
- 1 - - 1 -

Drought Severity
Real-time evaluation of drought severity by means of 

Artificial Neural Networks and damage functions

Mark Beltman

Master Thesis 
June 2020





Drought Severity
Real-time evaluation of drought severity by means of 

Artificial Neural Networks and Damage functions

Mark Beltman



- 4 -

  COLOPHON

Student
M.R. Beltman
s1487795
Civil Engineering and Management

University
University of Twente
Drienerlolaan 5
7522 NB Enschede
The Netherlands

Involved organisation
Waterschap Vechtstromen
Kooikersweg 1
7609 PZ Almelo
The Netherlands

Supervision
University of Twente
Supervisor: Dr. Ir. M.J. Booij 
2nd Supervisor: Prof. Dr. J.T.A. Bressers

Waterschap Vechtstromen
External supervisor: Ir. P.B. Worm

Date of publishing
June 17th 2020

Contact
mail: m.r.beltman@student.utwente.nl



- 4 - - 5 -

  PREFACE
This report belongs to a two-phased research project into the operationalisation of 
drought for the Vechtstromen Water Authority. A project that serves as a combined 
graduation project for the MSc. programmes Public Administration and Civil 
Engineering. This report is the second and last report produced in this context 
and serves specifically as graduation thesis for the master in Civil Engineering and 
Management, with a specialisation in Integrated Water Management. In the first 
phase of the project, a qualitative definition for the problem of drought from a water 
managing perspective has been formulated. The second phase, that is discussed in 
this report, focusses on the operationalisation of drought severity and builds upon 
the results from phase one. The work has been conducted under the supervision of 
the University of Twente and the Vechtstromen Water Authority. 

Conducting this research would not have been possible without the help of many 
people. Therefore, I would like to express my sincere gratitude to anyone that helped 
in any way to making this project into a success. But there are a number of people 
I would like to thank specifically. Firstly, I would like to thank Bas Worm, who 
provided the opportunity and resources to work on this interesting topic and enabled 
me to conduct work that relates directly to the water managing practice. Also I would 
like to thank him for his open-mindedness towards my somewhat unorthodox 
approaches. I know I have been quite stubborn at times. Secondly I would like 
to thank my supervisors from the University of Twente, Martijn Booij and Hans 
Bressers. Your supervision provided a great support in putting my unconventional 
approaches into successful science. Finally, I want to express my appreciation for 
the support I received from Martin Mulder, the developer of the “Waterwijzer” 
Agriculture. Without even being involved in the project, he provided a lot of support 
in operating the “Waterwijzer”. 

But it does not end here. Also in my private life I received an incredible amount 
of support that cannot stay unnoticed. Support that was there not only during my 
graduation, but during my whole study career. First I cannot thank my girlfriend 
Merlijn Smits enough for her tremendous support throughout the whole process and 
way before the process started. You were always there to discuss my thoughts no 
matter how exhausting your own working day had been. Never have you complained 
about me being distracted by my computer, training ANNs in the background, while 
we were watching one of our series. I truly admire your patience. Last but not least, 
the presentation of my work would not have looked so neatly without your help.   
Finally, I want to express my profound gratitude to my parents. They are the ones 
that have always encouraged me to discover who I am and what motivates me, both 
in my private as well as in my professional life. Without their unfailing support I 
would not have had the opportunity to study. Adding a second master’s program 
would have been even more impossible. 
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  SUMMARY
As the climate changes and thereby the climatic extremes intensify, droughts 
occur more frequently. This holds also true for the Vechtstromen region in the 
Netherlands. To minimize the socio-economic drought impacts to the Vechtstromen 
region, adequate and effective crisis management is required. Yet, a lack of quick 
and reliable information regarding the socio-economic drought severity, limits the 
effectiveness of the crisis response in mitigating societal impacts. Instead, crisis 
management is based upon solely hydrological drought indicators, like precipitation 
deficits and surface water levels, that are far from linearly related with the water 
use impacts. To improve drought management in the Vechtstromen region, a quick 
and easy real-time evaluation of the socio-economic drought severity is, therefore, 
desirable. 

Recently two tools have been developed that enable to evaluate the socio-
economic impacts of hydrological conditions quick and easily: the “Waterwijzer” 
Agriculture and the “Waterwijzer” Nature. Applying these tools to evaluate drought 
severity in real-time is, however, limited by a lack of groundwater data. Only 
point measurements are available, while real-time spatial groundwater patterns 
are required. From a literature study it was found that Artificial Neural Networks 
(ANNs) are likely the best way to interpolate the point measurements into spatial 
groundwater patterns with sufficient accuracy and speed. This research, therefore, 
aims to operationalize the socio-economic drought severity in real time, by using 
Artificial Neural Networks to obtain daily spatial groundwater data as an input for 
drought impact models. For this it has been studied if and how accurate ANNs can 
interpolate groundwater depths and if this accuracy is sufficient for drought severity 
evaluation. 

To study the ability of ANNs to accurately interpolate groundwater depths, two 
experiments have been setup: one in which the Vechtstromen region is interpolated 
by a single ANN and one in which two regional ANNs are used. This because the water 
systems of the northern and the southern region function differently. The northern 
region is predominantly a surface water controlled system, while the southern region 
is a free draining system. All three ANNs have been optimized individually by finding 
the optimal combination of input variables and number of hidden neurons. Their 
interpolation accuracy has subsequently been determined by testing the ANNs for 
an independent dataset that consisted of locations that were not used during model 
training and validation.

From these experiments it is found that ANNs provide spatial groundwater 
depths with higher accuracy than the currently available alternatives that require 
longer calculation times. This conclusion holds true regardless of the type of 
hydrological system the interpolation relates to. The second major finding was that, 
although ANNs can cope with different types of hydrological systems separately, 
ANNs are not well able to distinguish between different functioning systems in a 
single ANN. Yet, despite this limitation also the single ANN, trained to interpolate 
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the full Vechtstromen region by one model, outperformed the traditional methods.
With these promising interpolation results, all elements to evaluate drought 

severity are in place. In the second research step, it has been studied if combining 
these elements results in sufficiently reliable severity evaluations, with a special focus 
on the effects of the uncertainty in the groundwater data to the severity evaluation. 
For this the socio-economic severity of 2019’s drought in the Vechtstromen 
catchment area has been evaluated (in a code green, yellow or red) at 72 drought 
sensitive locations. These evaluations have been performed for both the upper and 
the lower confidence limits of the groundwater depth predictions, to see how the 
uncertainty affects the severity evaluation. This study revealed that for none of the 
locations the difference between the upper and lower confidence limit was more 
than one colour code. Even more, at 58 locations the colour code evaluation was 
consistent. For five locations, located at the eastern Twente moraine, the plausibility 
of the severity evaluation is, however, questioned as here the ANN provides too 
shallow groundwater depths. Yet, these plausibility issues are not expected to affect 
the difference in severity evaluation between the upper and lower confidence level. 
Therefore, despite these plausibility issues, it is concluded that the groundwater 
depth predictions are sufficiently accurate to reliably evaluate socio-economic 
severity. 

With some minor improvements to the ANN for the eastern Twente moraine, 
the severity evaluation as presented in this report forms a solid basis to improve 
drought management. Nonetheless, there are also opportunities for further 
optimizations. Firstly, the informative strength of the severity evaluation to the 
drought management decision making process, can be enhanced when the severity 
evaluation links more closely to the qualitative drought severity definition, that is 
formulated in the first phase of this research project. For this more knowledge is 
required on the operationalisation of the qualitative drought severity definition in 
quantitative severity limits. Also for nature there needs to be found a way to separate 
the natural drought impacts from the human induced drought impacts. A second 
opportunity lies in providing drought severity predictions instead of evaluations. 
This will enable water managers to proactively mitigate drought severity. To 
enable severity predictions it is possible to combine the presented drought severity 
evaluation method with temporal groundwater depth predictions. The latter can be 
effectively done by ANNs. 

All in all, it can be concluded that the combination of ANNs and damage models 
holds a lot of potential to evaluate, or even predict, drought severity quickly and 
easily. Water managers are, therefore, advised to further develop and explore the 
application of ANNs to operationalise drought severity. This will help them to 
manage droughts more effectively by putting more focus on their core responsibility: 
facilitating water use.  
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1.   BACKGROUND
For centuries the Dutch delta mostly had one water related problem, 
there was too much of it. To get rid of the water surplus the Dutch have 
built an ingenious system of pumps and dikes to keep their land and 
polders dry. But while improving and mastering this system towards 
perfection drought problems have intensified (Bressers et al., 2016; 
Tielrooij et al., 2000). This because the discharging practice was hardly 
limited by the drought problems that might occur on the other side of 
the water managing spectrum. For long the relevance of drought was 
underestimated, the country was believed to be water abundant. 

But as global temperatures rise and thereby the climatic extremes 
intensify new and more severe drought problems occur (Trenberth, 
2011). This also holds for water abundant North Western European 
countries like the Netherlands. This led the Dutch water managers to 
see that water management should focus more on balancing the water 
system between floods and droughts, instead of solely discharging 
water surpluses (Ritzema & Van loon-Steensma, 2017). 

To manage droughts both on seasonal and structural time scale, 
and to be able to balance its impact to that of flooding, it must be 
known where and when droughts occur and how severe they are. 
This is currently not fully understood. The hydrological conditions 
are to certain extent known. But whether these conditions need to be 
considered as drought is understood limitedly. A drought dashboard 
that indicates for any given moment how severe the hydrological 
conditions are, can help the water authority to manage their droughts. 
In the short term it can provide information on where to take direct 
action. For the long term it provides insights in the spatial variation in 

INTRODUCTION



- 12 -

drought vulnerability. This information 
can be used to design more structural 
drought preventing measures. 

Drought severity, an indication for 
how extreme the drought conditions 
are, can be defined in two distinct 
ways, either statistically or in societal 
terms. Statistical definitions tend to 
define the drought severity relative 
to normal water conditions. Societal 
definitions define the drought severity 
in relation to the societal impact it 
causes. As regional water management 
is largely about enhancing society 
by facilitating water use, balancing 
floods and droughts is about weighing 
the impacts of floods and droughts 
to society. To do so, a society focused 
drought operationalization provides 
most valuable information. 

The overall aim of this research, that 
comprises two phases, is, therefore, to 
obtain a real time insight in the societal 
severity of a drought. Here real-time 
insights are important to be able to 
adequately manage drought crises. 
Also the real time insights provide 
interesting insights for more structural 
drought management interventions. 
From an early literature review, that 
has been discussed in research phase 
one of this project, it became clear 
that two steps were required for such 
operationalization of drought. First 
the problem of drought needed to 
be defined from a water managing 
perspective. Thereafter a way to assess 
the hydrological conditions for their 
societal impact needs to be found.

The first step has already been 
performed in research phase one 
(Beltman, 2019). This second research 
phase focusses on the second step, the 

question of evaluating the hydrological 
conditions for their socio-economic 
effects. 

  RESEARCH GAP

To understand what knowledge 
gap withholds the assessment of 
hydrological conditions for their 
socio-economic impact, a literature 
study has been performed (Beltman, 
2020) of which the conclusions will be 
summarized here. If you want access to 
the full report, you can email the author. 
This study focused on three aspects: 
(1) the conceptual relation between 
the hydrological system and the socio-
economic response, (2) the way in 
which this conceptual relation can be 
operationalized and (3) the availability 
of data for this operationalization. 

The literature review concluded 
that the relation between hydrology 
and society can best be conceptualized 
via soil moisture. This because this 
research focusses on land use related 
drought. In this conceptualization 
the “Waterwijzer” Nature (Witte 
et al., 2018) and the “Waterwijzer” 
Landbouw (Mulder et al., 2018) can 
be used to translate hydrological 
conditions to socio-economic effects. 
For this the Waterwijzer first models 
the soil moisture in the unsaturated 
zone, based upon groundwater 
levels, climate data and geological 
characteristics. Subsequently the 
calculated soil moisture conditions 
are related to damages to crops or 
nature. The main advantage of these 
tools is that they are designed for the 
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modern Dutch agricultural and nature 
management context. Besides, they 
require relatively few computational 
power which makes them interesting 
for real time application. Therefore, the 
state of the art knowledge is believed to 
be sufficiently developed to translate 
hydrological conditions to the relevant 
socio-economic impacts. 

Research gaps are, however, found 
in the input data that is required 
to run the “waterwijzer” tools for a 
real-time assessment. This because 
the waterwijzers require spatial 
groundwater patterns, which are not 
available in real time. Only point 
measurements, obtained by wells, 
are. To map spatial groundwater 
patterns, complex and time consuming 
groundwater models need to be 
used. Due to their complexity these 
models are not desirable to use for 
real-time purposes.  Hence, to use the 
Waterwijzer’s potential to translate 
the real-time hydrological conditions 
in socio-economic terms, the spatial 
groundwater levels need to be available 
in real time more easily. 

As the only groundwater 
information that is available in real time 
are the well measurements, literature 
has been studied to understand if 
there are possibilities to interpolate 
these point measurements to obtain 
spatial groundwater data. This study 
showed that traditional techniques are 
likely unable to interpolate accurately 
because they assume to some extent 
spatial linearity (Davis & Sampson, 
1986). From the literature study, the 
most interesting option to interpolate 
the groundwater levels seems to be 
by means of using Artificial Neural 

Networks (ANNs). These have already 
proven their potential towards 
temporal predictions of groundwater 
levels (Chitsazan, Rahmani, & 
Neyamadpour, 2015; Daliakopoulos, 
Coulibaly, & Tsanis, 2005; Mohanty, 
Jha, Kumar, & Sudheer, 2010; Nayak, 
Rao, & Sudheer, 2006; Yoon, Jun, 
Hyun, Bae, & Lee, 2011) and have been 
used in other contexts for nonlinear 
interpolation of irregular spatial 
variables (Chowdhury, Alouani, & 
Hossain, 2010; Nourani, Mogaddam, 
& Nadiri, 2008; Rigol, Jarvis, & Stuart, 
2001; Sun, Kang, Li, & Zhang, 2009). 
It is, therefore, likely that they are able 
to spatially interpolate groundwater 
depths sufficiently accurate. 

 RESEARCH OBJECTIVE 
AND QUESTIONS

Objective
Water managers benefit from a 
dashboard that evaluates the socio-
economic drought severity in real-
time (on a daily basis). This because 
it will enable them to improve their 
crisis response and their structural 
interventions to the water system. This 
real-time drought severity evaluation 
is mostly limited by the lack of spatial 
groundwater depth data. This second 
phase of the drought operationalization 
project therefore aims to:   

Operationalize the land use related 
socio-economic drought severity 
in real time, by using Artificial 

Neural Networks to obtain daily 
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spatial groundwater data as an 
input for drought impact models.

By operationalization it is meant 
to evaluate and define the severity of 
the hydrological drought conditions 
to the Water Authority in a way that 
it becomes meaningful to the water 
managing practice. 

The relevant land use related socio-
economic impacts are the impacts that 
are identified as problematic to the 
water authority. This relates to the 
results of the first research phase. Here 
the relevant impacts and the point at 
which they become problematic to 
the water authority are defined. For 
agriculture it are mostly the economic 
costs and the losses in nutritional values 
that are relevant indicators. Economic 
costs become problematic when there 
is a risk of large scale bankruptcy 
among agricultural enterprises due to 
the drought conditions. Reductions in 
nutritional values become problematic 
when they make reaching the legal 
self-sufficiency norms impossible. 
Regarding nature it are human 
induced impacts that are problematic 
to the water authority. These drought 
indicator and levels will be further 
elaborated in chapter, four. 

Research questions
The research objective comprises 
two main elements, the interpolation 
of groundwater well data and 
defining the socio-economic impact 
that corresponds to the resulting 
hydrological conditions. For each of 
these two themes a research question 
has been defined:

1.	 How accurate can ANNs spatially 
interpolate groundwater depths, 
based upon static spatial variables 
in combination with a limited 
number of reference groundwater 
depths?

2.	 Are the ANN interpolated 
groundwater depths sufficiently 
accurate to evaluate socio-
economic drought severity with 
damage models? 
 

 READING GUIDE

This report contains five chapters, of 
which the first is this introduction. The 
chapters are structured in a way that 
the scientifically relevant information 
and the practical water management 
information can be read separately. 

The scientifically relevant 
information is predominantly provided 
in chapter two and three. Chapter two 
is written as an independently readable 
paper that discusses the design and 
testing of the ANNs to interpolate 
groundwater depths. The third chapter 
is also written in paper form. Here 
it is  studied if the accuracy of the 
ANNs is sufficient to evaluate socio-
economic drought severity. From these 
two chapters, one will obtain detailed 
insights in the methodology, results and 
conclusions regarding the individual 
research questions. 

Water managers who are mostly 
interested to know if and how they 
should operationalize drought in 
terms of socio-economic severity, are 
advised to read chapter one, four and 
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five. Chapter four will put the main 
conclusions of chapter two and three 
in a more practical water managing 
perspective. Based upon this practical 
perspective an advice is formulated 
regarding the usability of this drought 
operationalization and future steps 
are discussed to improve the practical 
usefulness of the operationalization. 
Finally, the main conclusions to the 
two research questions and the central 
objective, are summarized in the 
concluding chapter, chapter five. 
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2.   ABSTRACT
During water crises, like droughts, access to quick and reliable spatial 
groundwater level data is crucial to effectively  mitigate socio-economic 
impacts. The currently used numerical groundwater models are, 
however, not able to quickly produce this data. The objective of this 
research is, therefore, to study whether reliable spatial groundwater 
data can be provided by using ANNs to interpolate well measurements, 
with a particular focus on non-linear catchment areas. For this a 
case study for the Vechtstromen catchment area is performed. Two 
experiments have been setup: one in which the region is interpolated 
by a single ANN and one in which two regional ANNs are used to 
separately interpolate the differently functioning water systems, a free 
draining system and a surface water controlled one, that are present 
in the study area. All three ANNs have been optimized individually by 
finding the optimal combination of input variables, learning epochs 
and number of hidden neurons. Their interpolation accuracy has 
subsequently been determined by testing the ANNs for an independent 
dataset that has not been used during model training and validation. 
From these experiments it is found that ANNs provide spatial 
groundwater depths with a higher accuracy than the currently available 
nummerical alternatives. This conclusion holds true regardless of the 
type of hydrological system the interpolation relates to. The second 
major finding was that, although ANNs can cope with different types of 
hydrological systems separately, ANNs are not well able to distinguish 
between different functioning systems in a single ANN. Yet also this 
single Vechtstromen ANN outperformed the traditional methods.  
Based upon these results, water managers are advised to start exploring 
the use of ANNs to provide real-time groundwater depth information 
during water crises.

 - 17 -
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 INTRODUCTION
To evaluate and mitigate the socio-
economic impacts of a drought in crises 
situations, it is important for water 
managers to have access to quick and 
reliable hydrological data. Herein, 
insights in spatial groundwater depth 
patterns are especially relevant, as 
socio-economic drought impacts are 
predominantly land bounded, like 
the damages to agricultural yields. 
Nevertheless, it is precisely this spatial 
groundwater data that is not easily 
available during crisis situations. This 
because spatial groundwater data 
is currently produced by complex 
numerical models that require 
relatively long computation times 
and relatively much human effort. To 
improve drought management it is, 
therefore, necessary to find a more 
easy way to obtain reliable spatial 
groundwater data. 

An alternative approach to obtain this 
spatial groundwater data more quickly 
is to interpolate well measurements. 
These well measurements are often 
already available in real time and 
interpolation techniques require 
relatively short computation times. Yet, 
traditional interpolation techniques, 
like Inverse Distance Weighting or 
Kriging, are limitedly able to cope with 
the strong spatial variations that are 
present in many regions around the 
world, like that in the Netherlands. 
These catchments simply have too 
strongly varying abiotic conditions, 
are too heavily modified by the human 
being and they often have too complex 
geological characteristics. Thereby 
the groundwater levels are not likely 

to be spatially linear or second order 
stationary, which are assumptions 
that underly respectively Inverse 
Distance Weighting and Kriging (Davis 
& Sampson, 1986). An alternative 
interpolation method that can cope 
with spatial nonlinearity needs thus to 
be found.

  The existing body of research on 
Artificial Neural Networks (ANNs) 
suggests that ANNs might bring a 
solution to the problem of non-linear 
groundwater level interpolation. In 
prior research ANNs have already been 
used for groundwater level interpolation 
in a relatively homogenous catchment 
area in Iran (Nourani et al., 2008) and 
China (Sun et al., 2009). Here, however, 
the ANNs have not been provided with 
spatial characteristics in addition to the 
groundwater dataset to improve the 
groundwater level prediction. Thereby, 
the ability of ANNs to combine multiple 
intercorrelated types of data, which 
is expected to be necessary in less 
homogenous catchment areas, was 
not exploited. This ability to combine 
a variety of datatypes to improve 
interpolation of non-linear patterns has 
already been demonstrated  in adjacent 
research fields, like for example to 
spatially interpolate temperature data 
in a complex environment (Rigol et al., 
2001) and in relation to interpolation 
of groundwater pollution. In the latter 
application ANNs outperformed 
Ordinary Kriging significantly 
because of the non-linearity in the 
contamination pattern (Chowdhury et 
al., 2010). 

The aim of this research is, 
therefore, to study if ANNs are able to 
reliably interpolate groundwater depth 
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measurements in catchments with 
spatially highly varying characteristics. 
For this, the Vechtstromen catchment 
area located in the Netherlands will be 
used as a case study. 

The first section of this paper will 
further motivate the choice for this 
specific study area. Thereafter, the 
methodology will be discussed. Herein, 
first the research strategy will be 
elaborated and then the methodology to 
obtain the ANNs will be explained. The 
third section presents the results of the 
study. Here the optimal ANNs and their 
performances are presented. Section 
four of this paper, the discussion, delves 
into the methodological limitations, 
the comparison to other literature 
and explores the potential use and 
generalisation of the results. The fifth 
and last section concludes the paper 
by providing an answer to the central 
research question. 

 STUDY AREA
To study the ability of ANNs to 
interpolate groundwater well 
measurements a case study is performed 
for the Vechtstromen catchment 
area, see Figure 2.1. This area has two 
interesting characteristics. Firstly it 
contains two hydrologically different 
types of water systems, that of the 
Twente region, covering the southern 
halve of the Vechtstromen region and 
that of the Drenthe region covering the 
Northern half. Secondly, agriculture 
and nature are strongly interwoven in 
the Vechtstromen region. This provides 
an interesting interplay between 
natural and human induced effects on 

the hydrological cycle and vice versa. 
The Twente region is predominantly 

shaped by moraines as a result of glacial 
deposits and has, therefore, relatively 
large elevation differences. Due to these 
moraines the hydrological system is 
rather a collection of little free-draining 
watersheds, that unite downstream in 
Twente, than a single connected system. 
The moraines also cause the geology to 
be highly complex. The soil types range 
from fine sand, to boulder clay, to peat 
and the aquifer thickness strongly 
varies throughout the region. The 
fragmented watershed combined with 
the complex geology cause the Twente 
region to be highly heterogeneous. This 
is expected to makes interpolation of 
the groundwater depths challenging.

The Drenthe region is a relatively 
flat region with a less complex geology. 
Here soil types and aquifer thickness 
are not as fragmented as in Twente. 
Also the water system is predominantly 
controlled by the surface water levels 
and is not a freely draining system like 
Twente. This because of the relatively 
flat landscape,  the low elevation relative 
to the outflow point, and the dominant 
influence of multiple rivers and canals 
on the groundwater levels. Due to the 
more consistent geology and the flat 
surface water controlled water system, 
the Drenthe region is believed to be far 
more homogeneous than the Twente 
region. The spatial correlation between 
the groundwater levels is, therefore, 
expected to be relatively strong. 

Having these two differently 
functioning hydrological systems in one 
study area allows to study the impact of 
this difference on the ANNs ability to 
interpolate groundwater depths. Here 
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it is expected that ANNs perform better 
for relatively homogeneous surface 
water controlled systems, like Drenthe, 
than for heterogeneous free draining 
ones, like in Twente. The differently 
functioning systems also allow to 
study whether ANNs are able to cope 
with different types of hydrological 
behaviour in a single ANN, or if ANNs 
should only be applied to regions with 
similar functioning water systems. 

Besides this difference in hydrology, 
the Vechtstromen region is also an 
interesting case study due to its strongly 
interwoven mixture of agriculture 
and nature in the rural areas and 
because of its heavily human modified 
hydrological system. Thereby, ANNs 

are also tested for their ability to deal 
with both natural and human factors 
that influence spatial groundwater level 
variability. 

 Since February 2019, the 
Vechtstromen region has a dense net of 
187 wells at which groundwater depths 
are monitored in the rural areas. Data 
collection for these measurement 
locations is outsourced to a commercial 
business, that collects and filters the 
data (Wareco, 2020). Measurements 
are thus already adjusted for errors and 
noise. The time series that are collected 
by the 187 wells range between a full 
year and three quarters of a year. 

A downside of the selected study 
area is that the data is only collected for 

Figure 2.1: Elevation map of the Vechtstromen region with respect to the mean sea level (MSL)and 
indication of the catchment location in  Europe and the Netherlands
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a single year, 2019. As this was a year 
of substantial drought it suffices for this 
research objective. Nevertheless, one 
must be careful as the model can also be 
trained too much to this specific season 
and thereby not be applicable to other 
drought scenarios. Let alone to normal 
or wet conditions. The impact of this 
limited time span that is covered by the 
data will be discussed in the discussion 
chapter. 

 METHODOLOGY
To investigate the ability of ANNs to 
interpolate groundwater levels and 
to understand the influence of the 
hydrological functioning of a system 
on this interpolation ability, two 
experiments have been set up: one in 
which a single ANN is constructed for 
the full Vechtstromen region and one in 
which separate ANNs are constructed 
specifically for the Drenthe and Twente 
region. Subsequently the performance 
of the Vechtstromen model will be 
compared to the performance of the 
regional models. When the general 
Vechtstromen model performs at least 
equally well as the regional models, this 
proves that ANNs are able to cope with 
hydrologically differently functioning 
systems in a single dataset.

The model performance will be 
evaluated by the Kling Gupta efficiency 
(KGE) (Gupta, Kling, Yilmaz, & 
Martinez, 2009). This Kling Gupta 
efficiency is chosen as it accounts 
for three important performance 
indicators: the ANN’s ability to 
describe the variation in the data,  its 
ability to describe the average value 

and the extent to which the predictions 
correlate to the observed values. 

This methodological section 
describes how the three ANNs are 
defined and how the results are 
compared. It will firstly explain what 
general ANN design has been taken from 
literature. Secondly, the relevant input 
and output variables and data will be 
derived from literature and the data will 
be prepared to fit the ANNs functioning. 
Hereafter, the methodology continues 
with discussing how the optimal sets of 
input variables and the optimal number 
of hidden neurons are defined for the 
three ANNs. Finally it concludes with 
stressing how the performance of the 
obtained optimal ANNs is studied in 
more detail to understand the usability 
and limitations of the ANNs.

 
Literature based ANN design
The general ANN designs, are based 
upon literature. A brief literature 
study, in which nine papers regarding 
ANN use have been studied, showed 
that in adjacent research topics, the 
ANN designs were to a large extent 
similar. Four of these papers related 
to spatial interpolation, of for example 
groundwater pollution or temperature 
data (Chowdhury et al., 2010; Nourani 
et al., 2008; Rigol et al., 2001; Sun et 
al., 2009), and five related to temporal 
groundwater interpolation by ANNs 
(Chitsazan et al., 2015; Daliakopoulos 
et al., 2005; Mohanty et al., 2010; 
Nayak et al., 2006; Yoon et al., 2011). 
All nine papers concluded that a 
standard feedforward backpropagation 
model (see Figure 2.2),  a Levenberg 
Marquart learning strategy and a 
Sigmoid activation function provided 
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accurate results for the modelling 
objective. The only design parameters 
for which the papers differed were the 
input and output variables, the number 
of hidden neurons and the learning 
epochs (the number of training 
iterations with the same dataset). This 
research will, therefore, build upon the 
same ANN model, learning strategy 
and activation function. The number of 
hidden neurons, the input and output 
variables and the number of learning 
epochs are customized.

Desired output unit  
The goal of this study is to interpolate 
groundwater levels as a basis for the 
evaluation of socio-economic impacts. 
As it is the depth to groundwater that 
affects the soil moisture content and 
thereby is the most important factor 
to land use related effects, like the 
growth of vegetation (Remmelink, 
Blanken, van Middelkoop, Ouweltjes, 
& Wemmenhove, 2018), the depth to 
groundwater is the most meaningful 
way to define the groundwater levels. 
To obtain this depth to groundwater, 
all groundwater level measurements, 
which are measured relative to mean 

sea level (MSL), are subtracted from 
the ground elevation level of the wells.  

Input variables and data
Spatial variability in groundwater 
depths is naturally determined by 
three predominant factors: climate, 
geology and topography (Condon & 
Maxwell, 2015; Devito et al., 2005; 
Freeze & Witherspoon, 1967; Haitjema 
& Mitchell-Bruker, 2005; Salvucci & 
Entekhabi, 1995; Tóth, 1970; Wolock, 
Winter, & McMahon, 2004). Besides 
also human interference has an effect 
on the groundwater level, by land use 
(Genxu, Lingyuan, Lin, & Kubota, 2005; 
Scanlon, Reedy, Stonestrom, Prudic, & 
Dennehy, 2005), water subtractions 
(Hoque, Hoque, & Ahmed, 2007) and 
surface water drainage (Bouwman, 
1998). Each of these factors are 
included as an input to the ANN model. 

The climatological conditions 
are reflected by including reference 
groundwater levels. These reference 
levels are the most direct reflection 
of the relevant recent climatic and 
hydrological history. The reference 
groundwater wells are determined 
by a correlation study between all 
groundwater wells. From these 
correlations, an optimal set of 3 
reference wells has been derived. 
Herein the optimum was defined based 
upon two criteria: the number of strong 
correlations (>0.7) and the length of the 
combined measurements series. The 
latter is important because training, 
validation and testing samples can only 
be generated for moments at which all 
reference wells recorded a groundwater 
level.  A set of three reference wells, 
shown in Figure 2.3, is found as the 

Figure 2.2. Feedforward backpropagation ANN 
model
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most optimal representation of the 
Vechtstromen area. These wells have a 
strong correlation with 92% of the other 
wells and their overlapping lengths 
cover 98,8% of the total timeseries. 

In relation to geology it is 
predominantly the transmissivity 
that influences the groundwater level 
variations among different geological 
conditions. The transmissivity is, 
therefore, included as a variable that 
reflects the dependency of groundwater 
levels on geology. The transmissivity 
map for the Vechtstromen region 
is obtained from the BOFEK 2012 
maps produced by Alterra (Wosten 
et al., 2013). The BOFEK maps are an 
extensively used soil data source in the 
Netherlands.

The topography is directly 
incorporated as an input variable by 
including the elevation relative to 
MSL. For this a raster dataset with a 
spatial resolution of 25 meters has been 
applied (AHN, 2019). 

Land use has an effect on the 
local evaporation rates and thereby 
on the groundwater recharge and 
levels  (Scanlon et al., 2005). The 
types of vegetation predominantly 
typify a specific land use and define 
the evaporation rate. (Beltman & 
Koerselman, 1998; Droogers, 2009). 
Therefore, to account for land use 
impacts, the Makkink reference 
evaporation factors of the dominant 
vegetation type per land use are used 
as a spatial variable. These  reference 
evaporation factors are linked to a 2016 
land use map for the Vechtstromen 
region. The reference evaporations are 
mostly taken from literature (Beltman 
& Koerselham, 1998; Droogers, 2009; 

Jansen, 1995; Moors, et al. 1996).  
However, for some hybrid land use 
types, like grassy heather fields, the 
reference evaporation is estimated 
based upon the values for related land 
use types, from which the hybrid land 
use is a combination.  

Surface water drainage is included 
by adding the distance to drainage 
canals as an input variable, instead of 
the surface water levels. This because 
the inclusion of more temporal variables 
introduces a significant burden on 
water managers to collect reliable real 
time data. The distance to drainage 
systems is expected to be the best 
stationary drainage representation.

The effect of drinking water 
abstractions is included by including 
its impact on the average lowest 
groundwater level. Here the average 
lowest groundwater level, is calculated 
by averaging the three lowest 
groundwater levels in a year (of a two 
weakly measured time series) for eight 
years in a row. This   is again  a static 
variable. Here the same argumentation  
regarding collection of real time data 
holds as for the surface water drainage. 
The impact of abstractions on the 
average lowest groundwater levels is 
only known for the Twente region and 
thus not included in the Drenthe model.

Finally, two additional input 
variables have been added to this 
theoretically obtained set: the average 
lowest groundwater level and a 
classification for the ability to supply 
the specific location with water from 
downstream (value 1 if this is possible 
and value 0 if not). The ability to let 
water in from downstream locations 
is a characteristic that differs strongly 
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over the Vechtstromen region. In 
almost the complete Drenthe region 
this supply of downstream water is 
possible, contrary to Twente where it is 
mostly impossible due to the elevation 
differences. During droughts the 
Twente regions will therefore be sooner 
confronted with water shortages. The 
second additional variable, the average 
lowest groundwater level, serves as an 
additional reference level to indicate 
the spatial variability in groundwater 
levels. Unlike the other spatial variables 
it does not reflect a physical  process 
influencing the groundwater level.

Data preparation
All the data that is discussed so far is 
prepared for three reasons: to assure 
the correctness of the data, to shape the 
data in a way that it best suits the range 
of the ANN’s activation functions and 
to obtain a reliable and representative 
training, validation and testing data 
set. For this three steps have been 
performed.

First, groundwater measurements 
that were equal to the depth of the 
measurement well, have been taken 
out of the dataset. These records are 
unreliable as it is possible that the 
actual groundwater depth was larger, 
but could not be recorded due to the 
limited depth of the well itself. In these 
situations the well sends its own depth 
as measured value. 

Secondly, the temporal well 
measurements and the spatial variable 
maps have been scaled between  -0.5 
and 0.5. This scaling of the variables 
is useful as it best suits the ANN’s 
sigmoidal activation function. Between 
this range the sigmoidal function has 

a relatively steep slope, that enhances 
the activation ability of the neurons. 
When values become too large or 
small the activation function does 
not differentiate as much anymore 
in its output signal. This diminishes 
the ability to selectively activate the 
neurons.   

Finally, training, validation and 
testing datasets are constructed, for 
the Drenthe and Twente regions. 
For this, first data samples have 
been constructed  in which each 
groundwater depth measurement is 
coupled to the spatial characteristics 
of the specific well location and to 
the three corresponding reference 
groundwater depths. Subsequently, 
these data samples have been divided 
in a training, validation and testing set 
with a size of respectively 70%, 15% and 
15% of the complete dataset. 

The testing dataset is formed by 
samples that relate to a set of 10 wells 
in Twente (this is about 15% of the total 
number of Twente wells) and 20 wells in 
Drenthe, (this is about 15% of the total 
number of wells located in Drenthe). 
These wells are not used in the training 
and validation phase. Thereby, they are 
completely independent and represent 
locations that are unknown to the ANN. 
To assure the representativeness of the 
testing set and to prevent a bias in the 
model, it has been made sure that the 
test set contains the second largest 
and second smallest values of each 
spatial input variable for each region. 
This led to the selection of 10 wells in 
Twente and of 9 wells in Drenthe. The 
remaining 11 wells for the Drenthe 
region are randomly selected. 

For the remaining wells all samples 
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are constructed and stored in a single 
dataset per region. 18% of these 
regional datasets is selected randomly 
for validation purposes. The remaining 
82% is used as training dataset. The 
resulting distribution of testing and 
training/validation wells is shown in 
Figure 2.3.

For the Vechtstromen model the 
regional datasets have been combined. 
The Vechtstromen model is thus 
trained, validated and tested by both 
the Drenthe and Twente datasets. 

Searching for candidate models
The ANN models, for both experiments, 
are defined in two phases. First 
candidate models are obtained by an 
explorative study. Afterwards better 

performing models near the candidate 
solutions are searched for by a 
neighbourhood analysis. 

To define candidate models an 
extensive searching run has been 
performed in which the interpolation 
performances of 500 unique randomly 
generated model configurations have 
been calculated. Herein, the input 
variables, the number of hidden 
neurons and the number of learning 
epochs are all randomly selected. 

For the input variables a set of one 
till ten input variables is randomly 
selected for the Vechtstromen and 
Twente model. For the Drenthe model 
a maximum of nine input variables is 
studied, as there is no abstraction data 
available for this region. This variation 
in the set of input variables provides an 
indication of the actual relevance of the 
theoretically defined input variables. 
The number of hidden neurons has been 
randomly set between 2 and 6. Test 
runs showed that more hidden neurons 
failed to obtain a generalized model 
that can cope with unknown locations. 
Finally, the maximum number of 
epochs is randomly set between 50 
and 150 epochs, with a step size of 50 
epochs. This because too many epochs 
might also overtrain the network, with 
consequential generalization problems. 

Each randomly generated model 
has been assessed on its ability to 
predict groundwater depths at known 
and unknown locations. For this, each 
model is validated with the validation 
set, and tested with only 10% of the 
data for each location in the testing set. 
This ten percent is used to still have 
unused data samples for further model 
testing. Models that score a KGE above 

Figure 2.3. Groundwater well locations and 
their function for the construction of the ANNs.
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0,85 are considered candidate models 
worth it to optimize. This threshold is 
chosen based upon explorative model 
runs. From these runs it appeared 
that the maximum performance was 
around this KGE. This rough approach 
is not problematic as in the end we 
are interested in the best scoring 
model. The other candidates only 
provide additional information on the 
importance of input variables.  

Neighbourhood search for 
better performing models
For the best scoring candidate models 
per region, a neighbourhood analysis 
is performed to check if there is a 
better performing model design close 
to the candidate solution. For this the 
number of hidden neurons and the 
maximum number of learning epochs 
has been systematically varied. The 
number of hidden neurons has been 
gradually increased from 2 till 15. The 
number of epochs ranged between 50 
and 300 epochs, with a step size of 
50 epochs. For each combination of 
hidden neurons and epochs, 10 training 
iterations have been performed. The 
best training score, highest KGE, from 
these 10 iterations is considered the 
optimal ANN performance for that 
specific ANN configuration. 

Finally, the optimal ANN design is 
the model with the highest average KGE 
(averaging the KGE scores for validation 
and testing), with a maximum difference 
between validation and testing of 0,05. 
This difference is included to prevent a 
bias towards any of the datasets.

Analysing the optimal models
The groundwater depths that are 
produced by the three optimal ANN’s, 
that result from the neighbourhood 
analysis, are further studied to better 
understand the interpolation ability 
of ANNs. For this the performance, in 
terms of KGE value, for each individual 
well, as predicted by both the 
Vechtstromen and the regional models, 
is calculated. These insights in the 
individual performances provide more 
information regarding the performance 
differences between the Vechtstromen 
model and the two regional models. 

 RESULTS

Candidate models
The models presented in Table 2.1, 
are the candidate models that resulted 
from the three extensive randomized 
runs. What is striking to see is that for 
the Twente and Vechtstromen region 
only two and four candidate models 
have been found respectively, contrary 
to a set of 23 candidates for the Drenthe 
region. Clearly the Drenthe dataset 
comprises more explanatory power 
than the Vechtstromen and Twente sets. 
Thereby, the interpolation accuracy is 
less dependent on the model structure.

What also stands out is that 
most candidate models use all the 
input variables that are identified by 
literature. Even though a wide variety 
of reduced combinations is tested. 
This confirms the importance of the 
spatial characteristics that are stressed 
in literature. But even though all input 
variables are used, most variables are 
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not indispensable. In all three models 
there are candidate models that leave 
out some variables. Even more, the 
Drenthe model can still perform when 
any of the variables, not being the 
average lowest groundwater level, are 
left out. This proves the importance of 
the average lowest groundwater level 
for the interpolation. It also proves 
that the explanatory power of the input 
data lies in the combination of multiple 
relevant spatial characteristics, not 
necessarily in a single one. For the 
Twente and Vechtstromen model this 
cannot be concluded, as there are 
multiple variables that are present in 
all candidates. Here there is thus also 
a dependency on individual spatial 
characteristics. 

Lastly it stands out that all 
possible numbers of hidden neurons 
show up in the candidate models for 

Drenthe, with four hidden neurons as 
dominant number. Also the Twente 
and Vechtstromen candidates differ in 
the number of hidden neurons that are 
used. Thereby, it can be concluded that 
the issue of overfitting is not solely a 
matter of picking the right number of 
hidden neurons. It is rather an interplay 
between the number of hidden neurons, 
the number of input variables and the 
number of learning epochs.

Neighbourhood search
The results of the neighbourhood study, 
for the three ANNs, are presented in 
Figure 2.4. This figure shows that all 
models score high KGE values for the 
validation dataset and keep improving 
when the number of hidden neurons 
increase. When 15 hidden neurons 
are applied, all three ANNs are able 

Figure 2.4: ANN sensitivity to hidden neurons and number of epochs plotted for the testing and 
validation set for the Vechtstromen and the regional ANNs.
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Vechtstromen Twente Drenthe

1 2 3 4 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Reference 
well 1 x x x x x  x  x x x x x x   x x x x   x x x x

Reference 
well 2 x x x x x  x x x x x x x x x x x x x x x x

Reference 
well 3 x x x x x x x x x x x x x x x x x x x x x  

Elevation x x x x x x x x x x x x x x x x x x x x x x x x x x x  

Transmissivity x x x x x x x x x x x x x x x x x x x x x x

Evaporation x x x x  x x x x x x x x x x x x x x x x x x x

Distance to 
drainage x x x x  x x x x x x x x x x x x x x x x x x  

Abstraction 
impacts x x x x x x                        

External 
supply x x x x x x x x x x x x x x x x x x x x x x x x x  

Avgerage 
Lowest Depth x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Hidden 
neurons 5 4 4 3 3 4 3 4 4 5 2 5 5 4 4 5 6 3 4 6 4 4 6 3 3 5 3 4 4

KGE 
validation 0,89 0,86 0,89 0,86 0,85 0,85 0,88 0,89 0,91 0,9 0,87 0,92 0,9 0,91 0,89 0,89 0,86 0,87 0,88 0,87 0,86 0,87 0,91 0,88 0,88 0,86 0,86 0,86 0,87

KGE testing 0,85 0,85 0,88 0,89 0,89 0,85 0,91 0,88 0,89 0,89 0,85 0,89 0,89 0,90 0,90 0,86 0,86 0,86 0,87 0,87 0,86 0,86 0,85 0,86 0,85 0,88 0,91 0,89 0,86

Table 2.1: Variable use and corresponding KGE for the candidate Vechtstromen and regional ANNs
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Vechtstromen Twente Drenthe
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Abstraction 
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External 
supply x x x x x x x x x x x x x x x x x x x x x x x x x  

Avgerage 
Lowest Depth x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Hidden 
neurons 5 4 4 3 3 4 3 4 4 5 2 5 5 4 4 5 6 3 4 6 4 4 6 3 3 5 3 4 4

KGE 
validation 0,89 0,86 0,89 0,86 0,85 0,85 0,88 0,89 0,91 0,9 0,87 0,92 0,9 0,91 0,89 0,89 0,86 0,87 0,88 0,87 0,86 0,87 0,91 0,88 0,88 0,86 0,86 0,86 0,87

KGE testing 0,85 0,85 0,88 0,89 0,89 0,85 0,91 0,88 0,89 0,89 0,85 0,89 0,89 0,90 0,90 0,86 0,86 0,86 0,87 0,87 0,86 0,86 0,85 0,86 0,85 0,88 0,91 0,89 0,86

Table 2.1: Variable use and corresponding KGE for the candidate Vechtstromen and regional ANNs
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to describe the validation data almost 
perfectly.  These high performances 
are, however, a clear example of 
model overfitting, as can be seen in the 
corresponding testing scores. In this 
overfitting, substantial differences are 
visible between the three ANNs. The 
Drenthe model only starts to overfit 
when more than 8 hidden neurons are 
used, the Twente model on the other 
hand already overfits when more than 
3 hidden neurons are applied and the 
Vechtstromen model starts to overfit 
when more than 7 hidden neurons 
are used. Also in the non-overfitted 
regions, the Drenthe model on average 
scores almost consistently higher for 
the model testing than the Twente and 
Vechtstromen model. 

There is a less clear dependency on 
the number of learning epochs. None 
of the three models shows an evident 
relation. This can partly be explained 
by the early stopping mechanism, 
included in Matlab’s Neural Network 
learning algorithm, to prevent network 
overfitting. Due to this early stopping, 
the training procedure is often stopped 
before the maximum number of 
learning epochs is reached. 

The optimal number of hidden 

neurons and epochs is different for all 
three ANNs. The optimal configuration 
to describe the Vechtstromen region is 
found for a combination of 7 hidden 
neurons and 100 epochs. The Drenthe 
model scores best with a network 
that contains 8 hidden neurons and 
is trained by 50 epochs. The optimal 
model for the Twente region was found 
for 3 hidden neurons and 250 learning 
epochs. The performances of these 
three models are presented in Table 
2.2.

Performance deconstruction
When the aggregated model 
performances, as obtained by 
the previous research steps, are 
decomposed in the performance per 
well it becomes clear that the aggregated 
performance and the individual well 
performance differ in multiple ways, 
see Figures 2.5 and 2.6.

Firstly, the individual performances 
are almost always lower than the 
aggregated performance. For the 
Vechtstromen model 128 of the 154 
validation wells and 27 of the 30 testing 
wells score a lower KGE value than 
the aggregated KGE score. For the 
Twente model 40 out of 44 validation 

Table 2.2: Aggregated ANN validation and testing  performances, expressed in KGE and RMSE, for 
the Vechtstromen ANN and the regional ANNs

Vechtstromen model Regional models

Combined Twente Drenthe Twente Drenthe

KGE validation 0,92 0,95 0,90 0,89 0,94

KGE test 0,90 0,89 0,84 0,85 0,92

RMSE Validation (m) 0,25 0,20 0,27 0,31 0,20

RMSE Test (m) 0,44 0,41 0,45 0,48 0,30
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wells and  9 out of 10 testing wells 
score worse than the aggregated score. 
For the Drenthe model 93 out of 110 
validation wells and 19 out of 20 testing 
wells score below the aggregated model 
performance. 

Secondly, when comparing the 
performance differences between 
Figure 2.5 and 2.6, with the 
performances presented in Table 
2.2, it is found that the differences in 
aggregated performance and individual 
performance are inconsistent. The 
relatively high aggregated performance 
of the Drenthe model, for example, 
is not visible in the decomposed 
performances for each individual well. 

Thirdly, Figure 2.5 shows that on 
an individual level, there is not much 

difference between the performance 
for the Twente and the Drenthe region. 
This contradicts with the aggregated 
results where the Drenthe model scores 
substantially better than the Twente 
model.

The low KGE values and the 
inconsistencies compared to the 
aggregated results are predominantly 
caused by a poor reflection of the 
standard deviation in the modelled 
groundwater depths for each individual 
well. This KGE component is the 
largest contributor to the low KGE 
values for 63% of the wells (validation 
and testing) that are interpolated by 
the Vechtstromen ANN and for 55% 
of the testing wells interpolated by 
the regional ANNs. Here there is no 

Figure 2.5: KGE scores for the individual 
validation and testing wells modelled by the  
regional  ANNs

Figure 2.6: KGE scores for the individual 
validation and testing wells modelled by the  
Vechtstromen ANN



- 32 -

consistent under- or overestimation 
of the standard deviation, both occur 
equally often. Contrary, for the 
validation wells that are modelled by 
the regional models, the correlation 
is the largest contributor to low KGE 
scores. In 55% of these validation wells 
the correlation is the lowest scoring 
KGE parameter. 

Commonalities have been found 
between the lowest scoring wells in 
Drenthe. Here the five wells that are 
interpolated the worst (KGE scores 
below -2), by both the Vechtstromen 
and the Drenthe model, are all located 
at a relatively high elevation in the 
Drenthe region, they belong to the 16% 
highest elevations in this specific region. 
At these elevations the groundwater 
depths are less dominantly controlled 
by surface water levels. Between 
the poorly scoring Twente wells no 
commonality in the input data has been 
found. As there is no clear variable that 
causes the problematic predictions 
it seems to be the heterogeneous 
character of the Twente region that 
limits the interpolation ability. 

From these findings regarding 
the individual well performance, it 
can be concluded that although the 
model tends to be able to interpolate 
groundwater depths with acceptable 
accuracy, it does not do so by correctly 
describing the standard deviation in the 
individual well data. As this standard 
deviation relates to the temporal 
variation of the groundwater depths, 
it can be concluded that the model is 
better in describing spatial variability 
than in describing temporal patterns 
for individual wells. 

 DISCUSSION
This section will put the above 
presented results into perspective. 
First the methodological limitations 
and their effects on the results will be 
discussed. Then the ANN performances 
will be compared to traditional 
methods. Lastly, the potential use and 
the potential general applicability of 
the results will be discussed.

Methodological limitations
The ANNs that are constructed in this 
study are all trained by a single year of 
groundwater data. This limited time 
span requires some critical remarks on 
the results obtained by this study. 

First, the interpolation ability 
of ANNs can only be considered to 
be demonstrated for moderate and 
drought conditions. It is expected 
that ANNs can also be trained for wet 
conditions, especially when the model 
is provided with the average highest 
instead of lowest groundwater levels. 
Moreover, it needs to be studied, if a 
single ANN can interpolate both dry 
and wet conditions. 

Secondly, the limited time span 
might form a reason for the limited 
ability of ANNs to describe the standard 
deviation in the individual well data. 
Possibly when also relatively wet years 
are present in the data, the increasing 
temporal groundwater variations might 
improve the ANN’s ability to describe 
these temporal variations on a local 
scale. 

There are also some critical remarks 
to be made regarding the groundwater 
data that is used in this study. The 
piezometers used to measure the 
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groundwater levels, actually  measure 
the hydraulic head. At locations 
with perched groundwater levels, 
the measured hydraulic head can 
differ substantially from the actual 
unconfined perched groundwater 
level, with differences up to several 
decimetres (van der Gaast, Vroon, 
& Massop, 2006). This difference is 
caused by disturbing boulder clay layers. 
These perched groundwater levels, and 
thereby the possible measurement 
errors, are predominantly present at 
the moraines in Twente. Here it is thus 
not certain if the well data is reliable.

This potential inaccuracy in the data 
measured at the moraines of Twente 
poses questions to the reliability of 
the ANNs interpolation for the Twente 
region. It might also explain the 
difficulties ANNs had in predicting 
some wells, since the groundwater 
data might be incorrect. Thereby it 
might even be that the ANNs reflect 
the groundwater levels better than the 
piezometers do. If the piezometers are 
indeed inaccurate, then the impacts on 
the interpolation results needs to be 
further studied.

Comparison to traditional 
models
To put the final ANN performances 
in perspective, they are compared to 
the performance of two widely used 
numerical groundwater models in the 
Netherlands: the groundwater module 
(a Modflow model) of the Dutch 
National Hydrological Instruments 
and the groundwater model included 
in the Hydrology Stone V2.3 software 
(Knotters, Hoogland, & Brus, 2013). 

The latter is a software package that 
is predominantly designed to simulate 
nutrient washing in aquifers, but in 
doing so it also provides groundwater 
level predictions. Knotters, et al. 
(2013) have validated the accuracy of 
these models in predicting the average 
lowest groundwater levels. This study 
concluded that the Root Mean Square 
Errors of these models are respectively 
120 and 67 cm (Knotters et al., 2013). 
Thereby, it can be concluded that in 
terms of RMSE all  ANNs obtained in 
this study score better than these two 
extensively used groundwater models.    

Potential use and generalization
Even though interpolated groundwater 
depths by ANNs seem to be 
outperforming alternative groundwater 
models, its use is not unlimited. This 
because of the significant difference 
between the aggregated and the 
decomposed performances. The ANNs 
mostly have problems incorporating 
the temporal variability for each 
individual well. Thereby, the ANNs 
can be used for questions that relate 
to spatial variability. Yet, one must be 
careful when applying these models to 
temporal questions. As the correlation 
and the mean terms in the KGE score 
are still relatively high, it is believed 
that ANNs are able to indicate if 
groundwater depths increase or 
decrease and around which means they 
vary. Yet, as the standard deviation 
is less well represented it can be said 
with less confidence how much the 
groundwater depths have changed over 
time. 

Furthermore the results provide a 
nuanced view on the ability of ANNs 
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to cope with differently functioning  
water systems in a single dataset. In 
the Vechtstromen model the ANN used 
information from the Drenthe region to 
improve the interpolation for Twente, 
because the Vechtstromen ANN 
performs better for the Twente region 
than the Twente model does. However, 
the ANNs has improved the predictions 
for the Twente region by compensating 
on the model fit for the Drenthe region. 
This indicates that the ANN is not able 
to simulate two differently functioning 
water systems in one model. Instead 
it seems to have found a balance 
between both systems. This disability 
to distinguish between differently 
functioning water systems, based 
upon the provided input variables, is 
supported by the poor performance of 
the Drenthe ANN regarding the higher 
located Drenthe wells. At these wells 
the surface water level control is less 
dominant than for the rest of Drenthe. 
The Drenthe ANN clearly fitted to the 
surface water controlled system and, 
thereby, failed to model the regions 
that are less dominantly controlled by 
surface water levels. What is interesting 
here is that no balance was found, 
contrary to the Vechtstromen model. 
Thereby, it can be concluded that when 
the data contains two hydrologically 
different systems but one is more 
dominantly present, the model does 
not balance between systems but fits to 
the dominant one.

The regional ANNs produced 
by this study are believed to be 
generally applicable to spatially 
interpolate groundwater depths for 
the Vechtstromen region. The small 
performance differences between 

the validation and the testing set 
indicate that the model has a strong 
general applicability. Thereby, there is 
confidence in the ANN’s ability to also 
deal with other combinations of input 
values that are unknown to the trained 
ANNs. Only when the input values lie 
outside the ANN’s training and testing  
range, the performance obtained in 
this study might not be an adequate 
indication.  

Contrary, for other regions than the 
Vechtstromen region, the ANN models 
cannot be used. This because they are 
fitted to the hydrologic functioning 
of the Vechtstromen region, and the 
results appear to strongly depend 
on this fit. Nevertheless, the model 
structure is believed still to be valid. 
Especially for relatively flat surface 
water controlled regions interpolation 
by the obtained ANN configuration can 
provide highly accurate results.

 CONCLUSION
This study aimed to investigate whether 
ANNs are able to interpolate real time 
groundwater depth measurements 
in spatially non-linear catchment 
areas. This ability has been studied 
for both a free draining and a surface 
water controlled water system within 
the Vechtstromen. These differently 
functioning systems have been 
interpolated both separately by two 
ANNs as well as combined by a single 
ANN. From these two experiments 
three major findings regarding the 
ability of ANNs to spatially interpolate 
groundwater depths are obtained.
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Firstly, this study has found that 
ANNs are generally able to provide 
spatial groundwater depths with a 
higher accuracy than the currently 
available alternatives that require 
longer calculation times. This 
conclusion holds true regardless of 
the type of hydrological system the 
interpolation relates to. Yet, although 
both hydrological systems are 
interpolated with accuracies higher 
than available alternatives, the surface 
water controlled system is interpolated 
with significantly higher accuracy than 
the freely draining system. These score 
a KGE of respectively 0,92 and 0,85. 
A possible explanation for this might 
be that the groundwater depths in the 
surface water controlled systems are 
more connected and thereby more 
similar than they are in a free draining 
hydrological system. 

The second major finding was 
that, although ANNs can cope with 
different types of hydrological systems 
separately, ANNs are limitedly able 
to deal with hydrologically differently 
functioning systems in a single model. 
This because ANNs appear to be unable 
to identify the different hydrological 
systems from the input variables. At 
least with the spatial input variables 
that are included in this study. 

Finally, this study found that even 
though the interpolation results are 
sufficiently accurate, the ANNs do not 
reliably describe the individual well 
locations, mostly because they fail to 
adequately reflect temporal variations. 
Thereby, the use of an ANN that is 
trained for interpolation purposes is 
limited. It can provide information 
regarding the spatial variability in 

groundwater depths at a certain 
moment in time. However, temporal 
groundwater information that relates to 
a specific location, cannot be provided 
with sufficient certainty. This ability is 
expected to improve when the training 
dataset involves a longer timeseries 
with more temporal differences in 
groundwater depths. This would be a 
fruitful focus for further research. 

Traditionally water management 
is based upon relatively complex 
numerical models. This water managing 
habit, however, limits the availability of 
crucial real-time day to day information 
during crisis situations.  Based upon 
the results from this research, water 
managers are advised to start exploring 
the use of ANNs to provide real-time 
groundwater depth information during 
water crises. This will enable them 
to evaluate the land bounded socio-
economic impacts more adequately and 
thereby improve their water managing 
responses.
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3.   ABSTRACT
The central goal of regional water management is to facilitate water 
use. Having insight in the socio-economic impact and severity of 
hydrological conditions is crucial to this objective. With the recent 
development of ANNs to obtain quick and easy spatial groundwater 
data, all elements are in place to evaluate this socio-economic severity, 
in a code green, yellow or red. This study, investigates if combining these 
elements will result in a sufficiently reliable severity evaluation, with 
a special focus on the uncertainty in groundwater characteristics. For 
this the socio-economic severity of 2019’s drought in the Vechtstromen 
catchment area has been evaluated at 72 drought sensitive locations. 
This evaluation has been performed for both the upper and the lower 
confidence limits of the groundwater depth predictions, to see how the 
uncertainty affects the severity evaluation. This study concluded that 
none of the locations had more than one colour code difference between 
the two confidence limits and at 58 locations the colour code evaluation 
was the same for both confidence limits. From this result it is concluded 
that the groundwater depth predictions are sufficiently accurate to 
evaluate socio-economic drought severity. 

USABILITY OF INTERPOLATED 

GROUNDWATER DEPTHS BY 

ANNs FOR DROUGHT IMPACT 

EVALUATION
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 INTRODUCTION
Water management is about facilitating 
water use, for both human and natural 
actors. Minimizing negative socio-
economic impacts to these actors is, 
therefore, one of the main objectives. 
The translation from hydrology to 
socio-economic impact is, however, far 
from straight forward (Wilhite & Glantz, 
1985). Locations with, for example, 
the lowest water availability during a 
drought not necessarily face the largest 
socio-economic consequences. Hence, 
to effectively manage water crises water 
management must not be based solely 
on hydrological parameters. Instead 
socio-economic severity evaluations 
must also be considered. 

There are quite a number of tools 
around to translate hydrological 
conditions into measures for socio-
economic impact. Yield reduction is for 
example an extensively used measure 
that can be calculated by different 
tools, like Aquacrop (Steduto, Hsiao, 
Raes, & Fereres, 2009) and WOFOST 
(Van Diepen, Wolf, Van Keulen, & 
Rappoldt, 1989). Most of these models, 
however, require relatively much input 
data and effort. In the Netherlands, 
therefore, two state of the art tools 
are being developed, the ‘Waterwijzer’ 
Nature (Witte et al., 2018) and the 
‘Waterwijzer’ Agriculture (Mulder et 
al., 2018), that can quickly translate 
hydrological conditions into socio-
economic impacts. These state of the 
art tools hold the potential to provide 
the basis for a real-time evaluation of 
socio-economic effects of water crises 
in a Dutch regional water management 
context. 

Yet, until recently, utilizing the 
potential of the ‘Waterwijzer’ tools to 
evaluate drought severity in real time 
was limited by the availability of input 
data. This because the tools require 
spatial groundwater data, that is not 
easily obtained in real time. Phase one 
of this study focused on resolving this 
limitation, by studying whether ANNs 
are able to provide spatial groundwater 
patterns in a quick and easy way. The 
results are promising and, thereby, the 
input data issues seem to be resolved. 

All elements to provide a real 
time socio-economic drought 
severity evaluation are thus in place. 
The question that rises is whether 
combining these separate models will 
result in reliable severity evaluations. 
Especially because of the uncertainty 
in the predicted groundwater data. 
The second phase of this research, 
that is discussed in this article, will 
therefore study if the ANN interpolated 
groundwater depths are sufficiently 
accurate to evaluate the socio-
economic drought severity, in a code 
green (optimal), yellow (acceptable) 
or red (unacceptable). This three level 
severity evaluation fits the literature 
that has been used to operationalise the 
severity stages and will be discussed 
later on in the methodology. For this 
a case study for the Vechtstromen 
region will be conducted. This region 
is a relatively drought sensitive region 
in the Netherlands. Also the spatial 
differences in drought severity are 
relatively large. Some regions have 
access to substantial amounts of 
surface- and groundwater, others 
depend solely on rainwater. Besides 
ANNs have been constructed for this 
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region to provide spatial groundwater 
data. 

The first section of this paper delves 
into the methodology of the study. Here 
the general methodological outline will 
first be provided, here among others 
it will be defined when the outputs 
are considered to be reliable. Then 
the methodology will be elaborated in 
detail. The second section presents the 
results of the study, including a small 
validation of these results. The third 
section will reflect upon the results 
by discussing the limitations and the 
potential use and generalisation of the 
outcomes. The fourth and last section 
concludes the paper by providing an 
answer to the central research question    

 METHODOLOGY
To study if the ANNs are able to 
interpolate groundwater depths 
sufficiently accurate to evaluate drought 
severity, it is studied if a code green 
will not be evaluated as a code red, and 
vice versa, due to the uncertainty in the 
groundwater prediction. This is tested 
by evaluating drought impacts for both 
the upper and the lower confidence limit 
of the groundwater depth predictions, 
with a confidence interval of 95%. This 
test will be performed for a limited 
number of locations that combined 
represent the drought sensitivity of the 
Vechtstromen region sufficiently well.

The difference between a code green 
and red and vice versa, is considered as 
a hard measure for the usability of the 
ANN interpolated groundwater depths. 
This because when the uncertainty in 
the evaluation ranges from conditions 

being “optimal” to “unacceptable” there 
is no informative power left. While it 
was precisely the informative strength 
to the decision making process that 
formed the motivation to operationalise 
drought in socio-economic terms in 
the first place. Besides to further study 
the usability also the single colour 
code differences will be studied. These 
single colour code differences are not 
considered to make the information 
useless. Yet, it does provide some more 
insight in how reliable and thereby 
useful the ANN based evaluations are.  

This section will first discuss what 
locations best reflect the drought 
sensitivity of the Vechtstromen region. 
Subsequently, the groundwater 
depths and the  confidence limits of 
these predictions are defined. At last 
the methodology to translate these 
groundwater data into socio-economic 
impacts and finally in a colour code 
severity evaluation is elaborated.

Representative study locations
The allowable confidence range for 
which a code green is not evaluated as 
a code red is the smallest for drought 
sensitive locations. Therefore, to obtain 
a representative set of locations, the 
most drought sensitive locations in 
the Vechtstromen region are selected. 
Herein, two types of drought sensitivity 
are distinguished: (1) locations at which 
the groundwater depth is relatively 
sensitive to meteorological changes 
and (2) locations at which the land use 
is relatively sensitive to groundwater 
fluctuations.

Locations where the groundwater 
depths react relatively heavily to 
meteorological changes, are selected 



- 40 -

by using maps of the average lowest 
and highest groundwater levels in 
the Vechtstromen region. Sensitive 
locations are defined as the locations 
where the difference between the 
highest and lowest average groundwater 
level are the largest. Here local maxima 
have been used, to make sure that the 
selected drought sensitive points do 
not all relate to the same region. To do 
so, for each raster cell the maximum 
difference in a radius of 2500 meters 
has been searched for with ArcMap’s 
focal statistics tool. Herein, urban 
regions are excluded, as the water 
authority is predominantly responsible 
for the rural areas.   

Drought sensitive land use types 

are obtained from literature. Literature 
indicated that in relation to nature wet 
heathlands and raised bogs are the 
most drought sensitive nature types 
within the Vechtstromen region (Besse-
Lototskaya et al., 2011). Contrary to for 
example dry woods or dry heathlands. 
In relation to the agricultural land uses, 
that are present in the Vechtstromen 
region, potatoes and maize are most 
prone to drought (Brouwer, Prins, 
& Heibloem, 1989). Although no 
sensitivity for grass was given by this 
source, grass is also included as it is the 
most commonly grown crop within the 
region. All these drought sensitive land 
use types where already included in 
the locations obtained by the previous 

Figure 3.1: Land use for the drought sensitive 
locations

Figure 3.2: BOFEK soil type number for the 
drought sensitive locations
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groundwater criteria. Therefore, no 
additional locations are added.

The above described procedure 
resulted in a set of 72 locations that 
represent the drought sensitivity of the 
Vechtstromen region. These locations 
and their land use and soil type are 
presented in Figure 3.1 and 3.2. The 
presented numbers in Figure 3.2 refer to 
the soil type, here the hundreds reflect 
their soil type category. One hundreds 
relate to peat soil types, two hundreds 
to wetland soil types, three hundreds to 
sandy soil types, four hundreds to clay 
soil types and five hundreds to loam 
soil types.

Groundwater characteristics 
and confidence limits
To evaluate drought impacts, 
damage models require groundwater 
characteristics as hydrological input. 
For the agricultural impact models 
the Average Highest Groundwater 
level (AHG) and the Average Lowest 
Groundwater level (ALG) are needed. To 
evaluate impacts to nature the Average 
Spring Groundwater level (ASG) and 
the Average Groundwater level (AG) 
are also required next to the AHG 
and the ALG. All these groundwater 
characteristics are expressed in 
meters below the ground surface and 
derived from daily groundwater depth 
time series. This paragraph explains 
how these characteristics and their 
confidence intervals are determined in 
three steps. 

Firstly, to obtain daily groundwater 
depth data the regional ANNs, 
constructed in the previous chapter, are 
used. The regional ANNs are chosen 

because the Twente and Drenthe ANN 
differ the most in accuracy. Thereby, 
it can be studied if this difference 
matters to the drought evaluation. 
For each location, the ANNs require 
two types of inputs: daily reference 
groundwater depths and a number of 
spatial characteristics for each location. 
The daily reference depths are obtained 
by averaging the hourly timeseries 
measured by the reference wells. Here, 
the full time span of the available 
groundwater dataset, starting at the 
first of February 2019 and ending at 
the fifteenth of January 2020,  is used. 
Consequently the output groundwater 
depths span the same period. The 
spatial characteristics are extracted 
from the same datasets as are used 
for the construction of the ANN in the 
previous chapter. 

Secondly, the confidence limits of 
these daily time series are calculated. 
These confidence limits are based upon 
the testing results of the ANNs. During 
the model testing the accuracy of the 
ANNs has been assessed by predicting 
depths at unknown well locations. 
Subsequently the differences between 
the predicted and the measured 
groundwater depths were calculated. To 
obtain an indication of the confidence 
limits of the ANN predictions, the 
standard deviation of the relative 
predictions errors have been used. This 
relative approach is chosen because in 
absolute terms the standard deviation 
will be dominated by the errors made 
for relatively deep groundwater levels. 
These deep groundwater levels are, 
however, less interesting as they 
limitedly influence the unsaturated 
zone.  Taking relative deviations 
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prevents this bias. The final confidence 
limits, to obtain a 95% confidence, are 
determined by adding and subtracting 
two times the standard deviation from 
the daily groundwater depth time 
series. This resulted in two time series 
per location, one that reflects the upper 
confidence limit and one that reflects 
the lower confidence limit. 

Finally, the groundwater 
characteristics for each locations are 
calculated for both the upper and 
lower confidence limit time series. To 
define the AHG the three smallest daily 
groundwater depths within a year, that 
are at least 14 days apart, are averaged. 
The same has been done for the ALG 
only with the three largest groundwater 
depths. The ASG is obtained by 
averaging the groundwater levels at the 
14th of March, the 28th of March and 
the 14th of April (Finke et al., 2004). 
Finally, to obtain the AG the complete 
time series are averaged per location. 
As these groundwater characteristics 
are averaged results of the daily time 
series, the confidence level is higher 
than the 95% for the individual daily 
predictions. This because the chance 
that the average of the daily predictions 
that are used in the calculation of the 
groundwater characteristics lies above 
the upper limit or below the lower limit 
is smaller than the chance that a single 
value exceeds this limit. What precisely 
is the confidence level is, however, not 
known.

Calculating drought damage
The impact of the hydrological 
characteristics on agriculture is 
calculated by means of the HELP tables 
(Van Bakel, Huinink, Prak, & van der 

Bolt, 2005). The HELP tool is a relatively 
old tool, but as the ‘Waterwijzer’ 
Agriculture is still under construction 
it is the best available method. The 
HELP tables were developed in 1987 
to quantify the impacts of changing 
hydrological conditions due to spatial 
interventions on agricultural yields. 
To do so, the HELP tables provide 
goal reductions, expressed in terms 
of crop yield damages relative to the 
theoretical potential yield, as a function 
of the groundwater characteristics and 
soil type. Thereby, the HELP tables 
have the same goal as the state of the 
art ‘Waterwijzer’. Only the relations 
are based on less advanced modelling 
principles, as they are defined by model 
simulations in the LAMOS model. A 
model that is derived from the MUST 
model, which at the time was the best 
available tool for unsaturated flow 
modelling (Van Bakel et al., 2005). The 
limitations will be discussed in more 
details in the validation paragraph. 

To calculate the yield loss as a 
consequence of the groundwater 
characteristics, the HELP tables are 
provided with the crop type, soil type, 
AHG and the ALG for each of the 72 
drought sensitive agricultural locations. 
The impacts are calculated for both 
the lower and the upper confidence 
limit of the AHG and ALG. At points 
where the groundwater characteristics 
exceeded the input range of the HELP 
tables, the characteristics are set to 
the maximum input limits. These were 
200 cm and 320 cm for respectively 
the AHG and the ALG (Van Bakel et 
al., 2005). This adjustment to the input 
limits is believed not to be problematic 
as such deep groundwater levels have a 
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negligible influence on the unsaturated 
zone. 

To assess the hydrological impact to 
nature, the ‘Waterwijzer’ Nature is used. 
The ‘Waterwijzer’ Nature is a state of 
the art tool that enables to quantify the 
effects of changing abiotic conditions, 
like groundwater levels, to nature goal 
realisation (Witte et al., 2018). The 
‘Waterwijzer’ model is based upon 
the same methodological principles 
as its predecessor, the WATERNOOD 
model that has been designed by 
Runhaar and Hennekens (2015). This 
method provides trapezoidal functions 
that for each nature type define the 
goal realization as a function of the 
four groundwater characteristics. 
To do so, for each characteristic and 
nature type four critical points have 
been defined, see Figure 3.3. Point A1 
describes the critical minimum level 
of the groundwater characteristic 
below which there is no form of goal 
realisation anymore. Point A2 describes 
the critical maximum groundwater 
level above which the goal realisation 
becomes zero. Point B1 describes the 
critical minimal groundwater level for 
which there is 100% goal realisation 

and point B2 describes the critical 
maximum groundwater level to obtain 
the maximum goal realisation (Runhaar 
& Hennekens, 2015). Points A1 and B1 
and points A2 and B2 are connected 
linearly. Thereby the goal realisation 
decay is assumed to relate linearly to 
the groundwater level.

The term goal realisation in 
relation to nature reflects the extent 
to which the abiotic condition, like 
the groundwater level, enable the 
realisation of the planned nature type 
(Runhaar & Hennekens, 2015). When 
groundwater levels are within the 
100% range, groundwater is thus not 
a limiting factor for the development 
of the desired nature type. The other 
way round, when groundwater is in the 
0% range, groundwater levels make 
it impossible for the desired nature 
types to develop. It is important to 
understand that goal realisation does 
not reflect the actual nature conditions. 
Only the extent to which the abiotic 
condition enables the nature type.

To evaluate the nature goal 
realisation, the ‘Waterwijzer’ nature 
model has been provided with the 
AHG, ALG, ASG, AG and the local 
nature type of each drought sensitive 
nature location. Herein the nature 
types are distinguished according to 
the management type characterization 
of the Index nature and landscape 
(Bij12, 2020). This characterization 
is currently most preferred in Dutch 
nature management. The impacts are 
calculated for both the lower and the 
upper confidence limit of the four input 
groundwater characteristics.

Figure 3.3: Example of trapezoidal 
WATERNOOD goal realisation function
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Evaluating damage severity by 
colour codes
To evaluate the severity of the reduced 
goal realisation for agriculture and 
nature, severity limits have been 
obtained from literature. For this 
the work of Bouwman et al. (1998) is 
used. This work formed the basis for 
the practical transition from surface 
water to groundwater oriented water 
management. In their work, Bouwman 
et al. provide an indication on when 
groundwater levels are acceptable 
or not. They distinguish three main 
categories: optimal, acceptable and 
unacceptable (Bouwman et al., 1998). 
The limits they proposed for these 
categories are presented in table 
3.1. These limits have been used to 
evaluate the severity of the reduced 
goal realisation due to the hydrological 
conditions. The colour codes to indicate 
this severity are also presented in table 
3.1. 

Validation of agricultural 
severity
The used HELP tables contain some 
serious limitations in calculating the 
goal reduction (Mulder et al., 2018b). 
First, the modelling of the unsaturated 
zone has improved significantly since 

then. Thereby, state of the art models 
are better able to simulate the relation 
between the input variables and the 
yield losses. The main improvement 
lies in the improved way of modelling 
transpiration reduction. Secondly, the 
relations are defined upon outdated 
climatological conditions. Conditions 
that due to climate change are not 
valid anymore. On top of that the way 
the meta-relations are defined is not 
climate robust. Thirdly, the farming 
operations have developed significantly 
over the past decades. The damage 
calculations, therefore, do not adhere 
to current farming practice. Fourth and 
finally, the inundation damages are not 
reproducible because they are mostly 
based upon expert judgement. 

Because of these four seemingly 
influential limitations, the impact 
of these limitations on the results 
of this study are estimated. For this 
the ‘Waterwijzer’ Agriculture is used. 
Although it was not yet possible to use 
this tool to evaluate the goal reduction 
for all drought sensitive agricultural 
locations, a readily developed pilot 
model could be used for a small 
validation. This pilot model was made 
to evaluate drought impacts for the 
Rheezermaten region, which is located 
in the Vechtstromen catchment area. 
Within this pilot model locations have 
been searched that have the same 
combination of land use and soil type as 
any of the 72 drought sensitive locations 
for which HELP calculations have been 
performed. For eight locations there 
where matching locations in the pilot 
model. By studying the impact of the 
groundwater characteristics on these 
matching Rheezermaten locations the 

Severity 
evaluation

Goal 
reduction

Colour 
code

Optimal <=10% Green

Acceptable >10% & <= 
25%

Yellow

Unacceptable >25% Red

Table 3.1: Severity limits and relation to colour 
codes
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goal reductions for the eight drought 
sensitive agricultural locations are 
approximated. Comparing the severity 
evaluation of these approximated goal 
reductions with the severity of the 
reductions as predicted by the HELP 
tables, provides an indication of the 
impact of the limitations of the HELP 
tables on the conclusions of this study.

 RESULTS

Groundwater characteristics 
and confidence intervals
The resulting groundwater 
characteristics that form the basis for 
the severity evaluation are presented 
in Figures 3.4, 3.5, 3.6 and 3.7. The 
confidence intervals are presented 
in Table 3.2. These confidence 
intervals apply to the underlying daily 
groundwater timeseries. Due to the 
way the groundwater characteristics 
are calculated these ranges also apply 
to the four groundwater characteristics, 
only the corresponding confidence level 
is higher than 95%, as is discussed in 
the methodology. 

When studying the four 
groundwater characteristics and their 
confidence intervals the groundwater 
characteristics in Drenthe seem to be 

plausible. The relatively flat regions 
have shallower groundwater depths 
and locations with larger elevations 
have deeper groundwater depths. 
Hence there is no reason to distrust the 
results.

For Twente the groundwater 
characteristics at the western and 
middle regions seem plausible. 
Even though, the groundwater 
characteristics located in the centre 
of Twente where expected to be a 
bit less deep. The predictions at the 
eastern moraines, however, raise some 
reliability questions. These seem to be 
too shallow. At these eastern moraine 
locations the long term ALG, that has 
been used as input to the ANN, does 
not fall within the confidence limits of 
the short term ALG prediction. While at 
the other locations this long term ALG 
does fall within the confidence limit.  
Hence it is questionable if the predicted 
groundwater depths at the eastern 
moraines can be trusted. 

 
Goal reductions
The goal reductions as a consequence 
of the above presented groundwater 
characteristics, are shown in Figure 3.8 
and 3.9. Three things stand out from 
these two figures. 

Firstly, it is remarkable to see that 
for agricultural locations on average 
the goal reduction is larger in the 
Drenthe region. This contradicts 
with the differences in groundwater 
characteristics, where on average 
Twente had deeper groundwater levels. 
This contradicting translation from 
groundwater characteristics to goal 
reduction, shows that goal realisation is 
a function of more variables than solely 

ANN 
model

Std. Lower 
limit

Upper 
limit

Drenthe 6% 86% 110%

Twente 16% 70% 133%

Table 3.2: Confidence limits of the ANN 
interpolated groundwater depths and
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Figure 3.4: Average highest groundwater 
depths predicted by the ANNs

Figure 3.5: Average lowest groundwater 
depths predicted by the ANNs

Figure 3.6: Average spring groundwater 
depths predicted by the ANNs

Figure 3.7: Average groundwater depths 
predicted by the ANNs
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Figure 3.8: Goal reduction for the minimum 
scenario

Figure 3.9: Goal reduction for the maximum 
scenario

Figure 3.10: Severity evaluation for the 
minimum scenario, white marked points 
are improbable and discussed in the text

Figure 3.11: Severity evaluation for the 
maximum scenario, white marked points 
are improbable and discussed in the text
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hydrology. Land use and soil type have 
a substantial contribution. This stresses 
the importance of operationalizing 
drought in socio-economic terms 
instead of solely hydrological ones. On 
the other hand it also leads to doubts 
regarding the reliability of the HELP 
tables for the sandy Twente region. It 
is well possible that the HELP tables 
underestimate the damages. These 
doubts are already present at the 
Vechtstromen water authority.  

Second, the goal realisation 
regarding nature shows interesting 
extremes. Reductions are either zero 
or hundred percent. Here the hundred 
percent reductions relate to the drought 
sensitive nature types. The zero percent 
reduction relates to forest types of 
nature. Here one must bear in mind 
that hundred percent reduction does 
not mean that all nature disappeared 
in this season. It means that the 
groundwater levels do not contribute to 
the development of the specific nature 
type. The all or nothing result shows 
the strong differences between the 
different types of nature. 

Finally, the results show that the 
differences between the lower and upper 
confidence limits are relatively small. 
On average the difference between the 
minimum and maximum is 10% of the 
maximum damage in Drenthe and 13% 
in Twente, even though the differences 
in groundwater characteristics where 
24% for Drenthe and about 63% for 
Twente. The differences are thus 
strongly reduced in the translation from 
groundwater depth to goal reduction.  

Severity evaluation
Figure 3.10 and 3.11 show how the 
goal reduction translates in severity 
evaluation. First and foremost it stands 
out that for none of the locations the 
severity evaluation differs more than 
one colour code between the upper and 
lower confidence limit. At 14 locations 
there was a difference of one colour 
code, these are all agricultural locations, 
and for the remaining 58 locations 
the colour code was the same for the 
upper and lower confidence limits. For 
the studied case the ANN predictions, 
therefore, seem sufficiently accurate. 

When studying the Drenthe and 
Twente region separately there are 
no large differences in the evaluation 
performance, even though the 
confidence ranges differ substantially. 
Even more, with 31 out of 38 locations 
with the same colour code, Twente 
has more consistent evaluations than 
Drenthe, where 27 out of 34 locations 
where consistently evaluated for the 
two scenarios. Based upon these results 
the goal reduction in the Drenthe 
region seems to be more sensitive to 
groundwater depths. This is not unlikely 
because in Twente groundwater levels 
drop relatively quickly to a level below 
the wilting points of the different 
vegetation types. However, even though 
the differences between Drenthe and 
Twente can possibly be explained, 
the reliability of the Twente results 
can still be questioned. The obtained 
evaluations at Twente’s eastern 
moraine do not correspond with the 
experience in practice and seem to be 
a result of inaccurate groundwater 
depth predictions in combination 
with limitations of the HELP tables. 
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Figure 3.12: Goal reduction for the lower 
confidence limit calculated with the 
‘Waterwijzer’ agriculture

Figure 3.13: Goal reduction for the upper 
confidence limit calculated with the 
‘Waterwijzer’ agriculture

Figure 3.14: Severity evaluation for the 
lower confidence limit calculated with the 
‘Waterwijzer’ agriculture

Figure 3.15: Severity evaluation for the 
upper confidence limit calculated with the 
‘Waterwijzer’ agriculture
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Validation of agricultural 
results
In Figure 3.12 and 3.13 the validation 
runs performed with the ‘Waterwijzer’ 
agriculture are shown. These validation 
results show some significant 
differences with the damages obtained 
from the HELP tables. In Twente the 
HELP tables have underestimated 
the goal reduction for three out of 
four locations. At all three locations 
the groundwater depths were 
relatively deep. In Drenthe where the 
groundwater depths are less extreme, 
two locations were underestimated and 
two were overestimated. On average for 
all eight locations the relative difference 
between the estimated maximum 
reduction by the HELP tables and the 
“Waterwijzer” Agriculture was 45%. 

Contrary, when studying the 
differences between maximum and 
minimum severity evaluation, see 
Figure 3.14 and Figure 3.15, the results 
of the HELP tables and the ‘Waterwijzer’ 
agriculture are relatively similar. Just 
as for the results produced by the HELP 
tables, there was no “Waterwijzer” 
evaluation for which the colour code 
difference between the upper and lower 
confidence limit was more than one 
colour code. The only difference to the 
HELP tables based severity evaluation 
is that at some locations the minimum 
and maximum colour code shifted 
a code. This inaccuracy is, however, 
less relevant to the aim of this study. 
Hence, the differences in predicted 
goal reductions, do not necessarily 
mean that the conclusions regarding 
the consistency of the colour code 
evaluations are unreliable. 

 DISCUSSION

This section will put the above presented 
results into perspective. To do so, 
first the methodological limitations 
and their effects on the results will be 
stressed. Then the potential use and 
the generalisation of the results will be 
discussed, to explore the usefulness of 
the results.

Methodological limitations
The applied methodology in this 
research comprises three important 
limitations that might possibly affect 
the study’s conclusions. 

Firstly, it is to be questioned if 2019 
was an appropriate year for this study. As 
2019’s drought was relatively extreme it 
seems that most of the locations ended 
up in a maximum impact, regardless 
of the confidence limits. This seems 
especially true for nature locations, that 
only produced goal reductions of zero 
or hundred percent. It might well be 
possible that for a less extreme year the 
upper boundary scenario would have 
caused maximum impact while the 
lower boundary scenario was not even 
near this state of maximum impact. In 
such scenario the differences between 
the two scenarios will be larger and 
thereby potentially also the difference 
in severity evaluation. This limitation 
was, however, unavoidable as data was 
only available for this specific year.   

Secondly, limitations come with 
the use of the HELP table and the 
‘Waterwijzer’ Nature tool. Both tools 
are designed to assess the impact 
of structural changes to hydrology, 
instead of deviations within a year 
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that this study is interested in. For 
agricultural locations it is believed that 
this difference between structural and 
yearly deviation is not that large, as 
crop growth cycles are largely annual 
cycles. The impact of structural change 
is thereby largely the sum of individual 
years. The most problematic limitation 
of the HELP-table is, therefore, that the 
influence of precipitation on the crop 
growth is not included adequately. Yet, 
the validation of the HELP results by 
the ‘Waterwijzer’ Agriculture tool, that 
is able to evaluate single year impacts, 
does not provide an indication that this 
HELP limitation affects the conclusions 
of this study. 

For nature this limitation of 
structural versus seasonal assessment 
might actually affect the conclusions 
of the study. This because nature 
development is not solely the result 
of individual annual cycles, like 
agriculture. Within nature there are 
also more gradual processes. These 
processes are often relatively resilient 
to short periods of drought, but heavily 
affected by structural drought. The 
impact of a single dry year is, therefore, 
substantially different from that of 
structural drought. The hundred 
percent goal reduction, that result from 
the ‘Waterwijzer’ Nature tool, are thus 
likely to be lower in practice as the 
provided groundwater characteristics 
related to a single year. Still, also within 
a single year more extreme results are 
expected than for agriculture. During a 
discussion on the results of this research 
with Bas Worm, a strategical water 
system advisor at the Vechtstromen 
water authority, he stressed that 
nature goal realisation follows a less 

gradual scale than agriculture does. 
Unfortunately, there is no alternative 
tool for nature that is able to evaluate 
drought impacts within a single year. 

Finally, the ability of ANN 
interpolated groundwater depths to 
provide sufficiently accurate severity 
evaluations, is as good as the colour code 
limits that have been chosen. Herein 
lies a problem as the results appear to 
depend strongly on the limit between 
codes green and yellow. If this limit is 
increased by only 1% it appears that for 
one location the difference between the 
upper and lower limit becomes more 
than one colour code. The results are 
less dependent on the limit between 
codes yellow and red. Only when this 
limit is reduced from 25% to 13% the 
evaluations start to differ more than 
one colour code. However, despite this 
sensitivity to decreasing the yellow 
range by increasing the lower limit, 
it is not recommended to reduce the 
difference between codes green and 
red. A 15% difference between green 
and red seems to be in quite good 
proportions to the order of magnitude of 
the absolute impacts. Besides, making 
the yellow range smaller will result in 
less deviation between the locations 
and thereby less information on how 
to prioritize water managing decisions. 
The sensitivity of the results to these 
limits does affect the robustness of the 
conclusions. The severity limits are, 
however, obtained from an influential 
piece of literature in the Dutch regional 
water management. Therefore, the 
results are considered to be useful.
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Potential use and generalization
This study showed that operationalising 
drought in terms of socio-economic 
severity provides valuable water 
managing insights. The non-
straightforward translation of 
groundwater characteristics into socio-
economic impacts, shows that managing 
water solely based upon hydrological 
parameters does not necessarily result 
in the maximum socio-economic gains. 
This because the role of soil type, land 
use and meteorology is too significant. 

The combination of ANNs and 
damage tools seems to be a promising 
way forward in this socio-economic 
operationalisation of drought. Even 
though the robustness of the results 
from this study to the colour code limits 
is limited, it is believed that there is 
sufficient potential for improvement in 
the individual components to improve 
the robustness of the outcomes. First of 
all, the new ‘Waterwijzer’ Agriculture 
is expected to resolve the issues that 
emerged from using the HELP tables. 
Secondly, the ANNs can probably be 
improved. It is believed that when 
the ANNs are trained to more specific 
conditions their accuracy will increase, 
especially in Twente. It is worth to try 
building an ANN specifically for the 
moraine region in the east of Twente. 
Also for some nature types, that have 
a fundamentally different interaction 
between land use and groundwater, 
like raised bogs, it might be interesting 
to design a separate ANN. With these 
more accurate ANNs the confidence 
range of the predictions will narrow 
down and thereby result in more robust 
predictions. 

Finally, the conclusions of this study 

are expected to apply more generally 
than for the Vechtstromen region only. 
This because of two observations. First 
of all, there was a relatively wide range 
of land use and soil type combinations. 
The 72 locations contained 48 different 
combinations. For all these different 
combinations the difference was 
smaller than two colour codes. The 
general conclusion, therefore, seems 
not to be too sensitive to the land use 
and soil type combination. Secondly, it 
is expected that the confidence range 
of the Twente ANN is relatively large, 
especially within the Netherlands. 
This because of its complex geology, 
the Twente region is expected to be 
one of the more difficult regions to 
interpolate by using ANNs. ANNs for 
other locations will thus likely have 
smaller confidence ranges than the 
Twente ANN. Thereby, the chance that 
the upper and lower confidence severity 
evaluations differ more than one colour 
code reduces.  

 CONCLUSION

This research aimed to study if ANN 
interpolated groundwater data are 
sufficiently accurate to evaluate socio-
economic drought severity. To do so, 
it has been studied if the difference 
between the severity evaluation 
for the upper and for the lower 
confidence limits of the groundwater 
characteristics, the average highest, 
average lowest, average spring and 
the average groundwater level, is no 
more than one colour code. For this, 
the drought severity for 72 drought 
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sensitive rural locations, that combined 
reflect the Vechtstromen region, 
has been evaluated. These locations 
included both nature and agricultural 
land use types. 

For none of the 72 locations the 
evaluation between the upper and 
lower confidence limit differed more 
than one colour code. Even more, at 58 
locations the evaluation was constant 
for both confidence limits. Thereby, 
the groundwater data produced by the 
ANNs are considered to be sufficiently 
accurate. 

The conclusion of this study is, 
however, not very robust. Shifting the 
boundary between code green and 
yellow by one percent already affects 
the conclusion. Yet, due to the possible 
improvements in the ANN models, it 
is believed that this limited robustness 
will not be problematic. When the 
individual components are improved, 
the confidence limits will narrow down 
and thereby also the sensitivity to the 
colour code boundaries will reduce. 
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4. The previous two chapters delved into the possibilities of using state of 
the art tools to evaluate socio-economic drought severity. They showed 
that ANNs are able to interpolate groundwater depth data quickly and 
easily and with sufficient accuracy to evaluate socio-economic drought 
severity. In this chapter it will be discussed to what extent this state of 
the art operationalisation needs further improvement to better fit the 
drought severity definition that is defined in the first research phase. To 
do so, it will firstly be discussed how well this state of the art drought 
operationalisation adheres to the qualitative drought severity definition. 
As this qualitative severity definition embodies the responsibility of 
regional water managers, this comparison provides insights in how 
valuable the severity evaluation is to the water managing practice. 
Based upon these insights recommendations for further research 
and development are formulated to improve the usefulness of the 
operationalisation.  

DISCUSSION AND FUTURE STEPS



- 56 -

 SOCIO-ECONOMIC 
DROUGHT DEFINITION
When drought becomes problematic to a 
water managing agent has been defined 
in the first phase of this research project 
(Beltman, 2019). This has been done by 
defining when societal impacts need to 
be considered problematic by a water 
manager. These impacts were defined 
for dairy farmers, wet heathlands 
and raised bogs. These water users 
were selected because of their special 
interest to the Vechtstromen water 
authority. Dairy farms are the most 
dominant land users in the region and 
the wet heathlands and the raised bogs 
are two of the most threatened and 
drought sensitive nature types located 
in the Vechtstromen region. 

Dairy farmers experience four 

drought problems that should be 
considered problematic by water 
managers: reduced grass yield, 
reduced maize yield, emerging weeds 
and a harmed soil life. A reduction 
in grass yield needs to be considered 
problematic when it results in unlawful 
protein self-sufficiency, significant 
nitrogen surpluses or in profit losses 
to such extent that it risks large scale 
bankruptcy of dairy farms. Reduced 
maize yield and emerging weeds are 
mostly problematic because of the latter 
effect of risking large scale bankruptcy. 
Harmed soil life is problematic due to 
its inducing effect on the other three 
problems. 

The importance of profit losses is 
likely to hold a broader applicability 
than only to dairy farmers. This 
because economic gains are the main 
focus of agricultural businesses. An 

Drought problem Problem extent 
defined by 

Fully problematic 
when

Reduced grass yield
Effect on profit Risk of large scale 

bankruptcy

Protein self-sufficiency Self-sufficiency below 
legal requirement

Reduced maize yield Effect on profit Risk of large scale 
bankruptcy

Emerging weeds Effect on profit Risk of large scale 
bankruptcy

Harmed soil life
Effect on profit Risk of large scale 

bankruptcy

Protein self-sufficiency Self-sufficiency below 
legal requirement

Reduced nature goal 
realisation

Human induced impact 
to goal reductions Irreversible impacts

Table 4.1 Drought problems, indicators and problematic limits, obtained by research 
phase 1
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overview of the drought problems, their 
key indicator and their critical limit is 
provided in Table 4.1. 

What makes impacts to nature 
problematic to regional water managers 
fundamentally differs from the dairy 
farmers’ problems. Not the impacts 
themselves are problematic, but the 
human interference that intensified 
these natural problems. The moral 
responsibility of water managers not to 
induce negative impacts of hydrology 
to nature, makes that the conclusions 
of the first research phase are wider 
applicable than to the problems 
identified for wet heathlands and raised 
bogs only. Thereby all human induced 
drought impacts to nature need to be 
considered problematic. 

 STATE OF THE ART 
OPERATIONALISATION 
VS. DEFINITION

The qualitative drought severity 
parameters and limits, that are 
presented in Table 4.1, are not 
fully operationalised in the state 
of the art severity evaluation tool, 
that is constructed in this second 
research phase. For agricultural 
operationalisation the difference 
between the operationalised tool and 
the theoretical severity definition is 
limited. For nature, on the other hand, 
the differences are more fundamental.

Briefly summarized, it is mostly the 
water managing effect on profits that is 
problematic in relation to agriculture. 
Not because of the economic loss itself, 

but because the water systems needs 
to contribute to a stable economy. 
Additionally for dairy farmers the 
protein self-sufficiency level is a second 
key variable for drought severity. In 
the operationalisation provided in 
this research, the drought severity 
evaluation did not incorporate these 
two variables. It was only based upon 
the yield loss in terms of dry matter. 
This because this is the only information 
that the HELP tables provide. However, 
with the newly developed ‘Waterwijzer’ 
agriculture it becomes possible to 
evaluate drought severity based upon 
these two parameters (Mulder et al., 
2018).  The ‘Waterwijzer’ not only 
provides opportunities to defines yield 
losses in terms of kilograms of dry 
matter, but also in monetary terms. 
This translation to monetary value, 
is largely based upon the nutritional 
values of the yields. Hence both 
parameters are incorporated in the 
‘Waterwijzer’. The monetary damage 
that the ‘Waterwijzer’ agriculture can 
provide, however, do not incorporate 
the impact of weeds and harmed soil 
life. 

To evaluate drought severity for 
nature it are the human induced 
drought impacts that are problematic. 
Unfortunately, the ‘Waterwijzer’ 
Nature does not include an option to 
differentiate between natural variation 
and human induced impacts. There is 
only one small correction possible that 
accounts for the limitations posed by 
the site characteristics. For this the 
‘Waterwijzer’ provides an option to 
calculate the maximum goal realisation 
that can be reached given the spatial 
characteristics of the site (Witte et al., 
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2018). This function predominantly 
accounts for the limitations caused by 
elevation differences. This is however 
a static correction while it are the 
temporal variations that are most 
relevant to the drought evaluation. 
Another limitation of the ‘Waterwijzer’ 
nature, that is extensively stressed in 
the third chapter of this research, is 
that the ‘Waterwijzer’ nature evaluates 
the impacts of structural changes to 
hydrology, instead of seasonal changes. 
Thereby, the impacts to goal realisation 
are likely to be overestimated. All in 
all, the ‘Waterwijzer’ nature does not 
provide insights that correspond to the 
qualitative drought severity definition. 
Yet, it is the best tool that is available. 

 THEORETICAL VS. 
PRACTICAL SEVERITY 
LIMITS

As parameters by which drought 
is operationalised differ from the 
qualitatively defined parameters, also 
the drought severity limits differ. In 
this research, aggregated literature 
based limits, in terms of goal reduction, 
have been applied. However, when the 
‘Waterwijzer’ agriculture will be applied 
to provide insights in the economic 
costs and in the self-sufficiency levels, 
these aggregated limits will not be 
applicable anymore. Instead, the 
operationalisation of the qualitative 
drought severity definition requires 
more conditional limits. The limit, 
both its unit and the level, varies for 
the problem that occurs. Only to nature 

static limits in terms of goal realisation 
still suffice, as here it is not the impact 
but the cause that is problematic to 
water management. Introducing these 
conditional limits instead of aggregated 
ones, will not only provide insights in 
the drought severity, but also in the 
problem that underlies this severity 
evaluation. Thereby, it provides more 
explanatory power and is more valuable 
to the decision making process. 

 PRACTICAL 
CONSIDERATIONS

Whether the state of the art 
operationalisation is useful to evaluate 
drought severity or not, not only depends 
on how well it fits the responsibility of 
regional water managers. Since the 
drought severity evaluation aims to 
support crisis management practical 
considerations are also important, 
especially in relation to workability 
and speed of the tools. Obtaining 
groundwater data with the ANNs will 
not form a bottleneck in the operation. 
Operating both ‘Waterwijzers’ requires 
a bit more attention. 

The ANNs have specifically been 
designed to obtain reliable groundwater 
depths quickly and easily. To operate 
they only need to be provided with 
three well measurements. These wells 
are already in place and this data is 
already collected in real time. Next to 
these three well measurements, only 
static spatial data is required. This 
data can already be setup in advance. 
There is thus no data collection burden 
during a crisis situation. Besides the 
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ANNs calculate groundwater depths 
extremely fast. On an 8th generation i7 
intel processor the ANNs produce about 
1200 groundwater depth calculations 
per minute. This means that per minute 
the groundwater depths for 1200 grid 
cells are calculated. Finally, the testing 
of the ANNs, presented in chapter two, 
showed that these quick and easily 
obtained results are more accurate than 
traditional numerical groundwater 
models. 

The ‘Waterwijzers’ are also designed 
for easy operation with as limited input 
data as possible. Yet, the agriculture 
tool does require more effort in setting 
up the model. Since the custom tool is 
used to calculate daily yield responses, 
there is relatively much site data 
needed. This can fortunately all be 
done in advance, since these are static 
parameters. Hence, during a crisis 
situation itself, there is no significant 
effort needed. The run time, 7 cells/
minute, on the other hand might form 
a bottleneck for creating complete 
drought severity maps. It is currently 
not known how many grid cells there 
will be to operationalise drought 
severity in a fully covering map for the 
complete Vechtstromen region, so what 
the runtime will be cannot be said. Yet, 
it is likely that its order of magnitude is 
hours and not minutes. Finally, in the 
current tool the groundwater depths 
that are produced by the ANNs need 
to be manually implemented half way 
the calculation process. For operation 
this process needs to be automated. 
The nature tool on the other hand is 
not expected to form any operational 
bottleneck. 

 FUTURE STEPS
It is recommended to start 
operationalizing the socio-economic 
drought severity as is done by this study. 
This because the non-linear translation 
from hydrological parameters to 
severity, see figures 3.4 – 3.11 in 
chapter three, shows the importance 
of putting the hydrological influence in 
perspective. In the end it is not water 
that needs to be managed, but use that 
needs to be facilitated. Facilitating use 
solely based on hydrological parameters 
will provide suboptimal results. 
Despite the limitations it is, therefore, 
believed that the operationalised 
socio-economic drought severity will 
still improve water management. Yet, 
due to the limitations the results need 
to be treated with care and can on 
itself not form the basis for decision 
making. The insights in socio-economic 
severity complements hydrological 
insights, it does not replace them. 
Nevertheless, with the insights that the 
‘Waterwijzer’ agriculture provide to 
the drought definition, the agricultural 
severity evaluations are considered 
to be strong indicators that may take 
substantial weight in decision making. 
The nature evaluations are however of 
more indicative nature. In the decision 
making process they need to take a less 
prominent role. 

Before the operationalisation can 
be used in practice there are still 
some questions to be answered and 
improvements to be made. Firstly, the 
ANN predictions for the moraines in 
the eastern parts of Twente need to 
be improved. This can best be done 
by formulating a separate ANN for 
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locations that are located relatively 
high at the moraines on a disturbing 
clay layer. Here the groundwater 
depths react differently than in other 
Twente locations. Therefore, they are 
poorly reflected by the current ANN. 
Whether formulating a separate ANN is 
possible depends on the amount of data 
that is available. Also it needs to be sure 
that the wells measure the groundwater 
depth above the disturbing clay layers. 
That is, after all, the groundwater 
level that influences soil moisture 
availability. To do so, possibly more 
wells need to be installed.  

Secondly, it needs to be studied 
if full spatial mapping of the socio-
economic severity is possible and how 
this should be done. Here there needs 
to be searched for a balance between 
calculation time and the added value 
of the information. It is advised first 
to study what would be the maximum 
allowable grid size to obtain reliable 
results. The number of grid cells can 
be reduced by changing the cell size 
of relatively continuous variables, like 
elevation. The boundaries of discrete 
variables, like land use, need to stay 
intact. If the minimum required number 
of cells still takes too much runtime it is 
advised to switch to point evaluations. 
Even though spatially covering maps 
where the reason to design ANNs, the 
model still provides added value when 
points are studied. This because it 
provides room to evaluate any point of 
interest, not only the points at which 
there is a well installed. 

Thirdly, it is worth studying if it is 
possible to separate the human induced 
impacts to nature from the natural 
variability. This is, however, a complex 

question that can likely not be solved 
within the ‘Waterwijzer’ calculations. 
Therefore, a  more pragmatic solution 
might be needed. If it is known what 
is the natural groundwater fluctuation 
due to the precipitation deficit and 
what is the human induced variation 
because of water use and management, 
separate calculations can be made 
in the “Waterwijzer”. One in which 
only natural variations are assessed 
and the other in which the total 
variation is studied. The difference 
in goal realisation between the two 
scenario’s is then the human induced 
goal realisation impact to the specific 
nature type. Separating groundwater 
fluctuations is probably possible 
by using the available hydrological 
models and has already been done by 
(van Loon et al., 2016). Obtaining the 
human induced impacts to nature this 
way is, however, a pragmatic solution 
that is not supported nor rejected 
by literature as it is not known if the 
resulting difference in socio-economic 
impact actually reflects the human 
induced impacts. 

Finally, the qualitative severity 
boundaries, regarding economic costs 
and protein self-sufficiency, need to be 
quantified. It must be studied what profit 
losses will risk large scale bankruptcy 
of agricultural businesses. Herein there 
needs to be separately accounted for 
seasonal drought and consecutive dry 
years. Therefore, the eventual severity 
boundaries will likely become quite 
complex heuristics. In relation to 
protein self-sufficiency, the law and the 
planet proof hallmark already provide 
indications for severity limits. Yet, it 
needs to be explored how to deal with 
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the different amounts of hectares that 
dairy farms have. This influences the 
self-sufficiency significantly and also 
poses the question whether the farm 
simply has too few grass land or if it is 
the water authority that insufficiently 
facilitated protein self-sufficiency. 

Besides these improvements one 
opportunity also needs to be stressed 
as recommendation. The currently 
presented severity evaluation is a 
real time evaluation. Yet, since socio-
economic impacts are at the end of the 
drought propagation process, managing 
water on these severity insights results 
in reactive management. The socio-
economic severity of today is the result 
of precipitation deficits and surface 
water levels of days or weeks before. 
To improve management it would 
thus be desirable to be able to make 
socio-economic severity predictions. 
The severity evaluation approach that 
is presented in this report, can enable 
predictive evaluation. For this only 
the groundwater depths at the three 
reference wells, that serve as input 
for the ANNs need to be predicted 
and combined with the precipitation 
predictions. There are multiple studies 
that showed that ANNs are good 
in predicting groundwater depths 
(Chitsazan et al., 2015; Daliakopoulos 
et al., 2005; Mohanty et al., 2010; 
Nayak et al., 2006; Yoon et al., 2011). 
Hence, to enhance proactive water 
management based upon socio-
economic severity predictions, it is 
advised to construct ANNs that are able 
to predict the groundwater levels at the 
three reference well locations. 
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5. Quick and easy daily evaluation of the socio-economic drought severity 
can significantly improve drought management, as it puts more 
emphasis on the water management objective: facilitating water use. 
This socio-economic evaluation is, however, limited due to a lack of 
spatial daily groundwater data that is needed as an input to damage 
models. In this study, an ANN based interpolation approach to provide 
this data is explored. It was found that due to its accuracy, speed and 
easy operability, this approach can enable quick and easy drought 
severity evaluation.

In the designing and testing phase of the ANN, that is presented in 
chapter two of this report, it is found that obtaining spatial groundwater 
depths by interpolating well data with ANNs outperforms the currently 
available groundwater models, in both accuracy and speed. This 
conclusion holds true regardless of the hydrological functioning of the 
region, either a free draining or surface water controlled systems. Yet, 
between these differently functioning systems there are performance 
differences. ANNs work best for surface water controlled regions. 
Here a Kling Gupta Efficiency score of 0,92 and a RMSE of 0,30m was 
reached. Where the ANN for the free draining Twente region scored a 
KGE score of 0,85 and an RMSE of 0,48m. A second major finding of 
this first phase was that although ANNs are able to interpolate both 
kinds of hydrologically differently functioning systems, they are less 
good in doing so within one model. Based upon the input variables that 
are provided to the ANN, they are not able to differentiate between the 
two hydrological systems. For accurate ANN interpolation separate 
networks are thus needed.

CONCLUSION
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To further study the usability 
of the ANNs, they have been used 
to evaluate the drought severity of 
2019’s drought in the Vechtstromen 
region. In this study, the differences 
in severity evaluation between the 
upper and lower confidence level of 
the ANN interpolated groundwater 
depths have been investigated for 72 
drought sensitive locations. Herein, 
severity was expressed in terms of code 
green, yellow and red. For none of the 
72 locations the severity evaluation 
between the two confidence limits 
differed more than one colour code. 
Even more, for 58 locations the colour 
code remained constant. The ANN 
based severity evaluation is therefore 
considered to be sufficiently reliable. 

However, the case study also 
introduced some doubts regarding 
the ANN’s functioning for the eastern 
moraines in Twente. Here, some 
unexpected groundwater depths and 
consequently severity evaluations 
where obtained that do not match 
the observations in practice. The 
ANN seems to underestimate the 
groundwater depths. This unexpected 
result is likely caused by two reasons. 
Firstly the eastern moraines might 
be underrepresented in the dataset. 
Secondly, the hydrological functioning 
on these moraines might differ too 
substantially to fit within one network. 
It is, therefore, advised to collect more 
data to construct an ANN specifically 
for the eastern Twente moraine.

Finally, the ANN based severity 
evaluation has been compared with 
the qualitative drought definition that 
has been defined in the first phase of 
this research project. This to study how 

useful the operationalised evaluation is 
to the decision making process. From 
this comparison it was concluded that 
the agricultural operationalisation 
holds a lot of potential to provide 
directly relevant information to guide 
water managing responses. The 
severity evaluation for agricultural 
locations can, therefore, take much 
weight in the decision making process 
when this potential is exploited. 
Evaluations for nature locations, on the 
other hand, need to be considered more 
as indicative data. This because the 
operationalisation links less strongly 
to the responsibility of water managers 
as defined in research phase one. 
Natural and human induced impacts to 
nature are for example not separated, 
while it are mostly human induced 
impacts that are of interest to drought 
management. The ‘Waterwijzer’ Nature 
is also designed to evaluate structural 
changes in hydrology, instead of 
seasonal changes that are of interest to 
this study. To increase the usefulness of 
the severity evaluations for nature, it is 
therefore advised to study possibilities 
to separate natural and human induced 
effects and to assess the impact of 
seasonal deviations in hydrology. These 
are, however, recommendations that 
require a lot of new research and model 
building. 

All in all, it can be concluded that 
the combination of ANNs and damage 
models holds a lot of potential to 
evaluate drought severity quickly and 
easily. With some minor improvements 
the tool can already be useful and 
operational. Besides, with some more 
effort there is a lot of potential to 
improve the usefulness by linking 
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stronger to the qualitative drought 
definition. Water managers are, 
therefore, advised to further develop 
and explore the application of ANNs to 
operationalise drought severity. This 
will help them to manage droughts 
more effectively by putting more focus 
on their core responsibility: facilitating 
water use.  
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