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Summary

Reinforcement learning algorithms have shown great success in solving complicated robotics
tasks. These tasks often involve multiple sensors which generate a high dimensional sensory
input, i.e. observation. Learning the optimal policy from the high dimensional observation
directly often requires processing large amounts of data. State representation learning aims to
map the high dimensional observation to a lower dimensional state space, in order to reduce
training time and the required amount of data.

The ability to reason in terms of objects, relations and actions is an important aspect of human
cognition (Spelke and Kinzler, 2007). This ability serves as a core motivation behind recent
works that aim to incorporate relational reasoning in machine learning models (Battaglia et al.,
2016; Kipf et al., 2018; Xu et al., 2019). A graph neural network has shown to be a powerful gen-
eral framework for reasoning about objects and relations. In this work, the goal is to effectively
use a graph neural network in state representation learning. The focus is on a navigation task
in a 2D deterministic grid world environment. This environment has clear objects which can
be encoded as a graph. Moreover, it is clear what the learned state representation should look
like in terms of objects (a 2d grid structure for each moving object).

In order to learn a state representation, an observation and the next observation are encoded
into a state representation by using an encoder network. A neural network (i.e. transition
model) is trained to predict the transition between the state representations. By simultane-
ously training an encoder network and a transition model in latent space, a state representa-
tion is learned. The transition model is implemented using a graph neural network in order to
learn a state representation. The comparison is made with a conventional neural network.

First, the problem is formulated as a supervised learning problem, where the states are man-
ually encoded. This way, the encoding step is excluded and the focus is on learning the tran-
sition model. It was shown that the learned transition model and reward model can be used
to plan the optimal policy for maze configurations seen during training. However, training a
transition and reward model on randomized maze configurations showed to be problematic.
The graph neural network was not able to learn the reward function. Moreover, both transition
models did not show to be precise for unseen maze configurations. Nevertheless, the graph
network showed to handle transition predictions for unseen maze configurations slightly bet-
ter compared to the conventional neural network. Both learned environment models were not
sufficiently accurate to be used for planning in unseen maze configurations.

Secondly, the transition and reward model are trained in an unsupervised setting. A contrastive
loss function is added with negative sampling in order learn expressive state representations
(Kipf et al., 2020b; van der Pol et al., 2020). Furthermore, a dense reward function is used to
make the reward function more informative. The graph neural network was able to decouple
the objects in the scene, while the conventional neural network was not able to do this. The
state representation of the conventional neural network still adhered to the grid like structure of
the problem. For both the graph neural network and conventional neural network, the learned
state representation and environment model were used to successfully plan the optimal policy
in latent space.

The graph neural network allows to learn expressive representations for each object in the
scene, which is not possible using a conventional neural network. For simple environments,
there will be no benefit in using a graph neural network as opposed to a neural network to
learn a state representation from raw observations.

Robotics and Mechatronics Y.C. (Yannick) van Wettum



iv State representation learning using a graph neural network in a 2D grid world

Acknowledgements

First and foremost, I would like to thank Nicolò Botteghi for giving me the opportunity to do
this MSc thesis under his supervision. He was the helping hand I needed during my thesis.
Nicolò has been very supportive during the entire process and was always willing to make time.
Whenever I stumbled upon a blockade Nicolò was available to provide me with new clear in-
sights and motivation. His patience, understanding, enthusiasm and passion helped me get
further. I am thankful for his guidance and could not have wished for anything more in a daily
supervisor.

Furthermore, I would like to thank the other members of the committee, prof.dr.ir. G.J.M Krij-
nen and dr. M. Poel for their time to read my work and for their feedback.

Next, I would like to thank my parents, Mark van Wettum (I wish you would still be around) and
Joan Petrus. I am very grateful for my rich upbringing, the support for pursuing a study which
I adore and for always supporting me.

Moreover, I like to express my gratitude to the people who proof-read my work. Thanks to my
sister, Martine van Wettum and my brother, Floris van Wettum for proof-reading my thesis and
providing feedback.

Many thanks to my friends for providing support, distraction and simply for being in my life. In
particular, Rob Kers and Bart Ettema for being a cycling/running buddy during this pandemic.

Finally, I would like to thank my girlfriend, Anouk Molenaar, for her endless moral support.
Moreover, for moving in during this pandemic which gave me a lot of support. I am thankful
for her fantastic cooking skills and the many forest/city walks we had during the lockdown. She
was always willing to help me when I stumbled upon difficulties by providing a listening ear. I
would not be where I am today as a person without having her in my life.

Y.C. (Yannick) van Wettum University of Twente



v

Contents

Summary iii

Acknowledgements iv

1 Introduction 3

1.1 General problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Reinforcement learning framework . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Terminology within reinforcement learning . . . . . . . . . . . . . . . . . . 10

2.1.4 Reinforcement learning methods . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Model-based reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 17

2.2 State representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Graph definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Directed and undirected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Weighted and unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Degree matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.6 Laplacian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.7 Other types of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.8 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Neural Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 General formulation graph neural network . . . . . . . . . . . . . . . . . . . 32

2.6.3 Contrastive loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Related work 37

Robotics and Mechatronics Y.C. (Yannick) van Wettum



vi State representation learning using a graph neural network in a 2D grid world

3.1 State representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Structured transition model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Reinforcement learning and graph neural network (GNN) . . . . . . . . . . . . . . 39

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Method 40

4.1 Learn a model of the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Generalization of the learned environment model . . . . . . . . . . . . . . . . . . 44

4.3 Learn a model of environment in latent space . . . . . . . . . . . . . . . . . . . . . 45

4.4 Planning in latent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Experiments 49

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Experiment - learn a model of the environment . . . . . . . . . . . . . . . . 51

5.2.2 Experiment - generalization of the learned environment model . . . . . . 52

5.2.3 Experiment - learn state representation . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 Experiment - planning in latent space . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Results and Discussion 58

6.1 Learn environment model - fixed maze . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Learn environment model - random maze . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Generalization to new maze configurations . . . . . . . . . . . . . . . . . . . . . . 63

6.4 State representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.1 State representation using GNN transition model. . . . . . . . . . . . . . . 65

6.4.2 State representation using object-oriented neural network (NN) transition
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Planning in latent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.1 Training in latent space using a GNN environment model. . . . . . . . . . 70

6.5.2 Training in latent space using an object-oriented NN environment model. 71

7 Conclusion 72

7.1 Answering the research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 More challenging environments . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.2 Automate the object slot choice . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.3 DQN-GNN agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Y.C. (Yannick) van Wettum University of Twente



CONTENTS vii

A Activation functions 74

B GNN framework - GraphNets 80

C Setup development environment 82

D Graph learning libraries 90

E Reproduction results C-SWM paper 92

F Additional figures 96

F.1 Train and test errors - 5x5 maze - fixed configuration . . . . . . . . . . . . . . . . . 96

F.2 Next state prediction - 5x5 maze - fixed configuration . . . . . . . . . . . . . . . . 97

F.3 Value Functions - 5x5 maze - fixed configuration . . . . . . . . . . . . . . . . . . . 97

F.4 Predicted state error - random maze . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 99

Robotics and Mechatronics Y.C. (Yannick) van Wettum



viii State representation learning using a graph neural network in a 2D grid world

Y.C. (Yannick) van Wettum University of Twente



1

List of Abbreviations

ADAM Adaptive Moment Estimation

AI artificial intelligence
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CNN convolutional neural network

DGL Deep Graph Library

DMDP Deterministic Markov Decision Process
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GN Graph Network

GNN graph neural network
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Summary of Notation

This following provides a reference for the notation used throughout the thesis.

Notation Explanation

t (discrete) time step
st state at time t
st+1 subsequent state from st , sometimes s′ is used instead of st+1 to

keep the notation clean
at action at time t
rt reward as a result of st and at

π policy
γ discount-rate parameter
λ decay-rate parameter
S set of states
A set of actions
O set of observations
Π set of policies
L denotes a scalar-valued objective function
(.)∗ denotes the optimal variant of a certain variable or function
(̂) denotes the approximation of a certain variable or function
G a graph
E set of edges
V set of nodes (vertices)
N (i ) set of neighboring nodes of node i
fedge, fnode, fglobal respectively: edge update function, node update function and

global update function
θ parameters of a neural network

Table 1: Notation used throughout the thesis.
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1 Introduction

1.1 General problem statement

Over the past decade, the field of artificial intelligence (AI) has exploded. Deep learning meth-
ods such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and au-
toencoders have made great strides with advancements in numerous fields, such as computer
vision (Krizhevsky et al., 2012; Silver et al., 2016) and natural language processing (Dai et al.,
2019). Moreover, deep learning algorithms have been successful in the field of reinforcement
learning. Recently, a reinforcement learning agent (AlphaGo) was shown to be able to defeat
human professional players in the full-sized game of Go (Silver et al., 2016). This was extended
to AlphaZero which was able to achieve super human level performance in games of chess,
shogi and Go by self-play (Silver et al., 2017).

Recent advances in deep reinforcement learning have been demonstrated mostly in the do-
main of computer games. Nevertheless, reinforcement learning algorithms have shown
promising developments in the field of robotics and already tackled many complex problems
(Kober et al., 2013), such as, control of tensegrity robots (Geng et al., 2016) and training a
human-like robot hand to manipulate physical objects with unprecedented dexterity (OpenAI
et al., 2018). However, reinforcement learning algorithms still face important challenges such
as low sample efficiency, generalization to unseen environment situations and choosing appro-
priate state representations. A large variety of problems in robotics can be naturally formulated
as a reinforcement learning problem, which makes it an important topic of research.

In robotics, multiple sensors are typically used. These sensors produce a very high dimensional
observation. The relevant information of the observation can often be encoded into a much
lower dimensional state. The observation refers to the raw (high dimensional) sensory data,
and the state refers to a compact description of this observation that includes all relevant infor-
mation needed to determine a robot’s action. In robot navigation, often generic sensors (e.g.
cameras and Light Detection and Ranging (LIDAR) sensors) are used to detect obstacles. The
generic sensors produce a high dimensional observation. The high dimensional observation
data slows down learning, increases the training time and increases hardware requirements.
Therefore, it is desired to reduce the high dimensional observation to a lower dimensional state,
e.g. in the context of robot navigation the most important information is the position of the ob-
stacles. The dimension of the state is typically significantly smaller than the dimensionality of
the observations space. The automatic process of finding a lower dimensional representation
for the raw observations is referred to as ‘state representation learning’, and is an important
topic in the field of reinforcement learning. The objective of state representation learning is
to reduce the observations into states, that contain the most representative features which are
sufficient for efficient policy learning. Once, such a low dimensional state representation for an
environment is learned, policies can be learned quickly compared to directly learning a policy
from raw observations.

In state representation learning, the underlying state is learned from observations in an unsu-
pervised manner, because the true state is not available in the reinforcement learning prob-
lem. However, some supervision is possible by making use of prior knowledge of the environ-
ment. Prior knowledge about the environment (robotic priors) can be used to aid the process
of learning a state representation (Jonschkowski and Brock, 2015). This is achieved by encoding
some prior knowledge about the environment into the loss functions that are used for training
a neural network. In this work, the focus is not on the prior knowledge that is incorporated in
the loss function, but rather the prior knowledge included in the underlying structure of the
state. Mostly, states are represented as vectors, while this might not always be the most obvious

Robotics and Mechatronics Y.C. (Yannick) van Wettum
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choice. For example in problems with a clear relational structure e.g. n-body problems, the
state can also be represented as a graph. A graph is able to represent data in a clear structure of
entities and relations.

A recent approach in an attempt to generalize deep neural networks to non-Euclidean domains
such as graphs, is geometric deep learning (Bronstein et al., 2016) and in specific graph neural
networks (GNNs). By enforcing a graph structure on the state, a relational inductive bias is
incorporated into the state representation. Incorporation of an inductive bias in the model
architecture, allows the model to generalize better to novel situations and makes the learning
process more sample efficient (Battaglia et al., 2018). Accordingly, this thesis contributes by ex-
ploring the application of GNNs in the field of state representation learning in order to improve
a reinforcement learning agent’s generalizability to novel situations.

1.2 Problem formulation

We, as humans, understand the world around us in terms of objects and relations (Spelke and
Kinzler, 2007). Reinforcement learning algorithms still lack the general ability for relational
and causal reasoning, conceptual abstraction and many other cognitive abilities. Furthermore,
generalizing beyond experiences remains a challenge for current AI algorithms. It is argued that
relational reasoning and combinatorial generalization is needed to achieve human-like abili-
ties (Battaglia et al., 2018). As humans, we make a representation of the world in our minds in
order to interact with the world. This representation enables us to navigate the world, achieve
goals we set and adapt to unforeseen situations. The human ability to reason in terms of ob-
jects and relations serves as a core motivation for incorporating relational inductive biases in
deep learning models (Battaglia et al., 2016, 2018; Hamrick et al., 2018; Kipf et al., 2020b).

The mental representation of the world we humans have, gives us the ability to predict the fu-
ture, i.e. plan ahead in certain situations. This is useful in nearly all activities we engage in, for
example, while driving a car, playing sports or playing board games. The ability of planning is
also an important aspect of reinforcement learning algorithms, such as autonomous naviga-
tion. Planning algorithms typically require a model of the environment, which can be used by
the agent to predict how the environment will respond to its actions. When a sufficiently accu-
rate model of the environment is available, planning algorithms (e.g. value iteration, Monte-
Carlo tree search) can be applied to compute the optimal value function or optimal policy. In
this work, the focus is on learning a representation of the environment that is suitable for find-
ing an optimal policy. The decision-making problem is therefore split into a model learning
step and a planning step, similar to the model-based reinforcement learning approach.

Before the planning step can be done, a model of the environment must be learned. In the
reinforcement learning framework, the environment can be formulated as a Markov Decision
Process (MDP). The MDP describes a fully observable environment in the reinforcement learn-
ing framework (Sutton and Barto, 2018). The model of the environment that is needed to do
efficient planning approximates the MDP in a lower state space. Ideally, the learned environ-
ment model is in perfect correspondence with the original MDP, this is a so-called MDP homo-
morphism. When a policy is learned using the homomorphic model of the MDP, the policy can
be lifted to the original MDP. Hence, by first learning a model of the environment in a latent
space, planning can be done efficiently under the assumption that the learned environment
model is sufficiently accurate. With an accurate model of the environment, the agent can learn
to generalize to novel environment scenarios, opposed to model-free approaches that aim to
directly determine a policy from experiences.

Planning plays an important role in robot navigation, therefore the focus is on state represen-
tation learning in a robot navigation context. In navigation problems, there is an agent that
needs to traverse to a goal while interacting in an environment with obstacles. By modeling
the obstacles and agent as a graph, where entities are nodes and their relations are edges, an

Y.C. (Yannick) van Wettum University of Twente



CHAPTER 1. INTRODUCTION 5

object-oriented representation of the environmental state is constructed. By representing the
state as a graph, a relational inductive bias is incorporated and expressive state representations
can be learned directly from raw observations (Kipf et al., 2020b). Furthermore, the relational
state representation facilitates more accurate counterfactual reasoning about effects of actions
and therefore allows for generalization to novel environment situations (Battaglia et al., 2018).

The main goal of this project is to improve upon the state of the art in representation learning
using a GNN. The aim is to learn useful state representations from raw pixel observations with-
out direct supervision. The state representation will be learned by predicting the next state in
latent space. By encoding the observation and next observation into latent space and putting
the loss in latent space, both a model of the environment and a state representation are learned.
Additionally, there is no need to learn a decoder because the loss is applied in latent space. The
learned state representation and the learned model of the environment are used to learn a
policy. The effectiveness of learning a state representation using a GNN will be compared to
representation learning using a neural network (NN) architecture. Particularly, the focus is on
generalization performance to novel environment situations. In the remainder of this thesis,
the abbreviation NN will refer to the explicit feedforward neural network architecture. If ‘neu-
ral network’ is written out, this refers to neural networks in general. A navigation task in its
simplest form will be used to analyze different state representation learning approaches. More
specifically, the navigation task entails navigation in a deterministic 2D grid world, in which
fully observability is assumed.

1.3 Research questions

Based on the main goal described above, the following main research question is formulated:

“To what extent can a graph neural network be used effectively in state representation learning
in a fully observable deterministic 2D grid world, to increase an agent’s generalization
performance to novel environment scenarios?"

To elaborate, the focus is on learning expressive state representations and a model of the en-
vironment that facilitates generalization to novel environment situations. By using a model of
the environment that generalizes to novel environment scenarios, an agent can be trained for
unseen environment situations without the need for additional simulation. By incorporating
an inductive bias in the model architecture by means of a GNN, it is expected that the envi-
ronment models can generalize better to novel environment situations and expressive state
representation will be learned.

In order to find an answer to the main research question, it is split into two separate sub-
questions, see research question 1 (RQ1) and research question 2 (RQ2).

RQ1 “How can a graph neural network be used to learn a transition and reward model in a fully
observable deterministic 2D grid world?”

RQ2 “To what extent can a graph neural network be used effectively to learn a transition and
reward model in a latent space for a fully observable deterministic 2D grid world?”

The main focus of RQ1 is the effectiveness of a GNN as a choice to model the environment
(transition model and reward model) compared to a NN architecture. The two approaches will
be compared with respect to generalization performance of the environment model to unseen
scenarios. The environment state is directly accessible such that no state representation has
to be learned. Furthermore, for both learned environment models the value function will be
calculated, which will be used to determine a policy. The calculated value functions will be
compared with respect to the true value function.

Robotics and Mechatronics Y.C. (Yannick) van Wettum



6 State representation learning using a graph neural network in a 2D grid world

In real world scenarios, the input data is often high dimensional, e.g. images or laser data. A
compression of the observation is needed to do efficient learning. Therefore, RQ2 extends to
a more realistic setting, where the raw observations will be automatically mapped to a latent
state representation (either as a graph or as a vector). Simultaneously, a transition model and
a reward model will be learned in latent space. Hence, in RQ2 the focus is on learning a useful
state representation from raw observations in a self-supervised setting. This will be achieved
by training a model of the environment in latent space. The learned environment model and
the learned state representation will be used to train an agent in latent space. This will be done
for both a GNN implementation and NN implementation of the environment model.

The main contributions of this work are:

• The application of a GNN to learn an approximate MDP homomorphism;

• A comparison of a MDP homomorphism learned using a NN, against a MDP homomor-
phism learned using a GNN, for a fully observable deterministic 2D grid world.

• The application of an approximate MDP homomorphism (learned using a GNN and NN)
to learn a policy in latent space.

1.4 Report outline

The report is organized as follows:

Chapter 2 - Background : In Section 2.1, the background theory regarding reinforcement learn-
ing is presented. Followed by Section 2.2, where the different approaches in state representa-
tion learning are discussed. Then, the graph data structure is introduced in Section 2.3. The
basics on NNs, CNNs and GNN are respectively presented in Section 2.4, Section 2.5 and Sec-
tion 2.6.

Chapter 3 - Related work : In this chapter, related work regarding unsupervised state repre-
sentation learning is discussed. In Section 3.1, related work according to the three strategies in
state representation learning is discussed briefly. Followed by Section 3.2, where the focus is
on learning transition models (using GNNs). In Section 3.3 a recent success story of a GNN in
reinforcement learning is presented.

Chapter 4 - Method : In this chapter the methodology used to answer the research questions is
presented. In Section 4.1, it is described how a model of the environment is trained with access
to the environment state. Followed by Section 4.2, where it is presented how the generalization
performance is evaluated. In Section 4.3, the problem is extended to learn a state represen-
tation from raw observations. This is done by training an environment model in latent space.
Then in Section 4.4, it is described how the environment model is for planning in latent space.

Chapter 5 - Experimental design : In Section 5.1, the used software is presented and the envi-
ronments used in the experiments are discussed. In Section 5.2, The performed experiments
are elaborated.

Chapter 6 - Results and discussion : The results of the experiments are presented in this chap-
ter. In Section 6.1 the results of learning an environment model in a fixed environment are pre-
sented. This is extended in Section 6.2, where the environment is randomized. The value func-
tions for unseen maze configurations are presented in section 6.3. In Section 6.4, the learned
state representation are presented. In Section 6.5, the results for learning a policy in latent
space and applying it in the original environment are shown.

Chapter 7 - Conclusion and recommendation : Here the work is concluded. In Section 7.1,
the research questions are answered. In Section 7.2, some future research directions are high-
lighted.
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Appendices : Appendix A - Activation functions, contains supplementary information about
the different kind of activation functions. Appendix B - GNN framework - GraphNets, contains
a brief summary of the Graph Networks framework. Appendix C - Setup development envi-
ronment, is a guide to setup the development environment using TensorFlow and CUDA in
Pycharm. Appendix D - Graph learning libraries, presents an overview of the different graph
learning libraries that are available at the time of writing. Appendix E - Reproduction results
C-SWM paper, the C-SWM architecture (Kipf et al., 2020b) is made in TensorFlow and the re-
sult are compared to the original paper for one of the environments. Appendix F - Additional
figures, some additional results are added.
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8 State representation learning using a graph neural network in a 2D grid world

2 Background

This chapter introduces the background information related to state representation learning,
reinforcement learning and different types of neural networks. This starts with Section 2.1,
which provides an overview of the reinforcement learning framework. Secondly, in Section 2.2,
the state representation learning approaches are presented. In Section 2.3, the data structure
of a graph is discussed. Then, in Section 2.4, the basics on NNs are covered. This is followed by
a discussion on CNNs in Section 2.5. Lastly, the GNNs are introduced in Section 2.6.

2.1 Reinforcement learning

Reinforcement learning is one of the three paradigms in machine learning (ML). The other
paradigms are supervised learning and unsupervised learning. Reinforcement learning refers to
the learning process where an agent learns how to act in an environment from its observations.
It is inspired on how animals and humans learn. As humans, we explore the world around us
by means of our observations through our sensors (e.g. eyes, ears, tongue, skin, nose). Based
on our observations we perform actions according to what we want to achieve (our goal). The
consequence of our actions is then again observed. In this loop of observing and acting we
learn how to behave in a world to satisfy our goal.

In this section, the main concepts of reinforcement learning are introduced which will be used
throughout the rest of this thesis.

2.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework for modeling sequential
decision-making under uncertainty. The goal in a MDP is for an agent to reach a certain de-
sired state. The MDP formalizes a set of states of the environment and a set of actions for the
agent to take. Furthermore, the MDP formalizes a reward function that gives a scalar reward
for taking a certain action in a certain state and ending up in a next state. Likewise, a transi-
tion function is defined that gives the probability of changing from one specific state to the next
state, given a certain action. Thus, a MDP is formally defined by the four-tupleM= (S ,A,R,T ),
where:

• S is the set of possible states;

• A is the set of actions;

• R :S×A×S →R is the reward function which is a three-argument function that specifies
the expected scalar valued reward r for taking action a in state s and ending up next state
st+1, R(s, a, s′) = E [rt+1 | st , at , st+1];

• T : S ×A×S → [0,1] is the transition function which is a three-argument function that
specifies the probability for the transition to a certain next state st+1 given an action a
and state s, T (s, a, s′) = P [st+1 | st , at ].

The complete dynamics of the environment are characterized by the transition and reward
function. A MDP satisfies the Markov Property if the transition function depends only on the
current state s and the performed action a in this state. The current state captures all relevant
information from the history to predict the future, i.e. the future is independent of the past
given the present. In reinforcement learning, the problem is often considered to satisfy the
Markov Property. The Markov property is formulated in Equation 2.1 (Sutton and Barto, 2018).

P (st+1 | st , at ,rt , st−1, at−1,rt−1 · · · , s0, a0,r0) = P (st+1 | st , at ) (2.1)
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In some cases, the entire environmental state cannot be observed. The agent gets an observa-
tion o of the environment by means of sensors. In case of a navigation robot that faces a blind
wall, the robot does not know which part it is looking at without knowing the route it took.
When the agent perceives the entire environmental state this is called fully observable, ot = st .
However, in any practical problem the state of the environment is not equal to the observa-
tion of the agent. When the observation is not sufficient to uniquely identify the underlying
environment state, the environment is called partially observable.

In the formulation for the MDP presented above, the system was considered to be fully ob-
servable. In the partially observable setting, the problem transforms to a Partially Observable
Markov Decision Process (POMDP) where the observation of the agent does not equal the state
of the environment ot 6= st . The POMDP is defined by the tuple M = (S ,A,R,T,Ω,O) (Silver,
2015a), where the additional Ω and O are:

• Ω is a set of observations;

• O :Ω×A×S → [0,1] is the observation function which is a three-argument function that
gives the probability for the observation o as a result of a certain next state st+1 and an
action a, O(o, a, s′) = P [ot+1 | st+1, at ]

The MDP framework is abstract and flexible and can be applied to many different problems in
a wide range of areas. Above, the MDP is presented for the stochastic case but there are many
variations possible, such as the POMDP which was discussed briefly. Another variation is the
case where the MDPs is deterministic, which means that an action uniquely determines the
next state, i.e. the probability distribution associated with each actions gives probability 1 to
one of the states such that T (st , at ) = st+1 and R(st , at ) = rt . Hence, the name Deterministic
Markov Decision Process (DMDP).

2.1.2 Reinforcement learning framework

In reinforcement learning there is no external supervisor that tells the agent which actions to
take. The agent learns by doing, by interacting with an environment it learns which of its ac-
tions are good. Which actions are good or bad is defined by the reward function. An agent is
considered to be any high-level controller that is used for example to control a robot or to op-
erate in a game. The agent analyzes which action to take by maximizing the rewards it receives.
Therefore, the reinforcement learning problem boils down to maximizing a numerical reward
signal. Hence, the name ‘reinforcement learning’, a stimulus - a reinforcer - is received after the
agent performs actions.

A MDP formally describes an environment for reinforcement learning. The reinforcement
learning problem is a discrete time stochastic control process. The agent interacts with the
environment in discrete time steps. The agent start in a certain initial environment state s0 ∈S
and it gets its initial observation o0 ∈ Ω. At each time step t , the agent observes the environ-
ment state st ∈ S through its observations ot ∈ Ω by means of sensors (e.g. Light Detection
and Ranging (LIDAR) sensor, camera, microphone). Every time step the agent takes an action
at ∈A according to a certain policy π. After taking the action, the agent receives a reward rt ∈R
from the environment defined by the reward function R(st , at , st+1). After performing the ac-
tion, the environment advances to a next state st+1 ∈ S which is then again observed by the
agent. The same cycle is repeated for the next time step. The described reinforcement learning
framework is shown in Figure 2.1. The advancement to the next time step is at the boundary
of the agent’s input and the environment’s output, this is indicated by the dashed line in Figure
2.1

In short, reinforcement learning is the learning process where an agent learns to map situations
to actions in order to maximize its total reward. For the reinforcement learning problem it does
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10 State representation learning using a graph neural network in a 2D grid world

not matter what the states, goal, actions or reward signal are. It is a general framework for
solving a wide range of problems with a similar setup. The context is given by the application
at hand.

Figure 2.1: The interaction between agent and environment in the reinforcement learning framework
(Sutton and Barto, 2018). st , rt and at are respectively the state, reward and action at time t . st+1 and
rt+1 are the state and reward at time t +1 as a result of action at . The dashed line at the output of the
environment indicates the advancement to the next time step.

2.1.3 Terminology within reinforcement learning

Many aspects of reinforcement learning are common across all methods. Therefore, the used
terminology is stated here and briefly discussed.

Agent and environment

The learner and decision maker is called the agent. An agent follows a certain policy π to se-
lect actions such that it interacts with an environment. The environment selects the next ob-
servation and reward. The separation between agent and environment is made by a general
rule: anything that cannot be changed arbitrarily by the agent is considered to be part of the
environment. The environment can be continuous or episodic. In the episodic case, the envi-
ronment resets when a certain terminal state is reached. The agent-environment interaction
breaks down naturally in subsequences which are called episodes. An example of episodic task
is playing an Atari game or navigation in a maze. Here the episode ends respectively when the
agent dies/the level is finished or when the end of the maze is reached. In the continuous case,
the task does not stop when a goal is reached. The problem goes on forever, e.g. an ongoing
process-control task such as maximizing the power output of a wind turbine.

State, observation and action

State and action were extensively discussed in Section 2.1.1. In short, state refers to the situation
the environment is in which is perceived by the agent through its observation. The observation
is the information used to determine what happens next. Action can be any decision that the
agent makes.

Goal, reward and return

The goal in reinforcement learning is a high-level objective of the agent, e.g. win a chess game,
optimize power output of a wind turbine or reach the end of the maze with the shortest path.
Goals are very diverse and depend on the application. The goal is communicated to the agent
by means of a special signal, the reward signal. The idea that the reward signal formalizes the
goal is one of the most distinctive features of reinforcement learning (Sutton and Barto, 2018).

The reward is always a simple scalar value, i.e. r ∈R. The reward signal r indicates the amount
of the desirability (value) of an observed transition. As mentioned in section 2.1.1, the reward
function is a function of state and action that returns the expected reward: R(st , at , st+1) =
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E [rt |st , at , st+1]. In order to fulfill the goal in an optimal way, the agent maximizes the cumula-
tive reward it receives in the long run. The cumulative reward is called return Gt , see Equation
2.2. In the case of a continuous task, the concept of discounting is introduced to limit the
growth of the reward indefinitely. Furthermore, the discount factor γ ∈ [0,1] can be used to put
emphasis on immediate rewards or future rewards. If γ is close to 0 this leads to myopic evalu-
ation and when γ is close to 1 this leads to far-sighted evaluation. In the case of a continuous
task, the return is defined as the total discounted reward from time step t , see Equation 2.3.

Gt = rt+1 + rt+2 + rt+3 +·· ·+ rT =
T∑

k=0
rt+1+k (2.2)

Gt = rt+1 +γrt+2 +γ2rt+3 + . . . =
∞∑

k=0
γk rt+1+k (2.3)

The reward signal can either be dense or sparse. In the dense reward case the agent receives
non-zero rewards at every time step. In the sparse reward setting, the agent receives zero re-
wards most of the time and a significant reward when it reaches the termination state. The
dense reward signal allows for faster learning because the agent learns directly what good and
bad actions are. While in the sparse reward setting, often more iterations are needed because
the agent first needs to get the large reward more or less by accident. Only after the termination
state is reached once, the agent can start learning. In simple problems, constructing the dense
reward function can be straight forward but can become very complex in challenging tasks or
environments.

Policy

A policy π is the agent’s behaviour. The policy is a mapping from state space to action space,
it gives the action the agent should take in a specific state. The reward signal is the tool for
communicating the goal to the agent. ‘How’ this goal is achieved is what the agent tries to learn
by maximizing the return and is referred to as the policy. The optimal policy π∗ is the policy
that maximize the expected return when acting according to that policy Jπ. The optimal policy
is formally defined as in Equation 2.4.

π∗ = argmax
π

(
Jπ

)= argmax
π

(Eπ [Gt ]) (2.4)

The policy can come from a lookup table in the case of tabular Q-learning (Watkins, 1989). The
policy can also be more involved using a function approximater such a neural network (NN)
which is the case in Deep Q-Learning (DQN) (Mnih et al., 2015). The different methods to learn
a policy are discussed in the next Section 2.1.4.

The policy can be deterministic, where the policy is a function that maps a state to an action,
a = π(s). The policy can also be stochastic, in that case the the policy is a probability distribu-
tion over the possible actions conditioned on the state. Hence, π(s) is a probability distribution
over a ∈A and π(a|s) is the probability of selecting action a in state s, i.e. π(a|s) = P [a|s].

Value functions

The expected value of the return following a certain policy is given by the state-value function,
often referred to as value function, V π(s) : S → R. The value function is used to evaluate the
goodness/badness of states in the long run (Sutton and Barto, 2018). The value of a state is not
simply the reward that the agent receives in that state. Formally, the state-value function V π(s)
of a MDP is defined as the expected return starting from state s, and then following a particular
policy π, see Equation 2.6. Note that the value of the terminal state (if there is one) is always
zero (Sutton and Barto, 2018).
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12 State representation learning using a graph neural network in a 2D grid world

V π(s) = Eπ [Gt | st = s] (2.5)

= Eπ
[ ∞∑

k=0
γk rt+k+1 | st = s

]
(2.6)

Important to note is that the objective of the agent is to maximize the total reward not necessar-
ily the immediate reward. A state can look bad if solely the immediate rewards are considered
but might have a high value. Therefore, the value function is an important tool in determining
the optimal policy in the reinforcement learning problem. The estimation of the value func-
tion is an essential part of many reinforcement learning algorithms. The agent tries to find the
policy which results in the largest sum of rewards. Therefore, the agent must seek for the state
with the highest value. Hence, the value function can be used to achieve the goal in an optimal
way.

In addition to the value function there is the state-action value function, also referred to as Q-
value function or action-value function, Qπ(s, a) : S ×A→ R. The Q-value function gives the
expected return starting from state s, taking action a, and following policy π thereafter. The
output of the Q-value function is called the Q-value. Opposed to the value function, the first
action is explicitly defined in the Q-value function and is not necessarily according to the policy
that is being followed. The definition is formulated in Equation 2.8.

Qπ(s, a) = Eπ [Gt | st = s, at = a] (2.7)

= Eπ
[ ∞∑

k=0
γk rt+k+1 | st = s, at = a

]
(2.8)

When the agent acts according to an optimal policy the optimal value function and optimal
Q-value function are defined as in Equation 2.9.

V ∗(s) = max
π∈Π

V π(s) , Q∗(s, a) = max
π∈Π

Qπ(s, a) (2.9)

An important property of both value functions is that they can be written using a recursive re-
lationship. This allows for dynamic programming algorithms to estimate the value of a policy
given the transition function and reward function. This recursive formulation is called Bell-
man equation and can be formulated for both the value function and the Q-value function, see
Equation 2.12 and Equation 2.15 (Sutton and Barto, 2018).

V π(s) = Eπ
[ ∞∑

k=0
γk rt+k+1 | st = s

]
(2.10)

= Eπ
[
rt+1 +γV π(st+1) | st

]
(2.11)

= ∑
a∈A

π(a|s)
∑

s′∈S
T (s, a, s′)

[
R(s, a, s′)+γV π

(
s′

)]
(2.12)

Qπ(s, a) = Eπ
[ ∞∑

k=0
γk rt+k+1 | st = s, at = a

]
(2.13)

= Eπ
[
rt+1 +γV π(st+1) | st , at

]
(2.14)

= ∑
s′∈S

T (s, a, s′)
[
R(s, a, s′)+γV π

(
s′

)]
(2.15)
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The value function and Q-value function are related to one another by the relation shown in
Equation 2.16.

V ∗(s) = max
a

Q∗(s, a) (2.16)

The Bellman equation plays an important role in finding the optimal policy in many reinforce-
ment learning algorithms, as will be presented in the next section.

2.1.4 Reinforcement learning methods

If the transition function T (st , at , st+1) and reward function R(st , at , st+1) are known, the opti-
mal policy can be found by planning, using dynamic programming methods that exploit the
Bellman equation shown in Equation 2.12. However, often the dynamics of the environment
is not known upfront. The agent needs to estimate the value of taking a certain action in a
state without the knowledge about the transition function and reward function. When this
is the case, reinforcement learning algorithms are suitable to find the optimal policy. In rein-
forcement learning, an agent learns to map states to actions from the experience gained during
interaction with the environment and receiving feedback by means of a reward signal.

Reinforcement learning algorithms can be categorized in two main categories, model-free algo-
rithms and model-based algorithms (Sutton and Barto, 2018). In model-based reinforcement
learning, the agent samples experiences from the environment to estimate the transition func-
tion T (st , at , st+1) and reward function R(st , at , st+1). Then, planning algorithms are used to
find the optimal policy. In model-free reinforcement learning, there is no model made of the
underlying dynamics, the Q-function or the policy are directly estimated from experiences.

Dynamic programming

The term ‘dynamic programming’ refers to the algorithms that can be used to compute optimal
policies using a perfect model of the environment. A disadvantage of dynamic programming
is that a perfect model is assumed, which is never known upfront in reinforcement learning.
Furthermore, dynamic programming algorithms are computational expensive. Dynamic pro-
gramming methods form the foundation of many reinforcement learning algorithms.

Policy iteration

Policy iteration consists of two simultaneous processes that interact in order to learn an opti-
mal policy. Considering finite MDPs, there are a finite number of policies and therefore policy
iteration converges to an optimal policy and optimal value function in a finite number of itera-
tions. The algorithm for policy iteration is given in Algorithm 1.

Policy evaluation makes the value function consistent with the current policy and the policy
improvement makes the policy greedy with respect to the current value function. The general
idea of the interacting policy evaluation and policy improvement is referred to as General Policy
Iteration, see Figure 2.2. Many reinforcement learning algorithms can be described using this
principle, i.e. they all have policies and value functions, with the policy being improved with
respect to the value function and vice versa. When both the policy evaluation and the policy
improvement stabilize, an optimal policy and optimal value function are found according to
the Bellman optimality equation, see Equation 2.17.

V ∗(s) = max
a

∑
s′∈S

T
(
s, a, s′

)[
R(s, a, s′)+γV ∗ (

s′
)]

(2.17)
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14 State representation learning using a graph neural network in a 2D grid world

Algorithm 1: Policy iteration (Sutton and Barto, 2018)

Algorithm parameter: θ, a small threshold θ > 0 determining the accuracy of estimation
Initialize: V (s) ∈R and π(s) ∈Π arbitrarily for all s ∈S
1. Policy Evaluation
while ∆> θ do

∆← 0
forall s ∈ S do

vol d ←V (s)
V (s) ←∑

s′∈S T (s,π(s), s′)
[
R(s,π(s), s′)+γV π

(
s′

)]
∆← max(∆, |vol d −V (s)|)

end
end
2. Policy Improvement
policy stable ← True
forall s ∈ S do

old action ←π(s)
π(s) ← argmaxa

∑
s′∈S T (s, a, s′)

[
R(s, a, s′)+γV π

(
s′

)]
if old action 6=π(s) then policy stable ← False

end
if policy stable then stop and return V (s) ≈V ∗ and π≈π∗ else go to 1. Policy Evaluation

Figure 2.2: General Policy Iteration visualized (Sutton and Barto, 2018).

Value iteration

Value iteration is used in planning and is similar to policy iteration except that it skips the pol-
icy evaluation step. The policy evaluation step requires multiple sweeps through the state set.
Value iteration uses the Bellman optimality equation in an update rule. The value iteration
algorithm is shown in Algorithm 2.
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Algorithm 2: Value iteration (Sutton and Barto, 2018)

Algorithm parameter: θ, a small threshold θ > 0 determining the accuracy of estimation
Initialize: V (s), for all s ∈S , arbitrarily except that V (ter mi nal ) = 0
while ∆> θ do

∆← 0
forall s ∈ S do

vol d ←V (s)
V (s) ← maxa

∑
s′∈S T (s, a, s′)

[
R(s, a, s′)+γV

(
s′

)]
∆← max(∆, |vol d −V (s)|)

end
end
Output: Output a deterministic policy, π≈π∗, such that

π(s) = argmaxa
∑

s′∈S T (s, a, s′)
[
R(s, a, s′)+γV

(
s′

)]
Q-learning

Q-learning (Watkins and Dayan, 1992) is a model-free reinforcement learning algorithm. In Q-
learning, the Q-value is estimated for a certain state s and action a. Q-learning is an off-policy
algorithm, which means that the learned policy is not necessarily the same as the policy used
for the action selection. Consequently, an optimal policy can be learned while taking random
actions. The optimal policyπ∗ is obtained by acting greedy with respect to the optimal Q-value,
see Equation 2.18.

π∗(s) = argmax
a∈A

[
Q∗(s, a)

]
(2.18)

In tabular Q-learning, the agent learns to fill in a lookup table with an entry for each state-
action pair. For each entry the Q-learning is updated using Equation 2.19. The update makes
use of the Bellman equation. Intuition behind this update rule can be gained when comparing
it to Equation 2.14.

Qt+1 (st , at ) ← Qt (st , at )︸ ︷︷ ︸
current value

+α
temporal difference︷ ︸︸ ︷

(rt +γ · max
a

Qt (st+1, a)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

temporal difference target

− Qt (st , at )︸ ︷︷ ︸
current value

) (2.19)

Here α is the learning rate and γ is the discount factor. The difference between the current
estimate of Q-value Qt (st , at ) and the true future value is called temporal difference (TD) or
TD error. However, the true future value is not known, the agent uses the current reward and
the maximizing Q-value of the next state st as an estimate of the true value, which is called the
temporal difference target. Note that the subscript t at the Q-values indicates the iteration steps
of Q-learning. The complete algorithm is shown in algorithm 3. Tabular Q-learning converges,
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given sufficient samples for each state and a discrete actions space (Watkins and Dayan, 1992).

Algorithm 3: Tabular Q-learning (Sutton and Barto, 2018)

Algorithm parameter: learning rate α ∈ (0,1], small ε> 0
Initialize: Q(s, a), for all s ∈S , a ∈A arbitrarily except that Q(ter mi nal , ·) = 0
for each episode do

Initialize s
for each step t of episode do

choose a =π(s) using policy derived from Q (e.g. ε-greedy)
take action a
observe reward r and new state s′

Qt+1(s, a) ←Qt (s, a)+α[
r +γmaxa Qt

(
s′, a

)−Qt (s, a)
]

s ← s′

end
end

In addition to Q-learning there are many other methods that use the same principle of tempo-
ral difference, e.g. SARSA (Rummery and Niranjan, 1994). Opposed to Q-learning, SARSA is an
on-policy algorithm. On-policy means that the agent updates the Q-value of the current state
and action using the estimation of the Q-value for the next state and action of the current pol-
icy. On-policy algorithms can only train their policy using samples collected by their current
policy. This makes off-policy algorithms more sample efficient because samples from the past
can be used to train its policy. SARSA does not use a greedy policy for interacting in the envi-
ronment, the maximization over all actions is not used. Therefore, the update rule is similar to
Equation 2.19 except that there is no maximization over a, i.e. maxa Qt (st+1, a) is changed for
Qt (st+1, at+1).

Q-learning works well in small domains, i.e. small state-action spaces. However, many real-
world problems have large or continuous state-action spaces. When the state-action space
is large, the tabular Q-learning method is not practical because the size of the lookup table
will increase rapidly or is simply not possible in continuous problems. In order to deal with
large state-action spaces, function approximators can be used to approximate the Q-function
instead of keeping track of a lookup table. A commonly used function approximator is a (deep)
NN. The approach of deep NNs as function approximator has shown to be successful, a popular
algorithm using a deep NN as function approximator to estimate the Q-value is DQN (Mnih
et al., 2015).

Supervised ML algorithms are used to approximate the Q-function by means of a NN with pa-
rameters θ. In this way the Q-value function is a function parametrized by the learned pa-
rameters Q(s, a;θ). The parameters θ need to be found such that Q(s, a;θ) converges to the
optimal Q-value. The parameters can be updated using gradient descent methods, minimizing
the mean squared error (MSE) between the current estimate of Q(s, a) and the target, as shown
in Equation 2.20.

Li (θi ) = E,

[(
r +γmax

a′ Q
(
s′, a′;θ−i

)−Q (s, a;θi )

)2]
(2.20)

Where r +γmaxa′ Q
(
s′, a′;θ−i

)
is the target value for iteration i . The parameters of the network

θi change every iteration. When the targets depend on the changing network parameters this
can cause instability. To make the training more stable, the target value depends on the θ−i
which is an older version of the network. The parameters are updated θ−i = θi every C number
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of steps and is kept fixed between updates. The parameters are updated using gradient descent,
see Equation 2.21 for the gradient.

∇θi Li (θi ) = E,

[(
r +γmax

a′ Q
(
s′, a′;θ−i

)−Q (s, a;θi )

)
∇θi Q (s, a;θi )

]
(2.21)

While the agent interacts with its environment it collects experiences. Each experience is de-
fined by a tuple (st , at ,rt , st+1) and are stored in a so called replay buffer. The replay buffer al-
lows for experience replay and was also introduced by (Mnih et al., 2015). From the replay buffer
samples are taken in batches and the network is trained using supervised learning methods.
The data efficiency is high because all samples can be used in each update. Furthermore, this
approach prevents the high correlation between consecutive samples and therefore reduces
the variance of the updates. Moreover, by using experience replay with batches, the individ-
ual experiences are averaged, this reduces variance in the parameters and makes the learning
smooth (avoiding oscillations).

In practice, the Q-network will predict a Q-value for all actions given a state, i.e. the output of
the Q-network is a value for each action. For example, take the scenario where an agent has
four discrete actions (left, right, up, down). In this scenario, the Q-network will be given a state
and the Q-network will output a value corresponding to each action in the given state. This
way one does not have to compute the output for every action in each state but can simply take
the maximum of the output of the Q-network to get the best action. The DQN algorithm with
experience replay from (Mnih et al., 2015) is shown in Algorithm 4.

Algorithm 4: Deep Q-learning with experience replay (Mnih et al., 2015)

Initialize replay buffer D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1, M do

Initialize sequences s1 = x1 and preprocessed sequence φ1 =φ(s1)
for t=1, T do

With probability ε select a random action at

otherwise select at = argmaxaQ(φ(s1), a;θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st , at , xt+1 and preprocess φt+1 =φ(st+1)
Store transition

(
φt , at ,rt ,φt+1

)
in D

Sample random minibatch of transitions
(
φ j , a j ,r j ,φ j+t

)
from D

Set y j =
{

r j if episode terminates at step j+1
r j +γmaxa′ Q̂

(
φ j+1, a′;θ−

)
otherwise

Perform a gradient descent step on
(
y j −Q

(
φ j , a j ;θ

))2 with respect to the network
parameters θ

Every C steps reset Q̂ =Q
end

end

2.1.5 Model-based reinforcement learning

In model-based reinforcement learning an environment model is learned. Anything that can be
used to predict how the environment will respond to actions in terms of reward and state tran-
sition is considered an environment model (Sutton and Barto, 2018). Therefore, environment
models consist of two parts. First, a transition model which encodes the effect of actions on the
change in state T (s, a, s′). Second, a reward model which encodes the reward signal expected
in a certain state or corresponding to a state-action pair R(s, a, s′).
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The environment model can be learned from the observed data samples (st , at ,rt , st+1) which
an agent gathered during deployment in an environment. The learned environment model is
then used for planning in order to find an optimal policy. Hence, the first step is to learn a
model for the environment dynamics. Learning the environment model is a supervised prob-
lem where the state-action pair is mapped to a next state and reward. Here, the focus is on
one-step models. In general, there are three types of dynamic functions (Moerland et al., 2021):

• forward model: (st , at ) → st+1, the next state is predicted given the current state and cho-
sen action;

• reverse model: st+1 → (st , at ), the state and action are predicted which resulted in a par-
ticular state;

• inverse model: (st , st+1) → at , this predicts which action is needed to get form one state
to another state.

As in model-free reinforcement learning, there are tabular methods and function approxima-
tion methods. The tabular case is applicable to discrete MDPs. In general, practical problems
are continuous and have large state-action spaces which make the tabular method infeasible.
Therefore, the function approximation methods are the preferred choice in practice and often
NNs are used. In model-based reinforcement learning the forward model is the most common
model to do planning by predicting the future. After obtaining a model for the transition and
reward, the future states and corresponding rewards can be predicted. The model of the en-
vironment is used to plan the best actions by looking ahead. The model-based framework is
summarized in Figure 2.3.

Figure 2.3: The model-based learning framework (Silver, 2015b).

2.2 State representation learning

Reinforcement learning methods have shown to be able to learn impressive policies from raw
pixel input, (Mnih et al., 2015). The raw input data is often high dimensional and includes a
lot of irrelevant information, e.g. static background. Therefore, high dimensional input data
increases computational load during training and more samples are needed to learn to ignore
the unimportant features. Sample inefficiency is an important problem in reinforcement learn-
ing which is formulated as the curse of dimensionality: ‘as the number of features grows, the
amount of data that is needed to generalize accurately grows exponentially’. Therefore, it is de-
sired to keep the input data dimensionality small with expressive features. This way the model
can be simple (fewer parameters needed) and learn fast (no irrelevant information in the in-
put).
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Consider the Pong game, an Atari game that simulates table tennis. Players control an in-game
paddle in order to hit the ball back and forth. Points are earned when the opponent fails to
return the ball. An agent can be trained to play as one of the players in the Pong game. The
observation would be a frame of the game, or maybe several consecutive frames in order to
know moving directions of the paddles and ball. The frame contains a lot of unimportant in-
formation, e.g. the background or the net in the middle. The only information needed to play
the Pong game is the positions of the paddles and the position of the ball. This would mean 6
variables as opposed to the 160 x 192 pixels of an Atari game. The input data is often larger by a
lot than the number of relevant variables needed to design a controller.

Representation learning is a core research topic within control. Traditionally, the observation
space is constructed manually. This is often feasible but for more complex tasks this is non-
trivial. Moreover, in simulations we have access to the true states, this is of course not the
case in the real world. In the real world this task is more complex, from high dimensional
sensor data the relevant information is extracted. Hence, the main idea is to map observations
from the high dimensional observation space to a lower dimensional state space. A good state
representation is crucial for down stream control tasks.

Reinforcement learning methods have shown great success in learning from raw input data.
The NNs are well suited for learning internal representations that are lower dimensional and
encapsulate relevant information. By using more layers in the NN, different levels of abstrac-
tions are learned. The input data is often mapped to actions in the output layer, (Mnih et al.,
2015). Therefore, the learned representations are not interpretable as it is formed within the
NN. Additionally, a very specific controller is trained which has to be re-trained when the input
changes slightly or the task at hand changes. For example, when an agent is trained to play the
Pong game it needs to be re-trained when the input frames are rotated 90 degrees. However,
there are techniques to account for this but this introduces additional complexity to the NNs.

In order to make learned representations more interpretable and reusable, a lower dimensional
state representation is often first learned. State representation learning aims at learning a state
abstraction from observations in an unsupervised or self-supervised manner. The learned state
abstraction is then used in down stream reinforcement learning algorithms to speed up the
learning process. The aim is to learn a state representation that allows to learn a policy that is
optimal when applied in the original state space. In other words, it is desired to have a map-
ping from the original MDP to a more compact MDP that preserves the underlying dynamics
(transition/reward model) of the original MDP. This is referred to as a MDP homomorphism.
This allows for solving the task in the compact MDP and projecting the solution back into the
original problem.

There are three main approaches that can be distinguished for learning a state representation.
The first approach is focused on dimensionality reduction by means of compression. For ex-
ample, Principal Component Analysis (PCA) (Fodor, 2002) is a well known dimensionality re-
duction technique. In ML the autoencoder framework is widely used. The autoencoder aims at
extracting features and generating a low dimensional representation as a self-supervised prob-
lem. The input data is compressed by means of hidden layers (encoder). The compressed data
contains the lower dimensional representation. The compressed representation is then recon-
structed (decoder) into the original dimension. By defining an error between the input data
and the reconstructed data, a neural network is trained to learn a lower dimensional represen-
tation. A disadvantage of this approach is that task relevant information might be ignored and
task irrelevant information might be encoded. For example, a bullet in an Atari game might
look visually unimportant but is of importance for solving the task.

Another approach for learning state representations is by means of robotic priors (Jon-
schkowski and Brock, 2015). This approach is particularly applicable in the context of robotics,
hence the name. This idea is directed towards formulating loss functions that incorporate prior
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knowledge of the environment to learn a state representation. The reward signal is used to
learn a state representation of the environment. The reward signal is directly related to the task
that is being solved. Therefore, this method facilitates learning task relevant information and
ignoring information that is not relevant.

Thirdly, there is the approach of learning a transition model (Lesort et al., 2018). The transition
model predicts the next state st+1 as a function of the previous state st and action at . In the
context of state representation learning, the aim is to learn a mapping from the high dimen-
sional observation ot to st . This is achieved by using the transition model in two steps. First,
the observation ot is encoded into st and then the transition from st to is ŝt+1 is predicted. The
true next state st+1 is available and therefore an error can be computed between the true next
state st+1 and the predicted next state ŝt+1, see Figure 2.4. This error is then used to train the
transition model and encoding model (which is the mapping from ot to st ).

Figure 2.4: Learning a state representation by predicting the next state st+1 from st and at . The error
between ŝt+1 and st+1 is used to train a transition model and encoding model simultaneously (Lesort
et al., 2018).
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2.3 Graph

Before the graph neural network is discussed it is necessary to elaborate on what a graph is. In
this section, a formal description of a graph is given along with the relevant terminology related
to graphs.

2.3.1 Graph definition

Graphs are a universal data structure for describing complex systems. A graph is a data struc-
ture format which can be found in a wide range of areas because many practical problems
can be represented using graphs. Generally, a graph is a collection of objects (nodes) along
with a set of relations (edges) between pairs of these objects. An example in social sciences, a
graph can be used to model a social network, where nodes are individuals and edges represent
whether two individuals are friends (Zachary, 1977). In chemistry, molecules can be modelled
as a graph, where nodes are atoms and edges are bonds between these atoms (Gilmer et al.,
2017).

A graph is formally defined as G = (V ,E) where V is the set of nodes, and E is the set of edges
that connect the nodes. Both these sets are usually taken to be finite. V is often assumed to
be non-empty, while E is allowed to be the empty set. Edges are represented as tuple (u, v) of
nodes u, v ∈ V , e.g. an edge going from node u ∈ V to node v ∈ V is denoted as (u, v) ∈ E . The
order of the graph is the number of nodes, |V |. The size of the graph is the number of edges in
the graph, |E |.
In literature the terms ‘nodes’ and ‘vertices’ are used interchangeably. Likewise, for the terms
‘edges’ and ‘links’. Throughout the rest of the report, the term nodes and edges will be used.

2.3.2 Directed and undirected

The formal definition of a graph mentioned above is very broad and there are many extensions
to this formal definition which result in different flavours of graphs. A common distinction in
types occurs on the type of edges. There are two types of edges, directed (uni-directional) edges
and undirected (bi-directional) edges, see Figure 2.5. Typically in a graph, all edges are either
directed or undirected. A graph with solely directed edges is called a directed graph or digraph
and a graph with solely undirected edges is called an undirected graph or just graph, see Figure
2.5. Note that the two edges between nodes 1 and 6 in Figure 2.5b are actually an undirected
edge represented as 2 directed edges.

1

2

6

3

4

5

(a) Undirected graph.

1

2

6

3

4

5

(b) Directed graph.

Figure 2.5: Two types of graphs with different edges in blue. Undirected graph (left) with undirected
edges, direct graph (right) with directed edges. Note that these graphs are not equivalent. However, the
same node structure is used to emphasize the difference in edge types.
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The usage of directed/undirected graphs is dependent on the application. An example of
an undirected graph is a social network, where nodes represent people and edges represent
whether people are friends. An example of a directed graph is the world wide web, where
nodes are web pages and an edge represent a link to another web page. The social network
is an undirected graph because a friendship is a mutual relationship, whereas web pages do
not necessarily link to each other and are often one way.

2.3.3 Weighted and unweighted

In graphs where edges should be treated with different importance, weights can be used.
Weights are real valued scalars. In a road network where the nodes in a graph are places and
the edges are roads, the edges can have weights that represent the length of the road. In un-
weighted graphs the edges are considered with the same importance, i.e. all edges have a
weight of 1.

2.3.4 Adjacency matrix

The adjacency matrix A ∈ R|V |×|V | is a matrix representation of a finite graph. The elements of
the adjacency matrix indicate whether pairs of nodes are ‘adjacent’ in the graph. The nodes are
ordered such that each node indexes to a particular row and column in the adjacency matrix.
The adjacency matrix is always square. The presence of an edge between node u and node v
is then represented using a 1, if (u, v) ∈ E then A[u, v] = 1 and if (u, v) 6∈ E then A[u, v] = 0. In
short, the adjacency matrix is a (0,1)-matrix where 1 indicates a connection between nodes and
0 indicates that there is not a connection between the nodes. In Figure 2.6 an example of the
adjacency matrix for both a directed and undirected graph is shown.

In case of the weighted edges, each cell in the adjacency matrix A[u, v] represents the edge
weight of going from node u to node v . In case of an undirected graph, the adjacency matrix
is symmetric and has zeros on its diagonal. In the directed case (edge direction matters), the
adjacency matrix is not necessarily symmetric. The adjacency matrix is used a lot in graph
analysis because it allows for use of linear algebra. Note that it is often assumed that the edge
from a node to itself (self-loop) is excluded, A[u,u] = 0. It depends on the application at hand
whether you want to include self-loops, e.g. in a social network you will probably exclude self-
loops (e.g. being friends with yourself).
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(a) Undirected graph.
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(b) Adjacency matrix corresponding to the undirected
graph (left)

1

4

2

3

(c) Directed graph.
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(d) Adjacency matrix corresponding to the directed
graph (left)

Figure 2.6: Adjacency matrix example for an undirected graph and a directed graph.

The adjacency matrix is used as a data structure for representing graphs in computer programs.
Graphs tend to get very large and therefore adjacency matrices grow rapidly in size, O

(|V |2).
Moreover, in real-world problems the graph is often sparse and therefore space inefficient. Al-
ternatively, the graph can be represented using an adjacency list which is more space efficient
for representing sparse graphs. The adjacency list is a map from nodes to a list of neighboring
nodes. Another way to represent a graph is by means of an edge list, it is an unordered list of
edges where edges are represented as pairs of nodes.

2.3.5 Degree matrix

Another concept often used in graph theory is node degree. Node degree ki is the number of
edges adjacent to node i . Average degree is the average amount of edges adjacent to a node
in a graph, i.e. for an undirected graph the average degree is k = 1

|V |
∑|V |

i=1 ki = 2|E |
|V | . In directed

graphs a distinction between in-coming and out-going degree can be defined, it is referred to
as in-degree and out-degree, the sum is equal to the (total) degree. The average degree for a
directed graph is k = |E |

|V | . The degree matrix D is a diagonal matrix which contains information
about the degree of each node, i.e. the number of edges attached to that node.


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2


(a) Degree matrix corresponding to undirected graph in
Figure 2.6b


3 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

in-degree matrix

,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


︸ ︷︷ ︸
out-degree matrix

(b) In-degree matrix and out-degree matrix correspond-
ing to the directed graph shown in Figure 2.6d

Figure 2.7: Degree matrix examples
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2.3.6 Laplacian matrix

Adjacency matrices can be used to represent a graph without the loss of information. However,
there are other matrix representations of graphs that have useful mathematical properties. An
example is the Laplacian matrix, which is a representation of the graph and can be used to
find useful properties of the graph, e.g. clusters. Furthermore, the Laplacian can be used to
construct low dimensional embeddings.

Given a simple graph (an unweighted, undirected graph containing no graph loops or multiple
edges) the unnormalized Laplacian matrix is defined as L = D−A, where D is the degree matrix
and A is the adjacency matrix.

2.3.7 Other types of graphs

There are many structures possible with graphs. For example, a graph that can have multiple
undirected edges is called a multigraph as opposed to the simple graphs. Furthermore, a graph
where each node is connected to every node in the graph and therefore have the maximum
amount of edge is called a complete graph. Moreover, there can also be graphs considered that
have different types of edges. A discussion on all the different types of graphs (acyclic, bipartile
etc.) is irrelevant for the purpose of graphs here. For a more detailed discussion on all the
different types of graphs, the reader is referred to Easley and Kleinberg (2010) and Barabási and
Pósfai (2016).

2.3.8 Features

In many cases the graph is equipped with attributes or features. The graph can have features
on different levels, i.e. a graph can have edge-level features, node-level features or global-level
features. Considering the example of modeling the interaction between rubber balls connected
by springs in an arbitrary gravitational field. A global feature might be the gravitational field.
The nodes might represent the balls where the node features can be position, velocity, mass,
color. The edges can represent the presence of springs between different balls, in which case
the edge features will be springs constants.

The features in a graph can be of any representation format. In deep learning applications, the
features are most often real-valued vectors or tensors. However, the data structure can also be
sequences, sets or graphs. The problem at hand will determine what representation should be
used as features. For a more in depth discussion on graphs applied in ML the reader is referred
to Hamilton (2020).
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2.4 Neural networks

Artificial neural networks, or simply called neural networks (NNs), are a set of algorithms in-
spired by the working principle of biological neurons. A NN is composed of artificial neurons
which receive an input and process this to recognize patterns. Real-world input data is trans-
formed into numerical data that is referred to as the input feature vector. Each element of the
feature vector describes a real-world property. A NN provides a mapping from the input feature
vector to an output feature vector which can be related to the physical world (Bishop, 2006).
The input can be all kinds of data, e.g. images, sound, text.

The architecture of a NN is based on a collection of interconnected artificial neurons, similar
to the neurons in an animal brain. The (artificial) neurons are simple processing elements
which receive a numerical input signal, process this signal and output a numerical signal that
serves as the input of the next neuron. A neuron transforms the input to output through a
non-linear function. In the context of NNs, neurons are referred to as units. The connections
between neurons indicate the flow of the signals. These connections typically have weights
that strengthen/weaken the signals between neurons. Bringing this all together, the output of
a neuron is the result of a non-linear function on the input feature vector multiplied by the
weights plus some bias. The non-linear function is referred to as the activation function. The
weights and biases are the parameters θ of the model. How the output of a single neuron is
calculated is shown in Equation 2.22 and visualized in Figure 2.8. Here y is the output signal,
f (.) is a non-linear activation function, x is the input signal, w ∈ θ is the weight, b ∈ θ is a bias
that serves as an offset but is sometimes omitted in certain architectures.

y = f

(
M∑

i=1
wi xi +b

)
(2.22)

Figure 2.8: Single neuron

Neurons are put in layers to construct a NN. A NN typically has multiple layers and is also
referred to as multilayer perceptron (MLP). A NN consists of an input layer, one or more hidden
layers and an output layer. Each layer has multiple neurons and each neuron is interconnected
via weighted connections to neurons in the subsequent layer. When neurons are connected
to all subsequent neurons, this is called fully connected. The general architecture for a NN is
shown in Figure 2.9. NNs with many layers are referred to as deep NNs and are studied in the
field of deep learning. Note that the input layer neurons, hidden layers and output layer are
colored green, blue and red respectively. This convention will be used throughout the rest of
the thesis.

Finding the mapping from input vector to output is done by calculating the values for all nodes
in the network. The value for the jth neuron in the Nth layer that is connected to D previous
neurons can be calculated as is shown in Equation 2.23. This notation is adopted from Bishop
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(2006). Note that h is used for hidden neurons, w N
j ,i are the weights associated with the i th neu-

ron in the previous layer and w N
j ,0 represents the bias. This equation is the same for all neurons

in the network. The forward pass is from left to right in which the output of the Nth layer is the
input of the N+1th layer. This way the layers are function compositions of the previous layers
and are chained as is shown in Equation 2.24.

h(N )
j = f

(
D∑

i=1
w (N )

j ,i xi +w (N )
j ,0

)
(2.23)

h(N+1)
j = f

(
L∑

j=1
w (N+1)

k, j · f

(
D∑

i=1
w (N )

j ,i xi +w (N )
j ,0

)
+w (N+1)

k,0

)
(2.24)

Hidden layersInput layer Output layer

Figure 2.9: Neurons are represented as circles, and connections with weights are represented using links.
Note that the biases are omitted in the figure for clarity. The bias parameters would result in additional
input neuron x0 and hidden neurons h1,0, h2,0 that output constant value 1 and are connected to the
neurons in the subsequent layers via the corresponding weights.

Equation 2.23 can be written using matrix-vector notation to compute the output of all neurons
in a layer. In Equation 2.25 the calculation for all neurons in the Nth layer is shown, with the
written out example for the first hidden layer in Figure 2.9. Note that the bias x0 is included
in the x vector, this will always have value 1 after which it is multiplied by the corresponding
weight, w (N )

x,0 . The non-linear activation function is applied element wise to get the output of
each neuron in the layer. Note that the dimensions of the vectors and matrices for the written
out example of the first hidden layer are: h(N ) ∈RL×1, W(N ) ∈RL×(D+1) and x ∈R(D+1)×1.

h(N ) = f
(
W(N )x

)
h(N )

1
...

h(N )
L

= f




w (N )
1,0 · · · w (N )

1,D
...

. . .
...

w (N )
L,0 · · · w (N )

L,D


 x0

...
xD


 (2.25)

Typically, for the hidden layers non-linear activation functions are used. These functions
are differentiable functions. Commonly used activation functions (e.g. sigmoid function,
hyperbolic tangent (tanh) function, Rectified Linear Unit (ReLU)) and the corresponding deriva-
tives are shown in Appendix A. The strength of neural networks is that the mapping from input
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to output is non-linear. Therefore, the functions that neural networks can approximate can be
very complex. According to the universal approximation theorem (Csáji, 2001) neural networks
can approximate any continuous function.

The parameters θ of the network are initialized at random. In order to find a meaningful map-
ping from input to output the network needs to be "trained". First, a loss function L is defined
which quantifies the error between the output of the neural network and the target values for a
certain input. Given a set of input vectors and corresponding targets (output vectors) the net-
work needs to minimize the loss function. This loss function is dependent on the parameters.
Hence, the parameters are tuned to minimize the loss function and fit to the target values. The
tuning of the parameters is done iteratively and consists mainly of two parts.

First, the gradient of the error with respect to the parameters is calculated, ∇L(
xi ;θ(t )

)
. This is

achieved using some form of back propagation. During back propagation, the error is passed
through the output layer back to the individual nodes in the network. Hence, the name back
propagation. A NN is in essence a bunch of nested differentiable functions. Therefore, the
chain rule can be used to compute the gradient of the error with respect to the parameters.
The second step is to update the parameters in the network accordingly using the calculated
gradient. A well known method to train the weights of a NN is stochastic gradient descent. In
stochastic gradient descent the parameters are updated as is shown in Equation 2.26 (Bishop,
2006). Here α is the learning rate. The loss function is minimized by updating the parameters
of the network in the direction of the negative gradient.

θ(t+1) = θ(t ) −α∇L(
xi ;θ(t )) (2.26)

A widely used loss function for training NNs in regression problems is the mean squared er-
ror (MSE). The MSE is the sum of squared differences between the predicted values and the
target values, see Equation 2.27. In Equation 2.27, n indicates the amount of samples that are
considered.

LMSE = 1

n

n∑
i=1

(
yi − ŷi

)2 (2.27)

Deep NNs are difficult to train using standard gradient descent. Therefore, new optimization
methods have been proposed that converge more reliably. An often used optimizer is Adaptive
Moment Estimation (ADAM) (Kingma and Ba, 2014).

NNs come in many different flavours, e.g. CNN, RNN. The type of NN that is needed is mostly
determined by the nature of the input data. CNNs are particularly useful when 2D data is con-
sidered, e.g. images. While, RNN are useful on data with a clear causal structure, e.g. audio. For
an extensive discussion on different NN architectures the reader is referred to Goodfellow et al.
(2016).
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2.5 Convolutional neural networks

Prior to the discussion on the application of NNs on graph structured, it is relevant to look at
the CNN model because graph neural networks are based on the same principle.

The CNN architecture is suited for input data that is 2D, e.g. color images consisting of three
2D arrays containing pixel intensities in three different color channels (LeCun et al., 2015). A
famous application of a CNN is on the MNIST dataset (LeCun and Cortes, 2010), here low-
resolution images of handwritten digits are classified using a CNN. The CNN can be trained
similar to a ’normal’ NN, i.e. using backpropagation (LeCun et al., 1990).

Image classification using a traditional NN is impractical. Consider an image of size 100×100
pixels, this will be represented in an array with size 100×100×3. The number of input nodes
is already 30000 and increases rapidly with the size of the images. If 32 hidden nodes are used
for the first layer in the network, the size of the input weights matrix would be almost 1 million.
Imagine what happens with multiple layers and larger images. Besides the fact that NNs do not
scale well, squeezing the images into vectors ignores the 2D spatial inductive bias. In an image,
neighbouring pixels are often correlated. Hence, the pattern recognition should be location
invariant which is realised using CNNs.

The CNN can have different types of layers. A CNN typically has an input layer and an output
layer, as well as hidden layers. The hidden layers are typically convolutional layers, activation
layers, pooling layers and fully connected layers.

2.5.1 Convolutional layer

The first layer of a CNN is always a convolutional layer and is the core principle of this type of
NN. Hence, the name ’convolutional’ NNs. Let us consider each pixel location in a 5×5 image
to be an input neuron. In the normal NN architecture each input neuron connects to a hidden
neuron in the next layer. However, in the CNN architecture learnable filters (or kernels) are
used. The filter is a 2D array of weights and works on a same sized part of the image. The part
in the image on which the filter works is called the local receptive field. The values in the filter
are multiplied element wise by the values in the local receptive field and then summed into
a single value, see Figure 2.10. This is repeated for every location in the image, by sliding the
receptive field across the image, i.e. the filter is convolved with the input image. The operation
is shown in Equation 2.28, i , j indicate the position on the input layer or hidden layer, r,c refer
to the row and column in the filter.

hi , j = (W∗X)(i , j ) =
2∑

r=0

2∑
c=0

w(r,c)x(i+r, j+c) (2.28)

Note that Equation 2.28 is actually the cross-correlation. Many libraries implement cross-
correlation but call it convolution, because it is the same except that the kernel is flipped
(Goodfellow et al., 2016). In the NN case it does not matter whether a flipped kernel is learned
as long it is done consistently.

The local receptive field is a small window on the input neurons (input pixels) that connects to
a hidden neuron. The hidden neuron learns to analyze a particular local receptive field. The
amount of pixels by which the local receptive field is shifted, is indicated by the stride. Note that
the amount of neurons in the hidden layer is smaller because the filter can be moved 3 neurons
across when a stride of 1 is used. The size of the hidden layer is dependent on the stride and
whether the input image is padded with zeros.

The filter is the set of weights for the hidden neurons and are shared among neurons, a bias
can also be used here. The map from input layer to hidden layer is called feature map. The
more filters are used, the greater the depth of the feature map. By sharing weights the number
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Figure 2.10: Graphical representation how the convolution is performed on a 5×5 pixel image (green
frame), using a 3×3 size filter (orange frame) resulting in a hidden layer (blue frame). The corresponding
calculation for this specific position of the filter is: 21×0+23×−1+25×0+78×−1+71×5+77×−1+
181×0+184×−1+69×0 =−7

of parameters is greatly reduced. Consider an image of 100×100 and a filter of size 7×7 is used,
for each feature map using a filter of size 7× 7 the number of parameters is 50 (7× 7 for the
shared weights +1 for the shared bias). When we use 20 feature maps, there are 20×50 = 1000
parameters to learn. This allows for faster training and will aid the building of deeper networks.
It is not a totally fair comparison because the models are fundamentally different where the
CNN exploits spatially local correlation by enforcing a local receptive field between neurons of
adjacent layers.

There is much more to say about CNNs but it is out of the scope of this thesis to give an ex-
tensive survey on CNNs. For more information on CNNs, the reader is referred to Goodfellow
et al. (2016). The CNN architecture operates on grid-like structured data, i.e. Euclidean data.
An emerging field in AI is geometric deep learning which focuses on generalizing the structured
deep-learning toolbox for a non-Euclidean domain such as graphs. GNN is a NN architectures
that operates on graphs in a similar way CNN operates on structured 2D grid-like data. The
next section is dedicated to GNNs.
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2.6 Graph neural networks

A GNN is a NN model suitable for operating on graph-structured data. Although the first ideas
on GNNs have been around for more than a decade (Gori et al., 2005; Scarselli et al., 2009), the
GNNs gained a lot of interest recently. The field of GNNs, or more generally geometric deep
learning, is one of the most active areas of deep learning at the time of writing.

GNNs are the most general class of deep learning architectures, i.e. most deep learning ar-
chitectures can be understood as a special case of a GNN with additional geometric structure
(Bronstein et al., 2021). For example, a CNN works on grid-structured data such as images. A
CNN applied on image data can be seen as a special case of a GNN, where a 2D grid-structure is
enforced on the graph and the nodes correspond to the pixels. Neighboring pixels are related,
this is realised by means of an edge between related nodes. A similar notion can be made for
RNNs, where the nodes are in a directed graph along the temporal sequence.

A GNN can be seen as a generalization of a CNN to non-Euclidean data structures (Bronstein
et al., 2016). There are some additional challenges with this generalization. As opposed to
CNNs, GNNs have an arbitrary size and complex topological structure. Furthermore, there is
not a fixed node ordering or reference point. The shape of the graph is not defined, while in an
image the pixels are fixed on a grid-structure. Moreover, the convolution operation in a CNN
is not permutation-invariant. For a graph, the order of the nodes is undefined. Therefore, in a
GNN the operation should be permutation-invariant because the graph is a set of nodes and
different order of the nodes should not change the output of the GNN. At last, graphs are often
dynamic and have multimodal features.

A naive approach of implementing a GNN would be to concatenate the adjacency matrix with
the features in the graph and feed it through a deep NN. However, this is in conflict with the
generalization properties that were mentioned in the previous paragraph. The naive approach
does not scale O (N ), is not applicable to graphs of different sizes and not invariant to the node
ordering.

Since the release of the first papers on GNNs, many different variations on the GNN have been
presented. Nevertheless, the majority of the presented architectures is derived from one of the
three flavours: GCN (Graph Convolutional Network) (Kipf and Welling, 2016), GAT (Graph At-
tention Network) (Veličković et al., 2018) and Message Passing Neural Network (MPNN) (Gilmer
et al., 2017). However, it must be noted that this categorization is very general and not all en-
compassing (Bronstein et al., 2021). In Gilmer et al. (2017) the MPNN was introduced which is a
general framework for supervised learning on graphs. The MPNN is a GNN framework that uni-
fies the commonalities between existing NN models for graph structured data. The GCN and
GAT can be seen as special cases of the MPNN (Bronstein et al., 2021). Therefore, the discus-
sion on the GNN model in the next section is focused on the MPNN framework which unifies
various GNN architectures by analogy to message passing in graphical models. A framework
presented by Battaglia et al. (2018) called Graph Network (GN) generalizes and extends the
MPNN framework.

2.6.1 Neural Message Passing

The defining feature of a GNN is that it uses neural message passing in which vector messages
are passed between nodes and updated using a NN. The notion of message passing is not
new, it is an important part of inference on graphical models (Section 8.4 in Bishop (2006)). To
explain the working principle of a GNN the focus is on the neural message passing framework
(Gilmer et al., 2017).

As an example, take the simple graph shown in Figure 2.11 as input graph G = (V ,E). Nodes are
identified by a unique index i ∈ V , ranging from 1 to |V |. Edges are represented by an ordered
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pair of nodes
(
i , j

) ∈V×V . In case of undirected graphs where i and j are connected, both (i , j )
and ( j , i ) are in the set of edges E .

Figure 2.11: Simple graph taken as input for the GNN. The number indicates the unique index of the
node. The figure is derived from the example shown in Hamilton et al. (2017)

The GNN is structured according to a graph G = (V ,E). A GNN takes as input a graph, where
nodes are associated with feature vectors xi and edges can also have feature vectors x(i , j ). Hid-
den representations or embeddings will be denoted with hi for hidden node features and h(i , j )

for hidden edge features. The initial hidden node representation is set to the node feature vec-
tor, i.e. hi = xi . For simplicity reasons the graph is considered to be undirected and only have
node features (edge features will be neglected for now). For the graph (with its nodes and node
features) node embeddings are generated, hi ,∀i ∈V .

For each message passing iteration in a GNN, the node embedding h(k)
i corresponding to node

i ∈ V and iteration k will be updated according to the information aggregated from node i ’s
neighbourhood N (i ). Note that k indicates the iteration of message passing, also referred to
as the ’layer’ of the GNN. The amount of layers indicates which nodes can be reached, i.e.
the nodes k hops away can be reached. The calculation for a node embedding can be ex-
pressed as is shown in Equation 2.29, where UPDATE() and AGGREGATE() are arbitrary dif-
ferentiable functions (Hamilton, 2020). The aggregation of the neighbours is referred to as
messages (Gilmer et al., 2017) and therefore this operation is shortened to the notation m(k)

N (i )

h(k+1)
i = UPDATE

(
h(k)

i ,AGGREGATE
({

h(k)
j ,∀ j ∈N (i )

}))
(2.29)

= UPDATE
(
h(k)

i ,m(k)
N (i )

)
(2.30)

At each iteration k of the GNN, the AGGREGATE() function takes as input the set of node em-
beddings of the nodes in i ’s neighborhood N (i ) and generates and the message for node i . The
message is then combined with the previous embedding for node i , h(k)

i to obtain the updated

embedding h(k+1)
i . The calculation for the node embedding of node 1 with a one layer GNN can

be visualized by ‘unfolding’ Equation 2.29 for that specific node. This is shown in Figure 2.12.
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Figure 2.12: Visualization of how node 1 aggregates from its neighbors and updates to obtain a node
embedding, h(1)

1 . The GNN aggregates the information from node 1’s local graph neighbors (node 2,
3, 4). The information from the neighbors is based on information aggregated from their respective
neighborhoods in case of a multi-layered GNN. Note that the computation graph of the GNN has one
layer in this case. The numbers in the nodes refer to the initial node features i.e. i = h(0)

i = xi ,∀i ∈ V ,

while h(k)
i represents the node i embedding for k-hop neighbors away.

Figure 2.13: Computation graph of the GNN with two ‘layers’ for the update of node 1.

The structure of the graph determines the message passing updates. During each update the
hidden embedding corresponding to each node i ∈ V , is updated according to information
aggregated from i ′s graph neighborhood N (i ). The final node embedding after running K
amount of iterations is often denoted as zi = h(K )

i ,∀i ∈ V . In Figure 2.13 a two layer message
passing network is shown.

2.6.2 General formulation graph neural network

The GNN architectures differ in the way the neighboring node information is aggregated
and how the node features are updated. In the MPNN framework (Gilmer et al., 2017) the
AGGREGATE() operator is a summation preceded by a learned differentiable function (e.g.
NN). The UPDATE() function is also a learned differentiable function. In Equation 2.31 and
Equation 2.32 the aggregation function and update function are denoted respectively accord-
ing to the MPNN framework (Gilmer et al., 2017).

m(k)
N (i ) =

∑
j∈N (i )

MLP
(
h(k)

i ,h(k)
j

)
(2.31)

h(k+1)
i = MLP

(
h(k)

i ,m(k)
N (i )

)
(2.32)
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The AGGREGATE() operator and UPDATE() operator have been a key focus for researchers to
introduce novel architectures. It is important that the aggregation operation is permutation
invariant because the ordering of nodes is not defined. Hence, maximum and mean operators
are valid aggregation operators.

The most simple neighborhood aggregation operation is a summation of the neighboring
nodes. This can lead to numerical instabilities and is sensitive to the node degrees. A solu-
tion to this problem, is to normalize the aggregation operator by taking an average instead of
performing a summation, see Equation 2.35.

m(k)
N (i ) = AGGREGATE

({
h(k)

j ,∀ j ∈N (i )
})

(2.33)

= ∑
j∈N (i )

h(k)
i

|N (i )| (2.34)

(2.35)

This is for example applied in the GCN (Kipf and Welling, 2016), where the aggregation opera-
tion is normalized by the degree of the node at consideration and the degree of the neighboring
node, see Equation 2.36.

m(k)
N (i ) =

∑
j∈N (i )

h(k)
j√|N (i )||N ( j )| (2.36)

In addition to weighting the nodes by an average that depends on the degree of the nodes, an-
other approach is to use attention as is done in the GAT architecture (Veličković et al., 2018).
The attention weights define the weighted sum of the neighbors, see Equation 2.37, where αi , j

denotes the attention on neighbor j ∈N (i ) when aggregating information at node i . The dis-
cussion on the concept of attention is out of the scope of this text. For more information, the
reader is referred to (Vaswani et al., 2017; Veličković et al., 2018).

m(k)
N (i ) =

∑
j∈N (i )

αi , j h(k)
j (2.37)

So far the focus was on the message passing part of the GNN with focus on the node features,
i.e. information of neighboring nodes was aggregated in order to update node features. As was
indicated in Section 2.3.8, a graph can have features on three different levels, i.e. edge features,
node features and global features. The layout of the graph (presence of edge/node/global fea-
tures) is dependent on the problem and the output of the GNN is also problem specific. For
example, when a decision is made about the interactions among entities (Hamrick et al., 2018),
the output is on the edge features. Moreover, when a GNN is used to reason about physical sys-
tems (e.g. n-body systems (Battaglia et al., 2016)), the output is conditioned on the nodes. Fur-
thermore, a GNN can predict a global feature vector for a given graph, e.g. encoding a molecule
as a graph and predicting properties of a molecule (Gilmer et al., 2017). In that case the GNN is
conditioned on the global features as output.

The GNN message passing approach can be generalized to leverage edge, node and global in-
formation of the graph, this approach is presented by Battaglia et al. (2018) and called Graph
Network (GN). The GN framework is flexible and can be used to formulate different GNN ar-
chitectures (e.g. MPNN, GCN and GAT). Moreover, the GN framework allows to leverage edge,
node and global level features at each stage of message passing. The features on the three dif-
ferent levels can be updated according to the following equations:
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Edge update:

h(k+1)
(i , j ) = UPDATE edge

(
h(k)

(i , j ),h(k)
i ,h(k)

j ,h(k)
G

)
(2.38)

Node update:

m(k+1)
N (i ) = AGGREGATE edge→node

({
h(k+1)

(i , j ) ∀ j ∈N (i )
})

(2.39)

h(k+1)
i = UPDATE node

(
h(k)

i ,m(k+1)
N (i ) ,h(k)

G

)
(2.40)

Global update:

m(k+1)
V = AGGREGATE node→global

({
h(k+1)

i ,∀i ∈V
})

(2.41)

m(k+1)
E = AGGREGATE edge→global

({
h(k+1)

(i , j ) ∀(i , j ) ∈ E
})

(2.42)

h(k+1)
G = UPDATE graph

(
h(k)
G ,m(k+1)

V ,m(k+1)
E

)
(2.43)

Where AGGREGATE edge→node indicates the aggregation takes information from the
edges which is used in the node update. Similar for AGGREGATE edge→global and
AGGREGATE node→global, where respectively edge embeddings and node embeddings are
aggregated in order to use this information in the global update. Multiple message passing
updates can be performed consecutively by using the updated graph as input in the next
iteration, i.e. setting h(k)

(i , j ) ← h(k+1)
(i , j ) , h(k)

i ← h(k+1)
i and h(k)

G ← h(k+1)
G .

First, the edge embeddings h(i , j ) are updated based on the the edge feature itself, incident node
features and the global feature, see Equation 2.38. Next, the node embeddings h(i ) are updated
using the corresponding node feature, by aggregating the edge embeddings for all their incident
edges and the global level feature, see Equation 2.39 and 2.40. The global embedding hG is
updated using the global level feature and the aggregation of both updated node embeddings
and update edge embeddings, see Equation 2.41, 2.42 and 2.43.

All individual aggregation operations can be any permutation invariant operation and the up-
date functions are learned differentiable functions. In the rest of this work, relatively small
graphs are considered. Hence, there is no danger of instability and therefore a summation is
used as aggregation operation. Furthermore, the update functions are typically small MLPs
(±3 layers). In the rest of this work, the different update functions will be denoted as fedge,
fnode, fglobal. Using this notation for the update functions, the summation as aggregation and a
prime superscript ′ to indicate the next GNN layer (k +1), Equations 2.38-2.43 can be denoted
as follows:
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Edge update:

h′
(i , j ) = fedge

(
h(i , j ),hi ,h j ,hG

)
(2.44)

Node update:

h′
i = fnode

(
hi ,

∑
j∈Ni

h′
(i , j ),hG

)
(2.45)

Global update:

h′
G = fglobal

(
hG ,

∑
i∈V

h′
i ,

∑
(i , j )∈E

h′
(i , j )

)
(2.46)

The GN framework allows to generate hidden embeddings for each edge in the graph h(i , j ),
as well as an embedding for the entire graph hG . For example, considering a n-body system,
the hidden edge embedding h(i , j ) represents the interaction between two bodies (i.e. nodes).
Another example, the global embedding hG can be the encoding of a property of a molecule
(i.e. graph). Equations 2.38-2.43 show all possible update functions and aggregation functions
with all possible arguments. Dependent on the GNN architecture, arguments are left out or
update/aggregation functions are skipped, e.g. if the GNN is focused on node updates, the
global update is left out.

As a companion to the unifying GN framework (Battaglia et al., 2018), an open-source software
library for building GNNs was released, called ‘Graph Nets’. The Graph Network (GN) library is
an open-source Python library, based on TensorFlow and Sonnet (DeepMind, 2018). The GN
library unifies GNN designs. The main component for computation in the framework is the
GN-block, which operates as is shown in Equation 2.38-2.43. The GN-block allows for adjust-
ments within the block structure in order to operate like a MPNN or GCN for example. The
GN-block updates the graph features on three different levels, i.e. it updates the edge features,
node features and global features. GN-blocks can be easily concatenated due to their graph-
to-graph feed forward process. The input of the GN-block is a graph and the output is also a
graph. This allows for deep architectures with different kinds of layers. For more detail on the
Graph Nets framework the reader is referred to Appendix B or Battaglia et al. (2018).

For more information on GNN models and a more theoretical background of the GNN model
the reader is referred to Hamilton (2020) and Bronstein et al. (2021).

2.6.3 Contrastive loss

A widely used method for learning multi-relational node embedding is contrastive learning
(Hamilton, 2020). This approach is extensively used in the field of natural language processing
(Mikolov et al., 2013). Contrastive learning is used to learn general features of a dataset without
the use of labels but by teaching a model which input samples are similar or dissimilar. This is
why it gained a lot of interest in the field of state representation learning. The contrastive loss is
used in different areas of ML and therefore has different names such as margin loss, hinge loss,
margin loss, ranking loss.

The objective of contrastive losses is to predict the similarity or dissimilarity between inputs by
means of some distance metric. The general idea is to construct pairs of input samples that are
related (positive pairs) and pairs of unrelated input samples (negative pairs). A loss function is
formulated that scores the positive pairs different than the negative pairs. The objective is to
learn representations with a small distance d in the embedding space for positive pairs and a
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distance greater than some margin γ for negative pairs. The loss function is shown in Equation
2.47.

L= d
(
z, zpositive

)+max
(
0,γ−d

(
z, znegative

))
(2.47)

Here z, zpositive and znegative are respectively the embedding of the input sample, positive sam-
ple and negative sample. The distance d is a specified distance measure, e.g. Euclidean dis-
tance. The loss will be low if positive pairs are encoded to similar representations and negative
pairs are encoded to different representations.

For the positive pairs, the loss will be 0 when representations for the input sample and positive
sample coincide in the embeddings space, i.e. the two representations have no distance be-
tween them. Therefore, the loss will increase with the distance between them. For the negative
pairs, the loss will be 0 when the distance between the input sample and negative sample is
greater than some margin γ. When the distance is smaller than the margin, the loss is larger
than 0. The network parameters will be updated to produce more distant embeddings. The
purpose of the margin is to ensure that when negative pairs are distant enough, no effort is put
into enlarging the distance between negative pairs. Therefore, additional training can focus on
more difficult pairs.

(a) Positive pair. (b) Negative pair.

Figure 2.14: Example of contrastive loss setup to train a network to classify cats and dogs. Note that the
CNNs share parameters.

2.7 Summary

In this chapter, the relevant background information is presented needed to understand the
rest of the report. First, the MDP was introduced in Section 2.1.1, this mathematical framework
is used to formally describe the environment in reinforcement learning. Next, in Section 2.1,
the reinforcement learning framework was formulated together with the jargon and main con-
cept used in the field. Furthermore, relevant reinforcement learning methods were discussed,
e.g. value iteration and Q-learning. Moreover, the model-based reinforcement learning frame-
work is presented.

In the subsequent Section 2.2, state representation learning was discussed. The motivation to
learn expressive representations was given here. By learning to predict the next state in latent
space, a state representation can be learned. Two other methods to learn a state representation
were mentioned, i.e. robotics priors and dimensionality reduction by means of autoencoders.

Next, in Section 2.3 the graph data structure was introduced. Followed by Section 2.4 and Sec-
tion 2.5, which introduced the concept of NNs and CNNs respectively. Finally, in Section 2.6, a
new type of NN, the GNN, was presented that works on a graph data structure. This new ap-
proach allows for modeling the input data in a different manner, i.e. as a graph opposed to a
vector representation. The emerging new field of GNNs served as the research direction of this
thesis in the field of state representation learning.
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3 Related work

In this chapter, the related work regarding unsupervised/self-supervised state representation
learning methods is discussed. More specifically, the focus is on the related work regarding the
learning of transition models, and in particular using a GNN.

The remainder of this chapter is organized as follows. In Section 3.1 the three different strate-
gies in state representation learning are briefly discussed. Next, in Section 3.2, the focus is on
the related work on learning transition models. In Section 3.3, a recent success where a GNN
and reinforcement learning are combined is discussed. At last this chapter is briefly summa-
rized in Section 3.4.

3.1 State representation learning

State representation learning is an important topic in the field of reinforcement learning. State
representation learning aims at learning a low dimensional encoding for the state from the of
raw observations. The quality of the low dimensional state representations helps to overcome
the curse of dimensionality, are often better interpretable, improve performance and speed in
reinforcement learning algorithms (Lesort et al., 2018). Early work on representation learning
in reinforcement learning used methods like state aggregation (Singh et al., 1995), principal
component analysis (Curran et al., 2015) or by using linear function approximation with com-
plex basis functions (Mahadevan and Maggioni, 2007). Recently, deep neural networks have
gained a lot of interest in representation learning. The mapping from observations to state
is commonly learned using neural networks (Lesort et al., 2018), mostly by means of autoen-
coders. In the work by Lesort et al. (2018), three main strategies are considered in state rep-
resentation learning: reconstructing the observation, using prior knowledge to constrain the
state space and learning a latent model to predict the state transition.

The first approach of reconstructing the observation is often realized using autoencoders. An
autoencoder is composed by an encoder and a decoder. The encoder maps the observation
to a latent state space of a lower dimensionality. Whereas, the decoder reconstructs the ob-
servation from the latent state representation by mapping the latent state back to observations
space. The autoencoder is trained by minimizing the loss between the observation and the
reconstructed observation. After training, the encoder maps the observation to a latent state
representation which is used in down stream reinforcement learning algorithms. Often Varia-
tional Autoencoders (VAEs) are used, such as in the work by Ha and Schmidhuber (2018), where
a VAE is used to learn a latent state representation from 2D images. However, often a combi-
nation of the three strategies in state representation learning are used to find useful state rep-
resentations. For example in Watter et al. (2015), a VAE is used in combination with additional
constraints on the learned dynamics model (locally linear for state transitions). Autoencoder
based methods learn to discover representations by performing reconstruction. This approach
might fail to include visually small but relevant features (Kaiser et al., 2019). Furthermore, a
disadvantage of reconstructing the observation, is that a decoder needs to be trained. This is
requires additional computation and is often not required for the control task. Hence, in this
work the aim is to learn a representation without observation reconstruction.

The second strategy for learning a state representation, is by using prior knowledge to constrain
the state space. The prior knowledge about the environment is incorporated in the form of loss
functions that are used to train a neural network which maps the observations to latent space
(Jonschkowski and Brock, 2015; Lesort et al., 2017). Additionally, the approach of guiding the
state representation by means of a loss functions is also applied in unsupervised learning. This
is done using contrastive learning, which is used to learn general features of a dataset without
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the use of labels. The model is forced to group similar states together and dissimilar states
apart. This is for example used in learning representation for images (Chen et al., 2020) or
representations in natural language processing (Mikolov et al., 2013). Moreover, it is used graph
representation learning, for learning multi-relational node embeddings (Hamilton, 2020).

The third strategy, and main focus in this work, is learning a state representation by predicting
the state transition in latent space. The main idea, is to force a neural network to encode the
necessary information to predict the next state. In the works where autoencoders are used for
observation reconstruction, a transition model is used to predict the next observations (van
Hoof et al., 2016; Watter et al., 2015). Next section is focused on structured transition models.

3.2 Structured transition model

Recent works on modeling structured environments have made great progress in improving
predictive accuracy by taking the structure of the problem into account (Battaglia et al., 2016;
Watters et al., 2017; Kipf et al., 2018; Wang et al., 2018). Prior knowledge on the environment
structure is incorporated in the state representation by using a GNN. In (Battaglia et al., 2016)
the Interaction Network is proposed for explicit reasoning about objects and relations in com-
plex systems. Its ability to learn and generalize dynamics is tested in different physical domains
(e.g. n-body problems, rigid-body collision and non rigid dynamics). Moreover, in (Kipf et al.,
2018) a model is presented that infers the interactions while also learning the dynamics in an
interacting system. Neural networks that operate on graph structured data have been devel-
oped and explored for more than a decade (Gori et al., 2005; Scarselli et al., 2009). However, the
popularity of these so called GNNs have only recently gained a lot of traction and attention in
the ML field (evanzd, 2021).

Incorporation of an inductive bias in the model architecture makes the model generalize better
to novel situations and makes the learning process more sample efficient (Battaglia et al., 2018).
The output of a CNN is shift invariant to displacement in the input due to the use of kernels
which introduces a locality inductive bias. The same shift invariance can be learned with the
use of a MLP. However, the MLP can only learn this from the presented data. Hence, to learn
shift invariance using a MLP a lot more data is needed opposed to using a CNN. By using a
GNN, the relational structure of the problem is incorporated in the model architecture and
does not have to be learned from the presented data. This allows the model to generalize better
to novel scenarios and improves the sample efficiency in the learning process.

Previous work has shown that incorporating a relational inductive bias by means of a GNN is
effective in modelling objects and relations (Battaglia et al., 2016) and it greatly facilitates the
ability to generalize to novel scenarios (Hamrick et al., 2018). Several recent works have shown
to be able to learn structured models from raw image observations (van Steenkiste et al., 2018;
Xu et al., 2019; Watters et al., 2019), but these rely on pixel-based loss functions. In the work
presented by Kipf et al. (2020b), it was shown that GNNs can be used to learn interpretable
representations from raw image observations in an end-to-end self-supervised setting using
a contrastive loss. The presented model called Contrastively-trained Structured World Model
(C-SWM), can be used to predict next states in latent space accurately. The C-SWM learns a
transition model and discovers the objects with state representations that can be related to
objects in the scene. The learned transition model is able to accurately model effects of actions
in novel environment scenarios.

The objective of state representation learning is to learn a lower dimensional state space that
is sufficient to learn a policy that can be transferred to the original state space. In (van der Pol
et al., 2020) a contrastive loss is introduced that enforces action equivariance on the learned
representations. By learning equivariant maps, structured latent representations are learned
which are then used to do value iteration. They show that for deterministic MDPs, a MDP
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homomorphism can be learned that allows for learning an optimal policy in the abstract state
space.

3.3 Reinforcement learning and GNN

In (Hamrick et al., 2018) it is shown that the incorporation of an inductive bias by means of
graphs is necessary to solve relational structured problems effectively. The problem considered
is the task of gluing together randomly placed blocks in order to have a stable tower when grav-
ity is applied. Towers are created randomly by placing blocks on top of each other in a 2D plane.
Each block is stacked on top of a previous block except for the first block. The agent or human
participant is asked to glue certain blocks together in order to have a stable tower when grav-
ity is applied. After the agent or participant is done applying the glue, gravity is applied and a
reward is obtained corresponding to the stability of the tower with glued blocks. Although phys-
ical knowledge is important here, it is shown that by translating the problem into a relational
reasoning problem the problem is solved effectively. The tower of blocks is encoded as a graph
and a GNN is trained as part of a reinforcement learning agent that performs the same gluing
task as the humans faced. Three different agents are compared, a MLP agent, a fully connected
GNN agent and a sparse connected GNN agent (where there are edges according to the blocks
that are in contact). The MLP performed the worse, then the human participants, then the fully
connected GNN agent, followed by the sparsely connected GNN and the agent with access to
a perfect simulator performed the best. However, the performance using the relational struc-
ture as opposed to the MLP agent suggests that relational knowledge is key in solving complex
physical reasoning tasks and can be effective without an explicit model (i.e. fully connected
graph). Furthermore, the graph structured agents generalized to problems with more blocks
than seen during training. This is not possible for the MLP agent since the architecture has to
change, and therefore training is needed to apply the agent effectively to novel situations. This
work shows that deep reinforcement learning can be improved by incorporating an inductive
bias such that it performs better and generalizes better.

3.4 Summary

In this chapter, the related work is discussed regarding state representation learning. The main
focus was on learning structured environment models. These structured models show that
incorporating the relational structure in the model greatly improves the predictive accuracy
and generalization to novel scenarios.

The use of a contrastive loss has shown useful in different works, to aid the representation
learning in a unsupervised or self-supervised setting. The C-SWM model seems to be a promis-
ing model to learn expressive state representations that can be used for planning in latent
space.

The C-SWM architecture will be used to learn state representations and a model of the environ-
ment. The learned environment model is then used to learn a policy in latent space. Whether
the learned environment model is sufficiently accurate with the original MDP, will determine
whether the learned policy can be applied in the original MDP. Having a latent model of the
environment allows for planning in latent space. This is beneficial in the context of robot navi-
gation because it allows to plan the consequence of the actions in advance.
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4 Method

In this chapter, the methodology used to answer the research questions is presented, see Sec-
tion 1.3 for the research questions. The methodology is divided into two parts, according to the
sub-questions. In the first part, the focus is on learning the underlying dynamics of the MDP,
i.e. the transition function and reward function. The state of the environment is accessible to
the agent in order to investigate the applicability of a GNN as a transition and reward model in
comparison to a NN. The second part will extend this by learning the underlying dynamics of
the MDP in a more challenging setup, where raw observations are used. The raw observations
are mapped to a latent space in which the dynamics of the MDP are learned by predicting the
next state. Hence, a transition model is trained to learn a state representation. The application
at hand is a robot navigation task in a deterministic 2D grid world. In the presented methodol-
ogy, the Markov property is assumed, i.e. the next observation and reward are only dependent
on the current observation and the action the agent takes.

The outline of this chapter is as follows. First, in Section 4.1, the focus is on learning the un-
derlying dynamics of the MDP. Secondly, in Section 4.2, it is explained how the learned envi-
ronment models are used to generalize to novel environment scenarios for which a policy is
learned. The approach presented in Section 4.1 and Section 4.2, is used to answer RQ1. There-
after, the approach is extended to a setting where a state representation is learned from raw ob-
servations, while simultaneously learning an environment model in the learned latent space.
In Section 4.3, the pipeline is presented that is used to learn a state representation from raw
observations and train a model of the environment in latent space. Followed by Section 4.4,
where it is discussed how the learned environment model is used to plan in latent space in or-
der to learn a policy. The method discussed in Section 4.3 and Section 4.4, is used to answer
RQ2. Finally, this chapter is summarized in Section 4.5.

4.1 Learn a model of the environment

In this work, the aim is to apply representation learning using a GNN effectively in a reinforce-
ment learning framework. The goal is to learn useful state representations from raw pixel ob-
servations. Many state representation learning methods use an autoencoder architecture to
learn a state representation, where the loss is put in pixel space. The autoencoder approach
has the disadvantage of training a decoder. Therefore, the focus here is to directly learn a state
representation in latent space such that there is no decoder needed. The state representation
will be learned by training a transition model in latent space. By mapping the observation to a
latent space and predicting the next state in latent space, the error can be computed with next
observation that is mapped to the same latent space. This concept is shown in Figure 2.4.

By mapping the observation and next observation to a latent space and applying a loss func-
tion in this latent space, both a state representation and a transition model are learned. Before
the full problem of mapping the raw observation to latent space and learning an environment
model in this latent space is considered, the focus is on a simplified setup. The mapping of
the observation to latent space is skipped. An environment model is trained with direct ac-
cess to the environment state. This is the focus of RQ1, where the goal is to compare an envi-
ronment model (transition and reward function) learned using GNN against an environment
model learned using a NN. The simplified setup allows for analyzing the problem of modeling
the transition and reward model. The point of focus is to investigate whether it is advantageous
to use a GNN for modeling the transition model and reward model versus a conventional NN.

A NN will be trained to approximate the transition function∆ŝt = T (st , at ;θNN) and also the re-
ward function r̂t+1 = R (st , at ;θNN). The models take a vector representation of the state st and
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a one-hot encoded action at as input. The conventional NN does not infer any prior knowl-
edge on the problem. On the other hand, a GNN incorporates a relational inductive bias. In
many problems there are underlying dynamics which are not obvious to discover. However,
by assuming this relational structure in the model architecture, by means of a GNN, it can en-
hance the generalization performance of a transition model and, therefore, be advantageous
for planning in unseen environment scenarios. Hence, also a transition model T (s, a;θGNN)
and reward model R (s, a;θGNN) will be trained using a GNN. The models take as input a graph
representation of the state and the one-hot encoded action.

The goal is to see to what extent a GNN is able to model the dynamics of the MDP and how it
compares to a conventional NN architecture. The aim is to learn an environment model that
can generalize to novel environment situations. This allows for planning in new environment
scenarios. The policy obtained using planning with a learned environment model can only
be as good as the learned environment model. Therefore, it is important to learn an accurate
environment model.

Learning the dynamics of the environment is a self-supervised learning problem, i.e. the target
samples are generated by interaction of the agent with the environment. The transition model
T (s, a;θ) is trained using a MSE loss between starting state st plus the prediction of the model
∆ŝt and the true next state st+1. The reward model R (s, a;θ) is also trained using a MSE loss,
the error is computed between the predicted reward r̂t+1 and the true reward rt+1. The used
loss functions for the transition model and reward model are shown in respectively Equation
4.1 and Equation 4.2, N is the number of samples in the batch.

Ltransition = 1

N

N∑
i=1

((st +T (s, a;θ))− st+1)2 (4.1)

Lreward = 1

N

N∑
i=1

((R(s, a;θ))− rt+1)2 (4.2)

In theory, perfect models allow for planning optimal policies. By learning a transition model
and reward model in essence a model is learned of the MDP. When the loss functions of the
transition model and reward model converge to zero, the learned MDP model is homomorphic
with the original MDP of the environment. However, in practice, a zero loss is almost never the
case. Therefore, the learned model will be an approximation of the original MDP. This does not
have to be a problem, as long as the learned model is sufficiently accurate. Sufficiently accurate
means that the learned model can still be used to do planning in order to find a policy that is
optimal. By learning a policy using the learned environment model, it is verified whether the
learned model is sufficiently accurate.

The problem at hand is the simplest form of a navigation problem: ‘navigation in a 2D grid
world’. A 3x3 maze is shown in Figure 4.1a. Note that the term ‘grid world’ and ‘maze’ are used
interchangeably. In Figure 4.1a, the red square is the location of the agent, the green square is
the goal and the black squares are obstacles. The maze lay-out is manually encoded in a graph
representation and a vector representation, see Figure 4.1b and Figure 4.1c. These encoded
representations can be used as a low dimensional input state for the transition and reward
model implemented using a GNN and NN. The representation consists of the x,y-coordinates
of each object, i.e obstacle positions, target position, agent position. For the graph representa-
tion, a fully connected undirected graph is used where there is a node per object and the node
features are the object positions, see Figure 4.1c. This encoding is depicted because it is similar
to the representation that is learned in Kipf et al. (2020b) in an unsupervised setting. The vector
representation is a one-dimensional vector with all object positions concatenated, see Figure
4.1c.
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(a) Maze observation (b) Graph state representation
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(c) Vector state representation

Figure 4.1: The different state representations, where black represents obstacles, green the target and
red the position of the agent. a) is the observation of the maze, b) is the graph state representation, c) is
the vector state representation.

For the architecture of the GNN transition model ∆ŝt = T (st , at ;θGNN), the architecture pre-
sented by Kipf et al. (2020b) is used. The transition model takes as input the state represented as
a fully connected graph, with the position of the object as node feature st and one hot encoded

action at per object. The intermediate interaction h(i , j )
t between nodes i and j is calculated

using an edge update function, see Equation 4.3. The node features, actions and intermediate
representation of the interaction between node i and node j are concatenated and passed to a
node update function to approximate the state transition, see equation 4.4. Equation 4.3 and
Equation 4.4, describe the transition model implemented using a GNN. For the update func-
tions fedge and fnode, MLPs are used, of which the architecture is shown in Figure 4.2. Note
that a lower number of hidden units is used compared to the number (512 units) presented in
the work by Kipf et al. (2020b). The problem setting here is simplified and additional units did
not show a significant improvement in accuracy and generalization performance of the model.
Hidden layers with more than 128 units resulted in a longer training time, therefore 128 hidden
units are used. Furthermore, a fully connected graph is used as a state representation, because
it facilitates the learning of relevant interactions between all the nodes in the graph. When a
certain interaction between nodes is not important for the problem, it will simply not use that
interaction for inference. Similar to the case where irrelevant features in a feature vector will
not contribute to the inference in a conventional NN.

Edge update:

h(i , j )
t = fedge

([
si

t ,s j
t

])
(4.3)

Node update:

∆si
t = fnode

([
si

t ,ai
t ,

∑
j∈Ni

h(i , j )
t

])
(4.4)
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Figure 4.2: The MLP architecture used for fedge, fnode and fglobal in the transition and reward model im-
plemented using a GNN. It contains 2 hidden layers with 128 units and a normalization layer after which
the units are activated using a ReLU activation. At last, there is the output layer which is a linear layer.
The input dimension for fedge is 2 times the node feature dimension. The output dimension is chosen
to be equal to the number of hidden units, i.e. 128. For fnode the input dimension is the node feature
dimension plus action dimension (4) plus the output dimension of fedge. The output dimension of fnode

is equal to the dimension of the node feature. The input dimension of fglobal is the node feature dimen-
sion plus the output dimension of fedge. The output dimension of fglobal is a scalar value corresponding
to the reward. The input dimension of fglobal is the node feature dimension plus output dimension of
fedge. The output layer is initialized with zeros. The other layers are initialized using a truncated normal

distribution centered around 0 with a standard deviation of
√

2/number of hidden input units. A bias is
used in all layers.

For the reward model the same edge update function and node update function are used, see
Equation 4.3 and Equation 4.4. For the reward model, an additional global update function is
added in order to map the state and action to a scalar, i.e. the reward rt+1. The additional global
update function for the reward model is shown in Equation 4.5. The same MLPs is used for
fglobal as was used for the edge update function fedge (Equation 4.3) and node update function
fnode (Equation 4.4). The MLP architecture used for fglobal is shown in Figure 4.2.

Global update:

rt+1 = fglobal

([∑
i∈V

hi
t ,

∑
(i , j )∈E

h(i , j )
t

])
(4.5)

In order to make a fair comparison, the NN architecture is of a similar complexity, i.e. the same
amount of hidden layers is used as in the GNN architecture. The architecture of the transition
model implemented using a NN is shown in Figure 4.3 and the same architecture is used for the
reward model except that a scalar value is predicted instead of a state vector. The initialization
is the same as for the MLPs used in the GNN architecture.
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Figure 4.3: Transition model T (st , at ;θNN) and reward model R (st , at ;θNN) implemented using a NN.
It contains 4 hidden layers with 128 units and a normalization layer after which the units are activated
using a ReLU activation. At last, there is the output layer which is a linear layer. The input dimension
is the summation of the state dimension plus the one-hot encoded action vector. The output dimen-
sion for the transition model is equal to the state dimension. The output dimension of the reward
model is a scalar, i.e. the dimension is 1. The output layer is initialized with zeros. The other layers
are initialized using a truncated normal distribution centered around 0 with a standard deviation of√

2/number of hidden input units. A bias is used in all layers.

The pipeline of learning an environment model consists of two steps. First, an agent interacts
with the environment following a random policy. While interacting with the environment the
agent collects experience samples, (st , at ,rt+1, st+1, status). Secondly, these experience samples
are used to learn both a transition model T (st , at ;θ) and reward model R (st , at ;θ). For both
models, a NN and GNN implementation is trained. The process of learning the dynamics of
the environment is summarized in Figure 4.4.

In Section 5.2.1, the experiment is described to learn an environment model in a 2D determin-
istic grid world. The learned environment model is then used in the next step, which is to learn
a policy.

interaction self-supervised
learning

Figure 4.4: Pipeline for learning the dynamics of the environment. An agent interacts with the envi-
ronment by following a random policy. The resulting observations, rewards and actions are stored in
experience samples. The experience samples are used to train a transition and reward model in an of-
fline setting.

4.2 Generalization of the learned environment model

The learned environment model (T̂ (s, a;θ) and R̂ (s, a;θ)) is an approximate MDP homomor-
phism with the original MDP. When the learned environment model is sufficiently accurate,
the environment model can be used to learn the optimal policy. The learned environment
model allows the agent to plan ahead from any state in any novel environment situation. In
order to verify whether the learned environment model is accurate and generalizes to novel
situations, a separate set of experience samples is used to test the performance. This separate
set of experience samples is referred to as ‘test set’. The test set is used during training to verify
the performance of the environment model on a different set of experience samples. After each
training update, the environment model that is being trained is used to predict the next states
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ŝt+1 and rewards r̂t+1 of the test set which are compared to the true next states st+1 and rewards
rt+1 respectively.

After learning a model of the environment, planning can be done. Note that this is the model-
based reinforcement learning approach, shown in Figure 2.3. In this framework a policy is
obtained by acting (generating experience), after which a model is learned that is used to do
planning. Here, the loop of ‘acting → model learning → planning’, is cycled only once. In order
to validate whether the learned environment model is sufficiently accurate and generalizes to
new environment situations, a DQN agent is trained. For both the GNN model and NN model
of the environment, a DQN agent is trained by solely using the learned model. This iterative
process is shown in Figure 4.5. Note the similarity with the framework that is shown in Figure
2.1, where the environment is now simulated using the learned environment model (i.e. the
transition model T̂ (s, a;θ) and reward model R̂ (s, a;θ)). Although the used environment in the
experiments is discrete, the environment models are not assumed to be discrete. Therefore,
DQN agents are trained to obtain the value function. The learned value functions are then
compared to the true value function which can either be obtained by dynamic programming
or training a DQN agent that has access to the environment.

In the experiment presented in Section 5.2.2, the learned environment models are used to learn
a value function. The obtained value functions are compared with respect to the true value
function. The experiment in Section 5.2.1 is aimed at learning an accurate environment model
that generalizes to new environment situation, for both a GNN and NN implementation of the
environment model. The learned environment models are used in the experiment presented in
5.2.2 to see whether they are sufficient to learn the optimal policy. The experiments presented
in Section 5.2.1 and Section 5.2.2 are used to answer RQ1.

Figure 4.5: The learned environment model can be used by the agent to do planning. The agent is
presented with a new environment state, i.e. an observation. Starting in this state, the agent can plan the
optimal trajectory to the goal state. If the learned environment model is accurate enough, the learned
policy can be lifted to the original MDP.

4.3 Learn a model of environment in latent space

As was mentioned in Chapter 3, many approaches in state representation learning focus on
learning a representation by reconstruction of the state into the original state space. This has
the disadvantage that it is needed to train a decoder. Furthermore, decision relevant but visual
small features are often ignored by putting the loss in pixel space. Therefore, it would be ben-
eficial to skip the decoding step and learn a meaningful state representation that can be used
to learn the environment dynamics without the need of going back to the original state space.
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This can be achieved, by mapping the observation to a latent space and predicting the next
state in this latent space using a transition model. An error is computed between the predicted
next state and the next observation which is mapped to the same latent space. The error is
used to train the transition model. This way, both a transition model and a state representation
are learned. This concept is shown in Figure 2.4. The latent state representation can be used
to train a reward model. The predicted reward can be directly compared to the true reward
because it is only a scalar value.

By training a transition model in latent space, constraints can be imposed on the model of
the environment. The additive form of the transition model ẑt+1 = zt +∆ẑt = zt +T (zt , at ;θ),
imposes a constraint for modeling the effects of actions in the environment as translations in
the latent space. To prevent that all states are mapped to the same point a contrastive loss can
be used. By using a contrastive loss the distance between a latent next state and a set of random
other states is maximized. A similar approach has been used in the work of van der Pol et al.
(2020) and Kipf et al. (2020b).

A transition and reward model will be learned using both a GNN and NN, but now in an un-
supervised setting and training directly on the raw observations. The pipeline to learn the en-
vironment model (transition and reward model) is shown in Figure 4.6. The transition loss
function is shown in Equation 4.6. The γ is set to 1. Where zk

t indicates the k-th object repre-
sentation. Note that the loss will be averaged over the batch size, this is not indicated in the loss
function below to keep the expression simple. The subscript ‘pos’ and ‘neg’ refer to the posi-
tive sample or negative sample. The reward model is trained using a MSE loss, see Equation 4.7.
The same architecture for the GNN environment model and NN environment model is used as
was presented in Section 4.1. However, the latent state is learned. The number of nodes in the
graph is a hyperparameter and set to the number of objects in the scene. The output dimen-
sion of the object encoder is set to 2 for each object. Hence, 2 objects in the environment will
give a graph with 2 nodes with feature vectors of size 2. The vector state representation is a
concatenation of the output of the object encoder, i.e. 2 objects in the scene will result a

Ltransition =Lpos +max
(
0,γ−Lneg

)
Lpos = 1

K

K∑
i=1

((
zk

t +T k (zt , at ;θ)
)
− zk

t+1

)2

Lneg = 1

K

K∑
i=1

(
z̃k

t − zk
t+1

)2

(4.6)

Lreward = 1

N

N∑
i=1

((R(zt , a;θ))− rt+1)2 (4.7)

The raw observation will be passed through a CNN and encoded using a MLP into either a graph
representation or vector representation, similar to the representation shown in Figure 4.1. This
representation is then used to train a transition model which predicts the state transition in
latent space ∆zt . A reward model is trained simultaneously which predicts the next reward
using the latent state representation. The predicted transition plus the encoded state zt +∆ẑt =
ẑt+1 are then contrasted with negative samples of encoded next states zt+1. The error is used to
train the CNN object extractor, MLP object encoder and transition model all at the same time.
The additive form of the transition model provides an inductive bias for modeling the effects
of actions in the environment as translations in the latent state space. This way the GNN and
NN model are guided to learn meaningful state representations in the latent space that are
interpretable.

In Section 5.2.3, the experiment is described that trains the environment models in latent
space. 2D plots of the latent state space can be made to give inside into the learned state repre-
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sentation. The underlying problem is discrete and lies on a grid. Ideally, a state representation
is learned per object that adheres to the grid structure of the environment. The learned envi-
ronment models are used in the next step, which is to plan the optimal policy in latent space.

(a)

(b)

Figure 4.6: The pipeline of training a reward and transition model in latent space. The transition model
and reward model are implemented using a) GNN and b) NN.

4.4 Planning in latent space

After a transition model and reward model are learned in latent space, planning can be done
in latent space using these models. The same approach can be applied as was presented in
Section 4.2. The learned reward model and transition model are used to plan the optimal policy
in latent space. The learned policy is applied in the original state space.

In Section 5.2.4, the experiment is described that is performed to plan the optimal policy in
latent space. The learned environment models, trained in the experiment presented in 5.2.3,
are used to plan in latent space. The experiments presented in Section 5.2.3 and Section 5.2.4
are used to answer RQ2.

4.5 Summary

In this chapter, the methodology used to answer the research questions is presented. The re-
search questions are stated in Section 1.3. The methodology is split into two steps in order to
answer the two sub-questions.
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First, a simplified setup is considered where the focus is on learning an environment model
from manually encoded representations. The observations are manually encoded in a graph
representation for the GNN model and vector representation for the NN model. This is done
to focus on the training of an environment model without the need for the additional com-
plexity of an encoding step. In Section, 4.1 the method is presented to learn an environment
model. Here, the procedure for gathering the experience samples and training of the environ-
ment model is described. A GNN model and NN model are trained to approximate the tran-
sition function and reward function of the environment. Furthermore, The used architectures
for the reward models and transition models are presented. In Section 4.2, it is explained how
the learned environment models are used to generalize to novel environment scenarios. By
training a DQN agent using the learned environment model, a value function is obtained. For
both environment models (GNN and NN implementation) a DQN agent is trained of which the
value function is compared to the true value function.

Secondly, in Section 4.3 the simplified setup is extended to a setup where a state representation
is learned from raw observations. By training a transition model in latent space, a state repre-
sentation is learned from raw observations. A CNN object extractor and MLP object encoder
are used to map the raw observations to a latent space. The state representation is then used
to learn a transition and reward model in latent space. A transition model and reward model
are learned for both a GNN and NN implementation. The loss is put in latent space, which
results in both training an encoder (that maps the raw observations to a latent space) and an
environment model (that is used to plan in latent space). The complete pipeline is visualized
in Figure 4.6. The learned environment models are used to do planning in latent space. The
optimal policy learned in latent space is then lifted to the original space, this is described in
Section 4.4.
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5 Experiments

In this chapter, the performed experiments are elaborated. First, in Section 5.1, the used soft-
ware and the used environments are discussed. Next in Section 5.2, the performed experiments
are explained which are used to assert the effectiveness of using a GNN environment model as
opposed to a NN environment model in a model-based reinforcement learning setting. In Sec-
tion 5.2.1, the training of the environment models is elaborated. Followed by Section 5.2.2,
where the details are presented of the conducted experiments to validate the generalization of
the learned models to new maze scenarios. Next, in Section 5.2.3 the same experiments are
explained for the setup where a state representation is learned from raw observations.

5.1 Experimental setup

5.1.1 Software

All the code is written in Python 3.7. Python is one of the most popular programming languages
today (PYPL, 2021). Python is widely used in the ML field, the online community is large and
there a lot of ML libraries. To construct NN architectures the TensorFlow library (Abadi et al.,
2016) is used together with CUDA and CuDNN. To be specific, TensorFlow 1.15 is used. Tensor-
Flow is a popular framework for constructing NN architectures. Besides TensorFlow, a popular
tensor based library used for constructing NN architectures is PyTorch (Paszke et al., 2019).
The used IDE is PyCharm. In Appendix C it is explained how to set up TensorFlow with CUDA
and CuDNN in PyCharm. TensorFlow 1.15 is used for constructing the NN architectures. At
the time of writing, the only available library to create GNN architectures in TensorFlow, is the
GraphNets library. Therefore, the GNN architectures are created using the GraphNets library
by DeepMind (Battaglia et al., 2018). In Appendix D other GNN Python libraries are surveyed.
The GraphNets library offers flexibility, i.e. almost any existing GNN can be implemented using
the 6 core functions. More details on the GraphNets library are described in Appendix B.

5.1.2 Environments

In this work, two different environments are used. Besides the layout differences, the main dif-
ference is the observation space of the agent. In the first experiments, the focus is on learning
the environment model. Therefore, a low dimensional state representation is manually en-
coded, the agent observes all the necessary information to solve the task. For the experiments
where the agent observes a manually encoded state representation of the environment, the
2D maze environment from de Lange (2017) is used. This will be referred to as ‘environment
1’. In the subsequent experiments, the observation of the agent is the full image of the maze.
The environment that is used for the experiments where the observation is the raw image of
the maze, is the 2D maze environment called Minimalistic Gridworld Environment (MiniGrid)
(Chevalier-Boisvert et al., 2018). The MiniGrid environment will be referred to as ‘environment
2’. Both environments are a 2D deterministic grid world.

Environment 1

The environment that is used here is a 2D maze environment. In Figure 5.1 an empty maze of
size 5×5 is visualized. The maze has a starting point (red cell), empty cells (white cells), walls
(black cells) and a single exit (green cell). The agent can be placed at any of the empty cells
and the agent’s goal is to reach the exit (goal) as fast as possible. In order to reach the goal the
agent must decide which action to take (left, right, up, down), i.e. it can move in one of the
four cardinal directions each time step and does this without rotating. Hence, the action space
contains the four cardinal directions. The environment is fully observable because the state
representation contains the position of all the objects (walls, target, agent) in the maze.
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Figure 5.1: Visualisation of environment 1, best viewed in color. The maze is square sized (in this case
5×5). The start position is at (0,0) indicated by the red square. The target position is at (4,4) indicated by
the green square. The black squares indicate obstacles and the agent cannot traverse to these positions.
In the middle cell the possible actions for each empty cell are indicated, i.e. in every cell, except the
obstacles the agent can take one of the four moves in the cardinal directions.

Environment 2

For the experiments where the observation is an image, environment 2 is used. In Figure 5.2 an
example of the environment is shown. There are different configurations possible in environ-
ment 2, e.g. multiple rooms, keys, lava. This allows for extension to more advanced settings.
This environment is depicted because it comes with a wrapper to generate observations of the
maze as images. The image of the maze can be small in terms of pixel size without losing any
information. Furthermore, the environment can be easily adjusted because the environment
complies with the OpenAI gym environment structure (OpenAI, 2000), whereas environment 1
does not. Moreover, it is designed to be particularly simple, fast and lightweight. Few depen-
dencies are needed to make it work and no external sprites or images are needed.

Figure 5.2: Visualisation of environment 2. Walls are colored white and the agent is the red triangle.
The goal state is the green square and the free space is colored black. Note that an outer black border is
added to make the outer walls (white space) visible. The edges of the environment consist always of a
row of walls.
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5.2 Experiments

5.2.1 Experiment - learn a model of the environment

For this experiment, environment 1 is used. The goal of this experiment is to train a transition
model and reward model using both a GNN architecture and a NN architecture. A simplified
setup is considered, where the states are manually encoded such that no encoder needs to be
trained.

First, the environment model is trained for a specific maze configuration to verify the models
can actually learn to predict state transitions and rewards. The maze configurations shown in
Figure 5.5 are used for training and testing the environment models. The number of training
epochs is set to 100.

Secondly, the obstacle positions, starting position and target position are randomized every
episode during the generation of experience samples. This is done in order to have data that is
uniformly distributed across the state space. This way the trained environment models will not
overfit on one specific environment and it can be verified to what extent the learned models
generalize to unseen environment configurations. The process of gathering experience sam-
ples is shown in Algorithm 5.

Algorithm 5: Gather experience samples by random interaction

Initialize number of episodes (dependent on the maze size)
Initialize max number of iterations per episode (dependent on the maze size)
for every episode do

initialize environment with random objects positions, start position and target position
while not in terminal state OR number of steps < max steps do

perform random action in environment
store in replay buffer: s, a,r, s′,done,sample number

end
end

In this experiment two different sized grid worlds are considered. Different environment mod-
els are trained for the following maze sizes: 3×3, 5×5. The amount of obstacles that is used, is
such that a 2 room maze can be created during evaluation of the learned models. In Figure 5.3 a
training sample for each maze with obstacles is shown. The obstacle positions, target position
and start position are randomly initialized. The used hyperparameters for generating the re-
play buffer are shown in Table 5.1. The maximum number of steps is set to 2 times the amount
of cells in a maze.
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Figure 5.3: Training samples of mazes used for generating experience samples. Agent position (red),
target position (green) and obstacle positions (black) are randomly generated.
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Parameter 3×3 maze 5×5 maze
number of episodes train set 60 100
max number of steps per episode 18 50

Table 5.1: Hyperparameters for generating the experience samples by random interaction.

The (sparse) reward function used in environment 1 is shown in Equation 5.1. The agent re-
ceives a penalty for every step it takes. Consequently, by maximizing the cumulative reward it
will find the fastest route to the target.

R (s, a) =
{

0, reaching terminal state
−1, otherwise

(5.1)

During the collection of experience samples, a train set and a test set are created. After all
the experience samples are collected, the environment model is trained. The transition model
and reward model for both GNN and NN are learned offline in a supervised setting using the
samples from the train set. The experience samples from the test set are used to validate the
accuracy of the models on a separate set of experience samples. This is done to see how well
the model performs on different experience samples, that are not included in the training data.
The test set contains half of the number of episodes as in the train set. Furthermore, it is used
to see whether we are overfitting on the training data. A MSE error between the predicted state
and true state is used as a measure of accuracy. Moreover, for the accuracy of the predicted
reward a MSE error is used as well. Hence, the measure of accuracy is the same as the used loss
function that is used to train the models, Equation 4.1 and 4.2.

The hyperparameters used to train the environment models, are shown in Table 5.2.

Parameter 3×3 maze 5×5 maze
number of epochs 300 300
batch size 16 32
Hidden units 128 128
learning rate transition model 0.0005 0.0005
learning rate reward model 0.0005 0.0005

Table 5.2: Hyperparameters for training the reward model and transition model. For both the GNN and
NN model.

5.2.2 Experiment - generalization of the learned environment model

In the previous experiment the models are evaluated on a test set. In this experiment, a closer
look is taken at the generalization performance of the environment models to an unseen envi-
ronment configuration. The goal is to see whether the learned environment models are suffi-
ciently accurate, such that they can be used for planning.

The generalization capabilities of the transition and reward model implemented using a GNN,
are compared to the generalization capabilities of the transition and reward model using a NN.
This is achieved by learning the value function for environment configurations that are not in-
cluded in the data used for training the environment models. The maze configurations shown
in Figure 5.5 are used to assess whether the learned environment models are general enough
to learn a good approximation of the value function.

The value function is obtained by sampling from the environment model and applying Q-
learning by means of a DQN. The resulting value functions are compared to the true value
function. The true value function is obtained by training a DQN with access to the environ-
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ment. The obtained value functions from iterating on the learned environment models, are
compared to the true value function with respect to the values. Furthermore, a greedy DQN
agent is applied to see whether an optimal policy is obtained when the environment models
are used to train the DQN.

The used DQN architecture is shown in Figure 5.4, a similar architecture is used in (Ouyang,
2019). The input state is low dimensional, therefore only three full connected layers are used,
which should be sufficient for the simple problem at hand. The DQN architecture is the same
for both the case of the training of a DQN using a GNN environment model, and for training a
DQN using a NN environment model. The input layer is a 1D state vector. The GNN graph state
representation is converted into a vector before passing it to the DQN network, i.e. the feature
of the nodes are concatenated into a 1D vector. Note that the nodes in a graph do not have a
strict order. However, in the graph format used in the Graph Nets library, the graph is defined by
means of different numpy arrays. Hence, the node features can be taken in a consistent order
to squeeze them into a vector representation. The first two hidden layers contain 128 neurons
in each layer which are activated using a ReLU activation function. The Last layer is a linear
layer, which corresponds to the Q-value for each possible action. The maximum value at the
output of the DQN corresponds to the value.

The parameters used to train the DQN are shown in Table 5.3.

Figure 5.4: DQN architecture.

Parameter 3×3 maze 5×5 maze
Exploration factor (ε) 0.8 → 0.05 0.8 → 0.05
Minimal ε after % episodes 60% 60%
Discount factor (γ) 0.90 0.90
Learning rate 0.001 0.001
Batch size 128 128
Number of episodes 100 100
Maximum steps per epoch 100 100

Table 5.3: Hyperparameters for the trained DQN agent.
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Figure 5.5: Mazes used for evaluation of the learned transition and reward models. These configurations
are excluded from the train set that is used to train the environment models. A value function is used for
these maze configurations by training a DQN on the learned environment models.

5.2.3 Experiment - learn state representation

This experiment builds upon the previous experiments. In this experiment, environment mod-
els will be learned from raw observation in order to learn a state representation. A latent state
representation is learned by predicting the next state in latent space. Hence, a state embedding
and transition model is learned simultaneously. Furthermore, a reward model is trained that
takes as input the raw observation and the applied action. The transition model and reward
model together form the environment model that takes as input a raw observation and ac-
tion (one-hot encoded). The learned state representation obtained using a GNN environment
model is compared to the learned state representation using a NN environment model.

For this experiment, environment 2 is used. This is the ‘empty’ environment from the MiniGrid
environment (Chevalier-Boisvert et al., 2018). The default MiniGrid environment is slightly
adjusted. MiniGrid environments are by default partially-observable, environment 2 is config-
ured to be fully-observable. Furthermore, by default the agent turns left and right and takes
a step forward to move to another tile. This requires the agent to know its orientation when
navigating the environment. The actions space is adjusted, such that the actions are the four
cardinal directions without turning. Moreover, the observation is adapted such that the outer
edge walls are not included. These walls provide no information and make the observation
space larger. The walls are simply cut-off before storing the observations in a replay buffer.

In the previous experiments, the state representation is either a graph representation or vector
representation and directly used to learn the transition model and reward model, i.e. the state
is the observation st = ot . In this experiment, the state does not equal the observation st 6= ot .
The state representation is learned from raw image observations and encoded as either a graph
representation or vector representation. The pipeline to learn the reward model and transition
model is shown in the previous chapter, see Figure 4.6.

A slightly different reward function is used in environment 2. This reward function is dense and
depends on the (normalized) distance of the agent to the target. The reward function is shown
in Equation 5.2. A dense reward function facilitates learning a policy faster. Furthermore, a
dense reward function makes it easier to learn the reward model. Moreover, when reward are
sparse, the representation may collapse (van der Pol et al., 2020).

R (s, a) =
{

1, reaching terminal state

− |xagent−xtarget|+|yagent−ytarget|
widthmaze+heightmaze

, otherwise
(5.2)

The same architectures for the transition model and reward model are used as in the previous
experiments, except that the number of hidden units is set to 512. A larger number of hidden
units is used because the dimensionality of the input data is much larger. Furthermore, a CNN
(object extractor) followed by a MLP (object encoder) are added to encode raw observations
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into latent representations. The used CNN architecture for the object extractor is shown in
Figure 5.6 and the architecture for the MLP object encoder is shown in Figure 5.7. This archi-
tecture is based on the presented object encoder and extractor in Kipf et al. (2020b), where the
architecture was used for a similar environment.
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Figure 5.6: CNN architecture, object extractor. Dimensions based on input image of [50x50x3].
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Figure 5.7: MLP architecture, object encoder. Dimensions based on input image of [50x50x3].

The object encodings resulting from the object encoder shown in Figure 5.7 are either used as
a vector representation where the encodings are flattened, or graph representation where the
encodings are the features of the nodes in a fully connected graph. For each object, a latent
state dimension of 2 is used, corresponding to the x and y position of the objects. Ideally, the
underlying grid structure of the environment appears in the learned state representation.

A contrastive loss function (see Equation 4.6) is used to learn the state representation and tran-
sition model. A MSE loss function (see Equation 4.7) is used to learn the reward model. The
sum of the losses (see Equation 5.3) is minimized to train the environment model.

Ltotal =Lreward +Ltransition (5.3)

First, an empty maze is considered with two objects, shown in Figure 5.8. The agent is the
red triangle and the green square is the target. This is a 5x5 grid, tiles have a pixel size of 10.
Hence, the total dimension of the observation is 50x50 pixels. Note that the outer white walls
are cutt-off.
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Figure 5.8: Example of an image observation of environment 2.

Experience samples are generated in the same way as in the first experiment, see Section 5.2.1,
i.e. an agent interacting with the environment following a random policy. The agent walks
randomly in the maze in order to generate experience samples for training. The replay buffer
consists of 100 episodes. An episode either terminates after 100 steps or when the terminal
state is reached. After the experiences buffer is created, learning the transition model and state
representation is done offline. A learning rate of 0.0005 is used for both the transition and
reward model for both NN and GNN implementation.

In order to check the correctness of the implemented GNN architecture in TensorFlow using
the GraphNets library, the performance is compared to the model from (Kipf et al., 2020b) for
one of the environments used in their work. This is can be found in Appendix E.

Parameter 5×5 empty maze
Number of epochs 100
Maximum steps per episode 50
Batch size 128
Hidden units 512
Learning rate transition model 0.0005
Learning rate reward model 0.0005

Table 5.4: Hyperparameters for training the reward model and transition model in latent state space.
The same parameters are used in (Kipf et al., 2020b). A smaller batch size is used to relax memory
management.

5.2.4 Experiment - planning in latent space

In this experiment, the goal is to train a DQN agent in latent space. The learned policy is applied
in the original space.

Using the learned transition model and reward model from the previous experiment, see Sec-
tion 5.2.3, a DQN agent is trained in latent space. Instead of iterating using an environment
simulator, the learned models of the environment are used. An initial observation of the envi-
ronment is fed through the object extractor and encoded (trained in the previous experiment)
to obtain a latent state representation. The latent state representation and action are supplied
to the transition model and reward model. Consequently, the predicted next latent state and
predicted reward are obtained. The predicted next latent state and a new action serve as an
input for environment model to predict the corresponding next latent state and reward, this is
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repeated until termination (goal reached or maximum number of steps). The agent uses the
environment model to plan the consequence of its actions and learns a policy in latent space.
After training the DQN agent in latent space using the learned environment model, a greedy
policy with respect to the predicted Q-values is applied in the environment.

The used parameters to train a DQN agent in environment 2 are shown in Table 5.5. Note that
the parameters are similar to the DQN parameters in the previous experiment. The Discount
factor was set to 0.99, this was crucial for the algorithm to converge.

Parameter 5×5 maze
Episodes 200
Maximum number of steps 100
Exploration factor (ε) 0.6 → 0.05
Minimal ε after % of total episodes 60%
Discount factor (γ) 0.99
Learning rate 0.001
Batch size 128

Table 5.5: Hyperparameters for the trained DQN agent in environment 2.

5.3 Summary

In this chapter, the design of the experiments is elaborated. In Section 5.1, the used setup was
discussed. In Section 5.1.1 the used software was presented. All the code is written in Python
3.7. To construct NN architectures the TensorFlow library is used and consequently the Graph-
Nets library is used to construct GNN architectures. In Section 5.1.2 the used environments are
described.

In Section 5.2 the different experiments are covered. Starting with learning the environment
dynamics (in a simplified setting) in Section 5.2.1. A replay buffer is constructed from the expe-
rience samples of an agent following a random policy. With the obtained replay buffer, the en-
vironment dynamics (transition model and reward model) are learned in a supervised setting
where the true labels are the next state and reward. In Section 5.2.2 the experiment concern-
ing the generalization performance of the learned environment model is described. An unseen
maze configuration is used, for which a policy is learned by means of a (greedy) DQN agent
which is trained using a model of the environment. In section 5.2.3 the experiment is elabo-
rated to learn a state representation from the image observations. An observation encoder and
environment model is trained simultaneously in an unsupervised setting using a contrastive
loss. In section 5.2.4, the model for the environment dynamics and the observation encoder
are used to train a DQN agent in latent space.

This concludes the chapter on the design of the experiments. In the next chapter the results are
presented.
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6 Results and Discussion

In this chapter, the results of the experiments discussed in Chapter 5 are presented. First, in
Section 6.1 the results for training the transition model and reward model are presented for a
fixed maze configuration. Followed, by section 6.2 where environment dynamics are learned
for random maze configurations. The value functions for unseen maze configurations are pre-
sented in section 6.3. The value functions are obtained by training a DQN using solely the
learned environment model. In section 6.4 the learned state representations for environment
2 are presented. The learned state representations are used to learn a policy in latent space.
In Section 6.5, the results for learning a policy in latent space and applying it in the original
environment are shown.

6.1 Learn environment model - fixed maze

First the transition model and reward model are trained and evaluated on the same maze en-
vironment. Hence, the maze is kept constant, i.e. the object positions, target position and
starting position of the agent are fixed during training and testing. The only difference in this
case are the random actions taken by the agent.

A reward model and transition model are learned for the mazes shown in Figure 5.5. The train-
ing loss plot and test error plot for the 3x3 maze are shown in Figure 6.1. Sometimes, the loss
error spikes, this might be due to the randomly sampled batches and the used ADAM optimizer
in combination with small error values.
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Figure 6.1: Train and test curves for both transition and reward model implemented using a GNN and
NN for the 3x3 mazes. The maze is kept constant during training and tested on the same maze.
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In Figure 6.2, the next states are predicted for all the experience samples in the test set for the
3x3 maze configurations. The dimension in Figure 6.2 correspond to the X and Y dimensions
in the maze. A dotted line is used to indicate the discrete positions in the maze. Ideally, the
predicted state map to cross sections of these dotted lines. Note that in Figure 6.2c and Figure
6.2d, there are two outliers for the predicted position of the agent for both models. This is due
to an action that is invalid (e.g. moving to a position where there is an obstacle). The model is
not able to predict the next state correctly, see Figure 6.3. This is reflected in the plot for the test
set in Figure 6.6d, where the outliers cause the transition curves not to converge. Note that the
learned environment models are not assumed to be discrete. The discrete nature of the grid
world needs to be learned by the environment models. It is important that the mapping to the
discrete position is correct otherwise the transition model is inaccurate and cannot be used for
planning.

Training a GNN takes more time. To give an idea, for the 3x3 maze a training epoch for the
NN takes approximately 0.1 second and a training epoch for the GNN takes approximately 1
second. For the 5x5 maze a training epoch for training the NN takes approximately 0.5 seconds
and a training epoch for the GNN takes approximately 4 seconds. The code is executed on
a laptop with a CUDA enabled GPU: NVIDIA Quadpro P1000. The additional computation
time might be due to the Graph Nets library implementation. If the message passing is not
implemented as a matrix operation this can significantly slow down the performance.
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Figure 6.2: Next state predictions for all states in the test set for the 3x3 mazes. Dotted line indicated the
discrete positions of the maze. Red is used for the position of the agent, green for the target position and
black for the obstacle position.

(a) Outlier in the GNN transition model. (b) Outlier in the NN transition model.

Figure 6.3: Visualisation of the situation of 1 of the outliers for both models. The agent takes an action
(down) which results in no change of position due to the edge of the maze. However, the model predicts
a position which is the resulting outlier. The blue dots are the predicted positions, the green dots are the
true positions and the orange line is used to indicate to which green dot the predictions belong.
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The learned transition model and reward model are used to train a DQN agent to find the op-
timal path to the target position. In Figure 6.4 and Figure 6.5 the value functions is shown that
was obtained using direct interaction with the environment, planning using the learned GNN
environment model and planning using the learned NN environment model respectively.

The target states are reached in the minimal amount of steps. However, the path (blue line)
towards the goal differs for the DQN agent trained using a GNN environment model. This is
caused by the randomness that occurs when training a DQN agent. However, the path is opti-
mal for the problem at hand and in both cases the learned models are sufficiently accurate to
perform planning.
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Figure 6.4: Value function calculated using DQN agents trained for the empty 3x3 maze: a) with direct
access to the environment simulator, b) using the trained GNN model, c) using the trained NN model.
The blue line indicates the greedy policy that is obtained when acting greedily with respect to the ob-
tained value function indicated by the colored tiles.
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(a) DQN agent, access environment
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(b) DQN agent, GNN model
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(c) DQN agent, NN model

Figure 6.5: Value function calculated using DQN agents trained for the 3x3 maze with 2 rooms: a) with
direct access to the environment simulator, b) using the trained GNN model, c) using the trained NN
model. The blue line indicates the greedy policy that is obtained when acting greedily with respect to
the obtained value function indicated by the colored tiles.

In Appendix F, the same plots are shown for the 5x5 maze configuration. Similar results are
observed, besides the fact that the reward model is problematic for the GNN to learn. Never-
theless, it still finds the optimal path.
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6.2 Learn environment model - random maze

Next, the mazes are randomized during training of the transition and reward models in order
to generalize to novel maze situations. For reproducibility of the results, seed(1) was used for
Python, Numpy and TensorFlow.

In Figure 6.6 and Figure 6.8 the train losses are presented for training on the experience samples
gathered in randomly generated mazes, some of these random maze samples were shown in
5.3. Every epoch, the test error is calculated on a separate test set of experience samples. The
test error plots are shown in the figures on the right in Figure 6.6 and Figure 6.8. Note that the
errors tend to get very small for the test error curves. The reason for this is that the average error
is computed for the entire test set at once. The train loss is computed for a batch of training
samples. Hence, the train loss is the summation of training losses for all batches in an epoch.

In Figure 6.7 the states for each object (e.g. obstacles, agent, target) are predicted for the sam-
ples in the test set. The transition model predicts the next states for the objects, target and
agent in the maze. The maze environment has discrete positions and therefore the output of
the transition model should ideally be close to these discrete positions indicated by the dotted
lines.
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Figure 6.6: Train and test curves for both transition and reward model implemented using a GNN and
NN for the 3x3 mazes.
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Figure 6.7: Prediction for the states in the test set for the 5x5 mazes with fixed obstacles. Red is used for
the position of the agent, green for the target position and black for the obstacle position.
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Figure 6.8: Train and test curves for 5x5 mazes
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Figure 6.9: Prediction for the states in the test set for the 5x5 mazes with fixed obstacles. Red is used for
the position of the agent, green for the target position and black for the obstacle position. Note that the
assumed locations are continuous.

From the training and testing curves it can be concluded that the transition model imple-
mented using GNN is best performing. Furthermore, the reward function for the GNN is worst
because it learns to map everything to the most seen reward, i.e. -1. In the Figures 6.7 and
6.9 it can be seen that the GNN predicts the state better compared to the NN. However, GNN
state predictions are not perfect either. Especially in the case when the maze has obstacles, the
same problem occurs as mentioned in Figure 6.3. An incorrect transition is predicted, it can-
not handle that state and corresponding action. To get an idea of the error that occurs in the
transition model, the true states are plotted connected to the predicted states. This is added as
an Appendix, see Figure F.5. It is similar to the plots shown in Figure 6.7 and Figure 6.9 but with
an line between the true state and corresponding predicted state.

Hence, it cannot handle the generalization to unseen environments properly, both for the GNN
model and NN model. Furthermore, the GNN cannot correctly predict the reward when ob-
stacles are present in the maze. The NN transition model performs badly when obstacles are
present in the maze. Both environment models will not be accurate enough to be used for
planning, as is shown in the next section.

6.3 Generalization to new maze configurations

The learned environment models are used to do planning. DQN agents are trained that use
the models to do planning. The obtained value functions are shown in Figure 6.3, 6.11, 6.3 and
6.13.
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(c) DQN agent, NN model

Figure 6.10: Value function calculated using trained DQN agent for the empty 3x3 maze: a) with direct
access to the environment simulator, b) using the trained GNN environment model, c) using the trained
NN environment model. The blue line indicates the greedy policy.
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(a) DQN agent, access environment (b) DQN agent, GNN model (c) DQN agent, NN model

Figure 6.11: Value function calculated using DQN agents trained for the 3x3 maze with 2 rooms: a) with
direct access to the environment simulator, b) using the trained GNN model, c) using the trained NN
environment model. The blue line indicates the greedy policy.
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(a) DQN agent, access environment
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(b) DQN agent, GNN model
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(c) DQN agent, NN model

Figure 6.12: Value function calculated using trained DQN agent for the empty 5x5 maze: a) with direct
access to the environment simulator, b) using the trained GNN environment model, c) using the trained
NN environment model. The blue line indicates the greedy policy.
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(b) DQN agent, GNN model
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(c) DQN agent, NN model. The agent
drifts out of the maze.

Figure 6.13: Value function calculated using trained DQN agent for the 3x3 maze empty maze: a) with
direct access to the environment simulator, b) using the trained GNN environment model, c) using the
trained NN environment model. The blue line indicates the greedy policy. Note the somewhat strange
figure on the right. Here the environment model is incorrect and the agent thinks it can move outside
the maze. It drifts outside the maze.
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In the maze configurations without obstacles, the agent learns the optimal policy. This can be
seen from Figures and . For the 3x3 maze with obstacles, the learned GNN environment model
complies with the state space of the environment, and can be used to learn the optimal policy,
see Figure 6.11b. However, the learned values do not correspond with the true values. For
the 3x3 maze with obstacles, the learned NN environment model does not adhere to the state
space and the agent thinks it can move through obstacles. It learns policy which is impossible,
see Figure 6.11c.

The learned NN environment model does not generalize well to other situations with obstacles.
The environment model thinks it can cross obstacles positions, see Figure 6.11c or it drifts out
of the maze, see Figure 6.13c. The GNN does the job a bit better as a transition model. However,
due to its poor reward model, it does not learn the correct value, see Figure 6.13c. Hence it is
not able to learn a good policy.

6.4 State representation learning

The state representation for environment 2 is learned using two different architectures for the
transition model. The first approach uses a GNN architecture as transition model. The second
approach uses a NN architecture as transition model.

6.4.1 State representation using GNN transition model.

The GNN transition model takes as input the state encoded as a graph. The features of the
nodes in the graph are the object encodings, as shown in Figure 4.6. Ideally, the network learns
that one node corresponds to the agent and the other node corresponds to the target, as was
the case in Kipf et al. (2020b). A random observation sample and its corresponding latent state
are shown in Figure 6.14.
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(a) Observation of maze. (b) State representation as a graph.

Figure 6.14: In a) an observation of the maze and b) its corresponding state representation as a graph.
The color of the nodes in the graph has no meaning, nodes are colored to distinguish nodes between
different state representation plots.

The training losses are shown in Figure 6.15. The best model is stored for later use when learn-
ing a policy. Note that the model converges rather quick, after 25 epochs there are no significant
improvements. It is easier to learn a reward model for a dense reward function compared to the
sparse reward function used in environment 1.
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Figure 6.15: Training curve - GNN environment model.

All the observations in the replay buffer are encoded using the trained object extractor and
trained object encoder preceding the GNN transition model. The pipeline was shown above in
Figure 4.6a. Plotting the node features for all latent (graph) state representation results in the
plots shown in Figure 6.16. Note that the network learned the x and y position of the objects
apart from a random rotation. The same behaviour was observed in Kipf et al. (2020b). The
additive format of the transition function did not put any constraint on the rotation in the latent
state space. The agent adheres clearly to the underlying grid structure of the grid world. Note
that the state space is continuous, and yet the discrete behaviour is captured. Moreover, the
node features of the target object are all mapped to the same point because the target is static
for all the observations in the replay buffer, i.e. the target is not moving. This is also the reason
that the contrastive hinge loss, shown in Figure 6.15 in green, does not converge to 0 but to 1
(the used margin in the hinge loss).
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(a) State representation node 1.
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(b) State representation node 2.

Figure 6.16: The node features are plotted for each node in the graph state representation. The color
bar indicates the reward obtained for traversing to that specific state. Dimension 1 and Dimension 2 are
the dimensions of the feature vector on the nodes.

The object extractions, obtained from the object extractor shown in the pipeline in Figure 4.6a,
are given in Figure 6.17. The number of object slots (i.e. nodes in the graph) is predefined and
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determines the number of object extractions that will be generated by the CNN object extractor.
In the case of 2 objects slots, the object extractor generates 2 object extractions. Each extraction
is used to make an object encoding. Hence, 2 object encodings are obtained (Figure 6.16).

Ideally, an object extraction completely extracts one object. The learned object extractions
in Figure 6.17, clearly extract the individual objects. However, in the object extraction of the
agent some artifacts of the target extraction are present. This influence is small and still an
expressive state representation is learned, which captures the underlying grid structure of the
environment.
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(a) CNN output filter 1 (Object extraction 1).
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(b) CNN output filter 2 (Object extraction 2).

Figure 6.17: The object extraction per object slot for the observation shown in Figure 6.14. The transition
model is implemented using a GNN. Black corresponds to the highest value in the object extraction and
white to the lowest value. Everything in between is gray scaled according to the output value of the CNN
layer.

6.4.2 State representation using object-oriented NN transition model.

As comparison, the same architecture is used to learn a state representation except the GNN is
replaced by a NN. However, the same object-oriented abstraction of the observation is used.
Instead of using the object encodings as node features in a graph, the object encodings are
concatenated in a vector. This vector is used as a state vector for the NN transition model.
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(a) Observation of maze. (b) State representation as a vector.

Figure 6.18: a) an observation of the maze and b) its corresponding state representation as a vector. The
first two elements in the vector corresponds to the encoding of object extraction 1, and the third and
fourth element corresponds to object extraction 2.
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The training losses are shown in Figure 6.19. The best model is stored for later use when learn-
ing a policy.

0 20 40 60 80 100
Epochs

0

5

10

15

20

25
Lo

ss
forward model
reward model
constrastive hinge loss

Figure 6.19: Training curve - NN environment model.

The object-oriented state representation for both objects is shown in Figure 6.20. The state
vector consists of the concatenated MLP encodings. In this case, 2 objects are present in the
environment (agent and target) resulting in a 4 dimensional state vector. The first 2 dimensions
of the state vector should correspond to object 1 and the state embedding is plotted for all the
samples in the replay buffer in Figure 6.20a. The replay buffer contains 3325 samples and all
map to one of the 25 positions the agent can take. Furthermore, the state embedding for object
2 is plotted in Figure 6.20b. In both figures a clear grid structure is observed. However, the
target is not moving and hence the object-oriented state representation does not succeed to
decouple the states of the different objects. The object extractions for the object-oriented NN
environment model, are not able to separate the 2 objects. The object extractions per object
are shown in Figure 6.21. Nevertheless, it correctly learns that there are 25 different states in
the environment considered.
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(a) State representation vector (dimension 1 and 2).
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(b) State representation vector (dimension 3 and 4).

Figure 6.20: The elements of the state vector plotted per object. a) the first two elements in the vector
representation, b) the third and fourth element in the vector representation. The color bar indicates the
reward obtained for traversing to that specific state.
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(a) Object extraction 1.
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(b) Object extraction 2.

Figure 6.21: The object extraction per object slot for the observation shown in Figure 6.18. The transition
model is implemented using an object-oriented NN. The color has no specific meaning other than that
the relative difference is important. Black corresponds to the highest value in the object extraction and
white to the lowest value. Everything in between is gray scaled according to the value. Values range from
0 to 1 due to the used sigmoid activation.

Applying PCA to the total state vector results in the plot shown in Figure 6.22. The two prin-
cipal components show the underlying grid structure of the environment, apart for a random
rotation.
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Figure 6.22: PCA plot of the 4 dimensional state vector for all the states in the replay buffer. The color
bar indicates the reward.

6.5 Planning in latent space

The state representations learned using both models (NN and GNN), shown in the previous
section, are clearly separated and preserve the underlying grid structure. The trained object
encoders for the different architectures are used to encode the initial observation. The initial
state embedding is then used as a starting point for a DQN agent to learn a policy. Instead
of interacting with an environment, the DQN agent uses the learned transition model and re-
ward model. The transition and reward model take as input the latent state representation and
action. The original action space is used, action equivariance is assumed. Hence, a policy in
latent state space is learned which is then used in the original state space.
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6.5.1 Training in latent space using a GNN environment model.

The DQN agent that is trained in latent space using the GNN environment model, is able to
learn the optimal policy. During training, the predicted cumulative reward and true cumula-
tive reward are logged and shown in Figure 6.23b. Furthermore, the training loss of the DQN
network is plotted in Figure 6.23a. The predicted rewards follow the true rewards with some
offset. An offset in the reward prediction is not problematic when this offset is constant. If
this offset is constant, the relative value difference is preserved. If the offset is not constant, a
different value function will be learned and the greedy policy might not be optimal.

(a) DQN training loss.
(b) Average cumulative reward obtained during train-
ing. Moving average over 10 episodes.

Figure 6.23: Training a DQN agent using the GNN environment model.

The DQN agent acts greedy with respect to the Q-values. The value function obtained for the
DQN trained using the GNN environment model is shown in Figure 6.24.

Figure 6.24: The value function obtained by taking the maximum of the Q-values for all possible states.
Colors indicate the value for that state.

If you are reading this on an electronic device with internet connection, you can click the blue
text to see a video of the agent in action.
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6.5.2 Training in latent space using an object-oriented NN environment model.

The DQN agent trained in latent space, using the environment model implemented with an
object-oriented NN, is able to learn the optimal policy as well. The training loss of the DQN
network and the average cumulative reward per episode are shown in Figure 6.25. Note how-
ever, that the reward function has some clear spikes above the maximum achievable cumula-
tive reward of 1.

(a) DQN training loss.
(b) Average cumulative reward obtained during train-
ing. Moving average over 10 episodes.

Figure 6.25: Training a DQN agent using the object-oriented NN environment model.

The learned reward function has some error but is still sufficient enough to learn a decent value
function. By acting greedy with respect to the value, an optimal policy is obtained. The value
function obtained from the DQN trained using the object-oriented NN environment model is
shown in Figure 6.26.

Figure 6.26: The value function obtained by taking the maximum of the Q-values for all possible states.
Colors indicate the value for that state.

If you are reading this on an electronic device with internet connection, you can click the blue
text to see a video of the DQN agent in action.

Robotics and Mechatronics Y.C. (Yannick) van Wettum

https://youtu.be/Ju6abnJiaFI
https://youtu.be/Ju6abnJiaFI


72 State representation learning using a graph neural network in a 2D grid world

7 Conclusion

In this chapter, the work is concluded. In Section 7.1 the research questions are answered. At
last, in Section 7.2 recommendations regarding future work are discussed.

7.1 Answering the research questions

The main goal of this project was to improve upon the state of the art in representation learning.
The focus was on learning useful state representations from raw pixel observations without
supervision. To achieve this, a transition model is trained in latent space, this is one of the
strategies to learn a state representation (Lesort et al., 2018). A GNN model and NN model
have been compared in their ability to model the transition and reward function. To study the
problem, a navigation task in a deterministic 2D grid world is used.

Before learning a state representation, the GNN was tested as a transition and reward model us-
ing an object-oriented state representation that was manually encoded. The GNN architecture
was compared to a NN architecture to answer the first research question:

RQ1 “How can a graph neural network be used to learn a transition and reward model in a fully
observable deterministic 2D grid world”

The used encoded representation of the state was inspired on state encodings used in related
work (Battaglia et al., 2016; Hamrick et al., 2018; Kipf et al., 2020b). A transition model and
reward model implemented using both a GNN and NN was learned in a supervised setting in a
static environment. A DQN agent was trained using the learned environment models, in order
learn a policy. Both NN and GNN implementation for the environment model was sufficient to
learn an optimal policy in static maze environments.

Learning a policy for unseen maze configurations showed to be more challenging. The NN
transition model and reward model could not effectively be used to learn a policy for unseen
maze configurations. The NN transition model fails to learn the correct state space. The agent
thinks it can go through walls (Figure 6.11c), or even walk out of the maze (Figure 6.13c). The
GNN transition model does a better job at generalizing to unseen maze configurations. How-
ever, when the environment is larger, the GNN environment model is not accurate enough to
generalize to unseen maze configurations, and cannot be used to learn an optimal policy. This
is a result of the inaccurate GNN reward model.

To answer RQ1, the GNN showed to perform better as a transition model than the NN transition
model. However, the GNN reward model is not suited to learn a sparse reward function. The
NN environment model was sufficient in the static maze configurations to learn a policy, but
failed for the case of unseen maze configurations with obstacles.

The focus of the second research question was to learn a transition model and reward model in
latent space, in order to learn a state representation:

RQ2 “To what extent can a graph neural network be used effectively to learn a transition and
reward model in a latent space for a fully observable deterministic 2D grid world?”

By using a GNN as transition model, the true underlying state for each object was learned. The
part of the state representation corresponding to the agent, adhered clearly to the underlying
grid structure of the grid world. Moreover, the part of the state representation belonging to the
target position was mapped to 1 point in the latent state space, see Figure 6.16. The learned
reward model and transition model were sufficient to do planning in latent space using a DQN
agent and learn an optimal policy.
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Using the NN transition model to learn a state representation, the learned state representation
was not decoupled per object. However, the two principal components of the total state vector
also showed a clear grid structure. The learned state representation showed to be sufficient to
train a DQN agent using solely the learned NN environment model.

The advantage of using a GNN as opposed to NN is that the learned state representation is
decoupled per object. However, in the considered environment, the decoupled state represen-
tation does not show clear benefits when learning a policy in latent space, compared to the
state representation learned using a NN environment model. For both implementations of the
environment model, a DQN agent was successfully trained that followed the optimal policy.

The main research question of this work is:

“To what extent can a graph neural network be used effectively in state representation learning
in a fully observable deterministic 2D grid world, to increase an agent’s generalization

performance to novel environment scenarios?”

To conclude, the main benefit of using a GNN in representation learning is that it allows for
decoupling the state representation per object. In a problem with multiple objects of which
the state information is needed to perform a certain task, state representation learning using a
GNN will be beneficial. The GNN allows to learn expressive representations per object, which
is not possible using a conventional NN architecture. For simple environments, there will be
no benefit in using a GNN as opposed to a NN to learn a state representation.

7.2 Recommendations for future work

7.2.1 More challenging environments

The environments considered in this work are extremely simple. Therefore, it is important to
extend this work to more complicated environments. For example, environments with more
objects, non deterministic environments, partially observable environments.

7.2.2 Automate the object slot choice

The number of object slots (nodes in the graph) is a hyperparameter. Automatic selection of
the object slots would make the GNN more applicable in unsupervised scenarios in dynamic
environments.

7.2.3 DQN-GNN agent

An interesting research direction would be to implement a model free DQN agent that uses a
GNN as estimator network.
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A Activation functions

In this appendix the most often used activation functions are given. This is by no means a
complete list but serves as a reference to be able to understand what activation function is
used in the majority of scientific work related to NNs.

There are several activation functions that can be used in neural network architectures. For
example, in AlexNet (Krizhevsky et al., 2012) the ReLU activation function is used in their com-
puter vision architectures because of the speed advantage ReLU provides with respect to satu-
rating nonlinearities such as tanh and sigmoid. Furthmore, the language representation model
BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) uses a
smooth version of the ReLU called GELU (Hendrycks and Gimpel, 2016).

Activation functions are chosen based on their empirical results from previous works and their
mathematical properties. An important property is that the activation should be differentiable
in order to do backpropagation. Another important property is that the activation function
is non-linear. According to the the ‘Universal Approximation Theorem‘ (Csáji, 2001), a neural
network consisting of one hidden layer and sufficient but finite units can approximate any con-
tinuous function to a reasonable accuracy using non-linear activation function similar like the
sigmoid activation functions (Cybenko, 1989). Furthermore, (Hornik, 1991) showed that it is
not the choice of activation function but rather the multi-layer architecture that facilitates the
NNs to be universal approximators.

In the following sections most common activation functions are shown using their equations
and plots of both the activation functions and the derivatives.

Linear activation

The linear activation function and its derivative is defined as shown here:

f (x) = ax (A.1) f ′(x) = a (A.2)
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(a) Linear activation function.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) First derivative of linear activation function.

Figure A.1: Linear activation function (left) and its first derivative (right). a = 1 is used here. Therefore,
the linear activation function is f (x) = x and its derivative is f ′(x) = 1.
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Binary step activation

The binary step activation function and its derivative is defined as shown here:

f (x) =
{

0 if x < 0
1 if x ≥ 0

(A.3) δ(x) =
{

0 if x 6= 0
+∞ if x = 0

(A.4)

Note that this function is not feasible for gradient-based method because of its derivative that
is 0 everywhere except for x = 0 where it is infinite.
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(a) Binary step activation function.
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(b) First derivative of the binary step activation function

Figure A.2: Binary step activation function (left) and its derivative (right). Note that the impulse function
is approximated here and in theory goes up to ∞.

Logistic activation

The logistic activation function and its derivative is defined as shown here:

σ(x) = 1

1+e−x = ex

ex +1
(A.5) σ′(x) =σ(x) (1−σ(x)) = ex

(1+ex )2 (A.6)
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(a) Logistic activation function.

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20

0.25

y

(b) First derivative logistic activation function.

Figure A.3: Logistic activation function (left) sometimes referred to as sigmoid because of its S-shape
and its first derivative (right).
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Hyperbolic tangent

The hyperbolic tangent (tanh) activation function and its derivative is defined as shown here:

tanh(x) = ex −ex

ex +e−x (A.7) tanh′(x) = (
1− tanh2(x)

)
(A.8)
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(a) Hyperbolic tangent activation function
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(b) First derivative of hyperbolic tangent function

Figure A.4: Hyperbolic tangent (tanh) activation function (left) and its first derivative (right).

Rectified linear unit ReLU

The rectified linear unitReLU activation function and its derivative is defined as shown here:

ReLU(x) =
{

0 if x ≤ 0
x if x > 0

= max{0, x} (A.9) ReLU′(x) =
{

0 if x ≤ 0
1 if x > 0

(A.10)
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(a) Rectified linear unit (ReLU) activation function
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(b) First derivative of the rectified linear unit.

Figure A.5: Rectified linear unit (ReLU) activation function (left) and its first derivative (right).
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Leaky rectified linear unit (Leaky ReLU)

The leaky rectified linear unit (LReLU) activation function and its derivative is defined as shown
here:

LReLU(x) =
{

0.01x if x ≤ 0
x if x > 0

(A.11) LReLU′(x) =
{

0.01 if x ≤ 0
1 if x > 0

(A.12)

When the 0.01 in the Leaky ReLU equation is parameterized this is called the Parametric ReLU.
The paremter in the Leaky ReLU case is α= 0.01.
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(a) LReLU activation function.
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(b) First derivative of the LReLU.

Figure A.6: Leaky rectified linear unit (LReLU) activation function (left) and its first derivative (right).

Exponential linear unit (ELU)

The ELU! (ELU!) activation function and its derivative is defined as shown here:

ELU(x) =
{
α (ex −1) if x ≤ 0

x if x > 0
(A.13) ELU′(x) =

{
αex if x ≤ 0

1 if x > 0
(A.14)
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(a) ELU activation function.
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(b) First derivative of the ELU activation function

Figure A.7: Exponential linear unit (ELU) activation function (left) and its first derivative (right).
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Gaussian error linear unit (GELU)

A fairly new activation function is the GELU (Hendrycks and Gimpel, 2016) which is used in
transformers used in NLP applications (Devlin et al., 2018; Dai et al., 2019). The GELU activa-
tion function and its derivative is defined as shown here:

GELU(x) = xP (X ≤ x) (A.15)

= xΦ(x) (A.16)

= x · 1

2
[1+erf(x/

p
2)] (A.17)

can be approximated with: (A.18)

= x

2

(
1+ tanh

[p
2/π

(
x +0.044715x3)]) (A.19)

= xσ(1.702x) (A.20)

Where Φ(x) is the standard Gaussian cumulative distribution function and erf() refers to the
Gauss error function.

The derivative of the GELU is:

GELU′(x) =Φ(x)+xφ(x) (A.21)

can be approximated with: (A.22)

= 0.5tanh
(
0.0356774x3 +0.797885x

)+(
0.0535161x3 +0.398942x

)
sech2 (

0.0356774x3 +0.797885x
)+0.5

(A.23)

Where φ(x) is the Gaussian probability density function and Φ(x) is the standard Gaussian cu-
mulative distribution function. The approximation was obtained by filling in equation A.19
into WolframAlpha.
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Figure A.8

Softmax function

Another frequently used activation function is the softmax. This function is not a function of a
single fold x from its previous layer and therefore this cannot be graphed as the previous shown
activation functions. The softmax is used to compute a probability distribution from a vector
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of real numbers, i.e it produces output values ranging from 0 to 1, 0 ≤ y ≤ 1, with the sum of
probabilities equal to 1.

The softmax is an extension of the logistic activation function. The logistic activation function
is used in binary classification problems while the softmax is used in multivariate classification
problems. The softmax is mostly used in the output layer to give the highest probability to the
target class. The softmax is defined as follows:

σi (xi ) = e(xi )∑
j e(x j )

(A.24)

The derivative of the softmax is:

∂σi (xi )

∂x j
=

{
σi (xi ) (1−σi (xi )) if i = j
σ j (x j )σi (xi ) if i 6= j

(A.25)
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B GNN framework - GraphNets

In (Gilmer et al., 2017) the MPNN framework is presented in order to unify the different GNN
approaches. In (Battaglia et al., 2018) the Graph Network (GN) framework (GraphNets) is in-
troduced which is suited for relational reasoning over graph structured data. It is an attempt
to generalize and extend previous GNN approaches and facilitate the construction of complex
architectures from simple building blocks. In the GN framework the main processing unit is
the GN-block. In essence, it is a set of composed functions that take a graph as input, applies
the functions to the graph, and returns the processed graph as output. The functions inside the
GN-block are typically NNs that operate on the features of the graph. The GraphNets library is
released publicly (DeepMind, 2018).

The formulation of graphs in (Battaglia et al., 2018) is similar as the formulation presented in
Section 2.6. Adhering to their notation, a graph is defined as a tuple G = (u,V ,E), with Nv

vertices and Ne edges. Here, the u represents graph-level attributes, V = {vi}i=1:Nv is the set
of nodes where vi represent the attributes of the ith node and E = (ek,rk , sk )k=1:Ne

is the set of
edges where ek represents the attributes of the kth edge. The rk and sk are the indices of the
two receiver and sender nodes connected by the kth edge.

The core unit of the GN framework is the full GN block shown in Figure B.1a. The full
GN block contains three update functions (φe ,φv ,φu) and three aggregation functions
(ρe→v ,ρe→u ,ρv→u), shown in Equation B.1. The update functions take in a set of objects
(e.g. edge attributes, node attributes and/or global attributes) with a fixed size representation,
apply the same function to each of the elements in the set and output an updated repre-
sentation also with a fixed size. The aggregation functions take a set of objects and create
one fixed size representation for the entire set. The implementation of the update functions
and aggregation functions is not fixed. This is where architectures can differ dependent on
the application. However, the update functions are most often implemented as NNs, e.g.
MLP. The aggregation operation is typically a permutation invariant reduction operator (e.g.
elementwise summation, mean, maximum) in order to maintain permutation equivariance.

e′k =φe (
ek ,vrk ,vsk ,u

)
e′i = ρe→v (

E ′
i

)
v′i =φv (

e′i ,vi ,u
)

e′ = ρe→u (
E ′)

u′ =φu (
e′,v′,u

)
v′ = ρv→u (

V ′) (B.1)

(a) Full GN block (Battaglia et al., 2018). (b) MPNN block (Battaglia et al., 2018).

Figure B.1: Two examples of GN building blocks. (a) A full GN block predicts node, edge and global
attributes given a graph with node, edge and global attributes. (b) A MPNN (Gilmer et al., 2017) predicts
node, edge and global attributes based on incoming node and edge attributes.

A GN block takes a graph as input. The computations start at edge level and proceed to node
level and then to global level. In the GN block shown in Figure B.1a the edge block computes
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one output for each edge, e′k . The set of updated edges that project to node i are then aggre-
gated and used in the node block together with the node features vi and global features u to
update the node features v′i . In the global block, the edge level and node level features are all
aggregated in order to update the global features. The output of the GN block is the graph with
updated edge, node and global features, G ′ = (

u′,V ′,E ′). The entire process is described in
Algorithm B.2. In this work, the constructed GN blocks are referred to as GNNs because the
implementation of the update functions is a MLP.

Figure B.2: Steps of computation in a full GN block as described by (Battaglia et al., 2018).

Note that the GN block, as described, follows a sequence of steps. However, this order is not
strictly enforced and it is possible to change the order of update functions. Furthermore, it is
not strictly necessary to use all the components in the GN block. For example, when the MPNN
is formulated in the GN framework it can be represented as is shown in Figure B.1b.
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C Setup development environment

This appendix serves as tutorial to setup the development environment in PyCharm with Ten-
sorFlow including GPU support. It is worthwhile noting down how the development environ-
ment is setup because it took some time to get everything working correctly. This appendix
covers how to install CUDA, cuDNN and TensorFlow on windows 10 within PyCharm.

Step 0 : Hardware check

The first thing to do is to check whether your graphics card is CUDA-capable. The graphics
card you have can be checked by going to Device Manager -> Display adapters, see Figure
C.1. If your card is not an NVIDIA card you can stop here because CUDA is not supported on
other cards besides NVIDIA cards. If your NVIDIA card is listed here: https://developer.
nvidia.com/cuda-gpus the GPU is CUDA-capable.

Figure C.1: Check your graphics card in Device Manager-> Display adapters.

Step 1 : Check the software you need

In this tutorial it will be assumed that Windows 10 is already installed. The additional software
that is needed is listed here:

• Microsoft Visual Studio

• NVIDIA CUDA toolkit

• NVIDIA cuDNN

• Python

• TensorFlow (with GPU support)

Determine which TensorFlow (TF) version is desired, see Figure C.2. Then the corresponding
Python, CUDA and cuDNN version can be determined using the list here: https://www.
tensorflow.org/install/source#gpu. I went with the latest TensorFlow (TF)1 ver-
sion, i.e. tensorflow_gpu-1.15.2. Therefore the CUDA 10.0 and cuDNN 7.4 were installed to-
gether with Python 3.7.7
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Figure C.2

The software and their versions I used in this thesis, and will be assumed during this tutorial
are listed here:

• Windows 10 - version 1909

• Python 3.7.7

• TensorFlow 1.15.2 (GPU support)

• NVIDIA CUDA 10.0

• NVIDIA cuDNN 7.4

• PyCharm 2020.3

• Microsoft Visual Studio 2017

Step 2 : Download and install Microsoft Visual Studio

The most recent version of Microsoft Visual Studio can be downloaded here: https://
visualstudio.microsoft.com/vs/express/. Note however that Microsoft Visual
Studio sometimes comes pre-installed on you pc. So check whether you already have Visual
Studio installed.

Run the downloaded executable and installation should be pretty straight forward. During the
installation you will be asked whether ’you want to continue without workloads?’. I pressed
’continue’ because I will not use Visual Studio after the CUDA installation.

After the installation of Visual Studio make sure you do a reboot before continuing with the
CUDA installation.

Step 3 : Download and install CUDA

The desired CUDA version can be downloaded from here https://developer.nvidia.
com/Cuda-Toolkit-archive, all version are listed here. I downloaded the CUDA 10.0
version (exe local), see Figure C.3. CUDA 10.0 comes with a base installation. Sometimes there
can be additional patches as is the case for CUDA version 9.0. In that case download the base
installation and all patches. First install the base installation. After succesful installation of the
base installer, install all the patches in numerical order.
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Figure C.3

Run the base installation executable which has just been downloaded. Extract the files to a
desired location, I recommend to use the default location, see Figure C.4. After the extraction
process has finished the NVIDIA CUDA installer will start. I used the express installation op-
tion. During the installation the installer will ask for installation locations, I recommend to use
the default location.

Figure C.4

After the installation of the base file, install the patches (if applicable to your CUDA version).
To verify the installation go to:

’C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\5_Simulations\nbody’

This is the default location specified during the installation process. If a different location was
specifie during installation go to this path you specified. Open the Visual Studio solution cor-
responding to your version of Visual Studio you have installed, see Figure C.5.
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Figure C.5: Visual Studio solution. Open the solution corresponding to the installed Visual Studio ver-
sion.

Next, build the solution by going to the "Build" menu within Visual Studio and clicking "Build
Solution", see Figure C.6. Whether you did everything correct until this point will be indicated
by a ’succeeded’ build, see Figure C.6.

Figure C.6: Build the solution to verify correct installation of CUDA.

After successful build, go to:

’C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\bin\win64\Debug’

and run the executable ’nbody.exe’, see Figure C.7
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Figure C.7: Run the build solution ’nbody.exe’.

If you were able to build and run the executable CUDA is installed correctly. When this is not
the case verify you installed everything correctly. For troubleshooting and more info see section
C. more info

Step 4 : Download and install cuDNN

In step 1 the we determined the corresponding cuDNN version. In this tutorial we installed
CUDA 10.0 with the aim of installing TensorFlow 1.15 with GPU support. Therefore, we in-
stall cuDNN version 7.4. This can be downloaded from: https://developer.nvidia.
com/rdp/cudnn-download. Note that an account for the NVIDIA Developer program is
required. First, register for a free account. Then login and download the correct version of
cuDNN. Older versions can be downloaded from the archive, see Figure C.8

Figure C.8: Download the required cuDNN version from the archive.

After downloading, unzip the files. After unzipping the relevant files are located at:

’<download_path>\cuda\’

Where the ’download_path’ is user specific. The folders ’bin’, ’include’ and ’lib’ have to
be copied to the installation folder of CUDA: ’C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v10.0’

Figure C.9: cuDNN files to copy to the CUDA installation folder.
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Check that the paths shown in Figure C.10 are correctly set in the environment variables.

Figure C.10: Paths that need to be set under ’Environment variables -> ’System variables’ -> ’Path’.

Now we can run the command ’nvidia-smi’ in command prompt to see what the NVIDIA graph-
ics card is doing, see Figure C.11. When the command is not recognized make sure the follow-
ing path: C:\Program Files\NVIDIA Corporation\NVSMI is also included under ’Environment
variables -> ’System variables’ -> ’Path’.

Figure C.11: Start command prompt and use command: ’nvidia-smi’ to monitor you NVIDIA GPU de-
vice.

Step 5 : Make you virtual environment in PyCharm.

The instructions to install both Python and PyCharm are skipped. This is straight forward and
comes down to just running the executables.

What is left to do is setup our venv inside PyCharm. Before doing so, make sure you do a reboot
first! After the reboot startup PyCharm and make a new venv for you project, see Figure C.12
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Figure C.12: Make a new venv for you project.

After creating the new vitrual environment, install the desired TensorFlow package version, see
Figure C.13, you can specify the desired tensorflow version, see figure C.14

Figure C.13: Search for the tensorflow-gpu package.
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Figure C.14: Specify the desired tensorflow version.

Step 6 : Verify the installation

The last step is to check whether everything is installed correctly. Run the following piece of
code, it should print 2 times ’True’.

import tensorflow as tf

print(tf.test.is_built_with_cuda())
print(tf.test.is_gpu_available(cuda_only=False,

min_cuda_compute_capability=None)),→

If this is the case the installation was correct and you can make use of CUDA from within Py-
Charm. If this is not the case, see the next section for resources for more info and troubleshoot-
ing resources.

Important is that the venv is created with the TF package after CUDA and cuDNN were in-
stalled correctly!

More info

For more info or troubleshooting the following resource might be helpful: https://docs.
nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.
html
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D Graph learning libraries

The Python programming language, released in 1991 (van Rossum, 2009), is one of the most
popular programming languages today (PYPL, 2021). The Python programming language is
oriented towards developers, it is highly productive, simple and powerful. Furthermore, the
syntax is clean and there are many libraries for ML available. Hence, the natural choice for a
programming language in AI research is Python. Therefore, next only graph learning libraries
are considered that can be used in Python.

The field of deep learning on graphs is fairly new. The tools available are primarily oriented
towards well structured data on a 1D or 2D grid. In (Bronstein et al., 2016) it is mentioned that
computational frameworks for efficient processing of graph structured data is an important
future direction in the graph learning field. There are different libraries emerging to facilitate
graph learning. However, there is not one widely used library. Moreover, code released ac-
companying research papers often implements the GNN architecture without the use of any
specific graph learning library, i.e. the GNN architecture is implemented directly into existing
tensor libraries using custom graph functions from the authors. As a result to facilitate faster
development of GNN architectures, open source deep learning libraries are being developed
that work with existing tensor libraries such as PyTorch (Paszke et al., 2019), TensorFlow (Abadi
et al., 2016), Apache MXNet (Chen et al., 2015). The common principle behind all libraries men-
tioned below is that they rely on the message-passing principle (Gilmer et al., 2017) in order to
perform operations on graphs.

Pytorch Geometric

PyTorch Geometric (PyG) (Fey and Lenssen, 2019) is a deep learning library for graphs build
upon the PyTorch library. It recently became part of the PyTorch Ecosystem Tools. PyG comes
with many re-implementations of existing models and is well integrated with benchmark data
sets. Therefore, it is particularly useful for reproducing results from previous works. Further-
more, PyG is well documented and the online community is active.

Graph Nets

DeepMind’s library for building GNNs is the Graph Nets library (Battaglia et al., 2018) and it
is build on TensorFlow and Sonnet. The Graph Nets library was released as a companion to
(Battaglia et al., 2018) to demonstrate the practical use of GNNs. It is still being updated and
recently received compatibility with TensorFlow 2. The online community is fairly small but
there are extensive coding tutorials released (DeepMind, 2018).

Spektral

Another recent Python library for deep learning on graphs is Spektral (Grattarola and Alippi,
2020). This library is based on the Keras API and Tensorflow 2. Spektral has implemented most
popular GNN layers and is focused on user-friendliness. Therefore, Spektral is well suited for
fast implementation of existing GNN architectures.

Deep Graph Library

Deep Graph Library (DGL) (Wang et al., 2019) is introduced in order to provide an efficient
multi-platform API. The API can be used using different backend frameworks (e.g. PyTorch,
MXNet and TensorFlow). At the time of writing the DGL for TensorFlow is still in experimental
phase.
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Jraph

Jraph (DeepMind, 2020) is a library for working with graph neural networks in JAX (Bradbury
et al., 2018). Jraph is the Graph Nets library (mentioned above) for JAX. JAX can automatically
differentiate Python and NumPy code, this makes common operations in ML trivial. Jraph was
released recently at the end of 2020.

Euler and NeuGraph

Other Python libraries for learning on graphs are Euler (Alibaba, 2019) and NeuGraph (Ma et al.,
2019). However, the Euler documentation is mainly in Chinese. NeuGraph is a framework that
facilitates efficient and scalable parallel neural network computation on graphs. Unfortunately,
the code for NeuGraph is not open source at this moment.

Robotics and Mechatronics Y.C. (Yannick) van Wettum



92 State representation learning using a graph neural network in a 2D grid world

E Reproduction results C-SWM paper

The end-to-end architecture presented in (Kipf et al., 2020b) is implemented in TensorFlow
using the Graph Nets library (Battaglia et al., 2018). In order to validate that the architecture
is implemented correctly, the results are compared against the results produced by the code
released by the authors (Kipf et al., 2020a).

The goal of the C-SWM architecture is to learn an object-oriented abstraction of a particular
observation or environment state. Additionally, an action-conditioned transition model of the
environment is learned that takes the object-oriented abstraction as input. The object-oriented
abstraction is realised by encoding the observation as a graph. The transition model is imple-
mented using GNN.

An off-policy setting is considered, the model is trained solely using an experience buffer gen-
erated using a random policy. The experience buffer contains tuples of states st ∈ S , actions
at ∈A and next states st+1 ∈ S . The goal is to learn a latent representation zt ∈ Z for the en-
vironment states st ∈ S that discards all the irrelevant information that is not needed for pre-
dicting the next zt+1 ∈Z . Simultaneously, an encoder E : S →Z which maps the environment
state to the latent state and a transition model T :Z ×A→Z that operates on the latent state.

The goal of the C-SWM architecture is to take into account the compositional nature of the
observations. Hence, a relational an object-oriented model of the environment is learned that
operates on a factored abstract state space Z =Z1 ×Z2 × ...×ZK, where K is a predefined con-
stant which indicates the available object slots. The same assumption is made for the action
space, i.e. an object-factorized action space is assumed A=A1 ×A2 × ...×AK. The object fac-
torization ensures that each object is represented independently and allows for sharing model
parameters for the different objects in the transition model. This introduces a strong inductive
bias that facilitates generalization to novel scenes, learning and object discovery. The C-SWM
architecture is presented in Figure E.1.

Figure E.1: The C-SWM architecture as presented in (Kipf et al., 2020b). Figure is inspired on Figure 1
in (Kipf et al., 2020b). The C-SWM architecture is composed of a CNN object extractor, a MLP object
encoder, a GNN transition model and an object factorized contrastive loss. Colored blocks in the object
masks and latent states are used to indicate the correspondence with the objects in the observation
image.

The first part of the architecture consists of the object extractor and object encoder. The object
extractor is a CNN and the object encoder is a MLP. The CNN takes as input the observation
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as an image and has K features maps in the last layer. Each feature map is a mask for a specific
object after training the model is finished. For simple problems, single feature maps suffice but
it can be extended to multiple feature maps per object slot. The MLP object encoder maps the
feature maps to a latent space zk

t ∈Zk , where Zk =RD where D is a hyperparameter.

The second part contains the transition model which is implemented as a GNN. This allows
for modeling pairwise interactions between objects. The GNN architecture makes the model
invariant to the ordering in which the objects are presented to the network. The latent state
representations after the object encoder are used as node features in a fully connected graph
without self loops, see Figure E.3a. The actions are encoded per object as one-hot encoded
vectors. The transition model takes the latent state representation and actions for each object
as input and puts this in a graph representation such that the transition model can be imple-
mented as a GNN, see Equation E.1 from (Kipf et al., 2020b).

∆zt = T (zt , at ) = GNN

({(
zk

t , ak
t

)}K

k=1

)
(E.1)

The GNN as presented in (Kipf et al., 2020b) consists of a node update function fnode and edge
update function fedge and are implemented as MLPs with shared parameters. The message
passing scheme is shown in Equation E.2 from (Kipf et al., 2020b).

e(i , j )
t = fedge

([
zi

t , z j
t

])
∆z j

t = fnode

([
z j

t , a j
t ,

∑
i 6= j

e(i , j )
t

])
(E.2)

In the GraphNets framework a similar scheme can be realised by using the one-hot action en-
coding per object as a global and putting the actions on the nodes after the edge block in the
node block update. The GraphNets formulation is shown in Figure E.2. Where the latent state
representation is V and the actions per object are taken as global feature u. The latent state
transition is V ′.

Figure E.2

In equations this is (conform the notation in (Battaglia et al., 2018)):

e′k =φe (
vrk ,vsk

)= f e (
vrk ,vsk

)
e′i = ρe→u (

E ′)=∑
k

e′k

v′i =φv (
e′i ,vi ,u

)= f v (
e′i ,vi ,u

) (E.3)

It must be noted that encoding the action as a global in 1 vector is differently than is done here.
Here the global feature is a 5×4 matrix, such that each node can concatenate a one-hot encode
action to the node features.
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The abstract states encoded as a graph, is shown in Figure E.3a

(a) Latent state representation zk
t

(b) Latent state representation with the actions
[

zk
t , ak

t

]
Figure E.3: The graph representations, a) the graph representations with abstract states zk

t ∈ RD on the
nodes, and b) the graph representation with abstract states and one-hot encoded action

[
zk

t , ak
t

]
on the

nodes. Note that the colors of the nodes have no specific meaning in this figure. Colors are used to
distinguish nodes in different plots because the structure of a graph is not defined. The node labels for
Figure a) are: 0: ’[-0.31 0.65]’, 1: ’[-0.38 0.73]’, 2: ’[-0.37 0.52]’, 3: ’[-0.37 0.84]’, 4: ’[-0.52 0.68]’, the node
labels for Figure b) are: 0: ’[-0.31 0.65 0. 0. 0. 0. ]’, 1: ’[-0.38 0.73 0. 0. 0. 0. ]’, 2: ’[-0.37 0.52 0. 0. 0. 0. ]’, 3:
’[-0.37 0.84 0. 0. 0. 0. ]’, 4: ’[-0.52 0.68 0. 1. 0. 0. ]’. Self loops are excluded.

The same contrastive loss function as presented in (Kipf et al., 2020b) is used. The TF (with
GraphNets) implementation is trained for a 100 epochs on a training set with 500 episodes
containing 100 steps in the environment. After training is finished, the obtained encoded states
for each object slot are put nicely on a grid as is shown in Figure E.4. The model was trained on
a smaller training set (500 episodes opposed to 1000 episodes) in order to speed up the learning
process. A similar encoding for the objects was obtained while training the model implemented
by the authors on the same dataset.

(a) Object slot 1. (b) Object slot 2. (c) Object slot 3. (d) Object slot 4. (e) Object slot 5.

Figure E.4: The learned object encodings for all the samples in the training buffer. Note that the plot is
continuous and that the discrete nature of the environment is learned without supervision.
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(a) Training loss using the source code provided by the
authors (Kipf et al., 2020a).
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(b) Training loss using the TF with Graph Nets imple-
mentation.

Figure E.5: Training losses for a) the implementation released by the authors, b) the implementation in
TF using GraphNets. The same training set of 500 episodes with 100 steps per episode in the environ-
ment is used. Due to the random sampling the training curves slightly differ but overall they have the
same shape.
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F Additional figures

F.1 Train and test errors - 5x5 maze - fixed configuration

It must be noted that the reward model implemented using a GNN is performing worse as can
be concluded from the figures shown in Figure F.1. Furthermore, in Figure 6.13c it can be ob-
served that the maximum value it can have is -1 due to the reward model that maps everything
to -1. The reward function is sparse and due to the aggregation function in the GNN and the
unstructured ordering of the nodes, it might not distinguish between bumping into an obstacle
or a target position. Therefore, the reward model learns to map everything to -1 because this is
the reward that is most often seen.
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(a) Train loss empty 5x5 maze.
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(b) Test error empty 5x5 maze.
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(c) Train loss 2 room 5x5 maze (fixed configuration)
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Figure F.1: Train and test curves for both transition and reward model implemented using a GNN and
NN for the 5x5 mazes. The maze is kept constant during training and tested on the same maze.
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F.2 Next state prediction - 5x5 maze - fixed configuration
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Figure F.2: Next state predictions for all states in the test set for the 5x5 mazes. Red is used for the
position of the agent, green for the target position and black for the obstacle position.

F.3 Value Functions - 5x5 maze - fixed configuration
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(a) DQN agent, access environment
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(b) DQN agent, GNN model
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(c) DQN agent, NN model

Figure F.3: Value function calculated using DQN agents trained for the empty 5x5 maze: a) with direct
access to the environment simulator, b) using the trained GNN model, c) using the trained NN model.
The blue line indicates the greedy policy that is obtained when acting greedily with respect to the ob-
tained value function indicated by the colored tiles.
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(a) DQN agent, access environment
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(b) DQN agent, GNN model
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(c) DQN agent, NN model

Figure F.4: Value function calculated using DQN agents trained for the 5x5 maze with 2 rooms: a) with
direct access to the environment simulator, b) using the trained GNN model, c) using the trained NN
model. The blue line indicates the greedy policy that is obtained when acting greedily with respect to
the obtained value function indicated by the colored tiles.
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F.4 Predicted state error - random maze

(a) Predicted states, 3x3 maze 2 rooms, GNN model (b) Predicted states, 3x3 maze 2 rooms, NN model

(c) Predicted states, 5x5 maze 2 rooms, GNN model (d) Predicted states, 5x5 maze 2 rooms, NN model

Figure F.5: The true state are connect to their corresponding prediction from the learned environments
models.
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