generator was enhanced with residual units in each layer of the encoder path and upsample units
in the decoder path, which were inspired by the residual units of ResNet that made it possible to
train deeper networks. [86] Figure 3.5 shows the residual and upsample units.

Figure 3.5: Architecture of the residual unit and the upsample unit. Image adapted from [87]

Parametric rectifying linear units (PReLU) were implemented as activation function, which are
mathematical functions that determine the output of a neural network. These functions are attached
to each neuron in a network, determining whether the neuron should be activated or not, based on
the relevance of the neuron’s input for the output prediction. PReLU activation counteracts the
dying gradient problem of ReLU activations as it does not have zero-slope parts and generalizes it
by making the coefficient of leakage a learnable parameter. [88] Therefore they allow the network
to learn a more effective activation. [87] As a normalization technique, instance normalization was
applied. Normalization is used to standardize the input of each intermediate layer, by fixing the
mean and standard deviation of the input. This makes neural networks faster and more stable.
Instance normalization prevents contrast shifting by ensuring that the contrast of an input image
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is not skewed by images that have a significantly different contrast, which could occur when batch
normalization is used. [87, 89] The overall generator network is shown in Figure 3.6. The final
segmentation prediction was obtained by applying a sigmoid function to the output of the generator
to obtain prediction values in the range of [0,1].

Figure 3.6: Overall structure of the generator network. The size of the feature maps are indicated above
each box.

3.2.2 Critic network

Instead of classifying the generated output as real or fake, the proposed discriminator employed
a multiscale L1 feature-matching loss between the predicted output and the GT. Therefore, it is
referred to as critic network (C) instead of discriminator. The architecture of C was adapted from
the SegAN network of Xue et al. [44] and is shown in Figure 3.7. It consists of six convolution layers,
which each are set with a stride of two to gradually increase the receptive field and extract feature
maps of the nodule at multiple scales. Normalization and Leaky Relu activation were included
after each convolution. At each layer of the critic, hierarchical features (pixel-level, low-level and
high-level features) were extracted to compute the multiscale L1 loss. Therefore, this loss is able
to capture spatial relations between pixels on short-range and long-range. [90] Given a minibatch
with N images, the multiscale L1 loss function is defined as:

min
G

max
C
Lms(C,G) =

1

N

N∑
n=1

`mae(fC(yn ·G(yn)), fC(yn · xn))) (3.2)

where yn is the input image, xn is the GT, G(yn) is the predicted segmentation and fC represents
the features extracted by the critic network. `mae is the Mean Absolute Error (MAE), also known
as L1 distance, and is described as:

`mae(fC(x), fC(x̂) =
1

L

L∑
i=1

||f iC(x)− f iC(x̂)|| (3.3)

where L represents the total number of layers (scales) in the critic, and f iC(x) the extracted feature
map of image x at layer i. At each layer of C, the L1 distance between the features of the GT
and the predicted segmentation was calculated. The multiscale L1 loss was formed by averaging
the L1 distances of all the layers of the critic. The critic network was given two inputs: the input
CT-image masked by the GT, yielding an image that contained only the tumor part, and the input
image masked by the generated segmentation. This masking procedure ensured preservation of
texture information and facilitates getting effective, rich multiscale features. [71] The generator and
the critic were trained alternately. The critic aimed to maximize the multiscale loss, while the
generator tried to minimize this same loss function, based on the gradients passed along by the
critic. Therefore, both the generator and critic were forced to learn the discriminative features for
lung nodules.
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Figure 3.7: Architecture of the discriminator network. Size of each convolution kernel is pointed out in
the orange boxes. Resulting size of the feature maps is indicated above the boxes.

3.2.3 Loss functions

In addition to the adversarial loss, a Dice loss was applied to alleviate the class imbalance problem.
This loss is defined as [66]:

LDice(G) = 1− 2|x · x̂|
|x|+ |x̂|

= 1−
2
∑I

i xix̂i∑I
i xi +

∑I
i x̂i

(3.4)

where x and x̂ represent the GT and predicted segmentation, respectively, and the sums run over
the I pixels of x and x̂. The Dice loss can simply be expressed as:

LDice = 1− 2TP

2TP + FP + FN
(3.5)

with pixels classified as True Positive (TP), False Positive (FP) and False Negative (FN). Since
the background class (TN) is excluded, it cannot overwhelm the smaller segmentation class, which
emphasizes the convenience of a Dice loss as a solution to the medical class imbalance problem.
Combining the Dice loss with the multiscale L1 loss, the final objective becomes:

V (C,G) = argmin
G

max
C
Lms(C,G) + λLDice(G) (3.6)

where λ is a scaling parameter to ensure both loss functions are of the same order of magnitude.
As can be seen, the Dice loss only contributes to the generator loss.

Several extensions to the Dice loss exist that could be beneficial for segmentation tasks. The
Tversky Index (TI) is a measure that is a generalisation of the Dice coefficient. The Tversky loss,
1-TI, is defined as [91]:

LTversky = 1− TP

TP + αFP + βFN
(3.7)

Two parameters are added to the loss, α and β, where α + β = 1. If α = β = 0.5, it simplifies
to the Dice loss. The significance of these parameters is that one can penalise false negatives or
false positives more depending on the value for α and β. In medical applications, false negatives
are often less tolerated than false positives. [91] By choosing β > α, false negatives are penalised
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more, which is convenient in highly imbalanced datasets where this additional level of loss function
control could yield improved small scale segmentations compared to the normal Dice loss. [91]
A generalisation of the Tversky loss is the Focal Tversky Loss (FTL). This loss gives additional
control over how the loss behaves at different values of the Tversky Index, and is given as [92]:

LFTL = (1− TI)γ (3.8)

When α and β are chosen to be 0.5, the FTL becomes a Focal Dice Loss (FDL). The parameter γ
controls the non-linearity of the loss. When γ < 1, the gradient of the loss is higher for samples
where TI>0.5, which forces the network to focus on such easier examples. This could be useful to
incentive learning in the final phase of training, even though TI is nearing convergence. In case of
class imbalance, the FTL could become useful when γ > 1, as this results in higher gradients for
samples where TI<0.5. This forces the network to focus on the harder examples, e.g. small scale
segmentations, which usually have a low TI score. The non-linearity of the FTL for different values
of γ is shown in Figure 3.8.

Figure 3.8: FTL as a function of TI with varying values of γ. Image used from [93]

The Dice loss, the Tversky Loss, the FTL and the FDL were all separately tested in the proposed
method to determine which loss function was most suitable for our application.

3.2.4 ASPP module

For semantic segmentation, both context information as local information is of great importance.
[94] Local context contains detailed information about boundaries and small objects, while global
context can locate the larger objects and diminish the impact of similar background and surrounding
structures. [70,95] Consequently, as lung nodules have arbitrary sizes, it could be of interest to create
a network that is robust to handle these spatial scale variations. Moreover, due to high similarity of
intensity values in CT-images, the region to be segmented is easily disturbed by its surroundings,
resulting in a loss of semantic information. This could be reduced by applying wider receptive
fields to get more valid, surrounding information. [95] Instead of increasing the kernel size, and
hence the number of trainable parameters, dilated convolutions can be applied to obtain larger
receptive fields. Dilated convolutions, also known as atrous convolutions, add spacing between the
elements of the convolution kernels. They thus increase the distance between neighbouring pixels
that are considered when computing the value for the center pixel. [96] Therefore, the receptive
field can be exponentially increased without a substantial increase of trainable parameters or a loss
in resolution, capturing richer information for more accurate segmentation. [95]. In Figure 3.9, the
working principle of dilated convolutions with a kernel size of 3× 3 and dilation rates of 1,2 and 3
is illustrated. A dilation rate of one is similar to a normal convolution.
Considering a one-dimensional signal, for each location i on output y and filter w with kernelsize
k, dilated convolution is applied over the input x. Mathematically, this dilated convolution can be
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Figure 3.9: Illustrations of dilated convolutions with kernel size 3×3 and various dilation rates. Source: [97]

expressed as follows [98]:
y[i] =

∑
k

x[i + r · k]w[k] (3.9)

where r is the dilation rate, which corresponds to the stride with which the input signal is sampled.
Dilated convolutions with rate r introduce r-1 zeros between consecutive kernel elements, enlarging
the kernel size of a k × k filter to a (k + (k − 1)(r − 1))× (k + (k − 1)(r − 1)) filter. [98]

By applying several dilated convolutions with different dilation rates in parallel, both global and lo-
cal context of a convolution layer can be extracted at the same time. This approach is called Atrous
Spatial Pyramid Pooling (ASPP). [98] The image features extracted from each dilation rate, and
thus different sizes receptive fields, are concatenated together to generate a final prediction result.
ASPP modules are a promising technique for segmentation of medical images. [48, 70, 95, 99, 100]
Wei et al. [70] implemented ASPP modules in the skip connections of a U-Net to capture multi-level
contexts without deterioration of resolution for the segmentation of multiscale skin lesions. For the
same task, Lei et al [48] implemented a dense dilated convolution block in the bottleneck of their
U-Net to obtain fine-grained information and enlarged receptive fields. Xia et al. [95] used ASPP
modules after each pooling operation in the encoder of their U-Net for the segmentation of various
anatomical structures in CT-images. They showed that this method captures more convenient in-
formation to distinguish the target of interest from the similar background. [95]

In the proposed method, ASPP modules containing four parallel dilated convolutions were imple-
mented in the generator network as a possible solution to the influence of the variety in nodule sizes
and their similarity to their surroundings and background on the segmentation result. The architec-
ture of the ASPP module can be found in figure 3.10. The dilation rates were set to r ∈ [1, 2, 4, 6]
with kernel sizes k = [1, 3, 3, 3]

Figure 3.10: The architecture of the ASPP module with four dilation rates.
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3.3 Training procedure

The training process of the proposed network was performed by maximizing the critic loss and
minimizing the generator loss as a minimax game, equal to the GAN training process described in
section 2.1.1. The critic C tries to maximize its loss function:

LC(θC , θG) = argmax
θC
Lms(θC , θG) (3.10)

whereas generator G tries to minimize its loss function:

LG(θC , θG) = argmin
θG
Lms(θC , θG) + λLDice(θG) (3.11)

This results in the overall objective function described in Equation 3.6. G and C were trained
using a stochastic gradient descent optimization. The gradient ascent optimization procedure for
the parameters of C is transferred into a gradient descent procedure by multiplying its loss by -1.
The entire training process is shown in Algorithm 1.

Algorithm 1 Pseudocode of optimizing the multiscale-L1 GAN

1: Initialization: N pairs of training data (y, x)(N) extracted from real dataset; hyperparameters:
n number of training epochs, k number of mini-batches, mini-batch size m, learning rate α,
scaling parameter λ

2: for n epochs do
3: for k mini-batches do
4: Update Critic
5: Sample minibatch of m input images {y(1), . . . , y(m)} from the real dataset;
6: Sample minibatch of m corresponding GT masks {x(1), . . . , x(m)};
7: Generate m predicted segmentation outputs {x̂(1), . . . , x̂(m)}, with x̂i = G(yi);
8: Multiply GT and generated masks with input image: xi · yi and x̂i · yi;
9: Compute the loss of the critic network in the current mini-batch:

10:

LC(θC , θG) = −
1

m

m∑
i=1

`mae(fC(yi ·G(yi)), fC(yi · xi)))

11: Update critic network’s parameters θC by descending its stochastic gradients:
12:

θC = θC − α · ∇θC (LC(θC , θG))

13: Update Generator
14: Compute the loss of the generator network in the current mini-batch:
15:

LG(θC , θG) =
1

m

m∑
i=1

`mae(fC(yi ·G(yi)), fC(yi · xi))) + λLDice(xi, x̂i)

16: Update generator network’s parameters θG by decreasing its stochastic gradients:
17:

θG = θG − α ∗ ∇θG(LG(θC , θG))

18: end for
19: end for

Return: Trained and optimized generator network, which can then be applied on the test dataset.

3.4 Experiments

This section provides a description of the various experiments performed in this study, which were
designed to be able to answer the sub-questions of this thesis.
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3.4.1 Ablation study

An ablation experiment was performed based on the generator network (the U-Net) to verify the
effectiveness of each component in the proposed architecture.

1. First, the relevance of the Dice loss for the class imbalance problem was pointed out by
comparing its results to a general binary cross-entropy (BCE) loss. Additionally, experiments
were realized with the various extensions of the Dice loss to verify which loss function is
optimal for our task.

2. Then, the ASPP modules were added to the generator network. The ASPP modules were
introduced to three different locations; in the skipconnections, in the bottleneck (i.e. the
bottom layer of the U-Net) and after each downsampling layer, to discover which location
produced the best segmentation performance and to determine whether this performance
improved the results of the generator alone.

3. At last, adversarial training was employed by introducing the critic network to the generator
network. First, only adversarial training was enabled, setting λ in Equation 3.6 to zero, to
observe the influence of the critic on the performance of the generator. Then, the additional
Dice loss was introduced by setting λ > 0.

The ablation study was performed with the original dataset. Based on this ablation experiment,
the optimal combination of modules to obtain the highest possible segmentation performance was
observed. If a module turned out to be ineffective, it was not used further in the experiment.

3.4.2 Comparison original and corrected dataset

The best U-Net and GAN-based models, based on the results of the ablation study, were also
evaluated on the corrected dataset to determine whether the adaption in GT creation was of signif-
icant influence for the segmentation results. The segmentation performance of these models on the
corrected dataset were compared to their performance on the original dataset.

3.4.3 Overall performance

From the results of the ablation study and the performance comparison on the corrected dataset, the
U-Net based network and GAN based network that showed the best results on the corrected dataset
were selected. From these two networks, the overall qualitative and quantitative performance was
evaluated and compared. To assess the consistency and robustness of both models, each model
was trained and tested three times. Moreover, the models were evaluated on both high and low
subtlety-score nodules to assess their robustness for different types of nodules. The test dataset
was split into two datasets; one low subtlety set, consisting of 100 images that contained nodules
of subtlety score <3.5, and one high subtlety set, consisting of 566 images with nodules that had a
subtlety score of ≥ 3.5.
To be able to evaluate the potential increase in training stability of the proposed multiscale-L1 GAN,
some more conventional GANs were implemented as well. From literature it was found that WGANs
and LSGANs could improve training stability (Section 2.3.1), as well as one-sided label smoothing
(Section 2.2.1). Therefore these GANs, along with the basic vanilla GAN, were implemented in this
study to compare their stability to that of the GAN with a multiscale-L1 critic.

3.5 Evaluation metrics

For performance evaluation, several evaluation metrics that are relatively common for the evaluation
of medical image segmentation were used, namely Dice Similiarity Coefficient (DSC), Hausdorff
distance (HD), Precision and Recall. [101] DSC was the main metric to measure the segmentation
results.
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The DSC is the most used metric in validating medical segmentations. [101] It measures the degree of
similarity between the predicted segmentation and the GT, representing the ratio of overlap between
both images. Suppose A is the segmentation result of lung nodules predicted by the network, and
B is the GT manually segmented by the radiologist. The DSC can be obtained as follows:

DSC(A,B) =
2(A ∩B)

|A|+ |B|
=

2TP

2TP + FP + FN
(3.12)

where TP, FP and FN are true positive, false positive and false negative predictions, respectively. In
order to calculate the DSC, A needs to be binarized based on a preselected binarization threshold,
which is 0.5 by default.

Although DSC can assess the similarity between the predicted segmentation and the GT, it is
insensitive to the description of the boundary. As the Hausdorff distance measures the shape sim-
ilarity and takes pixel localization into consideration, it can provide a valuable complement to the
Dice. [7] The HD measures the maximum of the shortest distances from one set of points to another,
which indicates the largest segmentation error. [102] Considering two sets of points, A and B, the
HD is defined as:

HD(A,B) = max(hd(A,B), hd(B,A)) (3.13)

hd(A,B) = max
a∈A

min
b∈B
||a− b|| (3.14)

hd(B,A) = max
b∈B

min
a∈A
||b− a|| (3.15)

For clarification, this is illustrated in Figure 3.11. In image segmentation, the HD is computed
between the boundaries of the GT and the generated segmentation. [102]

Figure 3.11: A schematic showing the Hausdorff Distance between two point sets A and B

The other performance metrics were used as auxiliary measures. These evaluation criteria are
defined by the following formulas:

Precision =
TP

TP + FP
(3.16)

Recall =
TP

TP + FN
(3.17)

Paired t-tests were performed to analyse whether observed differences in DSC score between two
models were significant (at the level of 95%). A paired t-test is a statistical test that compares the
means of two related groups and determines whether the mean difference between paired samples of
these groups is zero (i.e. the null hypothesis). [103] In this study, paired samples correspond to the
same set of input images processed by two different models. The t-test is of the form samples mean
difference / samples standard error and returns the p-value, p, which represents the probability of
finding the observed differences when the null hypothesis is true. [103] A difference was assumed
to be significant if p < 0.05. In the ablation study, these tests were used to determine if a module
significantly improved the performance of the U-Net.
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3.6 Implementation details

All networks were implemented in Python 3.8 with the usage of the PyTorch framework and trained
on one NVIDIA A40 GPU using CUDA 11.0 for accelerated training. The U-Net was implemented
using MONAI, an open-source, PyTorch-based framework for deep learning in healthcare imaging.
[104] For the critic, the architecture of the SegAN critic was used and adapted to our purpose. All
models were initialized from a Gaussian distribution N (0, 0.02) and optimized using Adam with
β1 = 0.5 and β2 = 0.999. A learning rate schedule was implemented that decayed the learning
rate by 0.5 every 25 epochs. The hyperparameters for both U-Net and GAN training were tuned
separately to find the optimal versions of both. For the U-Net alone, the batch size was set to 20
and the initial learning rate was 0.0001. The network was trained for up to 150 epochs.
In the proposed GAN-based method, the learning rates for both the generator network and the
critic network were initialized as 0.0002 and decayed following the learning rate schedule with a
minimum learning rate of 10−8. A batch size of 12 was used, which was the maximum possible size
due to GPU memory limitations, and the network was trained for up to 250 epochs. λ was set to
0.2 to match the Dice loss’ order of magnitude to the adversarial loss’ magnitude. The weights of
the critic were clamped in the range of [-0.05 0.05] every time they were updated through gradient
descent to reduce the likelihood of gradient exploding. In both the U-Net as and the critic of the
GAN-model, dropout with ratio 0.2 was enabled to improve the generalization capability of the
networks and to prevent overfitting.
After each training epoch, the model was tested on the validation set and evaluated by the Dice
score. After the maximum amount of training epochs, the Dice score on the validation set had
become stable. The model with the best validation Dice score was saved and its performance was
evaluated on the independent test set.
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This chapter shows the results of the experiments as described in Section 3.4. The outcome of the
ablation study is demonstrated in Section 4.1 and a comparison between the original and corrected
dataset is given in Section 4.2. The results of the best U-Net are compared to the results of the best
GAN-based method in Section 4.3 to evaluate the value of adversarial training in addition to a U-
Net. At last, the performance of the proposed models is compared to state-of-the-art segmentation
approaches in Section 4.3.4.

4.1 Ablation study

The overall results of the ablation study are shown in Table 3. In the following paragraphs, the
results are described more extensively for each module.

4.1.1 Loss functions

The proposed U-Net was trained with a BCE loss, a Dice loss and multiple extensions of the Dice
loss: two U-Nets with focal Dice loss (γ = 0.5 and γ = 2.0), two U-Nets with Tversky loss (α = 0.7,
β = 0.3 and α = 0.3, β = 0.7), and two U-nets with focal Tversky loss (α = 0.3, β = 0.7, γ = 0.5
and α = 0.3, β = 0.7, γ = 2.0). For the U-Net with a BCE loss, a best validation Dice score of
0.0012 was obtained at the first epoch, after which it almost immediately dropped to zero.

The results of the experiment with the other loss functions are visualized in Figure 4.1. The
Dice scores of all models were rather compatible. The main differences occurred in the precision
and recall scores. In Figure 4.1, the U-Net with FDL (γ = 0.5) achieved the best performance on
the Dice score. However, this improvement compared to the U-Net with Dice loss was not signif-
icant (p=0.477). The quantitative performance results of these two models are shown in Table 7.
For more details about the other loss functions’ performance and their precision-recall curves, the
reader is referred to Appendix B.1

Figure 4.1: Performance of various loss functions

4.1.2 ASPP module

ASPP modules were implemented at three different locations in the U-Net and the output was
compared to the U-Net without ASPP modules. Table 2 shows the experimental results. Figure 4.2
illustrates the results in a more intuitive way by bar plots. The models with ASPP modules imple-
mented in the skipconnections and the downsampling path yielded significantly worse performance
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Table 1: Quantitative performance results of the U-Net with Dice loss and the U-Net with focal Dice loss.
The values are given as mean ± standard deviation.

Loss DSC Precision Recall

Dice 0.811 ± 0.220 0.798 ± 0.238 0.846 ± 0.216

FDL (γ = 0.5) 0.814 ± 0.226 0.801 ± 0.239 0.849 ± 0.228

than the U-Net without ASPP modules (both p < 0.001). The U-net with an ASPP module in the
bottleneck achieved comparable results to the U-Net without ASPP. Based on the paired t-test, no
significant improvement was obtained by the addition of an ASPP module to the bottleneck of the
U-Net (p = 0.836).
Considering the standpoint of scale-space theory, the ASPP modules were also tested with Gaussian
convolutions succeeding the parallel dilated convolutions. More details on this experiment and its
results can be found in Appendix B.2

Figure 4.2: Performance of U-Net with ASPP modules implemented at various locations.

Table 2: Performance results of the U-Net model with ASPP modules implemented at different locations.
Values are given as mean ± standard deviation.

Location ASPP DSC Precision Recall

No ASPP 0.811 ± 0.220 0.798 ± 0.238 0.846 ± 0.216

Bottleneck 0.812 ± 0.237 0.803 ± 0.251 0.842 ± 0.236

Skipconnection 0.755 ± 0.239 0.702 ± 0.247 0.843 ± 0.249

Downsample path 0.752 ± 0.271 0.754 ± 0.290 0.775 ± 0.278

4.1.3 Critic network

The effect of adding a multiscale-L1 critic to the U-Net, i.e. conversion into a GAN, is shown in
Table 3. Adversarial training showed worse results compared to applying the generator alone. The
GAN itself produced many non-overlapping results between the predicted segmentation and the
GT, in which the network often predicted no tumor pixels at all. A histogram of the Dice scores
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predicted by this GAN is shown in Appendix C. With an additional Dice loss, the performance of
the GAN increased considerably. Nevertheless, it still obtained significantly inferior performance
compared to the U-Net without a critic (p < 0.001).

4.1.4 Overall results ablation study

The overall results of the ablation study are summarized in Table 3. For a visual representation
of the DSC score distributions of the methods, in the form of boxplots, the reader is referred to
Appendix B.

Table 3: Overall results of the ablation study. Outputs are given as mean ± standard deviation. P-values
are based on a paired t-test between the DSC values of the method and the U-Net.

Method DSC Precision Recall p

U-Net 0.811 ± 0.220 0.798 ± 0.238 0.846 ± 0.216 -

U-Net + FDL 0.814 ± 0.226 0.801 ± 0.239 0.849 ± 0.228 0.477

U-Net + ASPP 0.812 ± 0.237 0.803 ± 0.251 0.842 ± 0.236 0.836

GAN1 0.441 ± 0.402 0.460± 0.421 0.465 ± 0.431 <0.001

GAN1 + Dice 0.772 ± 0.268 0.780 ± 0.280 0.788 ± 0.274 <0.001
1 GAN = U-Net + Critic

4.2 Comparison original and corrected dataset

In Table 4, a comparison was made between the performance of the U-Net and GANs on the original
and corrected dataset. The values represent the mean Dice score ± the standard deviation. All
models showed improved performance on the corrected dataset.

Table 4: Comparision between performance of models trained on the original dataset and the corrected
dataset. The values represent the mean Dice score and the standard deviation. Values in bold represent the
best U-Net outcome and the best GAN outcome.

Method Original data Corrected data

U-Net 0.811 ± 0.220 0.845 ± 0.163

GAN 0.441 ± 0.402 0.472 ± 0.391

GAN+Dice 0.772 ± 0.268 0.808 ± 0.222

4.3 Overall performance

Based on the results of the ablation study and Table 4, the best U-Net and the best GAN-based
model were retrieved, i.e. the U-Net with a Dice loss and the GAN with an additional Dice loss,
respectively. The U-Net with Dice loss was chosen as the other modules (ASPP, FDL) did not show
significant improvement. The overall performance of the two models can be found in Section 4.3.1
and the performance on high and low subtlety-score nodules separately are shown in Section 4.3.2.
The segmentation results are visualized in Section 4.3.3. Lastly, a comparison with the results of
other existing methods is made in Section 4.3.4 to depict the efficiency of the proposed models
compared to the state-of-the-art. For more details on the results of the GAN network without the
additional Dice loss, the reader is referred to Appendix C.
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4.3.1 Performance evaluation

The evaluation metric scores of both models are depicted in Table 5. The models were trained three
times and the values represent the mean ± standard deviation over three runs. The HD is generally
sensitive to outliers, which was substantiated by the boxplots in Figure 4.3. Most HD values had
a value around two pixels. However, many outliers existed due to non-overlapping segmentation
predictions, which had a maximum value of 343.3 for the U-Net and 492.9 pixels for the GAN.
These extremely large outlier values can give a distorted view of the HD performance. Therefore,
the mean HD was calculated without the outlier values as well. In Table 5, the HD is represented
by two values: HD+ simply represents the mean HD value of all output predictions, while HD−
corresponds to the mean HD value after removal of outliers.
The average time consumption for training the U-Net was 4.5 hours and for the GAN 16 hours.
Both models showed a stable training course during training. The graphs of the models’ training
progress can be found in Appendix D.

Table 5: Performance evaluation of the best U-Net and GAN-based model. Values are given as mean ±
std over three runs. HD+ represents the mean HD value with outliers included, HD- is the mean HD value
without outliers. HD is given in pixels.

Method DSC Precision Recall HD+ / HD-

Best U-Net 0.844 ± 0.002 0.851 ± 0.005 0.857 ± 0.009 11.5 / 2.0

Best GAN 0.807 ± 0.007 0.820 ± 0.008 0.818 ± 0.006 26.9 / 2.3

Figure 4.3: Boxplot of HD values for both the U-Net and GAN model. Graph is zoomed in on relevant
part of the boxplot, removing most of the outliers.

A histogram of all Dice values is shown in Figure 4.4 for a more complete evaluation of the output
of the U-net and GAN on the test set. It can be seen that for both models, most nodules obtained
a Dice score greater than 0.8. The distributions are somewhat left-skewed with a long tail to the
left. For some nodules, the prediction did not overlap at all with the GT, i.e. failure cases. This
applied to thirteen predictions of the U-net and twenty-six of the GAN. Removing these failure cases
from the data led to an elevated DSC of 0.862 ± 0.113 for the U-Net and 0.853 ± 0.118 for the GAN.
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(a) DSC values of U-Net on test set. (b) DSC values of GAN on test set.

Figure 4.4: Distribution of Dice values on test for both models.

Previous results were all based on a default binarization threshold of 0.5 to classify the pixels
of the networks’ output into tumor or background pixels to obtain the final segmentation result.
However, the choice of threshold value could alter the outcome of the three evaluation metrics. This
is shown in Figure 4.5. For one U-Net run, the Dice, precision and recall scores were determined at
25 threshold values between zero and one. It appeared that the Dice score remained more or less
constant for most of the thresholds, while the precision and recall scores varied considerably.

Figure 4.5: Recall, precision and Dice scores as af function of binarization thresholds.

4.3.2 Performance on high and low subtlety-score nodules

Figure 4.6 illustrates the performance differences that occurred between testing on the high and low
subtlety-score nodule subsets. The U-Net obtained a mean Dice score of 0.857 on high subtlety-score
nodules and 0.768 on low subtlety-score nodules, whereas the GAN achieved a mean Dice score of
0.826 and 0.696 respectively. Both models performed better on nodules of high subtlety-score than
on low subtlety-score nodules, although this difference was considerably smaller for the U-Net than
for the GAN.
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Figure 4.6: Performance of the best U-Net and GAN on the high and low subtlety-score sub-datasets.

4.3.3 Visual results

Figure 4.7 shows two examples of high scoring segmentations on high subtlety-score nodules. The
GT (white pixels) were overlayed by the predicted segmentation (red pixels) to accurately see which
pixels were classified (in)correctly, resulting in pink pixels at locations where both the GT and the
predicted segmentation contained a nodule pixel. On both images, the models reached a Dice score
of > 0.95.

Figure 4.7: Good segmentation results of high subtlety-score nodules produced by the U-net and GAN.
Typical examples of input image with high subtlety-score nodule indicated by a red circle (left column), input
image zoomed in on nodule (2nd column), segmentation performance U-Net (3rd column) and segmentation
performance of the GAN (right column). The GT and the prediction of the network are superimposed to
visualize the segmentation accuracy: GT in white and prediction in red. All images, except the input image,
have a size of 50× 50 pixels.
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The qualitative results of segmentation on low subtlety-score nodules are illustrated with two exam-
ples in Figure 4.8. As can be seen, these nodules are very similar to the background or surrounding
structures and are therefore more difficult to distinguish than the high subtlety-score nodules. Nev-
ertheless, both models showed good performance on these nodules as well. On the first input image,
the U-Net and GAN achieved a DSC value of 0.936 and 0.931, respectively. A slightly lower DSC
of 0.829 and 0.812, by the U-Net and GAN respectively, was obtained on the second input image.

Although the models performed similarly on the examples shown in Figure 4.7 and 4.8, there were
also cases in which the U-Net performed well, while the GAN did not produce reliable predictions
or none at all. An example is shown in Figure 4.9. The U-Net obtained a Dice score of 0.791, while
the GAN could not distinguish any nodule pixels at all and thus obtained a Dice score of 0.

Figure 4.8: Visualisation of the segmentation performance of the U-net and the GAN on low subtlety-score
nodules. Typical examples of input CT-image with low subtlety-score nodule indicated by a red circle (left
column), input image zoomed in on nodule (2nd column), segmentation performance U-Net (3rd column)
and segmentation performance of the GAN (right column). White pixels represent the GT, while red pixels
correspond to the predicted segmentation. All images, except the input image, have a size of 25× 25 pixels.

Figure 4.9: Example of well-performing U-Net on a low subtlety-score nodule (DSC=0.7907), while the
GAN showed no performance at all. GT pixels are marked as white, while predicted pixels are shown as red.

At last, there were also some cases in which both models did not perform well. These were cases (i)
in which a low DSC value was yielded, (ii) in which the models did not predict any tumor pixels at
all, resulting in a DSC of 0 and a HD of infinitive, or (iii) cases in which there was partial overlap,
i.e. when the model missed one out of two nodules or hallucinated a nodule. Examples of these
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cases are demonstrated in Figure 4.10.

Figure 4.10: Visual examples of segmentation results on which the methods failed to accurately segment
the nodule. Left column shows an example of a low Dice score segmentation result (DSC = 0.273). Middle
column shows an example in which the model predicted no nodule-pixels at all. Right column shows an
example in which the model predicted two nodules (indicated with yellow and red circle), while the GT only
contained one nodule (red circle).

4.3.4 Comparison state-of-the-art methods

To evaluate the performance of the best U-Net and GAN in this work, the final results were compared
with several other models that were developed in recent years for the same task. The results can be
found in Table 6. The U-Net implemented in this thesis showed improved performance on the Dice
score and the precision, but inferior results on the recall, compared to other existing methods. In
contrast to this study, most previous works have applied patch-based segmentation methods instead
of segmenting nodules from entire CT-images. A comparison with these patch-based state-of-the-art
networks was made in Appendix E.
Table 6 depicts that the proposed GAN could not surpass the patch-based AUGAN on performance,
but showed a significant improvement compared to the CTumorGAN.

Table 6: The quantitative segmentation results of the best U-Net and GAN-based model compared to
literature. The values are given as the mean score ± the standard deviation of the scores in percentage.
Values in bold represent the best U-Net outcome and the best GAN outcome.

Method DSC (%) Precision (%) Recall (%)

U-Net

RUN (Lan et al.,2018) [37] 71.9 - 90.9

U-DET (Keetha et al.,2020) [38] 82.8 ± 11.7 78.9 ± 17.5 92.2 ± 14.1

Proposed U-Net 84.4 ± 17.0 85.1 ± 18.6 85.7 ± 17.6

GAN

CTumorGAN (Pang et al.,2020) [61] 71.1 77.3 70.4

AUGAN1 (Shi et al.,2020) [7] 85.3 85.6 86.0

Proposed GAN 80.7 ± 21.8 82.0 ± 23.2 81.8 ± 22.5
1 Patch-based method
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4.3.5 Additional results

Besides the proposed multiscale-L1 GAN, experiments were performed with a vanilla GAN, a LS-
GAN and a WGAN, whether or not in combination with one-sided label smoothing, for the task of
lung nodule segmentation to investigate their stability. Furthermore, the openly-available Pix2Pix
algorithm was also applied to our dataset. All of these GANs did not show a stable training course
and could not produce accurate segmentation results. Examples of unstable training results are
illustrated in Appendix G.
In addition to the multiscale L1 loss, experiments with a multiscale-L2 critic were performed. Ad-
versarial training using a multiscale L2 loss did not converge and seemed to be unstable. A more
extensive description of the multiscale L2 loss and its training results are provided in Appendix F.
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Segmentation of lung nodules in CT-images is a critical step in many lung cancer procedures. [6]
To assist radiologists in this process, computer-assisted segmentation systems could be a promising
tool. Although there have been many related studies before, accurate nodule segmentation on
entire 2D CT-images remains a challenging goal. This study aimed to explore the feasibility of
applying GANs to automatically segment lung nodules from entire images. The proposed network
architecture was designed to address three challenges: (i) the class imbalance, (ii) the variability in
lung nodule appearance, and (iii) the GAN training instability. To alleviate the above challenges,
the following measures were adopted: a Dice loss to counteract the class imbalance, ASPP modules
to reduce the influence of appearance variability, and a multiscale-L1 critic for training stability.
The added value of each module to the generator network was evaluated in the ablation study
to determine whether this module should be used. Interpretation of the results of the individual
modules and the overall performance are discussed in Section 5.1. The limitations of the study are
described in Section 5.2.

5.1 Interpretation of the results

First, the proposed modules and their potential to alleviate the segmentation challenges will be
evaluated based on the results of the ablation study. Then, the overall performance of the U-Net
and the GAN will be discussed.

5.1.1 Evaluation of the modules and their impact on the segmentation challenges

Loss functions Due to severe class imbalance, the results of the U-Net with a BCE loss instead
of a Dice loss were not satisfactory. The network predicted all pixels as background, as this results
in an extremely low loss. Therefore, the BCE loss was not suitable for our task. For both the U-Net
and the GAN, the Dice loss appeared to be an essential addition to obtain satisfactory performance
results. The Dice loss prevented the networks from predicting all pixels as the most common class,
i.e. the background. Hence, it addresses the class imbalance problem, which was in line with our
expectation. The various extensions of the Dice loss did not show significant difference in Dice score.
In this study, the main evaluation metric was the Dice score. If the focus were to be placed on the
recall or precision, different conclusions could have been drawn. Substantial differences between the
loss functions did occur in these metrics due to distinct focus on false positive and false negative
predictions.

ASPP module As was shown in Table 2, the ASPP modules obtained worse or comparable
results to the U-Net without ASPP module. Out of the three locations, the ASPP in the bottleneck
achieved the best performance. However, it is questionable to what extent the ASPP module truly
has influence when implemented on this location, as the feature maps size at the bottleneck is only
8× 8. This implies that the 3× 3 convolution with dilation rate 2 covers almost the whole feature
maps in the bottleneck. In addition, the 3 × 3 convolutions with dilation rates 4 and 6 overstep
the boundary of the feature maps, causing it to degrade to a 2 × 2 or even a 1 × 1 convolution.
This makes it difficult to effectively access long-range features, which was also described by Shen et
al. [105] Experiments with different dilation rates were performed, but dilation rates r ∈ [1, 2, 4, 6]
showed best performance.
It was assumed that the ASPP modules could contribute to addressing the variability in nodule
size and appearance by capturing richer features and extracting both local and global context at
each scale. Among others, Xia et al. [95], Lei et al. [48] and Wei et al. [70] have shown promising
segmentation performance on medical images by implementing ASPP modules to reduce the effect of
scale variations and resemblance to background structures. However, these studies were performed
on patches of lesions or entire organs, whereas our study was performed on small lesions in entire
CT-images. A possible explanation for the poor performing ASPP modules in our study could be
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that, due to the extremely small size of the nodules compared to the background, no benefit is
gained from more global context for this specific task.

Critic A multiscale L1 adversarial loss was applied to increase the stability of the GAN. The
proposed GAN showed a stable course during training (see Appendix D). For comparison, we also
tried to implement a GAN with the conventional single scalar real/fake loss. However, we did not
manage to obtain acceptable segmentation predictions with this GAN due to instability problems.
Multiple possible solutions, explained in Section 2.2.1 and 2.3.2, were tried to stabilize training:
WGAN, LSGAN, one-sided label smoothing and parameter clamping. Unfortunately, these methods
did not solve the instability problem. Moreover, the widely-used Pix2Pix framework was applied on
our dataset. This image-to-image translation method could not give stable and accurate predictions
as well. Pang et al. [61] also experienced that classical image-to-image translation networks, such as
cGAN and Pix2Pix, produced unstable and unacceptable predictions for the segmentation of lung
nodules on entire CT-images as input. Training on entire images instead of patches contributes to
the GAN training instability, as this increases the number of parameters and could create an over-
fitting problem. [106] All findings substantiate our expectation that the proposed critic would lead
to a more stable and effective GAN-model than the conventional discriminator for the segmentation
of lung nodules. Xue et al. [44] showed similar results for brain tumor segmentation. They conclude
that the main reason of unstable training is that the conventional adversarial loss is based on a
single scalar output. For segmentation tasks, this real/fake classification task could be too easy for
the discriminator, leading to insufficient gradient feedback to improve the generator. [44].
In this study, the L1 norm was adopted in the multiscale feature loss function. Experiments were
also performed with the L2 norm. As is shown in Appendix F, adversarial training using a multiscale
L2 loss did not converge and tended to be unstable. Therefore, the L1 loss was chosen to be used
in this study instead of a L2 loss. Xue et al. [44] experienced the same issue and attributed it to
the speculation that L1 is less sensitive to outliers than L2.

5.1.2 Overall performance

GAN One of the goals of this study was to examine the usability of GANs compared to the
U-Net for lung nodule segmentation. It was assumed that the addition of a critic would urge the
generator to produce more accurate segmentations. This would lead to improved performance of
the GAN over the generator alone (the U-Net). Although the proposed GAN with an additional
Dice loss showed promising results, it did not outperform the U-Net alone on any evaluation metric
(see Table 5). Based on these results, it cannot be stated that applying a critic to the generator
network is of added value for our task, it only seemed to confuse the generator. Our speculation
is that the segmentation of relatively small lesions compared to the background may need more
pixel-level focus. Accordingly, small sized lung nodules on entire CT-images could benefit more
from a pixel-level loss than the more general loss of a GAN. This is also substantiated by the ne-
cessity of using an additional Dice loss to adversarial training. Purely adversarial training obtained
significantly lower performance (DSC=0.472) than adversarial training in combination with a Dice
loss (DSC=0.808). The indispensability of the Dice loss emphasizes the need of a pixel-level focus
and reduced class-imbalance. To validate these claims, it would be interesting to see whether the
proposed GAN would outperform the U-Net on patches of nodules instead of entire images, in which
the nodules are more substantial and the background is of lesser influence. Shi et al. [7] showed
that their GAN did outperfom the U-Net on lung nodule patches. Xue et al. [44] also experienced
that their SegAN showed inferior performance for relatively small brain tumor regions.
Out of the three GAN-based models, the AUGAN developed by Shi et al. [7] showed best perfor-
mance on all evaluation metrics (See Table 6). However, this model was trained and tested on
128×128-patches of lung nodules instead of entire 512×512-images. To the best of our knowledge,
the CTumorGAN developed by Pang et al. [61] is the only other GAN-based method for lung nodule
segmentation that uses entire 2D CT-images. The proposed GAN with additional Dice loss achieved
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improved performance compared to the CTumorGAN. However, the CTumorGAN was applied on
the NSCLC-dataset instead of the LIDC-IDRI dataset. For a complete comparison, our GAN should
be trained and tested on the NCSLC-dataset to draw fair conclusions about the performance of our
GAN.

U-Net The proposed U-Net was able to obtain accurate segmentation of lung nodules. In com-
parison to other existing methods for lung nodule segmentation on entire CT-images, the proposed
U-Net has gained state-of-the-art performance on the Dice value and precision score (Table 6).
A possible explanation for its improved performance compared to the U-DET is that the U-DET
uses max-pooling operations instead of strided convolutions and does not include residual units.
Although our U-Net’s performance on the recall score seems inferior to the other methods, its value
can be increased by changing the binarization threshold, as was shown in Figure 4.5. It appeared
that the Dice score was not sensitive to the threshold of binarization, whereas the precision and
recall scores dependeded considerably on the choice of binarization threshold. Lower thresholds are
favourable for the recall, while higher thresholds are more convenient for the precision. Depending
on the application, it can be weighed whether to focus on the precision or recall and choosing the
threshold value accordingly.
It is worth noting that the majority of previous studies have proposed patch-based lung nodule
segmentation methods. In this study, it is demonstrated that the proposed U-Net can achieve com-
parable, and possibly even better results than the patch-based methods (See Appendix E).
Although the proposed U-Net showed promising results, there were still some failing cases (Figure
4.10). The exact reason why the network sometimes fails to produce accurate segmentations is
unknown, though the failing cases often comprise nodules that are visually hard to distinguish from
the background or surrounding structures. To solve this problem, additional images similar to these
situations might be required to enhance the prediction on these cases as well.

Robustness The robustness of the models was analysed by comparing their performance on high
and low subtlety-score nodules. Figure 4.6 depicts that the models’ potential for segmentation
depends on the type of nodule. The DSC, precision and recall of the segmentation results on the
high subtlety-score nodules exceeded those of the low subtlety-score nodules. The difference in
DSC value between high and low subtlety-score nodules was 0.089 for the U-Net and 0.130 for
the GAN. This implies that the U-Net is more robust to various types of nodules than the GAN.
Other researchers analysed their model’s robustness by only comparing its performance on small
and large nodules, instead of taking into account the subtlety-score. The AUGAN showed a DSC
score difference of about 0.1 between small and large nodules, which is comparable to the values we
found. [7] The robustness of the U-DET was analysed by comparing its performance on Attached
and Non-Attached nodules and large (≥ 6mm) vs. small (<6mm) nodules, obtaining a DSC score
difference of only 0.0129 and 0.01 respectively. [38] Therefore, the U-DET showed great potential
for robust segmentation and is less dependent upon the type of nodule than the proposed U-Net.
However, they do not include all low subtlety-score nodules in their robustness analysis, such as
GGO nodules, which were included in our subsets.
The consistency of the models was analyzed by performing multiple runs of the same model. Based
on the standard deviation values given in Table 5, both models showed great consistency over
multiple runs. Especially the U-Net is extremely consistent on the Dice score, achieving a standard
deviation of only 0.002. This suggests that the results are reproducible and consistent.

Statistics The performance values were given as a mean ± standard deviation of all the obser-
vations. This also included failure cases that yielded no overlap with the GT at all. These failure
cases were considered in the calculation of the mean performance since they do indicate how well
the networks perform. A different way of dealing with these failure cases could be to first determine
whether a nodule is detected prior to calculating the segmentation performance. This would split
the performance into a detection performance and a segmentation performance. As was shown in
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Section 4.3.1, this would result in an increased mean Dice score and a reduced standard deviation.
Since the distributions of the performance values were left-skewed with a long tail to the left, large
standard deviation values occurred. This explains the existence of standard deviation values that
exceeded the upper value of 1 when added to the mean value.
In order to reach an appropriate statistical conclusion about the outcome of the paired t-tests,
several conditions must be satisfied: the two groups for comparison must be independently sampled
from the same population and the difference between each pair is assumed to be normally distributed
without outliers. [103] Although the DSC score distributions were left-skewed and not completely
normally distributed, the differences between two distributions did follow a normal distribution.
However, outliers still existed. Moreover, strictly independence cannot be assured since multiple
slices from the same patient may have appeared in the data. The degree of deviation from the
assumptions affects the quality of the statistical conclusions. Nonetheless, t-tests are known to be
robust, and in practice, real-world data rarely fully meets the constraints of statistical models. [103]

5.2 Limitations

A number of limitations of the study can be identified.
First of all, the ablation study was performed based on the original dataset. Towards the end of
the study, it appeared that this dataset was not completely correct. A new, corrected dataset was
created and applied on most of the main models. However, due to time constraints, we did not redo
all the experiments of the ablation study. It was assumed that the relations found in the ablation
study on the original dataset would apply equally on the corrected dataset. All experiments should
be re-performed with the corrected dataset to ensure this claim.

A substantial limitation of the study is that the dataset was split into a train, test and valida-
tion set on slice-level instead of patient-level. This implies that slices from the same patient may
have occurred in different subsets. Consequently, the experiments have potentially suffered from
data leakage; since slices of the same patient can be strongly correlated, the model was partly tested
on data that it had already seen - to some extent- in the training set. This could have introduced
falsely elevated performance results. [107]

The dataset was divided into a high and low subtlety-score subset based on the mean subtlety
score to test the robustness of the models. However, considerable variability in the radiologists’ as-
sessment of the subtlety score for the same nodules exists. [79]. Additionally, instead of categorizing
each slice of a nodule, the subtlety score is only given for the entire nodule. Therefore, all slices of
the same nodule obtained the same mean subtlety score. This does not always hold true, especially
because nodules in slices further away from the center are often much smaller than in the middle
slice. Consequently, the results in Figure 4.6 may have given a distorted perception of the reality.
Instead of dividing the dataset into high and low subtlety-score to test the models’ robustness, it
could also be interesting to divide the dataset into each type of nodule separately based on its
surrounding.(i.e. well-circumscribed, juxta-vascular, juxta-pleural) or its internal texture (GGO,
part-solid, solid). This would provide additional insights about the network’s performance on diffi-
cult types of nodules. Unfortunately, only the internal texture of the nodules was provided by the
radiologists, not their adhesion type. Therefore, a division based on subtlety score was chosen to
include both a nodule’s texture and surroundings to some extent.
The low subtlety-score nodules were highly underrepresented in the training dataset, as was illus-
trated in Figure 3.3. Training on such unbalanced dataset could cause difficulties for the model to
capture strong feature representations for the segmentation of low subtlety-score nodules [39]. This
could have contributed to the lower performance on these nodules for both models. Imaginably,
GANs could have a valuable role in tackling this imbalanced dataset problem. As an example,
Qin et al. [39] adopted adversarial networks to promote the samples’ diversity. They employed a
cGAN to produce patches of synthetic lung nodule CT-images based on semantic layouts for a more
balanced dataset.
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Although the database applied in this experiment is widely used, final subsets of the data can
vary greatly between studies due to different pre-processing techniques. Some studies only use the
middle slice of each nodule, while others use multiple slices. Due to all variances in subsets, it is
difficult to provide a completely fair comparison between different studies. In this study, it was
chosen to select all slices of a nodule that were still larger than three millimetres in diameter and
were annotated by at least three radiologists, to obtain the largest possible training dataset. Since
the nodule is an irregularly shaped sphere, the area near the boundaries of the nodule may not
include any nodular tissue. [81] False positives may be produced when using these slices, leading to
contamination of the training sets. Liu et al. [81] proposed to use only the three middle slices of a
nodule to prevent this from happening. However, this would have drastically reduced the amount
of training samples.

A known limitation of segmentation networks is their inadequacy of precision at the boundaries.
This lack of precision is caused not only by the type of loss function, but also by imprecise GTs. [108]
The GTs in this study are obtained from the annotations made by four radiologists. However, this
annotation process is based on each radiologist’s subjective judgement, leading to a great amount of
inter-personal variability in the annotation process. [79] As the GTs are based on the annotations of
all four radiologists, this variability highly effects the reference GT. Hence, the models’ performance
may be affected by such variation. Forcing the model to strictly learn from an imprecise GT could
bring to over-learning or overfitting. [108] Possible solutions to tackle this problem are to develop
a loss function with tolerance on the border pixels of the nodule or to use softmasks. Pezzano
et al. [108] proposed to use a loss function that does not just calculate the loss element-wise, but
calculates the loss between one pixel of the prediction and all the corresponding surrounding pixels
in the GT. Wang et al. [109] employed a soft labeling technique to reduce the effect of lung nod-
ule annotation uncertainty by the radiologists. They created soft masks by setting the difference
between the masks annotated by the radiologists as an uncertainty area, instead of taking the 50%
consensus contour, and obtained valuable results on the LIDC-IDRI dataset.

In this study, only the slices that contained nodules were extracted from a CT-scan during pre-
processing to assess the networks’ ability to segment lung nodules. However, from a clinical point
of view, it would have been desirable to develop a system that is able to take an entire CT-scan as
input, from which it automatically detects and segments the slices that incorporate nodules. Since
a CT-scan consists of slices with and without nodules, images that do not contain any nodule at all
should have been added to the dataset in order for the models to learn the desired output on these
images (completely black) as well. Performance evaluation on these slices too is necessary to assess
the true detection ability of the models.
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Image generation using GANs is currently an active research area. Although GANs are most com-
monly used to generate images with continuous values [47], several researchers explored their use
for creating segmentation predictions with discrete labels. [44, 48, 70] The objective of this thesis
was to implement a GAN-based segmentation method to automatically segment lung nodules from
CT-images and to investigate to what extent this method could be of added value for improved
segmentation performance compared to existing techniques. In order to alleviate the challenges
arising from nodule segmentation and GAN training, a GAN architecture with an additional Dice
loss, ASPP modules and a multiscale-L1 critic was proposed. The thesis concludes by answering
the three sub-questions and the main research question proposed in the Introduction.

The first sub-question to be answered is: "To what extent do the additional modules solve the
segmentation challenges and contribute to a more accurate segmentation performance of the pro-
posed method?" Based on the ablation study, it can be concluded that a Dice loss improves the
performance of the segmentation models and is of essential value in the class imbalance problem.
The addition of ASPP modules to the generator network did not not contribute to an improved per-
formance, which suggests that ASPP modules are not advantageous for lung nodule segmentation
from entire CT-images. Lastly, the findings confirm that a multiscale-L1 critic was able to stabilize
GAN training, in contrast to a conventional GAN.

The second sub-question that was researched was: "How does the performance of the proposed
method compare to the other GAN-based methods for lung nodule segmentation?" The present find-
ings show that the proposed GAN outperforms the CTumorGAN for lung nodule segmentation on
entire image slices, although this conclusion is based on different datasets. Nevertheless, our GAN
does not surpass the performance of patch-based GANs.

The last sub-question was: "What are the performance differences between the proposed method
and the U-Net and could the proposed method be of added value for the task of automatic lung
nodule segmentation compared to this state-of-the-art segmentation network?" This aspect of the
research suggests that, although we can observe from other studies that GANs may have a valuable
potential for medical image segmentation [44, 70, 110], the GAN developed in this research did not
show superior performance to state-of-the-art U-Net segmentation models. Accordingly, we have
to conclude that our proposed GAN is not of added value for the task of automatic lung nodule
segmentation on entire CT-images. The U-Net implemented in this study achieved outstanding
performance and even exceeded existing segmentation methods on Dice score.

These sub-questions helped to answer the main research question of this thesis: To what extent
can a GAN-based network be used for automatic segmentation of lung nodules in entire 2D CT-
images? To conclude the overall thesis and answer the main question; a multiscale-L1 GAN with
an additional Dice loss was successfully implemented and used to automatically segment lung nod-
ules from entire 2D CT-images. Although this GAN showed sufficient performance and comparable
results to other GAN-based methods, it did not outperform the proposed U-Net model on our spe-
cific task. Still, the research into GANs is exciting and flourishing, and it is believed that, in the
future, GANs could have a great potential to become an outstanding method for other medical
segmentation purposes.

6.1 Future work

Some recommendations for future work can be made to further improve the proposed models as
well as deep learning models in general in this area of study. These recommendations could advance
the research and development of accurate automatic lung nodule segmentation methods.
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A logical next step of this study is to extend the 2D U-Net to a 3D U-Net. During reading,
radiologists visualize the CT-scans slice by slice, taking into account the 3D information. [108] It
would be desirable if a neural network could to the same. Instead of analyzing each slice sepa-
rately, a 3D model analyzes the input as volumetric and utilizes global features between the input
slices. Therefore, a 3D model might extract more and richer spatial information of the nodules
than a 2D model. [111] However, 3D models have the major disadvantage of increased complexity,
computational cost and memory storage. [111] In addition, the irregularity in slice thickness could
influence the 3D nodule segmentation, whereas segmentation in 2D images is not affected by slice
thickness. [112] It is crucial to consider these limitations in the development of an efficient 3D model.

Regarding the GAN in specific, future research could focus on exploring new multi-scale feature
loss functions. It might prove important to implement more suitable loss functions, which are less
influenced by the class-imbalance problem than the L1 loss, to achieve improved performance of the
GAN itself.

Neural networks are trained based on the information they are provided with. Therefore, efforts
should be made to develop a more trustable and richer database. Future work may include solv-
ing the imbalanced dataset problem. A more balanced dataset could advance the model to learn
characteristic features of all possible types of nodules and improve its performance on the underrep-
resented, low subtlety-score nodules. By expanding and balancing the dataset, a more generalized
and robust model would be achieved. Image generation by GANs may be a good alternative to
face the imbalanced dataset problem. Furthermore, it is advisable to add slices that do not contain
nodules to the dataset to enable the development of models that can accurately detect and segment
lung nodules from entire CT-scans.
Since the created annotations in the LIDC-IDRI database are made manually, errors will always
exist. Therefore, a final future outlook would be to develop robust methods that are able to work
and learn from noisy, imprecise GTs, for example by using more tolerant loss functions or by ap-
plying soft masks instead of binary masks.

Considering all the above recommendations, it may be possible to develop a robust and accu-
rate clinical tool for automated nodule detection and segmentation. In the future, it is expected
that such a tool has the potential to be implemented in clinical practice to enhance the manual
nodule annotations and to reduce the reading time of the radiologists when used as an assistance
tool.

S. van Elst 44



Chapter A Theoretical solution GAN training

Appendices

A Theoretical solution GAN training

This section shows the derivation of the optimal discriminator D and the optimal generator G, and
concludes with the theoretical solution to the minimax game.

A.1 Derivation optimal D

The minimax game in equation 2.1 can be reformulated as:

min
G

max
D

V (D,G) = Ex∼pdata [log D(x)] + Ez∼pz [log (1−D(G(z)))] (A.1)

= Ex∼pdata [log D()] + Ex∼pg [log (1−D(x))] (A.2)

=

∫
x

(
pdata(x)logD(x) + pg(x)log(1−D(x))

)
dx (A.3)

For any (a,b) ∈ R2, the function y = a log(y) + b log(1 − y) achieves its maximum at a
a+b . [49]

This can be proven by the following derivation. The optimal y∗ can be found by taking the first
derivative, y′, and equalizing this to zero:

y = a log(y) + b log(1− y)

y′ =
a

y
+

b

1− y
a

y∗
=

b

1− y∗
b

a
=

1− y∗

y∗

1

y∗
=
a+ b

a

y∗ =
a

a+ b

By applying this to Equation A.3, the optimal discriminator DG(x) for fixed G can be derived:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(A.4)

A.2 Derivation optimal G

The optimal G, G∗, can be calculated by minimizing Equation 2.1 with respect to G and imple-
menting the optimal discriminator:

G∗ = min
G
V (D∗G, G)

=

∫
x

(
pdata(x)log(

pdata(x)

pdata(x) + pg(x)
) + pg(x)log(

pg(x)

pdata(x) + pg(x)
)
)
dx

This problem can be solved using the Jensen-Shannon-Divergence, which is defined as [72]:

DJS(pdata ‖ pg) =
1

2
DKL(pdata ‖

pdata + pg
2

) +
1

2
DKL(pg ‖

pdata + pg
2

) (A.5)

Where DKL is the Kullback-Leibler divergence [72]:

DKL(p ‖ q) =
∫
p(x) log(

p(x)

q(x)
) dx (A.6)
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Rewriting equation A.5 using the definition of the Kullback-Leibler divergence results in:

DJS(pdata ‖ pg) =
1

2

(∫
x
pdata(x) log(

2pdata(x)

pdata(x) + pg(x)
) dx

)
+

1

2

(∫
x
pg(x) log(

2pg(x)

pdata(x) + pg(x)
) dx

)
=

1

2

(∫
x
pdata(x) (log 2+ log(

pdata(x)

pdata(x) + pg(x)
)) dx

)
+

1

2

(∫
x
pg(x) (log 2+ log(

2pg(x)

pdata(x) + pg(x)
0) dx

)
=

1

2

(
log 2 +

∫
x
pdata(x) log(

pdata(x)

pdata(x) + pg(x)
) dx

)
+

1

2

(
log 2 +

∫
x
pdata(x) log(

pg(x)

pdata(x) + pg(x)
) dx

)
=

1

2

(
log 4 + min

G
V (D∗G, G)

)
Thus:

min
G
V (D∗G, G)) = −log 4 + 2DJS(pdata ‖ pg) (A.7)

As the Jensen-Shannon divergence between two distributions is always positive and zero only when
the distributions are equal [72], G∗ = −log 4 is the global minimum of the equation above and thus
the solution for the optimal generator. This is achieved if and only if pg = pdata. The optimal values
for D and V then are:

D∗G(x) =
pdata

pdata + pg
=

1

2

min
G

max
D

V (D,G) = Ex∼pdata [log
1

2
] + Ez∼pz [log (1− 1

2
]

= −2 log 2
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B Additional results ablation study

Figure B.1: Boxplots showing the distribution of dice scores for the various ablation study methods.

B.1 Loss functions

The performance results of all the loss functions tested during the ablation study are given in Table
7. The main differences occur in the precision and recall values. This is visualized in a Precision-
Recall plot in Figure B.2. The precision and recall were determined at 25 binarization thresholds
and plotted against each other. For binary segmentation, the iso-f1 curves correspond to the dice
score. Figure B.2 shows that the most substantial differences occur between the Tversky losses.
This is as expected, as the loss functions both focus on opposite predictions. In agreement with
the results found in Table 7, all loss function curves lie around the same f1 curve, although the
theoretical f1 values are slightly larger than the dice values found during the experiments.

Table 7: Quantitative performance results of the U-Net with various loss functions.

Loss DSC Precision Recall

Dice 0.8108 0.7984 0.8462

FDL (γ = 0.5) 0.8143 0.8008 0.8493

FDL (γ = 2.0) 0.8062 0.8056 0.8329

Tversky (α = 0.7, β = 0.3) 0.8069 0.8415 0.7942

Tversky (α = 0.3, β = 0.7) 0.8051 0.7680 0.8755

FTL (γ = 0.5, α = 0.3, β = 0.7) 0.8084 0.7741 0.8676

FTL (γ = 2.0, α = 0.3, β = 0.7) 0.8051 0.7680 0.8755
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Figure B.2: Precision-Recall curves for various loss functions. Precision and recall calculated at different
binarization thresholds.

B.2 ASPP Gaussian

Dilated convolutions might be thought of as the combination of a sampling procedure and a common
convolution. From this point of view, it could be beneficial to introduce Gaussian convolutions in the
ASPP module. In this study, ASPP modules containing Gaussian convolutions were implemented
in the U-Net and compared to the results of the ASPP modules without Gaussian convolutions. For
each dilated convolution, a Gaussian convolution G with standard variance σ and truncation t was
performed on the feature map following the dilated convolution. Therefore, the formula for dilated
convolution (Equation 3.9) extended to:

y[i] =
∑
(k

G((x[i + r · k]w[k]), σ, t)

The results are shown in Figure B.3. For the ASPP modules in the downsampling path, the ASPP
Gaussian showed worse performance on all evaluation metrics than the standard ASPP. For the other
two locations, the Gaussian ASPP showed a slightly better performance on the dice and precision,
but not on its recall score. The Gaussian ASPP thus does not consistently perform better than the
basic ASPP. As the image size is not scaled down during an ASPP procedure and the resolution
remains equal, dilated convolutions are generally not viewed as a sampling procedure. From the
results found in this study, it can not be concluded that applying a Gaussian convolution after
dilated convolutions is essential. It is expected that the performance increase (occuring especially
in the skipconnection) could mainly be explained by the fact that nodules are extremely small
and could benefit from a more smoothed representation, as this enlarges the tumor regions. This
potential benefit was also shown by Shen et al. [105]. They used Gaussian kernels preceding dilated
convolutions to produce more robust feature representations. The Gaussian kernel was performed
on the feature maps to accumulate information in each position and capture context.
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Figure B.3: Performance comparison of ASPP modules and Gaussian ASPP modules, implemented at
various locations.
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C Results GAN without additional dice loss

The GAN without an additional dice loss, using only adversarial training based on the multiscale
L1 loss, did not show acceptable results. A histogram of all dice values produced by this GAN
is demonstrated in Figure C.1. It is noticeably that the GAN’s poor performance originates due
to many non-overlapping predictions, resulting in a DSC value of 0. These were mainly images in
which the model’s output was completely black, i.e. the model did not predict any tumor pixels
at all. The instances in which the model did predict tumor pixels, the predicted output was quite
adequate. This is also visualized in Figure C.2, in which some examples of the model’s output
compared to the GT are shown. For the two images on the left, the model did not predict any
tumor pixels, while the images on the right show good correspondence to the GT.

Figure C.1: Histogram of dice values

Figure C.2: Visual performance results of the GAN. Top row shows the input CT-images, middle row the
GT masks and bottom row the segmentation maps predicted by the model.
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D Training graphs

The training progress of the U-Net, GAN and GAN + Dice are shown in Figure D.1, Figure D.2,
and Figure D.3, respectively. The losses and dice scores are plotted as a function of training epochs.

(a) Progress of loss for train and validation set. (b) Dice score on train and validation set during training.

Figure D.1: Training progress of the U-Net

(a) Progress of generator and discriminator loss. (b) Dice score on validation set during training.

Figure D.2: Training progress of the GAN

(a) Progress of generator and discriminator loss. (b) Dice score on validation set during training.

Figure D.3: Training progress of the GAN with additional dice loss
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E Comparison patch-based models

Table 8: Comparison of the propsed U-Net with state-of-the-art patch-based models. The results are in
the format of "mean dice ± standard deviation". The proposed U-Net is indicated in bold.

Method Year Patch-size DSC (%)

2D modified residual U-Net [42] 2019 64× 64 70.9

Multi-task learning CNN [41] 2018 64× 64 73.89

Multi-view deep CNN [28] 2017 35× 35 77.67 ± 15.71

Cascaded dual-pathway residual network [113] 2019 35× 35 81.58 ± 11.05

Central focussed CNN [114] 2017 35× 35 82.15 ± 10.76

Context-learning (CoLe) CNN [108] 2021 64× 64 82.5

Dual-branch residual network [29] 2019 35× 35 82.74 ± 10.19

NoduleNet [115] 2019 64× 64 83.10 ± 8.85

Proposed U-Net 2021 512 × 512 84.33 ± 16.44

3D-CNN + cGAN for data augmentation [39] 2019 64× 64 84.83

Adaptive ROI with multi-view residual learning [116] 2020 128× 128 87.55 ± 10.58

Deep Learned Shape Driven Level Set1 [112] 2019 128× 128 93.00 ± 11.00

1 Applied on solid nodules only
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F Multiscale L2 GAN

Multiple experiments were performed with the GAN-based model in which the multiscale L1 loss
was replaced by a multiscale L2 loss. The `mae in Equation 3.2 was replaced by a Mean Squared
Error (MSE), also known as the L2 distance:

`mse(fC(x), fC(x̂) =
1

L

L∑
i=1

(f iC(x)− f iC(x̂))2 (F.1)

where L represents the total number of layers (scales) in the critic, and f iC(x) the extracted feature
map of image x at layer i.

The results of this multiscale L2 GAN were compared to the multiscale L1 GAN, as can be seen
in Table 9. In combination with an additional dice loss, the multiscale L1 loss showed best per-
formance. The dice loss was scaled to 0.2 and 0.06 to be in balance with the magnitude of the
multiscale L1 and L2 loss, respectively. Without additional dice loss, the L2 loss outperformed the
L1 loss. However, the training progress, visualized in Figure F.1, did not show a stable course.
After about 75 epochs, the validation dice dropped and the model was not able to learn any further.
We also experimented with a larger batch size (BS = 20), a smaller batch size (BS = 6), disabling
parameter clipping and disabling dropout, but none of these helped to stabilize training. Therefore,
the L1 loss was chosen to be used in this thesis.

Table 9: Performance evaluation of multiscale L1 and multiscale L2 loss. Values are based on two runs
and are given as mean ± std.

Loss DSC Precision Recall

L1 0.4707 ± 0.0008 0.5136 ± 0.0023 0.4705 ± 0.0048

L2 0.5053 ± 0.0207 0.4742 ± 0.0156 0.5914 ± 0.0290

L1+0.2Dice 0.8110 ± 0.0040 0.8240 ± 0.0045 0.8212 ± 0.0048

L2+0.06Dice 0.8008 ± 0.0035 0.8047 ± 0.0012 0.8265 ± 0.0031

(a) Progress of generator and discriminator loss. (b) Dice score on validation set during training.

Figure F.1: Training progress of the Multiscale L2 GAN
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G Unstable GANs

In addition to the multiscale L1 critic, some more conventional GANs were also implemented for
the task of lung nodule segmentation in this study: a vanilla GAN, a LSGAN and a WGAN.
Furthermore, the openly-available Pix2Pix algorithm was applied for our task. Some examples of
the training courses of these GANs are shown in this section. All of these GANs failed to produce
stable results. Parameter tuning was done by adapting the learning rate, batch size, dropout ratio,
parameter clipping etc., but unfortunately none of this helped.

Vanilla GAN The vanilla GAN was implemented with a BCE-Loss + L1-Loss and additionally
label smoothing was applied. It achieved a best mean dice score of 0.0439. The discriminator and
generator loss rapidly became constant, signifying that they do not improve each other.

Figure G.1: Training process vanilla GAN.

LSGAN The LSGAN obtained a best mean dice score of 0.0125. The GAN failed to converge, as
the discriminator loss quickly dropped to zero, while the generator loss kept rising. This is probably
caused by the generator outputting lousy images that the discriminator can easily identify as fake.

Figure G.2: Training process LSGAN.
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WGAN At last, the WGAN also showed an unstable course and obtained a best mean dice score
of 0.0044.

Figure G.3: Training process WGAN.

G.1 Pix2Pix

The Pix2Pix framework is openly available from [117] and adapted for our dataset. Three options
of the Pix2Pix framework were tested: Vanilla GAN, LSGAN, WGAN. The adversarial loss was
combined with an L1 loss, as was used by Isola et al. [47].

Pix2Pix - Vanilla The vanilla Pix2Pix GAN obtained a best average dice score of 0.0030. Its
minimum dice was 0.0, while its maximum dice was 0.4390. As can be seen from Figure G.4, the
discriminator loss quickly drops to zero, while the generator loss increases over the iterations. The
training does not converge.

Figure G.4: Pix2Pix- Vanilla GAN.
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Pix2Pix - LSGAN The LSGAN showed mode collapse; Almost all predicted outcomes were
visually the same. The mode collapse is also evident in the training graphs. The losses suddenly
drop after about 3500 iterations. Before the mode collapse, the average dice score was 0.0018, with
a maximum value of 0.4694.

Figure G.5: Pix2Pix- LSGAN.

Pix2Pix - WGAN The WGAN Pix2Pix model showed an incomprehensible training course. It
seemed to do nothing for about 15000 iterations, after which training suddenly arose. This is mainly
the case because previous loss function values are negligible compared to the extremely large values
after 15000 iterations. The mean dice score of this WGAN was 0.0028, with a maximum score of
0.6246.

Figure G.6: Pix2Pix- WGAN.
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