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Summary 

The aim of the HAPI project is to enhance a handheld device, such as the Laser Speckle Contrast 

perfusion imager, that scans a target area by manually pointing the device at the diseased skin area. To 

provide 3D geometrical information, visual SLAM (vSLAM) algorithms are involved.  

In this work, several SLAM algorithms are chosen that are suitable to perform in a feature-based 

vSLAM framework. First, different types of Bayesian-based filters were presented. Based on these 

filters, four common SLAM algorithms were selected: EKF SLAM, SEIF SLAM, Graph SLAM and 

FAST SLAM. The working principle of the algorithms is explained in this report, including a 

mathematical derivation.  

The performance of these algorithms is measured using an experiment in a 2D environment. 

Furthermore, the algorithms are tested in a feature-based vSLAM framework in a 3D environment. The 

input data used in these experiments consist of feature points extracted from real images and simulated 

feature points.  

During the experimentation, it is observed that Graph SLAM provides a relatively high accuracy and 

consistency. However the algorithm is computationally expensive and therefore it could not be run in 

real-time. The results of the experiments shows that EKF and SEIF have almost the same accuracy. The 

SEIF algorithms is computationally more attractive, but the needed computation power was higher than 

expected. It is also shown that the sparsification step in SEIF ensures a low constancy of the filter. 

Furthermore, the FAST-SLAM algorithm is only tested on the 2D data and shows a relatively high error 

in the pose and the map.  

The research shows that there are several SLAM-back ends that can perform in a feature-based 

framework. Depending on the needed accuracy, the available computation power, the available 

knowledge to implement and the need to perform in real-time, a SLAM back-end can be chosen. 

However, to measure the performance in a more realistic environment, the algorithms need to be tested 

in more nonlinear situation with more loop closings.  
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1. Introduction  

The HAPI project is a TTW-funded project in which the Radboud UMC and the University of Twente 

collaborate. The aim of this project  to develop a handheld device for blood perfusion imaging, and to 

deploy this system for monitoring the progression of Psoriasis. The technical development of this system 

is accomplished by the BMPI group. In addition, the RAM group participates in this project by providing 

the needed computer vision functionality.  

The goal of the work package, for which RAM was responsible, is to provide methods for real-time 

estimation of 2D in-plane motion, e.g. optical flow. Next to this, the work package also entails an 

explorative study to the possibility of 3D vision to enhance the functionality of the handheld device. The 

current study is a continuation of this last aspect of the work package.  

1.1 Motivation 

The aim of the project is to enhance a handheld device, such as the Laser Speckle Contrast perfusion 

imager. The device scans a target area by manually pointing the device at the diseased skin area. It is 

desired to enlarge the field of view of the device by slowly sweeping it along the skin surface in a 

controlled but flexible manner. Also it has to provide 3D geometrical information of the target object in 

order to correct geometrical effects. In other words it has to correct non-fronto-parallel imaging. The 3D 

geometrical information can also be used to facilitate 3D augmented reality. Furthermore, to enable full 

motion artefact compensation, it must provide 3D motion information. 

To provide this information, visual SLAM algorithms have to be involved. A SLAM (Simultaneous 

Localization And Mapping) algorithm can construct a map of an unknown environment moving around 

with a sensor system, and while simultaneously keeping track of the location of this device within the 

map. Visual SLAM (vSLAM) algorithms use camera information as input information.  

Various principles of vSLAM exist [1]. In a feature-based method a set of feature points is extracted 

from an image. These feature points are matched with feature points extracted from other images that 

are taken from different perspectives.  The matching process is performed by matching the so-called 

descriptors of the corresponding feature points. With points seen from different perspectives, 3D 

information can be calculated.  

In direct methods, the entire images are compared to each other. This is done by matching parts of 

images. Instead of abstracting features points and descriptors, they use the image directly. Whereas 

geometric consistency is used for feature-based methods, photometric consistency  is used for direct 

methods. 

Both of the approaches might be of interest, but as a first step this study addresses only the point feature 

based approach leaving the other approaches for future work. Within feature-based SLAM, various 

implementations exist with different characteristics. There are different ways to match features points 

of images. Also the 3D calculation can be performed in different ways. In this calculation noise has to 

be taken into account. Noise induces during image acquisition and propagates into calculation of 3D 

points from different perspectives. To work form a probabilistic perspective noise can be taken into 

account. The algorithm that solves this problem is called a SLAM back-end algorithm.  

If feature-based SLAM is going to be used, it is not clear which implementation is most suitable for a 

handheld device.  
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1.2 Problem statement 

The goal of this research is to find the best SLAM back-end for a handheld device in a feature based 

vSLAM framework. This framework is realized in previous work. 

The following questions will be answered in this project: 

1. Which SLAM back-ends are suitable for the mapping on a handheld device?   

2. What are the working principles of these algorithms? 

3. What is the performance of these algorithms within the vSLAM feature-based framework? 

 

The following hypothesis will be verified: 

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity 

of an algorithm.  

 

1.3 Outline of the report 

The structure of this report is as follows. Chapter 2 describes the background information of SLAM. 

Furthermore, the mathematical variables and their notations used in the next sections are explained. In 

Chapter 3 different filters are explained. Using this knowledge, the SLAM algorithms to be researched 

are chosen. Also the theoretical background and working principle of the chosen SLAM algorithms are 

explained. The approach to the experiments is described in Chapter 4. The results of experiments are 

given in Chapter 5 and discussed in Chapter 6. In the last section the conclusions are made and 

recommendations are provided.  
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2. Background: SLAM 

The term SLAM was already introduced in Section 1.1. When a system does not have access to a map 

of the environment, nor it does know its own state, it can be seen as a typical SLAM problem. A SLAM 

algorithm tries to find the right path the system is taking (localization). Simultaneously, it  creates a map 

of the environment in which the device is located (mapping) using models and measurements. 

There is always uncertainty in measurements and models. For example, due to measurements noise and 

approximations in the model. Therefore, a SLAM algorithm is working from a probabilistic perspective, 

where it solves a so called optimization problem. 

The core commonality mathematical framework of SLAM algorithms is Bayesian-based. A Bayesian-

based filter handles different kind of measurements of the sensor device. Measurements from different 

sensors can be divided in two categories, namely relatives and absolute measurements. Examples are 

given in Table 1.  In a Bayesian-based filter, a prediction of the position of a sensor device is performed 

using a kinematic model and/or information from relative kinematic measurements, for example speed 

and turning rate. The next step of a Bayesian-based filter is the measurement update. In this step, 

absolute measurements are used to make the predicted state more accurate. Absolute position 

measurements are measurements of the environment relative to the device.  

Table 1 Measurement types 

Measurements type Examples 

Relative measurements Wheel encoders 

Integration of accelerators or gyroscopes 

Absolute measurements Beacons 

Laser scanner 

Vision systems 

 

2.1 Explaining variables using an example 

A graphical interpretation is provided in Figure 1, with the definitions of the variables in the legend. 

These variables will also be used in other sections of this report. As described in the legend, xi is the 

state of the device at time i and mj is the position of a landmark with ID j. The variable ui defines the 

relative measurements at time i.  The k-th absolute measurement at time i is represented by the 

variable zi
k, with ci

k the corresponding landmark ID. A variable indicated with a capital letter, signifies 

the maximum number of that variable. For example, zi
1:Kindicates the whole set of measurements at 

time i.  

Figure 1 shows that the estimated path deviates from the real path. At time i the sensor device, has a 

state xi. Using the previous state xi=1 and relative measurements ui=2, a new state x̅i=2 is predicted. 

Note that the upper bar indicates an predicted state. At i=2 it observes two landmarks mj=1 and mj=2. 

Two measurements zi=2
k=1 and zi=2

k=2 are obtained, with ID numbers 1 and 2 stored in ci=2
k=1 and ci=2

k=2, 

respectively. Using this information the state x̅i=2 is updated to xi=2. This process iterates at each time 

stamp. A prediction is performed to calculate x̅i using the previous state xi−1and relative measurements 

ui. The measurements update is performed using absolute measurements zi
1:K with correspondences ci

1:K 

to calculate xi. 
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Figure 1 Graphical interpretation of solving a SLAM problem using a bayes filter 

 

2.2 Online vs Full SLAM 

From a probabilistic point of view there are two types of SLAM problems: online and full SLAM. Both 

calculate the posterior probability using measurements and controls, but online SLAM involves 

estimating the momentary pose, while in full SLAM the entire path is estimated. The information about 

the state of the system x (state vector) and the map m containing the landmarks are stored in a so called 

combined state vector y. An online SLAM algorithm only stores the current state xi in the combined 

state vector, while in full SLAM all previous poses x1:I are also stored. 

The corresponding probability functions and the layout of the combined state factor are given in Table 2. 

Table 2 SLAM types 

 ONLINE SLAM FULL SLAM 

Probability function p(xi, m1:J |  u1:I, z1:I
1:K, c1:I

1:K) p(x0:I, m1:J | u1:I, z1:I
1:K, c1:I

1:K) 

Combined state vector yi = (
xi 
m1:J

) yi = (
x1:I 
m1:J

) 

Legend 

Symbol Label Description 

 

xi Estimated state at time i 
ui Relative measurements at time i 

 

mj Estimated state of landmark with id ‘j’ 

 zi
k kth  measurement at time i 

ci
k Correspondence  (landmark id) of kth  measurement at time i. 

 - Estimated path 

 - Real path 
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3. The family of feature-based SLAM 

As described earlier, the core commonality mathematical framework of SLAM algorithms is Bayesian-

based. Bayes filters can be implemented in different ways. The algorithms can be divided in two main 

categories: Gaussian Filters and nonparametric filters. 

3.1 Gaussian filters 

Gaussian techniques all share the basic idea that beliefs are represented by multivariate normal 

distributions (Figure 2). There are two common Gaussian filters [2]. 

3.1.1 Kalman filter 

The most common Gaussian filter is the Kalman filter, where a Gaussian is defined with moments 

parameterization: a mean vector μ and covariance matrix Σ.  

The general form of a Gaussian function using moments parameterization is given in (1). 

p(x) =  
1

√(2π)D|Σ| 
exp(−

1

2
(x − μ)TΣ−1(x − μ)) (1) 

where x is a random vector with dimension D. 

 
Figure 2 Two dimensional Gaussian distribution (D=2) [3] 

3.1.2 Information filter 

Another Gaussian filter is the information filter, the dual of the Kalman filter. Instead of moments 

parameterization, a Gaussian is defined in canonical parameterization. The canonical form consists of a 

information matrix Ω  and an information vector ξ . The relation between moments and canonical 

parameterization is the following: 

𝛺 = 𝛴−1 (2) 

𝜉 = 𝛴−1 𝜇 (3) 

The Gaussian in canonical parameterization is shown in (4), where the parts that are not dependent on 

x are subsumed to η. 

p(x) =  η exp (−
1

2
xTΩ x + xTξ) (4) 

In information form, the probabilities are often represented by their negative logarithmic. The Gaussian 

in this form has some advantages. In particular, Bayes rule becomes an addition. Another advantage is 

that p(x) now has a quadratic term in x parameterized by Ω and the linear term in x is parameterized by 

ξ.  

The negative logarithmic form becomes: 

− 𝑙𝑜𝑔 𝑝(𝑥) =  𝑐 +
1

2
𝑥𝑇𝛺 𝑥 − 𝑥𝑇𝜉  (5) 

Where the log of η becomes a constant value, labeled with ‘c’. 
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3.1.3 Extended versions of the Information- and Kalman filter 

In Bayes filters, a motion model is used to predict the next state and a measurement model is used for 

the update step. The filter explained above can be worked out straightforwardly if the measurement 

function and the kinematic model are linear. Unfortunately, in practice these functions are nonlinear. To 

deal with nonlinearities, the two filters are both extended with linearizing nonlinear functions using 

Taylor expansion. These filters are called the Extended Kalman filter and the Extended information 

filter. 

The nonlinear functions of the motion model and measurement model are given in (6) and (7), 
respectively.  

x̅i = g(ui, xi−1) + ɛi (6) 

zi
k = h(yi, k) + δi (7) 

Symbols ɛi and δi are variables relating to motion and measurement noise, respectively. 

To deal with this nonlinearity, the extended versions of the information- and Kalman filter include a 

linearization via Taylor series expansion. The Taylor series expansion of the motion and measurement 

functions are given in (8) and (9), respectively. 

 x̅i ≈ g(ui, xi−1)⏟      
x̃i

+ Gi(xreal,i−1 − xi−1) + ɛi (8)
 

zi
k ≈ h(yi, ci

k)⏟    

z̃i
k

 +  Hi
k (yreal,i−1  −  yi−1) + δi (9) 

where the Jacobian Gi is the derivative of g(ui, xi−1) with respect to xi−1. In (9) the Jacobian Hi
k is the 

derivative of  h(yi, k) with respect to yi. The curly embraced part by x̃𝑖 in (8) and the curly embraced 

part by z̃i
k in (9) are the noise free components and can be calculated. The parts between brackets after 

the Jacobians of both functions are the estimation errors in xi and yi. In practice the real values xreal,i and 

yreal,i are not known. However both filters are using the Jacobians to approximate the noise. 

 

3.2 Nonparametric filters 

The other category, nonparametric filters, are not based on parameters like the mean and the covariance 

matrix to describe uncertainty. Instead, they approximate posteriors by a finite number of values, each 

roughly corresponding to a region in state space. An advantage of nonparametric filter is that a 

probability can have all kinds of shapes. In this section the representation of two nonparametric filters 

are described. They are both using linearized motion and measurement functions described above. The 

advantage of nonparametric filters is that they can handle high non-linearities. A disadvantage is the 

required computational power. 

3.2.1 Histogram filter 

Histogram filters decompose the probability into finitely many regions and represent a probability for 

each region by a single probability value. In Figure 3 a graphical interpretation can be seen, where p(x) 

is a certain probability, which is described using a histogram. 
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Figure 3 The histogram representation of a probability [4] 

3.2.2 Particle filter 

The key idea of the particle filter is to represent a probability by a set of random state samples. The 

denser a region particle, the higher the probability. A graphical interpretation is given in Figure 4. 

 
Figure 4 The particle representation of a probability [4] 

3.3 Chosen SLAM algorithms 

There are several SLAM algorithms based on the above mentioned filters. In this project it is not decided 

yet if the estimation has to be operated in real-time. Therefore both online and full SLAM can be chosen. 

The modeling for a human body does not have to necessarily be in real time. It can also acquire data in 

real time and analyze this data afterwards. There already exists a vSLAM algorithm which uses EKF 

SLAM (based on the Kalman filter) [5]. Therefore, this SLAM as well as alternatives will be used in 

this research. In vSLAM a large number of landmarks are desired to create a dense map. Therefore 

SLAM algorithms based on the information filter could be computationally interesting. Another 

interesting SLAM algorithm called FAST-SLAM is found. Since it is based on the particle filter, it can 

deal with high nonlinearities. An overview of the chosen algorithms is showed in Table 3. 

Table 3 Chosen algorithms 

Filter Algorithm Type 

Kalman filter EKF SLAM Online 

Information filter SEIF SLAM Online 

Graph SLAM Full 

Particle filter FAST-SLAM 2.0 Online 

3.4 EKF SLAM 

EKF SLAM is one of most common SLAM algorithms. Since this algorithm is already used in the  

visual SLAM framework and explained in previous work[5], a short explanation is given in this report.  

3.4.1 Prediction 

In the prediction step the mean μ̅i and the associated covariance matrix Σ̅i are calculated in (10) and 

(11), respectively. They are calculated using the linearized motion function g( ui, μi−1) with Jacobian 

Gi. More over linearizing is explained in section 3.1.3.  

μ̅i = g( ui, μi−1) (10) 

Σ̅i = ǦiΣi−1Ǧi
T + Fx

TRiFx (11) 
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where  𝑅𝑖  is the covariance matrix related to motion noise. 𝑅𝑖 = 𝑉𝑖𝑀𝑖𝑉𝑖
𝑇  is the motion noise, with 

covariance matrix 𝑀𝑖 of the relative measurements 𝑢𝑖 and the Jacobian 𝑉, the derivative of the motion 

function with respect to the relative measurements. The Jacobian 𝑉 ensures an approximate mapping 

between the motion noise in control space to the motion noise in state space. The projection matrix 𝐹𝑥 

maps the motion update to the state vector. The projection matrix has the structure given in (12). 

Fx = [
I⏟

size of xi 

0⏟
size ofm1:J 

    ]} size of xi (12) 

With I an identity matrix and 0 a zero matrix. 

The matrix Ǧi in (11) is the Jacobian Gi but extended with zeroes to have the same size of the combined 

state vector. This is done using the projection matrix Fx: 

Ǧi = Fx
TGi Fx (13) 

3.4.2 Measurement update 

For each landmark the Kalman matrix Ki
k is calculated to update the predicted mean μ̅i and covariance 

matrix Σ̅i. 

Si
k = Ȟi

kΣ̅iȞi
kT + Qi

k (14) 

Ki
k = Σ̅iȞi

kTSi
k−1 (15) 

μi = μ̅i + Ki
k(zi

k − ẑi
k) (16) 

Σi = Σ̅i  − Ki
kSi
kKi

k (17) 

where Si
k is the so-called innovation matrix, Ki

k is the so-called Kalman gain and Qi
k the covariance 

matrix related to measurement noise. Note that predicted variables are indicated with a upper bar while 

the updated variables after measurement are not.  

Equal to the Jacobian in the prediction, the Jacobian Ȟi
k is the large matrix fitted to the size of the 

combined state vector. This in done in the following way: 

Ȟi
k = Fx

THi
kFx (18) 

With Fx,j having the following shape: 

Fx,j = [

I⏟
size of xi 

0⏟
size ofm1:j−1 

0⏟
size ofmj 

0⏟
size ofmj+1:J 

 

0⏟
size of xi 

0⏟
size ofm1:j−1 

I⏟
size ofmj 

0⏟
size ofmj+1:J 

]

} size of xi  
  

} size of mj
 (19) 

Another way to do the measurement update is to build the Jacobian Ȟi for all measurements at once. In 

this way only one Kalman gain Ki  has to be calculated. Note that also three matrices have to be 

constructed for each of Qi
1:K, zi

1:K and ẑi
1:K. 

3.4.3 Complexity 

According to [2], the calculation of the prediction step consists of the next state (10) and the covariance 

matrix (11). These operations require 𝛰(1) and 𝛰(𝑛), respectively, with n the number of landmarks. 

The measurement update, consisting of calculating the innovation matrix (14), Kalman gain (15), 

updated main (16) , and update covariance matrix (17) , requires 𝛰(𝑘3) , 𝛰(𝑛𝑘2) ,  𝛰(𝑛) ,  𝛰(𝑛2𝑘) 

respectively, with k the number of measurements. Calculating a Jacobian requires 𝛰(𝑛). Therefore the 

computational complexity of the update step is 𝛰(𝑛2) and the total cost is known to be 𝛰(𝑛3). The 

memory usage of EKF is 𝛰(𝑛2). 
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3.5 SEIF SLAM 

SEIF  is an online SLAM algorithm based on the information filter [2]. It has a lot in common with EKF, 

but since the representation is different, some calculations are computational more effective, while in 

other steps the computation is more complex. The part where it deviates the most from EKF is the 

sparsification step. This step makes SEIF a very efficient algorithm and therefore it can be performed in 

real-time. A flow diagram of SEIF is shown in Figure 5. 

 
Figure 5 SEIF steps 

In the prediction step, a new state is estimated using the motion model. This includes an information 

matrix 𝛺̅𝑖 , an information vector 𝜉𝑖̅  and a predicted mean μ̅i . In the measurement update, the 

information matrix and vector are updated using absolute measurements. The mean is updated in the 

next step, called ‘Update state estimation’, using the updated information matrix and vector. Next, the 

sparsification is computed. In this step, the information matrix is made sparse without losing too much 

information. A sparsefied matrix or vector is indicated with a tilde above the expression. After the 

sparsification, the information matrix 𝛺̃𝑖, information vector 𝜉𝑖 and the mean 𝜇𝑖 are up-to-date for time 

i. The next state can be calculated by repeating the above described process. In this chapter every step 

will be explained in detail.  

3.5.1 Prediction 

The predicted mean is equal to EKF. This equation is stated in (20). The calculation of the information 

matrix 𝛺 in SEIF (21) is also based on the calculation of the covariance matrix 𝛴 in EKF. 

μ̅i = g(ui, μi−1)          (20) 

 Ωi = Σi 
−1 = (ǦiΣi−1Ǧi

T + Fx
TRiFx)

−1 (21)

                      = (ǦiΩi−1
−1 Ǧi

T
+ Fx

TRFx)
−1

 

Equation (21) is computational expensive since it involves two inversions of large matrices. To make it 

computationally more attractive, the matrix inversion lemma is applied. If Φi
−1 = Ǧi Ωi−1

−1Ǧi
T, the 

equation is suitable for the inversion lemma: 

 Ωi  = ( Φi
−1 + Fx

TRFx)
−1                 

                                      = Φi − ΦiFx
T(R−1 + FxΦiFx

T)
−1
FxΦi                 (22)

 

With  

Φi = (Ǧi Ωi−1
−1Ǧi

T)
−1
                 

         = (Ǧi
T)
−1
Ωi Ǧi

T−1                       (23)
 

i=i+1

Prediction

Measurement 
update

Update state 
estimation

Sparsefication

𝛺̅𝑖𝜉𝑖̅  𝜇̅𝑖 

𝛺𝑖  𝜉𝑖  𝜇̅𝑖 

𝛺𝑖 ,  𝜉𝑖 , 𝜇𝑖 

𝛺̃𝑖 , 𝜉𝑖, 𝜇𝑖 

𝜇𝑖 
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The inversion R−1and (R−1 + FxΦiFx
T)
−1

 are inversions of low sized matrices. What remains is a large 

matrix Ǧiand Ǧi
T that have to be inverted in (23). In the same manner as in (22), the matrix inversion 

lemma is used. In (24) the Jacobian is divided in an identity matrix I and the parts that characterize the 

change Δi. Then it is changed to the right form to apply the matrix inversion lemma afterwards. 

Gi
−1 = (I + Fx

TΔFx)
−1

                                            = (I − Fx
TI Fx + Fx

TI Fx + Fx
TΔFx)

−1

                                     = (I − Fx
TI Fx + Fx

T(I + Δ)Fx)
−1

(24)

                                  = I − Fx
TI Fx + Fx

T(I + Δ)−1 Fx
                          = I + Fx

T((I + Δ)−1−I) Fx⏟            

 

Matrix Gi
T−1 can be calculated in the same way. The only difference compared to (24) is the transpose 

of the curly embraced part. 

To calculate the information vector ξ, equation (3) is rewritten to μ = Σ ξ  and substituted into (20). 

Moving Ωi to the right hand side of the equation, results in the following equation:  

ξi = Ωi ( Ωiξi + F
Tδi) (25) 

The equations of  Ωi  and ξi given above are rewritten to have common parts in the equation. These 

common parts are calculated first to avoid redundancy. This results in the following calculations that 

have to be executed in the prediction step:  

            Ψi = Fx
T[(I + Δi)

−1 − I]Fx        

                        λi = Ψi
TΩi−1 + Ωi−1Ψi +Ψi

TΩi−1Ψi
           Φi = Ωt−1 + λi                            (26)

                     κi = ΦiFx
T(Ri

−1 + FxΦiFx
T)
−1
FxΦi

       Ω̅i = Φi − κi                             

                          ξ̅i = ξi−1 + (λi − κi)μi−1 + Ω̅iFx
Tδi−1

 μ̅i = μi−1 + Fx
Tδi             

 

3.5.2 Measurement update 

The measurement update is based on the measurement update of the information filter: 

Ωi = Ωi  + Hi
TQi

−1Hi (27) 

ξi = ξi  + Hi
TQi

−1(zt − h(μi) + Hiμi) (28) 

where zt is the actual measurement and h(μi)  the noise free components of the approximated 

measurement function. In most cases, and especially in vSLAM, there are multiple observations per 

time. Therefore the equations are adapted to the following forms: 

Ωi = Ωi  +∑Hi
k TQi

−1Hi
k

j

(29) 

ξi = ξi  +∑Hi
j T
Qi
−1(zi

k − z̃i
k + Hi

j
μi)

j

(30) 

3.5.3 Update state estimation 

During the measurement update only Ω and ξ are updated. In this step, the predicted mean μ̅i is updated 

using the updated matrix Ω and vector ξ . The most obvious calculation to do this is using μ = Ω−1ξ, 

obtained from equation (3). A disadvantage of this method is that this has a high computational cost. 
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Therefore an approximation is used to calculate the corrected mean. Furthermore, only the individual 

variables of interest are calculated: The state vector xi  and the active landmarks of the map. The 

definition of active landmarks will be explained in Section 3.5.4.  

The problem can be solved using different methods. Thrun et al. [4] suggests an iterative hill climbing 

algorithm, which is an instantiation of the coordinate descent algorithm. In Gaussian distribution form 

it has the following shape:  

μ̂ = argmax
μ

p(μ)

                                      = argmax
μ

exp (−
1

2
μTΩμ + ξTμ)

                      = argmin
μ

1

2
μTΩμ − ξTμ (31)

                                                   = argmin
μ

1

2
∑∑μa

TΩa,bμb
ba

−∑ξa
Tμa

a

 

This results in a form that makes the individual coordinate variable μa explicit, with ‘a’ the rows of Ω, 

ξ and μ, and ‘b’ the columns of Ω.  

To find an optimal solution of μa the derivative of the last equation of (31) with respect to μa is taken: 
                                

                     
δ

δμa
 {
1

2
∑∑μa

TΩa,bμb
ba

−∑ξa
Tμa} =∑Ωa,bμb − ξi

ja

(32) 

By setting this equation to zero an optimum of μa is found: 

0 =∑Ωa,bμb − ξi
j

−Ωa,aμa =∑Ωa,bμb − ξi
a≠b

(33)

μa = Ωa,a
−1 −∑Ωa,bμb + ξi

a≠b

 

To reduce the computation time, only the dimensions of the μ that are useful to know. For every state a 

in μ a projection matrix F is used: 

μa = (FaΩFa
T)
−1
Fa(ξ − Ωμ + ΩFa

TFaμ) (34) 

where the projection matrix F has the following shape for calculating the state (a = xi) 

Fx = [
I⏟

size of xi 

0⏟
size ofm1:J 

    ]} size of xi (35) 

And for a landmark (a=mj): 

Fj = [
0⏟

size of xi 

0⏟
size ofm1:j−1 

I⏟
size ofmj 

0⏟
size ofmj+1:J 

    ]} size of mj (36) 

Not al the landmarks have to be updated. Only the active landmarks. This is explained in the next section.  

Note that in the first iterations, when running the algorithm, the state has to be calculated with 𝜇 =

Ω−1𝜉. Otherwise the above mentioned approximation will not hold. 

3.5.4 Sparsification 

The sparsification step reduces the number of non-zero off-diagonal elements of Ω to create sparseness. 

The operations in previous steps are computational more efficient when the matrix Ω is sparse. The 
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principal of the sparsification step is removing links between the pose and landmarks and use this 

information to make other links between landmarks stronger. 

In Figure 6 a graphical interpretation of the relation between links and Ω can be seen. The red link 

corresponds to the red colored cells in Ω, shown on the right side of the figure. The grey links correspond 

to the grey colored cells. The associated landmarks are called active landmarks. As can be seen, there is 

no link between xi and mj+1 . The link corresponds to the white cells in Ω and are zero. The landmark 

associated to this link, mj+1, is called a passive landmark.  When landmark mj is chosen to be sparsefied,  

the red link will be removed and the corresponding red cells in Ω also become zero. This landmark mj 

is become passive. 

 

Figure 6 Graphical interpretation of sparsification 

In the sparsification step has to be decided which landmarks remain active and which have to be made 

passive. There are different ways to decide which active features have to become passive. A simple and 

effective way is to make a queue and select the first, most important number of  landmarks in the queue 

to be active. The active landmarks before the sparsification step consist of active landmarks from the 

previous step plus the observed landmarks that have not been active previously. The most simple 

procedure is to make a distinction between active landmarks, that where active in the previous time 

stamp and have not been observed, and the observed landmarks. The previous active landmarks that 

have not been observed are placed at the back of the queue. 

The sparsification step is performed by assuming conditional independence of specified landmarks 

directly linked to the pose (red line in Figure 2). In a general formulation, the probability p(a, b, c) can 

be approximated by a probability p̃ so that a and b are independent given c: 

p̃(a|b, c) = p(a|c)

p̃(b|a, c) = p(b|c) (37)
 

This is done in the following way:  

p(a, b, c) = p(a|b, c) p(b|c) p(c) ≈ p(a|c) p(b|c) p(c) (38) 

where first standard definition of conditional independence with three variables is stated and then 

conditional independence is assumed by removing the conditional variable b in the first probability.  

To apply this in the information form, the following calculations have to be performed to calculate the 

sparsefied information matrix Ω̃i: 

Ωi
0 = Fxi,m+m0 Fxi,m+m0

T  Ω Fxi,m+m0
T Fxi,m+m0 (39) 

 xi mj mj+1 mj+2 

xi     

mj     

mj+1     

mj+2     
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Ωi
1 = Ωi

0 − Ωi
0Fm0  (Fm0

T Ωi
0Fm0)

−1
Fm0
T  Ωi

0    (40) 

          Ωi
2 = Ωi

0 − Ωi
0Fxi,m0  (Fxi,m0Ωi

0Fxi,m0)
−1
Fxi,m0 Ωi

0 (41) 

Ωi
3 = Ωi − ΩiFx (Fx

TΩiFx)
−1
Fx
T Ωi

0                  (42) 

Ω̃i  = Ωi
1 − Ωi

2 + Ωi
3                                             (43) 

with m+ the set of active landmarks that remain active and m0 the set of active landmarks to become 

passive. The projection matrices F[.] have the same shape as in (19), with at the dot the indices in the 

information matrix corresponding to the variables. 

A derivation of above described calculations from a probabilistic point of view can be found in Appendix 

A.  

The sparsefied information vector ξi can easily be calculated in de following way: 

ξ̃i  = Ω̃i μi                                                             

= (Ωi − Ωi + Ω̃i μi                                  (44)

 = Ωi μi + (Ω̃i − Ωi)μi                             

 = ξ + (Ω̃i − Ωi)μi                                     

 

3.5.5 Complexity 

Computational complexity of the prediction of SEIF is constant 𝛰(1) [4] [6].  The matrices Ψi, λi, Φi 

are calculations with sparse matrices and include only non-zero elements corresponding to the state 

vector xi. However, the matrix Φi in the calculation of κi is more dense, but, due to the sparsification 

step, Φi is sparse. The multiplication of Fx
T(Ri

−1 + FxΦiFx
T)
−1
Fx with this matrix Φi (left and right) 

touches only rows and columns that correspond to active features in the map. Since the size of Φi does 

not depend on the number of active features, this step also requires 𝛰(1). The same reason holds for 

calculating ξ̅i , the sparsification and the update state estimation. Since, in contrast to EKF, the 

measurement update is an addition, it also requires 𝛰(1).  

 

3.6 Graph SLAM 

In this chapter, the Graph SLAM algorithm is explained. The working principle is derived from [2]. 

Since it is a full algorithm, all states are calculated at once. In Figure 7 a flow diagram of Graph SLAM 

is shown. In the initialization, the mean of the states μ̅x are calculated using relative measurements u1:I 

only. In the next step, the information matrix Ω and information vector ξ are calculated using this 

trajectory and absolute measurements z1:I
1:K, including their correspondences c1:I

1:K. Next, the mean μ can 

be obtained from the information matrix Ω and information vector ξ. However, to gain a more accurate 

estimation, the information matrix Ω and information vector ξ can be calculated again. Instead of using 

the mean of the states μ̅x  calculated in the initialization, the mean of the states obtained from the 

information matrix Ω and information vector ξ μx is used. This results in a more accurate linearization, 

which results in an even more accurate estimation. This process can be repeated until the outcome 

converges. 

To avoid unnecessary calculations by calculating the mean of the states μx, the reducing part extracts 

the information related to the states from Ω and ξ. This results in Ωred and ξred. These matrices are used 

in the solving part to calculate the  mean of state vector 𝜇𝑥. Also the covariance matrix and the map μm 

could be calculated in an efficient way. The latter is usually done in the last iteration. 
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Figure 7 Flow Graph SLAM 

In the next section, the theory behind Graph SLAM is explained. There, every step of the flow chart in 

Figure 7 will be covered. 

3.6.1 Theoretical background Graph SLAM 

Bayes rule plays an important role for calculating the posterior p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) in Graph SLAM. 

Bayes rule is defined as: 

p(a|b) =
p(b|a)p(a)

p(b)
(45) 

The posterior p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) is equal to  p(y0:I|(zi
1:K, z1:I−1

1:K , c1:I
1:K, u1:I). If the variable ‘a’ in (45) 

represents state vector y0:I, ‘b’ is replaced by measurements zi
1:K the following equation can be defined 

using Bayes rule:  

p(y0:I|zi
1:K) =

p(zi
1:K|y0:I) p(y0:I)

p(zi
1:K)

(46) 

The conditioning variables z1:I−1
1:K , c1:kand u1:k  are added to each of the probability functions due to 

conditional independence: 

p(y0:I|z1:I
1:K, c1:I

1:K, u1:I) =
p(zi

1:K|y0:I, z1:I−1
1:K , c1:I

1:K, u1:I) p(y0:I|z1:I−1
1:K , c1:I

1:K, u1:I)

p(zi
1:K|z1:I−1

1:K , c1:I
1:K, u1:I)

(47) 

The first probability in the numerator of (47) can be reduced, because the probability of zi
1:K can be 

estimated using the combined state vector yi:  

p(zi
1:K|y0:I, z1:I−1

1:K , c1:I
1:K, u1:I) = p(zi

1:K|yi, ci
1:K) (48) 

The second probability in the numerator of (47) can be partitioned in the probability of the combined 

state vector in the past (y0:I−1) times the probability of the current pose using the previous state xi −1 

and controls ui: 

p(y0:I|z1:I−1
1:K , c1:I

1:K, u1:I) = p(xi |xi −1, ui) p(y0:I−1|z1:I−1
1:K , c1:I−1

1:K , u1:I−1)  (49) 

The dominator of (47), p(z1:i|z1:I−1
1:K , c1:i, u1:i) is static. Therefore this part can be seen as normalizer η. 

Substituting equations (48) and (49) into (47) and replacing p(z1:i|, c1:i, u1:i) by η gives the recursive 

definition of the full SLAM posterior: 

p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) =  η p(zi
1:K|yi, ci

1:K) p(xi |xi −1, ui) p(y0:I−1|z1:I−1
1:K , c1:I−1

1:K , u1:I−1) (50) 

To make it more computable it can be defined in an iterative way: 

p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I) = η p(y0) ∏[p(xi |xi−1, ui)∏p(zi
k |yi, ci

k)

k

] 

i

 (51) 

,Σ𝑥 
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As described in Section 3.1.2, a big advantage of the log of the posterior is that Bayes rule becomes an 

addition: 

−log p(y0:I|(z1:I
1:K, c1:I

1:K, u1:I)  = c + log p(y0) +∑[log p(xi |xi−1, ui) +∑logp(zi
k |yi, ci

k)

k

]

i

(52) 

The probabilistic form (52) of the posterior can be described in information form. Since there is a map 

during the initialization, the log of p(y0) can be defined to be:  

log p(y0) = log p(x0) = c −
1

2
 x0
TΩ0x0 (53) 

The probabilities p(xi |xi−1, ui)   and p (zi
j
 | yi, ci) can be defined in Gaussian form (1) in moments 

parameterization: 

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) =
1

√(2𝜋)𝐷|𝑅𝑖| 
𝑒𝑥𝑝 (−

1

2
(𝑥𝑖 − 𝜇𝑥𝑖)

𝑇
𝑅𝑖
−1(𝑥𝑖 − 𝜇𝑥𝑖)) (54) 

𝑝(𝑧𝑖
𝑘|𝑦𝑖 , 𝑢𝑖 , 𝑐𝑖

𝑗
) =

1

√(2𝜋)𝐷|𝑄𝑖
𝑘| 

𝑒𝑥𝑝 (−
1

2
(𝑧𝑖
𝑘 − 𝜇

𝑧𝑖
𝑗)
𝑇

𝑄𝑖
𝑘−1 (𝑧𝑖

𝑘 − 𝜇
𝑧𝑖
𝑘)) (55)

 

where Ri and Qi
k  are the covariance matrices relative to process and measurement noise, respectively. 

The estimations μxi   and μ
zi
k   can be obtained from the linearized Taylor functions (8) and (9). By 

substituting these equations, and rewriting the equation, the following expressions for both probabilities 

can be defined: 

𝑝(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) = 𝜂 𝑒𝑥𝑝 (−
1

2
([𝑥𝑖  𝑥𝑖−1] [

−𝐺𝑡
𝑇

1
]  + 𝑅𝑖

−1[−𝐺𝑖
𝑇 1] [

𝑥𝑖  
𝑥𝑖−1

] + [𝑥𝑖  𝑥𝑖−1] [
−𝐺𝑖

𝑇

1
] 𝑅𝑖

−1 (𝑥̃𝑖 − 𝐺𝑖  𝜇𝑥𝑖−1))) (56) 

𝑝(𝑧𝑖
𝑘|𝑦𝑖 , 𝑢𝑖 , 𝑐𝑖

𝑖) = 𝜂 𝑒𝑥𝑝 (−
1

2
(𝑦𝑖

𝑇𝐻𝑖
𝑗𝑇
𝑄𝑖
−1𝐻𝑖

𝑗
+ 𝑦𝑖

𝑇𝐻𝑖
𝑘𝑇𝑄𝑖

−1(𝑧𝑖
𝑘 − 𝑧̃𝑖

𝑘 +𝐻𝑖
𝑘(𝑦𝑖 − 𝜇𝑦𝑖))) (57) 

with the terms that remain static subsumed to normalizer η. 

The result of the substitution is given in equation (58). 

−logp(y0:I|(z1:I
1:K, c1:I

1:K, u1:I)  = c −
1

2
 x0
TΩx0 −

1

2
∑([xi xi−1] [

−Gi
T

1
] Ri

−1[−Gi 1]  [
xi 
xi−1

] + [xi xi−1] [
−Gi

T

1
] Ri

−1[x̃i − Gi μxi−1] )

i

 

1

2
∑yi

THi
kTQi

−1Hi
k yi

j

+ yi
THi

kTQi
−1(zi

k − z̃i
k + Hi

k μyi) (58)

 

The equation highlights an essential characteristic of the full SLAM posterior in the information form. 

It is composed of a number of quadratic terms. The equation can be written in matrix form according 

(5) by collecting the parameters of the quadratic terms to matrix Ω and the parameters of the linear terms 

into ξ. This is explained in de next sections. 

3.6.2 Initialization 

In the initialization,  μx is calculated for the whole path. A position for μ0 is defined. Then the motion 

function is repeated I-1 times: 

μi = g( μi−1, ui) (59) 
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3.6.3 Calculating the information matrix and information vector 

As previously stated, equation (58) can be written in matrix form according (5) by collecting the 

parameters of the quadratic terms to matrix Ω and the parameters of the linear terms into ξ. The final 

Graph SLAM posterior in (58) is separated into five parts, where the parameters of the three quadratic 

terms can be collected to matrix Ω and the two parameters of the linear terms can be collected to ξ. The 

information matrix Ω is a square matrix where the size of the state vector ‘y’ times the number of 

variables a pose is described. In Figure 8 and Figure 9, the layouts of the matrix Ω and vector ξ are given. 

In this example a 2 dimensional Cartesian system (x,y) is chosen for the span in which the vehicle 

moves. 

 x0,x x0,y x1,x x1,y … xI,x xI,y m1,x m1,y m1,x m1,y … mJ,x mJ,y       

x0,x                     x0,x  

x0,y                     x0,y  

x1,x                     x1,x  

x1,y                     x1,y  

…
 

                    

…
 

 

                     

xI,x                     xI,x  

xI,y                     xI,y  

m1,x                     m1,x  

m1,y                     m1,y  

m2,x                     m2,x  

m2,y                     m2,y  

…
 

                    

…
 

 

                     

mJ,x                     mJ,x  

mJ,y                     mJ,y  

Figure 8 Layout of 𝛺   Figure 9 Layout of  𝜉 

 

The parameters in the SLAM posterior (58) related to Ω and ξ are separated and given in the equations 

(60) to (64). The curly embraced equations (60) and (61) are calculated for each motion event between 

𝑥𝑖+1 and 𝑥𝑖. The results of (60) and (61) are a square matrix and a vector, respectively, with the size of 

2𝑥𝑖 . These results are added to the cells corresponding to 𝑥𝑖+1 and 𝑥𝑖 in the matrix Ω and vector ξ in 

Figure 8 and Figure 9. Adding the values to Ω and ξ can be done in an efficient way by matrix addition. 

This is explained in Appendix B. 

[−Gi
T

1
] Ri

−1[−Gi 1] (60) 

[−Gi
T

1
] Ri

−1 [x̃i − Gi μxi−1] (61) 

A measurement event could be added by calculating equations (62) and (63). The resulting matrix and 

vector are added to the cells corresponding to 𝑥𝑖  and 𝑚𝑗  in the matrix Ω and vector ξ in Figure 8 and 

Figure 9. 

Hi
jT
Qi
−1Hi

j
 (62) 
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     Hi
jT
Qi
−1 (zi

i − ẑ + Hi
j
 yi) (63) 

The initialization is given in (64).  

x0
TΩ⏟ x0 (64) 

Usually the algorithm is initialized with a variance of 0, so Ω0 is defined as follows: 

Ω0 = Σ0
−1 = [

∞ 0
0 ∞

 ] (65) 

3.6.4 Reducing  

To calculate only the state 𝑥, the matrix and vector can be reduced by removing information of the map. 

This is done using the marginalization lemma (Appendix C). This leads to the following equations: 

Ωred = Ωx0:I,x0:I − Ωx0:I,m Ωm,m
−1  Ωm,x0:I (66) 

ξred = ξx0:I − Ωx0:I,m Ωm,m
−1  ξm (67) 

In an iterative way: 

Ωred = Ωx0:i,x0:i −∑Ωx0:i,j Ωj,j
−1 Ωj,x0:i

j

(68) 

ξred = ξx0:i −∑Ωx0:i,j Ωj,j
−1 ξj

j

(69) 

3.6.5 Solving 

After the reducing part the state vector can be obtained in moments parameterization by rewriting (2) 

and (3): 

Σx = Ωred
−1 (70) 

μx = Σx ξred (71) 

Obviously, the positions of the landmarks cannot be calculated using Ωred and ξred. The  conditioning 

lemma is applied to the non-reduced matrices Ω and ξ to obtain a mean and variance of the map.  

Σm = Ωm,m
−1 (72) 

μm = Σm(ξm − Ωm,x0:tξreduced) (73) 

3.6.6 Complexity 

The computational complexity of Graph SLAM is highly depended on the inversion of the information 

matrix. The sparseness of this matrix is highly depended on the number of landmarks, measurements 

and the number of states. Therefore it is difficult to express it in big 𝛰 notation. There are several 

researchers that developed a Graph SLAM algorithm with reduced complexity [7], [8], but the 

complexity is not expressed in big 𝛰.  The information matrix and vector are increasing to the number 

of landmarks and the number of states. Therefore, the memory usage grows linearly (𝛰(𝑛)) in the 

number of landmarks and the number of states. 
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3.7 FAST-SLAM  

The FAST-SLAM algorithm is a combination of two estimators. The pose is estimated using the particle 

filter. The pose is therefore represented by a number of particles. Each particle is an instance of an 

estimated pose. The map is estimated using the EKF filter. Each particle has its own estimates of 

landmarks with a mean μmj and a covariance matrix Σmj. The landmarks are conditionally independent 

from each other, so there is only a link between the pose and each landmark. The landmarks are 

conditionally independent from each other, so there is only a link between the pose and each landmark.  

In Figure 10 an overview of the working principle is shown. As FAST-SLAM is also based on the Bayes 

filter, it consists of a prediction step and a measurement update. The prediction, the measurement update 

and the importance weight are performed on a particle basis. The resampling step is done for the whole 

set of particles.  

 

Figure 10 Operation flow FAST-SLAM 

There are two versions of FAST-SLAM, namely FAST-SLAM 1.0 and FAST-SLAM 2.0. The 

difference between the two algorithms is the way how the prediction step is computed. In the next 

sections the algorithms will be explained in detail. An even more elaborated explanation can be found 

in [2]. First, the operation steps for FastSLAM 1.0 are explained. Afterwards the differences with 

FastSLAM 2.0 are described. 

3.7.1 Prediction 

Given the particle set representing the previous state, a prediction will be performed to compute the next 

state. This set of particles is also known as the proposal distribution. 

In FAST-SLAM 1.0 the next pose is computed by sampling from the so-called proposal distribution. In 

case of FAST-SLAM 1.0 this distribution is the following transition probability:   

xi
[n]
∼ p (xi

[n]
∣ xi−1

[n]
, ui) (74) 

with n is the n-th particle. It is assumed that this transition is Gaussian with mean g (ui, xi−1
[n]
) and a 

covariance matrix that describes the uncertainty of the prediction.  

3.7.2 Measurement update map 

If a landmark has never been seen before, it will be initialized with a mean and a covariance matrix. The 

mean mj+1
[n]

 is calculated by taking the inverse of the measurement function. 

mj+1
[n]

= h−1 (zi
k, x̅i

[n]
) (75) 

where zi
k is the measurement vector.  
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Before the associated covariance matrix can be calculated, the Jacobian matrix of the measurement 

function with respect to δx  and δm , evaluated at pose xi
[n]

 and landmark position mj+1
[n]

 has to be 

calculated first: 

Hj+1,i
[n]

=
δh(yi, k)

δx, δm
|
xi
[n]
,mj+1
[n]

(76) 

The covariance matrix becomes: 

Σk+1,i
[n]

= Hk+1,i
[n] −1

Qi (Hk+1,i
[n] −1

)
T

(77) 

with the measurement noise  Qi. 

When a landmark is already observed, the mean and covariance is updated using the EKF filter: 

K = Σk,i
[n]
Hj
TQi

−1

μk,i
[n]
= μk,i−1

[n]
+ K(zi

k  − z̃i
k[n]) (78)

Σk,i
[n]
= (I − KHk)Σk,i−1

[n]

 

3.7.3 Assign importance weight 

In this step, for each particle a so-called ‘importance weight’ is calculated. This value gives a rate of 

how certain the state of a certain particle is according to measurements. The importance weight is used 

in the resampling step explained in the next section. Per particle, for each measurement of the set zi
1:k 

the importance weight wi
k[n]  is calculated. Importance weights are actually the likelihoods of the 

particles: 

wi
[n] =∏wi

k[n]
𝐾

𝑘=1

(79) 

with  

wi
k[n] = p (zi

k, xi
[n]
) 

The importance factor is initiated as follows:  

wi
k=0[n] = 1 (80) 

Then the importance weight is updated in the following way for each measurement: 

wi
k[n] = wi

k−1[n] |2πQi
k[n]|

−
1
2
exp {−

1

2
(zi
k  − z̃i

k[n]) (Qi
k[n])

−1

  (zi
k  − z̃i

k[n])} (81) 

With Qi
k[n] the measurement covariance, zi

k the measurement, z̃i
k[n]the predicted measurement using the 

measurement function of the  k’th measurement at time instant i 

3.7.4 Resampling  

The importance weight will be used for resampling, an important aspect of the particle filter. Particle 

sets with a small importance weight have a large chance to be removed from the set, while particles with 

a large importance weight have a large change to survive, and have even a large chance to be cloned. In 

this way there are more particles in areas where there is a high likelihood. The probability distribution 

after resampling is called a target distribution. 
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A popular variant of resampling is low variance sampling. It is a simple and computationally effective 

algorithm. An illustration of low variance resampling is given in Figure 11. The size of the bars 

resembles the importance weight of each particle. The sum of the importance weights is normalized to 

1. First, a random number r is generated between 0 and N−1, which is represented by the first arrow in 

Figure 11. Afterwards, N−1 is added in an iterative process, which is represented by the other arrows 

in Figure 11. The particle where each arrow points to will be selected. Note that during a resampling 

process, the number of particles before and after resampling always remains the same. 

wi
𝐾[1] wi

𝐾[2] …      … wi
𝐾[N] 

            
 𝑟 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 𝑟 + 𝑁−1 

Figure 11 Illustration of low variance resampling 

In Figure 12 an example of resampling is shown. In this example, a 2D (x,y) position is estimated 

using 1000 particles. The red particles show the proposal distribution, the green particles represent the 

target distribution. It can be seen that particles near the ground truth position, given in blue, survived. 

This example shows that the target distribution does indeed represent a better likelihood of the real 

position. 

 

Figure 12 Resampling example 

3.7.5 Difference FAST-SLAM 1.0 and 2.0 

The algorithm is improved by using a proposal probability density that is more selective than the 

transition probability density. This is achieved by taking the landmark measurements into account: 

xi
[n]
∼ p(xi ∣ x1:i−1

[n]
, u1:i z1:i

1:K c1:i
1:K) (82) 

This is implemented by sampling according to a normal distribution by using a mean x̅i,K  and the 

associated covariance matrix Σx,1:K: 

xi
[n]
∼ 𝒩(x̅i,K, Σ̅x,K) (83) 

The vector x̅i,1:K is calculated by predicting the next state with the motion function and adapting the 

state using the measurements. First the motion function is used to calculate a prediction: 
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x̃i
[n]
= g (xi−1

[n]
, ui) (84) 

This state is used to predict the measurements:  

z̅i
k = h(x̃i

[n]
, m

j= ci
k

[𝑛]
) (85) 

With k=1, …, K. Note that this measurement is indicated with a bar. Since this is a different 

measurement prediction then z̃i
k. 

For each measurement two Jacobians of the measurement function have to be calculated. The first 

Jacobian (90) is calculated with respect to the state x̃i
[n]

 (86) and the second (91) with respect to the 

corresponding landmark m
j= ci

k
[𝑛]

 (87) of the measurement. 

Hxi,k
[n]
=
δh(μi, j)

δx
|
x̃i
[n]
,m
 ci
k

[n]
(86)

 

Hmi,k
[n]
=
δh(μi, j)

δm
|
x̃i
[n]
,m
 ci
k

[n]
(87)

 

x̅i,K
[n]

 and Σ̅x,K
[n]

can be calculated using each of the measurements: 

Qk
[n]
= Hmi,k

[n]
 Σk,i−1
[n]

 Hmi,k
[n]T

+ Qt (88) 

Σ̅x,k
[n]
= [Hmk

[n]
 Qk
[n]−1

 Hmk
[n]
+ Σx,k−1]

−1

(89) 

x̅i,k
[n]
= x̅i,k−1 + Σx,kHx,j

T Qk
[n]−1

(zi
k − z̅i

k) (90) 

with x̅i,k
[n]

 and Σ̅x,k
[n]

 initiated in the following way: 

x̅i,k=0
[n]

 = x̃i
[n]

(91) 

Σ̅x,k=0
[n]

= Ri
−1 (92) 

with Ri the covariance matrix related to measurement noise. 

The importance weight wK is  initiated with a value of ‘1’ and then updated using each measurement in 

the following way: 

wk = wk−1 ∗ |2πQk|
−
1
2 exp {−

1

2
( zi

k − z̃i
k)
T
Qk
−1( zi

k − z̃i
k)} (93) 

with  z̃i
k = h(xi

[n]
, m

j= ci
k

[𝑛]
 ) 

Note that the initiation of new landmarks also can be initiated with a much more accurate prediction of 

the state vector xi
[n]

. Therefore the initialization of new landmarks in FAST-SLAM 2.0 should always 

be performed after the calculation of the proposal distribution. 

3.7.1 Complexity 

The computational complexity of the FAST-SLAM algorithm, implemented as described above, is 

𝛰(𝑁 𝐽) with N the number of particles and J the number of landmarks. However the algorithm can be 

made more efficient. The linear complexity in N is unavoidable, given that we have to process N 

particles with each update. The linear complexity in J is the result of the resampling process. Whenever 
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a particle is drawn more than once, the associated set of landmarks can be copied. This results in a linear 

complexity in J. The complexity could be reduced to log(𝐽)  by introducing a data structure for 

representing particles that allow for more selective updates. The basic idea is to organize the map as a 

balanced binary tree. An example is given in Figure 13. It shows the mean and covariance matrices of 

the associated landmarks of particle 𝑥𝑖
[1]

 on the leaves of the binary tree. In the resampling process this 

particle has a likelihood and will be duplicated to 𝑥𝑖
[2]

. The mean 𝜇1:8 and the covariance matrices  Σ1:8 

of the landmarks do not differ, so instead of copying the whole set, the mean and covariance matrices 

of the new particle 𝑥𝑖
[2]

 are pointing to the mean and covariance of the old particle 𝑥𝑖
[1]

. In the next 

iteration states 𝑥𝑖+1
[1]

 and 𝑥𝑖+1
[2]

are predicted and an absolute measurement zi
k, corresponding to landmark 

j=3, is acquired. At this moment the mean 𝜇3 and covariance matrix Σ3 change between the particles 

and therefore mean 𝜇3
[1]

 and covariance matrix  Σ3
[1]

the will be copied before the measurement will be 

incorporated. Efficient implementations like this binary tree require only 𝛰(𝑁 log(𝐽)). 

 

Figure 13 Binary tree  [4] 

Memory usage is also linear 𝛰(𝑁 𝐽) for ineffective implementations. However, the complexity can be 

reduced to more or less equal to the saving in computation time.  

xi
[2]

 

xi
[1]

 

𝜇3
[2]
, Σ3
[2]

 

𝜇1
[1]
, Σ1
[1]

 𝜇2
[1]
, Σ2
[1]

 𝜇3
[1]
, Σ3
[1]

 𝜇4
[1]
, Σ4
[1]

 𝜇5
[1]
, Σ5
[1]

 𝜇6
[1]
, Σ6
[1]

 𝜇7
[1]
, Σ7
[1]

 𝜇7
[1]
, Σ7
[1]
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4. Methods 

This chapter presents a series of experiment methods that will be executed. In the first section the goal 

of the experiments is described. The experimental set-ups are provided in the next section. The 

evaluation section describes what will be measured during the experiments. 

4.1 Goals 

The goal of the experiments is to answer research question 3: 

• What is the performance of these algorithms within the vSLAM feature-based framework? 

Also the hypothesis can be verified using the experiments: 

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity 

of an algorithm. 

In Chapter 3 the theory of different SLAM algorithms are provided. The results can be compared with 

the theoretical data.  

4.2 Experimental set-up 

To achieve this goal, three data sets are presented. The first data set consists of 2D data. The second and 

the third data set consist of points and features from images. The second data set is simulated and the 

third data set is extracted form real images. The data sets are described in detail in the following sections.  

4.2.1 2D map  

This 2D environment includes data with relative information from a compass and absolute 

measurements from beacons. For this experiment, a data set of control and measurement variables is 

obtained from a ship that is sailing around the British Isles. Ground truth data and motion, measurement 

equations and measurements are obtained from [9]. 

State vector 

x𝑖 = [

 

x
y
] (94) 

Motion function 

The ship is provided with two different types of sensors that provide relative information: a log which 

measures the speed v(i) of the ship and a compass that measures the heading Φ(i) of the ship. 

u(i) = [
v(i)
Φ(i)

] (95) 

with standard deviations related to noise of σv = 5 km/s and σΦ = 15°. 
 

The noise free component x̃ of the linear approximation is calculated using the motion model given in 

(96), using relative measurements (95).  

[
𝑥̃𝑥𝑖+1
𝑥̃𝑦𝑖+1

] = [
𝜇𝑥𝑖
𝜇𝑦𝑖
] + 𝛥  𝑣(𝑖) [

𝑐𝑜𝑠 𝜙(𝑖)

𝑠𝑖𝑛 𝜙 (𝑖)
] (96) 

 

The Jacobian 𝐺𝑖 is calculated and given in (97). 

𝐺𝑖 = [
1 0
0 1

] (97) 
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Measurement function 

A beacon based measurement provides absolute measurements zi
1:K. The noise free component ẑt

k is 

calculated using the measurement function: 

𝑧̂𝑡
𝑘 = 𝑚

𝑗=𝑐𝑖
𝑘 − 𝑥𝑖 = [

𝑚𝑗𝑥
𝑚𝑗𝑦

] − [
𝑥𝑖𝑥
𝑥𝑖𝑦
] (98) 

Jacobian of the measurement function 

The Jacobian Hi
k of the measurement function, is calculated and given below. 

Hi
k = [

−1 0 1 0
0 −1 0 1

] (99) 

4.2.2 Visual SLAM 

To analyze the algorithms in a vSLAM framework, two data sets are used. The first data set are points 

and KAZE features extracted from stereo images. Furthermore, it consists of 3D measurements between 

the position of the camera and points in the world coordinate system.  The set of stereo images are 

pictures of a decorative globe. The first set that was captured is shown in Figure 14 and Figure 15. 

   
Figure 14 Right image of stereo camera Figure 15 Left image of stereo camera 

The second data set consists of simulated points and KAZE features of a decorative globe that is used. 

The simulator mimics a camera and a globe. Based on these points, the simulator provides measurements 

including noise containing descriptors based on KAZE features. An advantage of the simulated data set 

is that the real data (without noise) is available. 

In this experiment a feature based vSLAM algorithm provided by Shah [5] and van der Heijden [10] is 

used. This vSLAM algorithm handles the matching of feature points between stereo images, the 

bookkeeping of landmarks, and the visualization of the combined state vector. The bookkeeping of the 

vSLAM algorithm can be adjusted. The two most important settings are ‘P.Mmax’ and 

‘P.max_lm_inc_per_step’. The first setting is the maximum number of landmarks in the combined state 

vector. The latter is the maximum number of landmarks added at a time.   

Originally the SLAM back-end used in this vSLAM algorithm is Error State EKF SLAM. The Error 

State extended Kalman filter (ES-EKF) is an extension of the classical Extended Kalman filters. It  holds 

the advantage that the actual Kalman filter is only applied to signals with small magnitudes. This 

simplifies the estimation especially when working with quaternions to represent the orientation.  For 

this project the algorithm will be rebuild to a vSLAM version based on a standard EKF with filter Euler 

angles. The vSLAM algorithms with other SLAM back-ends addressed in this project will also use Euler 

angles. In this way the SLAM-back ends are more comparable. More information about the models and 

the ES-EKF SLAM algorithm can be found in [11], [12].    

Experiments on the visual SLAM data can be performed with visual SLAM algorithm based on EKF, 

SEIF and Graph. Due to time restrictions it was not possible to develop a visual SLAM algorithm based 

on FAST SLAM.  
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Since there is no prior information, the Graph SLAM algorithm can be initialized with all positions at 

zero. Unfortunately the linearization is worse which results in an unstable estimation. Therefore the 

Graph SLAM algorithm is initialized with subparts of 50 time instances which are each updated 5 times.  

In the vSLAM algorithm with EKF, landmarks that have to be removed from the map are deleted by 

deleting the corresponding cells in the state vector and the covariance matrix. Deleting landmarks from 

the map in the information filter is more complex.  For SEIF and Graph SLAM, the landmarks are 

removed by using the marginalization lemma. More information can be found in Section 3.6.4. 

State vector 

The state vector is represented with a 12D vector given in (100). 

x𝑖 = [

pi
ηi
vi
ωi

] =

[
 
 
 
 
 
 
 
 
 
 
 
 

 

x
y
z
φ
θ
ψ
vx
vy
vz
ωx
ωy
ωz]
 
 
 
 
 
 
 
 
 
 
 
 

(100) 

with pi a 3D position, ηi the yxz euler angels, vi 3D linear velocity and ωi the 3D angular velocity.  

Motion function 

The motion function has the following form: 

pi+1 = pi + Ri viΔ
ηi+1 = ηi + Ji ωiΔ (101)

vi+1 = Γ vi
ωi+1 = Λ ωi

 

with diagonal matrices Γ and Λ with coefficients between 0 and 1 to determine the predictability and R 

the rotation matrix as a function of the Euler angles η. Δ is the sampling period. The angular velocity 

transform Ji is calculated as follows: 

Ji = J(η) =

[
 
 
 

cos(ψ) −sin(ψ) 0
sin(ψ)

cos(φ)

cos(ψ)

cos(φ)
0

tan(φ) sin(ψ) tan(φ) cos(ψ) 1]
 
 
 

(102) 

Note that the motion function does not take relative sensor information into account. The next state is 

calculated based on the previous state.  

Jacobian of the motion function 

The Jacobian G of the motion function is: 

G = [

I3×3 Pi Ri Δ 03×3
03×3 Ei 03×3 JiΔ
03×3 03×3 Γ 03×3
03×3 03×3 03×3 Λ

] (103) 

With E the Jacobian matrix of the new Euler angles with respect to the old Euler angles: 
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Ei = E(ηi, ωi) =

[
 
 
 
 
 
 

1 0 (−ωycψ − ωxsψ)Δ

sφ(ωxsψ +ωycψ)

cφ
2 Δ 0

ωxcψ − ωysψ

cφ
Δ

ωycψ +ωxsψ

cφ
2 Δ 0

sφ(ωxcψ −ωysψ)

cφ ]
 
 
 
 
 
 

(104) 

where 𝑠…  , 𝑐… are rebates of sinus and cosines, respectively. And P the Jacobian matrix of the new 

position with respect to the old position: 

Pi = P(η, v) =
∂ef

∂ηT
p(t + 1) = −R[v]×Δ (105) 

with [v]× the skew-symmetric matrix formed by linear velocity v. 

Measurement function 

ẑi
k = Rc

T
 
w (m

j=ci
k − pi)) (106) 

where R𝑐 
𝑤  is the rotation matrix from world coordinates to camera coordinates. 

Jacobian of the measurement function 

The Jacobian of the measurement function has the following shape: 

Hi
k = [− Rc

T
 
w     2[ẑi

k]
×

    03×(3+3j)    Rc
T

 
w     03×(J−j)] (107) 

with [ẑi
k]
×

 the skew-symmetric matrix formed by the noise free part ẑi
k of the measurement function. 

4.3 Evaluation criteria 

This section describes the criteria how the performance of the SLAM algorithms will be evaluated.  

4.3.1 Accuracy and consistency 

In this section, the metrics are provided to evaluate the accuracy and consistency of the algorithms. 

Poses and map 

For each pose, the Absolute Error (AE) will be calculated. 

AEpi = ‖μpi
− pireal ‖             (108) 

with μpi
the estimated mean of the pose and pireal the ground truth position at time i. 

The absolute Error will also be calculated for the position each landmark: 

AE𝑚j = ‖μmj −mjreal
‖ (109) 

With μmjthe estimated mean of the position and mjreal
 the ground truth position of the landmark j. 

The vSLAM algorithms associates their own ID to a landmark. To match the landmark positions of the 

estimated data with the real data, the Matlab function ‘pdist2’ is used. The function finds the two 

smallest pairwise Euclidean distances to landmark positions in the set of real landmarks for each of the 

estimated landmarks in the combined state vector. 

Furthermore, for both sets of absolute errors the mean of the absolute values will be calculated over time 

to get the Mean Absolute Error (MAE). 
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A filter is consistent when the variances and covariances of the real error matches the covariance 

matrices that are calculated in the algorithms. To check the filter’s consistency, the Normalized 

Estimation Error-Squared (NEES) will be used for the poses and the map: 

NEES(pi) = (μpi
− pireal)

T
 Cpi
−1 (μpi

− pireal)            (110) 

NEES(𝑚j) = (μmj − mjreal
)
T
 Cmj
−1 (μmj −mjreal

) (111) 

with C[.] the associated covariance matrix of the estimates. 

A Gaussian estimate is considered as consistent if the corresponding NEES follows a χ2 distribution. 

When the NEES values exceed a determined boundary, the NEES does not follow a χ2 distribution. The 

state vector of the 2D map consists of 2 degrees of freedom and a 95% one sided acceptance boundary 

is chosen. This means that the filter is not consistent when values exceed the bound of 5.991. For the 

visual SLAM experiment, this acceptance boundary is 7.82, with 3 degrees of freedom.  

In many cases, the Root Mean Square Error (RMSE) over time is used [13] to measure the error.  

Normally RMSE is used to calculate the standard deviation of an estimated data set of an ergodic 

process. In the experiments of this project, the same data set is used. Therefore the input data is ergodic. 

However, since the NEES gives more insight of the consistency of the filter, RMSE does not provide 

extra information. 

Orientation 

In the visual SLAM experiment the orientation is also estimated. The orientation is in Euler angles  and 

will be converted to the orientation error in the magnitude of rotation Φ of the axis-angle representation 

(𝜑, e).  

𝜑𝑖 = arccos (
1

2
(𝑡𝑟𝑎𝑐𝑒(R⊤(η𝑖)R(η̂𝑖)) − 1) ) (112) 

with R the rotation matrix as a function of the Euler angles η. 

The NEES is also calculated. 

NEES(𝜑𝑖) = 𝜑𝑖
2 C𝜑𝑖

−1 (113) 

with variance C𝜑𝑖 calculated as follows: 

C𝜑𝑖 = V Cη𝑖
−1VT (114) 

with Cη𝑖the covariance matrix of the Euler angles η𝑖 and V the Jacobian of the function in (112) with 

respect to η̂𝑖. 

Used algorithm settings 

For the above mentioned performance measures, the real data is required. Therefore the United Kingdom 

data and the vSLAM algorithm with simulated data are used. The settings for the vSLAM algorithm are 

‘P.Mmax=1000’ and ‘P.max_lm_inc_per_step=50’. In total there are 1390 time instances for the United 

Kingdom data and 500 time instances for the vSLAM algorithm with simulated data. 

4.3.2 Computational complexity 

Using tic toc functions of Matlab the computation time at each iteration will be measured. In this way 

an indication can be made for the computational complexity of the online algorithms. Note that 

measuring small computation times in Matlab is not accurate. According to [14] the code should take 

more than 0,1 second to run. 
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Furthermore, the profiler will be used, but when profiling is on, aspects of the JIT (Just In Time 

Compiler) might be turned off. It can take considerably longer to execute code when profiling is 

turned on and you can end up with severely distorted understandings of relative execution times. This 

means that all the algorithms have to run with and without profiling. Therefore the profiler is only 

used at the last time instant. In this way the computational complexity of each code can be analyzed in 

detail and the algorithms do not have to be run twice.  

To evaluate the computation time the United Kingdom data and the vSLAM algorithm with real data 

will be used. The settings for the vSLAM algorithm are ‘P.Mmax=10000’ and 

‘P.max_lm_inc_per_step=50’. The vSLAM algorithm is computed for 120 time instances. In Graph 

SLAM the total time of an update will be measured. For the online algorithms several times will be  

measured per time instant: Motion, measurement, update state estimation(only SEIF), sparsification 

(only SEIF) and the total time of a execution per time instant. In this way, the remaining time can also 

be calculated. This remaining time is needed for matching features and the bookkeeping of landmarks. 

Reading memory in MATLAB is not possible. According to [15], Matlab does not define what "used 

memory" is. For example if an array is shrinked, the OS can decide if the freed part of the memory is 

reused directly or not. Before it can be re-used, the contents is overwritten with zeroes, and the OS 

decides when this is done. With iteratively growing arrays similar problems occur. It is tried to read 

the memory usage by subtracting memory usage at specific times from each other. Unfortunately no 

useful information is generated. For example, it consists of negative numbers, which means that less 

memory is used before the algorithm is called. A second option is to use the profiler, but also the 

profiler does not give useful information about the used memory by the algorithm. 
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5. Results 

In this chapter the results of the experiments, outlined in the previous chapter, are given. 

5.1 Accuracy and consistency on 2D UK data 

The estimated poses and landmarks by the SLAM algorithms on the 2D data are shown in Figure 16. 

The SEIF algorithm is computed with 5 active algorithms and FAST SLAM is computed with 50 

particles. The estimation by the Graph SLAM algorithm is after one update.  

 

Figure 16 Estimated path of the algorithms in with 2D data 

5.1.1 Pose 

In Figure 17 (a), (b), (c) and (d), the pose errors of the algorithms are given. Except for FAST SLAM 

2.0 the algorithms have the same shape. The estimation between time instants 500 and 900 are relatively 

high. The estimations at this time range corresponds to the estimates on the right of the plot, shown in 

Figure 16. EKF and SEIF are almost identical. The chosen number of active features of the SEIF 

algorithm does not change the estimated pose. The Graph SLAM has the highest accuracy. The pose 

error of FAST-SLAM is worse, compared to other algorithms. The is no clear winner in terms of the 

number of particles. The setting with 10 particles has until i=700 the lowest error, but after this time the 

FAST algorithm with other number of particles have a lower error. FAST SLAM with 20 particles gives 

the worst estimation. 
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For all algorithms, it can be observed in Figure 17 (d), (e), (f) and (g) that between time stamps i=600 

and i=900 the NEES values are above 5.991, which is the 95% one sided acceptance boundary of for 2 

degrees of freedom. The NEES of Graph SLAM is even higher in this time range. The pose error of 

SEIF with 5 and without sparsification is almost identical to EKF, with slight differences at time 

instances after i=1200. The NEES of SEIF with 4 active landmarks is signifyingly higher. Since the 

probability distribution of FAST SLAM by a function, the NEES cannot be computed directly. Other 

test variables can be computed for particle representations of a pdf [4], but due to time limitations there 

was no time left to work this out.   

5.1.2 Map 

Also for the map error given in Figure 18 (a), (b), (c) and (d), the errors of EKF, SEIF without 

sparsification and Graph are identical. The map error of SEIF is relatively worse when applying 

sparsification. It can be observed that even with 50 active landmarks, the algorithm could not match 

SEIF without sparsification. However, the error of the last landmarks is still lower when the active 

landmarks are increasing. Furthermore, for the map error in FAST SLAM, there is no relation between 

the number of particles and the map error. FAST SLAM with 10 particles have overall the lowers map 

error. 

The results of the map also shows that the filter in not consistent at certain places and goes beyond the 

5.991 acceptance boundary. It shows here as well that the NEES of the EKF, SEIF without sparsification 

and Graph seem to be equal. 

5.1.3 MAE 

In Table 4 the MAE of EKF is given. The high peak error between i=600 and i=900 ensure that the mean 

error of both the pose and the map is significantly increased. 

Table 4 Mean Absolute Error EKF 2D map 

Pose (km) 19,13 

Map (km) 8,590 

In Table 5 the MAE of SEIF is given. It can be seen that the average error of the pose slightly increases 

and the map error increases significantly with more active features. There is still a big difference in error 

between 50 active features and all active features. 

Table 5 Mean Absolute Error 2D SEIF 

Active lm 4 5 6 7 8 50 All 

Pose (km) 19,8210 19,5655 19,7628 19,7833 19,5590 19,5641 19,433 

Map (km) 13,6132 13,029 13,2527 13,1154 12,8565 12,4693 8,4729 

In Table 6 it is visible that the second update of Graph SKAM does not change the error. Furthermore, 

the values are low compared other algorithms. 

Table 6 Mean Absolute Error Graph 2D map 

Updates 1 2 

Pose (km) 9,9076 9,9076 

Map (km) 7,9215 7,9215 

In Table 7 the MAE of FAST 2.0 is shown. Here it can also be observed that FAST 2.0 with 10 particles 

has the lowest error in both the pose and the map. 

Table 7 Mean Absolute Error FAST 2.0 2D map 

Particles 5 10 15 20 50 

Pose (m) 21,2005 15,9390 17,2480 38,4606 19,7086 

Map (m) 14,6202 11,6669 13,2907 19,0153 13,8570 
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( a ) Pose error EKF ( b ) Pose error SEIF 

 
( c ) Pose error Graph ( d ) Pose error Fast 2.0 

  

 

Figure 17 The error and NEES of the pose on 2D data 
 

( e ) NEES of the pose EKF ( f )  NEES of the pose SEIF 

( g ) NEES of the pose Graph  
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( a ) Map error EKF ( b ) Map error SEIF 

 
( c ) Map error Graph ( d ) Map error Fast 2.0 

  
( e ) NEES of the map EKF ( f )  NEES of the map SEIF 

  
( g ) NEES of the map Graph  

Figure 18 The error and NEES of the map on 2D data 
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5.2 Accuracy and consistency on 3D simulated vSLAM data 

In this section the results of tools to measure the accuracy of the simulated vSLAM data are described. 

Figure 19 shows the estimation of the Graph-based vSLAM algorithm based on the simulated data.  

 

Figure 19 3D plot of the Graph-based vSLAM algorithm 

The position of the camera starts at zero. Then it is moving clockwise around the globe. At about i=420 

the camera has made a circle and at that moment the loop closes with the positions estimated at i=1.  

5.2.1 Pose  

The pose error of the algorithms on the simulated vSLAM data is given in Figure 20 (a), (b) and (c). 

The shape of the algorithm is more or less the same. When the loop closes at i=420, the error is the 

lowest. At this point there are small differences between the EKF and SEIF algorithm. The maximum 

error is around i=175. The error increases faster before this peak than it does after the peak. The Graph 

SLAM has overall the lowest error. There is also no difference between the chosen number of active 

landmarks in SEIF. The same holds for the number of updates in Graph SLAM. Note that the number 

of updates in Graph SLAM are the number of global updates, which are performed after generating a 

prior path using submaps. 

 

The NEES of the pose of the algorithms are shown in Figure 20 (d), (e) and (f). The NEES of the EKF, 

SEIF without sparsification and Graph are almost identical. Graph SLAM shows a slightly higher NEES. 

Remarkable is the increase of the NEES of the SEIF algorithm with sparsification. From i=200 the 

NEES values are greater than 7.82, which means the filter is not consistent at this time.  
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( a ) Pose error EKF ( b ) Pose error SEIF 

 
( c ) Pose error Graph ( d ) NEES of the pose EKF 

 
( e ) NEES of the pose SEIF ( f ) NEES of the pose Graph 

Figure 20 Accuracy and consistency of the pose on simulated vSLAM data 

5.2.2 Rotation 

The rotation error and the NEES of the rotation of the algorithms are shown in Figure 21 (a) to (f). There 

are small differences in error at the rotations estimated by the EKF and SEIF algorithms. The Graph 

algorithms provide the smallest error. From about i=10 to i=400 the EKF and SEIF the error is constant, 

where the error of the estimation of Graph algorithm has a more oscillating behavior. At the time where 

the loop closes, there is a difference in the shape of the error between the algorithms. The error of EKF 

and Graph is decreasing, while the SEIF error increases. 
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At i=0 the NEES of the rotation of all algorithms is very high. After that, it starts to decrease to more 

or less 0.2. At the loop closing at i=400 the NEES starts to increase. Except for the high peak in the 

beginning, the NEES of all algorithms are below the bound of 7.82. The EKF algorithm shows the 

lowest NEES, followed by the NEES of the Graph SLAM algorithm. In this case, the SEIF algorithm 

without sparsification shows a NEES which is equal to EKF. The SEIF algorithm with sparsification 

shows higher values from i=100. The values are also higher when the loop closes at i=400. 

   
( a ) Rotation error EKF ( b ) Rotation error SEIF 

   
( c ) Rotation error Graph ( d ) NEES of rotation EKF 

  

Figure 21 Accuracy and consistency of the rotation on simulated vSLAM data 

 

( e ) NEES of rotation SEIF ( f ) NEES of rotation Graph 
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5.2.3 Map 

As described in 4.3.1 the settings for the bookkeeping in the vSLAM algorithm are defined as 

‘P.Mmax=1000’ and ‘P.max_lm_inc_per_step=50’. In Figure 22 can be seen that only at i=100, the 

maximum number of landmarks added to the pool per step is reached. Then there is a small number of 

landmarks that are added to the pool, with an average of about 8 landmarks. At about i=110 the pool is 

full and there are landmarks deleted to insert new landmarks. 

 

Figure 22 Bookkeeping on the vSLAM simulated data 

The map error and map are shown in Figure 23 (a), (b) and (c). The NEES of the map is shown in 

Figure 23 (d), (e) and (f). The landmarks are sorted by when they are initialized. The map error and the 

NEES of the map of all three algorithms have a shape of three arcs. There are no big differences in 

map error between the algorithms. The Graph SLAM shows overall the lowest error. There are slight 

differences between the amount of updates, with 8 updates the lowest error. The EKF shows a sightly 

higher error, followed by the SEIF algorithm. The map error of SEIF is not different with or without 

sparsification. Furthermore, the NEES of all the algorithms consist of rather high peaks which are 

much higher than the bound of 7.82. The NEES of the Graph SLAM algorithms show the lowest 

values, but the peaks are still above 7.82. While the shape of the NEES of EKF is the same, the values 

are a bit higher. The consistency of the map of SEIF with 150 and 250 active landmarks is worse. 

Around landmarks ID’s j=0, j=350 and j=800 there are some values below the bound of 7.82. Overall 

the algorithm with sparsification is not consistent. However the SEIF algorithm without sparsification 

shows lower results, which are almost identical to EKF. 

  

Figure 23 Accuracy and consistency of the map on simulated vSLAM data 

 

( a ) Map error EKF ( b ) Map error SEIF 
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( c ) Map error Graph ( d ) NEES of map EKF 

 
 

Figure 23 Accuracy and consistency of the map on simulated vSLAM data 

 

5.2.4 MAE 

Table 8 shows the MAE of the EKF SLAM algorithm for the simulation data. 

Table 8 Mean absolute error EKF vSLAM simulation data 

Position (mm) 13,7029 

Rotation (rad) 0,0475 

Map (mm) 2,9034 

Furthermore, the MAE of SEIF algorithms in Table 9 show that the error is similar compared to EKF. 

Table 9 Mean absolute Error SEIF vSLAM simulation data 

Active landmarks 150 250 No sparsification 

Position (mm) 13,967 13,965 13,962 

Rotation (rad) 0,0475 0,0475 0,0475 

Map (mm) 3,1886 3,1874 3,1875 

From the MSE values in Table 10 can be also be seen that the 7th and 8th update are identical. The 

accuracy is the lowest of all algorithms. 

Table 10 Mean absolute error Graph vSLAM simulation data 

Update 1  2 3 4 5 6 7 8 9 10 

Position (mm) 47,77 32,87 15,23 12,69 12,04 11,93 11,92 11,92 11,92 11,92 

Rotation (rad) 0,052 0,049 0,047 0,047 0,047 0,04 0,047 0,047 0,047 0,047 

Map (mm) 31,57 23,56 10,91 4,262 3,506 2,936 2,800 2,821 2,839 2,840 

( e ) NEES of map SEIF ( f ) NEES of map Graph 
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5.3 Computation time on 2D data 

As shown in the Figure 24 the computation time of the SEIF algorithm is the lowest, but shows more 

high peaks. Also the graph of SEIF has a less exponential growth compared to EKF. The computation 

of the FAST algorithm is more constant.  

 

  
( a ) Fast 2.0 

 

Figure 24 Computation times of EKF, SEIF and FAST 2.0  on 2D data 

The total computation time of EKF, SEIF, FAST 2.0 and Graph are given in Table 11, Table 12,  Table 

14 and Table 13, respectively. The high peaks are effecting the total time.  

Table 11 Total computation time EKF 2D map 

Time (seconds) 1,605 

Table 12 Total computation time SEIF 2D map 

Active features 4 5 6 7 8 50 All 

Time (seconds) 1,4599 1,4272 1,3761 1,3613 1,3343 1,5240 1,541 

Table 13 Total execution time FAST 2D map 

Particles 5 10 15 20 50 

Time (seconds) 1,7374 2,8851 3,9861 5,0054 12,3010 

Table 14 Total execution time Graph 2D map 

Updates 1 2 

Time (seconds) 3,9941 3,7043 

 

( a ) EKF ( a ) SEIF 
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5.4 Computation time on real vSLAM data 

Figure 25 shows the number of landmarks in the pool, added landmarks to the pool and deleted 

landmarks from the pool. Note that around i=65 the number of landmarks added to the pool is less then 

the maximum number of landmarks that are allowed to be added. After this time, less useful points are 

extracted from the images. 

 

Figure 25 Bookkeeping of landmarks  

The total computation times are given in Table 15. It can be observed that the SEIF algorithm with 

sparsification has the lowest computation time, but the SEIF algorithm without sparsification is even 

higher than EKF. 

Table 15 Total computation time SEIF real vSLAM data 

Algorithm [setting] EKF SEIF 150 active  SEIF 250 active  SEIF all active  

Time (seconds) 323,28 273,33 274,86 355,57 

In Figure 26 the computation times of the online algorithms are plotted. Table 16 shows the total 

computation times of the online algorithms and the values of the regression function. This function is 

generated with data between i=20 and i=60. Since SEIF 150 and SEIF 250 are almost identical, only 

SEIF 150 is plotted. The computation time of EKF increases more than SEIF with 150 active 

landmarks, but after around i=80 the computation time of SEIF is more increasing. After i=80, the 

sparsification, motion and other parts of SEIF are increasing, while the measurement and update state 

estimation remain more or less constant. For both EKF and SEIF, it can be seen that the computational 

complexity is linear in the number of landmarks. Overall, it can be observed that the ‘other’ parts, 

mainly consisting of matching feature points and the bookkeeping of landmarks, take a high part of the 

total computation. Especially in Figure 26 (c), it can be seen that the approximation of the update state 

starts at i=20. The computation time of this part decreases over 50 percent. 
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( a ) EKF ( b ) SEIF 150 active features 

 
( c ) SEIF 1000 active features 

 

Figure 26 Computation times vSLAM real data 

Table 16 Total execution times of online algorithms 

 EKF SEIF 150  SEIF 250  SEIF 1000  

Time (s) 323,287 273,331 274,864 355,573 

Fitted function 0,0880 i -1,1221 0,0583 i – 0,4335 0,0601 i – 0,5129 0,0463 i + 0,8912 

The total execution times of Graph SLAM per update is given. It can be observed that each update is 

more or less equal. Until the 10th update the error is still converging, but after 4 updates the error is 

increasing slower. The total time until update 4 is finished is 517.88 seconds.  

Table 17 Execution times per update Graph SLAM 

Update Prior 1  2 3 4 5 6 7 8 9 10 

Time (s) 6,4 122,7 125,0 136,6 127,0 127,0 126,8 127,0 126,0 126,2 127,4 
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6. Discussion 

This section discusses the results of the experiments. 

6.1.1 Goals 

The goal of the experiments was to provide an answer to the following research question: 

• What is the performance of several SLAM back-ends within the vSLAM feature-based 

framework? 

Also the following hypothesis was stated: 

• A high accuracy of the estimated 3D positions will be at the cost of computational complexity 

of an algorithm. 

The performance on the algorithms is measured on accuracy, consistency and compactional complexity. 

The accuracy is measured by calculate the difference between real values and estimated values of the 

combined state vector. The filter is consistent when the variances and covariances of the real error 

matches the covariance matrices that are calculated in the algorithms. The Normalized Estimation Error 

Squared (NEES) is used to check the filter’s consistency. A Gaussian estimate is considered as consistent 

if the corresponding NEES follows a χ2  distribution. When the NEES values exceed a determined 

boundary, the NEES does not follow a χ2 distribution. The state vector of the 2D map consists of 2 

degrees of freedom and a 95% one sided acceptance boundary is chosen. This means that the filter is 

not consistent when values exceed the bound of 5.991. For the visual SLAM experiment, this acceptance 

boundary is 7.82, with 3 degrees of freedom. The computational complexity is determined by measuring 

the computation times of the algorithms. 

The experiments verify that a high accuracy of the estimated 3D positions will be at the cost of 

computational complexity of an algorithm. Graph SLAM is the clear winner in terms of accuracy and 

consistency. However, Graph SLAM is a full algorithm with a high computational complexity. The 

SEIF algorithm is nearly close to the accuracy of EKF SLAM, while the computational complexity of 

SEIF is less. However the filters’ consistency of SEIF with sparsification is less compared to EKF. 

Especially for the map, the filter is not consistent. The FAST-SLAM, only tested on the 2D data, shows 

a relatively low accuracy and a higher number of particles do not increase the accuracy. 

6.1.2 Accuracy and consistency on 2D  data 

General 

As shown in Figure 17 it can be seen that in all estimations the error between time instants i=500 and 

i=900 is the highest. The estimations at this time range correspond to the estimates on the right of the 

plot, shown in Figure 16. A relatively high error in y direction arises due to the effect of a relatively 

high uncertainty of the angle of the relative measurements which is σΦ = 15°. In this area there are no 

loop closings and the path is relatively straight compared to the rest of the paths. Therefore it is difficult 

to perform an accurate estimation in this area based on absolute measurements. When there are more 

corners, measurements are taken form different perspectives which results in a more accurate estimation. 

It can be seen that the error decreases when there are more corners in the path. The drop in error around 

i=1200 is at the loop closing. A loop closing is very effective for SLAM algorithms since landmarks 

estimated in the past can be compared to measurements at the current time.  

A high error in pose also results in a high error in the map, shown Figure 18. New landmarks are 

initialized based on the estimated pose. Therefore there is a rather high correlation between the error 

and NEES of the pose and the map. It can also be observed in the map error and NEES of the map that 

there are outliers with low values. This cannot be seen in the plot in Figure 16. This is due to how the 

real positions of the landmarks are matched with the estimated positions of landmarks. This is described 
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in section 4.3.1. In this case poorly estimated positions of landmarks lead to wrong matches of landmark 

ID’s between the set of the estimated positions and the set of real positions of landmarks.  

Graph SLAM  

The Graph SLAM takes all the poses and landmarks into account and therefore it creates the most links 

between poses/landmarks estimation. Also a big advantage is that it re-linearizes the path at each update, 

while other algorithms do not. Therefore it provides the most accurate estimation. This can be seen in 

the pose errors, shown in Figure 17, and the MEA, given in Table 4 to Table 7. Also the NEES, in Figure 

17 and Figure 18, is overall lower. However, the NEES of the pose provided by the Graph SLAM 

algorithm is higher between time instants i=500 and i=900, compared to EKF and SEIF. While the error 

is lower, the Graph SLAM algorithms predicts a lower uncertainty. It can be concluded that when a path 

is taken without loop closings and the algorithm has to rely more on relative measurements, the 

consistency of the algorithm is lower. 

EKF and SEIF 

Because EKF and the SEIF have a dual relationship, the error should be similar. However, the 

sparsification and the update of the state of SEIF is based on an approximation, so this can result in a 

less accurate estimation and consistency of the filter. Less active landmarks will cause lower accuracy 

and consistency of the estimation. In the graph of the pose error, shown in Figure 17, this difference is 

not observable. Except for SEIF with 4 active landmarks the NEES of the pose is also almost equal. The 

MEA, given in Table 5, shows a small difference in error of the pose. Even without sparsification, the 

MEA of the pose estimation by the SEIF algorithm is still higher. This means that this small error is 

caused by the updating step of the state in SEIF.  

FAST SLAM 

The results of the FAST SLAM algorithm are not as expected. The error of the pose, given in Figure 

17, and the map, shown in Figure 18, is large. More particles should result in a more accurate estimation, 

since it gives a better representation of the probability density. However, this is not the case with the 

algorithm used for the experiments on the 2D data. When analyzing the particle representation of the 

probability density during the experiments, it could be observed that there are different area’s that have 

a high probability. An example is shown in Figure 27 on the next page. Especially on the lower side of 

the plot of the 2D data the probability density is spreading out over more less two groups.  The mean 

of the particles is somewhere in-between. A high probability at different area’s lead to a mean that does 

not provide a good representation of the probability density. At the loop closing, multiple areas with a 

high probability are reduced to one area.  In the ‘General’ subsection of this section, it is already 

explained why the error of the pose and map is in general high on the right and lower side of the 2D 

map. For the FAST-SLAM algorithm this problem causes a probability density in multiple areas, 

especially because of the conditional independency between landmarks. 

6.1.3 Accuracy and consistency on 3D simulated data 

General 

Because there are no relative measurements, the motion function can only use the linear and angular 

velocities to predict the next state. These linear and angular velocities have to be corrected by absolute 

measurements.  This creates an increase in the pose error, shown in Figure 20, of all the three algorithms 

until i=175 and also in the first iterations in the rotation error, shown in Figure 21. Once these linear 

and angular velocities are corrected, a prediction of the pose can be done more accurately and the error 

decreases. The loop closing can clearly be seen in the pose and rotation error of all the algorithms.  

The shape of the pose error at about i=5 to i=100 is the same as at about i=430 to i=500. In this time 

range the loop closes and the poses are overlapping. It can also be observed that the error of the rotation 

of all algorithms is relatively small and between i=20 and i=400 the rotation error is almost constant. 

The reason for this is that the predicted measurement in the measurement update is very sensitive for a 

rotation error. This results in an effective correction in the measurement update of the algorithms.   
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Figure 27 Example of inaccurate calculation of the mean 

by the Fast SLAM algorithm on 2D data. 

The NEES of the pose and rotation, shown in Figure 20 and Figure 21, of all the algorithms is starting 

very high. Since the system is initialized with a zero variance, a small error already results in an 

inconsistent estimation. After about i=100 the variance of the pose becomes greater due to the 

incorporation of measurement and motion noise, which declared the decrease of the NEES of the pose. 

The small increase in NEES of the pose at a local peak at i=200 is a consequence of the higher error of 

the pose in this time range. However this is still beyond the boundary of 7.82. At the loop closing around 

i=400, the NEES of both the pose and the rotation increases, since the algorithms take the low variance 

at i=1 into account. This results in a reduced variance of the pose and rotation, which causes a higher 

NEES. 

The shape of three arcs of the error and NEES in the map, given in Figure 23, is mostly the effect of the 

loop closing. Note that the map error and NEES are not shown over time, but for each landmark. 

However the landmarks are sorted by when they are initialized, so there is a correlation with time. Since 

around i=110 the pool is already full, the algorithm decides which landmarks have to be removed to 

add new landmarks. New landmarks will be added at the end of the state vector. It is obvious the dip 

around the landmark ID j=800 is around the loop closing. However the dip at j=350 could not be 

explained. The peaks in the map error and NEES of the map are caused by the way how landmark 

positions of estimated data and real data are matched. In section 4.3.1 is described how the real positions 

of the landmarks are matched with the estimated positions of landmarks in the experiment. Also in the 

case of the vSLAM algorithms, poorly estimated positions of landmarks lead to wrong matches of 

landmark ID’s between the set of the estimated positions and the set of real positions of landmarks. 

This explains the peaks in the map error and NEES of the map. Also the landmark ID’s of outliers are 

not matched correctly.  

EKF and SEIF 

Furthermore, in this experiment the sparsification and the update of the state of SEIF can result in a less 

accurate estimation and consistency of the filter. However there is no difference in the error of the pose 
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(Figure 20), rotation (Figure 21) and map (Figure 23). The only difference between EKF and SEIF in 

pose and rotation error is around i=400. There is no difference in pose error between SEIF with 

sparsification and without. However during the execution of the experiments it was experiences that 

with less active features the error increases.  

The NEES of the pose, rotation and the map of the SEIF algorithm with sparsification, given in Figure 

20, Figure 21 and Figure 23, is remarkable. Especially the NEES of the map. Overall the NEES is much 

higher compared to other algorithms and almost at all time instants inconsistent. From about i=210 to 

the loop closing at i=400 the NEES of the pose is above the boundary of 7.82 and the algorithm is 

therefore inconsistent in this time range. The error of the pose, rotation and the map of the SEIF 

algorithm with and without sparsification are globally the same. This means that the calculated variance 

by the SEIF algorithm with sparsification is worse compared to the algorithm without sparsification. 

The approximation in the sparsification step in the SEIF algorithm could be an explanation. Another 

reason could be an error in the code of the sparsification step. 

This experiment is highly linear and there is just one loop closing. When there are more loop closings 

and the input data is more non linear, it would be interesting to see how the SEIF algorism behaves.  

Graph 

An advantage of Graph SLAM is the re-linearization of the states and the incorporation of all states. 

This results in a much smoother and lower pose, rotation and map error, shown in Figure 20, Figure 21 

and Figure 23. Especially at the loop closing at i=400 there is no instant change in the error of the pose 

and the map. Furthermore, the NEES of all states is therefore overall slightly lower compared to the 

other algorithms. The oscillation behavior in rotation error of the Graph SLAM algorithms is caused by 

the way how the prior information is calculated. As explained in section 4.2.2, the states are initialized 

by running the algorithm in sections of time. It can already be observed that the higher number of 

updates leads to a lower oscillating behavior. Therefore it is expected that after a sufficient number of 

global updates this error should be filtered out due to the re-linearization process of Graph SLAM. 

6.1.4 Computation time on 2D data 

The measured computation times, shown in Figure 24, include very high peaks. Due to relatively low 

computation times, the accuracy of the measured times by Matlab is not reliable. Globally, it can be 

seen that the SEIF algorithm has low computation times compared to EKF. The computation times of 

the vSLAM algorithm are more accurate since these algorithms involve a much bigger combined state 

vector. Therefore a more detailed evaluation about EKF, SEIF and Graph is done in the next section. 

It can be seen that the implementation of FAST SLAM increases linearly with a low slope. However 

this computation time depends heavily on the number of particles. It look like this implementation is of 

the order 𝛰(𝑁 𝐽) . Compared to the theory a better implementation could make the computational 

complexity to 𝛰(𝑁 log(𝐽)). 

6.1.5 Computation on 3D simulated data 

SEIF is based on the information filter and therefore it can incorporate measurements less costly 

compared to EKF. This can be seen in the results, shown in Figure 26. Another advantage is that SEIF 

can achieve even less computation times when applying sparsification. 

It was expected that EKF should have a total cost known to be 𝛰(𝑛3) with 𝑛 the number of landmarks 

and 𝛰(1) for SEIF. While SEIF performs worse than expected, the EKF algorithm is with 𝛰(𝑛) better 

than expected. 

It can also be concluded that the bookkeeping and feature matching requires a big part of the total 

computation time. Therefore the total time of the vSLAM algorithm depends less on the SLAM back 

end algorithm. 
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Since the Graph SLAM algorithm is a full algorithm, the computational complexity is not comparable 

in execution time compared the online algorithms. However after 4 update there are already competitive 

results in accuracy compared to the online algorithms. After 4 updates the total time of the Graph SLAM 

algorithm is 517.7 seconds, while the runtime of EKF is 323,3 seconds. 

 

6.2 Limitations 

During the project the following limitations were experienced: 

• The vSLAM experiments are tested in a smooth environment. Both the simulated data and the data 

acquired from captured images, create a straight circle around the globe. Capturing images with a 

handheld device can be more nonlinear. Also an environment with more loop closings could 

provide a more precise result of the accuracy for the 3D visualization of the human skin. 

Furthermore, the accuracy of the algorithms could deviate more. 

• The computational complexity of the algorithms in Matlab can only be roughly estimated. A more 

low-end code could provide a more precise estimation of the computational complexity.  

• During the implementation of SEIF and Graph for the experiments, it was found that calculations 

with matrices did not remain symmetrical. This was due to rounding errors that were caused by 

Matlab. Since the information matrix has to be inverted, this could have high implications on the 

results. This had to be repaired by adding costly operations. 

• The map error of the vSLAM simulated data could not be evaluated in detail. A solution could be 

to compose an overview of on which time stamp each landmark is initialized. Furthermore, a map 

of the positions of the estimated map and the real map could be helpful what causes the error. 

• The FAST SLAM algorithm does not work in the vSLAM algorithms. Therefore the comparison 

of the results were not complete. 
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7. Conclusions and recommendations 

7.1 Conclusion 

In this project the goal was to find several SLAM back-end algorithms that can perform in a feature-

based vSLAM framework that is capable of running on a handheld device that scans a target area by 

manually pointing the device around this area. To achieve this goal, three research questions and a 

hypotheses were stated.  

The first research question was: Which SLAM back-ends are suitable for the mapping on a handheld 

device?  Different filters were presented that can be used for a SLAM back-end algorithm. Based on 

these filters, three common SLAM algorithms were selected in addition to EKF SLAM that could 

perform competitive in a vSLAM framework: SEIF SLAM, Graph SLAM and FAST SLAM.  

The second question was: What are the working principles of these algorithms? The working principle  

of the algorithms is explained in this report, including a mathematical derivation. The theoretical 

background is explained from a probabilistic perspective. Furthermore, the decisions that were made to 

make the algorithms interesting in performance, is explained.  

The next question is answered using the experiments: What is the performance of these algorithms 

within the vSLAM feature-based framework? The following hypothesis is also verified using the 

experiments: A high accuracy of the estimated 3D positions will be at the cost of computational 

complexity of an algorithm. For this experiment seven scripts were made to perform experiments of the 

EKF, SEIF, Graph and FAST SLAM on 2D data and EKF, SEIF and Graph on 3D visual SLAM data. 

The results show that, overall, the Graph SLAM algorithm provides the highest accuracy and 

consistency. However, it is computationally expensive and therefore it could not be run in real-time. 

The online algorithms EKF and SEIF have a dual relationship and this can be seen in the results of the 

experiments. Both algorithms are computationally more attractive compared to Graph SLAM and can 

therefore operate in real-time. This is however at the cost of the accuracy. Both EKF and SEIF show 

almost the same accuracy with a sufficient number of active landmarks in SEIF, but SEIF is 

computationally more attractive. However, the needed computation power is higher than expected. It is 

also shown that the sparsification step in SEIF ensures a low constancy of the filter. Therefore this 

algorithm should be tested on more nonlinear data with more loop closings to give a more precise 

evaluation. FAST-SLAM is only tested on the 2D data. More particles did not give a better accuracy 

on the 2D date. However, according to the theory, this algorithm could perform better on more nonlinear 

data with more loop closings, compared to EKF and SEIF. Depending on how much particles are 

needed, FAST-SLAM could compete with EKF in terms of computational complexity. 

To conclude, the overall research shows that there are several SLAM-back ends that can perform in a 

feature-based framework. Depending on the desired accuracy, the available computation power, the 

available knowledge to implement and the need to perform in real-time, a SLAM back-end can be 

chosen. However, to measure the performance in a more realistic environment, the algorithms need to 

be tested in more nonlinear situation with more loop closings.  

7.2 Recommendations 

To provide a better estimation, adding prior information such as information from a gyroscope or an 

accelerator could improve the accuracy of the algorithms in general.  

The vSLAM framework contains an algorithm to provide correspondences of the measurements. 

However, data association could also be performed using the SLAM back-end algorithm[4]. Some 

algorithms have several advantages above the general method. For example, in  FAST SLAM, the data 

association can be made per particle. This means that different data associations can be made with a 

single measurement at the same time. This improves the consistency of the filter and makes is more 

robust. Also other algorithms have their own way to find correspondence in an efficient way. 
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The algorithms are not tested on robustness. According to the theory of the SLAM algorithms the 

parametric algorithms cannot deal well with outliers. However, FAST-SLAM has a implementation for 

removing outliers. In a real situation outliers may occur. It is recommend to find methods to deal with 

outliers. 

As described earlier, to measure the performance in a more realistic environment, the algorithms need 

to be tested in more nonlinear situations with more loop closings. 
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Appendix A  

Sparsification of SEIF derived form a probabilistic point of view 

Before applying the sparsification, probability (38) is rewritten in the following form: 

p(a|c) p(b|c) p(c) =
p(a|c)p(b|c)

 p(c)
= p(a|c)

p(c)

p(c)
p(b|c) p(c) (115) 

(38)Next the standard form can be applied to the SLAM case. For readability the conditioning 

variables u1:i,  z1:i
1:k,  c1:i

1:k in each probability are removed: 

p(y) = p(xi m
+, m0, m−)

                                            = p(xi| m
+, m0, m−) p( m+, m0, m−) (116)

                                                         = p(xi| m
+, m0, m− = 0) p( m+, m0, m−)     

 

where in the last row the set of passive landmarks m− is set equal to 0, since there is no link between xi 

and m−. Now the approximation using conditional independence can be applied in the same manner as 

in (38). 

p(xi| m
+, m0, m− = 0,   u1:i,  z1:i

1:k,  c1:i
1:k) p( m+, m0, m−|   u1:i,  z1:i

1:k,  c1:i
1:k) 

                  ≈ p(xi| m
+, m− = 0,   u1:i,  z1:i

1:k,  c1:i
1:k) p( m+,m0, m−|   u1:i,  z1:i

1:k,  c1:i
1:k) (117) 

 ≈
p(xi,m

+| m−=0,   u1:i, z1:i
1:k, c1:i

1:k)

p(m+| m−=0,   u1:i, z1:i
1:k, c1:i

1:k)
 p( m+, m0, m−|   u1:i,  z1:i

1:k,  c1:i
1:k)

        
To calculate the sparse matrix Ω̃i+1 from (117) first calculate each individual probability is calculated: 

Ωi
1  for p(xi, m

+| m− = 0,   u1:i,  z1:i
1:k,  c1:i

1:k) , Ωi
2  for p(m+| m− = 0,   u1:i,  z1:i

1:k,  c1:i
1:k)  and Ωi

3  for 

p( m+, m0, m−|u1:i,  z1:i
1:k,  c1:i

1:k). Afterwards the individual matrices will be combined get the sparse 

matrix Ω̃i.  

To get Ωi
1 and Ωi

2 first Ω is conditioned on m− = 0 by extracting the cells from Ω related to xi, m
+, m0 

but m− using projection matrix Fxi,m+m0 : 

Ωi
0 = Fxi,m+m0 Fxi,m+m0

T  Ω Fxi,m+m0
T Fxi,m+m0 (118) 

To get Ωi
1 the matrix inversion lemma is used to marginalize  m0 from Ωi

0: 

Ωi
1 = Ωi

0 − Ωi
0Fm0  (Fm0

T Ωi
0Fm0)

−1
Fm0
T  Ωi

0 (119) 

The calculation of Ωi
2 is done in the same manner. In this case variables xi and m0 are marginalized 

from Ωi
0: 

Ωi
2 = Ωi

0 − Ωi
0Fxi,m0 (Fxi,m0Ωi

0Fxi,m0)
−1
Fxi,m0 Ωi

0 (120) 

The matrix Ωi+1
3 is calculated by marginalizing xi from Ωi: 

Ωi
3 = Ωi − ΩiFx (Fx

TΩiFx)
−1
Fx
T Ωi

0 (121) 

The sparse matrix Ω̃i+1 is calculated by combining the matrix calculated before, according to (117): 

Ω̃i  = Ωi
1 − Ωi

2 + Ωi
3 (122) 
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Appendix B 

Detailed explanation of filling the information matrix of Graph SLAM 

For every motion event the curly embraced equations (60) and (61) have to be calculated. The calculated 

matrix has the shape of the matrix where the underbrace points to. Each element refers to a location in 

Ω (Figure 8 ) for the calculated matrix in (60) and ξ (Figure 9) for the calculated vector in (61). The 

format of the location is ‘n m’, with n the row label and m column label.  

[xi−1 xi] [
−Gi

T

1
] Ri

−1[−Gi 1]⏟            
 [
xi−1 
xi
]

[

xi−1,x xi−1,x xi−1,x xi−1,y xi−1,x xi,x xi−1,x xi,y
xi−1,y xi−1,x xi−1,y xi−1,y xi−1,y xi,x xi−1,y xi,y
xi,x xi−1,x xi,x xi−1,y xi,x xi,x xi,x xi,y
xi,y xi−1,x xi,y xi−1,y xi,yxi,x xi,y xi,y

 ] (123)

 

[xi−1 xi] [
−Gi

T

1
] Ri

−1 [x̃i − Gi μxi−1]⏟              

                [

 xi−1,x
xi−1,y
xi,x
 xi,y

] (124)

 

 

A measurement event could be added by following this procedure with equations (62) and (63).  

yi
T Hi

jT
Qi
−1Hi

j
⏟       yi

[

xi,x xi,x xi,x xi,y xi,x mj,x xi−1,x mj,y
xi,y xi,x xi,y xi,y xi,y mj,x xi−1,y mj,y
mj,x xi−1,x mj,x xi−1,y mj,x mj,x mi,x mi,y
mj,y xi−1,x mj,y xi−1,y mi,y mi,x mi,y mi,y

 ] (125)
 

 

yi
THi

jT
Qi
−1 (zi

i − ẑ + Hi
j
 yi)⏟              

     [

 xi,x
xi,y
mj,x
 mj,y

] (126)

 

The initialization is given in (64).  

x0
TΩ0⏟ x0

[
x0,x x0,x x0,x x0,y
x0,y x0,y x0,y x0,y

 ] (127)
 

 

An motion update or measurement update can achieved with the following equations, respectively.  

Ωnew = Ωold + F
TΩsubF (128) 

ξnew = ξold + F
Tξsub (129) 

With F for a motion update is: 
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Fx,mj = [

0⏟
size of x0:i−1 

0⏟
size of x0:i−1 

I⏟
size of xi 

0⏟
size of xi+1 

0⏟
size ofxx+2:I 

0⏟
size of m1:J 

 

0⏟
size of xi 

I⏟
size of xi+1 

0⏟
size ofxx+2:I 

0⏟
size ofm1:J 

]

} size of x  
  

} size of mj
 (130) 

 

With F for a measurement update: 

Fx,j = [

0⏟
size of x0:i−1 

0⏟
size of x0:i−1 

I⏟
size of xi 

0⏟
size ofm1:j−1 

0⏟
size ofmj 

0⏟
size omj+1:J 

 

0⏟
size of xi 

0⏟
size ofm1:j−1 

I⏟
size ofmj 

0⏟
size ofmj+1:J 

]

} size of x  
  

} size of mj
 (131) 

With I the identity matrix and 0 a zero matrix. 
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Appendix C 

Marginalization lemma and conditioning lemma in moments and 

information form 

Table 18 expresses the dual relationship between moments and information form, with respect to 

marginalization and conditioning 

Table 18 relationship between moments and information form [6] 
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