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Preface

It is a pleasure to submit my internship report towards partial fulfillment of the Masters’ course of
Mechanical engineering. A summary of the accomplished tasks and milestones throughout the internship
has been presented in this document. On a personal level, this internship presented me with multiple
challenging tasks, which essentially led to a steep learning curve. My programming skills have been
sharpened further and I have witnessed an overall development in my personality.

I would genuinely like to thank my organization supervisor, Mr. Fabian Girrbach and Mr. Aditya
Tiwari , who have been an immense inspiration and thoroughly supportive throughout my tenure con-
stantly providing me with their esteemed guidance. I would like to thank my parents for making me
capable enough to take on these challenges sportingly. Indeed there were local minimas and pitfalls along
the way but attempted to make sure that eventually, everything falls into its place, which fortunately
happened. So it almost seems like someone upstairs is happy with me for granting me with wonderful
people and opportunities.



1 Introduction

Mobile robots require a combination of accuracy and low latency in their state estimation in order to
achieve stable and robust trajectory. However, due to the power and payload constraints, state estimation
algorithms must provide these qualities under the computational constraints of embedded hardware.
Cameras and inertial measurement units (IMUs) satisfy these power and payload constraints, so visual-
inertial odometry (VIO) algorithms are popular choices for state estimation in these scenarios, in addition
to their ability to operate without external localization from motion capture or global positioning systems.
Being able to track the position and orientation (generally referred to as 6 degrees of freedom) in real
time with highly accurate state estimation and low latency does not only have application in robotics
but also in the field of Virtual Reality (VR), Augmented Reality (AR) and indoor navigation[4-7].

To have a broad range of application not limited by GPS data one approach is to use visual inertial
odometry (VIO)[1-3]. VIO fuses together information coming through camera and reading based on IMU
together to give an estimate of the position and orientation in the unknown environment. Applications
like Autonomous driving, UAVs, Deep Sea vehicles and many more depend on the data coming through
such sensors which provide information of position and orientation based on previous measurements and
current understanding of the environment. Data coming through sensors is processed to calculate the
current position and understanding of the environment based upon speed estimates, time and course ,
the information of which is coming through sensors.
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Figure 1: Basic functioning of visual inertial odometery

1.1 Applications

In the modern times where computers are being equipped with every possible feature for complete au-
tonomy state estimation is a key task. Many applications [4-8] in the modern times require robots to be
smart enough to navigate through any environment, this is where the concept of state estimation comes in
handy and provides for an accurate navigation and localization based on data coming in through reliable
Sensors.

The measurements are taken at predetermined intervals and the duration between the intervals varies
according to the requirement. In applications any known fixed point is taken as the reference point.
If a known point is not available then any estimated point is considered as the reference point. Some
applications for motion tracking and state estimation are listed below:



1.1.1 Awutonomous Underwater Vehicles

The ability of an autonomous vehicle to predict its current position is an essential scientific application.
This particular task becomes even more complicated by opacity to all low frequency EM waves, making
most commonly used technologies ineffective for this particular application. So it highly depends on
acoustic navigation or dead reckoning technologies. Dead-reckoning methods integrate a vehicle’s velocity
in time to obtain an updated location. In order to dead-reckon, the vehicle must know both the direction
and speed of its travel. The simplest methods use a magnetic compass to determine direction, and
use speed through the water as a proxy for Earth-referenced speed. However, the large number of error
sources for magnetic compasses make measurement of heading to better than a degree accuracy technically
challenging.

1.1.2 Autonomous driving

When it comes to applications of autonomous driving [8] on public roads it leads to high risk scenarios,
like the crashing of Tesla Model S on Autopilot. Hence it is very crucial that the system that the cars
are working on to predict its position and understand the surroundings in real time the sensors used
are of high accuracy and reliability. Dead reckoning fuses together dead reckoning with model predictive
controller through extended kalman filtering (EKF). Hence the tools used for dead reckoning are of
importance and the sensory data coming in through has to be accurate and reliable.



2 Task Description

The objective of the assignment is to benchmark the performance of Realsense T265 for motion tracking
as it could be a reliable and accurate solution to such problems at low cost which is bench marked against
HTC Vive which is already an established tracking system but is limited by the range of HTC Vive base
stations as it can only estimate accurate measurements for distance up to 5m and not beyond. Cheap and
reliable solutions are of key interest in the research community for dead reckoning as no prior knowledge
of the terrain or the environment is known and it is very important that the technology used for various
applications in these circumstances could provide an accurate measurements of position, velocity in real
time.

The following are the tasks assigned to me for the duration of the internship :

1. Design a rigid holder for different sensor systems using 3D rapid prototyping techniques.

2. Develop a software framework and data pipeline in Robotics Operating System (ROS) and visualize
the data from different sensors.

3. Develop a calibration procedure to identify constant transformation between sensor systems.

4. Evaluate the performance of Realsense T265 for indoor navigation.

To achieve the internship tasks I first began with research on different methods that can be adopted
to compare trajectories from two different sensors. Two methods were found as explained in section 6
which can be used to compare the performance of the sensors.

As initially there was no mount on which both the sensors could be mounted we began with the first
approach mentioned in section 6. It identifies a constant static transformation between the two trajecto-
ries and gives us the drift between the two sensors. Providing us with the error between the two sensors
which can be considered as the drift between the two sensors.

Next a solid mount for the sensors was designed using Solidworks and was realized through 3D printing.
With the mount in place the static transformation between the sensors was known and the methodology
with ROS transformations could be used to evaluate the actual error between the two sensors at each
point of time. With the mount realized, ROS nodes were created to provide for static transformations
between both the sensors to bring them to the same coordinate frame.

Next was the task to decide on the experiments that had to be done on the combined setup of Re-
alsense and HTC Vive tracker such that it would involve testing of the Realsense sensor in scenarios
ranging from easy to moderate, the scenarios of the experiment are explained later in detail in section 8.

With the experiments and the setup ready, it was decided to use different data sets for each experi-
ment with different internal parameters so the best set of parameters could be evaluated and what is the
affect of changing internal parameters of the Realsense T265.



3 Realsense T265

The sensor consists of two fisheye lens cameras, Inertial measurement unit (IMU) and an Intel Movidius
Myraid visual processing unit (VPU). Using the provided sensors the Realsense T265 enables solutions
to the problem of dead reckoning as a stand alone device. It provides for tracking in all 6 Degrees of
Freedom. The device fuses input from the fisheye lens sensors and the IMU together to provide for a
highly accurate real time position with low power consumption. It can be used with offboard processing
units such as Raspberry Pi providing long battery life for mobile robotics.

Figure 2: Realsense T265

3.1 Working Of Realsense T265

The Intel RealSense Tracking Camera T265 enables solutions to these challenges as a stand-alone, six-
degrees-of-freedom (6Dof) inside-out tracking sensor. The device fuses inputs from multiple sensors and
offloads image processing and computer vision from the host system to provide highly accurate, real-time
position tracking with low latency and low power consumption.

The Intel RealSense Tracking Camera T265 is designed for flexibility of implementation and to work
well on small-footprint mobile devices such as lightweight robots and drones. It is also optimized for
small-scale computers such as Raspberry Pi, and for connectivity with devices such as mobile phones or
augmented reality headsets.

The Intel Movidius Myriad 2 VPU is a system-on-chip component that is purpose-built for image pro-
cessing and computer vision at very high performance per watt, including for space-constrained imple-
mentations. Its key architectural features are the following:

1. Vector processor cores are optimized for machine vision workloads.
2. Hardware accelerators increase throughput for imaging and computer vision.

3. General-purpose RISC CPU cores coordinate and direct workloads and interaction with external
systems.

The Intel RealSense Tracking Camera performs inside-out tracking, meaning that it does not depend on
external sensors for its understanding of the environment. The tracking is based primarily on information
gathered from two on board fish-eye cameras.The wide field of view from each camera sensor helps
keep points of reference visible to the system for a relatively long time, even if the platform is moving
quickly through space.A key strength of visual-inertial odometry is that the various sensors available
complement each other. The images from the visual sensors are supplemented by data from an on board
inertial measurement unit (IMU), which includes a gyroscope and accelerometer. The aggregated data
from these sensors is fed into simultaneous localization and mapping (SLAM) algorithms running on the
Intel Movidius Myriad 2 VPU for visual-inertial odometry. The SLAM algorithm identifies sets of salient
features in the environment, such as a corner of a room or object that can be recognized over time to
infer the device’s changing position relative to those points.Together, the combination of sensors provides



higher accuracy than would be possible using just one type. The visual information also prevents long-
term drift, or the accumulation of small errors in navigation calculations over time, which would cause
inaccuracy of position information. The IMU operates at a higher frequency than the cameras, allowing
for quicker response and recognition by the algorithm to changes in the device’s position.

Intel® RealSense™ Technology T265 Peripheral

Inerial
Measurement Unit
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Figure 3: Realsense Working

3.2 Intel Parameters

Realsense allows us to have certain parameters switched based on which the pose estimation of the device
changes as it changes what data from the sensor is used to estimate the pose of the device.

3.2.1 3D Mapping

The internal map allows the device to recognize places it’s been before so that it can give a consistent
pose for the next location. The map has a fixed finite size and will keep the most often/recently seen
locations. Without this it will be operating on completely open loop and will accumulate drift over time.
The device will use the map to close modest loops and recover from small drifts.

3.2.2 Pose Jumping

With pose jumping the internal map allows the device to recognize places it’s been before so that it can
give a consistent pose for that location. The map has a fixed finite size based on the computer that it
is coupled with and will keep the most often/recently seen locations till it doesn’t run out of memory
and will replace the oldest feature coming in with the latest features. Without this it will be operating
completely open loop and will accumulate more drift. The device will use the map to close modest loops
and recover from small drifts.

3.2.3 Enable Re-localization

This allows the device to solve the Kidnapped Robot Problem, i.e. it will allow connecting the current
map to a loaded map or connecting the current map to itself after accumulating a large drift, say after
closing a large circle or covering the camera and walking around, this will enable the sensor to recognise the
places where it has been before and recognise its current position based on that map. This is independent
of jumping the pose. When fooled this feature can lead to much larger errors than are likely via the basic

mapping.



4 Holder Design

To get comparable data from both the sensors simultaneously the sensors had to be mounted on a common
holder of which the static transformation would already be known to us. The sensors to be mounted on
this holder were :

1. Realsense T265 (108 x 25 x 13 mm)
2. HTC Vive Tracker ( dia. - 99.65 mm)

3. Xsens MTi 300 with Chameleon 3 monocular camera ( 44x 52 x 60 mm)

Figure 4: Final Holder Design

To have the least amount of static transformations between the sensors it was attempted to have the
center of mass of all the 3 sensors on a single axis. Hence the final design as shown in Figure 4. was
finalized as all the three sensors are aligned in the z axis with transformation only in the x and y axis
without any rotation. This would help us later in trajectory alignment which is explained in section
6. The design was realized using 3D printing technology at a 40 percentage fill rate for possible high
production rate. The material used for the rapid prototyping was thermoplastic named Polylacitic Acid
(PLA).



5 ROS

The Robot Operating System (ROS) is a standalone tool that can be used to develop a code for a
robot. The framework of ROS eliminates the need to gather various software drivers, third party tools
for computer vision and other simulation tools. It is of great use as all the tools required to program
a robot are available at a single place, which can be used to program different robots for different
applications without going through the hassle of finding different frameworks and tools for that particular
application.ROS is an OS in concept because it provides all the services that any other OS does—Ilike
hardware abstraction, low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management.

5.1 Working of ROS

In general, ROS consists of code and tools that help your project’s code run and do the required
job—including the infrastructure for running it, like messages passing between processes.

ROS is designed to be a loosely coupled system where a process is called a node and every node should
be responsible for one task. Nodes communicate with each other using messages passing via logical chan-
nels called topics. Each node can send or get data from the other node using the publish /subscribe model.
The primary goal of ROS is to support code reuse in robotics research and development so you can

find a built-in package system. Again, keep in mind that ROS is not an OS, a library, or an RTOS. It’s
a framework using the concept of an OS.

{ \
— ROS —
registeration MASTER registeration
N
ROS ; - ROS
Node(s) publish subscribe Node(s)

Figure 5: ROS Node communication through topics
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6 Sensor Data Comparison Methods

As we began exploring the options on how to compare the results from both sensors it became evident
that there were two approaches that could be used for comparison

1. Trajectory alignment
From the data coming through the sensors an unknown transformation is estimated based on the
complete trajectories that are recorded. Through this estimated transformation trajectories are
aligned to the same coordinate frame. After aligning the two trajectories using the estimated
transformation the difference left between the two trajectories is the drift or in our case the error
between the sensors.

2. ROS Transformations
With the static transformations known between the two sensors, ROS nodes were created to com-
pensate for the static transformation, thus bringing both the sensors to the same coordinate frame
initially through which after a prolonged experiment it could be seen what has been the drift in the
realsense sensor

6.1 Static Transformation Identification

Without known static transformation between the two sensors it wouldn’t be possible to have both the
sensors in the same coordinate frame or Tf tree. Hence by recording the dataset from both the sensors
simultaneously (over the same path) and aligning the two trajectories together by a calculated static
transformation it would be possible to estimate the performance of one trajectory with respect to the
other. To calculate the parameters that provide for a static transformation there were four possible
methodologies that could be used to estimate the parameters namely

1. SVD Method

2. Horns Method

3. Transformation using Unit quaternions

4. Transformation using Dual quaternions
To calculate static transformation between two trajectories SVD and Horn’s methodologies were realised
during the time of the internship.
6.1.1 SVD Method

Developed by Umeyama et.al. [10], this method helps in finding a transformation matrix between two
trajectories that have a constant transformation between them. Example if two trajectories from two
different sensors are recorded but the coordinate axis for the sensors is different, this method could help
find the constant transformation between the two trajectories to represent them in the same coordinate
frame. The algorithm uses least square estimation to estimate the transformation between two trajecto-
ries. The algorithm is explained in detail below:

Input data

{ﬁi}f\;}l = Ground truth

{pi}?gol = Estimate

Output
Transformation parameters (s, R, T) that maximize Zi]\; 61 le — sRp; — tH2

Steps

10



1. Mean for both the trajectories is calculated

1
N-1 N—-1_—
Pp = ~7Xilg Pi Hp = sz:o Di

2. Next construct the correlation matrix between the estimate and the estimate and the groundtruth
centered around origin.

2= 25 0 1) (51— )"
3. Singular value decomposition is performed on the correlation matrix to obtain the rotation matrix.
Y =UDVT
If det(U) det(V) < 0 then
W = diag(1,1,-1)

Else W = I3><3

4. R =UWVT provides us with the rotation matrix between the two trajectories

2
trajectories if the scale is not known.

5.8 = 2y trace(DW)  where 02 = L2V e — fip||” provides us with the scale between the two
8

6. T = pup — SRy from the estimated parameters

6.1.2 Horn’s Method

Horns Method [11] follows quite similar steps as shown above except for how to calculate the rotation
matrix and compute the scaling between the two trajectories. In this method the same maximization
problem is taken but to estimate the parameters instead of using singular value decomposition, eigen
decomposition is used. The detailed algorithm for the estimation of the parameters is shown below:
Input data

{ﬁi}f\;l = Ground truth
{pi}ij\:)l = Estimate
Output

Transformation parameters (s, R, T) that maximize Zij\fol le — sRp; — t||2

1. Mean for both the trajectories is calculated

N_,

1 _ 1
Hp = *Zi]iolpi Hp = =2 zolpi

N Nt

2. Next construct the correlation matrix between the estimate and the estimate and the groundtruth
centered around origin.

H=x"= %Zf\;l (pi — t1p) ((ﬁi - Nﬁ)T

11



3. Assuming that the correlation matrix is non singular, it can be decomposed using eigenvalue de-

composition.
H=1US
U=Hs""!

where S = (HTH) 1/2

~ T T T
4. R=H (“\}% + ”\jf\% + %) where {)\;} and {u;} are the eigenvalues and eigen vectors respec-

tively obtained from the S matrix.

Special cases if the H matrix is singular and has less than full rank then the above solution does not
hold true. To avoid this the calculation of the rotation matrix is slightly modified. Assuming the third
eigenvalue is zero then the modified rotation matrix can be calculated as follows:

+ _ (pap” | p2AT
where S —(h -4—%)

X = (M%) (MS*)" 1] g

6.2 ROS Transformations

With the transformation known of both the sensors on the holder, it would be easier to use ROS trans-
formation in order to bring both the sensors to the same coordinate frame. This helps in estimating the
pose error between the two sensors, as after moving in different shapes and orientations the data coming
through the sensors could provide us with a reliable error between the poses of the two sensors.

After bringing both the sensors in the same coordinate frame under the same TF tree a virtual po-
sition of the realsense T265 was placed based on the static transformations. This was done to calculate
the drift of the realsense from its original expected position to its current position. This method would
have an advantage over the previously used method as it could be implemented real time and does not
require any information from the sensors except for the static transformation between the sensors based
on the holder they are mounted on. And is not susceptible to errors unless the holder is deformed or
used in extreme conditions where the relative position of the sensors is subject to change.

6.3 Method used in our experimentation

After creating scripts(appendix listing 5) for all the three methods it was decided to use the ROS trans-
formations as if try estimate the transformation between the two sensors using SVD or Horns method
it also tries to model the error that is accumulated. As if there is a drift between the sensors at any
point of time the estimation method will try and find the best set of parameters that closely relate the
two trajectories. Hence it was decide to use the ROS transformation and develop a new node in ROS
that looks a constant transformation between the two sensors providing constant information how far
the sensor has drifted which can help understand the working and shortcoming of the realsense t265 in
various applications.

12



7 Performance Evaluation Methods

To be able to evaluate the performance between the two sensors some method of comparing the trajectories
from the sensors was required. To do so the following two evaluation methods [14] were used.

7.1 Absolute Trajectory Error

Absolute Trajectory Error (ATE) — The root mean square error between the ground truth (HTC Vive)
and the estimate (Realsense T265) calculated for all the points over the entire trajectory.. Benefit of using
ATE for evaluation is it provides a single number that can be used to compare the error between multiple
trajectories and helps understanding which trajectory performs best in comparison to the ground truth.

Estimate X

Aligned Estimate X'

Groundtruth X

Figure 6: Absolute Trajectory Error

7.2 Relative Pose Error

The basic idea of relative error is that the estimation quality can be evaluated by measuring the relative
relations between the states at different times. Since the relative error does not generate a single number
but a collection of errors for all the sub-trajectories that satisfy certain criteria, statistics such as the
median, average and percentiles can be calculated, which gives more information than Absolute Trajectory

Error.

— trajectory segment d Estimate X

RE
fod,

rv Alighment

Groundtruth X

Figure 7: Relative Pose Error
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8 Experimental Comparison

To be able to evaluate the performance of Realsense T265 against HTC Vive tracker it was essential
to run experiments on the setup in different environments and comparing the performance of different
internal settings of the realsense T265 parameters as well. So for each experiment three different datasets
were recorded with different sets of parameters.

8.1 Dataset 1

After initialization the setup was moved in a square shape of 1x 1.5 m dimensions without rotating the
sensors at all (human errors are expected but no major drift in orientation ).The entire procedure was
repeated 2 times and was placed at the initial position and orientation from where it was initialized. The
trajectory paths for the dataset with the varying parameters in shown in Figure 8.

— groundtruth — groundtruth — groundtruth
— estmate 7 \ — estmate

(a) 3D Mapping Disabled (b) 3D Mapping Enabled (c) Pose Jumping Enabled

Figure 8: Dataset 1

8.1.1 Dataset I Results

With the datasets recorded the error matrices can be constructed (absolute trajectory error and relative
pose error) for both the position and the orientation of the sensors based on where the realsense sensor
is expected to be and where it actually is.

8.1.2 Absolute Trajectory Error Dataset I

From the Table 1 and the Figure 9(a), it can be seen that the error in the estimation of the position are
accumulated over time if 3D mapping of the Realsene T265 is disabled. This can be explained by the fact
that when the realsense T265 operates without trying to rectify the errors it has accumulated over time
as it does not use the prior information from the visual features that it had recorded earlier. The same
can be attributed to the fact the sensors is not able to correct itself for any drift caused in its orientation
as can be seen in Fig 10.

As for the 3D mapping enabled and the pose jumping enabled it can be seen both the parameters
perform quite close to each other as both are trying to compensate for errors accumulated over time and
rectifying them based on the visual features that the sensor has seen before, which helps in providing
with a better estimate of the current position and orientation.

14
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Figure 9: Dataset I Absolute Trajectory Error - Translation Error in mm

Table 1: Transnational Error Dataset I (in cm).

Transnational Errors | Mapping Disabled | Mapping Enabled | Mapping Enabled
RMSE 6.86 4.48 4.05
Mean 5.94 4.04 3.61
Median 5.98 3.94 3.10

—— Normalized orietation errors —— Normalized orietation errors —— Normalized orietation errors

Tor in degrees
ror in degrees

Rotatior
° ~
Rotational

0 2 4 6 8 10 12 [ 2 4 6 8 10 12 0 2 4 6 8 10 12
Distance travelled (m) Distance travelled (m) Distance travelled (m)

(a) 3D Mapping Disabled (b) 3D Mapping Enabled (c) Pose Jumping Enabled

Figure 10: Dataset I Absolute Trajectory Error - Orientation Error in degrees

Table 2: Orientation Error Dataset I (in degrees).

Orientation Errors | Mapping Disabled | Mapping Enabled | Mapping Enabled
RMSE 2.61 1.57 1.08
Mean 2.21 1.23 0.93
Median 2.15 1.11 0.96

8.1.3 Relative Pose Error Dataset I

The relative pose error gives us the information how the drifting of the estimated trajectory is accumu-
lated over different sub trajectory lengths. As can be seen in Figure 10 that longer sub trajectory lengths
show a higher drift in translation when 3D mapping is disabled for Realsene T265, the reason why such
accumulation of error takes place is because the sensor is mostly dependant on the information coming
in from the IMU sensors and does not take into account the visual features that it has seen and hence is
not able to rectify its positioning.

15



This can be validated from Table 4, as the errors over large sub trajectory lengths and short sub tra-
jectory lengths for 3D mapping enabled and Pose Jumping enabled mostly remain the same and the
error is not accumulated over time, on the other hand for when 3D mapping is disabled the sensors start
to accumulate orientation errors as well and only when brought back to the initialization point are the
errors reduced but are still not completely 0. However the error is mostly constant for short and large
sub trajectory length for when 3D mapping and Pose Jumping is enabled, it cannot be ignored that even
with these features being enabled the sensors drifts from the original trajectory and wasn’t able to rectify

itself of this drift in both translation and orientation.
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Figure 11: Dataset I Relative Pose Error (Translation Error in m)

Table 3: Translation Error at different sub trajectory lengths in cm.

Distance traveled [m]

(a) 3D Mapping Disabled

(b) 3D Mapping Enabled

Translation Errors Drift at 1m | Drift at 5m | Drift at 9 m | Drift at 13 m
Mapping Disabled 4.68 5.60 10.4 9.22
Mapping Enabled 3.97 5.18 7.18 4.02
Pose Jumping Enabled 3.26 4.43 5.39 3.36
% ,,,,, = | i L =SH—c § T o=
== T e o e e O s a5

5 9
Distance traveled [m]

(c) Pose Jumping Enabled

Figure 12: Dataset I Relative Pose Error (Orientation Error in degrees)

Table 4: Orientation Error at different sub trajectory lengths.

Orientation Errors Drift at 1m | Drift at 5m | Drift at 9m | Drift at 13m
Mapping Disabled 1.50 1.95 3.00 2.10
Mapping Enabled 1.50 1.25 1.90 2.25
Pose Jumping Enabled 0.80 1.20 1.30 1.45
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8.2 Dataset II

The setup after initialization was moved in a rectangular motion of dimensions 1x 1.5 m twice, after
reaching a corner the setup was rotated 90 degrees clockwise. The procedure was repeated twice and was
placed back at the point of initialization with the same orientation. Fig 13 provides visual representation
of the trajectory followed during recording of the dataset.

— groundtruth = -1.01 — groundtruth = — groundtruth

estimate estimate = estimate 4
10 /\ /—'7 . N

)

=2
\z

-1.0 -0.5 0.0 05 -10 -08 -06 -04 -02 00 02 04 06 -12 -10 -08 -06 -04 -02 00 02 04
x axis x axis x axis

(a) 3D mapping Disabled (b) 3D Mapping Enabled (c) Pose Jumping Enabled

Figure 13: Dataset II

8.2.1 Dataset II Results

With the datasets recorded the error matrices can be constructed (absolute trajectory error and relative
pose error) for both the position and the orientation of the sensors based on where the Realsense sensor
is expected to be and where it actually is.

8.2.2 Absolute Trajectory Error Datasect 11

As there was rotation introduced in this experiment from Fig 14 and Table 5 it can be seen that the
translation error is significantly higher in all the three cases when compared to Dataset I but mostly
when the 3D mapping feature in Realsense was disabled. The maximum transnational drift increased
more than twice in this case, and as for cases when 3D mapping was enabled the sensor experienced a
higher translation drift as well when compared to no rotation. This a was a key flaw that needed to be
evaluated as to why this was happening, the problem was tested with a basic experiment and is explained
in section 8.3 . As in use case scenarios if the sensors experiences a drift due to change in orientation
it can accumulate largely over time resulting in completely unreliable position estimates.

From Figure 15 the orientation drift between the sensors is evaluated. The sensors do not seem to
be highly affected by the parameters for orientation estimation, except for the end result when the sen-
sors are put back to its original place from where they were initialized. As can be seen in Fig 14 and
Table 6 that after loop closure the sensors are able to identify its position of initialization and return
back to it, which is not the case for when 3D mapping is disabled and it ends up at a higher drift in
position and orientation.

Table 5: Translation Error in m

Transnational Errors | Mapping Disabled | Mapping Enabled | Mapping Enabled
RMSE 14.05 6.60 5.70
Mean 11.30 5.55 4.90
Median 9.40 5.70 4.55
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Figure 15: Dataset II Absolute Trajectory Error - Orientation Error in degrees

Table 6: Orientation Error in Degrees.

Orientation Errors | Mapping Disabled | Mapping Enabled | Mapping Enabled
RMSE 2.10 2.05 1.65
Mean 1.70 1.70 1.50
Median 2.00 1.30 1.45

8.2.3 Relative Pose Error Dataset 11

From Table 7 it can be seen that the translation drift for when 3D mapping is disabled keeps on in-
creasing with increasing sub trajectory lengths, hence without being able to correct for the errors that
it accumulates over time the estimation of the position keeps on becoming more unreliable and probably
with higher trajectory lengths it might not be possible to depend on the estimate coming in from the
sensor. Whereas for when the parameters are enabled the sensors is able to identify the small errors
coming in the estimation of position from IMU sensors and is able to correct for small such errors on a
regular basis and give a much better estimate.

The estimation of orientation tells a slightly different story as there is a certain drift in orientation in all
the three cases the drift is quite similar for all the three cases. The major difference can be seen when
pose jumping is enabled as when it identifies itself in a situation where the sensor has been to it identifies
the place and orientation it was in and based on that is able to correct for both the things, resulting
in a much better estimate for both position and orientation as can be seen in Fig 17(c). However Pose
jumping gives a much better result for this particular case it needs to be taken into account that if the
features present in the visuals are quite similar throughout the environment then the sensors might be
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fooled and can result in a much higher error, and in situations it might be best to use the sensor with
only 3D mapping enabled and no pose jumping.
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Figure 16: Dataset II Relative Pose Error - Translation Error in m

Table 7: Translation Error at different sub trajectory lengths in cm.

Translation Errors Drift at 1m | Drift at 5m | Drift at 9 m | Drift at 13 m
Mapping Disabled 6.55 10.70 13.70 15.20
Mapping Enabled 4.80 6.60 6.70 6.05
Pose Jumping Enabled 5.00 7.15 5.20 5.60
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Figure 17: Dataset II Relative Pose Error - Translation Error in degrees

Table 8: Orientation Error at different sub trajectory lengths in degrees.

Translation Errors Drift at 1m | Drift at 5m | Drift at 9 m | Drift at 13 m
Mapping Disabled 1.50 2.90 2.00 3.30
Mapping Enabled 1.40 2.25 2.30 2.25
Pose Jumping Enabled 1.25 1.55 1.45 1.65

8.3 Reason for drift on Rotation

Based on the second experiment performed (Dataset II) it was quite evident that rotating the sensors is
causing some kind of constant drift between the estimate and actual trajectory and to evaluate this we
ran a small experiment with moving the sensors through a line and rotating it 90 degrees and then moving
the rotated sensors along the same line to evaluate what kind of drift is caused by rotation between the
Sensors.

From fig. 18 it can be clearly seen that due to rotating the sensors the realsense starts to drift from
its original trajectory and is not able to correct for this drift. It is only after the rotation is compensated
for that the transnational drift is reduced. On further inspection of the sensor it was found that when
the sensor is rotated it does not rotate about its center but in a circle, causing the drift in its position
estimate.
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Figure 18: Transnational drift due to rotation.

8.4 Dataset III

Next after having the system tested in known environment it was tested in unknown environment. First
both the sensors were initialized in the known environment and moved in rectangle of 1.5 x 2 m dimension,
next the setup was taken outside the range of HT'C vive environment and moved along a path of 6m length
rotated 180 degrees and then returned back to the HTC vive environment. On returning the estimated
position of the Realsense was compared with the HT'C vive tracker to check if the unknown environment
caused drift in position estimation. From Fig 19. the trajectories followed for dataset recording can be
seen with changing parameters.

—— Mapping Disabled
—— Mapping Enaled
—— Pose JumpingEnabled

Figure 19: Dataset III

8.4.1 Dataset III Results

As data for the HT'C vive tracker was not available for the entire trajectory the evaluation methods used
so far could not be used. Hence to evaluate the performance between the two sensors average error of the
drift between he two sensors before leaving the environment and after reentering were used to evaluate
the performance of the sensor in this experiment.

8.4.2 Transnational Error

From figure 20 it can be seen that the best estimation of position comes when 3D mapping and pose
jumping are enable, having these options disabled results in error accumulation over time. They key
parameter that results in accumulation of error is disabling 3D mapping, as without visual features over
time the sensor is not able to correct for its position estimate as it depends completely on the inertial
sensory data and it is not consistent throughout. Whereas pose jumping is a helpful parameter but only
helps when the sensor is used in a completely known environment or a loop closure as it helps the sensor
to identify places it has already seen and jump to position it remembers it was in. This feature can
result in very reliable estimates or can result in huge errors when fooled through similar features in the
environment.
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Table 9: Transnational Error in cm.
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Figure 20: Dataset III Translation Error in m

8.4.3 Orientation Error

As can be seen in Table 10 the drift in orientation is quite similar for both when pose jumping is
enabled and 3D mapping enabled. Whereas the orientation drift when 3D mapping is disabled is quite
high before leaving the HT'C vive environment and even after re-entering. Once the sensor drifts to an
inconsistent estimate in orientation the sensor is unable to compensate for the error. Whereas having
these parameters enabled helps eliminating some of the drift in orientation. Although the percentage
increase in orientation drift was higher when the sensors were exposed to unknown environment for when
3D mapping was enabled as well, but was still less than the overall error accumulated when these features

were disabled.
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Table 10: Orientation Error.
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Distance traveled [m]
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Orientation Errors
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Mapping Enabled

Pose Jumping Enabled

Before Leaving
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5.10
9.55
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3.85
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2.20
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9 Conclusion

From the experiments performed the best set of parameters and their respective errors were compared.
On analysing these results it was tried to determine what could be the reason due to which the sensor

accumulates error even with highly efficient and accurate sensors being used.

Translation error [m]

Table 11: Transnational Error in cm.

Dataset I | Dataset II | Dataset 111
Trajectory Length 1300 cm 1400 cm 3400 cm
RMSE Error 4.05 cm 5.70 cm 12.40 cm
Max Error 9.30 cm 11.35 cm 28.50 cm

1.

o4
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=
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(a) Error when recorded in Dim lighting

Drift accumulation due to Rotation

As we have already seen in the experiments performed so far, whenever there is a rotation in around
any axis the Realsense tends to rotate in a circle and not about its own axis as how we expect it
should. This causes the error to be accumulated over time causing inaccurate readings coming
through the sensor.

. Inaccurate estimation of position due to bright lighting

The sensors were initialized in a known environment and then taken out of range of HTC Vive
environment into a completely open lobby. Due to the bright lighting coming in through the
windows the position estimate of the Realsense was highly inaccurate. This can be clearly seen
from Fig 22. As when the dataset recorded was in a dim light setting the sensor did not drift
much from its actual reading which it was estimating. However when the data was recorded in a
highly bright setting the system estimated almost a transnational drift of order 1 m. Although the
data recorded had a length of around 70 m. However even for a large trajectory accumulation of
transnational remains a key problem and the ability of the Realsense T265 to not adapt to lighting
situations results in poor performance. This can still be resolved by using physical filters on the
Realsene T265 helping the sensor to grasp features in the surroundings and estimate the position
of the sensor more reliability but it cannot be a permanent solution to this problem as depending
on the point of application the physical filters will have to be modified.
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Figure 22: Translation Error in m

3. High drift leading to NaN readings in complete darkness

When the sensor was completely deprived of any visual feature in the environment, by covering
the sensor with a cloth or by hand, it drifted at a very high pace and resulted in Nan values. This
is similar to the previous case when the lighting used was too bright leading to less features being
detected. But in this particular case when the sensor is completely covered it cannot detect any
visual features and is not able to estimate a position resulting in NaN values.
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10 Discussions and Future work

This report dictates the different tasks carried out during the internship at Xsens Technologies. The
performance of Realsense T265 was bench-marked against HTC vive tracker with different approaches
i.e by estimating a static transformation between the two trajectories by two different methods and by
application of ROS transformations to look up constant drift between the actual and the estimated tra-
jectory.

For the mounting of the sensors a design for holder was designed using Solidworks and realized us-
ing 3D printing technology. With the holder the static transformation was known and the drift between
the sensors could be calculated to evaluate the performance of Realsense in different environments.

For the experiments performed during the duration of the internship enabling 3D mapping and Pose
jumping parameters showcased the best results. But for practical applications in varying environments
these might not be the best set of parameters. As pose jumping is an unreliable parameter as it can be
fooled depending on the visual features present in the environment, similar looking places might confuse
the sensor and send inaccurate estimates leading to large error accumulation over time. For Practical
implementation enabling 3D mapping and disabling Pose jumping could provide for the best set of results
for varying environments as with 3D mapping the sensor is able to correct for small drifts at a high pace
and at short intervals resulting in small accumulation of error over time.

The application of the sensors is quite broad and could be used as a standalone tracking and navi-
gation sensors with an on board computer on any robot. The possible working of the sensor with a
Raspberry pi on a robot and navigation of the robot through an unknown environment could be a possi-
ble future work for better testing of the robustness of the sensor. Apart from this the Realsense provides
raw data incoming through Realsense T265 and hence different VIO algorithms could be used to test
which performs the best with the provided data from Realsense T265.
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Appendices

Codes and Snippets

> The path containing the dataset file to

import reading_utilities as ru
import numpy as np
import argparse
import os
import absolute_error as abs
import matplotlib.pyplot as plt
import alignment_util as au
import plotting_utils as pu
import relative_pose_error as rpe
parser = argparse.ArgumentParser (description=’"
be evaluated’’’)
parser.add_argument (’file_path’,type = str, help="
all the sensors.")
parser.add_argument (’bag_name’,type = str)
parser.add_argument (’vive_topic_name’,type = str)
parser.add_argument (’realsense_topic_name’,type = str)
parser.add_argument (’association_type’,type= str)
parser.add_argument (’results_directory’,type = str)
parser.add_argument (’error_reading’,type = str)
parser.add_argument (’vive_topic_name_2’,type = str)
args = parser.parse_args ()
assert os.path.exists(args.file_path)

alignment_method = ’svd’

pose_gt ,t_gt =

# pose_gt2 =
# t_gt2 =
pose_es,t_es =

if args.association_type

pose_gt, pose_es = ru.
pos_es, quat_es, t_es
pos_gt, quat_gt, t_gt

elif args.association_type
pose_resample_es =
pos_es, quat_es, t_es
pos_gt, quat_gt, t_gt

elif args.association_type

pose_interp = ru.
pos_gt, quat_gt,
pos_es, quat_es, t_es

accum_dist =

e_trans, trans_vec,

’associate’:

associate_time(t_gt,
ru.get_pos_quat_time (pose_es)
ru.get_pos_quat_time (pose_gt)

interpolate_values(t_gt,

e_scale_perc,

’resample’:

ru.resample_length(t_gt,
ru.get_pos_quat_time (pose_resample_es)

np.delete (pose_gt ,np.s_[780:950],0)
np.delete(t_gt,np.s_[780:950],0)

ru.read_msgs (args.realsense_topic_name ,args.file_path)
pos_realsense ,quat_realsense ,t_realsense =

t_es, 0.02,

pose_es)

ru.get_pos_quat_time (pose_gt)

’interpolate’:

pose_gt,
t_gt = ru.get_pos_quat_time(pose_interp)

ru.get_pos_quat_time (pose_es)

ru.get_distance (pos_gt)

trans_error,

scale_error

compute_absolute_trans_errors( pos_es,pos_gt)
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pose_gt,

t_es)

ru.read_msgs (args.vive_topic_name ,args.file_path)

abs.

path of the file containing data from

ru.get_pos_quat_time (pose_es)

pose_es)



e_rot, rot_error, rot_error_norm,e_rot_norm_2 = abs.compute_absolute_rot_error (quat_es,
quat_gt)

sub_l,e_trans_rel, e_trans_rel_perc, e_rot_rel,error_list = rpe.compute_relative_error(
pos_es, pos_gt, quat_es, quat_gt,file_name=args.bag_name)

rel_trans_err = []
rel_trans_err_perc = []
rel_rot_err = []

for i in range (0,np.shape(error_list) [0],3):
rel_trans_err.append(error_list[i,:])
rel_trans_err_perc.append(error_list[i+1, :])
rel_rot_err.append(error_list[i+2, :])

rel_trans_err = np.transpose(np.array(rel_trans_err))

rel_rot_err = np.transpose(np.array(rel_rot_err))

labels = [’Estimate’]
colors = [’b’]
v = np.linalg.norm(trans_vec,axis = 1)

fig = plt.figure(figsize=(6, 2.5))
ax = fig.add_subplot(
111, xlabel=’Distance traveled [m]’,
ylabel=’Translation error [m]’)
pu.boxplot_compare(ax, sub_l, rel_trans_err, labels, colors)
fig.tight_layout ()
plt.grid(True)
plt.ylim ([0, .3])
fig.savefig(args.results_directory+args.bag_name+’ _rel_translation_error.png’,
bbox_inches="tight")

fig = plt.figure(figsize=(6, 2.5))
ax = fig.add_subplot(
111, xlabel=’Distance traveled [m]’,
ylabel=’Rotation error [deg]’)
pu.boxplot_compare (ax, sub_l, rel_rot_err, labels, colors)
fig.tight_layout ()
plt.grid(True)
plt.ylim([0,6])
fig.savefig(args.results_directory+args.bag_name+’ _rel_rot_error.png’, bbox_inches="tight

|I)

pu.plot_traj(pos_es,pos_gt,args.results_directory+args.bag_name)
plt.figure ()

plt.plot(range (np.shape(t_gt) [0]) ,pos_gt[:,0],7+’)

plt.plot (range (np.shape(t_gt) [0]) ,pos_gt[:,1],7 %)
plt.plot(range (np.shape(t_gt) [0]) ,pos_gt[:,2],°--")

plt.figure ()
pu.plot_errors (accum_dist ,trans_vec,"normalised tranlational errors",x_label="Distance
Travelled (m))",y_label = "translational error in mm")

plt.ylim([0,140])
plt.savefig(args.results_directory+args.bag_name+’ _translational_error.png’)

plt.figure ()
pu.plot_errors (accum_dist ,e_rot,"Normalized orietation errors",x_label="Distance
travelled (m)",y_label = "Rotational error in degrees")

7 plt.ylim([0,10])

25



plt

plt

.savefig(args.results_directory+args.bag_name+’ _rotational_error.png’)

.show ()

ru.writing_errors (trans_error ,rot_error_norm,args.results_directory+args.bag_name+"

_errors"
Listing 1: Process to Evaluate the Trajectories

import numpy as np

import reading_utilities as ru

import plotting_utils as pu

import alignment_util as au

import matplotlib.pyplot as plt

import relative_pose_error as rpe

import argparse

parser = argparse.ArgumentParser (description=’’’ The path containing the dataset file to
be evaluated’’’)

parser.add_argument (’file_path’,type = str, help=" path of the file containing data from
all the sensors.")

parser.add_argument (’bag_namel’,type str)

parser.add_argument (’bag_name2’,type = str)

parser.add_argument (’bag_name3’,type = str)

parser.add_argument (’vive_topic_name’,type = str)

7 parser.add_argument (’realsense_topic_name’,type = str)
parser.add_argument (’association_type’,type= str)
parser.add_argument (’results_directory’,type = str)
parser.add_argument (’error_reading’,type = str)
parser.add_argument (’vive_topic_name_2’,type = str)
args = parser.parse_args ()

pose_gt_mapping ,t_gt_mapping = ru.read_msgs(args.vive_topic_name,args.file_path+args.
bag_namel)

pose_gt_no_mapping,t_gt_no_mapping =
args .bag_name2)

pose_gt_pose ,t_gt_pose =

ru.read_msgs (args.vive_topic_name ,args.file_path+
ru.read_msgs (args.vive_topic_name ,args.file_path+args.bag_name3)

pos_gt_mapping,quat_gt_mapping,t_gt_mapping = ru.get_pos_quat_time(pose_gt_mapping)
pos_gt_no_mapping, quat_gt_no_mapping,t_gt_no_mapping = ru.get_pos_quat_time (
pose_gt_no_mapping)

pos_gt_pose ,quat_gt_pose ,t_gt_pose = ru.get_pos_quat_time (pose_gt_pose)

pose_es_mapping,t_es_mapping =
.bag_namel)

pose_es_no_mapping,t_es_no_mapping =
file_path+args.bag_name2)

pose_es_pose ,t_es_pose = ru.read_msgs(args.realsense_topic_name ,args.file_path+args.
bag_name3)

ru.read_msgs (args.realsense_topic_name ,args.file_path+args

ru.read_msgs (args.realsense_topic_name,args.

pos_es_mapping,quat_es_mapping,t_es_mapping = ru.get_pos_quat_time(pose_es_mapping)
pos_es_no_mapping ,quat_es_no_mapping,t_es_no_mapping = ru.get_pos_quat_time (
pose_es_no_mapping)

pos_es_pose ,quat_es_pose ,t_es_pose = ru.get_pos_quat_time (pose_es_pose)

plt.figure ()

plt.plot(pos_es_no_mappingl[:,0],pos_es_no_mappingl[:,1],label = ’Mapping Disabled’)
plt.plot(pos_es_mappingl[:,0],pos_es_mappingl[:,1],label = ’Mapping Enaled’)
plt.plot (pos_es_posel[:,0] ,pos_es_posel[:,1],label = ’Pose JumpingEnabled’)
plt.legend ()
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1o plt.savefig(’../../Alignment/benchmarking_experiments/in_presentation/outside.png?)
50 plt.show ()

53 #

54 angular_mapping,linear_mapping =
vive_topic_name_2)

55 angular_no_mapping,linear_no_mapping =
.vive_topic_name_2)

56 angular_pose,linear_pose =
vive_topic_name_2)

ru.read_vel_acc(args.file_path+args.bag_namel, args.
ru.read_vel_acc(args.file_path+args.bag_name2,args

ru.read_vel_acc(args.file_path+args.bag_name3,args.

58 norm_ang_map np.linalg.norm(angular_mapping ,axis=1)

50 mean_ang_map = np.mean(norm_ang_map)

60 norm_ang_no_map = np.linalg.norm(angular_no_mapping,axis=1)
61 mean_ang_no_map = np.mean(norm_ang_no_map)

62 norm_ang_pose = np.linalg.norm(angular_pose,axis=1)

63 mean_ang_pose = np.mean(norm_ang_pose)

66 mnorm_lin_map

67

69

mean_lin_map =
norm_lin_no_map =
mean_lin_no_map =

.linalg.norm(linear_mapping,axis=1)
.mean (norm_lin_map)

np.linalg.norm(linear_no_mapping,axis=1)
np.mean(norm_lin_no_map)

norm_lin_pose = np.linalg.norm(linear_pose,axis=1)
mean_lin_pose = np.mean(norm_lin_pose)

[

plt.figure ()
plt.plot(range (np.
# plt.figure ()

shape (norm_ang_map) [0]) ,norm_ang_map ,label = "map")

s B = s TR BES TS SRS I |
~ S NI

s plt.plot(range(np.shape(norm_ang_no_map) [0]) ,norm_ang_no_map,label = "no_map")
o # plt.figure()

20 plt.plot(range (np.shape(norm_ang_pose) [0]) ,norm_ang_pose,label = "pose")

g1 plt.legend ()

g2 plt.figure ()

s3 plt.plot(range (np.shape(norm_lin_map) [0]) ,norm_lin_map,label = "map")

g4 # plt.figure ()

s5 plt.plot(range (np.shape(norm_lin_no_map) [0]) ,norm_lin_no_map,label = "no_map")
s6 # plt.figure ()

s7 plt.plot(range (np.shape(norm_lin_pose) [0]) ,norm_lin_pose,label = "pose")

g3 plt.legend ()
g0 plt.show ()

o1 print("angular velocity \nno mapping {} \nmapping {} \n pose{}".format(mean_ang_no_map,
mean_ang_map ,mean_ang_pose) )

92 print("linear acceleration \nno mapping {} \nmapping {} \npose {}".format(mean_lin_no_map
,mean_lin_map ,mean_lin_pose))

93

94

o5 # sub_l,e_trans_rel_map, e_trans_rel_perc_map, e_rot_rel_map,error_list_map = rpe.
compute_relative_error (pos_es_mapping, pos_gt_mapping, quat_es_mapping,
quat_gt_mapping,file_name=args.bag_namel)

96 # sub_l,e_trans_rel_no_map, e_trans_rel_perc_no_map, e_rot_rel_no_map,error_list_no_map =
rpe.compute_relative_error (pos_es_no_mapping, pos_gt_no_mapping, quat_es_no_mapping,
quat_gt_no_mapping ,file_name=args.bag_name2)

97 # sub_1l,e_trans_rel_pose, e_trans_rel_perc_pose, e_rot_rel_pose,error_list_pose = rpe.
compute_relative_error (pos_es_pose, pos_gt_pose, quat_es_pose, quat_gt_pose,file_name
=args.bag_name3)

o8 #

90 # distances = ["1 m no mapping","l m mapping","l m pose","5 m no mapping","5 m mapping
","5 m pose","9 m no mapping","9 m mapping","9 m pose","13 m no mapping","13 m
mapping","13 m pose"]

100 # rel_error = []

101 # for i in [0,3,6]:

27



# rel_error.append(error_list_no_mapl[i,:])
# rel_error.append([error_list_map[i,:]])

# rel_error.append([error_list_pose[i,:]1])
# rel_error = np.transpose(np.array(rel_error))
# labels = sub_1

# colors = [’b’]

#

# fig = plt.figure(figsize=(6, 2.5))

# ax = fig.add_subplot(

# 111, xlabel=’Distance traveled [m]’,

# ylabel=’Translation error [m]’)

# pu.boxplot_compare (ax, distances, rel_error, labels,
# fig.tight_layout ()

# plt.grid(True)

# # plt.ylim([0,.75])

plt.show ()

Listing 2: Comparing Datasets

import numpy as np
import xsens_common as Xs

def

def

def

compute_absolute_trans_errors(pos_es_aligned,pos_gt):

trans_vec = (pos_gt-pos_es_aligned)
e_trans = np.sqrt(np.sum(trans_vec**2,1))
trans_vec = trans_vec*1000

motion_gt
motion_es

np.diff (pos_gt ,0)
np.diff (pos_es_aligned,0)

dist_gt = np.sqrt(np.sum(np.multiply (motion_gt ,motion_gt) ,1))
dist_es = np.sqrt(np.sum(np.multiply(motion_es ,motion_es) ,1))

e_scale_perc = np.divide(dist_es,dist_gt)
trans_error = compute_error_types(e_trans)
scale_error = compute_error_types(e_scale_perc)

return e_trans,trans_vec,e_scale_perc,trans_error,scale_error

compute_absolute_rot_error (q_es_aligned,q_gt):

quat_error = xs.quatListMulInvQuatList(q_gt, q_es_aligned)

quat_error = xs.quatListNormalize (quat_error)

e_rot = xs.quatlListToEuler (quat_error)
e_rot_norm = np.linalg.norm(e_rot, axis=1)
rot_error = compute_rotation_error(e_rot)

rot_error_norm = compute_error_types(e_rot_norm)
return e_rot,rot_error ,rot_error_norm,e_rot_norm

compute_error_types (data_vec):
stats = dict ()

stats[’rmse’] = float(
np.sqrt(np.dot (data_vec, data_vec) / len(data_vec)))
stats[’mean’] = float(np.mean(data_vec))
stats[’median’] = float(np.median(data_vec))
stats[’std’] = float(np.std(data_vec))
stats[’min’] = float(np.min(data_vec))
stats[’max’] = float(np.max(data_vec))
stats [’num_samples’] = int(len(data_vec))

return stats
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def

stats dict ()
stats[’rmse roll’]

np.sqrt(np.dot (rot_error [0],

stats[’mean roll’]

compute_rotation_error (rot_error):

float (
rot_error [0]) / len(rot_error[0])))
float(np.mean(rot_error [0]))

stats[’median roll’]

stats[’std
stats[’min
stats [’max
stats [’num

roll’]
roll’]
roll’]

stats[’rmse yaw’]

np.sqrt(np.dot(rot_error[1],

stats[’mean yaw’]
stats[’median yaw’]

stats[’std
stats[’min
stats [’max

yaw’]
yaw’]
yaw’]

samples’]

stats [’num_samples’]

stats[’rmse pitch’]

np.sqrt (np.dot(rot_error[2],

stats[’mean pitch’]

stats [’median pitch’]

stats[’std pitch’]
stats[’min pitch’]
stats[’max pitch’]
stats [’num_samples’]
return stats

float (np.median(rot_error [0]))
float (np.std(rot_error [0]))

float (np.min(rot_error [0]))

float (np.max (rot_error [0]))

int (len(rot_error [0]))

float (

rot_error [1]) / len(rot_error[1])))
float (np.mean(rot_error[1]))

float (np.median(rot_error [1]))

float (np.std(rot_error[1]))

float (np.min(rot_error [1]))

float (np.max(rot_error [1]))

int (len(rot_error [1]))

float (

rot_error [2]) / len(rot_error[2])))
float (np.mean(rot_error [2]))

float (np.median(rot_error [2]))

float (np.std(rot_error [2]))

float (np.min(rot_error [2]))

float (np.max (rot_error [2]))

int (len(rot_error [2]))

Listing 3: Calculating Absolute Trajectory error

import reading_utilities as ru

import numpy as np

import argparse

import os

import absolute_error as abs

import matplotlib.pyplot as plt

import alignment_util as au

import plotting_utils as pu

import relative_pose_error as rpe

parser = argparse.ArgumentParser (description=’’’ The path containing the dataset file to
be evaluated’’’)

parser.add_argument (’file_path’,type = str, help=" path of the file containing data from
all the sensors.")

parser.add_argument (’bag_name’,type = str)

parser.add_argument (’vive_topic_name’,type = str)

parser.add_argument (’realsense_topic_name’,type = str)

parser.add_argument (’association_type’,type= str)

parser.add_argument (’results_directory’,type = str)

parser.add_argument (’error_reading’,type = str)

parser.add_argument (’vive_topic_name_2’,type = str)

args = parser.parse_args ()

assert os.path.exists(args.file_path)

alignment_method ’svd’
pose_gt ,t_gt
pose_gt_before

t_gt_before

pose_gt
t_gt [:740]

pose_gt_after
t_gt_after
pose_es ,t_es

accum_dist

ru.read_msgs (args.vive_topic_name ,args.file_path)

[:740,:]

pose_gt [740:-50, :]

t_gt [740:-50]

= ru.read_msgs (args.realsense_topic_name ,args.file_path)
pos_realsense,quat_realsense,t_realsense
ru.get_distance (pos_realsense)

ru.get_pos_quat_time (pose_es)
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plt.figure ()
plt.plot(pos_realsense[:,0] ,pos_realsensel[:,1])

plt.savefig(’../../Alignment/benchmarking_experiments/in_presentation’+args.bag_name)
if args.association_type == ’associate’:
pose_gt_before, pose_es_before = ru.associate_time(t_gt_before, t_es, 0.02,
pose_gt_before, pose_es)
pos_es_before, quat_es_before, t_es_before = ru.get_pos_quat_time(pose_es_before)

pos_gt_before, quat_gt_before, t_gt_before = ru.get_pos_quat_time (pose_gt_before)

pose_gt_after, pose_es_after = ru.associate_time(t_gt_after, t_es, 0.02,
pose_gt_after, pose_es)
pos_es_after, quat_es_after, t_es_after = ru.get_pos_quat_time(pose_es_after)

pos_gt_after, quat_gt_after, t_gt_afer = ru.get_pos_quat_time(pose_gt_after)

elif args.association_type == ’resample’:
pose_resample_es = ru.resample_length(t_gt, pose_es)
pos_es, quat_es, t_es = ru.get_pos_quat_time(pose_resample_es)

pos_gt, quat_gt, t_gt = ru.get_pos_quat_time (pose_gt)

elif args.association_type == ’interpolate’:
pose_interp = ru.interpolate_values(t_gt, pose_gt, t_es)
pos_gt, quat_gt, t_gt = ru.get_pos_quat_time(pose_interp)
pos_es, quat_es, t_es = ru.get_pos_quat_time(pose_es)

e_trans_before, trans_vec_before, e_scale_perc_before, trans_error_before,

scale_error_before = abs.compute_absolute_trans_errors( pos_es_before,pos_gt_before)
trans_vec_before = np.linalg.norm(np.abs(trans_vec_before),axis = 1)
e_rot_before, rot_error_before, rot_error_norm_before,e_rot_norm_before = abs.

compute_absolute_rot_error (quat_gt_before,quat_es_before)

e_trans_after, trans_vec_after, e_scale_perc_after, trans_error_after, scale_error_after
= abs.compute_absolute_trans_errors( pos_es_after ,pos_gt_after)
trans_vec_after = np.linalg.norm(np.abs(trans_vec_after),axis=1)

e_rot_after, rot_error_after, rot_error_norm_after ,e_rot_norm_after = abs.
compute_absolute_rot_error (quat_gt_after ,quat_es_after)

distances = ["Before Leaving","After Re-entering"]
rel_trans_error = []
rel_trans_error.append([trans_vec_before/1000])
rel_trans_error.append([trans_vec_after/1000])
rel_trans_error = np.transpose(np.array(rel_trans_error))

rel_rot_error = []
rel_rot_error.append([e_rot_norm_before])
rel_rot_error.append([e_rot_norm_after])
rel_rot_error = np.transpose(np.array(rel_rot_error))

labels [’Estimate’]
colors = [’b’]

fig = plt.figure(figsize=(6, 2.5))

ax = fig.add_subplot(
111, xlabel=’Distance traveled [m]’,
ylabel=’Translation error [m]?’)
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N

pu.boxplot_compare (ax, distances, rel_trans_error, labels, colors)
fig.tight_layout ()

plt.grid (True)

plt.ylim ([0, .6]1)

fig.savefig(args.results_directory+args.bag_name+’ _trans_drift.png’, bbox_inches="tight")

fig = plt.figure(figsize=(6, 2.5))
ax = fig.add_subplot(
111, xlabel=’Distance traveled [m]’,
ylabel=’Rotation error [in Degrees]’)
pu.boxplot_compare (ax, distances, rel_rot_error, labels, colors)
fig.tight_layout ()
plt.grid(True)
plt.ylim([0,10])
fig.savefig(args.results_directory+args.bag_name+’ _rot_drift.png’,

mean_before ,mean_after))

bbox_inches="tight")

plt.show ()
mean_before = np.mean(trans_vec_before) /1000
mean_after = np.mean(trans_vec_after) /1000
7 mean_rot_before = np.mean(e_rot_norm_before)
mean_rot_after = np.mean(e_rot_norm_after)
print (’error before leaving the environment is {}: \nerror after return is {}:’.format(

print (’Rot error before leaving the environment is {}: \nRot error after return is {}:’.

format (mean_rot_before ,mean_rot_after))

Listing 4: Comparison Method For unknown environement

import numpy as np

import xmath

import reading_utilities as ru
import absolute_error as abs

def discatnce_from_start(length):
distances = np.diff(length[:, 0:3], axis=0)

distances = np.sqrt(np.sum(np.multiply(distances, distances),
distances = np.cumsum(distances)
distances = np.concatenate (([0], distances))

return distances

1))

def boxplot_disctance(max_dist_diff,p_es,p_gt,q_es,q_gt,accum_distances,file_name):

x = np.array([1,2.5,5,10])

sub_1 = []

error_list = []

for 1 in x:
sub_1.append (1)

e_trans, e_trans_perc, e_rot,error_list = relative_calculations(l,max_dist_diff,

p_es,p_gt,q_es,q_gt,accum_distances,error_list,file_name)
return sub_1l,e_trans, e_trans_perc, e_rot,np.array(error_list)

def compute_comparison_indices_length(distances, dist, max_dist_diff):

max_idx = len(distances)
comparisons = []
for idx, d in enumerate(distances):
best_idx = -1
error = max_dist_diff
for i in range(idx, max_idx):
if np.abs(distances[i]-(d+dist)) < error:
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def

def

def

best_idx = i
error = np.abs(distances[i] - (d+dist))
if best_idx != -1:
comparisons.append(best_idx)
return comparisons

compute_relative_error(p_es, p_gt, q_es, q_gt,file_name,

accum_distances = discatnce_from_start(p_gt)

max_dist_diff=-1):

sub_1l,e_trans, e_trans_perc, e_rot,error_list = boxplot_disctance(max_dist_diff ,p_es,

p_gt,q_es,q_gt,accum_distances ,file_name)
return sub_l,e_trans, e_trans_perc, e_rot,error_list

relative_calculations (subtraj_length ,max_dist_diff ,p_es,p_gt,q_es,q_gt,

accum_distances ,error_list ,file_name):
Tcm = np.identity (4)
if max_dist_diff <= O:

max_dist_diff = 0.2 * subtraj_length

errors, e_trans, e_trans_perc, e_rot = compute_relative_error_values(p_es, p_gt,

> q-8t,

subtraj_length,

max_dist_diff, accum_distances, Tcm)
trans_error = abs.compute_error_types(e_trans)

trans_error_perc = abs.compute_error_types(e_trans_perc)
rot_error = abs.compute_error_types(e_rot)

ru.writing_relative_errors (trans_error ,rot_error ,trans_error_perc,subtraj_length,

q_es

file_txt="/home/gunisha/Alignment/benchmarking_experiments
/errors_new/"+file_name+" _error at{} length".format(subtraj_length))

error_list.append([e_trans])
error_list.append([e_trans_percl)
error_list.append([e_rot])

return e_trans, e_trans_perc, e_rot,error_list

compute_relative_error_values(p_es,p_gt,q_es,q_gt,subtraj_length ,max_dist_diff,

distances ,T_cm):

if len(distances) == 0:
distances = discatnce_from_start(p_gt)
comparisons = compute_comparison_indices_length(distances
max_dist_diff)
print (’number of samples =’+str(len(comparisons)))
T_mc = np.linalg.inv(T_cm)
errors = []
for idx,c in enumerate (comparisons):
if not c == -1:

,subtraj_length,

T_cl = get_rigid_body_trafo(q_es[idx, :], p_es[idx, :])

T_c2 = get_rigid_body_trafo(q_esl[c, :]1, p_esl[c, :
T_cl_c2 = np.dot(np.linalg.inv(T_cl1), T_c2)

iD)

T_ml = get_rigid_body_trafo(q_gtlidx, :], p_gtlidx, :])

T_m2 = get_rigid_body_trafo(q_gtlc, :1, p_gtlc, :
T_ml_m2 = np.dot(np.linalg.inv(T_ml), T_m2)

T_ml_m2_in_cl = np.dot(T_cm,np.dot(T_ml_m2,T_mc))

iD)

T_error_in_c2 = np.dot(np.linalg.inv(T_ml_m2_in_c1),T_cl_c2)

T_c2_rot = np.eye(4)

T_c2_rot[0:3,0:3] = T_c2 [0:3,0:3]

T_error_in_w = np.dot(T_c2_rot,np.dot(
T_error_in_c2,np.linalg.inv(T_c2_rot)))
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errors.append (T_error_in_w)

(]
(]

error_trans_norm
error_trans_perc
error_rot = []
for e in errors:
tn = np.linalg.norm(e[0:3,3])
error_trans_norm.append(tn)
error_trans_perc.append(tn/subtraj_length *100)
error_rot.append (compute_angle(e))

return errors, np.array(error_trans_norm), np.array(error_trans_perc), np.array(
error_rot)

def get_rigid_body_trafo(quat, trans):
T = np.eye(4)
T[0:3,0:3] = xmath.matrix.setQuat (quat)
T[0:3,3] = trans
return T

def compute_angle(transform):

return np.arccos (
min(1l, max(-1, (np.trace(transform[0:3, 0:3]) - 1)/2)))*180.0/np.pi

Listing 5: Unit Test between SVD and Horns Method

import numpy as np

import xsens_common as Xs
import xmath

import math

def align_trajectory(pos_gt,pos_es,method):

assert np.shape(pos_es) [1] == 3
assert np.shape(pos_gt) [1] == 3
s =1
if method ==’svd’:
s,R,t = align_umeyama(pos_gt ,pos_es)
elif method == ’Horn’:

s,R,t = horns_method(pos_gt,pos_es)
else:

assert False, ’Unknown Alignment Method’
return s,R,t

def align_umeyama(pos_gt ,pos_es):

s=1

# substract mean to center the data points around origin
mu_es = pos_es.mean (0)

mu_gt = pos_gt.mean (0)

pos_es_zerocentered = pos_es - mu_es

pos_gt_zerocentered = pos_gt - mu_gt

n = np.shape(pos_gt) [0]

# correlation

C = 1.0/n*np.dot(pos_gt_zerocentered.transpose(), pos_es_zerocentered)
sigma2 = 1.0/n* np.multiply(pos_es_zerocentered, pos_es_zerocentered).sum()
U_svd, D_svd, V_svd = np.linalg.linalg.svd(C)

D_svd np.diag(D_svd)

V_svd = np.transpose(V_svd)

S = np.eye(3)
if(np.linalg.det(U_svd)*np.linalg.det(V_svd) < 0):
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s[2, 2] = -1
np.dot(U_svd, np.dot(S, np.transpose(V_svd)))

=]
([

2]
[

1.0/sigma2#*np.trace(np.dot(D_svd, S))

t = mu_gt-np.dot(R, mu_es)
# print s,R,t

return s, R, t

def horns_method(pos_gt ,pos_es):

s=1

mu_es = pos_es.mean (0)

mu_gt = pos_gt.mean (0)
pos_es_zerocentered = pos_es - mu_es
pos_gt_zerocentered = pos_gt - mu_gt

n = np.shape(pos_es) [0]

# correlation
C = np.dot(pos_gt_zerocentered.transpose(), pos_es_zerocentered).T

M = np.dot(C.transpose(),C)
e_values ,e_vec = np.linalg.eig(M)
11 = np.sqrt(e_values [0])

12 = np.sqrt(e_values[1])

13 = np.sqrt(e_values[2])
vl = np.array(e_vec[:,0])
vl = vil.reshape(3,1)

v2 = e_vecl[:,1]

v2 = v2.reshape(3,1)

v3 = e_vecl[:,2]

v3 = v3.reshape(3,1)

S = (1/11)*(np.dot(vl,vl.transpose())) + (1/12)*(np.dot(v2,v2.transpose())) + (1/13)
*(np.dot (v3,v3.transpose ()))

R = np.dot(C,S)

s = np.sqrt(np.sum(pos_gt_zerocentered**2)/np.sumn(pos_es_zerocentered**2))

t = mu_gt-(s)*np.dot(R, mu_es)

return s, R, t

def apply_alignment (pos_es,quat_es,s,R,t):
pos_es_aligned = []

quat_rot = xmath.quaternion.setRmat (R)

for i in range(np.shape(pos_es) [0]):
pos_es_al = s * xmath.vector.setRotateVecByQuat (np.array(pos_es[i,:]),quat_rot)+t
pos_es_aligned.append(pos_es_al)

pos_es_aligned = np.array(pos_es_aligned)

quat_es_aligned = xs.quatMulQuatList(quat_rot,xs.quatListMulInvQuat (quat_es,quat_rot)

)

quat_es_aligned = xs.quatListNormalize(np.array(quat_es_aligned))

return pos_es_aligned,quat_es_aligned

def rot2eul(R):
beta = np.degrees(-np.arcsin(R[2,0]))
alpha = np.degrees(np.arctan2(R[2,1]/np.cos(beta),R[2,2]/np.cos(beta)))
gamma = np.degrees(np.arctan2(R[1,0]/np.cos(beta),R[0,0]/np.cos(beta)))
return np.array((alpha, beta, gamma))

def quaternion_to_euler (quat):
w = quat[:, 0]

x quat [:, 1]
y = quat[:, 2]
z = quat[:, 3]
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euler = []
for i in range(len(w)):

sqw = wli] * wl[il
sqx = x[i] * x[i]
sqy = yl[il * y[il
sqz = z[i] * z[i]
unit = sqx+sqy+sqz+sqw

test = x[il*y[il+z[il*w[i]
Y = math.degrees(math.atan2 (2*y[il*w[i]-2*x[i]*z[i],sqx-sqy-sqz+sqw))
Z math.degrees (math.asin(2*test/unit))
X = math.degrees(math.atan2 (2*x[i]l*w[i]-2*y[il*z[i],-sqx+sqy-sqz+sqw))
if (test>.499*unit):
Y = math.degrees (2*math.atan2(x[i],w[i]))
if (test<-.499*%unit):
Y = math.degrees (-2*math.atan2(x[i],w[i]))
euler.append ([X,Y,Z])

euler = np.array(euler)
return euler
def store_align_factors(s,R,t):

factors = dict()

factors[’scale’] = s

angles = rot2eul (R)
factors[’Rotation Angles’] = angles
factors[’translation’] = t

return factors

import
import
import
import
import
import
import

Listing 6: SVD and Horn Method Implementation

numpy as np
alignment_util as au
reading_utilities as ru
Xsens_common as XS
xmath

unittest

numpy .testing as npt

class TestTrajEval(unittest.TestCase):

def setUp(self)

FOLDER_PREFIX = ’../../Alignment/data_collection/’

bag_name = FOLDER_PREFIX + ’trial.bag’

vive_name = ’/vive/LHR_EF94BE39_pose’

self .pose_gt, self.t_gt = ru.read_msgs(vive_name, bag_name)

self .pos_gt, self.quat_gt, self.t_gt = ru.get_pos_quat_time(self.pose_gt)
self.generate_estimate ()

def generate_estimate(self):

self.pos_es = []

self.s =1
self.t = np.random.rand(3,)
self .rot_array = np.random.rand(4,)
self .rot_array = (self.rot_array)/np.linalg.norm(self.rot_array)
self .R = xmath.matrix.setQuat(self.rot_array)
for i in range(np.shape(self.pos_gt) [0]):
self .pos = self.s * xmath.vector.setRotateVecByQuat( self.pos_gtl[i,:],self.

rot_array) + self.t

self .pos_es.append(self.pos)
self .pos_es = np.array(self.pos_es)
self.quat_es = xs.quatlListMulQuat (self.quat_gt,self.rot_array)
self.add_noise ()

def add_noise(self):

self .mu_pos, self.sigma_pos = 0, .001
self .noise_pos = np.random.normal (self.mu_pos, self.sigma_pos, [np.shape(self.

pos_gt) [0], np.shape(self.pos_gt) [1]])
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if

self .pos_es = self.pos_es + self.noise_pos

def test_align_svd(self):
s_svd, R_svd, t_svd = au.align_trajectory(self.pos_gt,self.pos_es, ’svd’)

# pos_es_aligned_svd, quat_es_aligned_svd, pos_es_aligned_unscaled_svd = au.
apply_alignment (self.pos_es, self.quat_es,
#

self.s_svd, self.R_svd, self.t_svd)
self .compare_rotation(self.R,R_svd)
self.compare_translation(self.t,t_svd,R_svd)

def test_align_horn(self):
s_h,R_h, t_h = au.align_trajectory(self.pos_gt, self.pos_es, ’svd’)

# pos_es_aligned_h, quat_es_aligned_h, pos_es_aligned_unscaled_h = au.
apply_alignment (self.pos_es,self.quat_es,
#

self.s_h, self.R_h,
#

self.t_h)
self.compare_translation(self.t, t_h, R_h)
self.compare_rotation(self.R, R_h)

@staticmethod
def compare_rotation(R_true, R_est):
npt.assert_array_almost_equal (R_true,R_est.T,decimal=4)

@staticmethod

def compare_translation(t_true,t_est, R_est):
t_true = -t_true
t_est = np.dot(R_est.T,t_est)

npt.assert_array_almost_equal (t_true,t_est,decimal=4)

__name__ ==~ main__"’:

unittest.main ()

Listing 7: Unit Test between SVD and Horns Method
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