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Management Summary

Introduction

This research on the trade-off between service level and waste of perishable goods was
done for Slimstock, an inventory optimization software and consultancy company. Food
retailers find the trade-off between service level and waste challenging, as an excess
of perishable goods leads to waste due to expiration. Since generic waste estimation
models regarding a certain service level without specific assumptions are unknown for
food retailers, developers of inventory management systems are unable to include these
into the functionalities of the software. Therefore, the decisions on how to reduce waste,
when ordering, are dependent on human judgement instead of an analytical method,
resulting in an increased risk of food waste and not achieving the desired service levels.
This leads to the following research objective:

“Develop an analytical method that estimates the probability of food waste of perishable
goods based on a given service level before ordering, leading to minimizing food waste
whilst achieving service levels in the future for food retailers.”

Context analysis

Typical inventory characteristics for supermarket stores are the (R,s,nQ)-policy, the pre-
sentation stock (a manually set minimum stock on shelf), partial LIFO demand (cus-
tomers pick goods with the longest remaining shelf life), the high number of order lines,
fluctuating customer demand because of promotions or events, non-stationary demand
throughout the year, and non-stationary demand throughout the week. For this research,
the data of a supermarket client of Slimstock, called Supermarket, was used. A case study
with data from Supermarket revealed that waste is mostly encountered in the agricul-
tural and chilled assortment categories, most perishable goods are fast-movers, review
and lead times are not always equal to one day, and waste occurs for many different shelf
lives.

Literature

Although the number of papers on this matter is limited, models were found in the
literature that estimate food waste regarding a certain target fill rate (the percentage of
demand sold from shelf). In literature, waste is denoted by the relative outdating (the
ratio between the expected daily outdating quantity and the expected daily demand).
To model this, three approaches were found in the literature. The first is a simulation
approach. The downside of simulation, however, is the long computation time. The
second is an approximation approach. Van Donselaar & Broekmeulen (2012) derived
two fast approximation methods, called zA and zB. The third is linear regression. These
approximations are improved when adding variables to the regression that estimate waste.
In all these models, the EWA-policy (Estimated Withdrawal and Aging) is assumed,
which is a policy that predetermines the number of goods outdated in the upcoming
cover period, which are added to the order level. However, to our knowledge, models
concerning all characteristics from the previous paragraph are non-existent in literature.
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Approach

We enhanced the models from literature to more accurately describe the food retail set-
ting. First, we added the FIFO (first-in-first-out) fraction. Here, a fraction of 0.8 means
that 80% of demand is met in FIFO order, and 20% of demand is met in LIFO order.
Second, we modeled the yearly and weekly non-stationary demand for fast-movers by
the Normal and Gamma distribution, depending on the coefficient of variation (the stan-
dard deviation of demand divided by the forecasted demand). Third, the presentation
stock was added. We made some assumptions to simplify the model, such as immediate
replenishment in the morning, and the exclusion of promotions and events for simplicity.

Second, we calculated the approximations zA and zB for each week separately, to ac-
count for non-stationary demand. Third, we improved the regression by adding seasonal
effects to the variables and by adding a variable containing the FIFO fraction.

We experimented with the following SKU information: a 364-day forecast, historical
sales without promotions or events, target service levels of 80%, 85%, 90%, 95%, 97%, and
99%, FIFO fractions of 1, 0.8, and 0.5, lead and review time, minimum and incremental
order quantity, shelf life, and presentation stock. The experiments were performed for
898 representative SKUs from 20 different subsets of SKUs. These subsets consist of
SKUs with the same shelf life, lead time, and review time.

Results

The final result of the approximation by regression of one representative SKU is shown
in Figure 1. In the figure, the relative outdating is visualized regarding multiple target
service levels and FIFO fractions.

Figure 1: The final Efficient Frontier of a representative SKU for three FIFO fractions
and all target service levels.

The performance of the models is measured by the approximation error. The simulation
serves as a basis, and the performance of the approximations and regression are evaluated
by the approximation error. This is defined as the relative outdating measured in our
simulation, minus the approximated relative outdating. Important regression measure-
ments are the adjusted R2, which indicates the variability explained by the model, the
RMSE, which indicates the variance of the residuals, and the p-value, which indicates
the significance of the independent variables.

From the analysis of the simulation results, we can conclude that the incorporation of
the FIFO fraction, non-stationary demand, and the presentation stock have a significant
effect on the waste. Therefore, incorporation of these characteristics is necessary when
estimating waste from a model. However, as the presentation stock seemed illogical and
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incorrect for some SKUs, the presentation stock was excluded from the approximations
and regression. Furthermore, we concluded that regression was possible for subsets when
the shelf life is two times the cover period at maximum. The average approximation
error of the regression is -0.2%, with a standard deviation of 1.6%. For most subsets, the
adjusted R2 of the model was higher than 80%, the RMSE was 0.028 at most, and all
variables had p-values below 5%. The performance of the approximations and regression
are lacking for highly seasonal SKUs and especially for 99% target service levels, since
waste grows exponentially rather than linearly in this case. Nevertheless, the outcome
of the model gives a good indication for the expected waste for most SKUs.

Recommendations

The model can be used for estimating the waste percentage of an SKU. Next, supply
planners can examine the effects of the change of the SKU’s parameters. For future
research, we suggest improving approximations for highly seasonal SKUs, incorporating
promotions and events in the model, and researching to what extent the presentation
stock is causing waste. We advise Slimstock to keep track of historical forecasts to better
estimate the safety stock needed and to validate the model with actual waste percent-
ages. Finally, we recommend Slimstock to apply the Implementation plan mentioned in
Chapter 8 and execute a method that calculates the actual FIFO fraction of an SKU.
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Chapter 1

Introduction

The research for this thesis on the trade-off between service level and waste of perishable
goods was done at Slimstock in Deventer. The research was conducted as part of the
graduation assignment for the master’s program Industrial Engineering and Management
at the University of Twente.

This chapter is an introduction to the research and is constructed as follows. In
Section 1.1 an introduction to Slimstock is given. The topic context is explained in
Section 1.2 and serves as a background for this research and denotes the motivation and
relevance of the topic. Afterwards, the problem investigated is explained in more detail
in Section 1.3. Section 1.4 contains the research goal and objectives of the research.
Lastly, Section 1.5 contains the research questions and reading guide.

1.1 Introduction to Slimstock

Slimstock was founded in 1993 in the Netherlands as an inventory optimization con-
sultancy company. Slimstock’s goal is to increase clients’ efficiency, reduce inventory
levels, and generate insight to inventory managers whilst increasing the service level.
With over 1000 clients spread over 60 countries worldwide, Slimstock is the European
market leader in the field of demand forecasting and inventory optimization. Nowadays,
Slimstock helps companies to optimize their inventory in three ways. First of all, clients
of Slimstock can use its software (called Slim4 ). The main functionalities of the soft-
ware are demand forecasting, demand planning, and inventory management in order to
get the right inventory at the right place at the right time. Secondly, consultancy is a
big part of the activities of Slimstock. Advice is giving on, amongst others, assortment
choice, promotions, and optimal production rates. Lastly, clients can follow training ses-
sions, workshops, and seminars provided by the Slimstock Academy. Slimstock consists
of several departments, one of which is the Development department. This department
is responsible for improving the functional design of Slim4 and this research is conducted
at this department.

1.2 Background

In 2017, the food waste per capita of the Dutch population was estimated between
106 and 147 kilograms (Soethoudt & Vollebregt, n.d.). This amounts to around 350
grams of food waste per person per day. Although the highest percentage of food waste
comes from end-consumers, about 16% of all food is lost and wasted throughout the
whole European supply chain from harvesting, hunting and foresting to consuming by
households (Rutten, Nowicki, Bogaardt, & Aramyan, n.d.). In the same study, it was
estimated that European food retailers and wholesalers account for 3.6% of the total
food waste. For Dutch supermarkets specifically, it was estimated in a more recent study
that around 1.7% of food does not end up with the end-consumer (Vollebregt, 2020).
Amongst the foods, bread and pastries have the highest waste, with a proportion of 7.7%
of the total not being sold. Fresh meats and fish have food waste of 2.9%, potatoes,
vegetables and fruits have a proportion of 2.7% and dairy, eggs and ready-to-eat meals
have a proportion of 1.4%.

In this research, the term food waste refers to food suitable for human consumption,
but not consumed (Giuseppe, Mario, & Cinzia, 2014). For food retail environments such

1
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as supermarkets or food wholesalers, all food that is suitable for human consumption
that is not sold counts as food waste. The role of inventory is to prevent getting out-of-
stock, which can be defined as a product not present at the expected location (Aastrup &
Kotzab, 2009). In food retail environments, on-shelf availability - the opposite of out-of-
stock - is agreed to be an indicator for good customer service. Especially in case of food
retailers, consumers want to buy from a wide variety of high quality and fresh products
(Lebersorger & Schneider, 2014). In this thesis, on-shelf availability is made measurable
by measuring the service level. What kind of service level, is discussed later on.

Kaipia et al. have concluded that expired best before dates is the most common reason
for food waste in the food retail sector (Kaipia, Loikkanen, & Dukovska-Popovska, 2013).
Especially for products such as milk, in case a shelf that is not empty is replenished with
milk cartons that have a best before date of two days after the best before date of the
first batch of milk cartons, in case of non-FIFO replenishing. In this case, if customers
pick the cartons with the latest best before date, the first batch reaches its best before
date in store and therefore cannot be sold anymore. Other causes for waste are, amongst
others, damage during transportation, incorrect packaging, oversupply (Eriksson, Strid,
& Hansson, 2014) or consumers’ aversion against suboptimal foods (de Hooge et al.,
2017).

The consequences of food waste for retailers are that they are faced with high costs
and social blame of being one of the biggest causes of food waste (Broekmeulen & van
Donselaar, 2019; Lebersorger & Schneider, 2014). People no longer accept that so much
food is wasted along the supply chain. Therefore, retailers (and other supply chain
links) look for ways to reduce waste by prolonging shelf life or reduce oversupply without
compromising the service level.

Therefore, the question is whether food waste can be minimized whilst achieving the
predetermined service level in the future. And since the Dutch Ministry of Agriculture,
Nature and Food Quality wants to have food waste reduced by 50% in 2030 (Vollebregt,
2020), it becomes clear that researching the trade-off between service level and waste is
important as well as relevant. In the next section, we dive into the problems that food
retailers perceive concerning the estimation of food waste.

1.3 Problem statement

The previous section was about the food supply chain in general, but more specifically the
food retailer clients of Slimstock too have difficulties with the trade-off between service
level and waste. The problems that are encountered are presented visually in a problem
cluster in Figure 1.1.

First of all, there is little applied knowledge of models that estimate the waste result-
ing from a given service level in the food retail market in practice. Both retailers and
consultancy companies supplying inventory management systems are lacking knowledge
on how to analytically estimate waste based on a given service level. Trivial problems,
such as the Newsvendor Problem, are different from the current problem since some
assumptions do not apply to the current problem. Examples are LIFO or random pick-
ing by consumers instead of FIFO picking and the fact that this model is applicable to
products with a shelf life of one day.

As a consequence, developers of inventory management systems are unable to include
the estimation of waste into the functionalities of the software. Consequently, food
retailers lack knowledge about the probability of waste given a certain service level.
This means that they are unknowing whether a small change in service level leads to a
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Figure 1.1: Problem cluster of modelling the probability of food waste.

substantially larger probability of food waste. The same holds for the reverse scenario.
At this moment, food retailers cannot determine the expected service level for a given
limit of food waste either.

Since the probability of food waste cannot be estimated before orders are placed,
reviewing service level and waste is possible only after some time has passed. When a lot
of expired products are left in-store, a manager might intuitively order fewer products
next time. In the other situation, in which products were out-of-stock early in the day,
the manager might decide to order more next time. This boils down to a situation in
which the optimal order advice given by inventory management systems are ignored and
the order size is manually adjusted.

Consequently, in situations in which fewer products are ordered than advised by an
inventory management system, there is an increased probability of not achieving service
levels. This entails lower customer satisfaction and a lower profit margin because of
lost sales. Another perceived problem is the increased risk of food waste in case more
products are ordered than advised by the inventory management system. This is a
problem since the costs of expired products are very high. Not only costs for harvesting,
assembling, producing, transporting, and/or staging products are incurred, but if not
sold also costs are incurred for removing from the shelves and dispensing. Whereas no
revenue is earned on these products. Furthermore, checking shelves on expired products is
labour-intensive. Therefore, suboptimal situations like out-of-stock or food waste should
be avoided. Taking this all into consideration, the problem statement is as follows:

“Food retailers lack pre-order knowledge on the probability of food waste given a certain
service level, leading to a situation in which food waste is not minimized and/or the
service level is not achieved.”

The next section describes the research objective, belonging to this problem statement.

1.4 Research objective

The objective of this research is to develop an analytical method that estimates the
probability of food waste of perishable goods. The research is restricted to perishable
goods with a shelf life from 2 to 30 days (Broekmeulen & van Donselaar, 2009). Secondly,
in this research, the forecasting of product sales is out-of-scope. We assume forecasts for
products are adequate and given. Furthermore, the method can estimate the probability
of food waste based on a given service level, denoted by the client of Slimstock in Slim4.

Furthermore, this research is restricted to the food retail environment, i.e. super-
markets. More details on this choice can be found in Section 2.2. Physical shops are
taken into account, but distribution centres are not taken into account. This means that
in physical shops the consumer can select the products he/she wants to buy in a LIFO,
FIFO or random manner. Furthermore, the method is usable for an environment in which
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replenishment of products is done periodically and in small batches (Broekmeulen & van
Donselaar, 2009). Lastly, the method is verified and validated such that it estimates the
expected waste resulting from a target service level. The objective of this research is
therefore defined as follows:

“Develop an analytical method that estimates the probability of food waste of perishable
goods based on a given service level before ordering, leading to minimizing food waste
whilst achieving service levels in the future for food retailers.”

In order to achieve the research objective, we have made research questions. The ques-
tions are answered one by one to gradually come to the solution. These questions and
plan of approach are discussed in the next section.

1.5 Research questions

Each question entails one chapter and consists of multiple sub-questions. First of all,
the current way of working and opportunities are analysed. After researching the first
research question, it should be clear how the - for this research relevant - components
of Slim4 work, what are the business and order characteristics of food retailers, how
are clients informed and how do they make decisions based on the data in Slim4, what
products of Slimstock’s client Supermarket contain the highest waste percentage and
what the requirements of the new models entail. The information needed mostly comes
from a Slim4 training, through meetings with employees of Slimstock, and corresponding
literature afterwards. This leads to the following (sub)questions:

1. What does the ordering process look like for food retail clients?

a. How are replenishment orders currently generated for Slimstock’s food retail
clients

b. What is the service level measure and in what way is the service level taken
into account?

c. What information and decision support on food waste do Slimstock’s clients
get when placing a replenishment order?

d. What are the requirements of the new models?

e. For what products in the product assortment of Supermarket are the new mod-
els most relevant?

Through an extensive literature study, we find out the most important theories on mod-
elling service level and waste, determine important parameters and variables, and calcu-
late or approximate the expected waste. This leads to the following research questions:

2. What can we learn from literature about modelling service level and waste?

a. How can substitution, shelf life, non-stationary demand, presentation stock,
and partial FIFO demand be modelled?

b. What models concerning both the calculation of expected waste and the target
service level are described in literature?

c. How do we calculate the expected waste?
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The answer to the next question contains the developed models on the basis of the
literature found that estimates the probability of waste given a certain service level.
The notation and assumptions are explained, parameters and variables are given, and
we denote the alterations made on the models in literature. This leads to the following
research questions:

3. How are the models formulated that estimate the expected waste on the basis of
the target service level for food retailers?

a. What is the design of the models?

b. What assumptions are made?

c. What equations, parameters and variables are used?

d. What alterations are made on the models from literature?

After answering the next research questions, it should be clear how the experimental
settings are defined and how the models can be evaluated. We therefore answer the
following research questions:

4. How can the models be evaluated?

a. How is the needed data obtained?

b. How can we measure the performance of the model?

c. How is the model validated and verified?

d. What experimental design is relevant?

In the next chapter, experiments are performed with empirical data from a client of
Slimstock to see how the models perform. The results of the experiments reveal under
which circumstances Slimstock’s clients can expect what amount of waste given a certain
service level. This research question is answered through experiments or simulation with
the data of a client of Slimstock of which conclusions are derived. This leads to the
following research questions:

5. What is the performance of the models?

a. What is the influence of non-stationary demand, mixed FIFO-LIFO with-
drawal, and presentation stock on the expected waste?

b. For what shelf lives is the model relevant?

c. Which variables are the best predictors of expected waste?

d. How does the Efficient Frontier look like when considering the model alter-
ations?

The thesis structure is as follows. Chapters 2 to 6 answer research questions 1 to 5, with
each research question in one chapter. Chapter 7 entails the final conclusion. Lastly,
Chapter 8 contains the discussion, and implementation plan for Slimstock, as well as
recommendations and suggestions for future research.





Chapter 2

Context analysis

For the first research question, we combine insights from a user training of Slim4, meetings
with Slimstock’s employees, data analysis, and literature. In the first section of this
chapter, the general inventory model and its parameters used in Slim4 are explained.
Section 2.2 describes characteristics of food retail clients, such as assortment, supply
and inventory management, and customer demand. In the third section, the knowledge
obtained from Section 2.1 and Section 2.2 are combined to give an overview of how food
retail clients of Slimstock currently work with Slim4 and what decision making support
on food waste they get. Next, Section 2.4 states the results on a preliminary data analysis
on waste for Supermarket, a client of Slimstock. Finally, Section 2.5 describes what the
requirements and conditions are for the implementation of the model or improvement in
Slim4. This chapter ends with a conclusion that answers the following research questions:

1. What does the ordering process in Slim4 look like for food retail clients?

a. How are replenishment orders currently generated for Slimstock’s food retail
clients

b. What is the service level measure and in what way is the service level taken
into account?

c. What information and decision support on food waste do Slimstock’s clients
get when placing a replenishment order?

d. What are the requirements of the new model?

e. For what products in the product assortment of Supermarket is the new model
most relevant?

2.1 Slim4 inventory model

In this section, the inventory management system of Slimstock, called Slim4, is explained.
Slim4 is a Computer Assisted Ordering (CAO) system, which means that the system
proposes an order quantity and a decision maker proceeds the ordering process (Haijema,
2011). In Slim4, inventory is managed in four steps, namely by demand classification,
statistical forecasting and demand planning, calculations for order advice, and optimizing
replenishment.

2.1.1 Demand classification

Before calculations are done on what to order when for each Stock Keeping Unit (SKU),
Slim4 first classifies each SKU by its historical sales in a certain period. The classification
of SKUs is important since forecasts of demand are calculated differently for products
from different demand classes. All products are classified on historical demand and
distinctions are, for example, made between fast-movers and slow-movers.

2.1.2 Statistical forecasting and demand planning

The next step is statistical forecasting and demand planning. The demand of all SKUs
is forecasted based on the historical sales and demand classes. Subsequently, users of
Slim4 can manually alter the forecasts when it is expected or known that demand will
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be in- or decreasing. For example, the sales are expected to be higher when a promotion
in the form of discounts is coming or when an event, such as Christmas, is approaching.
However, as explained in Section 2.5, promotions are not taken into account in this
research.

2.1.3 Calculations of order advice and optimizing replenishment

Next, calculations are done on how much to order and when. The inventory management
system in Slim4 for most clients is set up as an (R, s, nQ) inventory policy. In this policy,
the inventory position (IP), defined as the stock on hand plus the pipeline inventory
minus the backorders, is checked to see if it falls on or below the reorder point (s). If
the inventory position is below the reorder point, an order advice is generated, with size
n · Q. Here, n is the number of case pack sizes and Q is the case pack size. It depends
on the review period (R) whether an order is actually placed by the Slim4 user. The
inventory model is continuous (R=1 day) or periodic (R≥2). In case the review period
is not over yet, no order is automatically placed.

The IP after replenishment should cover at least the expected demand E[D] during
the lead time (L) and review period (R) of the replenishment E[DL+R] and the safety
stock SS. Such that the current IP plus n · Q is equal to or larger than s. The safety
stock for, for example, fast-movers is calculated from the safety factor (k), which results
from the target service level (fill rate) β∗ set by the client and the Normal Loss function
(Silver, Pyke, & Thomas, 2017), times the standard deviation of the demand during lead
time and the review period (σL+R). The service level in Slim4 is defined as the fill rate,
which is the (expected) percentage of demand sold from the shelf. The exact calculations
of the order level and other parameters are discussed in Section 3.4.1.

Having done these calculations, Slim4 sets up an order advice with a replenishment
order quantity of at least the minimum order quantity (MOQ). In case a bigger re-
plenishment order quantity than the MOQ is needed, the MOQ is incremented with the
incremented order quantity (IOQ) until the replenishment order quantity is large enough.
Lastly, the replenishment can be optimized, for example, by adding more products and
therefore optimizing a full truck load.

Although the (R,s,nQ) policy is most common for clients, Slim4 can work with other
policies and calculations of the order quantity. Examples are the economic order quantity
(EOQ) and an (R, s, S) inventory policy. When the order quantity nQ is calculated with
the EOQ, ordering costs, and holding costs are taken into account when determining
the replenishment order quantity. Finally, Slim4 is capable of determining the variable
order quantity based on an (R, s, S) policy, where after the review period a quantity of
order-up-to level (S) minus the inventory position is ordered when the IP falls below the
reorder point (s) such that the IP after replenishment is equal to the order-up-to level.

2.2 Food retail characteristics

The food clients of Slimstock, including food manufacturers, food wholesalers and club
stores (large retailers specializing in bulk-sized products (Cai, Volpe, Schroeter, & Man-
cino, 2018)), supermarket chains, and superettes (small supermarkets with self-service
features (Cai et al., 2018)), are quite diverse. At first, it was thought that supermar-
ket chains, as well as food wholesalers, club stores, and superettes were eligible for this
research, but many of the perishable foods and customer demand characteristics as de-
scribed in the rest of this section do not apply to food manufacturers, food wholesalers,
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club stores, and superettes. Therefore, the decision was made to focus this research (and
therefore the rest of this section) on supermarket chains only.

Although different supermarket chains differ in their strategies based on pricing,
service or assortment with both food and non-food (Solgaard & Hansen, 2003), there are
also many comparisons in terms of assortment, supply processes, inventory management,
and customer demand.

2.2.1 Assortment

The supermarket store assortment can be divided into multiple types, namely:

1. non-food, such as magazines and sanitation products,

2. food, which can be divided into more categories, namely:

a. non-perishables with a store shelf life of thirty days or longer, such as rice or
sauces,

b. perishable products with a store shelf life of eight to thirty days, such as milk
and meat,

c. ultra-fresh perishables, which have a store shelf life of two to seven days, such
as ready-to-eat meals, vegetables, and fruits,

d. bakery products, such as bread, which have a store shelf life of one day and
are disposed of after one day (Slimstock-Consultant, 2020; van Donselaar, van
Woensel, Broekmeulen, & Fransoo, 2006).

A characteristic of perishables is the significantly lower rate of deterioration in certain
circumstances, such as a refrigerated environment for ready-to-eat meals, as opposed
to regular supermarket store temperature. Furthermore, Van Donselaar et al. (2006)
pointed out that perishables have more average weekly sales in cubic meters and a lower
coefficient of variation of weekly sales compared to non-perishables. Only perishable
products with a store shelf life of two to thirty days (items b. and c.) are examined
in this research. This is because non-perishables do not fit into the scope, and bakery
products are replenished multiple times a day depending on the customer demand.

2.2.2 Supply processes

Before explaining the supply processes of supermarket stores, the meaning of some words
are defined. When supermarket chain is stated, a certain supermarket brand is meant.
A supermarket chain usually consists of multiple supermarket locations and one or more
distribution centers (DCs). With a supermarket location, we mean one location of the
supermarket chain, that has a store where customers can shop. The supermarket location
can be further divided into the store warehouse, where products are delivered from trucks,
and the store, where shelves with products are replenished from the inventory in the store
warehouse, and where customers shop for products.

The delivery time of replenishment is different for each product, supermarket chain
and stores (Slimstock-Consultant, 2020). However, the process of supplying products is
quite the same for most supermarket chains. The supply chain of supermarket chains
consists of multiple food producers and wholesalers that supply non-food and food with
a long store shelf life to a DC. There, the products are repacked and distributed to one
or more supermarket locations. Food producers and wholesalers of perishable foods,
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however, usually supply supermarket locations directly, without interference of a DC
(Slimstock-Consultant, 2020; van Donselaar et al., 2006) or use cross-docking. The goal
of the direct delivery by producers is to reduce the lead time. Because of this reason, only
supermarket stores and not DCs are taken into account in this research. Replenishment
trucks come to the supermarket location every day at different times, though usually in
very similar routes (Slimstock-Developer, 2020). Not every product is replenished every
day, but if a product is replenished in the store warehouse by a truck, this is at most once
a day. However, replenishment of the product’s shelf from the store warehouse could
happen more than once a day (Slimstock-Consultant, 2020). In general, the delivery
frequency of perishable goods is higher than the delivery frequency of non-perishables
(van Donselaar et al., 2006).

2.2.3 Inventory management

The inventory policy of supermarket stores is usually modelled with an (R,s,nQ)-policy.
The order quantity is rounded up to n case pack sizes Q, i.e. it is not possible to replenish
half a six-pack of soda cans. Furthermore, when ordering the lead time and review time
of the product are taken into account. Typical for the food retail are short review and
lead times. However, a review time of one day does not necessarily mean that a product
can be ordered on each day. As a traditional week consists of five working days and two
days weekend, a limited number of products can be ordered or replenished during the
weekend, i.e. the review (and lead) times are not static for a product.

A typical inventory characteristic in supermarket stores is the presentation stock.
Shelves filled with products are just as much part of overall product presentation as
good-looking packaging. Supermarket store managers generally want shelves (visually)
filled, even though they risk expiration of products when more products are on the shelf
than necessary. Furthermore, when multiple batches of one product are on the shelf, and
the batches have different shelf lives, managers strive to fill the shelf with products with
a shorter store shelf life on the first row. Usually, a product is picked first-in-first-out
(FIFO), but some consumers pick the product with the longest available store shelf life,
and pick last-in-first-out (LIFO) (Li, Yu, & Wu, 2016). However, in the last couple of
years supermarket chains have started to discount products that have a short remaining
store shelf life, in order to promote buying FIFO and influence customer demand (Chen,
Pang, & Pan, 2014).

2.2.4 Customer demand

Striving for high availability is a characteristic of food retail customer demand. For su-
permarket chains, the availability of products is most important (Slimstock-Consultant,
2020), while maintaining below a certain level of food waste. Food waste is a high
cost item for supermarket chains (Slimstock-Consultant, 2020) and usually the manag-
ing board sets a maximum budget (Van Donselaar & Broekmeulen, 2012) or maximum
percentage (Slimstock-Consultant, 2020) for waste disposed. Lastly, the likelihood of
substitutes implies that customers buy another product or the retailer experiences lost
sales, and that therefore backordering is not part of the inventory policy.

Another characteristic of supermarket store customer demand is the high number of
order lines. Typical for supermarket stores compared to other businesses in retail are
the many customers (or order lines), i.e. a customer of a supermarket store usually buys
less than 5 cucumbers at once instead of 100 such as customers of a wholesaler. Besides,
the number of customers per day varies throughout the week. Customer demand for
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supermarket stores is typically non-stationary within a week, meaning that more products
are bought on Fridays and Saturdays than on other days of the week (Broekmeulen & van
Donselaar, 2009). Furthermore, another characteristic of supermarket customer demand
is that customers often buy substitutes or sales are lost, i.e., when the favourite salad of
the customer is sold out, the customer chooses another salad or the customer does not
buy a salad at all.

Lastly, food retail products are highly susceptible to demand variations around pro-
motions and events. Demand forecasts and actual sales during and right after a promotion
or event are highly influenced. Since promotions often take place, forecasting demand
during promotions is not difficult when taking historical sales into account (Slimstock-
Consultant, 2020). However, during promotions, the variability in demand increases, and
so do the probabilities on stock-out or waste.

2.3 Ordering process

Now that the theoretical inventory model of Slim4 and some supermarket chain and
store characteristics are explained, this section explains how in practice decisions on
order quantity and waste are taken when supermarket chain clients use Slim4. But first,
a more detailed description of the service level is given. The service level in Slim4 is
defined as the fill rate, which is the (expected) percentage of demand sold from the shelf.
The target fill rate is a tactical or strategical parameter of the product, and for most
clients of Slimstock the target fill rate of a product is determined by estimating the
importance of the product on-shelf (Slimstock-Developer, 2020). The target fill rate can
be based on the ABC-classification and/or volatility of demand. In supermarket stores,
a slow-moving perishable item gets a target fill rate of 70%, whereas a fast-moving item
gets a target fill rate of more than 95% (Jiang, Shi, & Shen, 2019).

Currently, there is no insight on what the probability of waste of products on the
shelves after replenishment is, when deciding on how much to order. In case the company
wants to overrule the calculations, tailor-made logic is configured to manipulate the order
advice to the client-specific needs. Furthermore, the inventory manager or planner is
always able to adjust the actual order quantity.

2.4 Case study

In this section, we perform an analysis of the data of a Dutch supermarket chain and client
of Slimstock. We further refer to this supermarket chain as Supermarket. Supermarket
has integrated Slim4 in all its stores and one DC. All stores contain over 20.000 products
and both non-food and food products are part of the assortment of Supermarket. For
this analysis, Supermarket provided product information and transaction data of two
consecutive months of all stores and DC, and two years of historical sales. Since the DC
is out of scope, the data of the DC is taken into account. The studied period in this case
study was the transaction and product information data of two consecutive months. The
data provided are transactions of all shops and product information, such as the average
store shelf life, MOQ/IOQ, and target service level.

New and end-of-life products were excluded from the analysis. SKUs were removed
from the analysis when they satisfied at least one of the following criteria: (1) SKUs
marked as end-of-life, (2) SKUs removed from the assortment in the studied period, (3)
SKUs introduced into the assortment during the studied period, (4) SKUs without sales
in the studied period.
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The data cleaning process was short: A small percentage of the products had a set
shelf life of 0, which is not possible in practice. Based on other products in the same as-
sortment category with the same characteristics, the assumption was made that the shelf
life was 7, 3 and 1 days for flowers & plants, agricultural and bakery products respec-
tively. Perishables in the assortment are covered by the categories of bakery products,
agricultural, cheese, meat, chilled, flowers & plants, and groceries.

The goal of the analysis was to find out what part of the assortment generates most
waste and should, therefore, be the focus of this research. For this analysis, we selected all
transactions with type ’waste’ and used all SKUs that had at least one ’waste’ transaction
in the researched period. Within the products with waste, we differentiate between
products with a low waste percentage and a high waste percentage, such that about 50%
of the products have a high waste percentage. The threshold for this is 8%, i.e. around
50% of the products that encountered waste at least once in the research period have
a waste percentage of 8.01% or higher and are defined as products with a high waste
percentage. The products with a low waste percentage are denoted by the orange color
in Figure 2.1. The results of the analysis are as follows.

Figure 2.1: Distributions of waste of perishable SKUs in the studied period

• This research should focus on those assortment categories that experience most
waste. When we take a look at the assortment categories of wasted products,
about 55% of them are covered by the agricultural and chilled assortment categories.
Thus, this research focuses on products from the agricultural and chilled assortment
categories only.

• About 90% of the products with a high waste percentage are fast-movers, defined
as products with at least 24 customer order lines per year (Gelders & Looy, 1978).
This means that the research is focused on fast-movers.

• 77% of the products with a high waste percentage have a review time of 1 day, called
continuous review. The other products have a review time of two days or more.
This means that the to-be-developed model should not only assume continuous
review.

• About 11% of products with a high waste percentage have an MOQ (batch size)
resulting in an inventory that is equal to or larger than the demand during shelf
life. We computed this by diving the MOQ by the demand during shelf life (as will
be explained in Section 3.3). This means that for 11% of the products with a high



Chapter 2 Context analysis 13

waste percentage, one of the problems is an MOQ that is too large (or sales that
are too low).

• One would expect that products with a short shelf life (seven days or shorter) are
the products experiencing more waste compared to products with a longer shelf life.
However, of the products with a high waste percentage in the chilled assortment
category, 92% has a shelf life between 8 and 30 days. This means that all shelf
lives up to 30 days should be included. Note that most product shelf lives are fixed
because of an expiration date on the package. For some agricultural products,
however, the shelf life is variable, e.g. a mango in a crate might last three or four
days depending on environmental factors.

2.5 Conditions for implementation

In addition to the scope defined in Section 1.4, the analytic method should estimate the
expected waste of a perishable product given a certain service level. The opportuni-
ties for this are high since currently waste is not explicitly taken into account into the
standard (R,s,nQ) inventory model. The to-be-developed model should help inventory
managers or planners with the decision making on order quantities based on service level
and expected waste. A limitation is that the model should not decrease Slim4’s perfor-
mance on inventory management. Furthermore, the user-friendliness of Slim4 may not
be pressurized and the new method should be well-structured and easy to understand,
as logistic managers prefer this in practice (Haijema & Minner, 2019).

Thirdly, the model should be an add-on to the current inventory policy and param-
eters described in Section 2.1, otherwise, there is no practical relevance to this research.
This does not mean that the model should be entirely based on the current parameters
and variables in Slim4, but implementing a method that calls for many extra data points
is impractical.

Finally, the model should serve as a decision making aid for tactical decisions. This
means that the expected waste for a group of products or a single product is determined
during a tactical service level analysis. Changes in the order quantity will, therefore,
not influence the displayed expected waste. Furthermore, a tactical model implies that
operational decisions such as promotions and discounting products with a store shelf life
of 0 or 1 day, are out of scope for this research.

2.6 Conclusions

In conclusion, this chapter guides the literature review in the following direction. We
will read literature considering an extension to the standard (R,s,nQ) ordering policy
that estimates waste for fast-moving perishable products with a fixed or variable shelf
life ranging from 2 to 30 days in the chilled and agricultural assortment categories.
The model should be easy to understand and support tactical decisions. The inventory
policy preferably takes a service level metric (such as the fill rate) into account. Other
necessities are presentation stock, mixed FIFO and LIFO withdrawal, substitution, lost
sales, non-stationary demand, a positive review time, and a positive lead time. Lastly,
models should be found that determine waste and service level simultaneously.





Chapter 3

Literature

In this chapter, we find out about the most important models and theories on modelling
service level and waste through an extensive literature study. The process of this study
is explained in Section 3.1. The conclusion of Chapter 2 gave direction to this literature
search with assumptions and characteristics the to-be-developed model should adhere to.
Section 3.2 explains how these assumptions and characteristics are modelled in literature.
Models concerning service level and waste simultaneously are described in Section 3.3.
Some calculations of expected waste are exact. These calculations can be found in Section
3.4. Other calculations are approximations of expected waste, that can be found in
Section 3.5. This chapter ends with a conclusion that answers the following research
questions:

2. What can we learn from literature about modelling service level and waste?

a. How can substitution, shelf life, non-stationary demand, presentation stock,
and partial FIFO demand be modelled?

b. What models concerning both the calculation of expected waste and the target
service level are described in literature?

c. How do we calculate the expected waste?

3.1 Search process

This section contains the search process of the literature found and used in this chapter.
The objective of this research is to develop a model that estimates the probability of
food waste of perishable goods based on a given service level. Therefore, the goal of the
literature search was to find literature considering tactical models that model the trade-
off between service level and waste, and models that determine the expected waste. As
described in Section 2.6, the literature should consider estimating waste for fast-moving
perishable products, with a fixed or variable shelf life, a presentation stock, mixed FIFO
and LIFO withdrawal, substitution or lost sales, non-stationary weekly demand, a pos-
itive review time, and/or a positive lead time. The literature described in this chapter
was sourced from Google Scholar and the University of Twente Worldcat catalogue from
September to November 2020. The main search terms used were a combination of perish-
able or food, waste or outdating or disposal, estimate or model, inventory management,
service level, fill rate, and/or shelf life.

3.2 Assumptions and characteristics

Before we explain what models were found that estimate the expected waste resulting
from a given target service level, we first research some assumptions and characteristics
that are applicable to this research. Namely, how to model substitution, shelf life, non-
stationary demand, presentation stock, and how to model partial FIFO withdrawal. First
of all, The research on substitution was very limited, i.e. substitution was only considered
for a two-product case, making it inapplicable to this research. Besides, no data is
available on substitution. Furthermore, no scientific literature was found on overriding
safety stocks by means of presentation stock. This makes sense since most research on
safety stocks is about calculating safety stocks, and manually adjusting safety stocks

15
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is therefore not a logical subject for research, although this does occur in practice for
various reasons. For shelf life, modelling partial FIFO withdrawal and stochastic non-
stationary demand more results were found. These characteristics are discussed in the
next two sections.

3.2.1 Shelf life

One literature review has mentioned that in perishable inventory literature, product
shelf life and customer demand play the most important role (Chaudhary, Kulshrestha,
& Routroy, 2018). We consider the shelf life first. The product shelf life or product
lifetime can be fixed, or random. An example of random lifetimes is fresh fruits and
vegetables (Chaudhary et al., 2018). Chen & Lin (2002) mention that the deterioration
time can be modelled by a Normal distribution and this is the most used distribution for
shelf life in real-world cases. Another paper mentions Exponential distribution for the
shelf life (Duong, Wood, & Wang, 2015), suitable for products with a very short shelf
life. However, most papers assume fixed shelf lives since this simplifies calculations.

3.2.2 Partial FIFO withdrawal

As explained in Section 3.4, partial FIFO withdrawal can be modelled by a FIFO frac-
tion, which is the fraction of demand withdrawn in FIFO order. The research done on
product’s FIFO fractions is limited (Bastiaanssen, 2019). The papers found by Basti-
aanssen mentioned different FIFO fractions, ranging from 0.25, to 0.6 or even 0.9. In his
own research, Bastiaanssen found that FIFO fractions differ per store, but differences
between products were most significant. Consequently, it should not be assumed that
FIFO fractions are equal for different products in the same product category.

3.2.3 Non-stationary demand

Stochastic demand can be modelled by using multiple probability distributions, such
as Normal, Lognormal, and Exponential for fast-moving products (Chaudhary et al.,
2018). Models that include stochastic as well as time-varying (non-stationary) demand
better serve inventory models than models that only consider stochastic demand, but
contributions in research on more than two products are limited (Chaudhary et al.,
2018). In the literature found, two calculations were often used to model non-stationary
demand. Firstly, in Rossi (2010), the demand is modelled as the expected demand on day
t (Rossi, 2013). Secondly, in the paper of Pauls-Worm et al. (2014), demand is modelled
by a Normal distribution in a certain time period and differs per day. For all products
in the research, the empirical standard deviation was replaced by a certain value, such
that the coefficient of variation is 0.33 for each product (Pauls-Worm, Hendrix, Haijema,
& van der Vorst, 2014). This ensures that the probability that the demand is less than
0 items is almost zero. According to Silver, Pyke and Thomas (2017), the Normal
distribution can only be used if the ratio σL/µL is smaller than 0.5. Otherwise, it is
more desirable to use the Gamma distribution for the demand (Silver et al., 2017), or
another PDF positive on the x-axis, such as the Lognormal distribution since with these
distributions only positive values for expected demand are realizable.
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3.3 Modelling waste and service level simultaneously

One of the first papers written on perishable inventory management was by Van Zyl in
1964 about replenishment policies for a single echelon inventory system for perishable
goods with a fixed lifetime and stochastic demand (Van Donselaar & Broekmeulen, 2012).
It was argued at that time that different policies for non-perishable and perishable goods
were needed since "the assumption that an item can be stored indefinitely in warehouses
does not hold for perishable goods" (Balugani, Lolli, Gamberini, Rimini, & Babai, 2019).
Today, perishable inventory models are a hot topic, which is demonstrated by a large
increase in the number of papers published on the subject from 2012 compared to before
2010 (Janssen, Claus, & Sauer, 2016). Most papers research other ordering policies
than the standard (R,s,nQ)-policy in the setting of food retail, food production, blood,
and medicines, such as an (R,s,nQ,Qmax)-policy where the order quantity is nQ but
at most Qmax. Adjusting the standard ordering policy in these papers is often done
with minimizing costs as the objective. In some of these models, costs for disposing of
outdated/expired products are taken into account. However, models with an objective
to minimize waste are rare, which is also denoted by Jansen et al. (2016). Among
these models that estimate expected waste, only some take the service level into account
(Janssen et al., 2016; Bijvank & Vis, 2011). Furthermore, when models account for a
service level, it is mostly assumed that the target level is already set instead of proposing a
method that determines the best target service level. In all perishable literature inventory
models, only two papers were found with the objective to model service level and waste
simultaneously.

First of all, Van Donselaar & Broekmeulen (2012) derived two approximations for
the expected waste, also denoted as the relative outdating z. The authors define the
relative outdating as the ratio between the expected daily outdating quantity and the
expected daily demand. More about the approximations is explained in Section 3.5.
By calculating the approximations for every fill rate percentage, an Efficient Frontier is
obtained as a result. The Efficient Frontier can be seen in Figure 3.1, where the expected
outdating is set out to the fill rate. The lines in the figure represent all products with a
certain shelf life M . The figure should be read as follows: if a product has a shelf life
of 3 days and the maximum outdating target is at most 10%, the target fill rate is set
to 77%, and vice versa. Clearly, the expected outdating grows exponentially when the
fill rate is approaching 100%. The approximations were calculated by assuming a FIFO
withdrawal policy and stationary demand. Since FIFO underestimates outdating when
a part of the products on shelf is withdrawn in LIFO order, this means that the Efficient
Frontier represents a lower bound for the outdating percentage for any given fill rate or
an upper bound for the target service level as the diagram is symmetric.
Secondly, Broekmeulen & Van Donselaar (2019) derived another Efficient Frontier based
on the assumptions of Van Donselaar & Broekmeulen (2012) and slightly reformed the
approximations. In this paper, the Efficient Frontier was determined for each store, by
analyzing specific item-store combinations, and a distinction was made between assort-
ment categories. The authors argued that analyzing each store separately is fairer since
each store experiences different sales for each item.

Finally, Broekmeulen & van Donselaar (2019) propose a first indicator of outdating,
called the Fresh Case Cover (FCC). It is a simple formula, defined as the case pack size
Q divided by the demand during shelf life, also denoted as:

FCC =
Q

Mµ
(3.1)
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Figure 3.1: Efficient Frontier per shelf life (Van Donselaar & Broekmeulen, 2012)

Note that the case pack size is expressed as Q, and the order quantity is expressed as ntQ.
If a product’s FCC > 1, this means that the case pack size is too large for its demand
during shelf life. This is an indicator that either the demand should be enlarged, the shelf
life should be elongated or the case pack size should be reduced. Furthermore, an FCC >
1 indicates that the service level is achieved and has outdating as a result, independently
of the set target service level or outdating target. For products with an FCC < 1, in
theory, the lower the FCC, the higher the probability of achieving the service level and
the lower the expected outdating.

3.4 Exact calculations for the expected outdating

Early models that calculated the expected outdating were based on the calculations of
Nahmias (1982). The author based the model on stochastic demand and unrealistic
assumptions, such as a fixed shelf life of two days, zero lead time, continuous review,
a FIFO issuing policy, and backlogging. Chiu (1995) extended this model by adding a
positive lead time (Chiu, 1995). In both papers, the expected outdating was calculated
based on the order quantity. In another paper, the number of outdates is calculated
by taking the remaining shelf life of the batches in the inventory into account, rather
than calculating the expected outdates based on the order quantity (Duan & Liao, 2013).
Furthermore, this model is capable of estimating the number of outdates for a certain
planning horizon longer than L + R + M in the beforementioned models. The paper of
Lowalekar & Ravichandran (2017) bases the expected outdates on the age of the inventory
too (Lowalekar & Ravichandran, 2017). However, this paper concerns itself in the setting
of a blood bank environment, with assumptions and model characteristics that do not
fit the fast-moving retail setting of this thesis, such as a Poisson distribution, not more
than one outstanding order per product per unit time, and the assumption that a batch
starts aging only after the older batch is completely removed from inventory.

The most interesting papers found that calculate outdating with exact calculations
are the papers of Broekmeulen & Van Donselaar (2009) and Haijema & Minner (2019).
Both papers estimate the expected outdating with exact calculations based on the age of
the inventory in a (deterministic) simulation. The two models are built under different
assumptions leading to different model characteristics. Before we dive into the equations
of these papers, first the equations are explained that are used in the standard (R,s,nQ)-
policy by Silver, Pyke and Thomas (2017) and the EWA-policy in the next subsection.
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3.4.1 (R,s,nQ)-policy equations

In the (R,s,nQ) policy, an order advice is generated when the inventory position IPt on
day t just before placing an order is below the dynamic reorder level st. Let L be the lead
time, R the review time, and L + R the cover period. The reorder level is the dynamic
safety stock plus the dynamic expected demand during the cover period. We define this
as follows.

st = SSt +
t+L+R∑
i=t+1

E[Di] (3.2)

where the safety stock SSt is calculated as

SSt = kt · σDL+Rt (3.3)

where kt is the safety factor on day t, and σDL+Rt is the dynamic standard deviation
of the demand during the cover period (Silver et al., 2017). Equation 3.2 is true if the
demand during the cover period is modelled by a Normal distribution. The standard
deviation of the demand during the cover period is calculated as

σDL+Rt = σDt ·
√
L+R (3.4)

For the determination of the safety factor, the target fill rate β∗ is incorporated. The
first step to estimate the safety factor in a lost sales situation is to use Equation 3.5.

G(kt) =
ntQ

σDL+Rt
· 1− β∗

β∗
(3.5)

Let G(kt)) be the normal loss function of kt and ntQ the order quantity. In the book
of Silver, Pyke, and Thomas, ntQ and β∗ in Equation 3.5 are static values resulting in
a static value for the safety factor kt unless the value of σDL+Rt changes. In this thesis,
however, ntQ is not a static value and could change per day. Therefore, the value of kt
could change every day. We define ntQ based on a existing formula (van Donselaar &
Broekmeulen, 2013) made applicable to non-stationary demand as follows:

ntQ = max

(
MOQ,

t+R∑
i=t+1

E[Di]

)
(3.6)

As for G(kt) in Equation 3.5, the normal loss function is given in Equation 3.7.

G(kt) = φ(kt)− kt · (1− Φ(kt)) (3.7)

where φ(kt) and Φ(kt) are the probability density function and the cumulative density
function of the standard Normal distribution respectively.

In case IPt < st, a number of case packs nt of size Q are ordered such that the
inventory position after replenishment is exactly or just above the reorder level. The
number of case packs nt to order can be calculated as follows.

nt =

⌈
st − IPt

Q

⌉
(3.8)

where dxe rounds up x to the nearest integer.
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3.4.2 EWA-policy

This subsection explains the EWA or Estimated Withdrawal and Aging policy that is
used in the paper of Broekmeulen & Van Donselaar (2009) described in the next sub-
section. The EWA-policy differs from the standard (R,s,nQ)-policy by not only taking
the inventory position of the current day into account, but also the expected outdating
in L+ R − 1 days when determining the ordering quantity. This means that the EWA-
policy orders the rounded difference between the order level and inventory position plus
the expected outdating, whereas the standard inventory policy only orders the rounded
difference between the order level and inventory position. The example below explains
why it is important to correct the order quantity for the expected outdating.

Consider the example used in the former sections. The product has a lead time of 1
day, 1 day review period, a fixed safety stock of 15 units, a case pack size of 1, expected
demand of 10 items, and a physical inventory of 20 items. The inventory consists of two
batches, namely batch A of 15 items with shelf life t+ 1 day and batch B with 5 items
with shelf life of t + 4 days. For now, let’s assume FIFO demand. On day t + 1 the
order level is equal to the safety stock plus expected demand in R + L − 1 = 1 day, or
15 + 10 = 25. Using Equation 3.8 and the standard (R,s,nQ)-policy, the order quantity
of day t+ 1 is equal to (25− 20)/1 = 5 items. However, the EWA policy uses a slightly
different equation to calculate the order quantity, namely an extension of Equation 3.8.
The number of case packs to order on day t is dependent on the expected outdating
EWAzi in the next R+ L− 1 days and is defined as:

nt =

⌈
st − IPt +

∑t+L+R−1
i=t+1 zi

Q

⌉
(3.9)

The expected outdating can be determined by Equations 3.10, 3.12, and 3.13. Assuming
FIFO withdrawal and an actual demand equal to the expected demand, the withdrawal
of items on day t + 1 is equal to 10. All items in batch A will expire after day t + 1,
meaning that all non-sold items of this batch will be outdated. Since the number of items
in batch A is 15, and the number of items withdrawn from batch A is 10, 5 items will
be outdated. Therefore, EWAzt+1 is 5, and the order quantity on day t+ 1 is equal to
(25− 20 + 5)/1 = 10 units.

Compared to the standard (R,s,nQ)-policy, the EWA-policy orders 10 instead of 5
units. This is important, since on day t = 2 the (R,s,nQ)-policy expects the inventory
position to be 25 + 5 = 30 units. However, the inventory position will be 25 + 5 - 5 =
25 units, since 5 units with expiration date t+1 are outdated on day t+2. Therefore, on
day t+ 2, the inventory is 5 items short, which might results in lost sales. However, for
the EWA-policy this is not the case. Since the EWA-policy resulted in an order quantity
of 10 units, the inventory position on day t+ 2 is equal to 25 + 10 - 5 = 30 units, which
is exactly the number of units needed.

3.4.3 Equations from Broekmeulen & Van Donselaar (2009)

This paper takes either strict FIFO or LIFO withdrawal, a fixed safety stock for each
week, and non-stationary demand into account. These last assumptions are usually not
applicable to food retail. However, other assumptions and characteristics of the model
fit the retail setting in this thesis well. The calculations of this paper were used in many
other papers, and are as follows.
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The maximum shelf life M results from the best-before date stamped on the product
by the manufacturer. The amount of outdating depends on how many items from each
batch are chosen by the customers. In the FIFO case, customer demand is satisfied by
the oldest batch. Let Btr be the number of units with the same remaining shelf life r on
day t, where r is between 1 and M days. Furthermore, let Wtr be the number of units
withdrawn from a batch with remaining shelf life r on day t. The withdrawal Wtr is the
minimum of the remaining batch size Btr and the unsatisfied demand from older batches
on the shelf, such that

Wtr = min

[
Btr, δt −

r−1∑
i=1

Wti

]
(3.10)

Here, the customer demand δt is the actual demand on day t. For example, a shelf with
one product contains two batches, one of size 15 with r = 1, and one of size 5, with
r = 4. Furthermore, the actual demand is 10. Equation 3.10 then ensures that 10 items
with r = 1 are withdrawn from the shelf, and zero items with r = 4 are withdrawn.

In the LIFO case, customer demand is satisfied by the newest batch. Therefore, the
withdrawal of a batch on day t is the minimum of the remaining batch size and the
unsatisfied demand from fresher batches on the shelf, with remaining shelf life r ranging
from M to 1 days. The formula is given in Equation 3.11.

Wtr = min

[
Btr, δt −

M∑
i=r+1

Wti

]
(3.11)

If we take the same example as before, Equation 3.11 ensures that five products with
r = 4 and five products with r = 1 are withdrawn.

At the end of each review period, a replenishment decision takes place which deter-
mines the order quantity and thus the batch size for L + 1 days ahead, also denoted as
Bt+L+1,m. After each day, batches with r = 1 are disposed of, and the other batches are
updated to account for aging and withdrawal. This is denoted as

Bt+1,r−1 = Btr −Wtr (3.12)

Let zt be the estimated amount of outdating on day t. The batch with a remaining shelf
life of one day will be disposed of, such that

zt = Bt,1 −Wt,1 (3.13)

Taking the same example as before, in a strict FIFO case, the batch with r = 1 day (Bt,1)
contains 15 items. After withdrawal on day t (Wt,1) of 10, the amount of outdating at the
end of day t (zt) is equal to 15 - 10 = 5 items. In a strict LIFO case, the withdrawal on
day t of the with batch r = 1 day (Wt,1) is 5. This means that the amount of outdating
at the end of day t (zt) is equal to 15 - 5 = 10.

3.4.4 Equations from Haijema & Minner (2019)

This paper is relevant since it assumes that a fraction of demand is met in FIFO order and
the rest is met in LIFO order. As in the former paper, the authors assume each product
has a maximum fixed shelf life M , a lead time L and review time R. Furthermore, ntQ
is the number of products ordered on day t and Bt,j is the number of products in stock
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that are j periods old. When an order is placed in period t, the quantities of outstanding
orders and the stocks levels are known. The inventory position IPt is, therefore, the
quantity ordered that arrives in the next 1 to L days plus the batches currently on the
shelves, such that

IPt =
L+M−1∑
j=1

IPt,j =
L∑
j=1

nt−jQ+
M−1∑
j=1

Bt,j (3.14)

Demand occurs after ordering and replenishment, and is assumed to be stochastic and
stationary with mean µ and standard deviation σ. A fraction f of demand is met in
FIFO order, so fraction (1− f) of demand is met in LIFO order. The fraction f and the
outdating that results from it have a non-linear relationship. Therefore,

√
f instead of

f is used in formulas to denote the non-linear relationship. The result is that the FIFO
demand distribution is fitted on a mean fµ with standard deviation

√
f ·σ and the LIFO

demand distribution is fitted on a mean (1− f)µ with standard deviation
√

(1− f) · σ.
Haijema and Minner present a fast way to estimate outdating R + L − 1 periods

ahead. The estimated outdating is defined as

zt =
√
f · zFIFOt + (1−

√
f) · zLIFOt (3.15)

where zFIFOt is the estimated outdating if the demand equals the mean demand over
R + L − 1 periods and all products are withdrawn in FIFO order. Taking the same
example as in section 3.4.3, with a FIFO fraction of 0.8, a zFIFOt of 5, and a zLIFOt of
10, the estimated outdating is equal to

√
0.8 · 5 + (1−

√
0.8) · 10 = 5.53 items.

The outdating estimation of Haijema and Minner focuses only on products with an
expiration date within the next R + L− 1 periods. E.g. when the maximum fixed shelf
life is 5 days, R = 1, and L = 1 we are interested in products that now have age j = 4
days since these products will expire in R + L − 1 = 1 day. Let IPt,j be the inventory
position of a batch of a product with age j on day t. The outdating estimate for FIFO
is then the difference between the old products on the shelf and the mean demand:

zFIFOt =

(
m−1∑

j=m−R−L+1

IPt,j − (R+ L− 1)µ

)+

(3.16)

where x+ is equal to max(0, x). The estimated outdating in case of LIFO demand zLIFOt

is calculated by taking the withdrawal from younger products into account, such that

zLIFOt =

(
m−1∑

j=m−R−L+1

IPt,j −

(
(R+ L− 1)µ−

m−R−L∑
j=1

IPt,j

)+)+

(3.17)

Although these exact outdating calculations are useful, in case of supermarkets this
simulation needs to be performed for thousands of products. Haijema and Minner note
that a faster way to determine the expected outdating is preferable. This is done by
approximations, and these are described in the next section.
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3.5 Approximations for the expected outdating

Since a simulation can take up a large amount of computation time, two researchers have
tried to come up with approximations of the expected outdating. The approximations
are explained below. Both approximations assume the Estimated Withdrawal and Aging
policy and FIFO withdrawal.

3.5.1 Approximations

The following approximations stand on some assumptions that are not at all applicable
to a perishable food case, but these were the only approximations found in literature.
However, the approximations can be used in the perishable food case since the approxi-
mations are improved by multiple linear regression, explained in the next section.

The first approximation of the relative outdating is based on the assumptions of
stationary demand and ample inventory on hand due to a large safety stock, and only
the replenishment of the large safety stock is considered. At day 0, a large order is
placed to replenish the safety stock. The replenishment will arrive L days later in the
store and will outdate M days after. The EWA-policy always looks L + R − 1 days
ahead to see how many products will be outdated. The earliest day the EWA-policy
identifies this outdating is at the review moment on (or immediately following) day
L+M − (L+R− 1) = M −R+ 1. This is at day d(M −R+ 1)/Re ·R, which is equal
to ρ = bM/Rc · R, where dxe resp. bxc denote the nearest integer higher (resp. lower)
than or equal to x. So, if today is day 0, we will order a batch with shelf life M and lead
time L, on day ρ the EWA-policy will identify that this batch expires in L+R− 1 days.

On day ρ, the age of the batch ordered on day 0 has age L + M − ρ. All products
not sold in L + M − ρ days will be identified as outdated in L + R − 1 days. So, the
modified inventory position at day ρ is equal to ||(L+m− ρ)µ||, where µ is the average
daily demand and ||x|| means the rounded number of x. Since the EWA-policy aims to
order at least the order level minus the inventory position plus the estimated outdating,
the number of case pack sizes to order on day ρ (nρ) is equal to

nρ =

⌈
s− ||(L+M − ρ) · µ||

Q

⌉
(3.18)

where Q is the case pack size. Since we order every ρ = bM/Rc · R days, the expected
relative outdating can be approximated by Equation 3.19:

zA =
1

ρµ
· E

[(⌈
s− ||(L+M − ρ] · µ)||

Q

⌉
·Q−Dρ

)+]
(3.19)

where Dρ is a stochastic variable representing the demand during ρ days. Substituting
Equation 3.18 as constant c and knowing X is a stochastic variable, the expected value
in Equation 3.19 can be calculated as

E[(c− x)+] =

c∑
x=0

(c− x) · P (X = x) (3.20)

where P (X = x) is the probability that the stochastic variableX is equal to value x. Note
that for this calculation, the demand should be modelled by a discrete distribution. In
the paper, the Mixed binomial, Geometric, Negative binomial, and Poisson distributions



24 Chapter 3 Literature

are used. The demand of the items are fitted to the distributions and parameters are
determined using the paper of (Adan, Eenige, & Resing, 1995). More explanations on
this method are given in Section 4.4.

The second approximation is based on the assumptions that demand is stationary and
the inventory position just after (potentially) ordering is uniformly distributed between
s− 1 and s− 1 +Q when an order is placed if and only if the inventory position is equal
to s − 1. We can write the uniformly distributed change in the inventory position as
∆ ∼ u[0, Q]. Note that this is a different setting than the setting described in (Hadley
& Whitin, 1963), where an order is placed when the inventory position is equal to or
below s and therefore the inventory position just after (potentially) ordering is uniformly
distributed between s+ 1 and s+Q.

Another assumption is that no outdating takes place in the first L+M−1 days. Then,
the expected outdating at the end of day L + M is equal to E[(s − 1 + ∆ −DL+M )+],
where DL+M is again a stochastic variable. Therefore, the relative outdating can be
approximated by:

zB =
1

ρµ
· E
[(
s− 1 + ∆−DL+M

)+]
=

1

ρµ ·Q
·
Q∑
i=1

E

[(
s− 1 + i−DL+M

)+] (3.21)

The authors tested both approximations zA and zB by comparing them to results of
multiple simulations, for which calculations explained in Sections 3.3.1 and 3.3.2 were
used to simulate the reorder points, order levels and order quantities for many weeks
under different input parameters. It should be noted that the approximations were only
used for products with up to 30% of outdating. The authors did subsequent research in
2019, where the approximations were generalised for outdating percentages above 30%
of which more is explained later in this section. However, for products with outdating
percentages of at most 30%, the approximations had low approximation errors. For
products with a short shelf life, zA had the lowest approximation error, but zB had
the lowest average approximation error overall. Next, the authors tried to improve the
outdating approximation by regression. This is explained in the next subsection.

3.5.2 Regression

A multiple linear regression model is used to determine what are the most important
factors for calculating the dependent variable. Furthermore, a regression equation can
be used to predict other factors of interest that were not tested. The dependent variable in
this case is the regression-based approximation for the relative outdating zregr. By taking
the estimated outdating from the simulation and calculating the independent variables,
the coefficients of the linear regression model αi(i = 0, ..., 7) can be determined. The
regression formula is as follows:

zregr = α0 + α1 ·
σ

µ
+ α2 ·

SS +Q− 1

µ
+ α3 ·

(
Q

µ
−R

)+

+ α4 ·
⌈
s

Q

⌉
· Q
µ

+

α5 · (1− P2∗) + α6 · zA + α7 · zB
(3.22)
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The reasoning behind the variables is as follows:

• Variable σ
µ stands for the coefficient of variation, which measures the variation with

respect to the demand.

• According to Chazan & Gal (1977), the absolute outdating has a lower and upper
bound, which are a function of the maximum inventory level divided by the shelf
life, or S

m in case of an (R,S) policy. As explained earlier, the (R, s, nQ)-policy
has maximum inventory s− 1 +Q, therefore, the function is changed to s−1+Q

m , or
can be written as SS+(L+R)·µ−1+Q

m . However, since we are interested in the relative
outdating, the function should be corrected for the shelf life, hence SS+(L+R)·µ−1+Q

m·µ .
However, the regression is performed per L, R, and M combination. Therefore, the
values of L, R, and M are redundant. Hence, the function changes to SS+Q−1

µ .

• The case pack size Q has a large effect on the outdating when the case pack size
is larger than the expected demand during R. Hence variable

(Q
µ −R

)+. With Q
µ

we denote the number of days it takes for one case pack size to be bought and R
is the number of days in the review period. Such that, when Q

µ is larger than R,
there’s more relative outdating as a consequence.

• When analysing the simulation results, the authors noticed more relative outdating
when Q was relatively large compared to s, hence the term

⌈
s
Q

⌉
· Qµ .

• The variable 1− P2∗ stands for the effect of the fill rate.

• Lastly, variables zA and zB stand for the approximations mentioned in the previous
subsection.

By calculating the zregr for every fill rate percentage and the safety stock that fits this
fill rate, an Efficient Frontier (Section 3.3) is obtained as a result.

In their research of 2019, the authors removed variable (1−P2∗) from the regression,
as this variable had little added or even a negative value on zregr, probably since the
target service level is also incorporated in the safety stock in variable two. Furthermore,
the approximation was generalized for products with a outdating percentage of over 30%.
A weighted combination of zA and zregr was used rather than zregr, namely:

z
′
regr =

zregr + zx+1
A

1 + zxA
(3.23)

since zA performed well for high outdating SKUs, and in fact much better than Equation
3.22. Therefore, Equation 3.23 ensures that z′regr approaches zA when x is high. In the
authors’ case, x = 3 yielded the best results.

3.6 Conclusions

In conclusion, expected waste or outdating can be modelled with exact calculations or ap-
proximations, both of which involve the target service level. When the expected outdating
is determined for many target service levels, an Efficient Frontier can be drawn. Research
on certain assumptions and characteristics of the food retail environment showed that
modelling substitution is difficult, shelf life is best modelled as a fixed value, both FIFO
and LIFO withdrawal is assumed, and non-stationary demand can be modelled by a
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Normal distribution, or Gamma distribution in case of high variability. Tables 3.1 and
3.2 denote the papers that are of most use in this thesis, namely (1) Broekmeulen &
Van Donselaar (2009), (2) Broekmeulen & Van Donselaar (2019), (3) Haijema & Min-
ner (2019), and (4) Van Donselaar & Broekmeulen (2012), and their characteristics and
assumptions.

For estimating the expected outdating on the basis of a service level, papers (2) and
(4) are most extensive, paper (1) is useful for order level calculations and the EWA
policy, and paper (3) is useful for modelling mixed FIFO and LIFO withdrawal. Since
presentation stock was not mentioned in literature, this subject is addressed in the next
chapter.

Table 3.1: Relevant papers, their characteristics and assumptions (1)

Safety stock Presentation stock Policy Lead and Review time

(1) Per weekday No Lost sales Positive

(2) Fixed No Lost sales Positive

(3) Fixed No Lost sales Positive

(4) Fixed No Lost sales Positive

Table 3.2: Relevant papers, their characteristics and assumptions (2)

Shelf life Service level FIFO/LIFO Demand

(1) Fixed Fill rate FIFO Stochastic and non-stationary

(2) Fixed Fill rate FIFO Stochastic and stationary

(3) Fixed Fill rate Mixed Stochastic and stationary

(4) Fixed Fill rate FIFO Stochastic and stationary
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Model design

In this chapter, we develop our model based on the equations mentioned in Chapter 3 and
the standard inventory model described in Section 2.1. First of all, Section 4.1 denotes
the approach of the model. Secondly, Section 4.2 provides the assumptions. Next, the
model is explained with the simulation first in Section 4.3, the approximations second in
Section 4.4, and the regression last in Section 4.5. Then, it is explained how the Efficient
Frontier is constructed in Section 4.6. Finally, this chapter ends with a conclusion that
answers the following research questions:

3. How is the model formulated that estimate the expected waste on the basis of the
target service level for food retailers?

a. What is the design of the model?

b. What assumptions are made?

c. What equations, parameters and variables are used?

d. What alterations are made on the models from literature?

4.1 Approach

The design of the model is as follows. First of all, a simulation model is formulated for
all perishable products in all stores of Supermarket to determine the expected outdating
for each target fill rate. The paper of Broekmeulen & Van Donselaar (2009) is used as a
basis and the model described in Van Donselaar & Broekmeulen (2012) and Broekmeulen
& Van Donselaar (2019) is fully built as a start. However, the model is enhanced to
more accurately describe reality. Since in the former model strict FIFO withdrawal is
assumed, the calculations are enhanced by using the FIFO fraction f by Haijema &
Minner (2019). Furthermore, demand is modelled with a Normal distribution when the
coefficient of variation is smaller than or equal to 0.5 and a Gamma distribution else.
Other alterations of the model are the presentation stock, and non-stationary weekly and
yearly demand.

Secondly, the approximations of Van Donselaar & Broekmeulen (2012) are calculated.
Considering the computational complexity of the approximations, it was chosen not to
alter the approximations to the FIFO fraction, non-stationary demand, and presentation
stock.

Thirdly, the regression formula is formulated to improve the outdating approximation
as performed in the papers of Van Donselaar & Broekmeulen (2012) and Broekmeulen &
Van Donselaar (2019). Furthermore, new variables are formulated in order to account for
the modifications of non-stationary demand, presentation stock, and the FIFO fraction.
Then, the coefficients of the regression equation are calculated for all shelf life, lead time,
and review time combinations.

Lastly, an Efficient Frontier is constructed to see the effect of the target service levels
on the outdating percentages. An overview of the approach is visible in Figure 4.1.

27
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Figure 4.1: Flow diagram of the research approach.

4.2 Assumptions

We start building the model by formulating the following model assumptions.

Deterministic lead time: Products are assumed to have a positive and deterministic
lead time, i.e. when ordering it is exactly known on what day the product is replenished.

Periodic review: Products are assumed to have a positive and deterministic review
period, i.e. if R = 1, products are reviewed every day. If R > 1, products are reviewed
less frequently. Thus, products can only be ordered on their review day.

Presentation stock: Some products have a safety stock predetermined by the retailer.
The type of presentation stock used is a minimum safety stock, i.e. when the calculated
safety stock is below the presentation stock, the presentation stock is used instead. We
assume the presentation stock is fixed during the year.

Immediate replenishment: Products are received at the start of the day before the
demand takes place and the products are put on the shelf directly. This means that no
products are replenished from the store warehouse during the day.

Perfect supplier reliability: It is assumed that all products that are ordered are
delivered exactly after a certain lead time and in the right quantities.

Quantities and shelf lives of batches are known: The assumption is made that
retailers know exactly how many products are on shelf, what the quantities of the batches
are, and what the remaining shelf lives are. This is usually not the case in practice, but
this assumption is necessary to model the EWA-policy.

No substitution: Substitution in case of a stock-out is true in a retail setting, but no
data is available on whether the product bought was a substitution of another product.
Furthermore, limited research is performed on substitution and its effects on more than
two products. This has the following two implications:

• Unsatisfied demand is lost: It is assumed that excess demand is lost when the
number of items on shelf is insufficient to satisfy demand.

• Products’ demand distributions are independent: It is assumed that there
are no dependencies between the demands of products and each item is handled on
its own.

Partial FIFO & LIFO withdrawal: Products with multiple batches on the shelf
are susceptible to LIFO withdrawal. It is assumed that a certain fraction of demand is
withdrawn in LIFO order. Bastiaanssen (2019) has conducted a method to determine the
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FIFO fraction of a product. Since the determination of FIFO fractions is out-of-scope
for this thesis, assumptions are made. These are explained in Section 5.4.

Non-stationary demand: Demand is non-stationary during the week, i.e. the average
number of products sold on one day of the week is different from the average demand
of another day of the week. Furthermore, the demand for some SKUs is susceptible to
seasonality during the year.

Stochastic demand: Demand is unknown before ordering and follows a Normal distri-
bution when the coefficient of variation is below or equal to 0.5, and follows a Gamma
distribution else.

Fixed maximum shelf life: In the retail setting, a product could be spoiled even before
the expiration date or average shelf life. However, no data exists on the probability of a
product expiring before the expiration date or average shelf life. Thus, for all products,
the shelf life is assumed to be fixed. Therefore, the probability of a product expiring
before the expiration date is zero. Furthermore, it is assumed that aging of items starts
no earlier than when the items are brought into the store.

Items that are not sold during their shelf life are discarded: When a product is
not withdrawn from the shelf on the day of expiration, the product is disposed of by a
store employee at the end of the day.

The price of a product is constant over time: Although in the retail setting prices
change for many reasons, such as a discount on products with a remaining shelf life of
one day, for simplicity it is assumed that the price remains constant throughout time.
This implies that promotions are not taken into account in the model.

4.3 Simulation

This section describes the entire simulation model. First, the notation and calculations
are explained in subsection 4.3.1. Next, the logic of the simulation model is explained in
subsection 4.3.2.

4.3.1 Notation

In this subsection, we introduce the sets and indices, parameters, and variables used
in the model. Furthermore, we explain how the data was obtained when no data was
available. Note that all notation applies to all SKUs, i.e. for all products in all stores.

Sets

First of all, sets and corresponding indices are introduced. For simplicity, a year consists
of 52 weeks and 364 days. The indices are necessary to keep track of the day of the
simulation, the remaining days left until the SKU expires, and the week of the year.

• τ for day in history (τ ∈ 1, ..., 730)

• t for day of the simulation (t ∈ 1, ..., T )

• r for the remaining shelf life (r ∈ 1, ...,M)

• w for the week of the year (w ∈ 1, ..., 52)
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Parameters

This subsection contains all the parameters that serve as an input for the model. First,
we express the experimental input parameters of the model, which are explained in more
detail in Chapter 5. The experimental input parameters are:

• f for FIFO fraction

• β∗ for target service level (fill rate)

Next, we express the parameters that are denoted in Slim4 by the clients of Slimstock,
and in this case Supermarket. The data used in Slim4 is stored in a database, which
consists of several large tables, of which a transaction table with detailed information on
product transactions (date, quantity, number of order lines), and an article table with
characteristics of the article (lead & review time, MOQ, IOQ, two years of historical
demand) are most important. Other tables contain the store shelf life, the amount of
outdating in two consecutive months, seasonal demand patterns, and weekly demand
patterns. The input parameters retrieved from Slim4 are as follows:

• L for Lead time in days

• R for Review period in days

• M for maximum fixed shelf life in days

• Q for the case pack size in items

• PS for Presentation Stock in items

• Hτ for historical demand of day τ in items

• FCt for forecast of demand (expected demand) on day t in items

Some parameters in the previous list need further explanation. First, the list contains
parameters Hτ for the historical demand on day τ and FCt for the expected demand on
day t. Starting the simulation on Monday August 31st, 2020 (the first day of week 36 in
2020), FC1 represents August 31st, 2020. However, H730 represents Monday September
3rd, 2018, since this day is the first day of week 36 in the year 2018. FC0 and H0 do not
exist. The case pack size Q of an SKU is set equal to the MOQ of the SKU.

Next, the model uses parameters which are not retrieved from Slim4, but calculated
by an equation in Table 4.1, namely the average and sample standard deviation of daily
demand in a certain week.

For safety stock calculations in the simulation, the standard deviation of demand
is needed. This standard deviation is normally calculated per day. For simplicity, the
decision was made to calculate the standard deviation per week, such that the standard
deviation of daily demand σw is similar for each weekday in week w. In order to compute
σw, the average of daily demand µw in week w was calculated first, but is only used
in this calculation. Both parameters were calculated using two years of historical data
when available, such that, for example, the average and sample standard deviation of the
daily demand of week 1 were calculated by data from week 1 in 2019 and week 1 in 2020.
However, σw is not only used in the safety stock calculations, but also in the calculations
of actual demand δt, mentioned in Section 4.3.2, Process Sales.
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Table 4.1: Model parameters, notation, and equations

Parameter Symbol Equation

Average of daily de-
mand in week w µw

∑7w
t=7w−6Hτ

7
+

∑7(52+w)
t=7(52+w)−6Hτ

7

Standard deviation
of daily demand in
week w

σw

√∑7w
t=7w−6(Hτ − µw)2 +

∑7(52+w)
t=7(52+w)−6(Hτ − µw)2

14− 1

Table 4.2: Model variables, notation, and equations

Variable Symbol Equation

Actual demand on day t δt δFIFOt + δLIFOt

Withdrawal on day t of batch
with remaining shelf life r

WFIFO
tr min

[
Btr, δ

FIFO
t −

∑r−1
i=1 Wti

]
Withdrawal on day t of batch
with remaining shelf life r

WLIFO
tr min

[
Btr, δ

LIFO
t −

∑M
i=r+1Wti

]
Stock on-hand on day t of
batch with remaining shelf life
r

Btr max

[
Bt−1,r+1 −WFIFO

t−1,r+1 −WLIFO
t−1,r+1, 0

]

Expected outdating EWA on
day t Ezt

max

[
Bt,1 −WFIFO

t,1 −WLIFO
t,1 , 0

]
Total expected outdating
EWA on day t EWAzt

∑t+l+R−1
i=t+1 Ezi

Inventory position on day t IPt
Btr +OOt

Order quantity on day t ntQ max

[
0,

⌈
st − IPt

Q

⌉
·Q
]

Quantity on order before or-
dering on day t

OOt
∑t−1

i=t−L−R+1 niQ

Safety factor on day t kt See Equations 3.5 to 3.7

Safety stock on day t SSt
max

[
PS, kt · σi ·

√
L+R

]
, i =

⌈
t

7

⌉
Order level on day t st SSt +

∑t+L+R
i=t+1 FCi + EWAzt

Variables

Table 4.2 contains the variables used in the model, along with the notation and equations.
A distinction was made between output variables (see Table 4.3) and all other variables
(see Table 4.2). As for variables WFIFO

tr , WLIFO
tr , Btr, IPt, ntQ, kt and st, explanations

are given in Sections 3.4 and 3.5.1. As for δt, SSt, Ezt, and EWAzt, more explanation
is given below.

Actual demand δt is used to denote the actual demand on day t in the simulation. It
is a stochastic variable. More explanation is given in Section 4.3.2, subsection Process
Sales.

As for variable Expected outdating EWA on day t, Ezt, is the expected outdating
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determined by the EWA policy. As the values of the FIFO withdrawalWFIFO
tr and LIFO

withdrawal WLIFO
tr are calculated independently of each other, the sum of WFIFO

tr and
WLIFO
tr can be higher than Bt,1. Therefore, the Ezt is a max-function such that the

expected outdating is always a positive integer value.
Furthermore, the Total expected outdating EWA on day t, EWAzt, comprises the

total expected outdating using the EWA policy in the next L + R − 1 days. The value
of EWAzt is used to correct the Inventory Position IPt before ordering.

The safety stock SSt on day t is slightly different from the safety stock equation in
Section 3.4. First of all, in case a presentation stock PS is installed for a product, the
calculations for the safety stock are overruled when the presentation stock is higher than
the calculated safety stock. Furthermore, when calculating the safety stock, the standard
deviation of the forecast error is usually used. As the data is not sufficient to obtain the
forecast error, the variation in demand is used instead. Since the standard deviations are
calculated per week, the calculation of i ensures that the right standard deviation of the
current week is used. Lastly, the safety factor is at least 0, since a negative safety stock
is not possible.

Lastly, Table 4.3 contains other variables, their symbols, and their equations that
serve as output of the simulation model. At the end of each simulation day, the outdating
on that day zt, the lost sales lst, and the average remaining shelf life γt are registered.
Where the outdating is the number of products with a shelf life of one day, the lost sales
is the maximum of the demand not met from shelf and 0, and γ is the average remaining
shelf life of the products on shelf.

Subsequently, at the end of the simulation with length T , the totals are counted,
namely the total outdating TO, the total demand TD, the total lost sales TLS, the
total sales TS, and the average remaining shelf life Γ. Lastly, the actual service level
SL is calculated as 1 minus the lost sales percentage, and the relative outdating zsim is
calculated by dividing the total outdating by the total demand.

Table 4.3: Simulation output variables, notation, and equations

Variable Symbol Equation

Outdating on day t zt Bt,1 −Wt,1

Lost sales on day t lst max
[
δt −

∑M
r=1Bt,r, 0

]
Average remaining shelf life on day
t

γt

∑M
r=1 r ·Bt,r∑M
r=1Bt,r

Total outdating TO
∑T

t=1 zt

Total demand TD
∑T

t=1 δt

Total lost sales TLS
∑T

t=1 lst

Total sales TS TD − TLS

Average remaining shelf life Γ

∑T
t=1 γt
T

Actual service level SL 1− TLS

TD

Relative simulated outdating zsim
TO

TD
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4.3.2 Simulation logic

This section describes the logic of a day of the simulation model. Every simulation day is
the same and follows the following steps: receive orders, place new orders, draw demand,
process sales, age the inventory, dispose of expired items, save daily results, and start a
new day. This process is visualized by a flowchart in Figure 4.2. The process steps are
explained below the flowchart.

Figure 4.2: Flowchart of the simulation model

Receive orders

At the start of the first day of the simulation, the order level for the current day st is
calculated by using the equations in Table 4.2. This order is received immediately, such
that sales take place on that day. At the start of any other new day, the orders that are
due on this day are received. Because of lead and review times, not all products receive
orders each day. As a new order is received, the current inventory is updated with the
number of items from the new batch.

Place orders

The next event on a day is to place orders. In accordance with the assumptions in
Section 4.2, all batch quantities and their shelf lives are known. The number of products
to order ntQ is calculated by subtracting the inventory position IPt from the order level
st, which are calculated with equations in Table 4.2. Where IPt is the on-hand inventory
Bt,r plus the quantity on order OOt minus the expected outdating in R + L − 1 days
EWAzt determined by the EWA policy. The logic of determining the expected outdating
in R+ L− 1 days is as follows:

Starting with i = t+ 1 and the expected outdating EWAzi on day i = t+ L+R− 1 is
equal to 0:

While i ≤ t+ L+R− 1:

1. Determine the estimated FIFO withdrawalWFIFO
ir and estimated LIFO withdrawal

WLIFO
ir of batch with remaining shelf life r on day i by using the equations in

Table 4.2. We assume the actual demand δi in period i is equal to the expected
demand in period i: FCi. Assuming a FIFO fraction exactly equal to the assumed
FIFO fraction f , the FIFO demand FCFIFOi on day i is f · FCi and FCLIFOi is
FCi − FCFIFOi .

2. For all remaining shelf lives r, determine the remaining batch sizes Bir of each
batch at the end of period i by the equation in Table 4.2.
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3. The expected outdating Ezi on day i is equal to the remaining items left in batch
Bi,1 since these items expire at the end of day i. Remove these items from inven-
tory, save the quantity as expected outdating Ezi on day i and age the remaining
inventory.

4. Add the number of outdated items Ezi on day i to the total expected outdating
EWAzi on day i. Continue with step 1, while i < t+ L+R− 1 and simulate the
next day using i = i+ 1. Stop otherwise.

The total expected outdating on day i is equal to EWAzi and is added to the order level.

Determine demand

After orders are placed, actual sales take place. But before the sales take place, it must
be determined how many items are bought on this day and from which batch. In order
to process the actual store demand for a product, a random number representing the
total demand is drawn from a probability distribution. The Normal distribution is used
in case the standard deviation σw of the current week w divided by the forecast FCt
on day t is smaller than or equal to 0.5. Otherwise, the Gamma distribution is used.
The Normal distribution uses two parameters, namely the mean, which is equal to the
forecast FCt on day t. The second parameter is the standard deviation σw of week w.
For the Gamma distribution, the parameters are b and θ. Using FCt and σw from the
Normal distribution, shape parameter b and scale parameter θ are calculated as follows
(based on (Silver et al., 2017)):

b =
(FCt)

2

σ2w
(4.1)

θ =
σ2w
FCt

(4.2)

Process sales

The random number drawn from the probability distribution in the previous step repre-
sents the total demand of that day. Next, the LIFO and FIFO demand is determined. As
input parameter, there is the FIFO fraction f . However, the LIFO demand is not exactly
1 − f times the total demand on each day. Therefore, LIFO demand is determined by
drawing a random number from the Binomial distribution with parameters number of
trials δt, the actual demand determined in the previous step, and success factor 1 − f ,
the LIFO fraction. Consequently, all non-LIFO demand is FIFO demand. Starting with
the LIFO demand, products are retrieved from the store shelf and the products with the
longest shelf life are picked first. Then, products with the shortest shelf life are picked
to fulfill FIFO demand.

Dispose of expired items

At the end of each day, products with a remaining shelf life of 1 day are removed from
inventory and the number of items is noted as outdated. Then, the total number of items
in inventory is counted.
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Save daily results

In the last step of the day, daily results are saved. This entails the number of items
delivered, the sales, the lost sales, the demand, the number of items outdated, the starting
inventory, the ending inventory and the average remaining shelf life of the inventory at
the end of the day.

New day

Then, a new day is started by increasing the day number t with 1, increasing the weekday
number d with 1, reducing the remaining shelf lives r of all batches in inventory with one
day, initializing all variables, and counting the number of items in inventory at the start
of the day.

4.4 Approximations

This section describes the calculations of the stationary approximations zA and zB from
Section 3.5.1. First, additional notation is needed. For simplicity, all notation used in
both the approximations as well as the regression are denoted in this section.

4.4.1 Notation

Sets

The approximations and regression equation use the following sets and indices.

• d for the day of the week (d ∈ 1, ..., 7)

• m for the month of the year (m ∈ 1, ..., 12)

Parameters

The following parameters are used in the approximations and regression equation:

• WSFd for weekday seasonal factor on weekday d

• MSFm for monthly seasonal factor of month m

Next, three parameters are calculated by a formula in Table 4.4.
Table 4.4: Model parameters, notation, and equations

Parameter Symbol Equation

Expected daily demand µ

∑364
t=1 FCt
364

Standard deviation of expected daily demand σ

√∑364
t=1(FCt − µ)2

364− 1

EWA outdate period ρ

⌊
M

R

⌋
·R

First of all, the expected daily demand µ and the sample standard deviation of
expected daily demand σ were calculated. Both parameters were calculated with forecasts
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of 364 days, including all days of a regular year, except August 30th. Note that σ is
also used when calculating the safety stock or order level in the approximations, as the
forecast error is unknown. Since one of the assumptions of the developed model entails
that promotions are not taken into account, the daily demand of all SKUs was corrected
for promotions by subtracting the promotional demand from the daily demand.

Lastly, as described in Section 3.5.2, on day ρ the EWA-policy identifies that a batch
ordered on day 0 expires in L+R− 1 days.

Variables

The approximations use one stochastic variable Dx which represents the demand of x
days. The probability density function of Dx is retrieved by fitting a probability distri-
bution on the summation of x days for all days of the year. We explain the fitting of the
distributions in the next subsection.

4.4.2 Approximation equations

Recall approximation zA mentioned in Section 3.5.2:

zA =
1

ρµ
· E

[(⌈
s− ||(L+M − ρ) · µ||

Q

⌉
·Q−Dρ

)+]
(4.3)

Note that both approximations assume FIFO withdrawal and non-stationary demand.
It seems obvious to alter both approximations such that they assume partial FIFO with-
drawal and non-stationary demand. However, due to the computational complexity of
the approximations, it was chosen not to alter the approximations, but the regression
formula instead. This regression formula can be found in the next Section. Recall from
Section 3.5.1 approximation zB:

zB =
1

ρµ
· E
[(
s− 1 + ∆−DL+M

)+]
=

1

ρµ ·Q
·
Q∑
i=1

E

[(
s− 1 + i−DL+M

)+] (4.4)

where the change in the inventory position is uniformly distributed between s − 1 and
s− 1 +Q), such that ∆ ∼ u[0, Q]. However, in Slimstock’s case, the inventory position
is between s and s − 1 + Q. Namely, n · Q is ordered when the inventory position is
equal to s − 1, yielding a new inventory position of at least s in case the old inventory
position was below s−1 and a new inventory position of s−1+Q when the old inventory
position was exactly s − 1. Therefore, the change in inventory position ∆ is uniformly
distributed over [1, Q] instead of [0, Q]. However, this does not change approximation zB
in Equation 4.4 as the summation over i is already between 1 to Q.

In order to determine the expected value in the approximations, the following formula
is used:

E[(c− x)+] =

c∑
x=0

(c− x) · P (X = x) (4.5)
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where P (X = x) is the probability that the stochastic variable X is equal to value x.
Note that for this calculation, the demand should be modelled as stationary demand by
a discrete distribution instead of the continuous distributions in the simulation. In the
paper, the Mixed Binomial, Geometric, Negative Binomial, and Poisson distributions are
used. The method of determining the right distribution and parameters is explained in
the paper of Adan, et al (1995). In this method, the demand of the items is fitted to
the distributions by considering the mean and variance of the demand. Based on the
variance to mean ratio, it is determined whether Mixed Binomial, Geometric, Negative
Binomial, or Poisson distribution best fits the variance to mean ratio and then the needed
parameters are calculated.

4.5 Regression

This section describes the alterations to the multiple linear regression formula described
in Section 3.5.3. With the same logic as in the paper, we remove the (1− P2∗) variable.
The regression formula is as follows:

zregr = α0 + α1 ·
σ

µ
+ α2 ·

SS +Q− 1

µ
+ α3 ·

(
Q

µ
−R

)+

+ α4 ·
⌈
s

Q

⌉
· Q
µ

+

α5 · zA + α6 · zB
(4.6)

To incorporate the FIFO fraction, presentation stock, yearly seasonality and weekly
seasonality into the regression, new variables need to be formulated. The variables and
their reasoning are as follows:

• A variable concerning the FIFO demand, is the FIFO fraction f . But, another
variable is possible. As explained in Section 3.4.4, the FIFO fraction and the
outdating resulting from it, have a non-linear relationship, namely the relationship
of
√
f . Therefore, the effect of both variable f as well as variable

√
f need to be

tested.

• A variable is needed concerning the yearly seasonality. A measure for seasonality
in demand forecasting is the monthly seasonal factor MSFm of month m. The
monthly seasonal factor is calculated by calculating the mean demand for each
month, considering multiple years of data, and calculating the total average yearly
demand by summing up the average demands of 12 months. Then, we normalize
the yearly and monthly demands, such that the average yearly demand is 12. The
monthly demands are normalized accordingly, which has a monthly seasonal factor
as a result for each month. A measure for seasonality during the year, therefore,
could be the variance of the monthly seasonal factors. We denote this as σ2MSF .
Note that an SKU with significant yearly seasonality has a σ2MSF higher than 0,
whereas an SKU without significant seasonality during the year has a variance
equal to 0.

• Lastly, a variable is needed for the weekly seasonality. Using the same logic as
mentioned in the previous point, weekly seasonality could be measured by the
variance of the weekday seasonal factors WSFd on weekday d. We denote this as
σ2WSF . We calculate the WSFs by normalizing the total average weekly demand
to 7. Note that an SKU with significant weekly seasonality has a σ2WSF higher than
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0, whereas an SKU without significant seasonality during the week has a variance
equal to 0.

This results in a regression formula incorporating non-stationary demand and a FIFO
fraction, which is necessary since the approximations assume stationary demand and
FIFO withdrawal only. In conclusion, the following regression equation is tested in
Chapter 6:

zregr = α0 + α1 ·
σ

µ
+ α2 ·

SS +Q− 1

µ
+ α3 ·

(
Q

µ
−R

)+

+ α4 ·
⌈
s

Q

⌉
· Q
µ

+

α5 · zA + α6 · zB + α7 · f + α8 · σ2MSF + α9 · σ2WSF

(4.7)

As in the paper of Van Donselaar & Broekmeulen (2012), we improve the performance
of the regression by removing the outdating when it is considered negligible. I.e.: we set
the relative outdating of the simulation to 0 when zsim is smaller than or equal to 0.1%.
Furthermore, we only accept relative outdating as a positive number, as the relative
outdating cannot be negative. Therefore, we set z′regr = (z

′
regr)

+. Lastly, we correct the
relative outdating zregr for high outdating with the following formula:

z
′
regr =

zregr + z4A
1 + z3A

(4.8)

4.6 Constructing the Efficient Frontier

Once the coefficients of the regression formula are calculated, an Efficient Frontier can
be obtained. As the coefficients are general for each shelf life, lead time, and review time
combination, many target service levels can be tested. To derive an Efficient Frontier,
zregr is calculated for all integer target service levels within the range and including
80% to 99%. With all these datapoints, a graph is constructed displaying the Efficient
Frontier.

4.7 Conclusions

In this chapter, a model was formulated that estimates the expected outdating on the
basis of the target service level. This model concerns three parts, namely a simulation,
approximations, and multiple linear regression. All three parts include characteristics
not taken into account in a single model in literature, namely a FIFO fraction, presen-
tation stock, and non-stationary yearly and weekly demand. Before testing this model,
providing an Efficient Frontier, and describing the results in Chapter 6, Chapter 5 first
describes the experimental design used to test the model.
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Experimental design

In this chapter, we define the methods to evaluate the models described in the previous
chapter and define the experimental setup. First, in Section 5.1, we discuss the inclusion
and exclusion of SKUs for evaluation of the model. Next, Section 5.2 discusses how
to measure the performance of the model. Furthermore, Section 5.3 describes how the
model is validated and verified and Section 5.4 defines the experimental setup. Finally,
this chapter ends with a conclusion that answers the following research questions:

4. How can the models be evaluated?

a. How is the needed data obtained?

b. How can we measure the performance of the model?

c. How is the model validated and verified?

d. What experimental design is relevant?

5.1 Data selection

5.1.1 Inclusion and exclusion of SKUs

In this section, we describe the process of selecting SKUs for the model. The product
information and transaction data provided by Supermarket used for the case study in
Section 2.4 are used for the evaluation of the model as well. We restrict ourselves to SKUs
that fit the scope and that have sufficient data available. The inclusion and exclusion
criteria of SKUs can be found in Table 5.1 and are explained below. At the end, we
picked only the SKUs that matched all inclusion criteria.

Table 5.1: Data inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Shelf life ≤ 30 days Shelf life > 30 days
Store SKUs DC SKUs
Enough data available Not enough data available
Sales during studied period No sales during studied period

Mature SKUs during the studied period SKUs with an introduction or end-of-life
during studied period

Stocked SKUs Non-stocked SKUs
Chilled and Agricultural assortment cate-
gories Other assortment categories

At least 24 orderlines per year Less than 24 orderlines per year
Expected demand of at least 10 during the
cover period

Expected demand of less than 10 during
the cover period

Non-fixed safety stock Fixed safety stock
Non-fixed order level Fixed order level

All SKUs of tens of stores of Supermarket were considered. In terms of the scope, SKUs
in the DC were not selected, as well as SKUs with a store shelf life of more than 30
days. Furthermore, SKUs were excluded when they satisfied at least one of the following
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criteria: (1) SKUs marked as end-of-life, (2) SKUs removed from the assortment in the
studied period, (3) SKUs introduced into the assortment during the studied period, (4)
SKUs without sales in the studied period, and (5) SKUs that are non-stocked items.

As for the analysis in Section 2.4, SKUs with the highest outdating percentages were
mostly part of the chilled and agricultural assortment categories. Furthermore, these
SKUs were most likely to be fast-movers. Therefore, only SKUs from these assortment
categories and SKUs that have at least 24 order lines per year were included. About
58,000 SKUs remained. Furthermore, to adequately model the SKUs with the continuous
Normal and Gamma distributions, SKUs must have an expected demand of at least 10
units in the cover period (Silver et al., 2017). Therefore, SKUs with a lower expected
demand were excluded. Then, about 6,900 SKUs remained.

Lastly, SKUs with a fixed safety stock (presentation stock) or fixed order level were
removed from the dataset. The reason for this is that a change in the target fill rate is
not affecting the safety stock or order level of the SKU. Therefore, the Efficient Frontier
of the SKU is a straight line. Since this is not the interest of this research, these SKUs
were removed from the dataset.

About 6,700 SKUs remained that belonged to all stores of Supermarket. The average
expected daily demand range between 0.8 and 161 items a day. The lead times of the
SKUs are 1, 2, or 6 days and the review times of the SKUs range between 1, 2, 5, and
7 days. The MOQs, IOQs and presentation stock all range between 1 and 90 items.
Furthermore, about 10% of these SKUs have a coefficient of variation above 0.5. Lastly,
86% of the SKUs registered outdating in the studied period.

5.1.2 Selection of sample set

When searching for the right sample size, two aspects are important. First of all, the
sample size should be small enough such that the total run time of the simulation is
manageable. Secondly, the sample size should be large enough such that the effect of
the regression variables can be measured with a certain precision. A rule of thumb in
literature is to have at least 10 observations per regression variable (Harrell Jr, Lee, &
Mark, 1996). As the regression equation in the model has at least 6 and at most 9
variables, the minimum number of observations should be at least 90. Since each SKU is
simulated with 6 different target service levels (see Section 5.4), at least 90/6 = 15 SKUs
are necessary per single lead time L, review time R and shelf life M . Table 5.2 states all
lead time, review time, and shelf life combinations up to shelf life 16, as well the number
of SKUs belonging to that combination. For simplicity, combinations with less than 15
SKUs were left out of the table.

Table 5.2: SKU combinations per lead time, review time, and shelf life

M 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L=1, R=1 2349 459 304 168 274 138 218 58 108 331
L=2, R=1 102
L=2, R=2 22 29 32 15 163 475 94 358 165 83
L=2, R=5 141
L=5, R=7 15

As we want to compare coefficients of combinations, we choose combinations with similar
characteristics. Therefore, it was chosen to evaluate the model with R = 1 or 2 and L
= 1 or 2 only. Furthermore, to reduce the run time and total number of SKUs, only
SKUs with a shelf life of at most 13 days were chosen. Then, 50 SKUs were picked per
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R,L,M combination when possible. This resulted in 898 SKUs. When selecting the
SKUs for the final sample, it was taken into account that the selection of 898 SKUs is
a representative selection of the 6,700 SKUs, by selecting SKUs with different expected
demands, IOQs, MOQs, presentation stock, and coefficient of variation. 898 SKUs are
a good representation of 6700 SKUs when determined for a 95% confidence interval and
an allowed error of 5% and doing a t-test as explained in Appendix A.

5.2 Performance measurement

To determine whether the model achieves its purpose, it should be tested whether the
model adequately estimates the expected outdating. A key measure for the approxima-
tions and regression is the approximation error. Van Donselaar & Broekmeulen (2012)
define the approximation error as “the relative outdating measured via simulation minus
the approximated relative outdating [of the approximations and regression]". This comes
to zsim − zA for approximation zA, zsim − zB for approximation zB and zsim − zregr for
the regression. This shows for what SKUs the approximations and regression are most
suitable. When calculated for each SKU, the average approximation error and standard
deviation of the approximation error can be obtained. This shows what approximation
performs best in general.

Furthermore, in case of the multiple linear regression, the adjusted R2 (coefficient
of determination) is an important measurement since it indicates to what extent the
independent variables explain the dependent variable. The closer R2 to 100%, the better.
The RMSE is a second measurement for the regression. The RMSE (Root Mean Square
Error) is the square root of the variance of the residuals. A residual is the difference
between the data point and the regression line. The lower the RMSE, the better. Lastly,
an important measurement for linear regression is the p-value. The p-value denotes the
significance of an independent variable on the outcome of the dependent variable.

5.3 Model verification and validation

Even though many assumptions are made that simplify the programmed model, each part
of the model should reflect a realistic situation and therefore verification and validation of
the model are important. This section therefore discusses the verification and validation
of the model.

5.3.1 Verification

With the process of verification, we check whether the model meets its specifications,
reflects a realistic situation, consists of proper programming, and performs as described in
Chapter 4. A well-programmed but simplified simulation model programmed in Python
and used by employees of Slimstock was used as a start. After verifying and adequately
understanding this model, small functionalities were added each time. And after adding
a new functionality, the output of the model was tested. Programming was done under
the supervision of a developer of Slimstock. The data extraction was done using SQL
and analyses were performed using Excel.

In order to get realistic results, a warm-up period was brought in. The reason behind
this is that on day 1 of the simulation, one big order is placed that consists of only one
batch for each product. As this is not a realistic situation for some products, time will
pass until a situation exists with realistic inventories. The warm-up period was calculated
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by the Welch graphical procedure as described in Appendix A and had 30 days as a result.
This is a somewhat logical number as the longest shelf life in the sample set is 13 days
and 30 days is therefore roughly two times the product shelf life. The consequence of a
warm-up period is that output is only saved for the simulation period after the warm-up
period.

Furthermore, the required number of replications and run time are determined such
that the output of the model is no coincidence. These were calculated by performing
a t-test with a 95% confidence interval and an allowed error of 5%. As described in
Appendix A, the total run length is three years and the number of replications is set to
nine.

Next, we tried to verify the simulation model by comparing the results of the simu-
lated expected outdating percentage to the actual outdating percentage in reality. We
define the outdating percentage as the total outdating divided by the total sales. To
compare the outdating percentages, the simulation results of all SKUs with their target
service level, their presentation stock, and a FIFO fraction of 0.8 were compared to the
actual outdating percentage of the SKU. A FIFO fraction of 0.8 was chosen since this
resulted in an overall lowest approximation error. The actual outdating percentages stem
from the data from two months in 2020. The actual and simulated outdating percentages
of each M, L, and R combination can be found in Tables 5.3 and 5.4 respectively. From
these tables, we observe that when the simulation results of a subset is higher than 5%,
the outdating is usually overestimated in the simulation. Especially for subset M7L2R2.
Whereas for subsets with a lower average outdating percentage, the outdating is usually
underestimated. However, we must note that the actual and simulated outdating are
difficult to compare. An explanation for this is the fact that only two months of out-
dating data were available, whereas a full year is simulated. And the actual outdating
percentage includes outdating from promotions, which are not taken into account in the
simulation. Furthermore, actual outdating from the past is compared to estimated out-
dating from the future. Taking this all into consideration, there is not enough data to
verify the model on actual outdating.

Nevertheless, there are other ways to show that the simulation model calculates the
outdating in a correct manner, namely by showing that the model provides results that
are expected. In this case, the simulated expected outdating should be higher when
an SKU has characteristics that cause outdating. To test this, the simulated outdating
was set out to all six regression variables in the paper of Van Donselaar & Broekmeulen
(2019) in Figure 5.1. Overall, all variables show a positive trend, which is also implied in
the paper. Furthermore, all regression variables in the figure have values that seem to be
logical, such as the values of zA and zB that always fall in the interval [0,1]. Therefore,
we can conclude that the calculations behind zsim and the regression variables seem to
be right.

The approximations and regression were first tested with relatively stationary SKUs,
such that the approximations and simulation result in a somewhat equal value and we
can verify that the approximations calculate the outdating correctly. Furthermore, the
model in the paper of Van Donselaar & Broekmeulen (2012) was exactly rebuild for
verification. In their paper, the average approximation errors of zA and zB were 2.79%
and 1.51% respectively. When rebuilding the model ourselves, the approximation errors
were 0.13% and 0.09% respectively. A reason for the high performance compared to the
paper could be that this research uses quite a narrow sample set of SKUs.

Lastly, the calculation of the regression coefficients should be verified. We used the
same settings as the paper of Van Donselaar & Broekmeulen (2012), namely stationary
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Table 5.3: Actual outdating percentages per M, L, and R combination.

Shelf life M L = 1, R = 1 L = 2, R = 2 L = 2, R = 2
3 9.9%
4 5.4% 6.2% 10.3%
5 9.0% 12.6%
6 4.5% 6.5%
7 6.2% 5.3%
8 3.8% 5.8%
9 3.0% 7.6%
10 7.1%
11 4.7% 6.1%
12 4.5%
13 4.1% 4.9%

Table 5.4: Simulated outdating percentages per M, L, and R combination.

Shelf life M L = 1, R = 1 L = 2, R = 2 L = 2, R = 2
3 10.3%
4 0.5% 2.1% 19.3%
5 0.1% 4.0%
6 0.0% 4.1%
7 0.0% 5.9%
8 0.0% 2.3%
9 0.0% 3.7%
10 0.3%
11 0.0% 0.2%
12 0.1%
13 0.0% 0.0%

demand, no presentation stock, and FIFO demand. Furthermore, variable five from their
paper 1 − P2 was removed from the regression formula as suggested by the authors.
Only the dataset is different. The results of the coefficient calculation can be found in
Table 5.5, where coefficients α1 to α6 belong to the variables in Figure 5.1. The results
in our research were the same from the results in their paper in some cases. At a first
glance, we observe that in most subsets either zA or zB has a high value representing a
good predictor. This was also the case in the paper. Secondly, we observe a negative
value for the coefficient of variable α0, which was the same in the paper. Thirdly, we see
sporadically negative values of coefficients. This is also the case in the paper. However,
some results in our research are different from the paper. Firstly, we can see an adjusted
R2 (R2− adj) of 100% for a shelf life of 13 days. In this case, the simulated outdating is
equal to 0, such that zregr is equal to 0, all coefficients are equal to 0, and the adjusted
R2 is equal to 100%. Lastly, for some combinations have an adjusted R2 close to 0%.
This is often caused by only one SKU, which becomes clear in the following residual plot
in Figure 5.2. This is an SKU with a 99% target service level, which is an outlier when
comparing its simulated relative outdating to that of other SKUs.

In Figure 5.2 we can see that one SKU is causing the low adjusted R2. Meanwhile,
the residual is only 0.2%, a number which is almost negligible in practice. Lastly, the
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Figure 5.1: Positive relations between simulated output and regression variables.

regression only has a high adjusted R2 for combinations with shelf lives 3, 4, and 7. In all
cases, either zA or zB is a good predictor for the relative outdating. In these combinations,
many SKUs have a relative outdating unequal to 0, therefore, the regression works well.
Thus, it seems the regression and the calculation behind it are correct, while concluding
that it is necessary to have enough SKUs with simulated outdating. In conclusion, all
calculations of the model seem right although we cannot validate them exactly. Therefore,
the verification is justified. In Chapter 6, we determine the right minimum relative
outdating, such that the regression works for all combinations and we can determine for
which product groups this method is relevant.
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Table 5.5: Validation of the regression coefficients.

M 3 4 5 6 7 8 9 10 11 12 13
L = 1 & R = 1
R2-adj 93.7% 81.4% 36.2% 5.1% 85.2% 4.6% 66.7% 44.9% 100%
α0 0.009 -0.004 -0.001 -0.000 1.1E-5 -0.000 -0.000 -2.6E-5 0
α1 -0.148 0.019 0.001 0.000 -0.000 0.000 0.000 -6.1E-5 0
α2 -0.018 0.001 0.000 7.1E-5 2.6E-5 9.4E-5 0.000 -4.6E-6 0
α3 0.044 0.001 -8.3E-5 -4.0E-5 -2.4E-5 -7.4E-5 -0.000 7.5E-6 0
α4 0.022 -7.6E-5 0.000 2.0E-5 4.2E-6 -9.9E-6 -3.8E-5 6.0E-7 0
α5 0.030 0.338 1.385 0.016 0.694 73.57 1301.8 -0.054 0
α6 1.029 1.351 -0.37 -0.027 0.121 -9.812 -193.9 0.067 0
L = 2 & R = 1
R2-adj 90.8%
α0 -0.063
α1 0.126
α2 -0.029
α3 -0.003
α4 0.002
α5 0.048
α6 1.310
L = 2 & R = 2
R2-adj 90.6% 63.8% 66.0% 91.9% 42.4% 82.0% 62.5% 64.9% 11.9% 100%
α0 -0.182 -0.002 -0.018 -0.021 -0.010 -0.007 -0.000 -0.005 -0.002 0
α1 0.132 -0.015 0.014 0.023 0.007 -0.002 0.000 0.004 0.001 0
α2 0.041 0.012 0.007 0.011 0.004 0.004 0.000 -2.3E-5 0.000 0
α3 0.012 0.005 6.8E-5 -0.012 -0.002 -0.001 -6.5E-5 -0.000 -0.000 0
α4 0.012 0.005 0.000 -0.012 -0.002 -0.001 0.000 -0.000 -0.000 0
α5 0.134 1.746 -0.006 1.718 0.177 0.699 0.264 -0.251 -39.21 0
α6 0.240 0.579 1.155 0.577 0.022 0.354 -0.057 1.096 -12.53 0

Figure 5.2: Residual plot of variable 1 of combination M8L1R1.

5.3.2 Validation

Validation is about whether the model fulfills its intended purpose and meets its re-
quirements. We had to validate whether the designed and programmed model yields the
completion of the research goal: model the expected outdating on the basis of the target
service level. The model design was regularly validated by two Slimstock developers.
Furthermore, when questions arose, these were answered by consultants working for and
an employee of Supermarket.

5.4 Experimental setup

This section explains the experimental setup of the evaluation of the model. The exper-
imental factors are the FIFO fraction and target service levels.

The fraction of demand met in FIFO order f for each SKU is not known for Super-
market, which is in general representative for the entire industry (Slimstock-Developer,
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2020). Since the literature study in Chapter 3 yielded no clear results on a FIFO frac-
tion, it was discussed with Supermarket that a FIFO fraction of 0.8 could be used for
the simulation. In order to see a clear effect of the FIFO fraction, it was chosen to model
with a FIFO fraction of 1 and 0.5 as well.

Since Supermarket currently has target service levels between 80% and 97% for all
its products, this setting serves as a basis for the experimental target service levels. In
order to simulate SKUs in a wide setting to see the effect of target service levels on the
expected outdating whilst limiting the total run time of the simulation, the experimental
settings chosen for the target service levels are 80%, 85%, 90%, 95%, 97% and 99%. This
implies 3 (FIFO fractions) times 6 (target service levels) = 18 experiments per SKU,
where the first experiment is done for a FIFO fraction of 1 and target service level of
80%.

5.5 Conclusions

In conclusion, in this chapter the experimental setup was formulated to evaluate the
model described in Chapter 4. 898 SKUs were selected, with fast-moving, chilled or
agricultural, minimum presentation stock, lead times of 1 or 2 days, review times of 1 or
2 days, varying MOQs and IOQs, and shelf lives between 3 and 13 days as characteristics.
The warm-up period was determined for 30 days, the number of runs is set to 9 and the
run time of the simulation is 3 years. The experimental FIFO fractions are 1, 0.8,
and 0.5. Besides, the experimental target service levels are 80%, 85%, 90%, 95%, 97%,
and 99%. Lastly, the performance of the approximations and regression is measured
by the approximation error, p-value, RMSE, and R2. In conclusion, the experimental
parameters are as follows:

Table 5.6: Input parameters of the simulation

SKUs Replications FIFO fractions Target service levels
898 9 1, 0.8, 0.5 80%, 85%, 90%, 95%, 97%, 99%
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Results

In this chapter, experiments are performed with empirical data from a client of Slimstock
to see how the model performs. Section 6.1 describes how the alterations to the model
(mixed FIFO-LIFO demand, non-stationary demand, and presentation stock) influence
the simulated expected outdating. The validation of the model in Section 5.3 showed that
not all shelf life, lead time, and review period combinations are relevant for regression.
Therefore, Section 6.2 discusses which combinations are eligible for regression. There-
after, Section 6.3 shows the regression formula with new variables and the performance
of this regression formula. Finally, this chapter ends with a conclusion that answers the
following research questions:

5. What is the performance of the models?

a. What is the influence of non-stationary demand, mixed FIFO-LIFO with-
drawal, and presentation stock on the expected waste?

b. For what shelf lives is the model relevant?

c. Which variables are the best predictors of expected waste?

d. How does the Efficient Frontier look like when considering the model alter-
ations?

6.1 The influence of the model alterations

This section describes the impact of non-stationary demand, the FIFO fraction, and
presentation stock on the expected outdating. Therefore, we compare the simulation
results and approximation results with these model alterations to the basic model with
strict FIFO withdrawal, stationary demand, and no presentation stock.

6.1.1 Non-stationary demand

First of all, the effect of non-stationary demand is examined by changing the settings
with stationary demand, no presentation stock, and a FIFO fraction of 1 to the case with
non-stationary demand. In general, we conclude that the expected outdating decreases
when the average demand increases. One explanation for this is that in these situations,
the case pack size is relatively small when the demand is high. Therefore, the case pack
size is never too large for its demand during shelf life. Furthermore, we see that the
relative outdating increases when the demand is modelled as non-stationary. Besides,
this is confirmed by the statistics since the average and standard deviation of the relative
outdating are equal to 1.7% resp. 4.9% for the non-stationary case, whereas these are
only 0.8% resp. 3.2% for the stationary case.

6.1.2 Presentation stock

Next, we study the effect of the presentation stock on the expected outdating in a case
with non-stationary demand and 100% FIFO withdrawal. The setting of a presentation
stock resulted in three different types of results, as depicted in Figure 6.1. First of all,
we observe SKUs for which the outdating is hardly affected by the presentation stock,
such as the SKU in Figure (a). About 75% of SKUs fall into this category. This includes
many SKUs that have (approximately) 0% outdating with or without presentation stock,
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(a) No difference between outdating with or without presentation stock

(b) High increase when applying presentation stock

(c) Presentation stock representing a 95% service level

Figure 6.1: The effects of presentation stock on the relative outdating.

or SKUs that have a relatively high increase from 0.000001 to 0.0002, but which is
negligible since it boils down to about 0% outdating in the absolute sense. The fact
that the presentation stock has hardly any effect on the estimated outdating is due to
a presentation stock that is lower than or approximately equal to the calculated safety
stock. In Figure (a) we observe that for a target service level of 97%, the outdating when
applying presentation stock is even lower than the situation without presentation stock.
This is explained by the fact that in some cases the presentation stock leads to ordering
more often leading to fewer peaks in order quantities, therefore reducing outdating, which
is also observed when employing a Qmax ordering policy (Haijema & Minner, 2019).

Secondly, SKUs exist for which the presentation stock yields a huge outdating increase
for all target service levels, such as the SKU in Figure (b). This is the case for around 10%
of the SKUs. The most extreme case consists of an SKU with absolutely 0% outdating
without presentation stock and approximately 40% outdating with presentation stock.



Chapter 6 Results 49

The question arises whether the set presentation stock fits the SKU. The presentation
stock of these 10% of SKUs is such that the outdating is no longer caused by a certain
target service level. Therefore, approximating the expected outdating on the basis of a
target service level makes no sense. In the remainder of this chapter, we therefore exclude
the presentation stock from our analysis. Hence, the presentation stock is not taken into
account in the regression equation or approximations.

Thirdly, some SKUs have presentation stocks representing a certain service level, such
as the SKU in Figure (c). This includes the remaining 15% of SKUs. It becomes clear
that installing this presentation stock for the SKU in Figure (c) to a target service level
of 97% or lower actually serves as a 97% target service level.

Overall, the average and standard deviation of the relative outdating are equal to
1.7% resp. 4.9% for the case of non-stationary demand and no presentation stock, which
increased to 3.1% and 9.0% with presentation stock. We conclude that presentation stock
has a big effect on the outdating, at least for 25% of all 898 SKUs.

6.1.3 FIFO fraction

Furthermore, we examine the effect of the FIFO fraction on the expected outdating in
a setting with non-stationary demand and no presentation stock for all SKUs in Figure
6.2.

Figure 6.2: The effects of the FIFO fraction on the relative outdating.

First of all, significantly more outdating is generated when the FIFO fraction is lower
than 1. Furthermore, the difference in outdating between fractions for an 80% service
level is smaller than the difference in outdating between fractions for a 90% service level.
However, in the figure we see the increase in outdating between FIFO fractions 0.8 and 0.5
is much higher than the increase between FIFO fractions 1 and 0.8. This means a linear
decrease of the FIFO fraction does not cause a linear increase of the relative outdating.
This is depicted in Figure 6.3. In this figure, the relative outdating concerning a certain
FIFO fraction was predicted by the relative outdating from a FIFO fraction of 1, plus the
relative outdating from a FIFO fraction of 1 times (1 −

√
f). For example, the relative

outdating from FIFO fraction 1 is equal to 12%. The relative outdating from a 0.5 FIFO
fraction is equal to 12% + 12% · (1 −

√
0.5) = 15.5%. The figure was made for one

representative SKU for an 80% target service level.
Taking this all into consideration, this section shows that the three model alterations

(non-stationary demand, presentation stock, and mixed FIFO-LIFO demand) highly in-
fluence the outdating estimate, and cannot be left out of a model that estimates outdating
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Figure 6.3: Relative outdating prediction per FIFO fraction.

when these alterations apply to the SKUs. However, as stated before, the presentation
stock is not taken into consideration in the remainder of this chapter.

6.2 Determination of suitable subsets

When validating our model with the settings of Van Donselaar & Broekmeulen in Section
5.3, it became clear that regression does not work for all M,L, and R subsets. This
was the case when either the simulated outdating was approximately zero or one SKU
decreased the adjusted R2 of the subset by being the only extreme outlier. This is
supported by Figure 6.4, in which we see somewhat of a pattern between the average
relative outdating of a subset and the adjusted R2 when determining the regression
coefficients. At least, this is the case for all subsets with an average relative outdating less
than 10%. Note that subset M4L2R2 was left out of the figure since the relative outdating
of the subset is an outlier. Figure 6.4 shows that when the average relative outdating of a
subset is close to 1% or under, the adjusted R2 decreases rapidly. Furthermore, in Figure
6.5 we observe a pattern between subsets with a high percentage of SKUs with estimated
relative outdating above 0.1% and the adjusted R2 of those subsets. Furthermore, the
average relative outdating of each subset is denoted in Table 6.1, in which we see a clear
pattern between the average relative outdating and the shelf life relative to the cover
period. The average relative outdating is calculated by averaging the relative outdating
for all target service levels and FIFO fractions. From the table, we observe the relative
outdating is especially large when M is close to R + L. Besides, Table 6.1 shows that
the relative outdating increases rapidly when M is close to L+R.

For subset M4L1R1, with an average relative outdating of 1.2%, the adjusted R2

is relatively high, namely 69%. For subset M10L2R2, with an average relative outdat-
ing of 0.9%, the adjusted R2 is 36%. Both subsets have a high number of SKUs with
estimated outdating, namely 63% of the M4L1R1 subset, and 59% of the M10L2R2 sub-
set. Therefore, we conclude that the low adjusted R2 for subset M10L2R2 is caused
by bad predictors, and not a lack of SKUs with outdating. Furthermore, the next sub-
sets (M5L1R1 and M11L2R2) have much fewer SKUs with outdating and a much lower
adjusted R2. We therefore include all subsets up to M4L1R1 and M10L2R2 in the re-
gression. These subsets are bold in Table 6.1. Consequently, the included subsets are
shelf lives 3 and 4, for L=1 and R=1, shelf life 4 for L=2 and R=1, and shelf lives 4 to
10 for L=2 and R=2. We conclude that we can draw a line when shelf life M is close to
2 · (L+R).
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Figure 6.4: The relation between the average relative outdating and the adjusted R2 for
all M, L, and R combinations.

Figure 6.5: The relation between the estimated outdating percentage and the adjusted R2

for all M, L, and R combinations

Table 6.1: Average relative outdating per M, L, and R combination.

Shelf life M L = 1, R = 1 L = 2, R = 1 L = 2, R = 2
3 9.6%
4 1.2% 3.6% 22.8%
5 0.5% 6.3%
6 0.2% 6.8%
7 0.1% 9.0%
8 0.1% 3.2%
9 0.1% 4.4%
10 0.9%
11 0.0% 0.4%
12 0.3%
13 0.0% 0.1%
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6.3 Performance of the new regression equation

This section describes the newly developed regression variables and their performance.
First, the new regression variables are explained and their effects on the relative outdating
are shown. Later in this section, these variables are used in the regression formula and
its performance is tested. Lastly, the approximation errors are analyzed to conclude
for which type of SKUs the model fits well. Apart from the new model, the original
approximations and regression formula were tested. This is described in Appendix B.

6.3.1 New regression variables

First of all, zA and zB were improved to account for seasonality throughout the year.
This was done by calculating zA and zB for every week of the year, by making the
order level s and average daily demand µ dependent on week w. In this matter, the
parameters are changed to sw and µw in Equations 4.3 and 4.4. It seems logical to
also let stochastic variable Dρ be dependent on the week. However, this implies that a
probability distribution is be fitted to Dρ with only 7 days as data points. Since this is
not enough to correctly fit a probability distribution, Dρ was not changed.

z
′
A and z′B perform slightly better than the original zA and zB denoted in Appendix

B, with an average and standard deviation of the approximation error of 2.7% and resp.
4.7% for z′A and 2.0% resp. 5.2% for z′B. The results are shown in Figure 6.6. However,
for some SKUs, z′A and z′B still do not predict well, namely the few highly seasonal SKUs
close to the x-axis in Figure 6.6. These are SKUs with a standard deviation of yearly
demand higher than the average demand. For these SKUs, z′A is a better predictor than
z
′
B.

(a) zA, improved (b) zB , improved

Figure 6.6: Approximations zA and zB including seasonality.

Next, almost all regression variables in Equation 4.7 were changed to account for non-
stationary demand, partial LIFO demand, or other causes of relative outdating not taken
into account in the original regression equation. The final equation is denoted in Equation
6.1. Explanations of the variables are given below.

zregr = α0 + α1 ·
σW
µ

+ α2 ·
⌈
s

Q

⌉
· Q
µ

+ α3 · z
′
A + α4 · z

′
B+

α5 ·
(
SS

µ

)+

+ α6 · β∗ · (1−
√
f) + α7 ·

Q

M · µ

(6.1)

Variable σW
µ : First of all, as described in Section 6.1, the variance in weekly demand

has a strong effect on the relative outdating, whereas the variance of monthly demand
is not very noticeable. However, in variable σ

µ , both the weekly and monthly variance
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are incorporated in σ, resulting in a high coefficient of variation when both the weekly
and monthly variance is high. Since the monthly variance is redundant, only the weekly
variance is taken into account. However, the variance of the weekday seasonal factors
σ2WSF did not predict the relative outdating well. Instead of the variance of the weekday
seasonal factors, the variance of the demand in an average week was calculated. This was
done by multiplying the average daily demand µ with the weekday seasonal factorWSFw
corresponding to weekday w for all seven days in the week. Afterward, the variance of
these seven values is taken, such that we obtain the variance of the weekly demand
σ2W . This standard deviation is used instead of σWSF and σ. Therefore, the variable
representing the coefficient of variation is changed to σW

µ .

Variable
⌈
s
Q

⌉
·Qµ : This variable was slightly altered. With the same logic as described

in the first paragraph, the safety stock in case of high monthly variance was set high,
whereas outdating was mostly caused by the weekly variance in demand. Therefore, the
standard deviation used in this variable was changed to σW .

Variables z′A and z′B: Although the performance of z′A and z′B are not good for every
SKU, the performance is good for most SKUs, as described in the previous subsection.
Furthermore, these approximations performed best compared to the original zA and zB
and a version of zA and zB with the σW incorporated in the calculation. Therefore it
was chosen to incorporate approximations z′A and z′B in the regression equation.

Variable (SSµ )+: The VIF (variance inflation factor) of a variable should be at most
10, since a value of 10 indicates correlation with other variables in the formula, which is
not preferred. In order to meet the restriction of all variance inflation factors below 10,
variable SS+Q−1

µ was removed from the equation, since the correlation with either z′A or
z
′
B was high. The second variable SS+Q−1

µ was replaced by variable (SSµ )+, since with
the removal of the second variable, the target service level was barely incorporated in
the regression equation, therefore the differences between the target service levels were
too small. The target service level is incorporated in the safety stock SS, such that the
differences between target service levels are clear.

Variable β∗ · (1−
√
f): Next, variable f was changed. As described in Section 6.1,

demand with a certain FIFO fraction follows a 1 -
√
f relation. Therefore, the variable

was changed to 1 -
√
f . However, it was also clear from that section that the effect of

partial LIFO withdrawal becomes larger as the target service level becomes larger, i.e.
the relationship of outdating with partial LIFO withdrawal is dependent on the target
service level. Therefore, the variable was changed to β∗ · (1−

√
f).

Variable Q
M ·µ : On its own, variable σ2WSF was not a good predictor. Therefore,

the standard deviation of weekly demand was taken instead, and this was applied in
the first variable mentioned in the first paragraph. Furthermore, σ2MSF did not have any
significant effect on the regression. More relative outdating only took place when the case
pack size during a season was too large for its demand. Therefore, a measurement was
needed to measure the case pack size relative to the demand during shelf life. Variable
(Qµ −R)+ was a variable in the regression equation, but it had to be removed because of
a high VIF value. This brings us to the FCC metric, described in Section 3.3. The FCC
is defined as Q

M ·µ . This variable served the removal of variable (Qµ −R)+ well, since these
variables almost serve the same purpose of measuring the case pack size as opposed to
the daily demand.
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6.3.2 Performance of the regression

The regression equation of the former subsection was applied to the selected subsets.
First, we applied the regression equation without the FIFO fraction variable to the cases
with full FIFO withdrawal, non-stationary demand, and no presentation stock. The
results are denoted in Appendix C. Comparing the FIFO to partial FIFO case, we
conclude that it is feasible to use a regression equation for multiple FIFO fractions, since
the model performs well. The adjusted R2, RMSE, and coefficient values of each subset
are found in the table below.

Table 6.2: Performance of the developed regression formula.

intercept σW
µ

⌈
s
Q

⌉
· Q
µ

z
′
A z

′
B (SS

µ
)+ β∗ · (1−

√
f) Q

M·µ

M3L1R1 -0.0882 0.1142 -0.0007 0.2075 0.1416 0.0932 0.1211 0.2396
M4L1R1 -0.0347 0.0937 0.0003 6.2214 -1.5023 0.0317 0.0638 0.0432
M4L2R1 -0.0971 0.0954 -0.0003 1.2430 1.7430 -0.0743 0.1662 0.0630
M4L2R2 -0.2380 0.2672 -0.0041 0.0669 0.0278 0.1418 0.4301 0.5761
M5L2R2 -0.1201 0.1644 0.0009 5.8659 -1.0738 0.0669 0.3194 0.3358
M6L2R2 -0.1241 0.1177 -0.0026 -0.9224 2.0901 0.0625 0.2477 0.3696
M7L2R2 -0.1229 0.1810 -0.0056 3.9413 -0.2236 0.0690 0.2528 0.2912
M8L2R2 -0.0653 0.1096 -0.0024 2.3707 0.3218 0.0358 0.1369 0.1568
M9L2R2 -0.0488 0.0589 -0.0033 1.7379 -0.2705 0.0357 0.1366 0.1504
M10L2R2 -0.0325 0.0226 -0.0003 -0.7846 0.4687 0.0135 0.0797 0.0999

RMSE R2 − adj average approximation error st. dev. of approximation error
M3L1R1 0.028 95% -0.5% 2.4%
M4L1R1 0.012 82% -0.2% 1.1%
M4L2R1 0.014 89% -0.2% 2.0%
M4L2R2 0.020 97% 0.0% 2.0%
M5L2R2 0.020 90% -0.3% 1.7%
M6L2R2 0.015 92% -0.1% 1.3%
M7L2R2 0.017 95% -0.1% 1.6%
M8L2R2 0.020 83% -0.4% 1.7%
M9L2R2 0.018 92% -0.3% 1.6%
M10L2R2 0.010 64% -0.2% 0.9%

From Table 6.2 it becomes clear that the formula performs well for all subsets (except
M10L2R2) since the adjusted R2 of these subsets is high and the RMSE is low. Although
from the next table we see that all variables have a significant effect on the prediction
of the relative outdating, from the second variable in Table 6.2 (

⌈
s
Q

⌉
· Qµ ) we see that

the coefficient values are very small for each subset and mostly negative, which is not
expected. Furthermore, we observe high and sometimes even negative coefficient values
for z′A and z′B, again indicating that these approximations do not fit all SKUs well. Lastly,
the average and standard deviation of the approximation error were computed, which
are -0.2% resp. 1.6%. This means the regression is slightly overestimating the simulated
relative outdating. However, the values are still very low, and quite an improvement
compared to z′A and z′B.

Furthermore, the p-values and VIFs of the coefficients were calculated. Besides, the
regression equation was tested for subsets not taken into account in Table 6.2. This is all
denoted in Appendix D. We should note that this model was tested with the training set
and not with a test set. One of the reasons is that some of the used subsets did not have
more SKUs available to put in a test set. This means that it cannot be tested whether
the model is overfitted.

Lastly, Van Donselaar & Broekmeulen (2012) used Equation 4.8 to correct the out-
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dating for SKUs with more than 30% relative outdating, such that the outdating approx-
imated by regression more closely resembled the simulated relative outdating. However,
since z′A and z′B have worse approximations than zregr, this formula remained unused in
our research.

6.3.3 Analysis of the approximation errors

The result of the regression is an efficient frontier, which is shown in Figure 6.7. The SKU
depicted in this figure is representative of many SKUs since for many SKUs we observe
small or no differences in the relative outdating between the 80% and 90% target service
level, and a high increase in the relative outdating between the 95% and 99% target
service level. For all SKUs, an efficient frontier is made by using the regression equation
for different input parameters, such as FIFO fractions and target service levels. In this
subsection, we describe for which SKUs the regression equation performs well, and which
type of SKUs need future research. A more elaborate analysis of the approximation
errors can be found in Appendix E.

Figure 6.7: The efficient frontier of a representative SKU for three FIFO fractions and
all target service levels.

First of all, we compare the approximated relative outdating by regression and the sim-
ulated relative outdating in Figure 6.8. We observe a clear relation between the approxi-
mated and simulated relative outdating, i.e. SKUs with low simulated relative outdating
have a low approximated relative outdating, and the same is observed for SKUs with
very high relative outdating.

(a) All SKUs. (b) All SKUs within the 0% to 20% interval.

Figure 6.8: The relation between the approximated relative outdating by regression and
the simulated relative outdating.

Aside from the large approximation errors, the relative outdating of many SKUs is es-
timated well by regression. Although the percentages of the approximated relative out-
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dating by regression and the simulated relative outdating are rarely equal, the regression
clearly shows the effects of target service levels seen in the simulation. In this case, the
outcome of the regression mimics the outcome of the simulation, where no matter the
choice of target service level between 80% to 90%, the expected relative outdating is
the same. This means that the regression output is not valid for determining the exact
expected relative outdating percentage, but rather for the change in relative outdating
between two target service levels.

Diving further into the SKUs with high approximation errors, we observe three situ-
ation for which the regression does not approximate the outdating well. First of all, this
is the case for highly seasonal items. Generally, the outdating for seasonal items (items
with a high variance of monthly seasonal factors MSF) is overestimated by the regres-
sion. Secondly, we generally observe underestimation of the outdating for SKUs with a
high variance of the WSF. Explanations on the high approximation errors can be found
in Section 6.3.1. Unfortunately, a high MSF and WSF are not the only cause of high
approximation errors since it partially depends on combinations with other regression
variables. Therefore, it is not possible to clearly state from what MSF or WSF value
the approximation error is high. Thirdly, we observe higher approximation errors for the
99% target service level, as the regression is linear rather than exponential.

After analysis, it became clear that the high approximation errors for SKUs with
high weekly or monthly variance are due to the high approximation errors of the approx-
imations z′A and z′B. This relation is shown in Figure 6.9. From this Figure we also see
that high approximation errors of z′B are slightly reduced when performing the regres-
sion, i.e. regression lowers the approximation error of z′B. However, large approximation
errors with z′B cause large approximation errors of the regression, indicating that a good
approximation of z′B is key for each SKU.

Figure 6.9: The relation between the approximation errors.

6.4 Conclusions

In conclusion, this chapter shows that non-stationary demand, partial FIFO withdrawal,
and presentation stock highly influence the expected outdating. Secondly, we perceived
that the regression is only effective when the subset used for the determination of the
regression coefficients contains sufficient SKUs with simulated outdating. The newly de-
veloped regression equation yielded high adjusted R2 for all subsets. The approximation
errors are highest for SKUs with a high variance in the monthly seasonal factors, a high
variance in the weekly seasonal factors, or 99% target service levels.
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Conclusion

In Section 1.5, we defined research questions to reach the research objective:

“Develop an analytical method that estimates the probability of food waste of perishable
goods based on a given service level before ordering, leading to minimizing food waste
whilst achieving service levels in the future for food retailers.”

In the subsequent chapters, we answered these research questions. From the context
analysis, it was clear that high waste percentages were mostly encountered at fast-moving
perishable products in the chilled and agricultural assortment categories. Furthermore,
presentation stock is a retail setting that had to be taken into account in the model. The
literature study unveiled methods to model the expected relative outdating and the target
service level (in the form of the fill rate) simultaneously whilst taking, amongst others,
lost sales, non-stationary demand, lead and review times, and FIFO withdrawal into
account. These methods were a simulation and approximations improved by regression.
We developed models that estimate the expected relative outdating given a certain target
service level, whilst incorporating non-stationary demand, partial FIFO withdrawal, and
the presentation stock, for several target service levels. The model consists of four parts:
the simulation, the calculation of the approximations z′A and z′B, the determination of the
regression coefficients, and the approximations of the relative outdating by regression.

The results showed that non-stationary demand, partial FIFO withdrawal, and pre-
sentation stock highly influence the expected food waste. Hence, considering these factors
is essential when estimating the expected waste for the food retail setting and should not
be left out of waste estimation models. The regression showed good results for most
SKUs, since most approximation errors were (relatively) low. The effects on the ex-
pected increase of waste are well modeled by the regression equation. This will help
supply chain planners to determine whether the increase in waste between, for exam-
ple, a 90% and 95% target service level is worth the higher availability of products for
customers.

However, the regression does not perform well for all SKUs in all situations. We
perceived that the regression is only effective when the subset used for the determination
of the regression coefficients contains sufficient SKUs with simulated waste. Otherwise,
all SKUs with significant waste are seen as outliers. Secondly, the approximation errors
are high for highly seasonal items, and especially for 99% target service levels of highly
seasonal items.

Nevertheless, the method is promising, although more research is needed in different
directions. The insights from the expected waste from the model can be beneficial for
the inventory management of perishable items.
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Discussion, recommendations, and
implementation plan

This chapter contains the approach after the finalization of this research and the in-
terpretation of the research. In Section 8.1, we discuss the scientific contribution and
limitations of this research. Next, we provide suggestions for future research in Sec-
tion 8.2. Furthermore, we elaborate on the practical implications of this research and
provide an implementation plan in Section 8.3. Finally, in Section 8.4, we provide our
recommendations to Slimstock.

8.1 Discussion

This research is an extension of the papers of Van Donselaar & Broekmeulen (2012) and
Broekmeulen & Van Donselaar (2019). The scientific contribution is threefold. First
of all, a scientific contribution is the addition of non-stationary demand and the FIFO
fractions. Secondly, the regression equation is new. Thirdly, the demarcation of subsets
suitable for regression is the last contribution. Furthermore, the addition of the presen-
tation stock is a practical contribution of this research which, to our knowledge, was not
found in the literature. The model is not only applicable for Slimstock and Supermarket
but can be applied to other inventory management systems and other food retail clients.

One of the limitations of this research is the assumption that an SKU can be ordered
every R days and the SKU is delivered exactly L days later. For example, orders are
placed on Monday, Wednesday, Friday, and Sunday. In practice, this assumption does
not hold, as an SKU with R = 2 might be ordered on Monday, Wednesday, Friday,
and the order of Sunday is already ordered on Friday, since on Sunday no orders take
place. It is expected that implementing this structure will cause more waste since SKUs
are ordered for longer periods. Likewise, this holds for other assumptions of the model,
namely an addition of closing days, immediate replenishment in the morning, perfect
supplier reliability, and a fixed shelf life. However, for most of these assumptions it holds
that the data needed to model the removal of this assumption is unavailable or unknown,
such that modeling is no option. We expect that the relaxation of these assumptions do
not greatly affect the waste. However, these assumptions should be taken into account
when interpreting the model outcomes.

The second limitation of this research is the implemented EWA policy in the simu-
lation. The EWA policy assumes that the number of batches, batch quantities, and the
remaining shelf lives of the batches are known at the start of each day. However, this is
often not the case in practice. Implementing EWA in the inventory management system
requires guessing the batch information. This might lead to wrong guesses and, subse-
quently, too high or too low order quantities. Therefore, when interpreting the model
outcomes, the supply chain planner should bear higher actual waste and lower actual
service levels in mind.

Third, the estimation of the expected waste is made without considering price re-
ductions (e.g. product promotions) and events (such as Christmas), for which different
orders are placed and customer demand changes. Hence, the current model estimates
waste for "regular" periods, and not the additional waste for events or promotions. This
implies that the addition of promotions and events lead to more variation in demand,
leading to more waste.
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A fourth limitation is the set of SKUs used in this research. The set of SKUs contains
only fast-moving SKUs from two assortment categories: agricultural and chilled. This
means the research is not representative for slow-moving SKUs and SKUs from other
assortment categories. We elaborate on this in Section 8.3.

Lastly, linear regression has some limitations, such as that the coefficients are deter-
mined by taking all SKUs in a subset into account, even when these SKUs are outliers.
This means that outliers (e.g. 99% target service levels, or high-waste SKUs compared to
others) are likely to be underestimated by the regression. However, as long as the subset
of SKUs is large enough, it is unlikely that the estimation of waste for the SKUs apart
from the outliers is significantly influenced by these outliers. Secondly, the question is
whether linear regression was appropriate, knowing that there’s a non-linear relationship
between the target service level and relative outdating.

8.2 Future research

This section provides suggestions for future research. The first suggestion concerns the
SKUs for which the regression does not perform properly: the highly seasonal SKUs. The
large differences in demand cause the approximations to highly overestimate the expected
waste. Therefore, the approximations should not be calculated with the demand of a year,
but it should be researched whether the approximations per month or season estimate
the waste well. Besides, more attention could be given to the calculation of the other
regression variables per month or season. However, caution is needed such that the
computation time is still fast. Secondly, the new approximation should not have the
requirement to run it too often.

Secondly, SKUs with a maximum shelf life of one day were excluded from this research
since the expected waste of these SKUs can be determined by the Newsboy Problem.
Research should be done on whether the regression model also fits products with a
maximum shelf life of one day and whether this outperforms the Newsboy Problem
model or not.

Although promotions and events often take place in the food retail setting, this model
does not take them into account. However, since promotions and events can cause waste,
this influences the expected waste. Research should be conducted on the effects of promo-
tions and events on waste. Furthermore, research should be done on how to incorporate
these effects into the model such that the model outcome is not only useful for the weeks
of the year without promotions or events.

Lastly, in this research, SKUs from many shops were combined in one subset. There is
no knowledge on whether there are implicit differences between shops, so research should
be conducted on that matter.

8.3 Implementation plan

In this section, we elaborate on how the presented model can lead to a concrete project
and what are the first steps that Slimstock can take after this research is finalized. First
of all, we need the following information of an SKU: a full year of daily demand forecast,
historical sales without promotions or events, desired target service level(s), the actual or
expected FIFO fraction, lead and review time, minimum and incremental order quantity,
fixed shelf life, and presentation stock (if applicable). Furthermore, we advise Slimstock
to keep track of the forecasts of products for each day in history. In this manner, the
forecast error can be calculated, which can then be used to determine the needed safety



Chapter 8 Discussion, recommendations, and implementation plan 61

stock. Hence, one requirement for the model to perform well is to only apply the model
for clients according to the availability of this data and to ensure that the data is not
mistaken.

The model consists of four parts: the simulation, the calculation of the approxima-
tions z′A and z′B, the determination of the regression coefficients, and the approximations
of the relative outdating by regression. the simulation computation time is the longest,
the approximations take longer since these are calculated for 52 weeks, and the computa-
tion times of the coefficients and regression are very fast. The models are an extension of a
pre-programmed simulation model in Python. The reason for using the pre-programmed
model is the simplicity of implementation after this research since Python is used by
Slimstock employees for research purposes such as experimental setups. Therefore, ex-
perimentation with the model is possible immediately.

The implementation of the model in an inventory management system will lead to a
calculated waste percentage per SKU. From these waste percentages, supply chain plan-
ners can determine what SKUs need more attention to reduce the waste. Experiments
can be performed by altering certain parameters and calculating the expected results
of these experiments. This leads to useful insights and might help in decisions such as
whether to change the SKU parameters or phase out an SKU. Furthermore, in-depth
simulations can be performed to investigate the influence of certain parameters on the
given data-set. Besides, sensitivity analyses can be useful here to get the optimal setting
for having the lowest expected waste.

The results have shown that the presentation stock has a significant effect on waste.
However, the presentation stock is not yet incorporated in the approximations and re-
gression formula. This can be done by changing the safety stock calculations. Then, the
presentation stock too will be a parameter that can be changed and of which the effects
can be simulated.

Although these insights are valuable, the implementation of the model might come
with some risks and challenges. First of all, the dataset used for this model consists of
fast-movers, and agricultural and chilled assortments groups only. This means that the
model has yet to be tested for slow-movers and other assortment categories. Next, the
method is not viable for subsets without simulated waste. Furthermore, the model is
(currently) not suitable for highly seasonal SKUs, and the waste of outliers is not well
predicted. This should all be taken into consideration.

Lastly, the model is not validated by the actual waste percentage of SKUs since
only two months of data on actual waste were available. By simulating the past and
comparing the simulated waste percentage to the actual waste percentage, the last step
of the validation is complete.

8.4 Recommendations

This section contains several recommendations for Slimstock. The first recommendation
is to examine all steps and questions mentioned in the Implementation plan in Section
8.3 and evaluate whether the model performs properly both for all SKU types as well as
in the food retail setting including events and promotions. This is important since the
model is promising, but has not yet proven itself in all conditions.

Secondly, determine whether the calculation of the FCC for each product for a certain
period when ordering in Slim4 is insightful for clients. Then for each product, it is clear
whether the order quantity is too large for the demand during shelf life.

One of the inputs of the regression model is the FIFO fraction. In this research,
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assumptions were made on the value of the FIFO fraction. However, as mentioned in
Section 4.2, a method exists that calculates the actual FIFO fraction. The recommen-
dation for Slimstock is to keep track of starting inventories for each day, such that this
method can be executed and the actual FIFO fraction can be determined for each SKU.
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Appendices

A Warm-up, replications and run time calculations

This appendix explains the calculations between the warm-up period, number of replica-
tions and run time calculations of the simulation model. For determining the warm-up
period, the average daily shelf life of the inventory of SKUs was tested for which it was
expected to have the highest warm-up period of all SKUs. That is the case for SKUs
with the longest shelf life, longest cover period and highest coefficient of variation in the
sample set. Therefore, SKUs with a shelf life of 13 days and L and R of 2 days were
tested. An 80% target service level was chosen, since the probability on an empty shelf is
the highest for this service level and therefore the SKUs with the most volatile inventory
are picked.

For the procedure, n = 5 replications were made and the run time was set to 364, as
the anticipated warm-up period was determined at around two times the shelf life of the
SKU, or 2 * 13 = 26. The Welch procedure to determine the warm-up period is as follows:
Let Yij be the ith day of run j, for all i = 1 to m and j = 1 to n. For all independent
days, the average daily inventory Ȳi on day i was calculated as Ȳi =

∑5
j=1 Yij . Next, we

choose the window w for the smallest value of w for which the graph looks "reasonably
smooth" (Law, 2015). This window is used as moving average value. By using a moving
average, oscillations are flattened. Based on past experience, we define a window of 30
days, such that the graph looks reasonably smooth in Figure A.1:

Figure A.1: Simulation warm-up determination

As can be seen in Figure A.1, the plot reaches stability at around day 29. Therefore, the
warm-up period of the simulation was set to 30 days. Other SKUs were tested with the
same procedure, such as an SKU with a shelf life of 10 and an SKU with a shelf life of
13 days and a lower coefficient of variation. As expected, the warm-up periods of these
SKUs were lower than the warm-up period of 30 days.

Next, the number of replications was determined together with the run time of the model.

67



68 Appendices

The right amount of replications and sufficient run time make sure that the output of
the model lies within a reasonal small bandwidth. The determination of the replications
and run time was done with a different SKU, namely an SKU with the shortest possible
shelf life. Furthermore, the SKU had a very high coefficient of variation, such that the
expected waste percentage per day varies a lot.

As a start, since the graph in Figure A.1 showed a gradual result of the age of
inventory, a sufficient run length whilst doing 10 replications was anticipated to be only
one year. Therefore, the SKU was tested with n = 10 replications and a run length of
364 days. The settings were a 95% confidence interval and a predefined error of 5%. For
replication n the mean µ and variance σ2 of the waste percentages were calculated for
replications 1 to n. For each set of subsequent replications, the t-statistic was calculated
with parameters 0.975 and n-1 degrees of freedom. Then, the error was calculated using
the following equation:

Error =
t ·
√
σ2

n
µ

(A.1)

When the error is smaller than or equal to the allowed predefined error of 5%, the number
of replications is considered as enough. For a run length of 364 days, the error was always
higher than the allowed error. Therefore, 10 replications are not sufficient for a run time
length of 364 days. It was chosen to increase the run length by one year until at most
10 replications were sufficient. This was the case for a run length of three years, or 1028
days. Table A.1 shows that 9 replications are considered enough for the simulation, as
the error of 9 replications is lower than the predefined error of 5%.

Table A.1: Simulation warm-up determination for a three year run length

Run Waste percentage Mean Variance T-value Error
1 0.1360
2 0.1511 0.1435 0.0001 12.706 0.6690
3 0.1338 0.1403 8.86E-05 4.3026 0.1666
4 0.1284 0.1374 9.5E-05 3.1824 0.1129
5 0.1317 0.1362 7.76E-05 2.7764 0.0803
6 0.1522 0.1389 0.0001 2.5706 0.0772
7 0.1293 0.1375 0.0001 2.4469 0.0673
8 0.1326 0.1369 8.9E-05 2.3646 0.0576
9 0.1381 0.1371 7.81E-05 2.3060 0.0496

B Performance of the model from literature

This appendix shows the performance of the model of Van Donselaar & Broekmeulen
(2012) compared to the simulation results including non-stationary demand and the FIFO
fractions. We first measure the performance of the approximations, then the performance
of the regression formula.
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B.1 Literature approximations performance

First, we test the performance of approximations zA and zB by the approximation error.
The approximations are tested for three different scenarios:

1. stationary demand, and a FIFO fraction of 1

2. non-stationary demand, and a FIFO fraction of 1

3. non-stationary demand, and FIFO fractions of 0.8, and 0.5

Scenario 1 is already described in Section 5.3, where, just as in the paper, stationary
demand and FIFO withdrawal are assumed. By comparing scenarios 1 and 2, the effect
of non-stationary demand is determined. By comparing scenarios 2 and 3, we determine
the effect of partial LIFO withdrawal. The results are shown in Figure B.1, where the
simulated relative outdating is set out to the approximated relative outdating.

(a) zA, scenario 1 (b) zB , scenario 1

(c) zA, scenario 2 (d) zB , scenario 2

(e) zA, scenario 3 (f) zB , scenario 3

Figure B.1: Approximations zA and zB under different scenarios.

From figures B.1 (a) and (b), we conclude that zA and zB predict the expected outdating
well, as expected. The same holds for the paper. And just as in the paper, zB has
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a lower approximation error than zA with an average and standard deviation of the
approximation error of 0.2% resp. 3.4%, whereas zB has 0.1% resp. 3.3%.

Next, we compare the approximation errors of zA and zB to the simulation results
with non-stationary demand, and FIFO withdrawal. The average approximation errors
and standard deviations are 2.14% resp. 6.72% for zA and 2.08% resp. 6.92% for zB.
The results are shown in Figures B.1 (c) and (d). It becomes clear that adding non-
stationary demand to the simulation means that the approximations perform worse.
This is especially the case for a couple of SKUs close to the x-axis in the figures. These
represent SKUs with high yearly seasonality. This causes a high coefficient of variation in
the approximations, which means that the approximations expect high relative outdating.
However, in the simulation we see that the order level fluctuates with the seasonality,
such that the yearly seasonality is not necessarily causing more outdating. Therefore,
the approximations highly overestimate the relative outdating of highly seasonal SKUs.
Scatters close to the y-axis represent SKUs that have high weekly seasonality, resulting in
high outdating in the simulation. However, the standard deviation in the approximations
is not large, thus the approximations result in low relative outdating for these SKUs.
Therefore, the approximations underestimate the outdating of many SKUs with high
weekly seasonality.

Adding FIFO fractions results in even higher approximation errors and standard
deviations with 4.75% resp. 8.32% for zA and 4.70% resp. 8.49% for zB in the case
of FIFO fractions of 0.5 and 0.8. The plots are even more scattered in these cases, as
shown in Figures B.1 (e) and (f). This is logical, as approximations zA and zB assume
a FIFO fraction of 1. We observe that the relative outdating is higher when the FIFO
fraction is lower, and that the approximated value is usually lower than the simulated
value. We conclude that when non-stationary demand and FIFO fractions are part of
the simulation, approximations zA and zB, in general, underestimate the outdating.

B.2 Literature regression performance

Next, we test the regression equation for three different scenarios:

1. stationary demand, and a FIFO fraction of 1

2. non-stationary demand, and a FIFO fraction of 1

3. non-stationary demand, and FIFO fractions of 1, 0.8, and 0.5

We measure the effect of non-stationary demand by comparing scenario 1 to scenario
2, and we measure the effect between FIFO demand and mixed FIFO-LIFO demand
by comparing scenario 2 to scenario 3. Note that scenario 1 corresponds to the subset
used for validation in Section 5.3. However, different results are shown in both tables
since in this chapter relative outdating below 0.1% is considered as 0% relative outdating
(see Section 4.5 for explanation), whereas in the former chapter this was not taken into
account. The results are shown in Table B.1.

From the table, we see the RMSE, adjusted R2, intercept, and coefficients of the
variables of the regression formula for all chosen subsets for all scenarios. We first take a
look at the RMSE and adjusted R2. For most subsets, the regression performs reasonably
well, with the adjusted R2 above 80% in the scenario with stationary demand and FIFO
withdrawal. As we apply the regression formula to the scenarios with non-stationary
demand and even partial LIFO withdrawal, the regression performs worse and the RMSE,
therefore, becomes larger. We provided Table B.2 with the p-values of the coefficients.
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Table B.1: Baseline performance and coefficients of the original regression formula for
three scenarios.

RMSE R2 − adj intercept σ
µ

SS+Q−1
µ

Q
µ −R

⌈
s
Q

⌉
· Qµ zA zB

Scenario 1
M3L1R1 0.024 89.1% 0.0108 -0.0678 0.0071 0.0347 0.0049 0.1746 0.4190
M4L1R1 0.003 79.3% -0.0019 0.0085 0.0001 0.0017 0.0001 0.4577 1.1801
M4L2R1 0.008 90.1% -0.0570 0.1164 -0.0255 0.0220 0.0002 0.0363 1.2696
M4L2R2 0.017 90.5% -0.1837 0.1341 0.0415 0.0123 0.0187 0.1394 0.2132
M5L2R2 0.007 58.2% -0.0112 -0.0117 0.0119 0.0060 0.0020 -0.1357 1.1402
M6L2R2 0.004 65.7% -0.0172 0.0141 0.0067 0.0003 0.0005 0.2705 0.9818
M7L2R2 0.007 89.0% -0.0231 0.0210 0.0126 -0.0121 -0.0020 1.5407 0.4313
M8L2R2 0.004 43.0% -0.0092 0.0058 0.0039 -0.0022 -0.0001 0.1157 0.1160
M9L2R2 0.009 82.0% -0.0065 -0.0015 0.0042 -0.0015 -0.0004 0.6961 0.3554
M10L2R2 0.001 51.3% -0.0002 0.0002 0.0002 0.0000 -0.0001 0.1928 -0.0351
Scenario 2
M3L1R1 0.044 86% 0.0054 -0.0133 -0.0184 0.1046 0.0203 0.0833 0.0938
M4L1R1 0.010 74% -0.0191 0.0729 0.0116 0.0004 -0.0025 1.2944 1.9529
M4L2R1 0.010 83% -0.0669 0.2030 -0.0325 0.0625 -0.0031 0.0531 1.1175
M4L2R2 0.018 95% -0.1961 0.3498 0.1392 0.0561 -0.0046 0.0325 -0.5120
M5L2R2 0.014 84% -0.0678 0.1633 0.0447 0.0032 0.0005 1.1488 -0.5710
M6L2R2 0.014 85% -0.0622 0.1158 0.0425 0.0167 -0.0030 2.9119 1.6314
M7L2R2 0.018 91% -0.1345 0.1948 0.0578 -0.0235 -0.0062 3.3540 -0.9699
M8L2R2 0.018 73% -0.0571 0.0948 0.0249 -0.0092 -0.0032 0.8595 -0.1125
M9L2R2 0.012 95% -0.0254 0.0257 0.0210 -0.0073 -0.0040 2.2164 -0.5525
M10L2R2 0.002 55% -0.0063 0.0056 0.0032 -0.0004 -0.0003 0.0163 -0.0004
Scenario 3
M3L1R1 0.035 92% 0.0473 -0.1362 -0.0061 0.0607 0.0126 0.1767 1.0169
M4L1R1 0.016 71% -0.0361 0.0931 0.0259 -0.0025 -0.0005 0.5340 5.1159
M4L2R1 0.024 66% -0.0846 0.1609 -0.0027 0.0420 0.0003 0.1068 1.9186
M4L2R2 0.054 75% -0.1521 0.2613 0.1485 0.0378 -0.0042 0.0474 -0.1489
M5L2R2 0.041 57% -0.0566 0.1591 0.0746 0.0165 0.0006 3.4937 -1.5375
M6L2R2 0.032 65% -0.0721 0.0950 0.0641 0.0087 -0.0025 2.2703 2.0169
M7L2R2 0.034 80% -0.1467 0.1842 0.0741 -0.0195 -0.0052 3.3326 -1.1505
M8L2R2 0.027 70% -0.0785 0.1129 0.0375 -0.0143 -0.0030 0.9312 0.0294
M9L2R2 0.024 85% -0.0595 0.0570 0.0357 -0.0189 -0.0037 2.0887 -0.8698
M10L2R2 0.014 36% -0.0255 0.0231 0.0136 -0.0013 -0.0007 1.1401 -0.7197

Non-significant p-values (values above 5%) are highlighted. A cause of a low adjusted
R2 is insignificant variables. However, from the table, we see that this is not the case.
When analyzing the residuals of each subset, it became clear that the regression performs
with a low adjusted R2 because of a few outliers with a high relative outdating. This is
shown in Figure B.2 for subset M5L2R2 for scenario 3. Lastly, it became clear that often
these outliers occur at a 99% target service level. This is logical, since a linear regression
expects outdating to be linear according to the variables, but this is not the case for a
99% service level, since stock and outdating increase exponentially.

Next, we take a look at the intercept and coefficients. In almost all cases, the intercept
is a negative value. This is not unexpected since this was also the case in the paper.
However, as the shelf life becomes longer in scenario 1, variables 3 and 4 have a negative
relationship with the relative outdating. In scenarios 2 and 3, this effect is increased, and
even variable 6 has a negative relationship with outdating in some cases. Furthermore,
the absolute values of the coefficients in the last two columns in scenario 2 and 3 become
very large, underlining the fact that zA and zB no longer approximate the outdating
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well, as shown before in Figures B.1 (c) - (f). Lastly, we see that coefficients are very
different between subsets. This is logical, because all subsets contain certain assortment
categories with different characteristics, such that one subset cannot be compared to
another subset.

Table B.2: Baseline performance and p-values of the regression coefficients for three
scenarios under the original regression formula.

R2 − adj p1 p2 p3 p4 p5 p6
Scenario 1
M3L1R1 89.1% 0.000 0.000 0.000 0.000 0.000 0.000
M4L1R1 79.3% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R1 90.1% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R2 90.5% 0.000 0.000 0.000 0.000 0.000 0.000
M5L2R2 58.2% 0.000 0.000 0.000 0.000 0.000 0.000
M6L2R2 65.7% 0.000 0.000 0.000 0.000 0.000 0.000
M7L2R2 89.0% 0.000 0.000 0.001 0.000 0.000 0.000
M8L2R2 43.0% 0.000 0.000 0.000 0.000 0.000 0.000
M9L2R2 82.0% 0.000 0.000 0.000 0.000 0.000 0.000
M10L2R2 51.3% 0.000 0.000 0.770 0.000 0.000 0.000
Scenario 2
M3L1R1 86% 0.043 0.000 0.000 0.000 0.000 0.000
M4L1R1 74% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R1 83% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R2 95% 0.000 0.000 0.000 0.000 0.000 0.000
M5L2R2 84% 0.000 0.000 0.000 0.000 0.000 0.000
M6L2R2 85% 0.000 0.000 0.000 0.000 0.000 0.000
M7L2R2 91% 0.000 0.000 0.162 0.000 0.000 0.000
M8L2R2 73% 0.000 0.000 0.000 0.000 0.000 0.000
M9L2R2 95% 0.000 0.000 0.000 0.000 0.000 0.000
M10L2R2 55% 0.000 0.000 0.000 0.000 0.000 0.000
Scenario 3
M3L1R1 92% 0.000 0.000 0.000 0.000 0.000 0.000
M4L1R1 71% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R1 66% 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R2 75% 0.000 0.000 0.000 0.000 0.000 0.000
M5L2R2 57% 0.000 0.000 0.000 0.000 0.000 0.000
M6L2R2 65% 0.000 0.000 0.000 0.000 0.000 0.000
M7L2R2 80% 0.000 0.000 0.189 0.000 0.000 0.000
M8L2R2 70% 0.000 0.000 0.000 0.000 0.000 0.000
M9L2R2 85% 0.000 0.000 0.000 0.000 0.000 0.000
M10L2R2 36% 0.000 0.000 0.000 0.000 0.000 0.018
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Figure B.2: M5L2R2 regression residuals with a few outliers from scenario 3.

C Regression results for FIFO withdrawal

This appendix shows the regression results in the situation of FIFO withdrawal. In
Table C.1, the RMSE, R2 − adj, and the coefficient values can be found. Furthermore,
we compare the performance of the FIFO withdrawal case, with the mixed FIFO-LIFO
withdrawal case from Section 6.4.2. The comparison is shown in Table C.2. Between the
two cases, the R2 − adj is often higher in the FIFO case compared to the partial LIFO
case, and the other way around. Overall, the regression equation performs well for both
FIFO and partial LIFO cases, apart from subset M10L2R2.

Table C.1: Performance of the developed regression formula with FIFO withdrawal.

RMSE R2 − adj intercept σW
µ

s
Q
· Q
µ

z
′
A z

′
B

SS
µ

Q
M·µ

M3L1R1 0.025 96% -0.0327 0.1182 -0.0191 0.6566 -0.0243 0.0849 0.2142
M4L1R1 0.007 87% -0.0172 0.0662 0.0007 6.2834 -1.5739 0.0105 0.0073
M4L2R1 0.007 91% -0.0534 0.0761 -0.0006 1.2966 1.1121 -0.0632 0.0291
M4L2R2 0.012 98% -0.2316 0.3081 -0.0059 0.1849 -0.1121 0.1163 0.5850
M5L2R2 0.010 91% -0.0637 0.1550 0.0014 6.8274 -1.6336 0.0381 0.1457
M6L2R2 0.013 87% -0.0963 0.1262 -0.0031 -2.2516 2.6919 0.0436 0.3050
M7L2R2 0.016 93% -0.0713 0.1884 -0.0068 4.7277 -0.4375 0.0567 0.1681
M8L2R2 0.016 79% -0.0374 0.0900 -0.0024 2.6448 0.1968 0.0224 0.1019
M9L2R2 0.012 95% -0.0218 0.0283 -0.0031 1.9548 -0.2993 0.0211 0.1245
M10L2R2 0.002 62% -0.0054 0.0048 -0.0001 0.1162 0.1320 0.0034 0.0204

Table C.2: Comparison of the regression performance between FIFO and partial LIFO
withdrawal.

RMSE FIFO R2 − adj FIFO RMSE LIFO R2 − adj FIFO improvement
M3L1R1 0.025 96% 0.028 95% -1%
M4L1R1 0.007 87% 0.012 82% -5%
M4L2R1 0.007 91% 0.014 89% -2%
M4L2R2 0.012 98% 0.020 97% -1%
M5L2R2 0.010 91% 0.020 90% -1%
M6L2R2 0.013 87% 0.015 92% 5%
M7L2R2 0.016 93% 0.017 95% 2%
M8L2R2 0.016 79% 0.020 83% 4%
M9L2R2 0.012 95% 0.018 92% -3%
M10L2R2 0.002 62% 0.010 64% 2%
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D P-values, VIFs and other subsets in the regression

From Table D.1, we observe that all variables have p-values that are below 0.05, thus sig-
nificant, except for variable Q

M ·µ for combination M7L2R2, which is 0.189. However, this
does not compromise the performance of the regression equation with subset M7L2R2,
because the adjusted R2 is still 95%. Next, we present the VIFs of all variables.

Table D.1: P-values of the regression variables.

σW

µ

⌈
s
Q

⌉
· Qµ z

′

A z
′

B (SSµ )+ β∗ · (1−
√
f) Q

M ·µ

M3L1R1 0.000 0.000 0.000 0.000 0.005 0.000 0.000
M4L1R1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M4L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M5L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M6L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M7L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.189
M8L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M9L2R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M10L2R2 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Table D.2: Variance inflation factors of the regression variables.

σW

µ

⌈
s
Q

⌉
· Qµ z

′

A z
′

B (SSµ )+ β∗ · (1−
√
f) Q

M ·µ

M3L1R1 1 2 5 6 2 1 3
M4L1R1 2 3 16 17 3 1 1
M4L2R1 2 3 16 97 56 1 5
M4L2R2 1 2 6 5 5 1 1
M5L2R2 1 2 4 4 3 1 1
M6L2R2 1 2 3 4 2 1 1
M7L2R2 2 3 4 5 6 1 1
M8L2R2 2 2 6 5 2 1 1
M9L2R2 1 3 12 9 3 1 4
M10L2R2 1 2 11 11 3 1 1

Most VIFs are below 10. However, in some cases, there is a too high correlation between
z
′
A and z′B. For these subsets, z′A was removed from the regression equation and coeffi-
cients were determined again. This resulted in all VIFs below 10. The adjusted R2 of
subset M4L2R1 was then reduced by 2%, but the adjusted R2 of subsets M4L2R2 and
M10L2R2 were barely influenced.

The regression equation was also used to calculate all other subsets mentioned in
Section 6.2 that were not tested above. Since the percentage of SKUs with outdating is
low for each of those subsets, the regression was done for all subsets together. Since the
shelf life, lead time, and review time were no longer fixed, another independent variable
was added to the regression equation. From the analysis and Table 6.1 it is clear that the
relative outdating reduces when the shelf life is large compared to the lead and review
time. Therefore, the variable M

L+R was added. However, the adjusted R2 of the model is
only 41%, meaning most SKUs with relative outdating are seen as outliers and are not
well predicted. This, again, shows that a subset should have a large enough outdating
percentage for regression to have good performance.
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E Analysis of the regression approximation errors

This appendix contains an elaborate analysis of the regression approximation errors. First
of all, we compare the approximated relative outdating by regression and the simulated
relative outdating in Figure E.1. We observe a clear relation between the approximated
and simulated relative outdating, i.e. SKUs with low simulated relative outdating have a
low approximated relative outdating, and the same is observed for SKUs with very high
relative outdating.

Next, we set out the simulated relative outdating to the approximation error in Figure
E.2. We observe large outliers from relative outdating percentages larger than 20%. The
highest approximation error is almost 21% for an SKU with the simulated outdating of
44%, meaning the regression approximates the relative outdating at 44%− 21% = 23%
instead of 44%.

The same holds for subset M10L2R2, for which the adjusted R2 is just 64%. From
Figure E.3 we observe a clear relation between the approximation error and simulated
relative outdating.

Aside from the large approximation errors, the relative outdating of many SKUs is
estimated well by regression. Although the percentages of the approximated relative out-
dating by regression and the simulated relative outdating are rarely equal, the regression
clearly shows the effects of target service levels seen in the simulation. This is clearly
seen in Figure E.4. In this case, the outcome of the regression mimics the outcome of
the simulation, where no matter the choice of target service level between 80% to 90%,
the expected relative outdating is the same. This means that the regression output is
not valid for determining the exact expected relative outdating percentage, but rather
for the change in relative outdating between two target service levels.

Diving further into the SKUs with high approximation errors, we observe three situ-
ation for which the regression does not approximate the outdating well. First of all, this
is the case for highly seasonal items. Generally, the outdating for seasonal items (items
with a high variance of monthly seasonal factors MSF) is overestimated by the regression.
An example is shown in Figure E.5. Likewise, we generally observe underestimation of
the outdating for SKUs with a high variance of the WSF. An example is shown in Figure
E.6. Explanations on the high approximation errors can be found in Section 6.3.1. Un-
fortunately, a high MSF and WSF are not the only cause of high approximation errors
since it partially depends on combinations with other regression variables. Therefore, it
is not possible to clearly state from what MSF or WSF value the approximation error is
high. Lastly, we observe higher approximation errors for the 99% target service level, as
the regression is linear rather than exponential. The underestimation of the 99% service
level is shown in Figure E.7.

After analysis, it became clear that the high approximation errors for SKUs with
high weekly or monthly variance are due to the high approximation errors of the approx-
imations z′A and z′B. This relation is shown in Figure E.8. From this Figure we also see
that high approximation errors of z′B are slightly reduced when performing the regres-
sion, i.e. regression lowers the approximation error of z′B. However, large approximation
errors with z′B cause large approximation errors of the regression, indicating that a good
approximation of z′B is key for each SKU.
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(a) All SKUs. (b) All SKUs within the 0% to 20% interval.

Figure E.1: The relation between the approximated relative outdating by regression and
the simulated relative outdating.

Figure E.2: The relation between the approximated relative outdating by regression and
the approximation error.

Figure E.3: The relation between the approximated relative outdating by regression and
the approximation error for subset M10L2R2.

Figure E.4: The regression relative outdating mimicking the simulated relative outdating.
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Figure E.5: The overestimated outdating for highly seasonal SKUs.

Figure E.6: The underestimated outdating for SKUs with high weekly variance in demand.

Figure E.7: An example of an underestimation of the 99% target service level.

Figure E.8: The relation between the approximation errors.




