
PERFORMANCE EVALUATION OF SEVERAL
SLAM ALGORITHMS IN A FEATURE-BASED

VSLAM FRAMEWORK

G.J. (Gideon) Kock

MSC ASSIGNMENT

Committee:
dr. ir. F. van der Heijden

dr. F.J. Siepel, MSc
dr. M. Poel

May, 2021

031 RaM2021
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock i

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock ii

Content

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Problem statement .. 2

1.3 Outline of the report ... 2

2. Background: SLAM .. 3

2.1 Explaining variables using an example .. 3

2.2 Online vs Full SLAM... 4

3. The family of feature-based SLAM ... 5

3.1 Gaussian filters .. 5

3.1.1 Kalman filter .. 5

3.1.2 Information filter .. 5

3.1.3 Extended versions of the Information- and Kalman filter .. 6

3.2 Nonparametric filters ... 6

3.2.1 Histogram filter .. 6

3.2.2 Particle filter .. 7

3.3 Chosen SLAM algorithms ... 7

3.4 EKF SLAM .. 7

3.4.1 Prediction ... 7

3.4.2 Measurement update .. 8

3.4.3 Complexity .. 8

3.5 SEIF SLAM ... 9

3.5.1 Prediction ... 9

3.5.2 Measurement update .. 10

3.5.3 Update state estimation .. 10

3.5.4 Sparsification ... 11

3.5.5 Complexity .. 13

3.6 Graph SLAM ... 13

3.6.1 Theoretical background Graph SLAM ... 14

3.6.2 Initialization ... 15

3.6.3 Calculating the information matrix and information vector ... 16

3.6.4 Reducing .. 17

3.6.5 Solving ... 17

3.6.6 Complexity .. 17

3.7 FAST-SLAM ... 18

3.7.1 Prediction ... 18

3.7.2 Measurement update map .. 18

3.7.3 Assign importance weight .. 19

3.7.4 Resampling .. 19

3.7.5 Difference FAST-SLAM 1.0 and 2.0 ... 20

3.7.1 Complexity .. 21

4. Methods ... 23

4.1 Goals .. 23

4.2 Experimental set-up ... 23

4.2.1 2D map .. 23

4.2.2 Visual SLAM ... 24

4.3 Evaluation criteria .. 26

4.3.1 Accuracy and consistency .. 26

4.3.2 Computational complexity ... 27

5. Results ... 29

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock iii

5.1 Accuracy and consistency on 2D UK data ... 29

5.1.1 Pose.. 29

5.1.2 Map .. 30

5.1.3 MAE .. 30

5.2 Accuracy and consistency on 3D simulated vSLAM data.. 33

5.2.1 Pose.. 33

5.2.2 Rotation ... 34

5.2.3 Map .. 36

5.2.4 MAE .. 37

5.3 Computation time on 2D data .. 38

5.4 Computation time on real vSLAM data ... 39

6. Discussion ... 41

6.1.1 Goals .. 41

6.1.2 Accuracy and consistency on 2D data ... 41

6.1.3 Accuracy and consistency on 3D simulated data.. 42

6.1.4 Computation time on 2D data .. 44

6.1.5 Computation on 3D simulated data .. 44

6.2 Limitations ... 45

7. Conclusions and recommendations.. 46

7.1 Conclusion ... 46

7.2 Recommendations .. 46

Appendix A ... 48

Appendix B ... 49

Appendix C ... 51

Bibliography .. 52

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock iv

Summary

The aim of the HAPI project is to enhance a handheld device, such as the Laser Speckle Contrast

perfusion imager, that scans a target area by manually pointing the device at the diseased skin area. To

provide 3D geometrical information, visual SLAM (vSLAM) algorithms are involved.

In this work, several SLAM algorithms are chosen that are suitable to perform in a feature-based

vSLAM framework. First, different types of Bayesian-based filters were presented. Based on these

filters, four common SLAM algorithms were selected: EKF SLAM, SEIF SLAM, Graph SLAM and

FAST SLAM. The working principle of the algorithms is explained in this report, including a

mathematical derivation.

The performance of these algorithms is measured using an experiment in a 2D environment.

Furthermore, the algorithms are tested in a feature-based vSLAM framework in a 3D environment. The

input data used in these experiments consist of feature points extracted from real images and simulated

feature points.

During the experimentation, it is observed that Graph SLAM provides a relatively high accuracy and

consistency. However the algorithm is computationally expensive and therefore it could not be run in

real-time. The results of the experiments shows that EKF and SEIF have almost the same accuracy. The

SEIF algorithms is computationally more attractive, but the needed computation power was higher than

expected. It is also shown that the sparsification step in SEIF ensures a low constancy of the filter.

Furthermore, the FAST-SLAM algorithm is only tested on the 2D data and shows a relatively high error

in the pose and the map.

The research shows that there are several SLAM-back ends that can perform in a feature-based

framework. Depending on the needed accuracy, the available computation power, the available

knowledge to implement and the need to perform in real-time, a SLAM back-end can be chosen.

However, to measure the performance in a more realistic environment, the algorithms need to be tested

in more nonlinear situation with more loop closings.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 1

1. Introduction

The HAPI project is a TTW-funded project in which the Radboud UMC and the University of Twente

collaborate. The aim of this project to develop a handheld device for blood perfusion imaging, and to

deploy this system for monitoring the progression of Psoriasis. The technical development of this system

is accomplished by the BMPI group. In addition, the RAM group participates in this project by providing

the needed computer vision functionality.

The goal of the work package, for which RAM was responsible, is to provide methods for real-time

estimation of 2D in-plane motion, e.g. optical flow. Next to this, the work package also entails an

explorative study to the possibility of 3D vision to enhance the functionality of the handheld device. The

current study is a continuation of this last aspect of the work package.

1.1 Motivation

The aim of the project is to enhance a handheld device, such as the Laser Speckle Contrast perfusion

imager. The device scans a target area by manually pointing the device at the diseased skin area. It is

desired to enlarge the field of view of the device by slowly sweeping it along the skin surface in a

controlled but flexible manner. Also it has to provide 3D geometrical information of the target object in

order to correct geometrical effects. In other words it has to correct non-fronto-parallel imaging. The 3D

geometrical information can also be used to facilitate 3D augmented reality. Furthermore, to enable full

motion artefact compensation, it must provide 3D motion information.

To provide this information, visual SLAM algorithms have to be involved. A SLAM (Simultaneous

Localization And Mapping) algorithm can construct a map of an unknown environment moving around

with a sensor system, and while simultaneously keeping track of the location of this device within the

map. Visual SLAM (vSLAM) algorithms use camera information as input information.

Various principles of vSLAM exist [1]. In a feature-based method a set of feature points is extracted

from an image. These feature points are matched with feature points extracted from other images that

are taken from different perspectives. The matching process is performed by matching the so-called

descriptors of the corresponding feature points. With points seen from different perspectives, 3D

information can be calculated.

In direct methods, the entire images are compared to each other. This is done by matching parts of

images. Instead of abstracting features points and descriptors, they use the image directly. Whereas

geometric consistency is used for feature-based methods, photometric consistency is used for direct

methods.

Both of the approaches might be of interest, but as a first step this study addresses only the point feature

based approach leaving the other approaches for future work. Within feature-based SLAM, various

implementations exist with different characteristics. There are different ways to match features points

of images. Also the 3D calculation can be performed in different ways. In this calculation noise has to

be taken into account. Noise induces during image acquisition and propagates into calculation of 3D

points from different perspectives. To work form a probabilistic perspective noise can be taken into

account. The algorithm that solves this problem is called a SLAM back-end algorithm.

If feature-based SLAM is going to be used, it is not clear which implementation is most suitable for a

handheld device.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 2

1.2 Problem statement

The goal of this research is to find the best SLAM back-end for a handheld device in a feature based

vSLAM framework. This framework is realized in previous work.

The following questions will be answered in this project:

1. Which SLAM back-ends are suitable for the mapping on a handheld device?

2. What are the working principles of these algorithms?

3. What is the performance of these algorithms within the vSLAM feature-based framework?

The following hypothesis will be verified:

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity

of an algorithm.

1.3 Outline of the report

The structure of this report is as follows. Chapter 2 describes the background information of SLAM.

Furthermore, the mathematical variables and their notations used in the next sections are explained. In

Chapter 3 different filters are explained. Using this knowledge, the SLAM algorithms to be researched

are chosen. Also the theoretical background and working principle of the chosen SLAM algorithms are

explained. The approach to the experiments is described in Chapter 4. The results of experiments are

given in Chapter 5 and discussed in Chapter 6. In the last section the conclusions are made and

recommendations are provided.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 3

2. Background: SLAM

The term SLAM was already introduced in Section 1.1. When a system does not have access to a map

of the environment, nor it does know its own state, it can be seen as a typical SLAM problem. A SLAM

algorithm tries to find the right path the system is taking (localization). Simultaneously, it creates a map

of the environment in which the device is located (mapping) using models and measurements.

There is always uncertainty in measurements and models. For example, due to measurements noise and

approximations in the model. Therefore, a SLAM algorithm is working from a probabilistic perspective,

where it solves a so called optimization problem.

The core commonality mathematical framework of SLAM algorithms is Bayesian-based. A Bayesian-

based filter handles different kind of measurements of the sensor device. Measurements from different

sensors can be divided in two categories, namely relatives and absolute measurements. Examples are

given in Table 1. In a Bayesian-based filter, a prediction of the position of a sensor device is performed

using a kinematic model and/or information from relative kinematic measurements, for example speed

and turning rate. The next step of a Bayesian-based filter is the measurement update. In this step,

absolute measurements are used to make the predicted state more accurate. Absolute position

measurements are measurements of the environment relative to the device.

Table 1 Measurement types

Measurements type Examples

Relative measurements Wheel encoders

Integration of accelerators or gyroscopes

Absolute measurements Beacons

Laser scanner

Vision systems

2.1 Explaining variables using an example

A graphical interpretation is provided in Figure 1, with the definitions of the variables in the legend.

These variables will also be used in other sections of this report. As described in the legend, xi is the

state of the device at time i and mj is the position of a landmark with ID j. The variable ui defines the

relative measurements at time i. The k-th absolute measurement at time i is represented by the

variable zi
k, with ci

k the corresponding landmark ID. A variable indicated with a capital letter, signifies

the maximum number of that variable. For example, zi
1:Kindicates the whole set of measurements at

time i.

Figure 1 shows that the estimated path deviates from the real path. At time i the sensor device, has a

state xi. Using the previous state xi=1 and relative measurements ui=2, a new state x̅i=2 is predicted.

Note that the upper bar indicates an predicted state. At i=2 it observes two landmarks mj=1 and mj=2.

Two measurements zi=2
k=1 and zi=2

k=2 are obtained, with ID numbers 1 and 2 stored in ci=2
k=1 and ci=2

k=2,

respectively. Using this information the state x̅i=2 is updated to xi=2. This process iterates at each time

stamp. A prediction is performed to calculate x̅i using the previous state xi−1and relative measurements

ui. The measurements update is performed using absolute measurements zi
1:K with correspondences ci

1:K

to calculate xi.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 4

Figure 1 Graphical interpretation of solving a SLAM problem using a bayes filter

2.2 Online vs Full SLAM

From a probabilistic point of view there are two types of SLAM problems: online and full SLAM. Both

calculate the posterior probability using measurements and controls, but online SLAM involves

estimating the momentary pose, while in full SLAM the entire path is estimated. The information about

the state of the system x (state vector) and the map m containing the landmarks are stored in a so called

combined state vector y. An online SLAM algorithm only stores the current state xi in the combined

state vector, while in full SLAM all previous poses x1:I are also stored.

The corresponding probability functions and the layout of the combined state factor are given in Table 2.

Table 2 SLAM types

 ONLINE SLAM FULL SLAM

Probability function p(xi, m1:J | u1:I, z1:I
1:K, c1:I

1:K) p(x0:I, m1:J | u1:I, z1:I
1:K, c1:I

1:K)

Combined state vector yi = (
xi
m1:J

) yi = (
x1:I
m1:J

)

Legend

Symbol Label Description

xi Estimated state at time i
ui Relative measurements at time i

mj Estimated state of landmark with id ‘j’

 zi
k kth measurement at time i

ci
k Correspondence (landmark id) of kth measurement at time i.

 - Estimated path

 - Real path

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 5

3. The family of feature-based SLAM

As described earlier, the core commonality mathematical framework of SLAM algorithms is Bayesian-

based. Bayes filters can be implemented in different ways. The algorithms can be divided in two main

categories: Gaussian Filters and nonparametric filters.

3.1 Gaussian filters

Gaussian techniques all share the basic idea that beliefs are represented by multivariate normal

distributions (Figure 2). There are two common Gaussian filters [2].

3.1.1 Kalman filter

The most common Gaussian filter is the Kalman filter, where a Gaussian is defined with moments

parameterization: a mean vector μ and covariance matrix Σ.

The general form of a Gaussian function using moments parameterization is given in (1).

p(x) =
1

√(2π)D|Σ|
exp(−

1

2
(x − μ)TΣ−1(x − μ)) (1)

where x is a random vector with dimension D.

Figure 2 Two dimensional Gaussian distribution (D=2) [3]

3.1.2 Information filter

Another Gaussian filter is the information filter, the dual of the Kalman filter. Instead of moments

parameterization, a Gaussian is defined in canonical parameterization. The canonical form consists of a

information matrix Ω and an information vector ξ . The relation between moments and canonical

parameterization is the following:

𝛺 = 𝛴−1 (2)

𝜉 = 𝛴−1 𝜇 (3)

The Gaussian in canonical parameterization is shown in (4), where the parts that are not dependent on

x are subsumed to η.

p(x) = η exp (−
1

2
xTΩ x + xTξ) (4)

In information form, the probabilities are often represented by their negative logarithmic. The Gaussian

in this form has some advantages. In particular, Bayes rule becomes an addition. Another advantage is

that p(x) now has a quadratic term in x parameterized by Ω and the linear term in x is parameterized by

ξ.

The negative logarithmic form becomes:

− 𝑙𝑜𝑔 𝑝(𝑥) = 𝑐 +
1

2
𝑥𝑇𝛺 𝑥 − 𝑥𝑇𝜉 (5)

Where the log of η becomes a constant value, labeled with ‘c’.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 6

3.1.3 Extended versions of the Information- and Kalman filter

In Bayes filters, a motion model is used to predict the next state and a measurement model is used for

the update step. The filter explained above can be worked out straightforwardly if the measurement

function and the kinematic model are linear. Unfortunately, in practice these functions are nonlinear. To

deal with nonlinearities, the two filters are both extended with linearizing nonlinear functions using

Taylor expansion. These filters are called the Extended Kalman filter and the Extended information

filter.

The nonlinear functions of the motion model and measurement model are given in (6) and (7),
respectively.

x̅i = g(ui, xi−1) + ɛi (6)

zi
k = h(yi, k) + δi (7)

Symbols ɛi and δi are variables relating to motion and measurement noise, respectively.

To deal with this nonlinearity, the extended versions of the information- and Kalman filter include a

linearization via Taylor series expansion. The Taylor series expansion of the motion and measurement

functions are given in (8) and (9), respectively.

 x̅i ≈ g(ui, xi−1)⏟
x̃i

+ Gi(xreal,i−1 − xi−1) + ɛi (8)

zi
k ≈ h(yi, ci

k)⏟

z̃i
k

 + Hi
k (yreal,i−1 − yi−1) + δi (9)

where the Jacobian Gi is the derivative of g(ui, xi−1) with respect to xi−1. In (9) the Jacobian Hi
k is the

derivative of h(yi, k) with respect to yi. The curly embraced part by x̃𝑖 in (8) and the curly embraced

part by z̃i
k in (9) are the noise free components and can be calculated. The parts between brackets after

the Jacobians of both functions are the estimation errors in xi and yi. In practice the real values xreal,i and

yreal,i are not known. However both filters are using the Jacobians to approximate the noise.

3.2 Nonparametric filters

The other category, nonparametric filters, are not based on parameters like the mean and the covariance

matrix to describe uncertainty. Instead, they approximate posteriors by a finite number of values, each

roughly corresponding to a region in state space. An advantage of nonparametric filter is that a

probability can have all kinds of shapes. In this section the representation of two nonparametric filters

are described. They are both using linearized motion and measurement functions described above. The

advantage of nonparametric filters is that they can handle high non-linearities. A disadvantage is the

required computational power.

3.2.1 Histogram filter

Histogram filters decompose the probability into finitely many regions and represent a probability for

each region by a single probability value. In Figure 3 a graphical interpretation can be seen, where p(x)

is a certain probability, which is described using a histogram.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 7

Figure 3 The histogram representation of a probability [4]

3.2.2 Particle filter

The key idea of the particle filter is to represent a probability by a set of random state samples. The

denser a region particle, the higher the probability. A graphical interpretation is given in Figure 4.

Figure 4 The particle representation of a probability [4]

3.3 Chosen SLAM algorithms

There are several SLAM algorithms based on the above mentioned filters. In this project it is not decided

yet if the estimation has to be operated in real-time. Therefore both online and full SLAM can be chosen.

The modeling for a human body does not have to necessarily be in real time. It can also acquire data in

real time and analyze this data afterwards. There already exists a vSLAM algorithm which uses EKF

SLAM (based on the Kalman filter) [5]. Therefore, this SLAM as well as alternatives will be used in

this research. In vSLAM a large number of landmarks are desired to create a dense map. Therefore

SLAM algorithms based on the information filter could be computationally interesting. Another

interesting SLAM algorithm called FAST-SLAM is found. Since it is based on the particle filter, it can

deal with high nonlinearities. An overview of the chosen algorithms is showed in Table 3.

Table 3 Chosen algorithms

Filter Algorithm Type

Kalman filter EKF SLAM Online

Information filter SEIF SLAM Online

Graph SLAM Full

Particle filter FAST-SLAM 2.0 Online

3.4 EKF SLAM

EKF SLAM is one of most common SLAM algorithms. Since this algorithm is already used in the

visual SLAM framework and explained in previous work[5], a short explanation is given in this report.

3.4.1 Prediction

In the prediction step the mean μ̅i and the associated covariance matrix Σ̅i are calculated in (10) and

(11), respectively. They are calculated using the linearized motion function g(ui, μi−1) with Jacobian

Gi. More over linearizing is explained in section 3.1.3.

μ̅i = g(ui, μi−1) (10)

Σ̅i = ǦiΣi−1Ǧi
T + Fx

TRiFx (11)

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 8

where 𝑅𝑖 is the covariance matrix related to motion noise. 𝑅𝑖 = 𝑉𝑖𝑀𝑖𝑉𝑖
𝑇 is the motion noise, with

covariance matrix 𝑀𝑖 of the relative measurements 𝑢𝑖 and the Jacobian 𝑉, the derivative of the motion

function with respect to the relative measurements. The Jacobian 𝑉 ensures an approximate mapping

between the motion noise in control space to the motion noise in state space. The projection matrix 𝐹𝑥

maps the motion update to the state vector. The projection matrix has the structure given in (12).

Fx = [
I⏟

size of xi

0⏟
size ofm1:J

]} size of xi (12)

With I an identity matrix and 0 a zero matrix.

The matrix Ǧi in (11) is the Jacobian Gi but extended with zeroes to have the same size of the combined

state vector. This is done using the projection matrix Fx:

Ǧi = Fx
TGi Fx (13)

3.4.2 Measurement update

For each landmark the Kalman matrix Ki
k is calculated to update the predicted mean μ̅i and covariance

matrix Σ̅i.

Si
k = Ȟi

kΣ̅iȞi
kT + Qi

k (14)

Ki
k = Σ̅iȞi

kTSi
k−1 (15)

μi = μ̅i + Ki
k(zi

k − ẑi
k) (16)

Σi = Σ̅i − Ki
kSi
kKi

k (17)

where Si
k is the so-called innovation matrix, Ki

k is the so-called Kalman gain and Qi
k the covariance

matrix related to measurement noise. Note that predicted variables are indicated with a upper bar while

the updated variables after measurement are not.

Equal to the Jacobian in the prediction, the Jacobian Ȟi
k is the large matrix fitted to the size of the

combined state vector. This in done in the following way:

Ȟi
k = Fx

THi
kFx (18)

With Fx,j having the following shape:

Fx,j = [

I⏟
size of xi

0⏟
size ofm1:j−1

0⏟
size ofmj

0⏟
size ofmj+1:J

0⏟
size of xi

0⏟
size ofm1:j−1

I⏟
size ofmj

0⏟
size ofmj+1:J

]

} size of xi

} size of mj
 (19)

Another way to do the measurement update is to build the Jacobian Ȟi for all measurements at once. In

this way only one Kalman gain Ki has to be calculated. Note that also three matrices have to be

constructed for each of Qi
1:K, zi

1:K and ẑi
1:K.

3.4.3 Complexity

According to [2], the calculation of the prediction step consists of the next state (10) and the covariance

matrix (11). These operations require 𝛰(1) and 𝛰(𝑛), respectively, with n the number of landmarks.

The measurement update, consisting of calculating the innovation matrix (14), Kalman gain (15),

updated main (16) , and update covariance matrix (17) , requires 𝛰(𝑘3) , 𝛰(𝑛𝑘2) , 𝛰(𝑛) , 𝛰(𝑛2𝑘)

respectively, with k the number of measurements. Calculating a Jacobian requires 𝛰(𝑛). Therefore the

computational complexity of the update step is 𝛰(𝑛2) and the total cost is known to be 𝛰(𝑛3). The

memory usage of EKF is 𝛰(𝑛2).

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 9

3.5 SEIF SLAM

SEIF is an online SLAM algorithm based on the information filter [2]. It has a lot in common with EKF,

but since the representation is different, some calculations are computational more effective, while in

other steps the computation is more complex. The part where it deviates the most from EKF is the

sparsification step. This step makes SEIF a very efficient algorithm and therefore it can be performed in

real-time. A flow diagram of SEIF is shown in Figure 5.

Figure 5 SEIF steps

In the prediction step, a new state is estimated using the motion model. This includes an information

matrix 𝛺̅𝑖 , an information vector 𝜉𝑖̅ and a predicted mean μ̅i . In the measurement update, the

information matrix and vector are updated using absolute measurements. The mean is updated in the

next step, called ‘Update state estimation’, using the updated information matrix and vector. Next, the

sparsification is computed. In this step, the information matrix is made sparse without losing too much

information. A sparsefied matrix or vector is indicated with a tilde above the expression. After the

sparsification, the information matrix 𝛺̃𝑖, information vector 𝜉𝑖 and the mean 𝜇𝑖 are up-to-date for time

i. The next state can be calculated by repeating the above described process. In this chapter every step

will be explained in detail.

3.5.1 Prediction

The predicted mean is equal to EKF. This equation is stated in (20). The calculation of the information

matrix 𝛺 in SEIF (21) is also based on the calculation of the covariance matrix 𝛴 in EKF.

μ̅i = g(ui, μi−1) (20)

 Ωi = Σi
−1 = (ǦiΣi−1Ǧi

T + Fx
TRiFx)

−1 (21)

 = (ǦiΩi−1
−1 Ǧi

T
+ Fx

TRFx)
−1

Equation (21) is computational expensive since it involves two inversions of large matrices. To make it

computationally more attractive, the matrix inversion lemma is applied. If Φi
−1 = Ǧi Ωi−1

−1Ǧi
T, the

equation is suitable for the inversion lemma:

 Ωi = (Φi
−1 + Fx

TRFx)
−1

 = Φi − ΦiFx
T(R−1 + FxΦiFx

T)
−1
FxΦi (22)

With

Φi = (Ǧi Ωi−1
−1Ǧi

T)
−1

 = (Ǧi
T)
−1
Ωi Ǧi

T−1 (23)

i=i+1

Prediction

Measurement
update

Update state
estimation

Sparsefication

𝛺̅𝑖𝜉𝑖̅ 𝜇̅𝑖

𝛺𝑖 𝜉𝑖 𝜇̅𝑖

𝛺𝑖 , 𝜉𝑖 , 𝜇𝑖

𝛺̃𝑖 , 𝜉𝑖, 𝜇𝑖

𝜇𝑖

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 10

The inversion R−1and (R−1 + FxΦiFx
T)
−1

 are inversions of low sized matrices. What remains is a large

matrix Ǧiand Ǧi
T that have to be inverted in (23). In the same manner as in (22), the matrix inversion

lemma is used. In (24) the Jacobian is divided in an identity matrix I and the parts that characterize the

change Δi. Then it is changed to the right form to apply the matrix inversion lemma afterwards.

Gi
−1 = (I + Fx

TΔFx)
−1

 = (I − Fx
TI Fx + Fx

TI Fx + Fx
TΔFx)

−1

 = (I − Fx
TI Fx + Fx

T(I + Δ)Fx)
−1

(24)

 = I − Fx
TI Fx + Fx

T(I + Δ)−1 Fx
 = I + Fx

T((I + Δ)−1−I) Fx⏟

Matrix Gi
T−1 can be calculated in the same way. The only difference compared to (24) is the transpose

of the curly embraced part.

To calculate the information vector ξ, equation (3) is rewritten to μ = Σ ξ and substituted into (20).

Moving Ωi to the right hand side of the equation, results in the following equation:

ξi = Ωi (Ωiξi + F
Tδi) (25)

The equations of Ωi and ξi given above are rewritten to have common parts in the equation. These

common parts are calculated first to avoid redundancy. This results in the following calculations that

have to be executed in the prediction step:

 Ψi = Fx
T[(I + Δi)

−1 − I]Fx

 λi = Ψi
TΩi−1 + Ωi−1Ψi +Ψi

TΩi−1Ψi
 Φi = Ωt−1 + λi (26)

 κi = ΦiFx
T(Ri

−1 + FxΦiFx
T)
−1
FxΦi

 Ω̅i = Φi − κi

 ξ̅i = ξi−1 + (λi − κi)μi−1 + Ω̅iFx
Tδi−1

 μ̅i = μi−1 + Fx
Tδi

3.5.2 Measurement update

The measurement update is based on the measurement update of the information filter:

Ωi = Ωi + Hi
TQi

−1Hi (27)

ξi = ξi + Hi
TQi

−1(zt − h(μi) + Hiμi) (28)

where zt is the actual measurement and h(μi) the noise free components of the approximated

measurement function. In most cases, and especially in vSLAM, there are multiple observations per

time. Therefore the equations are adapted to the following forms:

Ωi = Ωi +∑Hi
k TQi

−1Hi
k

j

(29)

ξi = ξi +∑Hi
j T
Qi
−1(zi

k − z̃i
k + Hi

j
μi)

j

(30)

3.5.3 Update state estimation

During the measurement update only Ω and ξ are updated. In this step, the predicted mean μ̅i is updated

using the updated matrix Ω and vector ξ . The most obvious calculation to do this is using μ = Ω−1ξ,

obtained from equation (3). A disadvantage of this method is that this has a high computational cost.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 11

Therefore an approximation is used to calculate the corrected mean. Furthermore, only the individual

variables of interest are calculated: The state vector xi and the active landmarks of the map. The

definition of active landmarks will be explained in Section 3.5.4.

The problem can be solved using different methods. Thrun et al. [4] suggests an iterative hill climbing

algorithm, which is an instantiation of the coordinate descent algorithm. In Gaussian distribution form

it has the following shape:

μ̂ = argmax
μ

p(μ)

 = argmax
μ

exp (−
1

2
μTΩμ + ξTμ)

 = argmin
μ

1

2
μTΩμ − ξTμ (31)

 = argmin
μ

1

2
∑∑μa

TΩa,bμb
ba

−∑ξa
Tμa

a

This results in a form that makes the individual coordinate variable μa explicit, with ‘a’ the rows of Ω,

ξ and μ, and ‘b’ the columns of Ω.

To find an optimal solution of μa the derivative of the last equation of (31) with respect to μa is taken:

δ

δμa
 {
1

2
∑∑μa

TΩa,bμb
ba

−∑ξa
Tμa} =∑Ωa,bμb − ξi

ja

(32)

By setting this equation to zero an optimum of μa is found:

0 =∑Ωa,bμb − ξi
j

−Ωa,aμa =∑Ωa,bμb − ξi
a≠b

(33)

μa = Ωa,a
−1 −∑Ωa,bμb + ξi

a≠b

To reduce the computation time, only the dimensions of the μ that are useful to know. For every state a

in μ a projection matrix F is used:

μa = (FaΩFa
T)
−1
Fa(ξ − Ωμ + ΩFa

TFaμ) (34)

where the projection matrix F has the following shape for calculating the state (a = xi)

Fx = [
I⏟

size of xi

0⏟
size ofm1:J

]} size of xi (35)

And for a landmark (a=mj):

Fj = [
0⏟

size of xi

0⏟
size ofm1:j−1

I⏟
size ofmj

0⏟
size ofmj+1:J

]} size of mj (36)

Not al the landmarks have to be updated. Only the active landmarks. This is explained in the next section.

Note that in the first iterations, when running the algorithm, the state has to be calculated with 𝜇 =

Ω−1𝜉. Otherwise the above mentioned approximation will not hold.

3.5.4 Sparsification

The sparsification step reduces the number of non-zero off-diagonal elements of Ω to create sparseness.

The operations in previous steps are computational more efficient when the matrix Ω is sparse. The

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 12

principal of the sparsification step is removing links between the pose and landmarks and use this

information to make other links between landmarks stronger.

In Figure 6 a graphical interpretation of the relation between links and Ω can be seen. The red link

corresponds to the red colored cells in Ω, shown on the right side of the figure. The grey links correspond

to the grey colored cells. The associated landmarks are called active landmarks. As can be seen, there is

no link between xi and mj+1 . The link corresponds to the white cells in Ω and are zero. The landmark

associated to this link, mj+1, is called a passive landmark. When landmark mj is chosen to be sparsefied,

the red link will be removed and the corresponding red cells in Ω also become zero. This landmark mj

is become passive.

Figure 6 Graphical interpretation of sparsification

In the sparsification step has to be decided which landmarks remain active and which have to be made

passive. There are different ways to decide which active features have to become passive. A simple and

effective way is to make a queue and select the first, most important number of landmarks in the queue

to be active. The active landmarks before the sparsification step consist of active landmarks from the

previous step plus the observed landmarks that have not been active previously. The most simple

procedure is to make a distinction between active landmarks, that where active in the previous time

stamp and have not been observed, and the observed landmarks. The previous active landmarks that

have not been observed are placed at the back of the queue.

The sparsification step is performed by assuming conditional independence of specified landmarks

directly linked to the pose (red line in Figure 2). In a general formulation, the probability p(a, b, c) can

be approximated by a probability p̃ so that a and b are independent given c:

p̃(a|b, c) = p(a|c)

p̃(b|a, c) = p(b|c) (37)

This is done in the following way:

p(a, b, c) = p(a|b, c) p(b|c) p(c) ≈ p(a|c) p(b|c) p(c) (38)

where first standard definition of conditional independence with three variables is stated and then

conditional independence is assumed by removing the conditional variable b in the first probability.

To apply this in the information form, the following calculations have to be performed to calculate the

sparsefied information matrix Ω̃i:

Ωi
0 = Fxi,m+m0 Fxi,m+m0

T Ω Fxi,m+m0
T Fxi,m+m0 (39)

 xi mj mj+1 mj+2

xi

mj

mj+1

mj+2

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 13

Ωi
1 = Ωi

0 − Ωi
0Fm0 (Fm0

T Ωi
0Fm0)

−1
Fm0
T Ωi

0 (40)

 Ωi
2 = Ωi

0 − Ωi
0Fxi,m0 (Fxi,m0Ωi

0Fxi,m0)
−1
Fxi,m0 Ωi

0 (41)

Ωi
3 = Ωi − ΩiFx (Fx

TΩiFx)
−1
Fx
T Ωi

0 (42)

Ω̃i = Ωi
1 − Ωi

2 + Ωi
3 (43)

with m+ the set of active landmarks that remain active and m0 the set of active landmarks to become

passive. The projection matrices F[.] have the same shape as in (19), with at the dot the indices in the

information matrix corresponding to the variables.

A derivation of above described calculations from a probabilistic point of view can be found in Appendix

A.

The sparsefied information vector ξi can easily be calculated in de following way:

ξ̃i = Ω̃i μi

= (Ωi − Ωi + Ω̃i μi (44)

 = Ωi μi + (Ω̃i − Ωi)μi

 = ξ + (Ω̃i − Ωi)μi

3.5.5 Complexity

Computational complexity of the prediction of SEIF is constant 𝛰(1) [4] [6]. The matrices Ψi, λi, Φi

are calculations with sparse matrices and include only non-zero elements corresponding to the state

vector xi. However, the matrix Φi in the calculation of κi is more dense, but, due to the sparsification

step, Φi is sparse. The multiplication of Fx
T(Ri

−1 + FxΦiFx
T)
−1
Fx with this matrix Φi (left and right)

touches only rows and columns that correspond to active features in the map. Since the size of Φi does

not depend on the number of active features, this step also requires 𝛰(1). The same reason holds for

calculating ξ̅i , the sparsification and the update state estimation. Since, in contrast to EKF, the

measurement update is an addition, it also requires 𝛰(1).

3.6 Graph SLAM

In this chapter, the Graph SLAM algorithm is explained. The working principle is derived from [2].

Since it is a full algorithm, all states are calculated at once. In Figure 7 a flow diagram of Graph SLAM

is shown. In the initialization, the mean of the states μ̅x are calculated using relative measurements u1:I

only. In the next step, the information matrix Ω and information vector ξ are calculated using this

trajectory and absolute measurements z1:I
1:K, including their correspondences c1:I

1:K. Next, the mean μ can

be obtained from the information matrix Ω and information vector ξ. However, to gain a more accurate

estimation, the information matrix Ω and information vector ξ can be calculated again. Instead of using

the mean of the states μ̅x calculated in the initialization, the mean of the states obtained from the

information matrix Ω and information vector ξ μx is used. This results in a more accurate linearization,

which results in an even more accurate estimation. This process can be repeated until the outcome

converges.

To avoid unnecessary calculations by calculating the mean of the states μx, the reducing part extracts

the information related to the states from Ω and ξ. This results in Ωred and ξred. These matrices are used

in the solving part to calculate the mean of state vector 𝜇𝑥. Also the covariance matrix and the map μm

could be calculated in an efficient way. The latter is usually done in the last iteration.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 14

Figure 7 Flow Graph SLAM

In the next section, the theory behind Graph SLAM is explained. There, every step of the flow chart in

Figure 7 will be covered.

3.6.1 Theoretical background Graph SLAM

Bayes rule plays an important role for calculating the posterior p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) in Graph SLAM.

Bayes rule is defined as:

p(a|b) =
p(b|a)p(a)

p(b)
(45)

The posterior p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) is equal to p(y0:I|(zi
1:K, z1:I−1

1:K , c1:I
1:K, u1:I). If the variable ‘a’ in (45)

represents state vector y0:I, ‘b’ is replaced by measurements zi
1:K the following equation can be defined

using Bayes rule:

p(y0:I|zi
1:K) =

p(zi
1:K|y0:I) p(y0:I)

p(zi
1:K)

(46)

The conditioning variables z1:I−1
1:K , c1:kand u1:k are added to each of the probability functions due to

conditional independence:

p(y0:I|z1:I
1:K, c1:I

1:K, u1:I) =
p(zi

1:K|y0:I, z1:I−1
1:K , c1:I

1:K, u1:I) p(y0:I|z1:I−1
1:K , c1:I

1:K, u1:I)

p(zi
1:K|z1:I−1

1:K , c1:I
1:K, u1:I)

(47)

The first probability in the numerator of (47) can be reduced, because the probability of zi
1:K can be

estimated using the combined state vector yi:

p(zi
1:K|y0:I, z1:I−1

1:K , c1:I
1:K, u1:I) = p(zi

1:K|yi, ci
1:K) (48)

The second probability in the numerator of (47) can be partitioned in the probability of the combined

state vector in the past (y0:I−1) times the probability of the current pose using the previous state xi −1

and controls ui:

p(y0:I|z1:I−1
1:K , c1:I

1:K, u1:I) = p(xi |xi −1, ui) p(y0:I−1|z1:I−1
1:K , c1:I−1

1:K , u1:I−1) (49)

The dominator of (47), p(z1:i|z1:I−1
1:K , c1:i, u1:i) is static. Therefore this part can be seen as normalizer η.

Substituting equations (48) and (49) into (47) and replacing p(z1:i|, c1:i, u1:i) by η gives the recursive

definition of the full SLAM posterior:

p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) = η p(zi
1:K|yi, ci

1:K) p(xi |xi −1, ui) p(y0:I−1|z1:I−1
1:K , c1:I−1

1:K , u1:I−1) (50)

To make it more computable it can be defined in an iterative way:

p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) = η p(y0) ∏[p(xi |xi−1, ui)∏p(zi
k |yi, ci

k)

k

]

i

 (51)

,Σ𝑥

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 15

As described in Section 3.1.2, a big advantage of the log of the posterior is that Bayes rule becomes an

addition:

−log p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) = c + log p(y0) +∑[log p(xi |xi−1, ui) +∑logp(zi
k |yi, ci

k)

k

]

i

(52)

The probabilistic form (52) of the posterior can be described in information form. Since there is a map

during the initialization, the log of p(y0) can be defined to be:

log p(y0) = log p(x0) = c −
1

2
 x0
TΩ0x0 (53)

The probabilities p(xi |xi−1, ui) and p (zi
j
 | yi, ci) can be defined in Gaussian form (1) in moments

parameterization:

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) =
1

√(2𝜋)𝐷|𝑅𝑖|
𝑒𝑥𝑝 (−

1

2
(𝑥𝑖 − 𝜇𝑥𝑖)

𝑇
𝑅𝑖
−1(𝑥𝑖 − 𝜇𝑥𝑖)) (54)

𝑝(𝑧𝑖
𝑘|𝑦𝑖 , 𝑢𝑖 , 𝑐𝑖

𝑗
) =

1

√(2𝜋)𝐷|𝑄𝑖
𝑘|

𝑒𝑥𝑝 (−
1

2
(𝑧𝑖
𝑘 − 𝜇

𝑧𝑖
𝑗)
𝑇

𝑄𝑖
𝑘−1 (𝑧𝑖

𝑘 − 𝜇
𝑧𝑖
𝑘)) (55)

where Ri and Qi
k are the covariance matrices relative to process and measurement noise, respectively.

The estimations μxi and μ
zi
k can be obtained from the linearized Taylor functions (8) and (9). By

substituting these equations, and rewriting the equation, the following expressions for both probabilities

can be defined:

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) = 𝜂 𝑒𝑥𝑝 (−
1

2
([𝑥𝑖 𝑥𝑖−1] [

−𝐺𝑡
𝑇

1
] + 𝑅𝑖

−1[−𝐺𝑖
𝑇 1] [

𝑥𝑖
𝑥𝑖−1

] + [𝑥𝑖 𝑥𝑖−1] [
−𝐺𝑖

𝑇

1
] 𝑅𝑖

−1 (𝑥̃𝑖 − 𝐺𝑖 𝜇𝑥𝑖−1))) (56)

𝑝(𝑧𝑖
𝑘|𝑦𝑖 , 𝑢𝑖 , 𝑐𝑖

𝑖) = 𝜂 𝑒𝑥𝑝 (−
1

2
(𝑦𝑖

𝑇𝐻𝑖
𝑗𝑇
𝑄𝑖
−1𝐻𝑖

𝑗
+ 𝑦𝑖

𝑇𝐻𝑖
𝑘𝑇𝑄𝑖

−1(𝑧𝑖
𝑘 − 𝑧̃𝑖

𝑘 +𝐻𝑖
𝑘(𝑦𝑖 − 𝜇𝑦𝑖))) (57)

with the terms that remain static subsumed to normalizer η.

The result of the substitution is given in equation (58).

−logp(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) = c −
1

2
 x0
TΩx0 −

1

2
∑([xi xi−1] [

−Gi
T

1
] Ri

−1[−Gi 1] [
xi
xi−1

] + [xi xi−1] [
−Gi

T

1
] Ri

−1[x̃i − Gi μxi−1])

i

1

2
∑yi

THi
kTQi

−1Hi
k yi

j

+ yi
THi

kTQi
−1(zi

k − z̃i
k + Hi

k μyi) (58)

The equation highlights an essential characteristic of the full SLAM posterior in the information form.

It is composed of a number of quadratic terms. The equation can be written in matrix form according

(5) by collecting the parameters of the quadratic terms to matrix Ω and the parameters of the linear terms

into ξ. This is explained in de next sections.

3.6.2 Initialization

In the initialization, μx is calculated for the whole path. A position for μ0 is defined. Then the motion

function is repeated I-1 times:

μi = g(μi−1, ui) (59)

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 16

3.6.3 Calculating the information matrix and information vector

As previously stated, equation (58) can be written in matrix form according (5) by collecting the

parameters of the quadratic terms to matrix Ω and the parameters of the linear terms into ξ. The final

Graph SLAM posterior in (58) is separated into five parts, where the parameters of the three quadratic

terms can be collected to matrix Ω and the two parameters of the linear terms can be collected to ξ. The

information matrix Ω is a square matrix where the size of the state vector ‘y’ times the number of

variables a pose is described. In Figure 8 and Figure 9, the layouts of the matrix Ω and vector ξ are given.

In this example a 2 dimensional Cartesian system (x,y) is chosen for the span in which the vehicle

moves.

 x0,x x0,y x1,x x1,y … xI,x xI,y m1,x m1,y m1,x m1,y … mJ,x mJ,y

x0,x x0,x

x0,y x0,y

x1,x x1,x

x1,y x1,y

…

…

xI,x xI,x

xI,y xI,y

m1,x m1,x

m1,y m1,y

m2,x m2,x

m2,y m2,y

…

…

mJ,x mJ,x

mJ,y mJ,y

Figure 8 Layout of 𝛺 Figure 9 Layout of 𝜉

The parameters in the SLAM posterior (58) related to Ω and ξ are separated and given in the equations

(60) to (64). The curly embraced equations (60) and (61) are calculated for each motion event between

𝑥𝑖+1 and 𝑥𝑖. The results of (60) and (61) are a square matrix and a vector, respectively, with the size of

2𝑥𝑖 . These results are added to the cells corresponding to 𝑥𝑖+1 and 𝑥𝑖 in the matrix Ω and vector ξ in

Figure 8 and Figure 9. Adding the values to Ω and ξ can be done in an efficient way by matrix addition.

This is explained in Appendix B.

[−Gi
T

1
] Ri

−1[−Gi 1] (60)

[−Gi
T

1
] Ri

−1 [x̃i − Gi μxi−1] (61)

A measurement event could be added by calculating equations (62) and (63). The resulting matrix and

vector are added to the cells corresponding to 𝑥𝑖 and 𝑚𝑗 in the matrix Ω and vector ξ in Figure 8 and

Figure 9.

Hi
jT
Qi
−1Hi

j
 (62)

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 17

 Hi
jT
Qi
−1 (zi

i − ẑ + Hi
j
 yi) (63)

The initialization is given in (64).

x0
TΩ⏟ x0 (64)

Usually the algorithm is initialized with a variance of 0, so Ω0 is defined as follows:

Ω0 = Σ0
−1 = [

∞ 0
0 ∞

] (65)

3.6.4 Reducing

To calculate only the state 𝑥, the matrix and vector can be reduced by removing information of the map.

This is done using the marginalization lemma (Appendix C). This leads to the following equations:

Ωred = Ωx0:I,x0:I − Ωx0:I,m Ωm,m
−1 Ωm,x0:I (66)

ξred = ξx0:I − Ωx0:I,m Ωm,m
−1 ξm (67)

In an iterative way:

Ωred = Ωx0:i,x0:i −∑Ωx0:i,j Ωj,j
−1 Ωj,x0:i

j

(68)

ξred = ξx0:i −∑Ωx0:i,j Ωj,j
−1 ξj

j

(69)

3.6.5 Solving

After the reducing part the state vector can be obtained in moments parameterization by rewriting (2)

and (3):

Σx = Ωred
−1 (70)

μx = Σx ξred (71)

Obviously, the positions of the landmarks cannot be calculated using Ωred and ξred. The conditioning

lemma is applied to the non-reduced matrices Ω and ξ to obtain a mean and variance of the map.

Σm = Ωm,m
−1 (72)

μm = Σm(ξm − Ωm,x0:tξreduced) (73)

3.6.6 Complexity

The computational complexity of Graph SLAM is highly depended on the inversion of the information

matrix. The sparseness of this matrix is highly depended on the number of landmarks, measurements

and the number of states. Therefore it is difficult to express it in big 𝛰 notation. There are several

researchers that developed a Graph SLAM algorithm with reduced complexity [7], [8], but the

complexity is not expressed in big 𝛰. The information matrix and vector are increasing to the number

of landmarks and the number of states. Therefore, the memory usage grows linearly (𝛰(𝑛)) in the

number of landmarks and the number of states.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 18

3.7 FAST-SLAM

The FAST-SLAM algorithm is a combination of two estimators. The pose is estimated using the particle

filter. The pose is therefore represented by a number of particles. Each particle is an instance of an

estimated pose. The map is estimated using the EKF filter. Each particle has its own estimates of

landmarks with a mean μmj and a covariance matrix Σmj. The landmarks are conditionally independent

from each other, so there is only a link between the pose and each landmark. The landmarks are

conditionally independent from each other, so there is only a link between the pose and each landmark.

In Figure 10 an overview of the working principle is shown. As FAST-SLAM is also based on the Bayes

filter, it consists of a prediction step and a measurement update. The prediction, the measurement update

and the importance weight are performed on a particle basis. The resampling step is done for the whole

set of particles.

Figure 10 Operation flow FAST-SLAM

There are two versions of FAST-SLAM, namely FAST-SLAM 1.0 and FAST-SLAM 2.0. The

difference between the two algorithms is the way how the prediction step is computed. In the next

sections the algorithms will be explained in detail. An even more elaborated explanation can be found

in [2]. First, the operation steps for FastSLAM 1.0 are explained. Afterwards the differences with

FastSLAM 2.0 are described.

3.7.1 Prediction

Given the particle set representing the previous state, a prediction will be performed to compute the next

state. This set of particles is also known as the proposal distribution.

In FAST-SLAM 1.0 the next pose is computed by sampling from the so-called proposal distribution. In

case of FAST-SLAM 1.0 this distribution is the following transition probability:

xi
[n]
∼ p (xi

[n]
∣ xi−1

[n]
, ui) (74)

with n is the n-th particle. It is assumed that this transition is Gaussian with mean g (ui, xi−1
[n]
) and a

covariance matrix that describes the uncertainty of the prediction.

3.7.2 Measurement update map

If a landmark has never been seen before, it will be initialized with a mean and a covariance matrix. The

mean mj+1
[n]

 is calculated by taking the inverse of the measurement function.

mj+1
[n]

= h−1 (zi
k, x̅i

[n]
) (75)

where zi
k is the measurement vector.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 19

Before the associated covariance matrix can be calculated, the Jacobian matrix of the measurement

function with respect to δx and δm , evaluated at pose xi
[n]

 and landmark position mj+1
[n]

 has to be

calculated first:

Hj+1,i
[n]

=
δh(yi, k)

δx, δm
|
xi
[n]
,mj+1
[n]

(76)

The covariance matrix becomes:

Σk+1,i
[n]

= Hk+1,i
[n] −1

Qi (Hk+1,i
[n] −1

)
T

(77)

with the measurement noise Qi.

When a landmark is already observed, the mean and covariance is updated using the EKF filter:

K = Σk,i
[n]
Hj
TQi

−1

μk,i
[n]
= μk,i−1

[n]
+ K(zi

k − z̃i
k[n]) (78)

Σk,i
[n]
= (I − KHk)Σk,i−1

[n]

3.7.3 Assign importance weight

In this step, for each particle a so-called ‘importance weight’ is calculated. This value gives a rate of

how certain the state of a certain particle is according to measurements. The importance weight is used

in the resampling step explained in the next section. Per particle, for each measurement of the set zi
1:k

the importance weight wi
k[n] is calculated. Importance weights are actually the likelihoods of the

particles:

wi
[n] =∏wi

k[n]
𝐾

𝑘=1

(79)

with

wi
k[n] = p (zi

k, xi
[n]
)

The importance factor is initiated as follows:

wi
k=0[n] = 1 (80)

Then the importance weight is updated in the following way for each measurement:

wi
k[n] = wi

k−1[n] |2πQi
k[n]|

−
1
2
exp {−

1

2
(zi
k − z̃i

k[n]) (Qi
k[n])

−1

 (zi
k − z̃i

k[n])} (81)

With Qi
k[n] the measurement covariance, zi

k the measurement, z̃i
k[n]the predicted measurement using the

measurement function of the k’th measurement at time instant i

3.7.4 Resampling

The importance weight will be used for resampling, an important aspect of the particle filter. Particle

sets with a small importance weight have a large chance to be removed from the set, while particles with

a large importance weight have a large change to survive, and have even a large chance to be cloned. In

this way there are more particles in areas where there is a high likelihood. The probability distribution

after resampling is called a target distribution.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 20

A popular variant of resampling is low variance sampling. It is a simple and computationally effective

algorithm. An illustration of low variance resampling is given in Figure 11. The size of the bars

resembles the importance weight of each particle. The sum of the importance weights is normalized to

1. First, a random number r is generated between 0 and N−1, which is represented by the first arrow in

Figure 11. Afterwards, N−1 is added in an iterative process, which is represented by the other arrows

in Figure 11. The particle where each arrow points to will be selected. Note that during a resampling

process, the number of particles before and after resampling always remains the same.

wi
𝐾[1] wi

𝐾[2] … … wi
𝐾[N]

 𝑟 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1

Figure 11 Illustration of low variance resampling

In Figure 12 an example of resampling is shown. In this example, a 2D (x,y) position is estimated

using 1000 particles. The red particles show the proposal distribution, the green particles represent the

target distribution. It can be seen that particles near the ground truth position, given in blue, survived.

This example shows that the target distribution does indeed represent a better likelihood of the real

position.

Figure 12 Resampling example

3.7.5 Difference FAST-SLAM 1.0 and 2.0

The algorithm is improved by using a proposal probability density that is more selective than the

transition probability density. This is achieved by taking the landmark measurements into account:

xi
[n]
∼ p(xi ∣ x1:i−1

[n]
, u1:i z1:i

1:K c1:i
1:K) (82)

This is implemented by sampling according to a normal distribution by using a mean x̅i,K and the

associated covariance matrix Σx,1:K:

xi
[n]
∼ 𝒩(x̅i,K, Σ̅x,K) (83)

The vector x̅i,1:K is calculated by predicting the next state with the motion function and adapting the

state using the measurements. First the motion function is used to calculate a prediction:

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 21

x̃i
[n]
= g (xi−1

[n]
, ui) (84)

This state is used to predict the measurements:

z̅i
k = h(x̃i

[n]
, m

j= ci
k

[𝑛]
) (85)

With k=1, …, K. Note that this measurement is indicated with a bar. Since this is a different

measurement prediction then z̃i
k.

For each measurement two Jacobians of the measurement function have to be calculated. The first

Jacobian (90) is calculated with respect to the state x̃i
[n]

 (86) and the second (91) with respect to the

corresponding landmark m
j= ci

k
[𝑛]

 (87) of the measurement.

Hxi,k
[n]
=
δh(μi, j)

δx
|
x̃i
[n]
,m
 ci
k

[n]
(86)

Hmi,k
[n]
=
δh(μi, j)

δm
|
x̃i
[n]
,m
 ci
k

[n]
(87)

x̅i,K
[n]

 and Σ̅x,K
[n]

can be calculated using each of the measurements:

Qk
[n]
= Hmi,k

[n]
 Σk,i−1
[n]

 Hmi,k
[n]T

+ Qt (88)

Σ̅x,k
[n]
= [Hmk

[n]
 Qk
[n]−1

 Hmk
[n]
+ Σx,k−1]

−1

(89)

x̅i,k
[n]
= x̅i,k−1 + Σx,kHx,j

T Qk
[n]−1

(zi
k − z̅i

k) (90)

with x̅i,k
[n]

 and Σ̅x,k
[n]

 initiated in the following way:

x̅i,k=0
[n]

 = x̃i
[n]

(91)

Σ̅x,k=0
[n]

= Ri
−1 (92)

with Ri the covariance matrix related to measurement noise.

The importance weight wK is initiated with a value of ‘1’ and then updated using each measurement in

the following way:

wk = wk−1 ∗ |2πQk|
−
1
2 exp {−

1

2
(zi

k − z̃i
k)
T
Qk
−1(zi

k − z̃i
k)} (93)

with z̃i
k = h(xi

[n]
, m

j= ci
k

[𝑛]
)

Note that the initiation of new landmarks also can be initiated with a much more accurate prediction of

the state vector xi
[n]

. Therefore the initialization of new landmarks in FAST-SLAM 2.0 should always

be performed after the calculation of the proposal distribution.

3.7.1 Complexity

The computational complexity of the FAST-SLAM algorithm, implemented as described above, is

𝛰(𝑁 𝐽) with N the number of particles and J the number of landmarks. However the algorithm can be

made more efficient. The linear complexity in N is unavoidable, given that we have to process N

particles with each update. The linear complexity in J is the result of the resampling process. Whenever

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 22

a particle is drawn more than once, the associated set of landmarks can be copied. This results in a linear

complexity in J. The complexity could be reduced to log(𝐽) by introducing a data structure for

representing particles that allow for more selective updates. The basic idea is to organize the map as a

balanced binary tree. An example is given in Figure 13. It shows the mean and covariance matrices of

the associated landmarks of particle 𝑥𝑖
[1]

 on the leaves of the binary tree. In the resampling process this

particle has a likelihood and will be duplicated to 𝑥𝑖
[2]

. The mean 𝜇1:8 and the covariance matrices Σ1:8

of the landmarks do not differ, so instead of copying the whole set, the mean and covariance matrices

of the new particle 𝑥𝑖
[2]

 are pointing to the mean and covariance of the old particle 𝑥𝑖
[1]

. In the next

iteration states 𝑥𝑖+1
[1]

 and 𝑥𝑖+1
[2]

are predicted and an absolute measurement zi
k, corresponding to landmark

j=3, is acquired. At this moment the mean 𝜇3 and covariance matrix Σ3 change between the particles

and therefore mean 𝜇3
[1]

 and covariance matrix Σ3
[1]

the will be copied before the measurement will be

incorporated. Efficient implementations like this binary tree require only 𝛰(𝑁 log(𝐽)).

Figure 13 Binary tree [4]

Memory usage is also linear 𝛰(𝑁 𝐽) for ineffective implementations. However, the complexity can be

reduced to more or less equal to the saving in computation time.

xi
[2]

xi
[1]

𝜇3
[2]
, Σ3
[2]

𝜇1
[1]
, Σ1
[1]

 𝜇2
[1]
, Σ2
[1]

 𝜇3
[1]
, Σ3
[1]

 𝜇4
[1]
, Σ4
[1]

 𝜇5
[1]
, Σ5
[1]

 𝜇6
[1]
, Σ6
[1]

 𝜇7
[1]
, Σ7
[1]

 𝜇7
[1]
, Σ7
[1]

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 23

4. Methods

This chapter presents a series of experiment methods that will be executed. In the first section the goal

of the experiments is described. The experimental set-ups are provided in the next section. The

evaluation section describes what will be measured during the experiments.

4.1 Goals

The goal of the experiments is to answer research question 3:

• What is the performance of these algorithms within the vSLAM feature-based framework?

Also the hypothesis can be verified using the experiments:

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity

of an algorithm.

In Chapter 3 the theory of different SLAM algorithms are provided. The results can be compared with

the theoretical data.

4.2 Experimental set-up

To achieve this goal, three data sets are presented. The first data set consists of 2D data. The second and

the third data set consist of points and features from images. The second data set is simulated and the

third data set is extracted form real images. The data sets are described in detail in the following sections.

4.2.1 2D map

This 2D environment includes data with relative information from a compass and absolute

measurements from beacons. For this experiment, a data set of control and measurement variables is

obtained from a ship that is sailing around the British Isles. Ground truth data and motion, measurement

equations and measurements are obtained from [9].

State vector

x𝑖 = [

x
y
] (94)

Motion function

The ship is provided with two different types of sensors that provide relative information: a log which

measures the speed v(i) of the ship and a compass that measures the heading Φ(i) of the ship.

u(i) = [
v(i)
Φ(i)

] (95)

with standard deviations related to noise of σv = 5 km/s and σΦ = 15°.

The noise free component x̃ of the linear approximation is calculated using the motion model given in

(96), using relative measurements (95).

[
𝑥̃𝑥𝑖+1
𝑥̃𝑦𝑖+1

] = [
𝜇𝑥𝑖
𝜇𝑦𝑖
] + 𝛥 𝑣(𝑖) [

𝑐𝑜𝑠 𝜙(𝑖)

𝑠𝑖𝑛 𝜙 (𝑖)
] (96)

The Jacobian 𝐺𝑖 is calculated and given in (97).

𝐺𝑖 = [
1 0
0 1

] (97)

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 24

Measurement function

A beacon based measurement provides absolute measurements zi
1:K. The noise free component ẑt

k is

calculated using the measurement function:

𝑧̂𝑡
𝑘 = 𝑚

𝑗=𝑐𝑖
𝑘 − 𝑥𝑖 = [

𝑚𝑗𝑥
𝑚𝑗𝑦

] − [
𝑥𝑖𝑥
𝑥𝑖𝑦
] (98)

Jacobian of the measurement function

The Jacobian Hi
k of the measurement function, is calculated and given below.

Hi
k = [

−1 0 1 0
0 −1 0 1

] (99)

4.2.2 Visual SLAM

To analyze the algorithms in a vSLAM framework, two data sets are used. The first data set are points

and KAZE features extracted from stereo images. Furthermore, it consists of 3D measurements between

the position of the camera and points in the world coordinate system. The set of stereo images are

pictures of a decorative globe. The first set that was captured is shown in Figure 14 and Figure 15.

Figure 14 Right image of stereo camera Figure 15 Left image of stereo camera

The second data set consists of simulated points and KAZE features of a decorative globe that is used.

The simulator mimics a camera and a globe. Based on these points, the simulator provides measurements

including noise containing descriptors based on KAZE features. An advantage of the simulated data set

is that the real data (without noise) is available.

In this experiment a feature based vSLAM algorithm provided by Shah [5] and van der Heijden [10] is

used. This vSLAM algorithm handles the matching of feature points between stereo images, the

bookkeeping of landmarks, and the visualization of the combined state vector. The bookkeeping of the

vSLAM algorithm can be adjusted. The two most important settings are ‘P.Mmax’ and

‘P.max_lm_inc_per_step’. The first setting is the maximum number of landmarks in the combined state

vector. The latter is the maximum number of landmarks added at a time.

Originally the SLAM back-end used in this vSLAM algorithm is Error State EKF SLAM. The Error

State extended Kalman filter (ES-EKF) is an extension of the classical Extended Kalman filters. It holds

the advantage that the actual Kalman filter is only applied to signals with small magnitudes. This

simplifies the estimation especially when working with quaternions to represent the orientation. For

this project the algorithm will be rebuild to a vSLAM version based on a standard EKF with filter Euler

angles. The vSLAM algorithms with other SLAM back-ends addressed in this project will also use Euler

angles. In this way the SLAM-back ends are more comparable. More information about the models and

the ES-EKF SLAM algorithm can be found in [11], [12].

Experiments on the visual SLAM data can be performed with visual SLAM algorithm based on EKF,

SEIF and Graph. Due to time restrictions it was not possible to develop a visual SLAM algorithm based

on FAST SLAM.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 25

Since there is no prior information, the Graph SLAM algorithm can be initialized with all positions at

zero. Unfortunately the linearization is worse which results in an unstable estimation. Therefore the

Graph SLAM algorithm is initialized with subparts of 50 time instances which are each updated 5 times.

In the vSLAM algorithm with EKF, landmarks that have to be removed from the map are deleted by

deleting the corresponding cells in the state vector and the covariance matrix. Deleting landmarks from

the map in the information filter is more complex. For SEIF and Graph SLAM, the landmarks are

removed by using the marginalization lemma. More information can be found in Section 3.6.4.

State vector

The state vector is represented with a 12D vector given in (100).

x𝑖 = [

pi
ηi
vi
ωi

] =

[

x
y
z
φ
θ
ψ
vx
vy
vz
ωx
ωy
ωz]

(100)

with pi a 3D position, ηi the yxz euler angels, vi 3D linear velocity and ωi the 3D angular velocity.

Motion function

The motion function has the following form:

pi+1 = pi + Ri viΔ
ηi+1 = ηi + Ji ωiΔ (101)

vi+1 = Γ vi
ωi+1 = Λ ωi

with diagonal matrices Γ and Λ with coefficients between 0 and 1 to determine the predictability and R

the rotation matrix as a function of the Euler angles η. Δ is the sampling period. The angular velocity

transform Ji is calculated as follows:

Ji = J(η) =

[

cos(ψ) −sin(ψ) 0
sin(ψ)

cos(φ)

cos(ψ)

cos(φ)
0

tan(φ) sin(ψ) tan(φ) cos(ψ) 1]

(102)

Note that the motion function does not take relative sensor information into account. The next state is

calculated based on the previous state.

Jacobian of the motion function

The Jacobian G of the motion function is:

G = [

I3×3 Pi Ri Δ 03×3
03×3 Ei 03×3 JiΔ
03×3 03×3 Γ 03×3
03×3 03×3 03×3 Λ

] (103)

With E the Jacobian matrix of the new Euler angles with respect to the old Euler angles:

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 26

Ei = E(ηi, ωi) =

[

1 0 (−ωycψ − ωxsψ)Δ

sφ(ωxsψ +ωycψ)

cφ
2 Δ 0

ωxcψ − ωysψ

cφ
Δ

ωycψ +ωxsψ

cφ
2 Δ 0

sφ(ωxcψ −ωysψ)

cφ]

(104)

where 𝑠… , 𝑐… are rebates of sinus and cosines, respectively. And P the Jacobian matrix of the new

position with respect to the old position:

Pi = P(η, v) =
∂ef

∂ηT
p(t + 1) = −R[v]×Δ (105)

with [v]× the skew-symmetric matrix formed by linear velocity v.

Measurement function

ẑi
k = Rc

T

w (m

j=ci
k − pi)) (106)

where R𝑐
𝑤 is the rotation matrix from world coordinates to camera coordinates.

Jacobian of the measurement function

The Jacobian of the measurement function has the following shape:

Hi
k = [− Rc

T

w 2[ẑi

k]
×

 03×(3+3j) Rc
T

w 03×(J−j)] (107)

with [ẑi
k]
×

 the skew-symmetric matrix formed by the noise free part ẑi
k of the measurement function.

4.3 Evaluation criteria

This section describes the criteria how the performance of the SLAM algorithms will be evaluated.

4.3.1 Accuracy and consistency

In this section, the metrics are provided to evaluate the accuracy and consistency of the algorithms.

Poses and map

For each pose, the Absolute Error (AE) will be calculated.

AEpi = ‖μpi
− pireal ‖ (108)

with μpi
the estimated mean of the pose and pireal the ground truth position at time i.

The absolute Error will also be calculated for the position each landmark:

AE𝑚j = ‖μmj −mjreal
‖ (109)

With μmjthe estimated mean of the position and mjreal
 the ground truth position of the landmark j.

The vSLAM algorithms associates their own ID to a landmark. To match the landmark positions of the

estimated data with the real data, the Matlab function ‘pdist2’ is used. The function finds the two

smallest pairwise Euclidean distances to landmark positions in the set of real landmarks for each of the

estimated landmarks in the combined state vector.

Furthermore, for both sets of absolute errors the mean of the absolute values will be calculated over time

to get the Mean Absolute Error (MAE).

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 27

A filter is consistent when the variances and covariances of the real error matches the covariance

matrices that are calculated in the algorithms. To check the filter’s consistency, the Normalized

Estimation Error-Squared (NEES) will be used for the poses and the map:

NEES(pi) = (μpi
− pireal)

T
 Cpi
−1 (μpi

− pireal) (110)

NEES(𝑚j) = (μmj − mjreal
)
T
 Cmj
−1 (μmj −mjreal

) (111)

with C[.] the associated covariance matrix of the estimates.

A Gaussian estimate is considered as consistent if the corresponding NEES follows a χ2 distribution.

When the NEES values exceed a determined boundary, the NEES does not follow a χ2 distribution. The

state vector of the 2D map consists of 2 degrees of freedom and a 95% one sided acceptance boundary

is chosen. This means that the filter is not consistent when values exceed the bound of 5.991. For the

visual SLAM experiment, this acceptance boundary is 7.82, with 3 degrees of freedom.

In many cases, the Root Mean Square Error (RMSE) over time is used [13] to measure the error.

Normally RMSE is used to calculate the standard deviation of an estimated data set of an ergodic

process. In the experiments of this project, the same data set is used. Therefore the input data is ergodic.

However, since the NEES gives more insight of the consistency of the filter, RMSE does not provide

extra information.

Orientation

In the visual SLAM experiment the orientation is also estimated. The orientation is in Euler angles and

will be converted to the orientation error in the magnitude of rotation Φ of the axis-angle representation

(𝜑, e).

𝜑𝑖 = arccos (
1

2
(𝑡𝑟𝑎𝑐𝑒(R⊤(η𝑖)R(η̂𝑖)) − 1)) (112)

with R the rotation matrix as a function of the Euler angles η.

The NEES is also calculated.

NEES(𝜑𝑖) = 𝜑𝑖
2 C𝜑𝑖

−1 (113)

with variance C𝜑𝑖 calculated as follows:

C𝜑𝑖 = V Cη𝑖
−1VT (114)

with Cη𝑖the covariance matrix of the Euler angles η𝑖 and V the Jacobian of the function in (112) with

respect to η̂𝑖.

Used algorithm settings

For the above mentioned performance measures, the real data is required. Therefore the United Kingdom

data and the vSLAM algorithm with simulated data are used. The settings for the vSLAM algorithm are

‘P.Mmax=1000’ and ‘P.max_lm_inc_per_step=50’. In total there are 1390 time instances for the United

Kingdom data and 500 time instances for the vSLAM algorithm with simulated data.

4.3.2 Computational complexity

Using tic toc functions of Matlab the computation time at each iteration will be measured. In this way

an indication can be made for the computational complexity of the online algorithms. Note that

measuring small computation times in Matlab is not accurate. According to [14] the code should take

more than 0,1 second to run.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 28

Furthermore, the profiler will be used, but when profiling is on, aspects of the JIT (Just In Time

Compiler) might be turned off. It can take considerably longer to execute code when profiling is

turned on and you can end up with severely distorted understandings of relative execution times. This

means that all the algorithms have to run with and without profiling. Therefore the profiler is only

used at the last time instant. In this way the computational complexity of each code can be analyzed in

detail and the algorithms do not have to be run twice.

To evaluate the computation time the United Kingdom data and the vSLAM algorithm with real data

will be used. The settings for the vSLAM algorithm are ‘P.Mmax=10000’ and

‘P.max_lm_inc_per_step=50’. The vSLAM algorithm is computed for 120 time instances. In Graph

SLAM the total time of an update will be measured. For the online algorithms several times will be

measured per time instant: Motion, measurement, update state estimation(only SEIF), sparsification

(only SEIF) and the total time of a execution per time instant. In this way, the remaining time can also

be calculated. This remaining time is needed for matching features and the bookkeeping of landmarks.

Reading memory in MATLAB is not possible. According to [15], Matlab does not define what "used

memory" is. For example if an array is shrinked, the OS can decide if the freed part of the memory is

reused directly or not. Before it can be re-used, the contents is overwritten with zeroes, and the OS

decides when this is done. With iteratively growing arrays similar problems occur. It is tried to read

the memory usage by subtracting memory usage at specific times from each other. Unfortunately no

useful information is generated. For example, it consists of negative numbers, which means that less

memory is used before the algorithm is called. A second option is to use the profiler, but also the

profiler does not give useful information about the used memory by the algorithm.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 29

5. Results

In this chapter the results of the experiments, outlined in the previous chapter, are given.

5.1 Accuracy and consistency on 2D UK data

The estimated poses and landmarks by the SLAM algorithms on the 2D data are shown in Figure 16.

The SEIF algorithm is computed with 5 active algorithms and FAST SLAM is computed with 50

particles. The estimation by the Graph SLAM algorithm is after one update.

Figure 16 Estimated path of the algorithms in with 2D data

5.1.1 Pose

In Figure 17 (a), (b), (c) and (d), the pose errors of the algorithms are given. Except for FAST SLAM

2.0 the algorithms have the same shape. The estimation between time instants 500 and 900 are relatively

high. The estimations at this time range corresponds to the estimates on the right of the plot, shown in

Figure 16. EKF and SEIF are almost identical. The chosen number of active features of the SEIF

algorithm does not change the estimated pose. The Graph SLAM has the highest accuracy. The pose

error of FAST-SLAM is worse, compared to other algorithms. The is no clear winner in terms of the

number of particles. The setting with 10 particles has until i=700 the lowest error, but after this time the

FAST algorithm with other number of particles have a lower error. FAST SLAM with 20 particles gives

the worst estimation.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 30

For all algorithms, it can be observed in Figure 17 (d), (e), (f) and (g) that between time stamps i=600

and i=900 the NEES values are above 5.991, which is the 95% one sided acceptance boundary of for 2

degrees of freedom. The NEES of Graph SLAM is even higher in this time range. The pose error of

SEIF with 5 and without sparsification is almost identical to EKF, with slight differences at time

instances after i=1200. The NEES of SEIF with 4 active landmarks is signifyingly higher. Since the

probability distribution of FAST SLAM by a function, the NEES cannot be computed directly. Other

test variables can be computed for particle representations of a pdf [4], but due to time limitations there

was no time left to work this out.

5.1.2 Map

Also for the map error given in Figure 18 (a), (b), (c) and (d), the errors of EKF, SEIF without

sparsification and Graph are identical. The map error of SEIF is relatively worse when applying

sparsification. It can be observed that even with 50 active landmarks, the algorithm could not match

SEIF without sparsification. However, the error of the last landmarks is still lower when the active

landmarks are increasing. Furthermore, for the map error in FAST SLAM, there is no relation between

the number of particles and the map error. FAST SLAM with 10 particles have overall the lowers map

error.

The results of the map also shows that the filter in not consistent at certain places and goes beyond the

5.991 acceptance boundary. It shows here as well that the NEES of the EKF, SEIF without sparsification

and Graph seem to be equal.

5.1.3 MAE

In Table 4 the MAE of EKF is given. The high peak error between i=600 and i=900 ensure that the mean

error of both the pose and the map is significantly increased.

Table 4 Mean Absolute Error EKF 2D map

Pose (km) 19,13

Map (km) 8,590

In Table 5 the MAE of SEIF is given. It can be seen that the average error of the pose slightly increases

and the map error increases significantly with more active features. There is still a big difference in error

between 50 active features and all active features.

Table 5 Mean Absolute Error 2D SEIF

Active lm 4 5 6 7 8 50 All

Pose (km) 19,8210 19,5655 19,7628 19,7833 19,5590 19,5641 19,433

Map (km) 13,6132 13,029 13,2527 13,1154 12,8565 12,4693 8,4729

In Table 6 it is visible that the second update of Graph SKAM does not change the error. Furthermore,

the values are low compared other algorithms.

Table 6 Mean Absolute Error Graph 2D map

Updates 1 2

Pose (km) 9,9076 9,9076

Map (km) 7,9215 7,9215

In Table 7 the MAE of FAST 2.0 is shown. Here it can also be observed that FAST 2.0 with 10 particles

has the lowest error in both the pose and the map.

Table 7 Mean Absolute Error FAST 2.0 2D map

Particles 5 10 15 20 50

Pose (m) 21,2005 15,9390 17,2480 38,4606 19,7086

Map (m) 14,6202 11,6669 13,2907 19,0153 13,8570

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 31

(a) Pose error EKF (b) Pose error SEIF

(c) Pose error Graph (d) Pose error Fast 2.0

Figure 17 The error and NEES of the pose on 2D data

(e) NEES of the pose EKF (f) NEES of the pose SEIF

(g) NEES of the pose Graph

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 32

(a) Map error EKF (b) Map error SEIF

(c) Map error Graph (d) Map error Fast 2.0

(e) NEES of the map EKF (f) NEES of the map SEIF

(g) NEES of the map Graph

Figure 18 The error and NEES of the map on 2D data

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 33

5.2 Accuracy and consistency on 3D simulated vSLAM data

In this section the results of tools to measure the accuracy of the simulated vSLAM data are described.

Figure 19 shows the estimation of the Graph-based vSLAM algorithm based on the simulated data.

Figure 19 3D plot of the Graph-based vSLAM algorithm

The position of the camera starts at zero. Then it is moving clockwise around the globe. At about i=420

the camera has made a circle and at that moment the loop closes with the positions estimated at i=1.

5.2.1 Pose

The pose error of the algorithms on the simulated vSLAM data is given in Figure 20 (a), (b) and (c).

The shape of the algorithm is more or less the same. When the loop closes at i=420, the error is the

lowest. At this point there are small differences between the EKF and SEIF algorithm. The maximum

error is around i=175. The error increases faster before this peak than it does after the peak. The Graph

SLAM has overall the lowest error. There is also no difference between the chosen number of active

landmarks in SEIF. The same holds for the number of updates in Graph SLAM. Note that the number

of updates in Graph SLAM are the number of global updates, which are performed after generating a

prior path using submaps.

The NEES of the pose of the algorithms are shown in Figure 20 (d), (e) and (f). The NEES of the EKF,

SEIF without sparsification and Graph are almost identical. Graph SLAM shows a slightly higher NEES.

Remarkable is the increase of the NEES of the SEIF algorithm with sparsification. From i=200 the

NEES values are greater than 7.82, which means the filter is not consistent at this time.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 34

(a) Pose error EKF (b) Pose error SEIF

(c) Pose error Graph (d) NEES of the pose EKF

(e) NEES of the pose SEIF (f) NEES of the pose Graph

Figure 20 Accuracy and consistency of the pose on simulated vSLAM data

5.2.2 Rotation

The rotation error and the NEES of the rotation of the algorithms are shown in Figure 21 (a) to (f). There

are small differences in error at the rotations estimated by the EKF and SEIF algorithms. The Graph

algorithms provide the smallest error. From about i=10 to i=400 the EKF and SEIF the error is constant,

where the error of the estimation of Graph algorithm has a more oscillating behavior. At the time where

the loop closes, there is a difference in the shape of the error between the algorithms. The error of EKF

and Graph is decreasing, while the SEIF error increases.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 35

At i=0 the NEES of the rotation of all algorithms is very high. After that, it starts to decrease to more

or less 0.2. At the loop closing at i=400 the NEES starts to increase. Except for the high peak in the

beginning, the NEES of all algorithms are below the bound of 7.82. The EKF algorithm shows the

lowest NEES, followed by the NEES of the Graph SLAM algorithm. In this case, the SEIF algorithm

without sparsification shows a NEES which is equal to EKF. The SEIF algorithm with sparsification

shows higher values from i=100. The values are also higher when the loop closes at i=400.

(a) Rotation error EKF (b) Rotation error SEIF

(c) Rotation error Graph (d) NEES of rotation EKF

Figure 21 Accuracy and consistency of the rotation on simulated vSLAM data

(e) NEES of rotation SEIF (f) NEES of rotation Graph

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 36

5.2.3 Map

As described in 4.3.1 the settings for the bookkeeping in the vSLAM algorithm are defined as

‘P.Mmax=1000’ and ‘P.max_lm_inc_per_step=50’. In Figure 22 can be seen that only at i=100, the

maximum number of landmarks added to the pool per step is reached. Then there is a small number of

landmarks that are added to the pool, with an average of about 8 landmarks. At about i=110 the pool is

full and there are landmarks deleted to insert new landmarks.

Figure 22 Bookkeeping on the vSLAM simulated data

The map error and map are shown in Figure 23 (a), (b) and (c). The NEES of the map is shown in

Figure 23 (d), (e) and (f). The landmarks are sorted by when they are initialized. The map error and the

NEES of the map of all three algorithms have a shape of three arcs. There are no big differences in

map error between the algorithms. The Graph SLAM shows overall the lowest error. There are slight

differences between the amount of updates, with 8 updates the lowest error. The EKF shows a sightly

higher error, followed by the SEIF algorithm. The map error of SEIF is not different with or without

sparsification. Furthermore, the NEES of all the algorithms consist of rather high peaks which are

much higher than the bound of 7.82. The NEES of the Graph SLAM algorithms show the lowest

values, but the peaks are still above 7.82. While the shape of the NEES of EKF is the same, the values

are a bit higher. The consistency of the map of SEIF with 150 and 250 active landmarks is worse.

Around landmarks ID’s j=0, j=350 and j=800 there are some values below the bound of 7.82. Overall

the algorithm with sparsification is not consistent. However the SEIF algorithm without sparsification

shows lower results, which are almost identical to EKF.

Figure 23 Accuracy and consistency of the map on simulated vSLAM data

(a) Map error EKF (b) Map error SEIF

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 37

(c) Map error Graph (d) NEES of map EKF

Figure 23 Accuracy and consistency of the map on simulated vSLAM data

5.2.4 MAE

Table 8 shows the MAE of the EKF SLAM algorithm for the simulation data.

Table 8 Mean absolute error EKF vSLAM simulation data

Position (mm) 13,7029

Rotation (rad) 0,0475

Map (mm) 2,9034

Furthermore, the MAE of SEIF algorithms in Table 9 show that the error is similar compared to EKF.

Table 9 Mean absolute Error SEIF vSLAM simulation data

Active landmarks 150 250 No sparsification

Position (mm) 13,967 13,965 13,962

Rotation (rad) 0,0475 0,0475 0,0475

Map (mm) 3,1886 3,1874 3,1875

From the MSE values in Table 10 can be also be seen that the 7th and 8th update are identical. The

accuracy is the lowest of all algorithms.

Table 10 Mean absolute error Graph vSLAM simulation data

Update 1 2 3 4 5 6 7 8 9 10

Position (mm) 47,77 32,87 15,23 12,69 12,04 11,93 11,92 11,92 11,92 11,92

Rotation (rad) 0,052 0,049 0,047 0,047 0,047 0,04 0,047 0,047 0,047 0,047

Map (mm) 31,57 23,56 10,91 4,262 3,506 2,936 2,800 2,821 2,839 2,840

(e) NEES of map SEIF (f) NEES of map Graph

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 38

5.3 Computation time on 2D data

As shown in the Figure 24 the computation time of the SEIF algorithm is the lowest, but shows more

high peaks. Also the graph of SEIF has a less exponential growth compared to EKF. The computation

of the FAST algorithm is more constant.

(a) Fast 2.0

Figure 24 Computation times of EKF, SEIF and FAST 2.0 on 2D data

The total computation time of EKF, SEIF, FAST 2.0 and Graph are given in Table 11, Table 12, Table

14 and Table 13, respectively. The high peaks are effecting the total time.

Table 11 Total computation time EKF 2D map

Time (seconds) 1,605

Table 12 Total computation time SEIF 2D map

Active features 4 5 6 7 8 50 All

Time (seconds) 1,4599 1,4272 1,3761 1,3613 1,3343 1,5240 1,541

Table 13 Total execution time FAST 2D map

Particles 5 10 15 20 50

Time (seconds) 1,7374 2,8851 3,9861 5,0054 12,3010

Table 14 Total execution time Graph 2D map

Updates 1 2

Time (seconds) 3,9941 3,7043

(a) EKF (a) SEIF

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 39

5.4 Computation time on real vSLAM data

Figure 25 shows the number of landmarks in the pool, added landmarks to the pool and deleted

landmarks from the pool. Note that around i=65 the number of landmarks added to the pool is less then

the maximum number of landmarks that are allowed to be added. After this time, less useful points are

extracted from the images.

Figure 25 Bookkeeping of landmarks

The total computation times are given in Table 15. It can be observed that the SEIF algorithm with

sparsification has the lowest computation time, but the SEIF algorithm without sparsification is even

higher than EKF.

Table 15 Total computation time SEIF real vSLAM data

Algorithm [setting] EKF SEIF 150 active SEIF 250 active SEIF all active

Time (seconds) 323,28 273,33 274,86 355,57

In Figure 26 the computation times of the online algorithms are plotted. Table 16 shows the total

computation times of the online algorithms and the values of the regression function. This function is

generated with data between i=20 and i=60. Since SEIF 150 and SEIF 250 are almost identical, only

SEIF 150 is plotted. The computation time of EKF increases more than SEIF with 150 active

landmarks, but after around i=80 the computation time of SEIF is more increasing. After i=80, the

sparsification, motion and other parts of SEIF are increasing, while the measurement and update state

estimation remain more or less constant. For both EKF and SEIF, it can be seen that the computational

complexity is linear in the number of landmarks. Overall, it can be observed that the ‘other’ parts,

mainly consisting of matching feature points and the bookkeeping of landmarks, take a high part of the

total computation. Especially in Figure 26 (c), it can be seen that the approximation of the update state

starts at i=20. The computation time of this part decreases over 50 percent.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 40

(a) EKF (b) SEIF 150 active features

(c) SEIF 1000 active features

Figure 26 Computation times vSLAM real data

Table 16 Total execution times of online algorithms

 EKF SEIF 150 SEIF 250 SEIF 1000

Time (s) 323,287 273,331 274,864 355,573

Fitted function 0,0880 i -1,1221 0,0583 i – 0,4335 0,0601 i – 0,5129 0,0463 i + 0,8912

The total execution times of Graph SLAM per update is given. It can be observed that each update is

more or less equal. Until the 10th update the error is still converging, but after 4 updates the error is

increasing slower. The total time until update 4 is finished is 517.88 seconds.

Table 17 Execution times per update Graph SLAM

Update Prior 1 2 3 4 5 6 7 8 9 10

Time (s) 6,4 122,7 125,0 136,6 127,0 127,0 126,8 127,0 126,0 126,2 127,4

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 41

6. Discussion

This section discusses the results of the experiments.

6.1.1 Goals

The goal of the experiments was to provide an answer to the following research question:

• What is the performance of several SLAM back-ends within the vSLAM feature-based

framework?

Also the following hypothesis was stated:

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity

of an algorithm.

The performance on the algorithms is measured on accuracy, consistency and compactional complexity.

The accuracy is measured by calculate the difference between real values and estimated values of the

combined state vector. The filter is consistent when the variances and covariances of the real error

matches the covariance matrices that are calculated in the algorithms. The Normalized Estimation Error

Squared (NEES) is used to check the filter’s consistency. A Gaussian estimate is considered as consistent

if the corresponding NEES follows a χ2 distribution. When the NEES values exceed a determined

boundary, the NEES does not follow a χ2 distribution. The state vector of the 2D map consists of 2

degrees of freedom and a 95% one sided acceptance boundary is chosen. This means that the filter is

not consistent when values exceed the bound of 5.991. For the visual SLAM experiment, this acceptance

boundary is 7.82, with 3 degrees of freedom. The computational complexity is determined by measuring

the computation times of the algorithms.

The experiments verify that a high accuracy of the estimated 3D positions will be at the cost of

computational complexity of an algorithm. Graph SLAM is the clear winner in terms of accuracy and

consistency. However, Graph SLAM is a full algorithm with a high computational complexity. The

SEIF algorithm is nearly close to the accuracy of EKF SLAM, while the computational complexity of

SEIF is less. However the filters’ consistency of SEIF with sparsification is less compared to EKF.

Especially for the map, the filter is not consistent. The FAST-SLAM, only tested on the 2D data, shows

a relatively low accuracy and a higher number of particles do not increase the accuracy.

6.1.2 Accuracy and consistency on 2D data

General

As shown in Figure 17 it can be seen that in all estimations the error between time instants i=500 and

i=900 is the highest. The estimations at this time range correspond to the estimates on the right of the

plot, shown in Figure 16. A relatively high error in y direction arises due to the effect of a relatively

high uncertainty of the angle of the relative measurements which is σΦ = 15°. In this area there are no

loop closings and the path is relatively straight compared to the rest of the paths. Therefore it is difficult

to perform an accurate estimation in this area based on absolute measurements. When there are more

corners, measurements are taken form different perspectives which results in a more accurate estimation.

It can be seen that the error decreases when there are more corners in the path. The drop in error around

i=1200 is at the loop closing. A loop closing is very effective for SLAM algorithms since landmarks

estimated in the past can be compared to measurements at the current time.

A high error in pose also results in a high error in the map, shown Figure 18. New landmarks are

initialized based on the estimated pose. Therefore there is a rather high correlation between the error

and NEES of the pose and the map. It can also be observed in the map error and NEES of the map that

there are outliers with low values. This cannot be seen in the plot in Figure 16. This is due to how the

real positions of the landmarks are matched with the estimated positions of landmarks. This is described

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 42

in section 4.3.1. In this case poorly estimated positions of landmarks lead to wrong matches of landmark

ID’s between the set of the estimated positions and the set of real positions of landmarks.

Graph SLAM

The Graph SLAM takes all the poses and landmarks into account and therefore it creates the most links

between poses/landmarks estimation. Also a big advantage is that it re-linearizes the path at each update,

while other algorithms do not. Therefore it provides the most accurate estimation. This can be seen in

the pose errors, shown in Figure 17, and the MEA, given in Table 4 to Table 7. Also the NEES, in Figure

17 and Figure 18, is overall lower. However, the NEES of the pose provided by the Graph SLAM

algorithm is higher between time instants i=500 and i=900, compared to EKF and SEIF. While the error

is lower, the Graph SLAM algorithms predicts a lower uncertainty. It can be concluded that when a path

is taken without loop closings and the algorithm has to rely more on relative measurements, the

consistency of the algorithm is lower.

EKF and SEIF

Because EKF and the SEIF have a dual relationship, the error should be similar. However, the

sparsification and the update of the state of SEIF is based on an approximation, so this can result in a

less accurate estimation and consistency of the filter. Less active landmarks will cause lower accuracy

and consistency of the estimation. In the graph of the pose error, shown in Figure 17, this difference is

not observable. Except for SEIF with 4 active landmarks the NEES of the pose is also almost equal. The

MEA, given in Table 5, shows a small difference in error of the pose. Even without sparsification, the

MEA of the pose estimation by the SEIF algorithm is still higher. This means that this small error is

caused by the updating step of the state in SEIF.

FAST SLAM

The results of the FAST SLAM algorithm are not as expected. The error of the pose, given in Figure

17, and the map, shown in Figure 18, is large. More particles should result in a more accurate estimation,

since it gives a better representation of the probability density. However, this is not the case with the

algorithm used for the experiments on the 2D data. When analyzing the particle representation of the

probability density during the experiments, it could be observed that there are different area’s that have

a high probability. An example is shown in Figure 27 on the next page. Especially on the lower side of

the plot of the 2D data the probability density is spreading out over more less two groups. The mean

of the particles is somewhere in-between. A high probability at different area’s lead to a mean that does

not provide a good representation of the probability density. At the loop closing, multiple areas with a

high probability are reduced to one area. In the ‘General’ subsection of this section, it is already

explained why the error of the pose and map is in general high on the right and lower side of the 2D

map. For the FAST-SLAM algorithm this problem causes a probability density in multiple areas,

especially because of the conditional independency between landmarks.

6.1.3 Accuracy and consistency on 3D simulated data

General

Because there are no relative measurements, the motion function can only use the linear and angular

velocities to predict the next state. These linear and angular velocities have to be corrected by absolute

measurements. This creates an increase in the pose error, shown in Figure 20, of all the three algorithms

until i=175 and also in the first iterations in the rotation error, shown in Figure 21. Once these linear

and angular velocities are corrected, a prediction of the pose can be done more accurately and the error

decreases. The loop closing can clearly be seen in the pose and rotation error of all the algorithms.

The shape of the pose error at about i=5 to i=100 is the same as at about i=430 to i=500. In this time

range the loop closes and the poses are overlapping. It can also be observed that the error of the rotation

of all algorithms is relatively small and between i=20 and i=400 the rotation error is almost constant.

The reason for this is that the predicted measurement in the measurement update is very sensitive for a

rotation error. This results in an effective correction in the measurement update of the algorithms.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 43

Figure 27 Example of inaccurate calculation of the mean

by the Fast SLAM algorithm on 2D data.

The NEES of the pose and rotation, shown in Figure 20 and Figure 21, of all the algorithms is starting

very high. Since the system is initialized with a zero variance, a small error already results in an

inconsistent estimation. After about i=100 the variance of the pose becomes greater due to the

incorporation of measurement and motion noise, which declared the decrease of the NEES of the pose.

The small increase in NEES of the pose at a local peak at i=200 is a consequence of the higher error of

the pose in this time range. However this is still beyond the boundary of 7.82. At the loop closing around

i=400, the NEES of both the pose and the rotation increases, since the algorithms take the low variance

at i=1 into account. This results in a reduced variance of the pose and rotation, which causes a higher

NEES.

The shape of three arcs of the error and NEES in the map, given in Figure 23, is mostly the effect of the

loop closing. Note that the map error and NEES are not shown over time, but for each landmark.

However the landmarks are sorted by when they are initialized, so there is a correlation with time. Since

around i=110 the pool is already full, the algorithm decides which landmarks have to be removed to

add new landmarks. New landmarks will be added at the end of the state vector. It is obvious the dip

around the landmark ID j=800 is around the loop closing. However the dip at j=350 could not be

explained. The peaks in the map error and NEES of the map are caused by the way how landmark

positions of estimated data and real data are matched. In section 4.3.1 is described how the real positions

of the landmarks are matched with the estimated positions of landmarks in the experiment. Also in the

case of the vSLAM algorithms, poorly estimated positions of landmarks lead to wrong matches of

landmark ID’s between the set of the estimated positions and the set of real positions of landmarks.

This explains the peaks in the map error and NEES of the map. Also the landmark ID’s of outliers are

not matched correctly.

EKF and SEIF

Furthermore, in this experiment the sparsification and the update of the state of SEIF can result in a less

accurate estimation and consistency of the filter. However there is no difference in the error of the pose

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 44

(Figure 20), rotation (Figure 21) and map (Figure 23). The only difference between EKF and SEIF in

pose and rotation error is around i=400. There is no difference in pose error between SEIF with

sparsification and without. However during the execution of the experiments it was experiences that

with less active features the error increases.

The NEES of the pose, rotation and the map of the SEIF algorithm with sparsification, given in Figure

20, Figure 21 and Figure 23, is remarkable. Especially the NEES of the map. Overall the NEES is much

higher compared to other algorithms and almost at all time instants inconsistent. From about i=210 to

the loop closing at i=400 the NEES of the pose is above the boundary of 7.82 and the algorithm is

therefore inconsistent in this time range. The error of the pose, rotation and the map of the SEIF

algorithm with and without sparsification are globally the same. This means that the calculated variance

by the SEIF algorithm with sparsification is worse compared to the algorithm without sparsification.

The approximation in the sparsification step in the SEIF algorithm could be an explanation. Another

reason could be an error in the code of the sparsification step.

This experiment is highly linear and there is just one loop closing. When there are more loop closings

and the input data is more non linear, it would be interesting to see how the SEIF algorism behaves.

Graph

An advantage of Graph SLAM is the re-linearization of the states and the incorporation of all states.

This results in a much smoother and lower pose, rotation and map error, shown in Figure 20, Figure 21

and Figure 23. Especially at the loop closing at i=400 there is no instant change in the error of the pose

and the map. Furthermore, the NEES of all states is therefore overall slightly lower compared to the

other algorithms. The oscillation behavior in rotation error of the Graph SLAM algorithms is caused by

the way how the prior information is calculated. As explained in section 4.2.2, the states are initialized

by running the algorithm in sections of time. It can already be observed that the higher number of

updates leads to a lower oscillating behavior. Therefore it is expected that after a sufficient number of

global updates this error should be filtered out due to the re-linearization process of Graph SLAM.

6.1.4 Computation time on 2D data

The measured computation times, shown in Figure 24, include very high peaks. Due to relatively low

computation times, the accuracy of the measured times by Matlab is not reliable. Globally, it can be

seen that the SEIF algorithm has low computation times compared to EKF. The computation times of

the vSLAM algorithm are more accurate since these algorithms involve a much bigger combined state

vector. Therefore a more detailed evaluation about EKF, SEIF and Graph is done in the next section.

It can be seen that the implementation of FAST SLAM increases linearly with a low slope. However

this computation time depends heavily on the number of particles. It look like this implementation is of

the order 𝛰(𝑁 𝐽) . Compared to the theory a better implementation could make the computational

complexity to 𝛰(𝑁 log(𝐽)).

6.1.5 Computation on 3D simulated data

SEIF is based on the information filter and therefore it can incorporate measurements less costly

compared to EKF. This can be seen in the results, shown in Figure 26. Another advantage is that SEIF

can achieve even less computation times when applying sparsification.

It was expected that EKF should have a total cost known to be 𝛰(𝑛3) with 𝑛 the number of landmarks

and 𝛰(1) for SEIF. While SEIF performs worse than expected, the EKF algorithm is with 𝛰(𝑛) better

than expected.

It can also be concluded that the bookkeeping and feature matching requires a big part of the total

computation time. Therefore the total time of the vSLAM algorithm depends less on the SLAM back

end algorithm.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 45

Since the Graph SLAM algorithm is a full algorithm, the computational complexity is not comparable

in execution time compared the online algorithms. However after 4 update there are already competitive

results in accuracy compared to the online algorithms. After 4 updates the total time of the Graph SLAM

algorithm is 517.7 seconds, while the runtime of EKF is 323,3 seconds.

6.2 Limitations

During the project the following limitations were experienced:

• The vSLAM experiments are tested in a smooth environment. Both the simulated data and the data

acquired from captured images, create a straight circle around the globe. Capturing images with a

handheld device can be more nonlinear. Also an environment with more loop closings could

provide a more precise result of the accuracy for the 3D visualization of the human skin.

Furthermore, the accuracy of the algorithms could deviate more.

• The computational complexity of the algorithms in Matlab can only be roughly estimated. A more

low-end code could provide a more precise estimation of the computational complexity.

• During the implementation of SEIF and Graph for the experiments, it was found that calculations

with matrices did not remain symmetrical. This was due to rounding errors that were caused by

Matlab. Since the information matrix has to be inverted, this could have high implications on the

results. This had to be repaired by adding costly operations.

• The map error of the vSLAM simulated data could not be evaluated in detail. A solution could be

to compose an overview of on which time stamp each landmark is initialized. Furthermore, a map

of the positions of the estimated map and the real map could be helpful what causes the error.

• The FAST SLAM algorithm does not work in the vSLAM algorithms. Therefore the comparison

of the results were not complete.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 46

7. Conclusions and recommendations

7.1 Conclusion

In this project the goal was to find several SLAM back-end algorithms that can perform in a feature-

based vSLAM framework that is capable of running on a handheld device that scans a target area by

manually pointing the device around this area. To achieve this goal, three research questions and a

hypotheses were stated.

The first research question was: Which SLAM back-ends are suitable for the mapping on a handheld

device? Different filters were presented that can be used for a SLAM back-end algorithm. Based on

these filters, three common SLAM algorithms were selected in addition to EKF SLAM that could

perform competitive in a vSLAM framework: SEIF SLAM, Graph SLAM and FAST SLAM.

The second question was: What are the working principles of these algorithms? The working principle

of the algorithms is explained in this report, including a mathematical derivation. The theoretical

background is explained from a probabilistic perspective. Furthermore, the decisions that were made to

make the algorithms interesting in performance, is explained.

The next question is answered using the experiments: What is the performance of these algorithms

within the vSLAM feature-based framework? The following hypothesis is also verified using the

experiments: A high accuracy of the estimated 3D positions will be at the cost of computational

complexity of an algorithm. For this experiment seven scripts were made to perform experiments of the

EKF, SEIF, Graph and FAST SLAM on 2D data and EKF, SEIF and Graph on 3D visual SLAM data.

The results show that, overall, the Graph SLAM algorithm provides the highest accuracy and

consistency. However, it is computationally expensive and therefore it could not be run in real-time.

The online algorithms EKF and SEIF have a dual relationship and this can be seen in the results of the

experiments. Both algorithms are computationally more attractive compared to Graph SLAM and can

therefore operate in real-time. This is however at the cost of the accuracy. Both EKF and SEIF show

almost the same accuracy with a sufficient number of active landmarks in SEIF, but SEIF is

computationally more attractive. However, the needed computation power is higher than expected. It is

also shown that the sparsification step in SEIF ensures a low constancy of the filter. Therefore this

algorithm should be tested on more nonlinear data with more loop closings to give a more precise

evaluation. FAST-SLAM is only tested on the 2D data. More particles did not give a better accuracy

on the 2D date. However, according to the theory, this algorithm could perform better on more nonlinear

data with more loop closings, compared to EKF and SEIF. Depending on how much particles are

needed, FAST-SLAM could compete with EKF in terms of computational complexity.

To conclude, the overall research shows that there are several SLAM-back ends that can perform in a

feature-based framework. Depending on the desired accuracy, the available computation power, the

available knowledge to implement and the need to perform in real-time, a SLAM back-end can be

chosen. However, to measure the performance in a more realistic environment, the algorithms need to

be tested in more nonlinear situation with more loop closings.

7.2 Recommendations

To provide a better estimation, adding prior information such as information from a gyroscope or an

accelerator could improve the accuracy of the algorithms in general.

The vSLAM framework contains an algorithm to provide correspondences of the measurements.

However, data association could also be performed using the SLAM back-end algorithm[4]. Some

algorithms have several advantages above the general method. For example, in FAST SLAM, the data

association can be made per particle. This means that different data associations can be made with a

single measurement at the same time. This improves the consistency of the filter and makes is more

robust. Also other algorithms have their own way to find correspondence in an efficient way.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 47

The algorithms are not tested on robustness. According to the theory of the SLAM algorithms the

parametric algorithms cannot deal well with outliers. However, FAST-SLAM has a implementation for

removing outliers. In a real situation outliers may occur. It is recommend to find methods to deal with

outliers.

As described earlier, to measure the performance in a more realistic environment, the algorithms need

to be tested in more nonlinear situations with more loop closings.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 48

Appendix A

Sparsification of SEIF derived form a probabilistic point of view

Before applying the sparsification, probability (38) is rewritten in the following form:

p(a|c) p(b|c) p(c) =
p(a|c)p(b|c)

 p(c)
= p(a|c)

p(c)

p(c)
p(b|c) p(c) (115)

(38)Next the standard form can be applied to the SLAM case. For readability the conditioning

variables u1:i, z1:i
1:k, c1:i

1:k in each probability are removed:

p(y) = p(xi m
+, m0, m−)

 = p(xi| m
+, m0, m−) p(m+, m0, m−) (116)

 = p(xi| m
+, m0, m− = 0) p(m+, m0, m−)

where in the last row the set of passive landmarks m− is set equal to 0, since there is no link between xi

and m−. Now the approximation using conditional independence can be applied in the same manner as

in (38).

p(xi| m
+, m0, m− = 0, u1:i, z1:i

1:k, c1:i
1:k) p(m+, m0, m−| u1:i, z1:i

1:k, c1:i
1:k)

 ≈ p(xi| m
+, m− = 0, u1:i, z1:i

1:k, c1:i
1:k) p(m+,m0, m−| u1:i, z1:i

1:k, c1:i
1:k) (117)

 ≈
p(xi,m

+| m−=0, u1:i, z1:i
1:k, c1:i

1:k)

p(m+| m−=0, u1:i, z1:i
1:k, c1:i

1:k)
 p(m+, m0, m−| u1:i, z1:i

1:k, c1:i
1:k)

To calculate the sparse matrix Ω̃i+1 from (117) first calculate each individual probability is calculated:

Ωi
1 for p(xi, m

+| m− = 0, u1:i, z1:i
1:k, c1:i

1:k) , Ωi
2 for p(m+| m− = 0, u1:i, z1:i

1:k, c1:i
1:k) and Ωi

3 for

p(m+, m0, m−|u1:i, z1:i
1:k, c1:i

1:k). Afterwards the individual matrices will be combined get the sparse

matrix Ω̃i.

To get Ωi
1 and Ωi

2 first Ω is conditioned on m− = 0 by extracting the cells from Ω related to xi, m
+, m0

but m− using projection matrix Fxi,m+m0 :

Ωi
0 = Fxi,m+m0 Fxi,m+m0

T Ω Fxi,m+m0
T Fxi,m+m0 (118)

To get Ωi
1 the matrix inversion lemma is used to marginalize m0 from Ωi

0:

Ωi
1 = Ωi

0 − Ωi
0Fm0 (Fm0

T Ωi
0Fm0)

−1
Fm0
T Ωi

0 (119)

The calculation of Ωi
2 is done in the same manner. In this case variables xi and m0 are marginalized

from Ωi
0:

Ωi
2 = Ωi

0 − Ωi
0Fxi,m0 (Fxi,m0Ωi

0Fxi,m0)
−1
Fxi,m0 Ωi

0 (120)

The matrix Ωi+1
3 is calculated by marginalizing xi from Ωi:

Ωi
3 = Ωi − ΩiFx (Fx

TΩiFx)
−1
Fx
T Ωi

0 (121)

The sparse matrix Ω̃i+1 is calculated by combining the matrix calculated before, according to (117):

Ω̃i = Ωi
1 − Ωi

2 + Ωi
3 (122)

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 49

Appendix B

Detailed explanation of filling the information matrix of Graph SLAM

For every motion event the curly embraced equations (60) and (61) have to be calculated. The calculated

matrix has the shape of the matrix where the underbrace points to. Each element refers to a location in

Ω (Figure 8) for the calculated matrix in (60) and ξ (Figure 9) for the calculated vector in (61). The

format of the location is ‘n m’, with n the row label and m column label.

[xi−1 xi] [
−Gi

T

1
] Ri

−1[−Gi 1]⏟
 [
xi−1
xi
]

[

xi−1,x xi−1,x xi−1,x xi−1,y xi−1,x xi,x xi−1,x xi,y
xi−1,y xi−1,x xi−1,y xi−1,y xi−1,y xi,x xi−1,y xi,y
xi,x xi−1,x xi,x xi−1,y xi,x xi,x xi,x xi,y
xi,y xi−1,x xi,y xi−1,y xi,yxi,x xi,y xi,y

] (123)

[xi−1 xi] [
−Gi

T

1
] Ri

−1 [x̃i − Gi μxi−1]⏟

 [

 xi−1,x
xi−1,y
xi,x
 xi,y

] (124)

A measurement event could be added by following this procedure with equations (62) and (63).

yi
T Hi

jT
Qi
−1Hi

j
⏟ yi

[

xi,x xi,x xi,x xi,y xi,x mj,x xi−1,x mj,y
xi,y xi,x xi,y xi,y xi,y mj,x xi−1,y mj,y
mj,x xi−1,x mj,x xi−1,y mj,x mj,x mi,x mi,y
mj,y xi−1,x mj,y xi−1,y mi,y mi,x mi,y mi,y

] (125)

yi
THi

jT
Qi
−1 (zi

i − ẑ + Hi
j
 yi)⏟

 [

 xi,x
xi,y
mj,x
 mj,y

] (126)

The initialization is given in (64).

x0
TΩ0⏟ x0

[
x0,x x0,x x0,x x0,y
x0,y x0,y x0,y x0,y

] (127)

An motion update or measurement update can achieved with the following equations, respectively.

Ωnew = Ωold + F
TΩsubF (128)

ξnew = ξold + F
Tξsub (129)

With F for a motion update is:

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 50

Fx,mj = [

0⏟
size of x0:i−1

0⏟
size of x0:i−1

I⏟
size of xi

0⏟
size of xi+1

0⏟
size ofxx+2:I

0⏟
size of m1:J

0⏟
size of xi

I⏟
size of xi+1

0⏟
size ofxx+2:I

0⏟
size ofm1:J

]

} size of x

} size of mj
 (130)

With F for a measurement update:

Fx,j = [

0⏟
size of x0:i−1

0⏟
size of x0:i−1

I⏟
size of xi

0⏟
size ofm1:j−1

0⏟
size ofmj

0⏟
size omj+1:J

0⏟
size of xi

0⏟
size ofm1:j−1

I⏟
size ofmj

0⏟
size ofmj+1:J

]

} size of x

} size of mj
 (131)

With I the identity matrix and 0 a zero matrix.

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 51

Appendix C

Marginalization lemma and conditioning lemma in moments and

information form

Table 18 expresses the dual relationship between moments and information form, with respect to

marginalization and conditioning

Table 18 relationship between moments and information form [6]

PERFORMANCE EVALUTATION OF SEVERAL SLAM ALGORITHMS IN A FEATURE-BASED vSLAM FRAMEWORK

Gideon Kock 52

Bibliography

[1] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: A survey from 2010 to

2016,” IPSJ Transactions on Computer Vision and Applications. 2017, doi: 10.1186/s41074-

017-0027-2.

[2] H. Zamzuri, M. A. Bin, A. Rahman, S. A. Mazlan, A. Hadi, and A. Rahman, “Computational

cost analysis of extended Kalman filter in simultaneous localization and mapping (EKF-SLAM)

problem for autonomous vehicle.” Accessed: Apr. 13, 2021. [Online]. Available:

https://www.researchgate.net/publication/283824088.

[3] Wikipedia contributors, “Gaussian function --- {Wikipedia}{,} The Free Encyclopedia.” 2020,

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Gaussian_function&oldid=994692675.

[4] S. Thrun, “Probabilistic robotics,” Commun. ACM, 2002, doi: 10.1145/504729.504754.

[5] N. S. Shah, “D STEREOVISION FOR QUANTIFICATION OF SKIN DISEASES SUB-

MILLIMETRE D RECONSTRUCTION N . (Nimish) Shah,” 2020.

[6] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information filters: Insights into

sparsification,” 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, no. September 2005, pp.

3281–3288, 2005, doi: 10.1109/IROS.2005.1545053.

[7] E. Eade, P. Fong, and M. E. Munich, “Monocular graph SLAM with complexity reduction,”

IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf. Proc., pp. 3017–3024, 2010,

doi: 10.1109/IROS.2010.5649205.

[8] A. Dine, A. Elouardi, B. Vincke, and S. Bouaziz, “Graph-based simultaneous localization and

mapping,” IEEE Robot. Autom. Mag., vol. 23, no. 4, pp. 160–173, Dec. 2016, doi:

10.1109/MRA.2016.2580466.

[9] S. Riisgaard and M. R. Blas, “SLAM for Dummies A Tutorial Approach to Simultaneous

Localization and Mapping By the ‘dummies.’” .

[10] F. van der Heijden, “implementation details ES-EKF-SLAM,” no. January, 2021.

[11] F. Van Der Heijden, “Derivatives of Euler angles,” 2021.

[12] F. van der Heijden, “Math for Computer Vision and Navigation,” p. 29, 2019.

[13] A. Kasar, “Benchmarking and Comparing Popular Visual SLAM Algorithms,” arXiv, Nov.

2018, Accessed: Apr. 25, 2021. [Online]. Available: http://arxiv.org/abs/1811.09895.

[14] MathWorks, “Measure the Performance of Your Code - MATLAB & Simulink - MathWorks

Benelux.” https://nl.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-

program.html (accessed May 22, 2021).

[15] “how can I compute memory usage? - MATLAB Answers - MATLAB Central.”

https://nl.mathworks.com/matlabcentral/answers/384369-how-can-i-compute-memory-usage

(accessed May 22, 2021).

	1. Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Outline of the report

	2. Background: SLAM
	2.1 Explaining variables using an example
	2.2 Online vs Full SLAM

	3. The family of feature-based SLAM
	3.1 Gaussian filters
	3.1.1 Kalman filter
	3.1.2 Information filter
	3.1.3 Extended versions of the Information- and Kalman filter

	3.2 Nonparametric filters
	3.2.1 Histogram filter
	3.2.2 Particle filter

	3.3 Chosen SLAM algorithms
	3.4 EKF SLAM
	3.4.1 Prediction
	3.4.2 Measurement update
	3.4.3 Complexity

	3.5 SEIF SLAM
	3.5.1 Prediction
	3.5.2 Measurement update
	3.5.3 Update state estimation
	3.5.4 Sparsification
	3.5.5 Complexity

	3.6 Graph SLAM
	3.6.1 Theoretical background Graph SLAM
	3.6.2 Initialization
	3.6.3 Calculating the information matrix and information vector
	3.6.4 Reducing
	3.6.5 Solving
	3.6.6 Complexity

	3.7 FAST-SLAM
	3.7.1 Prediction
	3.7.2 Measurement update map
	3.7.3 Assign importance weight
	3.7.4 Resampling
	3.7.5 Difference FAST-SLAM 1.0 and 2.0
	3.7.1 Complexity

	4. Methods
	4.1 Goals
	4.2 Experimental set-up
	4.2.1 2D map
	State vector

	4.2.2 Visual SLAM
	State vector
	Motion function
	Jacobian of the motion function
	Measurement function
	Jacobian of the measurement function

	4.3 Evaluation criteria
	4.3.1 Accuracy and consistency
	Poses and map
	Orientation
	Used algorithm settings

	4.3.2 Computational complexity

	5. Results
	5.1 Accuracy and consistency on 2D UK data
	5.1.1 Pose
	5.1.2 Map
	5.1.3 MAE

	5.2 Accuracy and consistency on 3D simulated vSLAM data
	5.2.1 Pose
	5.2.2 Rotation
	5.2.3 Map
	5.2.4 MAE

	5.3 Computation time on 2D data
	5.4 Computation time on real vSLAM data

	6. Discussion
	6.1.1 Goals
	6.1.2 Accuracy and consistency on 2D data
	General
	Graph SLAM
	EKF and SEIF
	FAST SLAM

	6.1.3 Accuracy and consistency on 3D simulated data
	General
	EKF and SEIF
	Graph

	6.1.4 Computation time on 2D data
	6.1.5 Computation on 3D simulated data
	6.2 Limitations

	7. Conclusions and recommendations
	7.1 Conclusion
	7.2 Recommendations

	Appendix A
	Appendix B
	Appendix C
	Bibliography

