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Abstract—Nowadays, upper-limb prostheses have reached an
extraordinary level of sophistication. However, the limitations
of the state-of-the-art myo-electric control algorithms are not
capable to driving the large number of degrees of freedom (DOFs)
that they present. The development of collaborative approaches,
in which some of these DOFs are automated, is a trend in the
last years. Yet, there are no evidences on how the combination of
the control inputs has to be implemented in order to maximize
the benefit of the users.

With this study, we provide a sight into the effects that
different control mixing schemes have on the time performance
and the cognitive workload of their users, when performing
reach-to-grasp tasks. To this aim, we have developed a semi-
autonomous control system, a manual control system and three
different control mixing schemes: a master-slave scheme and
two simultaneous control approaches, namely, one in which the
automation activates when there is manual control, and one
independent of it.

We found that the simultaneous control, when the automation
is independent of the user controlling any DOF, was the fastest
option for all the participants, decreasing the task elapsed times
up to 70% (p<0.05) when compared to manual control. Moreover,
all the participants showed reductions in the cognitive workload
of up to 82% respect to manual control (p<0.05). The master-
slave scheme provided similar results. When the system required
the participants to drive at least one DOF for the automation
to happen, the automation did not provide benefit compared to
manual control in terms of workload.

The differences shown across control mixing schemes, in the
outcome measurements, demonstrate their implications require
profound for the development of collaborative control systems.

Index Terms—control mixing, sensor data fusion, collaborative
control, semi-autonomous control

I. INTRODUCTION

Human hands play an essential role in the interaction with
the environment. Their exceptional dexterity provides a wide
range of possibilities regarding work, social and activities of
daily living, to be performed with great ease . Therefore, their
loss might have a dramatic effect on the individual’s well-
being [1].

To replace the missing function, myoelectric prostheses are
the most widely chosen option (among active prostheses) [2].
These devices employ decoders that interpret acquired muscle
signals in order to generate prosthesis control command. Even
though their dexterity and technological sophistication keep
developing over the years, one of four amputees that get the
myoelectric hand replacement abandon it, and among those
who maintain it, approximately one of three uses it only
passively [5].

The literature indicates that beside physical features such as
weight, comfort and appearance of the prosthesis [6] the tran-
sient effects of the input signals and the lack of intuitiveness
of the state-of-the-art Human-Machine-Interfaces (HMIs) are
the the main limiting factors for the acceptance of myoelectric
prostheses [6] ,[7], [8].

The naure of HMIs’ as limiting factors are well represented
in the discrepancy between the state-of-the-art myoelectric
control algorithms’ capabilities and the potential offered by the
most advanced devices in the field [2], [6], [7]: On the one
hand, the state-of-the-art myoelectric control algorithms are
capable of driving, in practice, a maximum of three degrees
of freedom (DOFs) simultaneously [2]. On the counterpart,
some of the state-of-the-art upper-limb prostheses exhibit
outstanding dexterity offering more than 20 DOFs (i-Limb
Ultra, from Touch Bionics) or the capability to perform up
to 14 different grasping modes (BeBionic, from Ottobock).

Due to these limitations, the research community is shifting
its effort towards developing systems that can assist the user
of the prosthesis in the control of the overwhelmingly large
number DOFs, by means of automation of some of them.
There are two main trends to assist the user on adjusting the
prosthesis DOFs: A first trend is constituted by the develop-
ment of algorithms that predict user movements, based on the
user’s forearm muscles activity, in order to drive certain DOFs
in a synergycally manner. A second trend is the development
of multi-modal sensor-fusion algorithms that take advantage
of the fusion of multi-modal inputs (e.g., computer vision,
prosthesis feedback, inertial data, force and torque sensors) in
order to provide to the system a certain level of awareness,
from which it can generate control commands autonomously
to support the user’s task.

The interaction between both control schemes (autonomous
and manual) is a paradigm that requires profound under-
standing. For instance, [14] proposed different control mixing
approaches (in which the decisions of both control sources
are fused) for an intelligent wheelchair. In this study, it was
found that users who do not have access to a control plane
(e.g. the device is completely autonomous) may suffer from
frustration and anxiety. Similarly, if the user was restricted to
only one of the control mixing options, it was less likely that
the technology would be accepted. Noticeably, in situations
of high cognitive load, even experienced users benefit from
shared control [15]. Finally, in [16] it was shown that the
performance of both systems associated was better than that
of each individually, i.e., the influence of each part on each
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other translated into decreased task’s elapsed times, respect to
these situations in which these performed independently. Addi-
tionally, in the context of upper-limb prostheses, users prefer a
certain degree of implication on the control, rather than being
driven by a fully autonomous system [18]. Likewise, most
studies propose to perform data fusion at the level of data
acquisition, by means of machine learning algorithms, whereas
few fuse control decisions from both agents to generate the
command that drives the device [19].

Even though there is an existing trend in the literature
of enhancing the control of complex prosthetic devices by
means of collaborative approaches, the way in which such
schemes should be developed must be explored. For upper-
limb prostheses, there are multiple contributions that analyze
the outcomes of such systems, e.g. [17], [18], [21], [22]. Yet,
none provide insight on how the interaction must be carried
out to maximize the user’s benefit.

In the field of collaborative control approaches for upper-
limb prostheses, the literature’s focus is on the technical
developments of these systems. Currently, there are multiple
contributions that propose different ways to merge the control
sources. In [10], [11], [12], the switching is based on the
intention detection, i.e., it relies on identifying the intended
action of the user to automate certain movements. In [17],
the PACE system was proposed, which consists on a master-
slave switching scheme. In this system, the device is driven
by the manual control if control signals are generated, and it
is driven autonomously otherwise. These publications focus
on the autonomous -technical- implementations, and not on
the control mixing strategy, even though this can presumably
affect to the user’s performance and cognitive workload.
Furthermore, none of them analyzed the implications of their
control mixing approach for the user (or any variations of it).

In this study, we evaluate the effect of different control
mixing schemes on the subject’s time performance and cogni-
tive workload, during reach-to-grasp tasks. More specifically,
we present three different control mixing approaches for the
evaluation of the interaction between autonomous and a man-
ual control schemes, in the context of upper-limb prostheses.
These have been developed based on the literature, to cover the
range of user’s required level of participation in the control: a
master-slave scheme and two simultaneous control approaches,
namely, one in which the automation activates when there
is manual control and one independent of it. To provide
control signals to these schemes, both a manual and a semi-
autonomous control system have been developed, according
to their respective state-of-the-art approaches, yet based on
ideal input data to circumvent the current drawbacks of such
systems.

With the presented work, we seek to provide insight on how
different levels of implication of the user (in the control) can
affect the cognitive workload and the time performance, which
aims to embark the research community into the understanding
on the repercussion of these systems, beyond their technical
implementation.

II. METHODS

A. System overview
In order to analyze the effect that different control mixing

schemes have on the performance and the cognitive workload
of their users, a manual and a semi-autonomous control
system have been developed, which comprise the base of the
collaborative control system (Fig. 1). Remarkably, these have
been developed according to the state-of-the-art, yet they have
been implemented relying on ideal input data. This way, the
technical effort which imply the development of collaborative
control systems has been minimized to allow to place the
focus on the effects of the different ways to mix their inputs.
The systems were developed using Matlab 2019a (Mathworks,
US), Simulink, Arduino Support from Simulink, the Real
Time Windows Target (RTWT) toolbox, and the Closed Loop
Control toolbox [24]. Implemented primarily in Simulink, it
is built by connecting the different modules that constitute the
control schemes. The system executes in real time by means
of the RTWT.

The implementation is depicted in Fig. 1. The different
modules connect to each other to constitute a prototype of a
collaborative control system. This way, this generic approach
can be modified to implement specific configurations (different
control mixing approaches) in one-go.

B. Semi-Autonomous Control
The semi-autonomous control system (SA system) has been

developed according to the state-of-the-art multi-modal sensor-
fusion algorithms. Therefore, its input block provides the
ideal artificial extereoception and proprioception information
sources, from which it retrieves the contextual information,
namely, the starting point of the movement, the targeted
object and its position, and prosthesis tracking information.
This is achieved by means of a motion capture system (MO-
CAP) (Qualysis, from Qualysis AB, Sweden), which sends
the information to the control schemes by means of UDP
communication, at 100Hz. Subsequently, this input module
provides a stable and robust contextual information source.

Remarkably, to provide further stability to the data stream-
ing by compensating for sudden -and short- tracking loses of
the MOCAP system due to occlusion of the markers, the SA
system integrates compensation of tracking failure by means
of data extrapolation.

The semi-autonomous system is capable of driving three
DOFs during the reach-to-grasp task using the input data,
namely, wrist pronation/supination, wrist flexion/extension,
and opening of the hand (the closing of it was reserved for
the subject). Based on the contextual information, the system
performs calculations of the three dimensional trajectory that
the prosthesis (i.e., the user) is following, as well as an
approximation of the distance until reaching the target, from
which it determines the amount of movement that the subject
will perform. Thence, the system is capable of identifying
critical phases of the reach-to-grasp task (e.g., reaching phase).

Similarly, the speed at which the prosthesis is being moved
by the user towards the target is computed, at a frequency of
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Fig. 1. The layout of the system, which allows configuring and testing collaborative control schemes for upper-limb prostheses. The semi-autonomous control
system is capable to perform the prehsape (on the flight) during the reach phase, to provide automation of the desired DOFs during the task. These commands
are calculated according to the input data retrieved from an ideal exteroception and propioception algorithms that provide context-awareness to the device.
The manual system represents the interface between the prosthesis and the user. It is composed of an input module, in charge of providing the idealized
high-level commands (perfect classification) from the user to the control algorithm to decipher them. The decision mixing module (center-right) includes the
control mixing approach, in charge of mixing the control commands which are output by both control agents. Lastly, the prosthesis module (right) represents
the prosthetic device and the sub-module in charge of translating high-level commands into low-level commands for the device.

25 Hz. After low-pass filtering it with a cut-off frequency of
3Hz, it is used to estimate the time remaining before reaching
the target. In parallel, the required activations for each DOF
(i.e., the difference between the current state of each DOF
and their desired grasping configuration) are calculated. This
configuration (restricted in mode to palmar grasp) depends on
the targeted grasping side (left, right, front and top, respect
to the user) and can be calibrated for each DOF, according to
the user’s preferences. Subsequently, based on this difference
and the estimated time remaining, a required speed profile is
generated for each of these DOFs, providing the speeds at
which each of them should be driven throughout the reach
phase. Therefore, the semi-autonomous system implements
adaptive speed capabilities.

Finally, when the prosthesis has completed the reach phase
and it is prepared to perform the grasping of the target, the
SA compensates any further movements made by the user, in
order to maintain the desired grasping configuration regardless
any variation in his/her arm’s position and/or orientatio.

C. Manual control

The manual control system has been developed to present
a functioning principle which is analogous to the state-of-
the-art pattern recognition, sequential, myoelectric control. In
these algorithms, the myoelectric activity is classified in a set
of classes that are later associated to control commands. For
this, the presented control scheme includes a custom-made
socket for able-body subjects, which integrates buttons on it
to eradicate the prime inconveniences related to input signal

Fig. 2. Manual control system socket. The socket has embedded physical
buttons which activate when the user performs certain gestures. These gestures
have been selected to be morphologically consistent, e.g., when the user
flexes the hand, the buttons which are then mapped to activate the flexion the
prosthetic device are pressed. The mapping to the classes are customizable,
and the activation depends on the power of the myoelectric signal, which also
proportionality to the signal. The inertial sensor attachment (not used for the
presented work) is aligned with the wrist rotation axis of the prosthesis. The
holder for the prosthesis, shown in the image, allows three different positions
to adjust the relative position of the prosthesis respect to the user. Likewise, the
frame with embedded buttons allows adjustment with three positions. These
three positions are calculated so, in the most proximal setup, a Michelangelo
prosthetic device (Ottobock, Vienna) does not collide with the structure nor
the hand.
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features (EMG) [2]: non-stationary effects, tedious training/re-
calibration sessions, need of big efforts to control more than
two DOF, lack of consistency over time. . . .

This way, when the subjects perform gestures to activate the
classes, their hand hit certain parts of the socket, activating
certain switches and, therefore, providing the gesture that is
being carried out. Thence, the buttons carry out the (idealized)
function of the pattern recognition algorithm and provide the
class activated. This way, the subjects do not suffer from the
lack of robustness over time that characterize these algorithms
when more than two DOFs are used.

Likewise, in the state-of-the-art pattern recognition, sequen-
tial myoelectric control, the power of the myoelectric signal
is used to provide proportionality to the commands [3]. The
developed control includes eight surface electrodes (Ottobock
AC, Ottobock, Vienna) which provide the EMG signals of the
forearm’s muscles to the system, to calculate the Root-Mean-
Square of the signal. With this information, the manual system
seeks to (1) provide proportionality to the activated class, and
(2) remove the “Joystick effect” from this control scheme, i.e.,
that the subjects press buttons to activate classes with no effort
employed.

Ultimately, these features make that the manual control
system’s behavior adheres to its equivalent in the literature,
yet avoiding the technical and performance drawbacks that
these systems still present.

D. Control Mixing schemes

Three different control mixing schemes were developed.
These cover different levels of required user’s implication on
the control of the prosthesis, implementing its functioning
principle based on the state-of-the-art approaches (Fig 3).

On the one hand, similarly to the master-slave approach
proposed in [17], a Sequential mixing scheme alternates
between the manual and the SA systems as control input
source; by default, the SA system has control of all the DOFs
of the prosthesis, as long as there are not manual control
signals. When the manual control generates commands, it
drives the correspondent DOF, and the SA system is turned off
until the manual control is idle again. While the prosthesis is
being controlled by the SA system, the user has fundamental
influence on it, as the SA system generates commands only
while the prosthesis is being moved towards the target.

On the other hand, in accordance with the simultaneous
control based on user intention detection proposed in [11], [12]
and [13], two different levels of simultaneity (parallel control)
have been developed, namely, the Myo-Triggered Parallel and
Continuous Parallel mixing schemes.

Firstly, in the Myo-triggered Parallel scheme, the prosthe-
sis is controlled simultaneously by the manual and the SA
systems, only while the manual control is active. When this
condition is fulfilled (e.g., the user is generating a command),
the manual control system drives the correspondent DOF,
while the rest are driven, in parallel, by the SA system.
Hence, this approach presents a way of shared control between
both, which occurs only while the user is actively controlling

the prosthesis. The user has, thus, both indirect (movement
condition) and direct (a command is being generated) influence
on the ability of the SA to control the prosthesis.

Secondly, a Continuous Parallel mix makes the prosthesis
to be controlled either by the SA system uniquely, or in a
shared manner between both controls. Therefore, when the
user generates a control signal, the correspondent DOF’s
control is switched to it, until the activation concludes.

Finally, as a common feature for all the Control mixing
schemes, the switching process from one control source to
another implemented temporal restrictions (switching thresh-
olds). This way, when the manual control system ceased
completely its activity, it had to remain like within time
window (defined by the threshold), before switching to the
SA system as driving scheme. This feature is necessary due
to the fact that the manual control commands do not overlap
in time (as it follows the state-of-the-art sequential, pattern
recognition myocontrol approach). Therefore, when the user
performs a sequence of movements, there are time windows
with no commands in between them, as the user needs to
relocate the hand to generate the next gesture. Thus, the
implemented threshold copes with the source bouncing effect
that the nature of the sequential control input might introduce.

III. EXPERIMENTAL EVALUATION

To evaluate how different decision mixing schemes affect
the performance and the cognitive workload, an experiment
was conducted using the presented system. To this aim, two
tasks had to be performed, namely, tracking a sound occur-
rence (primary task), and a reach-to-grasp task (secondary
task).

A. Primary task

The primary task consisted on tracking monotonic sounds
which played with fixed duration of 0.25 seconds. The user
was asked to press -and release- a button as fast as possible,
at each sound occurrence. Subsequently, the reaction time and
the number of sound tracking failures could be analyzed, to
compare the cognitive workload across conditions.

The frequency at which the sound occurred was arbitrary.
This randomization was generated by means of a uniformly
distributed random signal, generated in real time, yet ensuring
that there is no repeatability across trials. The range of such
distribution, which lastly represented the pause length between
sounds, was from 0.8 to 1.7 seconds. Therefore, the arbitrary
nature of the sound occurrence was set by the randomization
of the pause length between consecutive sounds.

Remarkably, a sound occurrence was determined as ’failed’
when there was either no button hit, or more than one hit
within the valid tracking window. This temporal window was
defined as an interval starting 140 milliseconds after the sound
occurrence, and lasting for 660 milliseconds. The lower limit
of the valid range is motivated by minimum reaction time
that a human being can present after an auditory stimulus,
which is 140 milliseconds [26]. The upper limit of the range,
by the signal frequency of the sound occurrence, as after
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Fig. 3. The Control Mixing schemes for the incoming commands from the manual and the SA control systems. Firstly, The Sequential control mix (right)
prioritizes the control inputs from the manual system (Manual). If these are non-existent, it allows the SA to control all the DOFs. The Myo-triggered parallel
mix allows shared control of the prosthesis by both control systems, given that there are manual commands active. The DOFs that are not being controlled by
the manual system are controlled by the semi-autonomous one. The Continuous Parallell mix (right) allows the SA system to have control of all the DOFs
while there is no manual command. When the user generates it, the correspondent DOF is controlled by the manual system, while the SA has control on the
unused DOFs. Remarkably, every time at which the control source changes for any DOF, a temporal threshold Switching threshold avoids possible bouncing
effects in the input source selection.

800 milliseconds it would be possible that the next sound
occurrence would happen.

Additionally, since the accuracy of the time measurement
was critical for these outcome measurements, the computer’s
sound card output was attached to the speakers and to a
data acquisition card (National Instruments PCI-6221, from
National Instruments, US). The button activation was also
measured with this device. Therefore, the effect of possible
discrepancies between the time at which a sound was launched
by the algorithm, and the time at which such sound would
actually play on the speakers, was avoided.

Lastly, it is important to remark that there are two main rea-
sons for the sound occurrence tracking task to be defined as the
primary task. Firstly, the reach-to-grasp task proposed, would
last just a few seconds. Therefore, launching the tracking of
the sound occurrence in a interval so short could (undesirably)
make it to be perceived as an startling event. Secondly, this
way, it allows to compare, within each trial, the baseline for
the subject’s workload (during the time in which the subject
uniquely performs the primary task) and the later effect of the
secondary task. Therefore, such baseline is representative of
the subject throughout the session.

B. Secondary task

As part of the secondary task, the subjects were asked to
grasp an object, given specific instructions, and re-place it
on another (predefined) position on the table. Then, the time
performance (i.e., the time to reach and grasp the object as
instructed) was assessed.

There were two different objects: a box (85x65x135 mm)
and a cylinder (60x60x160mm). Additionally, there were three
different positions on which the objects could be placed, being
one empty and two occupied by the objects at each time.
The targeted object and the grasping side were randomly

selected, yet ensuring consistency in the number of repetitions
of each of the variants. Subsequently, on each trial, the subjects
had to move the prosthesis from the starting position, which
was predefined, towards the instructed targeted object. Once
reached, the participants had to grasp it from instructed side
(right, left, front or top), and relocate it on the empty position
on the table. After releasing the object, the subjects had
to move the prosthesis back to the starting position before
advancing to the next trial.

C. Experimental setup

Three subjects performed the four sessions on the ex-
perimental setup shown in Fig. 4. On each of these, five
experimental conditions were evaluated, namely, manual con-
trol (MAN), Sequential control (SEQ), Myo-triggered parallel
control (MTRIG), Continuous parallel control (CONT) and
sound tracking task (Baseline).

The subjects accomplished sixteen trials for each of the
experimental conditions, as they performed two times each
combination of grasping side (four in total) and target (two in
total). On each of the trials, the participants were in front of the
table, on which there were two objects and the three possible
positions for them (Fig. 4). A screen, placed in front of the
user, displayed the instructions (target and grasping side), as
well as the flag to initiate each of the parts of the trial, namely,
the primary task uniquely (first ten seconds), and the period
with both tasks in parallel (after the first ten seconds, until the
relocation of the target).

D. Statistical analysis

The data collected during the experimentation sessions were
processed to assess these measurements based on the period
corresponding to the reach phase (i.e., from the initiation of
the movement towards the target, until the grasping of it), for
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Fig. 4. Experimental setup. The subject stands in front of a table with three
possible positions for objects. Two objects occupy two of these, at all times.
The subject, using the custom-developed manual control socket for able-body
subjects, is performing the secondary task, whose instructions are displayed
on the screen. Two flags are displayed to provide information on when to
start the primary and the secondary tasks.. Additionally, the subject presses
the button with the index finger of his right hand on each sound occurrence
(primary task).

each trial. If the participant started the preshape at the starting
position, even without displacement, the time would initiate
as well.

As for the time performance, it was calculated for each
trial and condition. In order to test how the different control
mixing approaches affect the time that the subjects required to
complete the task, the results of each participant, under each
of the conditions, were firstly subjected to a Wilcoxon rank
sum test [25]. Subsequently, Bonferroni–Holm correction [24]
was applied to each of the subjects.

Additionally, the cognitive workload analysis was per-
formed by evaluating the number of missed sounds (i.e., the
sound occurrence tracking failures). For each participant, the
missed sounds were divided according to the condition under
which they happened. Lastly, to subsequently evaluate if there
are significant differences in the number of missed sounds of
each condition for each participant, Wilcoxon rank sum tests
were applied. Aftwerwards, the Bonferroni–Holm correction
was applied to its results.

The analyses were carried out using Matlab 2019a (Math-
works, US).

IV. RESULTS

A. Results of time performance

The results of the time performance for each subject on each
of the conditions are shown in Fig. 5.

For all the participants in this study, CONT incurred a
decrease of the median time of 47.37%, 42.86% and 69.23%
(for the subjects 1, 2 and 3), with respect to MAN. These time
performance improvements were significantly different for all
the subjects (p<0.05).

Additionally, for the subjects 2 and 3, SEQ and MAN also
provided significant difference (p<0.05), with SEQ presenting
median time reductions of 47.86% and 65.49%, respectively.

Moreover, MTRIG and MAN did not show significance in
their difference for two of the participants (subjects 1,2). For
subject 3, MTRIG presented a significant reduction of 60.00%
in the median time, respect to MAN. Lastly, the difference
between SEQ and CONT was significant only for subject 1
(p<0.05). The CONT (the fastest for this subject) presented a
median time a 28.13% below the median time for SEQ (the
second fastest).

B. Results of cognitive workload

The results of the number of missed sounds for each subject,
in each of the conditions, are shown in Fig. 6. The participants
presented significant differences between their Baseline and
MAN (p<0.05). For all of them, the median number of
missed sounds for MAN increased by a 35.41%, 50.00%
and 41.42% with respect to their Baseline. The difference
between the Baseline and the MTRIG is also significant for
all the participants (p<0.05), with increased median number
of missed sounds of 28.57%, 50.00% and 20.83%.

Subject 2 presented a significant increase of the median
number of failures for SEQ, respect to the Baseline (p<0.05),
with an increase of 14.28%. Subjects 1 and 3 did not show
significant difference between their number of failures for SEQ
and their Baseline.

All the participants showed significant difference between
MAN and SEQ (p<0.05). The SEQ condition incurred in
reductions of 54.3%, 74.44% and 82.76% in the number of
sound tracking misses, with respect to these for MAN. Lastly,
none of the participants presented significant differences in
their results for CONT and SEQ.

V. DISCUSSION

In this study, an insight into how different ways of mixing
control inputs from a SA system and a manual system has been
explored, to assess the effects on the time performance and the
workload of the users. The results retrieved, however, need to
be further confirmed in studies involving bigger populations.

The results shown suggest that certain level of automation
in the control makes the overall task faster and less cognitive
demanding, as already claimed in the literature. Additionally,
regarding the level of automation provided by a SA system, our
results show no differences between the master-slave scheme
(SEQ), and the simultaneous scheme in which the automation
does not depend on the manual control (CONT). Even though
the participants were not necessarily biased towards the SA
control or the manual control due to their performance (as
both presented ideal input data), they might have been biased
in the sense of knowing that the SA control system was perfect
regarding the calculation of the commands. This implies that
the SA scheme could perform the same task repeatedly and
accurately, with no errors. Therefore, the scenario in which the
subjects had to intervene in the control because the prosthesis
was not behaving as they expected was nonexistent. This fact
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Fig. 5. Results of time performance of the three subjects for each condition (MTRIG: Myo-triggered Parallel mix, SEQ: Sequential mix, CONT: Continuous
Parallel mix, MAN: Manual control, Baseline: primary task only). The data shown correspond to the time required by the participants to initiate the movement
towards the target and grasp it, including appropriate prehsape of the prosthesis. A box represents the data for each condition, with the central mark the
median, and the upper and lower edges of the box the 75th and 25th percentiles, respectively. The whiskers represent the extreme data points, and the plus
signs the outliers. The indications of the asterisks correspond to these conditions which present significant difference with p<0.05.

could explain the lack of difference between the Sequential
and the Continuous Parallel mix schemes in two of the three
participants; if the SA would have been imperfect in its
behaviour, it could have had generated decisions that deviate
from the expectation. Then, the participants would have been
forced to decide whether to correct them or to adapt to these.
In such situation, the Sequential scheme would represent a
trade-off between and increased effort (generating manual
commands and also losing the automation of the other DOFs)
and the amount of compensatory movements. In that case, it is
likely that the discrepancies of different levels of automation
would appear, as the Continuous Parallel scheme does not
present such trade-off.

In addition, the necessity to actively enable SA control
(MTRIG) did not show differences respect to the manual
control (MAN) for two of the three participants. Moreover,
this mixing scheme presented increases in the workload for
all participants, with increments of between 20% and 50%
of sound tracking failures, respect to their baselines. This
indicates that they were not being benefit from the support
provided by the SA system during the task, for this condition.
This fact suggests that for the subjects it was not convenient
that the SA system depended on their command generation to
fulfill its functions. The literature suggests that the prosthesis
users prefer to have control on when the autonomous decisions
take place. Our results suggest that, moreover, it should not
be required to be a continuous requirement. Therefore, the
collaborative systems should integrate triggers to activate or

deactivate the SA control rather than control signals that
require to be active during the whole functioning of the device.

For all the subjects, the manual control (MAN) required
the longest times to complete the task and it represented the
condition with major cognitive workload. The manual control
was the control condition which required more intervention
by the participants (as the prosthesis was dirven uniquely by
them). The fact that they had to perform the whole control
sequence without support justify such results.

Similarly, our positive results with the mixing scheme
that does not require direct control nor activation from the
user (CONT) does not necessarily imply that the participants
actually preferred a fully autonomous system. The SA system
presented here featured adaptive speed of the DOFs, which
required movement of the prosthesis towards the target in order
to generate its commands. Therefore, the system integrated an
indirect control condition (the movement of the prosthesis).
Further research is needed to evaluate if the users preference
of having access to the control plane is because they want
to actively drive the prosthesis, or rather because this way
it is ensured that they have access to it if the device does
not perform as expected. These statements suggest that the
collaborative control systems would benefit from indirect
manners to activate the autonomous functions. The addition
of eye-tracking devices for detection of the user intention
could be a way for them to generate control flags that activate
or deactivate the autonomous system in manners that do
not require interaction with the control plane (e.g., blinking
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(a) Results for subject 1.

(b) Results for subject 2.

(c) Results for subject 3.

Fig. 6. Results of the number of sound tracking failures for each of
the conditions (MTRIG: Myo-triggered Parallel mix, SEQ: Sequential mix,
CONT: Continuous Parallel mix, MAN: Manual control, Baseline: results of
primary task alone). The results are normalized over the number of total
sound occurrences within each condition. A box represents the data for each
condition, with the central mark the median, and the upper and lower edges
of the box the 75th and 25th percentiles, respectively. The whiskers represent
the extreme data points, and the plus signs the outliers. The indications of the
asterisks correspond to these conditions which present significant difference
with p<0.05.

patterns to activate/deactivate the SA system).
Moreover, it is evident that the trends shown on the data

are greatly influenced by the implementations of the con-
trol schemes. The SA system presented here relies on data
streamed from a MOCAP setup. The robustness and accuracy
is much superior to the devices used in the literature, where
the context information is retrieved from mobile setups. The
evaluation of the effect of such idealizations on the results
can be carried out by introducing disturbances in a controlled
manner.

Additionally, for the manual control, its functioning princi-
ple (idealized classification) has allowed to control the draw-
backs of the transient effects of the EMG signals as control
inputs. The addition of disturbances over time on this system
could place it even closer to the its analogous from the state-of-
the-art, and could lead the presented manual control system to
be a modelled version of it, which allows to control variables
that are not controllable otherwise, like the consequences of
the transient effects of the EMG signals.

VI. CONCLUSION

In this study, we present how different ways of mixing
control inputs from manual and semi-autonomous systems
affect the cognitive workload and the time performance of
users carrying out reach-to-grasp tasks.

An innovative implementation of a semi-autonomous system
and a manual control system has been carried out, by relying
on ideal input data, to circumvent the drawbacks that their
analogous state-of-the-art implementations. This way, we have
presented an scenario in which the participants were not biased
towards the best (working) control scheme, but rather by their
own preference on the control approach.

According to our results, the control mixing schemes in
which the automation does not have to be activated by the
user resulted on the best time performances and the lowest
levels of cognitive workload with a probability of p<0.05. We
did not observe significant differences between the two levels
of simultaneous control (CONT and SEQ) for the majority of
participants. The hypothesis of that such differences did not
emerge as a result of the idealization of the control systems
requires further research.

Lastly, the results indicate that a collaborative system in
which the SA commands are only generated when the user
is accessing to the control plane as well does eliminate the
benefits of the automation regarding time performance and
cognitive workload.
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