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Abstract

Background: Queueing systems with overflow can be found in a variety of settings, such as
telecommunications, call centers and health care. In overflow systems, jobs are routed to another,
secondary station if the primary station is fully occupied. This report mainly focuses on a two-
station overflow loss system with two job types. In this system, type 1 jobs arrive at (primary)
station 1 and are overflowed to (secondary) station 2 if all servers at station 1 are occupied. Besides
that, direct arrivals of type 2 jobs at (secondary) station 2 are incorporated. The overflow system
has the following distinguishing characteristics. First of all, it has a serial structure, which means
that jobs that complete service at the primary station are allowed to be transferred to the secondary
station. Secondly, it allows the service parameters to be dependent on the job type, the station at
which the job is served and whether or not the job is overflowed. Thirdly, it includes both overflow
and jump-over blocking. Finally, it assumes that the allowed number of jobs at the secondary
station is restricted to a so-called coordinate convex set.

The two-station overflow system with serial structure is studied under two different assumptions.
The first assumption that is considered is that overflowed jobs always complete service at the
secondary station, even if a server at the primary station becomes available. Secondly, the system
is also studied under the assumption that overflowed jobs switch from the secondary station to the
primary station as soon as a server at the primary station becomes available. The latter assumption
has been known in teletraffic theory for a long time under the terms of (immediate) repacking or
call packing. In the sequel, the overflow system under this assumption is therefore referred to as
the system with call packing, while the overflow system under the former assumption is referred to
as the system without call packing.

Objectives: In this report, the following objectives are aimed for:
• Determine the joint steady-state distribution of the number of jobs in the overflow system.

This is done both for the system with call packing and the system without call packing.
• Determine which blocking probabilities can be of interest, study how these can be computed,

and examine how these are affected by the assumption of call packing.
• Examine whether the overflow system is insensitive to the service time distributions. If this is

the case, the steady-state distribution does not depend on the service time distributions other
than through their means.

• Illustrate a possible application of the overflow system by describing how (an adapted version
of) the overflow system could be useful to model the interaction between an intensive care
unit (ICU) and a step-down unit (SDU).

Results: First of all, the joint steady-state distribution of the number of jobs in the overflow
system is determined. For the system with call packing, a product-form solution for the steady-
state distribution is obtained. For the system without call packing, the Gauss-Seidel method and
Grassmann-Taksar-Heyman (GTH) algorithm are applied to find the steady-state distribution.
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From these steady-state distributions, in turn, the blocking probabilities of interest can be
computed. This can be done by using the Poisson Arrivals See Time Averages (PASTA) property
of Poisson arrivals or by computation of a Palm probability. Numerical results of the blocking
probabilities are given, which illustrate how the blocking probabilities for the system with call
packing compare to those for the system without call packing.

Subsequently, discrete-event simulation is used to study whether the overflow system can be
expected to be insensitive to the service time distributions. It appears that both the system with
call packing and the system without call packing are sensitive. However, the simulation results
indicate that the system with call packing might be insensitive if the service rates of non-overflowed
type 1 jobs at (primary) station 1 and overflowed type 1 jobs at (secondary) station 2 are assumed
to be equal, and service is preemptively resumed after an overflowed job switches to (primary)
station 1. It is then shown that, under these conditions, the product-form solution for the steady-
state distribution remains valid when each of the service time distributions is a mixture of Erlang
distributions, by which a non-negative distribution can be arbitrarily closely approximated.

As a final point of interest, a possible application to ICU-SDU modelling is studied. Literature
regarding ICUs and SDUs is described in order to study which assumptions are reasonable to make.
It is then found that the overflow system, in adapted form, could be useful to model the interaction
between an ICU and SDU if it can be assumed that ICU patients may be overflowed to the SDU.

Conclusion: This report is concerned with a two-station overflow system with a serial struc-
ture. For this overflow system, several analytical and numerical results regarding the steady-state
distribution, blocking probabilities and insensitivity are obtained. These results can be of inter-
est from a theoretical point of view. Furthermore, as illustrated by the application to ICU-SDU
modelling, a practical usefulness is also conceivable.
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Chapter 1

Introduction

The structure of this chapter is as follows. First of all, in Section 1.1, some background information
is provided. Next, Section 1.2 discusses the motivation and objectives of the research project.
Finally, Section 1.3 contains the outline of the report.

1.1 Background

1.1.1 Queueing theory

In daily life, we come across many service systems, such as supermarkets, call centers, hospitals and
airlines. In order to provide a high level of service, it is often of interest to gain insight into the
(expected) performance of these systems. This can be done, for example, by obtaining a prediction
of levels of congestion or an estimate of how much capacity is required to reach a desired level of
service. However, because of the unpredictability of arrivals and service times, such service systems
are often difficult to analyze. For this purpose, queueing theory can be of great help.

Queueing theory finds its origin at the beginning of the 20th century when A.K. Erlang applied
methods of the theory of probability in the field of telephony (see [15]). Since then, it has found an
application in a variety of settings, including, among others, the areas of health care (e.g. hospitals)
and emergency services (e.g. ambulances, fire brigade). In its essence, queueing theory is concerned
with the mathematical study of queueing systems. A queueing system consists of one or multiple
stations (or server groups or queues, etc.), which each have a number of servers (or machines, etc.).

First of all, if there is just one station, the queueing system is often referred to as a single-station
queueing system. Such systems have in common that jobs (or customers or calls, etc.) arrive at the
station to receive some sort of service or treatment. However, there are numerous variations that
can be thought of. For example, if an arriving job finds all servers occupied, it could be blocked (or
rejected), wait until a server becomes available or replace a job that is in service.

Secondly, a queueing system that consists of multiple stations is commonly called a queueing
network (or network of queues). In such systems, a job may pass through a number of stations
instead of only visiting a single station. The network could have a (completely) serial structure
as in an assembly line, but also a more general structure. In this report, the main focus is on

1



queueing networks with overflow. This means that jobs are served at another, secondary station
if the primary station is fully occupied. In Sections 1.1.2 and 2.7, overflow systems are further
discussed.

The following example illustrates an application of queueing theory in practice.

Example 1 (Intensive care unit). Intensive care units (ICUs) provide intensive care and
treatment for patients with a critical condition. It is thus important that sufficient ICU beds
and personnel are available in order to care for and treat these ICU patients. In order to
obtain insight into how much capacity is necessary, queueing theory can be useful. As a
consequence, ICUs have frequently been studied from a queueing perspective (see e.g. [2, 16,
19, 20, 23, 25, 39, 41, 42, 59]).

First of all, the ICU can be seen as a single-station queueing system (see e.g. [19, 20, 23,
25, 42]). In this case, patients (i.e. customers) arrive to the ICU (i.e. the station) to receive
intensive care and treatment (i.e. service) in one of the operational ICU beds (i.e. at one
of the servers). Secondly, the ICU can also be modelled as part of a queueing network. For
example, the queueing network may consist of multiple wards or departments at a hospital,
among which the ICU (see e.g. [2, 41, 59]). Besides that, a queueing network with multiple
ICUs at different hospitals in a region can also be considered (see e.g. [16, 39]).

The queueing systems that have been studied also rely on different assumptions regarding
what occurs if an arriving patient finds the ICU fully occupied. These include the following:

• The arriving patient is rejected and leaves the system (see e.g. [19, 42]).
• The arriving patient waits for an available bed (see e.g. [23, 25, 41]).
• The ICU patient in relatively the best condition is bumped from the ICU (see e.g. [20]).
• Depending on the patient type, the arriving patient is rejected or waits for an available

bed (see e.g. [59]).
• Depending on the situation, the arriving patient balks (i.e. is rejected and leaves),

is off-placed in the step-down unit (SDU), waits for an available bed elsewhere or is
admitted to the ICU by bumping a patient who is present in the ICU (see e.g. [2]).

• Depending on the patient type, the arriving patient is admitted to the ICU by creating
an over-bed (i.e. an ICU bed that was not staffed), is rejected or is overflowed to
another ICU in the region that is also part of the queueing system (see e.g. [16, 39]).

In reality, it depends on the situation what solution is applicable when all ICU beds are
occupied upon arrival of a new ICU patient. A further discussion is contained in Chapter 4,
which studies a queueing network with an ICU and SDU.

Finally, it is noted that the information that is provided in this section is mainly based on [24, 32].
These sources can also be consulted for a more extensive discussion of queueing theory. Moreover,
Chapter 2 discusses some aspects from queueing theory that are relevant for the research project.
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1.1.2 Overflow systems

In queueing networks with finite capacities, it may occur that an arriving job cannot immediately
be served at the primary station, because all servers are occupied. In this case, it is often assumed
that the job waits until a server becomes available or is rejected and leaves the system. Instead, it
may also be an option that the service request is handled by a server at a secondary station. This
mechanism is known as overflow and is further discussed in this section, where the main focus is on
the two overflow systems that are depicted in Figure 1.

First of all, Figure 1a depicts a simple and generic overflow system, which has been studied
under different assumptions (e.g. regarding the service parameters) in [27, 28, 60, 61] (see also
Remark 6 in Section 2.7). Arriving type 1 jobs that find (primary) station 1 fully occupied are
overflowed to (secondary) station 2. If all servers at station 2 are also occupied, arriving type 1
jobs are rejected and leave the system. Next to arrivals of overflowed type 1 jobs, direct arrivals of
type 2 jobs at station 2 can also be observed. These jobs are immediately rejected and lost if they
find station 2 congested upon arrival.

Secondly, Figure 1b depicts another overflow system, which can be seen as similar to the overflow
system in Figure 1a. The main difference is that a type 1 job might also require service at station 2
after service completion at station 1 (or station 2 in case of overflow). More specifically, after a
type 1 job at station 1 (or overflowed type 1 job at station 2) finishes service, it goes to (or stays
at) station 2 with probability p ∈ (0, 1], while it leaves the system with probability 1− p (note that
the overflow systems are equivalent if p = 0). In this sense, the overflow system in Figure 1b can
be said to have a serial structure. Similarly, the system in Figure 1a can be said to have a parallel
structure, since station 2 is only visited by type 1 jobs if they are overflowed.

When analyzing the overflow systems in Figure 1, it is desired to determine certain performance
measures, such as blocking (or loss or rejection) probabilities or the average number of jobs in
service. For this purpose, it would be useful if the joint steady-state distribution of the number of
jobs in service can (efficiently) be computed. To this end, it would be of particular interest if the
steady-state distribution has a so-called product-form solution, which is a particular closed-form
solution (see also Section 2.4.1).

In this respect, it is useful to make a distinction between two possibilities when the service of
overflowed type 1 jobs at station 2 is considered:

• When overflowed type 1 jobs are served at (secondary) station 2, they also complete the service
at this station, even if a server at (primary) station 1 becomes available.

• An overflowed type 1 job at (secondary) station 2 is switched to (primary) station 1 as soon
as a place at station 1 becomes available.

The latter assumption, which is known from teletraffic theory under the names of (immediate)
repacking or call packing, has already been associated with product-form results (see e.g. [10, 11,
26, 60, 61]). Under the former assumption, in contrast, no product-form solution for the joint
steady-state distribution of the number of jobs in the system can be expected (see also Example 12
in Section 3.4.2). Instead, a numerical algorithm, simulation or an approximation method could be
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Figure 1: Two queueing networks with overflow

used to determine the steady-state distribution and/or related performance measures.
Finally, two comments regarding the service times are made:

• In order to derive analytical results, it is often desirable to assume that the service times are
exponentially distributed. However, this is often not the most realistic assumption, since many
service time distributions are not very well approximated by the exponential distribution.
Therefore, it would be of interest if the steady-state distribution does not depend on the
service time distributions other than through their means. This appealing property can be
referred to as insensitivity (see also Section 2.6).

• Typically, the service requirements of type 1 and type 2 jobs are not the same. Therefore,
type 1 jobs may have a different mean service time than type 2 jobs. Moreover, it could well be
that one of the stations is more suited to provide a specific service. This means that overflowed
jobs at station 2 may have a different mean service time than non-overflowed jobs at station 1.
Finally, in the system with serial structure, the mean service time of non-overflowed type 1
jobs at station 2 may also differ from that of other type 1 jobs. Using the notation that is
introduced in Section 3.2, this can be summarized as 1/µ1

11 6= 1/µ1
12 6= 1/µ1

22 6= 1/µ2
22.

1.2 Objectives

Overflow systems can be found in a variety of settings, such as telecommunications, call centers and
health care. As a consequence, there is a large amount of literature that is concerned with overflow
systems (see e.g. [3, 9, 10, 11, 16, 26, 27, 28, 29, 39, 49, 52, 60, 61, 62, 63] and references therein).
Most of these studies consider overflow systems with a parallel structure, which means that transfers
from the primary station to the secondary (overflow) station are not incorporated.

In this report, the main focus is on overflow systems with a serial structure, and in particular
the overflow system that is depicted in Figure 1b. This system is studied both with and without
the assumption of call packing. The following objectives are then aimed for:

• Determine the joint steady-state distribution of the number of jobs that are present in the
overflow system, either by deriving a product-form solution or by using a numerical algorithm.
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• Determine which blocking probabilities can be of interest, study how these can be computed,
and examine what effect the assumption of call packing has on these.

• Examine whether (and under which conditions) the overflow system is insensitive to the service
time distributions.

• Illustrate a possible application of the overflow system by describing how the overflow system
(in adapted form) can be used to analyze the interaction between an ICU and SDU.

1.3 Outline of report

This report consists of three main parts, which are each covered in a separate chapter. The structure
of this report is therefore as follows:

• Chapter 2 contains the theoretical background. This chapter discusses some concepts, models
and methods from queueing theory that are relevant for the research project. These are, among
others, stochastic processes, Markov chains, queueing networks, product forms, numerical
algorithms to determine the steady-state distribution of a Markov chain, three approaches
that can be taken to compute blocking probabilities (using the steady-state distribution,
simulation and approximation methods), insensitivity and overflow systems.

• In Chapter 3, a two-station overflow system with serial structure is studied. First of all, a
formal model description is provided. Besides that, the steady-state distribution is determined,
and blocking probabilities are computed. Finally, the feature of insensitivity is studied.

• In Chapter 4, a possible application to ICU-SDU modelling is studied. Literature regarding
ICUs and SDUs is described, and a product-form solution for the steady-state distribution is
provided. Moreover, it is discussed how this steady-state distribution can be useful to obtain
insight into the blocking probabilities and other related performance measures.

• Chapter 5 contains a conclusion, which summarizes the main findings of the research project.

Finally, it is noted that the appendix contains some supplementary material. More specifically,
additional information regarding the proofs, blocking probabilities and simulation model is provided
in Appendix A, Appendix B and Appendix C, respectively. Besides that, Appendix D contains the
Matlab code that is used.
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Chapter 2

Theoretical background

In this chapter, some concepts, models and methods from queueing theory that are relevant for the
research project are discussed. For a more thorough introduction to queueing theory, the reader
can consult, for example, [1, 32, 53, 55, 57].

2.1 Outline of chapter

This chapter is organized as follows:
• Section 2.2 discusses stochastic processes, and in particular Markov chains, which are fre-

quently encountered in queueing theory.
• In Section 2.3, a brief description of queueing networks is provided. In particular, the charac-

teristics of the queueing networks that are studied in this report are mentioned.
• Section 2.4 describes how the joint steady-state distribution of the number of jobs in a queueing

network could be determined. Two approaches are discussed: deriving a product-form solution
and using a numerical algorithm.

• Section 2.5 focuses on the determination of blocking probabilities. It is described how blocking
probabilities can be computed when the steady-state distribution is known. Besides that,
simulation and approximation methods are briefly discussed.

• In Section 2.6, the feature of insensitivity is discussed.
• In Section 2.7, an overflow system with parallel structure is considered. For this system, it

is described how the steady-state distribution and blocking probabilities can be determined
and under which conditions the insensitivity property holds. Besides that, a brief discussion
of literature regarding overflow systems is included in this section.

Finally, it is noted that throughout this chapter several examples are provided. In these exam-
ples, the following queueing systems are discussed: the Erlang loss system (Examples 2, 3, 7 and 10),
a two-station tandem queue with jump-over blocking (Examples 4, 6, 8 and 9) and the Jackson net-
work (Example 5).
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2.2 Stochastic processes and Markov chains

This section discusses stochastic processes, and in particular Markov chains, since they play an
important part in the analysis of queueing systems. The information that is provided is mainly based
on the book of Stewart [53] (chapter 9) and the book of Karlin and Taylor [33] (chapters 1 and 2),
although slightly different notation is used. For a more extensive discussion of the topics that are
discussed in this section, the reader is also referred to these sources.

2.2.1 Formal definitions

First of all, a stochastic process is defined as follows:

Definition 1 (Stochastic process, [53], p. 253). A stochastic process is a family of random variables
{X(t), t ∈ T}. Here, T is called the index set or parameter space. It can be either discrete (e.g.
T = {0, 1, ...}) or continuous (e.g. (T = [0,∞) = {t | t ≥ 0}).

The parameter t can often be interpreted as time. Hence, X(t) then denotes the value that the
random variable assumes at time t. The values of X(t) are called states and can be one-dimensional,
but also multi-dimensional. The set of all possible states that can occur is referred to as the state
space and is commonly denoted by S or S.

An important type of stochastic process is a Markov process, and in particular a Markov chain.
A stochastic process {X(t), t ∈ T} is a Markov process if it possesses the so-called Markov property.
In words, this property states that the future behaviour of the process only depends on the current
state and is not altered by additional information concerning its past history. A Markov process
that has a finite or denumerable state space is then called a Markov chain.

When Markov chains are defined, a distinction is generally made between discrete-time Markov
chains, where T = {0, 1, ...}, and continuous-time Markov chains, where T = [0,∞). Below, formal
definitions are given.

First of all, the definition of a discrete-time Markov chain is as follows:

Definition 2 (Discrete-time Markov chain, [53], p. 195). A stochastic process {Xn, n = 0, 1, ...} is
a discrete-time Markov chain if it satisfies the following relationship for all natural numbers n and
all states x0, ..., xn+1 ∈ S:

P [Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, ..., X0 = x0] = P [Xn+1 = xn+1 | Xn = xn] (1)

Secondly, a continuous-time Markov chain is defined as follows:

Definition 3 (Continuous-time Markov chain, [53], p. 253). A stochastic process {X(t), t ≥ 0}
is a continuous-time Markov chain if it satisfies the following relationship for all integers n ≥ 1, all
states x0, ..., xn+1 ∈ S and for any sequence t0, t1, ..., tn, tn+1 such that t0 < t1 < ... < tn < tn+1:

P [X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, ..., X(t0) = x0]

= P [X(tn+1) = xn+1 | X(tn) = xn]
(2)
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In the sequel, the main focus lies on continuous-time Markov chains with a finite state space,
as these are of particular interest for this research project. Moreover, the continuous-time Markov
chains are assumed to be (time-)homogeneous and irreducible as defined below. To this end, let
p(n,n′; s, t) denote the conditional probability that the Markov chain is in state n′ at time t given
that it is in state n at time s (for n,n′ ∈ S, s, t ∈ [0,∞) and t ≥ s), that is:

p(n,n′; s, t) = P [X(t) = n′ | X(s) = n] (3)

A homogeneous continuous-time Markov chain is then defined as follows:

Definition 4 (Homogeneous continuous-time Markov chain, [53], pp. 194, 253-254). A continuous-
time Markov chain is said to be homogeneous or time-homogeneous when the transitions are inde-
pendent of the elapsed time, that is, when the transition probability p(n,n′; s, t) does not depend
on the values of t and s, but only on their difference τ = t− s.

In order to simplify notation, the transition probability of a homogeneous continuous-time
Markov chain can therefore be written as p(n,n′; τ) (for n,n′ ∈ S and τ ∈ [0,∞)), where:

p(n,n′; τ) = P [X(s+ τ) = n′ | X(s) = n] for all s ≥ 0 (4)

Subsequently, an irreducible continuous-time Markov chain is defined as follows:

Definition 5 (Irreducibility, [53], p. 260). A homogeneous, continuous-time Markov chain is said
to be irreducible if, for any two states n and n′ (n,n′ ∈ S), there exists real numbers τ1 ≥ 0 and
τ2 ≥ 0 such that p(n,n′; τ1) > 0 and p(n′,n; τ2) > 0.

The interactions between the states in a continuous-time Markov chain are specified by means
of the transition rates. For a homogeneous continuous-time Markov chain, these transition rates
(denoted by q(n,n′), n,n′ ∈ S) are defined as follows:

q(n,n′) = lim
∆t→0

(
p(n,n′; ∆t)

∆t

)
, n 6= n′ (5)

q(n,n) = lim
∆t→0

(
p(n,n; ∆t)− 1

∆t

)
(6)

For n 6= n′, q(n,n′) can be interpreted as the rate at which transitions occur from state n to
state n′. Besides that, q(n,n) is equal to the negative of the sum of the transition rates from n to all
other states n′ (i.e. n′ 6= n), that is, q(n,n) = −

∑
n′∈S\n q(n,n′). It is also noted that the values

of the transition rates are often arranged in a matrix. This matrix is known as the infinitesimal
generator matrix or transition rate matrix and is generally denoted by Q.

Finally, as an illustration, the following example describes a single-station queueing system with
N servers that can be represented by a homogeneous, irreducible, continuous-time Markov chain.
This queueing system is known as Erlang loss system or, using Kendall’s notation (see e.g. [1], p. 24,
for a description of this notation), M |M |N |N queue (see e.g. [1, 32, 47, 54]).
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Figure 2: Erlang loss system

Example 2 (Erlang loss system: Model description). Consider the queueing system that
is depicted in Figure 2. The system consists of one station with N servers. Jobs arrive to
this station according to a Poisson process with rate λ, which means that the time between
arrivals is exponentially distributed with mean 1/λ. If an arriving job finds all N servers
occupied upon arrival, it is rejected and lost. Otherwise, the arriving job is served by one of
the servers, where the service times are assumed to be exponential with rate µ.

Now, let the random variable n(t) denote the number of jobs in the system at time t.
The process {n(t), t ≥ 0} is then a continuous-time Markov chain with state space
SEr = {0, 1, ..., N} and transition rates qEr(n, n′), n, n′ ∈ SEr, equal to:

qEr(n, n′) =



λ n′ = n+ 1

nµ n′ = n− 1

−(λ+ nµ) n′ = n < N

−nµ n′ = n = N

0 else

(7)

It is noted that the Erlang loss system is a special case of a birth-death process. More
specifically, for each state n ∈ SEr, there is either an arrival (i.e. a birth) with rate λ1{n<N},
which leads to state n + 1, or a departure (i.e. a death) with rate nµ, which leads to state
n− 1. See, for example, [32] for a wider discussion on birth-death processes.

In Examples 3, 7 and 10, the Erlang loss system system is further discussed.

2.2.2 Steady-state distribution

When a Markov chain is analyzed, it is often of interest to determine the steady-state distribution
π = (π(n), n ∈ S), which is also known as long-run or equilibrium distribution. For n ∈ S, the
steady-state probability π(n) generally has the following two interpretations ([53], p. 238):

• π(n): The probability that a random observer sees the Markov chain in state n after the
process has evolved over a long period of time.

• π(n): The long-run proportion of time the Markov chain spends in state n.
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Moreover, Section 2.5.1 discusses another interpretation that can be thought of when the Markov
chain represents a queueing system with Poisson arrivals.

The Markov chains that are considered in this report are homogeneous, irreducible, continuous-
time Markov chains with a finite state space S and transition rates q(n,n′), n,n′ ∈ S (see also
Section 2.2.1). For such Markov chains, there exists a unique steady-state distribution, which has
strictly positive elements (i.e. π(n) > 0 for all n ∈ S) and may be obtained as the solution to the
following global balance equations:∑

n′∈S\n
π(n)q(n,n′) =

∑
n′∈S\n

π(n′)q(n′,n), n ∈ S, (8)

subject to the condition that the probabilities sum to one (i.e.
∑

n∈S π(n) = 1).
It is noted that the global balance equations (8) have the interpretation that for each n ∈ S

the flow out of state n is equal to the flow into state n. More specifically, the left-hand side of (8)
represents the flow out of state n, while the right-hand side represents the flow into state n.

Finally, the section ends with a continuation of Example 2.

Example 3 (Erlang loss system: Steady-state distribution). Consider the Erlang loss system
as introduced in Example 2. It can then be of interest to find the steady-state distribution
of the number of jobs that are present in the system, denoted by πEr = (πEr(n), n ∈ SEr).
As discussed above, the steady-state distribution should satisfy the global balance equations.
For n ∈ SEr = {0, 1, ..., N}, these global balance equations are given by:

λπEr(n)1{n<N} + nµπEr(n)1{n>0} = (n+ 1)µπEr(n+ 1)1{n<N} + λπEr(n− 1)1{n>0} (9)

In fact, in this case, an explicit closed-form expression for the steady-state distribution
can be obtained. To this end, it is noted that from the global balance equations (9) it can
be seen that the following more detailed equalities must be satisfied (see e.g. [32]):

λπEr(n− 1) = nµπEr(n), n ∈ {1, ..., N} (10)

From these equations, in turn, the following expression for the steady-state distribution
is readily verified (see e.g. [1]):

πEr(n) =
(

N∑
k=0

1
k!

(
λ

µ

)k)−1
1
n!

(
λ

µ

)n
, n ∈ SEr = {0, 1, ..., N} (11)

2.3 Queueing networks

Instead of a single-station queueing system (e.g. as in Example 2 in Section 2.2.1), it can also be
of interest to consider a queueing network consisting of multiple stations that are in some sense
connected. An advantage of this is that it enables us to take into account the interaction and
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interdependence between the stations. For example, this could be useful when modelling hospital
wards, since patients often visit more than one ward during a hospital stay. Another example of an
application is an assembly line, in which a product visits several workstations in sequence. At each
workstation, one or more operations are executed in order to assemble the product (see e.g. [32]).

It can be noted that many different assumptions can be made when describing a queueing
network. To name a few, the queueing network may be closed (i.e. no arrivals from and departures
to the outside) or open (i.e. arrivals from and departures to the outside are possible), one or multiple
job types may be distinguished, capacities may be limited or unlimited, and different assumptions
regarding the arrival process and service time distributions can be made. Moreover, if a job finds
a station fully occupied upon arrival, it can, among others, be rejected and leave the system, wait
until it can be served or replace a job in service. Another possibility is that the job is overflowed,
which is defined as follows:

Definition 6 (Overflow). Jobs are said to be overflowed when they go to another, secondary station
for the same service if the primary station is fully occupied.

As mentioned above, there is a large variety of queueing networks that can be studied. In this
report, the main focus is on queueing networks with the following characteristics:

• The queueing network consists of two stations, which each have a finite number of servers.
• Two types of jobs arrive to the network. Type 1 jobs arrive at station 1 according to a Poisson

process, while type 2 jobs arrive at station 2 according to a Poisson process.
• At a station, jobs are served by one of the servers, where the service times are assumed to

be exponential. It is also studied, though, to what extent the exponentiality assumption is
necessary (see also Section 2.6).

• After service completion at station i (i = 1, 2), type t jobs (t = 1, 2) leave the system with
probability pti,0 ∈ [0, 1], while they are routed to the other station with probability 1 − pti,0
(provided that a server is available).

• Jobs that find all servers at a station occupied upon a service request are overflowed to the
other station or they are blocked and leave the system (or ‘jump over’ the station as in
Example 4 below).

• The service rates may depend on the job type, the station at which the job is served and
whether or not the job is overflowed.

It is noted that queueing networks with the aforementioned characteristics can be represented
by a homogeneous, irreducible, finite, continuous-time Markov chain. This is illustrated by the
following example that describes a two-station tandem queue with jump-over blocking. In Remark 2
below, it is discussed how this system is related to the overflow system that is studied in Chapter 3.

Example 4 (Tandem queue with jump-over blocking: Model description). Consider the
queueing network that is depicted in Figure 3. The network consists of two stations: station 1
with a capacity of N1 servers and station 2 with N2 servers. Type 1 jobs arrive at station 1

11



 
Arriving 

jobs 

Station 1 Station 2 

Figure 3: A two-station tandem queue with jump-over blocking mechanism

according to a Poisson process with rate λ1. For simplicity, arrivals of type 2 jobs at station 2
are left out of account (i.e. the arrival rate of type 2 jobs λ2 is assumed to be zero).

If station 1 is not fully occupied, arriving type 1 jobs are served by one of the N1 servers,
where the service times are assumed to be exponential with rate µ1. After service completion,
the jobs then go to station 2 (i.e. p1

1,0 = 0 and p1
1,2 = 1). Here, the jobs receive a service

from one of the N2 servers, provided that they are accepted. After a service time, which is
exponentially distributed with rate µ2, the jobs leave the system (i.e. p1

2,0 = 1 and p1
2,1 = 0).

It might also occur that a job that arrives at station 1 or station 2 finds all servers
occupied. In this case, a jump-over or skipping blocking mechanism is assumed (see also
Remark 1 below). More specifically, an arriving job at station 1 ‘jumps over’ station 1 and
immediately goes to station 2 if all N1 servers are occupied. Similarly, a job that arrives at
station 2 after completing service at station 1 (or jumping over station 1) jumps over station 2
to the outside if station 2 is fully occupied.

Now, let n(t) = (n1(t), n2(t)) denote the state of the system at time t, where ni(t) denotes
the number of jobs at station i at time t (i = 1, 2). The process {n(t), t ≥ 0} is then a
continuous-time Markov chain with state space Stq, which is as follows:

Stq = {(n1, n2) | 0 ≤ ni ≤ Ni, i = 1, 2} (12)

Moreover, the transition rates qtq(n,n′), n,n′ ∈ Stq, are given by:

qtq(n,n′) =



λ1 (n1, n2)′ = (n1 + 1, n2)

n1µ1 (n1, n2)′ = (n1 − 1, n2 + 1)

n1µ11{n2=N2} (n1, n2)′ = (n1 − 1, n2)

λ11{n1=N1} (n1, n2)′ = (n1, n2 + 1)

n2µ2 (n1, n2)′ = (n1, n2 − 1)

0 else

, n 6= n′ (13)

qtq(n,n) = −
∑

n′∈Stq\n
qtq(n,n′) (14)

The tandem queue with jump-over blocking is further studied in Examples 6, 8 and 9.
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Finally, two remarks regarding Example 4 are made.

Remark 1 (Jump-over blocking in literature). The description of the system in Example 4 is based
on the two-station tandem queue with jump-over blocking that is described in [58] (pp. 61-62).
Next to this reference, the jump-over blocking mechanism has found several other applications in
literature. For example, in [56], a closed queueing network with jump-over blocking is studied.
More precisely, a job that requests service at a station, but finds all servers at this station occupied,
is immediately routed to another station according to the routing probabilities, that is, the job
‘jumps over’ the station as if it is served with infinite speed. Besides that, [5] also considers a
queueing network with jump-over blocking, although instead of jumping over the term skipping is
used. This queueing network is more general than the two-station tandem queue in Example 4,
since it allows for possibly more than two stations and direct arrivals at each of the stations. Other
references in which a queueing network with jump-over or skipping blocking mechanism can be
found include [14, 43].

Remark 2 (Example 4: Relation to overflow system in Chapter 3). In a sense, the tandem queue that
is described in Example 4 can be seen as similar to the overflow system that is studied in Chapter 3.
More specifically, in Chapter 3, it is assumed that jobs that complete service at station 1 and are
routed to station 2 are rejected if there is no server at station 2 available. This can also be seen as
if these jobs jump over station 2. However, jobs that arrive at station 1 do not jump over station 1
if the station is fully occupied. Instead, these jobs are overflowed to station 2.

2.4 Determining the steady-state distribution

In this report, we consider queueing networks that can be represented by a homogeneous, irreducible,
finite, continuous-time Markov chain. For these networks, we are interested in determining the joint
steady-state distribution of the number of jobs that are present, from which related performance
measures (e.g. blocking probabilities) can be computed. Therefore, this section discusses two
approaches that can be thought of when determining the joint steady-state distribution of the
number of jobs in a queueing network that is represented by a homogeneous, irreducible, finite,
continuous-time Markov chain.

First of all, Section 2.4.1 discusses steady-state distributions that have a product-form solution.
Secondly, Section 2.4.2 describes numerical algorithms that can be used to find the steady-state
distribution.

2.4.1 Product-form solution

Over the past decades, a great deal of attention has been devoted to so-called product-form solutions
for the joint steady-state distributions of the number of jobs in a queueing network. The first
product-form results are generally attributed to R.R.P. Jackson [31] and J.R. Jackson [30]. In the
latter reference, the queueing network that is described in Example 5 below is considered.
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Example 5 (Jackson network: Product form). Consider a queueing network that consists
of multiple, say K, stations, where the ith station has Ni servers and infinite waiting room.
Jobs from outside the system arrive at station i according to a Poisson process with rate λi.
Besides that, arrivals at a station may also come from one of the stations. More specifically,
when a job finishes service at station i, it is routed to station j with probability pij , while
it leaves the system with probability 1 −

∑K
k=1 pik. At station i, jobs are served by one of

the Ni servers, where the service times are assumed to be exponentially distributed with
mean 1/µi. Arriving jobs that find all servers at a station occupied join a queue and are
served in order of arrival (i.e. first come, first served). The state of the system is then given
by (n1, ..., nK), where ni denotes the number of jobs that are present at station i (either in
service or waiting).

It is then shown by J.R. Jackson [30] that the joint steady-state distribution of the number
of jobs at the stations, denoted by π(n1, ..., nK), is given by the product of the steady-state
distributions of the number of jobs at the individual stations, denoted by πi(ni), i = 1, ...,K.
This means that the joint steady-state distribution can be written as follows:

π(n1, ..., nK) =
K∏
i=1

πi(ni) (15)

In this case, the joint steady-state distribution can thus be factorized into the steady-state
distributions for the individual stations as if they were in isolation. This is reflected in the
name product-form solution or, in short, product form (see also e.g. [57], p. 65).

Since the product-form result in [30], many queueing networks have been shown to exhibit a
product form. These include, for example, Gordon-Newell networks, which are studied by Gordon
and Newell [22], and BCMP networks, which are introduced by Baskett et al. [8].

Here, it is noted that the term product form is also used when a factorization to marginal
probabilities as in Example 5 is not possible (see e.g. the descriptions of product forms in [5, 8, 12,
17, 18, 57]). For example, dependence between the components may generally still be included into
a normalizing constant. Besides that, more general expressions are sometimes also referred to as
product-form solutions. For example, in [12] (p. 29), it is mentioned that a “closed-form distribution
that can be obtained from the transition rates” may also be called a product-form distribution.

The expressions for the steady-state distributions that are derived in this report (in particular,
those in Theorems 1, 2 and 4) are of product form in the sense that the joint steady-state distribution
factorizes into functions for the individual components, up to normalization. More specifically, we
consider queueing networks for which the state description is given by a multi-dimensional vector n,
say n = (n1, ..., nR) for some positive integer R. The expressions for the steady-state distributions
are then of the following form:

π(n1, ..., nR) = c
R∏
i=1

πi(ni) (16)

14



Here, π is the joint steady-state distribution, πi the function for component i, i = 1, ..., R, and
c a normalizing constant, which is such that the steady-state probabilities sum to one.

As discussed in Section 2.2.2, the steady-state distribution may be found as the unique solution
to the global balance equations (8) subject to the condition that the probabilities sum to one.
However, it is often difficult, if not impossible, to obtain a product-form solution by solving the
global balance equations directly. As a consequence, for most of the product-form solutions that are
available, more detailed subequations of the global balance equations are also satisfied. Examples
of such subequations include detailed balance equations, which are related to reversibility (see e.g.
[34, 36]), job-local-balance equations, which are related to insensitivity (see Section 2.6) and station
balance equations, which are defined as follows:

Definition 7 (Station balance, [57], p. 63). For all states n ∈ S, the rate out of state n due to a
departure from a station is equal to the rate into state n due to an arrival at that station. Here,
the outside of the system is also seen as a station, which is referred to as station 0.

Station balance thus has the natural interpretation that the physical outrate and inrate at a
station are balanced. If multiple job types and/or overflowed and non-overflowed are distinguished,
it might also be possible to verify a balance between physical outrate and inrate for each of these
job classes separately. In line with [58] (p. 11), this leads to the following notion of balance, which
is referred to as class balance:

Definition 8 (Class balance). For all states n ∈ S, the rate out of state n due to a departure of
a job that belongs to some class is equal to the rate into state n due to an arrival of a job of the
same class.

In Sections 3.4.1 and 4.5, class balance is further illustrated. More specifically, it is shown that
global balance is satisfied by verifying specific class balances.

Finally, the section ends with a continuation of Example 4. This example shows that the two-
station tandem queue with jump-over blocking exhibits a product form.

Example 6 (Tandem queue with jump-over blocking: Product form). For the two-station
tandem queue with jump-over blocking as introduced in Example 4, there exists a product-
form solution for the joint steady-state distribution of the number of jobs at station 1 and
station 2, denoted by πtq = (πtq(n1, n2), (n1, n2) ∈ Stq). More specifically, with ctq a
normalizing constant, the following product-form solution for the steady-state distribution
applies (see [58], p. 62):

πtq(n1, n2) = ctq
1
n1!

(
λ1
µ1

)n1 1
n2!

(
λ1
µ2

)n2

, (n1, n2) ∈ Stq (17)

As shown in [58] (p. 62), the product form can be proven by verifying that the global
balance equations are satisfied for all (n1, n2) ∈ Stq when the product form (17) is substi-
tuted. For illustrative purposes, the global balance equations are also provided below. For
(n1, n2) ∈ Stq, the global balance equations are as follows:
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πtq(n1, n2)n1µ11{n1>0}+
πtq(n1, n2)n2µ21{n2>0}+
πtq(n1, n2)λ1(1{n1<N1} + 1{n1=N1}1{n2<N2})


(18.1)
(18.2)
(18.3)

= (18)
πtq(n1 − 1, n2)λ11{n1>0}+
πtq(n1 + 1, n2 − 1)(n1 + 1)µ11{n1<N1}1{n2>0} + πtq(n1, n2 − 1)λ11{n1=N1}1{n2>0}+
πtq(n1, n2 + 1)(n2 + 1)µ21{n2<N2} + πtq(n1 + 1, n2)(n1 + 1)µ1λ11{n1<N1}1{n2=N2}


(18.1)′

(18.2)′

(18.3)′

By substitution of the product form (17), it can now be verified that (18.i) = (18.i)′,
i = 1, 2, 3. Here, it is noted that (18.1) = (18.1)′ represents station balance for station 1,
(18.2) = (18.2)′ for station 2 and (18.3) = (18.3)′ for station 0 (i.e. the outside). From this, it
then follows that (18.1) + (18.2) + (18.3) = (18.1)′ + (18.2)′ + (18.3)′, which means that the
global balance equations (18) are satisfied.

Remark 3 (Jump-over blocking: Product forms). As illustrated by Example 6, it is possible to obtain
a product-form solution for the joint steady-state distribution of the number of jobs in a two-station
tandem queue with jump-over blocking. Moreover, the jump-over blocking mechanism has found
several other product-form applications in literature as well, also for more general structures (see
e.g. the references that are mentioned in Remark 1 in Section 2.3).

2.4.2 Numerical algorithm

In Section 2.4.1, it is discussed that in some cases the steady-state probabilities π(n), n ∈ S, can
be determined by obtaining a product-form solution. However, it is not always possible to derive
a product-form solution. A suitable, though generally computationally less attractive, alternative
could then be to use a numerical algorithm to obtain the steady-state distribution. This approach is
discussed in this section. The information that is provided is mainly based on the book of Quarteroni
et al. [45] (chapters 3 and 4) and the book of Stewart [53] (chapter 10).

As discussed in Section 2.2.2, the steady-state probabilities π(n), n ∈ S, should be positive
numbers that sum to one and satisfy the global balance equations (8). In matrix form, this is
equivalent to the following:

πQ = ~0, π > ~0 and πe = 1 (19)

Here, π is a row vector that contains the steady-state probabilities, while Q is the infinitesimal
generator matrix as introduced in Section 2.2.1. Moreover, ~0 is a row vector with the same length
as π that contains a zero in every field. Similarly, e is a column vector with the same length as π
that contains a one in every field.

In order to solve the system of equations (19), a numerical algorithm can be applied (see also
Remark 5 at the end of this section). When categorizing these algorithms, a distinction is generally
made between iterative methods and direct methods.
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Algorithm 1 GTH algorithm for continuous-time Markov chains ([53], p. 299)
Require: s× s infinitesimal generator matrix Q
1: Let A = QT and aij = A(i, j), i, j = 1, ..., s (i.e. aij is the transition rate from state j into

state i).
2: Step 1: Reduction step
3: for i = 1, ..., s− 1 do
4: aik = aik/

∑s
j=i+1 aji, for all k > i.

5: ajk = ajk + ajiaik, for all j, k > i, k 6= j.
6: end for
7: Step 2: Backsubstitution step
8: xs = 1.
9: for i = s− 1, s− 2, ..., 1 do
10: xi =

∑s
j=i+1 aijxj .

11: end for
12: Step 3: Normalization step
13: norm =

∑s
j=1 xj .

14: for i = 1,...,n do
15: πi = xi/norm (πi is component i of the steady-state probability vector, i = 1, ..., s).
16: end for
17: return Steady-state probability vector π.

Algorithm 2 Gauss-Seidel method for continuous-time Markov chains (based on [53], pp. 309-313)
Require: s×s infinitesimal generator matrix Q, an initial approximation of the steady-state prob-

ability vector π0 and information for determining when to stop, such as a maximum number of
iterations itmax or a tolerance for a stopping test tol (see also Remark 4 below).

1: Let A = QT and x0 = (π0)T .
2: Determine a strictly lower triangular matrix L, a strictly upper triangular matrix U and a

diagonal matrix D, such that A = D − L− U .
3: Determine the iteration matrix B as follows: B = (D − L)−1U .
4: Initialize number of iterations k = 0 and initial vector x(0) = x0.
5: while k < itmax && convergence test(s) not satisfied do
6: x(k+1) = Bx(k).
7: x(k+1) = x(k+1)/||x(k+1)||1 (i.e. normalize).
8: k = k + 1.
9: end while
10: Set π = xT .
11: return A 1× s vector π that contains the steady-state probabilities of the Markov chain.
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First of all, an iterative method requires an initial approximation of the solution vector or, if an
initial approximation is not available, a guess or arbitrarily chosen vector. The idea of an iterative
method is then to successively improve this approximation in each iteration until it eventually
converges to the solution. If an iterative method is used, it should therefore be determined when
convergence has occurred and the iterative process can be halted. This is further discussed in
Remark 4 at the end of this section. Examples of iterative methods include the method of Jacobi,
the Gauss-Seidel method and the method of successive overrelaxation.

Secondly, as opposed to iterative methods, direct methods attempt to go directly to the solution
by executing a finite number of steps. Direct methods are often based on Gaussian elimination and
related LU factorization.

For the overflow system that is studied in Chapter 3, two algorithms are applied to obtain
the steady-state distribution. These are the Grassmann-Taksar-Heyman (GTH) algorithm (see
Algorithm 1), which is a direct method, and the Gauss-Seidel method (see Algorithm 2), which is
an iterative method. These algorithms are further discussed and compared in Section 3.4.2.

Finally, this section ends with two remarks.

Remark 4 (Iterative method: Stopping criteria). As mentioned above, if an iterative method is
applied, it should be decided when the iterative process is halted. Ideally, the iterative process
is stopped if the iterate x(k) is such that ||x(k) − x|| < tol, where x = πT is the solution vector,
|| · || a suitable norm (e.g. the 2-norm) and tol some prespecified tolerance. However, the solution
vector x is not known in advance, which means that other stopping criteria should be devised. For
this purpose, several stopping criteria can be thought of (see e.g. [45, 53] for a discussion). In this
report, when applying the Gauss-Seidel method as given in Algorithm 2, the following stopping
criteria are used. First of all, a maximum number of iterations itmax is specified. Besides that, the
iterative process is also halted if the following relative convergence test is satisfied (see [53], p. 319):

max
i

{
|x(k)
i − x

(k−m)
i |

|x(k)
i |

}
< tol (20)

Here, tol is some prespecified tolerance, x(k)
i the ith element of the iterate x(k) and x(k−m)

i the
ith element of the iterate x(k−m), where m can be chosen greater than one, so that iterates that are
not successive can be compared. Finally, if the relative convergence test indicates that convergence
has occurred, the following residual resid, which should be close to zero, is also checked:

resid = ||πQ||2 (21)

Remark 5 (Alternative approach). In this section, it is described how the steady-state distribution
can be obtained by applying a numerical algorithm to solve the system of equations (19). Instead
of solving πQ = ~0, it may also be an option to discretize the continuous-time Markov chain.
Subsequently, the steady-state distribution π can be obtained by solving πP = π, where P is the
transition probability matrix of the discretized Markov chain. See, for example, [53] (pp. 285-287)
for a further discussion.
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2.5 Determining blocking probabilities

For queueing networks, several performance measures can be of interest, such as the utilization,
throughput and expected number of busy servers. In this report, the performance measure of
primary interest is the blocking probability (i.e. the probability that an arriving job finds all servers
occupied and is rejected). Therefore, this section discusses several methods that may be applied to
obtain (an approximation of) the blocking probability.

First of all, Section 2.5.1 describes how the blocking probabilities can be computed from the
steady-state distribution. Next, Section 2.5.2 contains a short description of simulation. Finally,
approximation methods are briefly discussed in Section 2.5.3.

2.5.1 Using the steady-state distribution

In this section, it is discussed how blocking probabilities can be determined when the steady-
state distribution π = (π(n), n ∈ S) is known. For example, this can occur when there exists a
product-form solution for the steady-state distribution (see Section 2.4.1) or when the steady-state
distribution is determined by using a numerical algorithm (see Section 2.4.2). Below, two cases are
distinguished:
(i) Jobs arrive according to a Poisson process.
(ii) Jobs do not arrive according to a Poisson process.

Case (i): In this case, the Poisson Arrivals See Time Averages (PASTA) property of Poisson
arrivals can be used to determine the blocking probability. This property says that the fraction of
jobs that find the system in state n upon arrival is the same as the fraction of time that the system
spends in state n, which is equal to π(n) ([1], p. 27). As a consequence, the probability that an
arriving job is blocked can be computed by summing the steady-state probabilities π(n) over the
states n ∈ S that lead to blocking. More specifically, let SB ⊆ S denote the set of states that lead
to blocking. The blocking probability, denoted by B, can then be calculated as follows:

B =
∑

n∈SB

π(n) (22)

This is illustrated by the following examples.

Example 7 (Erlang loss system: Blocking probability). Again, consider the Erlang loss
system as studied in Examples 2 and 3. Because of the PASTA property of Poisson arrivals,
it can immediately be concluded from the steady-state distribution (11) that the blocking
probability, denoted by BEr, is as follows:

BEr(λ, µ,N) = πEr(N) =
(

N∑
k=0

1
k!

(
λ

µ

)k)−1
1
N !

(
λ

µ

)N
(23)

The expression (23) is commonly referred to as Erlang loss formula (see e.g. [1]).
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Example 8 (Tandem queue with jump-over blocking: Blocking probability, 1/2). Consider
the tandem queue with jump-over blocking mechanism as described in Examples 4 and 6. In
this system, arriving jobs at station 1 are only blocked if both station 1 and station 2 are fully
occupied. Because of the PASTA property, the blocking probability of arriving jobs, denoted
by B1,tq, can therefore be computed from the steady-state distribution (17) as follows:

B1,tq(λ1, µ1, µ2, N1, N2) = πtq(N1, N2) = ctq
1
N1!

(
λ1
µ1

)N1 1
N2!

(
λ1
µ2

)N2

(24)

Case (ii): In this case, the PASTA property cannot be used to determine the blocking probabil-
ity. Instead, if the queueing network is represented by a continuous-time Markov chain, the blocking
probability may be determined by computation of a so-called Palm probability (see e.g. [4, 14, 51]).
For example, suppose we are interested in determining the probability that a job that moves from
some station, say station i, to another station, say station j, finds station j fully occupied and is
blocked, denoted by Bi,j . This means that Bi,j is the conditional probability that station j is fully
occupied given that a job moves from station i to station j.

The blocking probability Bi,j is then given by the Palm probability that is determined as follows.
First of all, let A be the set of transitions in which a job moves from station i to station j. These
transitions are then called A-transitions. Moreover, let C ⊆ A be the event that a job that moves
from station i to station j finds station j congested and is blocked. The Palm probability of the
C-event given that an A-transition occurs, denoted by PA(C), is then as follows (see [14], p. 159):

PA(C) =
∑

(n,n′)∈C π(n)q(n,n′)∑
(n,n′)∈A π(n)q(n,n′) , C ⊆ A (25)

The Palm probability PA(C) can be interpreted as the expected number of A-transitions at
which a C-event occurs in a fixed time interval divided by the expected number of all A-transitions
in the same interval (see [51], p. 300).

Again, for illustrative purposes, an example is provided.

Example 9 (Tandem queue with jump-over blocking: Blocking probability, 2/2). Again,
consider the tandem queue with jump-over blocking mechanism that is discussed in Exam-
ples 4, 6 and 8. In Example 8, it is already shown how the blocking probability of arriving
jobs at station 1 can be determined using the PASTA property of Poisson arrivals. However,
the PASTA property cannot be used to find the probability that a job that leaves station 1
finds all servers at station 2 occupied. Instead, this blocking probability, which is denoted
by B1,2,tq, can be determined by computation of a Palm probability. More specifically, using
the product form (17), B1,2,tq can be determined as follows:

B1,2,tq(λ, µ1, µ2, N1, N2) =
∑N1
n1=1 πtq(n1, N2)n1µ1∑N1

n1=1
∑N2
n2=0 πtq(n1, n2)n1µ1

(26)
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2.5.2 Simulation

An approach that is frequently taken to determine performance measures, among which blocking
probabilities, is simulation. Simulation can be described as “the process of designing and creat-
ing a computerized model of a real or proposed system for the purpose of conducting numerical
experiments to give us a better understanding of the behaviour of that system for a given set of
conditions” ([35], p. 7). The main advantage of simulation is that it allows for the study of very
complicated systems. Disadvantages are that the results are generally not exact and that a rela-
tively long computation time is required. A particular type of simulation model is a discrete-event
simulation model. In such a model, changes in the state of the system only occur at discrete points
in time (see e.g. [35, 48]).

In this report, discrete-event simulation is used to analyze the overflow system of interest when
the service times are not exponentially distributed. In Section 3.6.1, the simulation results are
presented. Besides that, Appendix C provides more extensive information regarding the simulation
model, the determination of the length of the warm-up period, run length and number of replications
and the verification and validation.

2.5.3 Approximation methods

If it is not possible or undesirable to compute the steady-state distribution analytically or numeri-
cally (e.g. because of a long computation time), it may also be an option to apply an approximation
method to approximate the blocking probabilities. Over the past decades, various methods to ap-
proximate blocking probabilities have therefore been developed. Below, two approximation methods
are briefly mentioned.

First of all, a way to approximate blocking probabilities that can be thought of is by means
of a product-form modification. The idea of this method is to modify the (unsolvable) system in
order to obtain a product-form system, that is, a system that does exhibit product-form solution
for the steady-state distribution. The blocking probabilities for the product-form system can then
be determined as described in Section 2.5.1. These blocking probabilities, in turn, provide an
approximation, or even a secure bound, of the blocking probabilities for the original system (see
e.g. [27, 28, 60, 61]). Secondly, in the context of overflow systems, it is worthwhile to mention
the Equivalent Random Method, which was originally developed by Wilkinson [62]. Since then, it
has found several applications in literature (see e.g. [11, 39, 49, 52, 63]). In Section 2.7.2, these
approximation methods are further discussed.

2.6 Insensitivity

When determining the joint steady-state distribution of the number of jobs in a queueing network, it
is often most convenient to assume that the service times are exponentially distributed. For example,
this could be desirable in order to represent the queueing network by a continuous-time Markov
chain. However, in reality, it may well be that the exponential distribution does not provide a very
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accurate description of the service times. Therefore, it would be useful if the queueing network is
insensitive to the service time distributions (see e.g. [27, 54, 58]). In that case, the steady-state
distribution does not depend on the service time distributions other than through their means. This
is thus an appealing property, since the steady-state distribution then remains valid, even if the
service times are not exponentially distributed (provided that the means are the same).

Finally, the section ends with an example that further discusses the Erlang loss system, which
is an insensitive single-station queueing system.

Example 10 (Erlang loss system: Insensitivity). Again, consider the Erlang loss system
that is studied in Examples 2, 3 and 7. This system is known to be insensitive to the service
time distribution (see e.g. [1, 54]). This means that the steady-state distribution (11) is the
same for other, non-exponential service time distributions, provided that the mean is equal
to 1/µ. As a consequence, instead of M |M |N |N queue, the system is also frequently referred
to as M |G|N |N queue, where the G in the second field denotes that the service time has a
general distribution (instead of M for Markovian).

2.7 Overflow systems

This section contains a discussion on overflow systems. First of all, as an example, Section 2.7.1
considers an overflow system with parallel structure that is known from literature and related to the
overflow system in Chapter 3. Secondly, in Section 2.7.2, some other literature concerning overflow
systems is briefly discussed.

2.7.1 Example: An overflow system with parallel structure

This section considers the overflow system that is studied in [60], which can be seen as closely
related to the overflow system that is subject of Chapter 3 (see Remark 8 below). The purpose of
this section is twofold. First of all, it aims to illustrate how the theory that is discussed in this
chapter can be applied to an overflow system. Secondly, it serves as an introduction to the overflow
system with serial structure that is studied in Chapter 3.

This section has the following structure. First of all, a formal model description is given. Next,
it is shown how the steady-state distribution and blocking probabilities can be determined. Finally,
it is discussed under which conditions the insensitivity property holds.

Model description

Figure 4 depicts the system with parallel structure that is considered in this section. The overflow
system consists of two stations: station 1 with a capacity of N1 servers and station 2 with a capacity
of N2 servers. Type 1 jobs arrive at station 1 according to a Poisson process with rate λ1. These
arriving type 1 jobs are only accepted at station 1 if there is a server available. If all servers at
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Figure 4: An overflow system with parallel structure

(primary) station 1 are occupied, the arriving type 1 jobs are overflowed to (secondary) station 2.
Next to these arrivals, station 2 also receives direct arrivals of type 2 jobs, which arrive according
to a Poisson process with rate λ2.

Overflowed type 1 jobs and arriving type 2 jobs are then only admitted to station 2 if they can
immediately be served, that is, if there is a server available. This may depend not only on the total
number of type 1 and type 2 jobs that are present, but also on the number of each job type. More
specifically, let the state of the system be denoted by n = (n1, n2,m), where:

• n1: The number of type 1 jobs at station 1.
• n2: The number of type 2 jobs at station 2.
• m: The number of overflowed type 1 jobs at station 2.

The allowed number of type 1 and type 2 jobs at station 2 is then restricted to a so-called
coordinate convex set C, which is given by:

C = {(n2,m) | 0 ≤ n2 +m ≤ N2, 0 ≤ n2 ≤ L, 0 ≤ m ≤M}, where L,M ∈ {0, 1, ..., N2} (27)

It can be noted that this set possesses the following property, which is known as the coordinate
convex property (see e.g. [58], p. 7):

(n2,m) ∈ C ⇒

 (n2 − 1,m) ∈ C (n2 > 0)

(n2,m− 1) ∈ C (m > 0)
(28)

Overflowed type 1 jobs are therefore accepted at station 2 if (n2,m + 1) ∈ C, while arriving
type 2 jobs are accepted if (n2 +1,m) ∈ C. If this is not the case, the arriving jobs are rejected and
lost. An example of a coordinate convex set is the situation that each of the N2 servers at station 2
can be occupied by both type 1 and type 2 jobs, which leads to C = {(n2,m) | 0 ≤ n2 +m ≤ N2}
(then, L = M = N2). See, for example, [58, 60] and Example 11 in Section 3.3 for more examples
of coordinate convex structures.

If an arriving job is accepted at station 1 or station 2, it is served by one of the available servers.
Here, the service times are assumed to be exponentially distributed with rates µ1 for type 1 jobs at
station 1, µ2 for type 2 jobs at station 2 and γ for overflowed type 1 jobs at station 2.
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Finally, it is noted that it may occur that a type 1 job at (primary) station 1 completes service,
while overflowed type 1 jobs are present at station 2. In this case, two possibilities are considered:

• When overflowed type 1 jobs are served at (secondary) station 2, they also complete service
at this station, even if a server at (primary) station 1 becomes available.

• An overflowed type 1 job at (secondary) station 2 is switched to (primary) station 1 as soon
as a server at station 1 becomes available.

The latter assumption is also known under the terms (immediate) repacking or call packing (see
e.g. [10, 11, 26, 60, 61]). Therefore, the system under this assumption is referred to as the (parallel)
overflow system with call packing. The system under the former assumption is referred to as the
(parallel) overflow system without call packing.

Remark 6 (Overflow systems in literature). As mentioned before, this section is concerned with
the overflow system that is considered in [60]. It is noted that this system has also been studied
in literature under slightly different assumptions. For example, in [27, 28], the overflow system
without call packing is studied under the assumptions that all servers at station 2 can be used by
type 1 and type 2 jobs (i.e. C = {(n2,m) | 0 ≤ n2 +m ≤ N2}) and that overflowed type 1 jobs and
type 2 jobs at station 2 have the same service parameter (i.e. µ2 = γ). Besides that, [61] considers
both the overflow system with call packing and the overflow system without call packing under the
assumptions that C = {(n2,m) | 0 ≤ n2 +m ≤ N2} and µ1 = γ. Other related overflow systems
can be found in, among others, [21] and [26] (Example 2). In Section 2.7.2, these and some other
references regarding overflow systems are briefly discussed.

Remark 7 (Call packing: Modification). In [60], the overflow system without call packing that is
described above is of main interest. In this reference, call packing is then solely considered as
a modification of the system in order to obtain a product-form system, which may lead to an
approximation, or even a bound, of the blocking probabilities for the system without call packing
(see also Section 2.5.3). In this report, in contrast, call packing is not regarded as a modification,
but rather as a natural part of the system.

Remark 8 (Overflow system in Chapter 3). It is noted that the overflow system that is studied
in Chapter 3 can be seen as an extension of the overflow system that is described above. More
specifically, in the system in Chapter 3, jobs that finish service at (primary) station 1 may also go
to (secondary) station 2 (see also Remark 11 in Section 3.3).

Steady-state distribution

For the parallel overflow system (with or without call packing) as described above, it can be of
interest to determine the joint steady-state distribution of the number of jobs in the system. Below,
it is discussed how these steady-state distributions can be determined. To this end, the state space
for the system with call packing, denoted by Scp, and the state space for the system without call
packing, denoted by Sncp, are first given.
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In the system with call packing, overflowed type 1 jobs at station 1 switch to station 1 as soon as
a server becomes available. This means that overflowed type 1 jobs can only be present at station 2
if station 1 is fully occupied. As a consequence, the state space Scp is given by:

Scp = {n | 0 ≤ n1 < N1, m = 0, (n2, 0) ∈ C or n1 = N1, m ≥ 0, (n2,m) ∈ C} (29)

In the system without call packing, in contrast, there can also be overflowed type 1 jobs at
station 2 if there are servers at station 1 available. Therefore, the state space Sncp is as follows:

Sncp = {n | 0 ≤ n1 ≤ N1, (n2,m) ∈ C} (30)

For the system with call packing, a product-form solution for the joint steady-state distribution
of the number of jobs in the system, denoted by πcp = (πcp(n), n ∈ Scp), can then be obtained (see
Section 2.4.1 for a brief discussion on product forms).

Theorem 1 (Parallel overflow system with call packing: Product form). The parallel overflow
system with call packing that is described above has the following steady-state distribution:

πcp(n) =


ccp

1
n1!

(
λ1
µ1

)n1 1
n2!

(
λ2
µ2

)n2
m = 0

ccp
1
n1!

(
λ1
µ1

)n1 1
n2!

(
λ2
µ2

)n2 (λ1)m∏m

k=1(N1µ1+kγ) m > 0
, n ∈ Scp (31)

Here, ccp is a normalizing constant and n = (n1, n2,m) the state description.

Proof. There are different ways to prove the product form (31):
• The global balance equations can be written down, after which it can be verified that the

product form (31) satisfies these for all n ∈ Scp (see [60], p. 10).
• The product-form result in [26] can be used to prove the product form (31) (see [60], pp. 28-29).
• The overflow system could also be modelled as competing Markov chains. Subsequently, the

product form (31) can be concluded from the product-form result in [13] (see [60], pp. 29-31,
and Appendix A.3).

For the system without call packing, in contrast, a product-form solution for the steady-state
distribution cannot be expected (see e.g. [61], p. 4, or Example 12 in Section 3.4.2). Instead,
the steady-state distribution, denoted by πncp = (πncp(n), n ∈ Sncp), could be determined by
a numerical algorithm, such as the GTH algorithm (see also Section 2.4.2). Besides that, when
the steady-state distribution is determined in order to compute related performance measures (e.g.
blocking probabilities), it could also be an option to approximate the desired performance measures
(see also Section 2.5.3).

Blocking probabilities

For the parallel overflow system (with or without call packing) that is shown in Figure 4, one might
be interested in finding the probability that a type 1 or type 2 job is rejected and lost. As discussed
in Section 2.5.1, these blocking probabilities can be determined from the steady-state distribution.
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More specifically, because of the PASTA property of Poisson arrivals, the blocking probabilities can
be obtained by summing the steady-state probabilities over the states that lead to blocking.

For the system with call packing, the probability that a type 1 job is rejected (i.e. find station 1
fully occupied and can also not be overflowed to station 2), denoted by B1,cp, and the probability
that a type 2 job is rejected (i.e. find all N2 servers occupied or at least M type 2 jobs in service),
denoted by B2,cp, can then be determined as follows:

B1,cp =
L∑

n2=0
πcp(N1, n2,min{N2 − n2,M}) (32)

B2,cp =
N1−1∑
n1=0

πcp(n1, L, 0) +
M∑
m=0

πcp(N1,min{N2 −m,L},m) (33)

Similarly, for the system without call packing, the probability that a type 1 job is rejected,
denoted by B1,ncp, and the probability that a type 2 job is rejected, denoted by B2,ncp, are given
by the following expressions:

B1,ncp =
L∑

n2=0
πncp(N1, n2,min{N2 − n2,M}) (34)

B2,ncp =
N1∑
n1=0

M∑
m=0

πncp(n1,min{N2 −m,L},m) (35)

It can then be interesting to compare the blocking probabilities for the system with call packing
(i.e. B1,cp and B2,cp) and the blocking probabilities for the system without call packing (i.e. B1,ncp

and B2,ncp). In particular, it can be studied whether the system with call packing or the system
without call packing performs better in terms of blocking probabilities. In [60], this is done for the
blocking probability of type 1 jobs (i.e. B1,cp and B1,ncp). It is argued that B1,ncp ≤ B1,cp for all
situations with µ1 ≤ γ, while no ordering can be expected if µ1 > γ. This is also supported by
numerical experiments that are performed.

(In)sensitivity

Up to now, it is assumed that the service times of jobs are exponentially distributed. The question
then arises if the results also remain valid if the service times follow another, non-exponential
distribution. However, it appears that the parallel overflow system is not insensitive to the service
time distributions, which can be shown by simulation (see e.g. [60], pp. 17-19). This holds for
the overflow system with call packing as well as the overflow system without call packing. It is
noted, though, that the overflow system with call packing is insensitive if it is assumed that the
mean service time of type 1 jobs at station 1 and overflowed type 1 jobs at station 2 are equal (i.e.
µ1 = γ) and service is preemptively resumed after call packing (see [60], pp. 26-27).

2.7.2 Brief discussion of literature

Section 2.7.1 contains a description of the overflow system that is considered in [60], which is
closely related to the overflow system that is studied in Chapter 3. In this section, some other
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literature regarding overflow systems is briefly discussed as well. See, for example, the papers that
are mentioned in this section and references therein for a more extensive discussion.

First of all, several product-form results have already been established for overflow systems with
call packing (see e.g. [10, 26, 61]). Here, it is noted that call packing is not seen as a natural part
of the system in [61]. Instead, similar as in [60] (see Remark 7 in Section 2.7.1), call packing is
considered as a modification in order to obtain a product-form system. In this way, an upper bound
for the blocking probability is obtained. Next, [11, 63] consider an overflow system with multiple
primary stations and one secondary (overflow) station. Overflowed jobs are then allowed to switch
to their primary station if a server at this station becomes available. In these references, however, it
is assumed that switching to primary station i occurs with a rate βi, where 0 ≤ βi ≤ ∞. It is then
mentioned that an exact expression for the steady-state distribution can be obtained if switching
occurs immediately (i.e. βi = ∞). On the other hand, for cases with no switching (i.e. βi = 0) or
switching with a finite rate (i.e. 0 < βi < ∞), the blocking probability is approximated using the
Equivalent Random Method (see also Section 2.5.3).

Secondly, several analytical (product-form) results have also been obtained for overflow systems
without call packing. For example, in [21], an overflow system that consists of a primary station and
a secondary (overflow) station is considered. This system is similar to the overflow system without
call packing that is described in Section 2.7.1, although there are some differences. For example,
direct arrivals at the secondary station are not incorporated, and overflowed jobs are assumed to
have the same service parameter. An explicit expression for the joint probabilities of the number of
busy servers at the primary station and secondary station is then derived. From these probabilities,
related performance measures, such as overflow probabilities, can then be determined.

However, especially in case of overflow systems without call packing, an explicit expression
for the steady-state distribution cannot always be (easily) derived. Therefore, several methods to
approximate performance measures for overflow systems, such as blocking probabilities, have also
been developed over the last decades (see also Section 2.5.3). For example, in [27, 28, 60, 61],
the blocking probabilities for an overflow system are approximated by means of a product-form
modification. More specifically, the overflow system is modified in order to obtain a product-form
system, that is, a system for which a product-form solution for the steady-state distribution can
be obtained. The blocking probabilities for the product-form system can then be computed, and
lead to an approximation, or even a bound, of the blocking probabilities for the original system.
Another method to approximate the blocking probabilities, which has been frequently applied, is
the Equivalent Random Method (see e.g. [11, 39, 49, 52, 62, 63]).

Finally, it is noted that most of the studies regarding overflow systems have in common that
they focus on a system with a parallel structure, which means that jobs that finish service at the
primary station cannot go the secondary station. This is in contrast with overflow systems with a
serial structure, such as the system that is studied in Chapter 3.
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Chapter 3

Overflow system with serial structure

In this chapter, a two-station overflow system with serial structure is studied. This means that jobs
could also go to the secondary (overflow) station after they complete service at the primary station.
This is in contrast with the overflow system with parallel structure that is discussed in Section 2.7.1,
which assumes that jobs always leave the system after finishing service at the primary station.

3.1 Outline of chapter

The structure of this chapter is as follows:
• Section 3.2 introduces the notation that is used in this chapter.
• Section 3.3 describes the overflow system with serial structure. As in Section 2.7.1 for the

parallel case, the system is considered both with and without the assumption of call packing.
• In Section 3.4, it is discussed how the joint steady-state distribution of the number of jobs

in the system can be determined. For the overflow system with call packing, a product-
form solution for the steady-state distribution is derived. For the overflow system without
call packing, it is discussed how the steady-state distribution can be determined by using a
numerical algorithm.

• In Section 3.5, it is discussed which blocking probabilities can be of interest and how these
can be calculated. Moreover, for illustrative purposes and in order to study the effect of call
packing on the blocking probabilities, numerical results are provided.

• In Section 3.6, the feature of insensitivity is studied. Simulation experiments are performed
in order to study under which conditions on the parameters an insensitivity result might be
established. Moreover, the overflow system with call packing is shown to be insensitive when
non-overflowed and overflowed jobs have the same service parameter.

• In Section 3.7, the chapter concludes with a summary of the results.

Finally, some additional information is provided in the appendix. More specifically, some proof
details are given in Appendices A.1 and A.2. Moreover, Appendix B contains additional information
regarding the blocking probabilities. Finally, the simulation procedure is discussed in Appendix C,
and Matlab code is provided in Appendix D.
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3.2 Notation

In this section, the notation that is used in this chapter is introduced. It is noted that most of
the notation is also mentioned in Section 3.3, which provides the model description. For ease of
reading, a complete description of the notation is given in this section.

Beforehand, it is noted that a superscript is used to refer to the job type. Similarly, a subscript
is used when a station is referred to. Here, it is possible that a subscript contains more than one
character, such as µtij , pti,k and ntij (see also Figure 5). For example, in order to indicate at which
station a job is served, two characters are used. In this case, the first subscript, say i, refers to
the primary station (i.e. the preferred station, at which the job is served if possible), while the
second subscript, say j, refers to the actual station (i.e. the station at which the job actually
receives service). It can thus be noted that i = j for non-overflowed jobs, while i 6= j if the jobs are
overflowed.

The notation for the input parameters is then as follows:

Table 1: Notation: Input parameters

λ1: Arrival rate at station 1 (of type 1 jobs), λ1 ≥ 0.
λ2: Arrival rate at station 2 (of type 2 jobs), λ2 ≥ 0.
µ1

11: Service rate of type 1 jobs with primary station 1 that are present at station 1, µ1
11 > 0.

µ1
12: Service rate of type 1 jobs with primary station 1 that are present at station 2, µ1

12 > 0.
µ1

22: Service rate of type 1 jobs with primary station 2 that are present at station 2, µ1
22 > 0.

µ2
22: Service rate of type 2 jobs with primary station 2 that are present at station 2, µ2

22 > 0.
p1

1,2: Probability that a type 1 job with primary station 1 goes to station 2 after finishing service, p1
1,2 ∈ [0, 1].(a)

p1
1,0: Probability that a type 1 job with primary station 1 leaves the system after finishing service, p1

1,0 = 1− p1
1,2.(a)

N1: Number of servers at station 1, N1 ∈ N.
N2: Number of servers at station 2, N2 ∈ N.
M1

2 : Maximum number of type 1 jobs that can be present at station 2, M1
2 ∈ {0, ..., N2}.

M2
2 : Maximum number of type 2 jobs that can be present at station 2, M2

2 ∈ {0, ..., N2}.
C2: Coordinate convex set at station 2.

(a)The routing probabilities for overflowed and non-overflowed jobs are assumed to be equal. Hence, they only
depend on the primary station (and not on the actual station).

Next, the following notation is used to describe the underlying continuous-time Markov chain:

Table 2: Notation: Continuous-time Markov chain

n1
11: Number of (non-overflowed) type 1 jobs with primary station 1 that are present at station 1, n1

11 ∈ N.
n1

12: Number of (overflowed) type 1 jobs with primary station 1 that are present at station 2, n1
12 ∈ N.

n1
22: Number of (non-overflowed) type 1 jobs with primary station 2 that are present at station 2, n1

22 ∈ N.
n2

22: Number of (non-overflowed) type 2 jobs with primary station 2 that are present at station 2, n2
22 ∈ N.

n: State of the system, n = (n1
11, n

1
12, n

1
22, n

2
22).

S: Set of admissible states.
q(n,n′): Transition rate from state n to state n′, where n,n′ ∈ S.
Q: Infinitesimal generator matrix.
π(n): Steady-state probability to observe state n, where n ∈ S.
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 𝜇𝑖𝑗
𝑡  

 

Job type  

Primary station Actual station 

𝑝𝑖,𝑘
𝑡  

 

Job type  

Primary station Next station 

𝑛𝑖𝑗
𝑡  

 

Job type  

Primary station Actual station 

Figure 5: Illustration of the notation of µt
ij , pt

i,k and nt
ij (see also Tables 1 and 2)

Subsequently, the following notation also comes in handy:

Table 3: Notation: Some additional notation

n− e1
11: The same state with n1

11 decreased by one, that is, n− e1
11 = (n1

11 − 1, n1
12, n

1
22, n

2
22).

n− e1
12: The same state with n1

12 decreased by one, that is, n− e1
12 = (n1

11, n
1
12 − 1, n1

22, n
2
22).

n− e1
22: The same state with n1

22 decreased by one, that is, n− e1
22 = (n1

11, n
1
12, n

1
22 − 1, n2

22).
n− e2

22: The same state with n2
22 decreased by one, that is, n− e2

22 = (n1
11, n

1
12, n

1
22, n

2
22 − 1).

1{C}: Indicator that is 1 if condition C is true and 0 otherwise.
[E]+: Expression that is 0 if E ≤ 0 and E otherwise.

Then, as further discussed in Section 3.5.1, the following notation is used in order to denote the
blocking probabilities:

Table 4: Notation: Blocking probabilities

b1: Probability that a job that arrives from outside at station 1 is blocked and lost or overflowed to station 2.
B1: Probability that a job that arrives from outside at station 1 is blocked and lost.
O1: Probability that a job that arrives from outside at station 1 is overflowed to station 2, O1 = b1 −B1.
B2: Probability that a job that arrives from outside at station 2 is blocked and lost.
B1

11,2: Probability that a type 1 job with primary station 1 that completes service at station 1 and goes to station 2
is blocked and lost.

B1
12,2: Probability that a type 1 job with primary station 1 that completes service at station 2 and stays at station 2

is blocked and lost.
B1

1,2: Probability that a type 1 job with primary station 1 that completes service and goes to or stays at station 2
is blocked and lost.

Finally, it is noted that Section 3.6.2 introduces some additional notation in order to prove an
insensitivity result. This notation is not discussed in this section.

3.3 Model description

In this section, the overflow system with serial structure is described. The notation that is used
follows the notation that is introduced in Section 3.2 (see also Remark 9 at the end of this section).
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 Type 1 

Type 2 

Station 1 

Station 2 

(Overflow) 

 

Station 2 

(Regular) 

𝑝1,2
1  

𝑝1,0
1  

𝑝1,0
1  

𝑝1,2
1  

Figure 6: The serial overflow system that is studied in this chapter. Routing probabilities (p1
1,k, k = 0, 2)

are mentioned next to the applicable arrows

Figure 6 depicts the overflow system of interest. The system consists of two stations. Station 1 has
a capacity of N1 servers, while N2 servers are present at station 2.

Arrivals at station 1 solely consist of arrivals of type 1 jobs that arrive from outside the system
according to a Poisson process with rate λ1. Arriving type 1 jobs are then served by one of the N1

servers at station 1 if there is one available. Here, the service times are assumed to be exponentially
distributed with rate µ1

11 (see also Remark 10). However, it may also occur that a type 1 job finds
all N1 servers at (primary) station 1 occupied upon arrival. In this case, arriving type 1 jobs are
overflowed to (secondary) station 2.

Next to arrivals of these overflowed type 1 jobs, other arrival streams at station 2 can also be
observed. First of all, type 2 jobs arrive from outside at station 2 according to a Poisson process
with rate λ2. Secondly, it is assumed that type 1 jobs require service at station 2 after completing
service at station 1 with probability p1

1,2 ∈ [0.1]. This means that type 1 jobs that finish service at
station 1 go to station 2 with probability p1

1,2, while they leave the system with probability p1
1,0,

where p1
1,0 = 1 − p1

1,2 (see also Remark 11). Similarly, it is also assumed that overflowed type 1
jobs that complete service at station 2 (instead of station 1) require a ‘regular’ service at station 2
with probability p1

1,2 as well. This means that finished overflowed type 1 jobs stay at station 2 for
a ‘regular’ service with probability p1

1,2, while they leave the system with probability p1
1,0.

The jobs at station 2 are therefore classified into three groups:
• Overflowed type 1 jobs that found station 1 fully occupied upon arrival.
• Non-overflowed type 1 jobs that require a ‘regular’ service at station 2. These jobs either

come from station 1 or were already present at station 2, because they were overflowed.
• Type 2 jobs that arrive from outside the system.

If these jobs are accepted at station 2, they are served by one of the N2 servers, where the
service times are assumed to be exponentially distributed with rates µ1

12 for overflowed type 1 jobs,
µ1

22 for non-overflowed type 1 jobs and µ2
22 for type 2 jobs (see also Remark 10). However, arriving

jobs are only accepted at station 2 if they can immediately be served, that is, if there is a server
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available. Here, whether or not a server is available may depend not only on the total number of
jobs that are present, but also on the number of present jobs of each job type.

In order to make this more formal, the notation for the state of the system is first introduced.
To this end, let the state of the system be denoted by n = (n1

11, n
1
12, n

1
22, n

2
22), where:

• n1
11: The number of type 1 jobs at station 1.

• n1
12: The number of overflowed type 1 jobs at station 2.

• n1
22: The number of non-overflowed type 1 jobs at station 2.

• n2
22: The number of type 2 jobs at station 2.

The allowed number of type 1 and type 2 jobs at station 2 is then restricted to a coordinate
convex set C2, which is as follows:

C2 = {(n1
12 + n1

22, n
2
22) | 0 ≤ n1

12 + n1
22 + n2

22 ≤ N2, 0 ≤ n1
12 + n1

22 ≤M1
2 , 0 ≤ n2

22 ≤M2
2 }, (36)

whereM t
2 ∈ {0, 1, ..., N2}, t = 1, 2. It can be noted that the following so-called coordinate convex

property is then satisfied (see also Section 2.7.1):

(n1
12 + n1

22, n
2
22) ∈ C2 ⇒

 (n1
12 + n1

22 − 1, n2
22) ∈ C2 (n1

12 + n1
22 > 0)

(n1
12 + n1

22, n
2
22 − 1) ∈ C2 (n2

22 > 0)
(37)

Overflowed type 1 jobs that found all servers at station 1 occupied are thus accepted at station 2
if (n1

12 + 1 + n1
22, n

2
22) ∈ C2. Similarly, type 1 jobs that complete service at station 1 and are routed

to station 2 are accepted if (n1
12 + n1

22 + 1, n2
22) ∈ C2. On the other hand, overflowed type 1 jobs

that also require a ‘regular’ service at station 2 are always accepted, since they already occupy a
server at station 2 (see also Remark 12). Finally, type 2 jobs that arrive from outside are accepted
if (n1

12 + n1
22, n

2
22 + 1) ∈ C2. Otherwise, arriving jobs are rejected and leave the system.

There are different possibilities for the choice of the coordinate convex structure C2, as illustrated
by the following example.

Example 11 (Coordinate convex set C2). Examples of the coordinate convex structure C2

include the following:
(i) C2 = {(n1

12 + n1
22, n

2
22) | 0 ≤ n1

12 + n1
22 + n2

22 ≤ N2}. This corresponds to the natural
case that there are N2 servers at station 2 that can be occupied by both type 1 and
type 2 jobs.

(ii) C2 = {(n1
12 + n1

22, n
2
22) | 0 ≤ n1

12 + n1
22 + n2

22 ≤ N2, 0 ≤ n1
12 + n1

22 ≤ M1
2 }, where

M1
2 ∈ {0, 1, ..., N2 − 1}. In this case, the total number of jobs present at station 2 is

again at most N2. Besides that, there is a maximum number of type 1 jobs that can
be present at station 2, which is equal to M1

2 . As a consequence, N2 −M1
2 servers are

kept exclusively available for type 2 jobs.

Examples (i) and (ii) are schematically depicted in Figures 7a and 7b, respectively.
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(a) Example 11.(i)
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 𝑛22
2
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𝑀2
1

 

 

0 

(b) Example 11.(ii)

Figure 7: Two examples of the coordinate convex set C2 (see Example 11)

Subsequently, it is noted that two possibilities are considered when a type 1 job at station 1
finishes service, while one or more overflowed type 1 jobs are present at station 2:

• When overflowed type 1 jobs are served at (secondary) station 2, they also complete the service
at this station, even if a server at (primary) station 1 becomes available.

• An overflowed type 1 job at (secondary) station 2 is switched to (primary) station 1 as soon
as a place at station 1 becomes available (see also Remark 13).

The latter assumption is also known as (immediate) repacking or call packing (see also Sec-
tion 2.7.1). For this reason, the system under this assumption is referred to as the serial overflow
system with call packing. The system under the former assumption is referred to as the serial
overflow system without call packing.

Finally, some remarks regarding the model description are made.

Remark 9 (Notation). Regarding the notation, it is noted that a subscript is used to refer to the
station, while the job type is referred to with a superscript. The current notation is used, since it
can easily be generalized, for example, when more overflow streams added, such as in Chapter 4.
See Section 3.2 for a further discussion of the notation that is used to describe the overflow system.

Remark 10 (Non-exponential service times). At first, the service times are assumed to be expo-
nentially distributed, since this enables us to describe the behaviour of the overflow system by a
continuous-time Markov chain. The case of non-exponential service times is then considered in Sec-
tion 3.6, which studies to what extent the results remain valid if the service times follow another,
non-exponential distribution.

Remark 11 (Overflow system in Section 2.7.1). It is noted that the overflow system with parallel
structure that is subject of Section 2.7.1 is a special version of the system that is described in
this section. More specifically, by setting p1

1,2 = 0, the overflow system with parallel structure is
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obtained. On the other hand, if p1
1,2 > 0, the overflow system has a serial structure in the sense

that the service at (primary) station 1 might be followed by a service at (secondary) station 2.

Remark 12 (Blocking of non-overflowed type 1 jobs at station 2). As mentioned before, non-overflowed
type 1 jobs at station 2 either come from station 1 or are already present at station 2 after being
overflowed. In the latter case, the jobs already occupy a server at station 2, which means that they
cannot be rejected (note that n1

12 + n1
22 then remains unchanged). This holds for the system with

call packing as well as the system without call packing. In the former case, a distinction is made
between the system with call packing and the system without call packing.

• In the overflow system with call packing, type 1 jobs that go to station 2 after service comple-
tion at station 1 are always accepted if there are overflowed type 1 jobs present (i.e. n1

12 > 0).
Because of the assumption of call packing, one of the overflowed type 1 jobs then goes to
station 1, which means that there is always a server at station 2 available (note that n1

12 +n1
22

then stays the same). On the other hand, if there are no overflowed type 1 jobs present (i.e.
n1

12 = 0), type 1 jobs that come from station 1 may be rejected at station 2 (note that n1
12+n1

22
would then increase by one).

• In the overflow system without call packing, type 1 jobs that come from station 1 may be
rejected at station 2 regardless of the presence of overflowed type 1 jobs (note that n1

12 + n1
22

would then always be incremented by one).

If non-overflowed type 1 jobs are rejected at station 2, they are lost and leave the system. This
can also be seen as if they skip or jump over station 2 when there is no server available. See
Example 4 in Section 2.3 for a more extensive discussion of the jump-over blocking mechanism.

Remark 13 (Call packing and (non-)exponential service times). In the overflow system with call
packing, an overflowed type 1 job, if present, switches from station 2 to station 1 as soon as a server
at station 1 becomes available. It is noted, though, that it is not specified which overflowed type 1
job switches to station 1 if there is more than one present. For example, this could be the job that
has been in service for the longest time (first in, first out, FIFO) or the shortest time (last in, first
out, LIFO) or an arbitrary job (random). Moreover, it is also not specified whether the service of the
job that switches to station 1 is preemptively resumed (resume) or completely restarted (resample).
However, because of the memoryless property of the exponential distribution, the joint steady-state
distribution of the number of present jobs is not affected by these choices. It can be noted that this
is not the case when the service times are non-exponential (see also Section 3.6).

3.4 Steady-state distribution

3.4.1 Overflow system with call packing

For the serial overflow system with call packing, a product-form solution for the joint steady-state
distribution of the number of jobs in the system can be derived. To this end, it is first noted that
under the assumption of call packing there can only be overflowed jobs present (n1

12 > 0) if station 1
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is fully occupied (n1
11 = N1). As a consequence, the state space S is as follows:

S = {n | 0 ≤ n1
11 < N1, n

1
12 = 0, (n1

22, n
2
22) ∈ C2 or n1

11 = N1, (n1
12 + n1

22, n
2
22) ∈ C2} (38)

Next, the product-form solution for the steady-state distribution can be given.

Theorem 2 (Serial overflow system with call packing: Product form). The serial overflow system
with call packing has the following steady-state distribution π = (π(n),n ∈ S):

π(n) = cF (n1
12) 1

n1
11!

(
λ1
µ1

11

)n1
11 1
n1

22!

(
p1

1,2λ1

µ1
22

)n1
22 1
n2

22!

(
λ2
µ2

22

)n2
22
, n = (n1

11, n
1
12, n

1
22, n

2
22) ∈ S (39)

Here, c is a normalizing constant, S the state space as defined in (38) and F a function, which
is defined as follows:

F (n) =

 (λ1)n/
∏n
k=1(N1µ

1
11 + kµ1

12) n > 0

1 n = 0
(40)

Proof. In order to prove the result, it must be verified that the product form (39) satisfies the global
balance equations for each n ∈ S. The global balance equations, in turn, are given by (for n ∈ S):

π(n)n1
11µ

1
111{n1

11>0}1{n1
12=0}+

π(n)(N1µ
1
11 + n1

12µ
1
12)1{n1

11=N1}1{n1
12>0}+

π(n)n1
22µ

1
221{n1

22>0}+
π(n)n2

22µ
2
221{n2

22>0}+
π(n)λ11{n1

11<N1}+
π(n)λ11{n1

11=N1}1{(n1
12+n1

22+1,n2
22)∈C2}+

π(n)λ21{(n1
12+n1

22,n
2
22+1)∈C2}



(41.1)
(41.2)
(41.3)
(41.4)
(41.5)
(41.6)
(41.7)

= (41)

π(n− e1
11)λ11{n1

11>0}1{n1
12=0}+

π(n− e1
12)λ11{n1

11=N1}1{n1
12>0}+

π(n + e1
11 − e1

22)p1
1,2(n1

11 + 1)µ1
111{n1

11<N1}1{n1
22>0}+

π(n + e1
12 − e1

22)p1
1,2(N1µ

1
11 + (n1

12 + 1)µ1
12)1{n1

11=N1}1{n1
22>0}+

π(n− e2
22)λ21{n2

22>0}+
π(n + e1

11)p1
1,0(n1

11 + 1)µ1
111{n1

11<N1}+
π(n + e1

12)p1
1,0(N1µ

1
11 + (n1

12 + 1)µ1
12)1{n1

11=N1}1{(n1
12+n1

22+1,n2
22)∈C2}+

π(n + e1
11)p1

1,2(n1
11 + 1)µ1

111{n1
11<N1}1{(n1

12+n1
22+1,n2

22)/∈C2}+
π(n + e1

22)(n1
22 + 1)µ1

221{(n1
12+n1

22+1,n2
22)∈C2}+

π(n + e2
22)(n2

22 + 1)µ2
221{(n1

12+n1
22,n

2
22+1)∈C2}



(41.8)
(41.9)
(41.10)
(41.11)
(41.12)
(41.13)
(41.14)
(41.15)
(41.16)
(41.17)

Here, 1{C} is an indicator that is equal to one if condition C is true and equal to zero otherwise.
Moreover, the vectors etij contain a one at the specified index and zeros in the other fields (e.g.
e1

22 = (0, 0, 1, 0)). See also Table 3 in Section 3.2.
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Table 5: Verification of the global balance equations in (41)

Job class Class balance

Type 1 jobs at station 1 (41.1) = (41.8)
Overflowed type 1 jobs at station 2 (41.2) = (41.9)
Non-overflowed type 1 jobs at station 2 (41.3) = (41.10) + (41.11)
Type 2 jobs at station 2 (41.4) = (41.12)
Type 1 jobs at the outside (41.5) + (41.6) = (41.13) + (41.14) + (41.15) + (41.16)
Type 2 jobs at the outside (41.7) = (41.17)

It is also noted that both the left-hand side and right-hand side of the global balance equa-
tions (41) are divided into several parts, which each have an interpretation of either a flow out of
state n (left-hand side) or a flow into state n (right-hand side). For example, (41.15) represents the
flow into state n due to a type 1 job that completes service at station 1 and jumps over station 2
to the outside because no server at station 2 is available.

Now, the proof can be completed by verifying that the global balance equations (41) are satisfied
when the product form (39) is substituted. This can be done by verifying the class balances that
are mentioned in Table 5. As discussed in Section 2.4.1, class balance can be read as that for all
n ∈ S the rate out of state n due to a departure of a job that belongs to some class (e.g. overflowed
type 1 jobs at station 2) is equal to the rate into state n due to an arrival of a job of the same
class. In Appendix A.1, it is described how the class balance equations in Table 5 can be verified
for all n ∈ S. Since the product form (39) satisfies the class balances in Table 5, it follows that the
global balance equations (41) are also satisfied for all n ∈ S. This completes the proof.

Remark 14 (Computation normalizing constant). As mentioned above, the product form (39) con-
tains a normalizing constant, which is such that the steady-state probabilities sum to one (see also
Section 2.4.1). Hence, the normalizing constant, denoted by c, is given by the following expression:

c =

∑
n∈S

F (n1
12) 1

n1
11!

(
λ1
µ1

11

)n1
11 1
n1

22!

(
p1

1,2λ1

µ1
22

)n1
22 1
n2

22!

(
λ2
µ2

22

)n2
22

−1

(42)

For situations with a relatively small number of servers at station 1 and station 2 (i.e. N1 and
N2), which are considered in this report, the normalizing constant can be computed by evaluating
the expression in (42). However, the evaluation of (42) may take a lot of computation time if N1

and/or N2, and consequently the number of states in the state space S, become very large. In such
cases, it may be necessary to search for an alternative method to obtain (an approximation of) the
normalizing constant (see e.g. [47] for a further discussion).

3.4.2 Overflow system without call packing

In this section, the serial overflow system without call packing is considered. This means that
overflowed type 1 jobs at station 2 do not switch to station 1, even if a server at station 1 becomes
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Figure 8: Example that illustrates why no product form can be expected

available. Therefore, the set of admissible states S is given by:

S = {n | 0 ≤ n1
11 ≤ N1, (n1

12 + n1
22, n

2
22) ∈ C2} (43)

Next, it would be of interest if a product-form solution for the joint steady-state distribution of
the number of jobs in the system could be derived. Unfortunately, however, a product form cannot
be expected when overflowed type 1 jobs do not switch to station 1 when a server becomes available.
This is illustrated by the following example.

Example 12 (No product-form solution). Consider the serial overflow system without call
packing, where it is assumed that station 1 and station 2 both have a capacity of five servers
(i.e. N1 = N2 = 5). Moreover, let the coordinate convex set C2 be as in Example 11.(i) in
Section 3.3. Then, consider the state n = (4, 2, 0, 3) (note that n ∈ S), that is, there are four
type 1 jobs at station 1, two overflowed type 1 jobs at station 2, no non-overflowed type 1
jobs at station 2 and three type 2 jobs at station 2 present. It then follows that class balance
for overflowed type 1 jobs at station 2 is violated. More specifically, as schematically depicted
in Figure 8:

The rate out of state (4, 2, 0, 3) due to a departure of an overflowed type 1 job is
positive. This would lead to state (4, 1, 1, 3) (with probability p1

1,2) or state (4, 1, 0, 3)
(with probability p1

1,0).

The rate into state (4, 2, 0, 3) due to an arrival of an overflowed type 1 job is zero. This
should then have occurred because of an arrival in state (4, 1, 0, 3), However, an arrival
of a type 1 job would lead to state (5, 1, 0, 3), since the arriving type 1 job would go to
station 1.

As a consequence, a product-form solution for the steady-state distribution of the number
of jobs in the serial overflow system without call packing cannot be expected (cf. [61]). It
is noted, though, that class balance is not a necessary condition for a product-form solution,
which means that this does not prove that a product form is not available.
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Instead, a numerical algorithm could be used to find the steady-state distribution. In this report,
the GTH algorithm and Gauss-Seidel method are used for this purpose (see Section 2.4.2). In order
to apply these algorithms, the infinitesimal generator matrix Q of the underlying continuous-time
Markov chain is required. To this end, the transition rates q = {q(n,n′),n,n′ ∈ S} are first given:

q(n,n′) =



λ1 n′ = n + e1
11

p1
1,2n

1
11µ

1
11 n′ = n− e1

11 + e1
22

p1
1,0n

1
11µ

1
111{(n1

12+n1
22+1,n2

22)∈C2} n′ = n− e1
11

n1
11µ

1
111{(n1

12+n1
22+1,n2

22)/∈C2} n′ = n− e1
11

λ11{n1
11=N1} n′ = n + e1

12

p1
1,2n

1
12µ

1
12 n′ = n− e1

12 + e1
22

p1
1,0n

1
12µ

1
12 n′ = n− e1

12

n1
22µ

1
22 n′ = n− e1

22

λ2 n′ = n + e2
22

n2
22µ

2
22 n′ = n− e2

22

0 else

, n 6= n′ (44)

q(n,n) = −
∑

n′∈S\n
q(n,n′) (45)

Let s then denote the number of states in the state space S. Moreover, let each state n ∈ S

correspond to a unique number i ∈ {1, ..., s} and denote the state corresponding to i by n(i). The
infinitesimal generator matrix Q is then an s× s matrix with entries qij , where:

qij = q(n(i),n(j)), i, j ∈ {1, ..., s} (46)

Now that the infinitesimal generator matrix Q is defined, the GTH algorithm (see Algorithm 1
in Section 2.4.2) or Gauss-Seidel method (see Algorithm 2 in Section 2.4.2) can be used to determine
the steady-state distribution. Here, it is noted that, next to the infinitesimal generator matrix Q,
an initial approximation of the steady-state vector π0, a maximum number of iterations itmax and
a tolerance for the stopping test tol should also be provided if the Gauss-Seidel method is applied
(see Section 2.4.2). Unless specified otherwise, π0 is a 1× s vector with entries 1/s, and itmax and
tol are set equal to 1000 and 10−8, respectively.

It then appears that both the GTH algorithm and Gauss-Seidel method lead to a satisfactory
runtime and accuracy if the number of admissible states is relatively small (i.e. a few hundred).
However, if the state space gets larger, the Gauss-Seidel method vastly outperforms the GTH
algorithm in terms of runtime. This is illustrated by the following example.

Example 13 (Comparison of GTH algorithm and Gauss-Seidel method). Consider the serial
overflow system without call packing, and let the parameter values be as given in Table 6. It
can thus be noted that the number of servers at station 1 N1 is varied, so that the number
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Table 6: Comparison of GTH algorithm and Gauss-Seidel method: Parameter values

λ1 λ2 µ1
11 µ1

12 µ1
22 µ2

22 p1
1,2 N1 N2 M1

2 M2
2

20 10 4 7 5 6 1 - 8 8 8

Table 7: Comparison of GTH algorithm and Gauss-Seidel method: Probability that station 2 is congested

Algorithm N1 = 1 N1 = 2 N1 = 3 N1 = 4 N1 = 5 N1 = 6 N1 = 7 N1 = 8

GTH algorithm 0.2394 0.2154 0.1927 0.1718 0.1533 0.1377 0.1254 0.1165
Gauss-Seidel 0.2394 0.2154 0.1927 0.1718 0.1533 0.1377 0.1254 0.1165

See Table 6 for the parameter values.
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Figure 9: Comparison of GTH algorithm and Gauss-Seidel method: Runtime

of admissible states ranges from 330 (N1 = 1) to 1485 (N1 = 8). The GTH algorithm as well
as the Gauss-Seidel method are then used to find the steady-state distribution.

Both algorithms indeed lead to very similar steady-state probabilities. This is illustrated
by the results in Table 7. This table contains the probability that station 2 is fully occupied,
which is computed from the resulting steady-state probabilities. However, the Gauss-Seidel
method turns out to be considerably faster than the GTH algorithm. This can be seen from
Figure 9, in which the time that it takes to compute the steady-state distribution from the
infinitesimal generator matrix Q is shown.

Hence, for the serial overflow system without call packing that is considered in this chapter,
the Gauss-Seidel method is preferred over the GTH algorithm when determining the steady-state
distribution. It is also concluded that the Gauss-Seidel method as implemented suffices for the
application in this report, since it leads to a satisfactory runtime and accuracy for the instances
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that are considered. It is noted, though, that it might be desirable to search for a more efficient
implementation of a numerical algorithm if the number of admissible states gets much larger.

Besides that, next to using a numerical algorithm, other methods to obtain the steady-state
distribution and/or (an approximation of) related performance measures can then also be thought
of. For example, as discussed in Section 2.5.2, discrete-event simulation could be used to determine
performance measures, such as the blocking probability. Moreover, it can be studied to what extent
approximation methods, such as those mentioned in Section 2.5.3, could be of help to approximate
performance measures, and in particular the blocking probabilities. This remains an interesting
point for future research.

3.5 Blocking probabilities

3.5.1 Blocking probabilities of interest

In order to analyze the serial overflow system, several performance measures can be obtained, such
as blocking (or loss or rejection) probabilities, the mean number of busy servers and the throughput.
In this report, the main focus lies on the blocking probabilities. Three different ‘types’ of blocking
probabilities are distinguished:

• The probability that an arriving job finds all servers at the primary station occupied and
either leaves the system or is served at an overflow station. This probability is denoted by b.

• The probability that an arriving job finds all servers at the primary station occupied, can also
not be served at an overflow station and leaves the system. This probability is denoted by B.

• The probability that an arriving job finds all servers at the primary station occupied, but can
be served at an overflow station. This probability is denoted by O.

Moreover, these probabilities can be determined for different job types and stations. Therefore,
subscripts and/or superscripts are also included when the blocking probabilities are referred to (see
Table 4 in Section 3.2 for explanation of the notation). For the serial overflow system, the following
blocking probabilities are then of interest (see also Figure 10):

b1 = P [A type 1 job arriving from outside at station 1 is lost or overflowed to station 2] (47)

B1 = P [A type 1 job that arrives from outside at station 1 is rejected and lost] (48)

O1 = P [A type 1 job arriving from outside at station 1 is overflowed to station 2] (49)

B2 = P [A type 2 job that arrives from outside at station 2 is rejected and lost] (50)

B1
11,2 = P [A type 1 job that goes from station 1 to station 2 is blocked] (51)

B1
12,2 = P [An overflowed type 1 job that stays at station 2 after finishing service is blocked] (52)

B1
1,2 = P [A non-overflowed type 1 job at station 2 (coming from station 1 or 2) is blocked] (53)

Here, it is noted that B1
12,2 in (52) is equal to zero, since an overflowed type 1 job already

occupies a server at station 2. As a consequence, these jobs cannot be rejected when they stay at
station 2 for a ‘regular’ service (see also Remark 12 in Section 3.3).

40



 

Type 1 

Type 2 

Station 1 

Station 2 

(Overflow) 

 

Station 2 

(Regular) 

𝑂1
 

𝐵11,2
1  

𝐵12,2
1 = 0

 

𝐵1
 

𝑏1 = 𝐵1 + 𝑂1
 

𝐵2
 

𝐵1,2
1 = weighted average of 𝐵11,2

1  and 𝐵12,2
1  

 

 

Figure 10: The blocking probabilities of interest for the serial overflow system. The routing probabilities
that are mentioned in Figure 6 are omitted

3.5.2 Calculation of the blocking probabilities

In Section 3.4.1, the product-form solution for the joint steady-state distribution of the number of
jobs in the overflow system with call packing is derived. Moreover, Section 3.4.2 describes how the
steady-state distribution of the number of jobs in the overflow system without call packing can be
found by applying the Gauss-Seidel method or GTH algorithm. This section briefly describes how
the blocking probabilities of interest, which are mentioned in Section 3.5.1, can be determined from
these steady-state distributions. In Appendix B.1, a more detailed description of the calculation of
the blocking probabilities is given.

First of all, if the arrivals originate from outside the system, the PASTA property of Poisson
arrivals can be used to determine the blocking probabilities (see Section 2.5.1). Because of this
property, the blocking probabilities b1, B1, O1 and B2 can be computed by summing π(n) over
the appropriate states n = (n1

11, n
1
12, n

1
22, n

2
22). For example, the probability that a type 1 job that

arrives from outside at station 1 is blocked and leaves the system (denoted by B1) can be calculated
as follows:

B1 =
M1

2∑
n1

12=0

min{M2
2 ,N2−n1

12}∑
n2

22=0
π(N1, n

1
12,min{M1

2 − n1
12, N2 − n1

12 − n2
22}, n2

22) (54)

Besides the steady-state distribution π, this expression is the same for both the system with
call packing and the system without call packing. It is noted that this does not hold true for all
blocking probabilities, as is illustrated in Appendix B.1.

Secondly, if the arrivals originate from one of the stations, the PASTA property can no longer
be used. Instead, the blocking probabilities B1

11,2 and B1
1,2 can be determined with the use of Palm

probabilities (see Section 2.5.1). This is explained more detailed in Appendix B.1.
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3.5.3 Numerical results

In this section, some numerical results of the blocking probabilities are given for illustrative purposes.
This also makes it possible to provide some insight into how the blocking probabilities for the system
with call packing compare to those for the system without call packing. Below, the results of
three numerical experiments are then discussed. Moreover, Appendix B.2 contains some additional
numerical results.

Numerical experiment 1 (B1 for different values of µ1
12)

Table 8 contains the parameter values for numerical experiment 1. This experiment considers the
probability that a type 1 job that arrives at station 1 is rejected and lost (i.e. B1) for varying service
rates of overflowed type 1 jobs at station 2 (i.e. µ1

12). The results are then shown in Figure 11. It
can be observed that the blocking probability B1 decreases when µ1

12 increases, and consequently
the mean service time of overflowed type 1 jobs at station 2 (i.e. 1/µ1

12) decreases. Moreover, it
can be seen that B1 for the system with call packing is smaller than B1 for the system without call
packing if µ1

12 ≤ 2, while this order is reversed if µ1
12 ≥ 3. In order to explain this, it is noted that,

in line with overflow systems with a parallel structure (see e.g. [60, 61]), two effects of call packing
on the blocking probability B1 can be thought of:
(i) In the system with call packing, an overflowed type 1 job, if present, switches from a server at

station 2 to a server at station 1 as soon as one becomes available. Hence, instead of the server
at station 1, the server at station 2 then becomes available, but this server can also be taken
by a non-overflowed type 1 job that comes from station 1 or a type 2 job that arrives from
outside the system. In the system without call packing, in contrast, overflowed type 1 jobs
may occupy a server at station 2, even if servers at station 1 are available. This means that
these servers at station 1 are kept exclusively available for arriving type 1 jobs at station 1.

(ii) If µ1
11 6= µ1

12, call packing also has another effect on the blocking probabilities. This is due to
the change of service speed when an overflowed type 1 jobs switches from station 2 to station 1.
More specifically, if µ1

11 > µ1
12, overflowed jobs are served by a faster server at station 1 if they

switch from station 2 to station 1. Therefore, on average, these jobs take a shorter time to
leave the system than when they would not switch. As a consequence, the availability of both
station 1 and station 2 may be enhanced by call packing if µ1

11 > µ1
12. Similarly, if µ1

11 < µ1
12,

overflowed jobs are served by a slower server if they switch from station 2 to station 1. Hence,
if µ1

11 < µ1
12, both station 1 and station 2 may be less often available when call packing is

assumed.

Hence, apparently, if µ1
12 ≤ 2, the positive impact of effect (ii) on B1 outweighs the negative

impact of effect (i) on B1, which results in a blocking probability B1 that is larger for the system with
call packing than for the system without call packing. On the other hand, if 3 ≤ µ1

12 < µ1
11 = 10,

the positive impact of effect (ii) on B1 is not sufficient to overcome the negative impact of effect (i)
on B1. As a consequence, the blocking probability B1 for the system with call packing is no longer
smaller than that for the system without call packing. Finally, if µ1

12 ≥ µ1
11 = 10, overflowed type 1
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Table 8: Experiment 1

Parameter Value
λ1 50
λ2 15
µ1

11 10
µ1

12 -
µ1

22 20
µ2

22 16
p1

1,2 1
N1 5
N2 5
M1

2 5
M2

2 1
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Figure 11: Results of experiment 1 (B1 for different values of µ1
12)

jobs are served by an equally fast or slower server if they switch from station 2 to station 1. This
means that both effect (i) and effect (ii) have a negative (or no) impact on B1. In this case, B1 for
the system with call packing is therefore expected to be larger than B1 for the system without call
packing, which indeed appears to be the case.

Numerical experiment 2 (B1 for different values of p1
1,2)

The parameter values for experiment 2 are given in Table 9. This experiment studies the probability
that a type 1 job that arrives at station 1 is rejected and lost (i.e. B1) for different values of the
routing probability p1

1,2. Figure 12 then shows the results. A first thing to note is that the blocking
probability B1 increases as the routing probability p1

1,2 increases. This is as expected, because
more non-overflowed type 1 jobs will be present at station 2 when p1

1,2 gets larger, which leads to
a larger probability to find station 2 congested. Besides that, for all values of p1

1,2, the blocking
probability B1 for the system with call packing is found to be larger than that for the system
without call packing. This is in line with the discussion for numerical experiment 1 above, since
µ1

11 < µ1
12 in this example.

Numerical experiment 3 (B1
11,2 for different values of M1

2 )

Table 10 shows the parameter values for numerical experiment 3. This experiment considers the
probability that a type 1 job that goes from station 1 to station 2 is blocked (i.e. B1

11,2) for different
values of M1

2 . Here, as discussed in Section 3.3, M1
2 denotes the maximum number of type 1 jobs

that can be present at the same time at station 2. The results are then given in Figure 13. It can
be seen that the blocking probability B1

11,2 is indeed smaller when more type 1 jobs are allowed to
be present at station 2. Moreover, B1

11,2 for the system with call packing is found to be smaller
than B1

11,2 for the system without call packing (or equal if M1
2 = 0). This does not come as a
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Table 9: Experiment 2

Parameter Value
λ1 15
λ2 30
µ1

11 1
µ1

12 2
µ1

22 3
µ2

22 4
p1

1,2 -
N1 15
N2 10
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2 10
M2

2 10
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Figure 12: Results of experiment 2 (B1 for different values of p1
1,2)

Table 10: Experiment 3

Parameter Value
λ1 14
λ2 16
µ1

11 3
µ1

12 2
µ1

22 4
µ2

22 6
p1

1,2 1
N1 7
N2 10
M1

2 -
M2

2 10
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Figure 13: Results of experiment 3 (B1
11,2 for different values of M1

2 )

surprise, mainly because of the following. In the system with call packing, an overflowed type 1
job, if present, immediately switches from station 2 to station 1 once a job at station 1 leaves. The
servers at station 2 can therefore be expected to be less often occupied by overflowed type 1 jobs
than in the system without call packing. Moreover, this also means that a type 1 job that goes from
station 1 to station 2 cannot be blocked if at least one overflowed type 1 job is present at station 2,
while this may occur in the system without call packing (see also Remark 12 in Section 3.3).

Concluding remarks

In this section and Appendix B.2, some numerical results of the blocking probabilities are given.
These results illustrate how the blocking probabilities are affected by a change in the value of a
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certain input parameter (in particular, µ1
12, p1

1,2 and M1
2 ). Moreover, they provide some insight

into the effect of call packing on the blocking probabilities. For all numerical experiments that are
performed, it is then concluded that the results coincide with the expectations based on intuition.
Finally, it is noted that the discussion in this section does not take into account any additional time
or costs that could be associated with call packing.

3.6 Insensitivity

In this section, it is studied whether the serial overflow system with call packing and serial overflow
system without call packing are insensitive to the service time distributions. As discussed in Sec-
tion 2.6, a queueing network is insensitive if the steady-state distribution does not depend on the
service time distributions other than through their means.

First of all, in Section 3.6.1, discrete-event simulation is used to study whether the steady-state
distributions are affected by the service time distribution. Secondly, in Section 3.6.2, the serial
overflow system with call packing is shown to be insensitive if it is assumed that µ1

11 = µ1
12 and

that the service is preemptively resumed after an overflowed type 1 job switches from station 2 to
station 1.

3.6.1 Simulation

This section aims to determine whether the serial overflow system with call packing and serial over-
flow system without call packing can be expected to be insensitive to the service time distributions.
Similar as in [60], it is therefore studied whether the steady-state distributions are affected when
the service times are assumed to be lognormally distributed instead of exponentially distributed.
To this end, we focus on a specific steady-state probability, which is the steady-state probability
that the system is in a state n = (n1

11, n
1
12, n

1
22, n

2
22) with n1

11 = N1 and (n1
12 + n1

22 + 1, n2
22) /∈ C2

(i.e. a state n for which, next to n1
11 = N1, at least one of n1

12 +n1
22 = M1

2 and n1
12 +n1

22 +n2
22 = N2

holds). Because of the PASTA property of Poisson arrivals (see Section 2.5.1), this steady-state
probability has the interpretation of the blocking probability of type 1 jobs at station 1 (i.e. B1).
In the sequel, this steady-state probability is therefore referred to as B1.

If the serial overflow system with call packing and serial overflow system without call packing
are insensitive, the steady-state probability B1 should remain the same when the service times are
lognormally distributed instead of exponentially distributed. In order to examine whether this is
the case, two scenarios are considered in this section (see Table 11 for the parameter values). It is
mentioned, though, that other scenarios are also studied and lead to similar conclusions.

First of all, if the service times are assumed to be exponential, the steady-state probability B1

can be computed from one of the steady-state distributions that are obtained in Section 3.4. More
specifically, for the system with call packing, B1 can be determined from the product-form solution
for the steady-state distribution in (39). Besides that, for the system without call packing, B1

can be computed from the steady-state distribution that is obtained by applying the Gauss-Seidel
method. This leads to the steady-state probabilities that are shown in Table 12.
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Table 11: Insensitivity experiment: Parameter values

λ1 λ2 µ1
11 µ1

12 µ1
22 µ2

22 p1
1,2 N1 N2 M1

2 M2
2

Scenario 1 15 12 4 7 5 6 1 5 5 5 5
Scenario 2 15 12 4 4 5 6 1 5 5 5 5
Note: µ1

11 6= µ1
12 for scenario 1, while µ1

11 = µ1
12 for scenario 2. Besides that, all times

are assumed to be in hours.

Table 12: Insensitivity experiment: Steady-state probability B1 (exponential case)

System with call packing System without call packing

Scenario 1 0.0829 0.0592
Scenario 2 0.0898 0.0636

Note: the steady-state probabilities for the system with call packing are determined
from the product form (39). The steady-state probabilities for the system without
call packing are computed from the steady-state distribution that is obtained by

applying the Gauss-Seidel method.

Secondly, if the service times are assumed to be lognormally distributed, the steady-state prob-
ability B1 can be determined by discrete-event simulation (see Appendix C for a description of
the simulation procedure). Besides that, for verification purposes, discrete-event simulation is also
used to determine B1 under the assumption of exponential service times. The resulting steady-
state probabilities are then given in Table 13. Moreover, 95% confidence intervals as based on the
t-distribution are given between brackets (see Appendix C.2.3 for a discussion on the computation
of these confidence intervals).

A first thing to note is that for the overflow system with call packing multiple cases can be
considered (see also Remark 13 in Section 3.3):

• If an overflowed type 1 job switches from station 2 to station 1, several assumptions about the
service time of this job can be made. For example, it can be assumed that the service has to
be completely started over (resample) or can be preemptively resumed (resume). Because of
the memoryless property of the exponential distribution, these two assumptions should lead to
the same steady-state distribution if the service times are exponentially distributed. However,
this does not hold true for lognormal service times. Therefore, both resampling and resuming
are considered in this section. If the service is started over (resample), the service time is
obtained by sampling from the service time distribution with mean 1/µ1

11. Besides that, if
the service is preemptively resumed (resume), the service time at station 1 is set equal to the
residual service time multiplied by µ1

12/µ
1
11 due to the difference in service speed. From the

results in Table 13, it can then be seen that the steady-state probability B1 is indeed similar
for resume and resample if the service times follow the exponential distribution. On the other
hand, this is not the case if the service times are lognormally distributed.

• If a server at station 1 becomes available and multiple overflowed type 1 jobs are present
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Table 13: Insensitivity experiment: Steady-state probability B1 according to simulation

Assumptions Distribution CV(a) Scenario 1 Scenario 2

Call packing
Resample
FIFO

Exponential 1 0.0829 (0.0825-0.0833)(b) 0.0897 (0.0893-0.0901)
Lognormal 0.2 0.0976 (0.0972-0.0979) 0.1009 (0.1005-0.1012)
Lognormal 5 0.0699 (0.0696-0.0702) 0.0759 (0.0756-0.0762)

Call packing
Resume
FIFO

Exponential 1 0.0828 (0.0825-0.0832) 0.0895 (0.0892-0.0898)
Lognormal 0.2 0.0820 (0.0817-0.0822) 0.0898 (0.0894-0.0902)
Lognormal 5 0.0827 (0.0824-0.0830) 0.0898 (0.0894-0.0901)

Without
call packing

Exponential 1 0.0592 (0.0589-0.0594) 0.0636 (0.0633-0.0639)
Lognormal 0.2 0.0546 (0.0544-0.0548) 0.0585 (0.0583-0.0588)
Lognormal 5 0.0627 (0.0624-0.0630) 0.0688 (0.0685-0.0691)

(a)Coefficient of variation. (b)95% confidence interval as based on the t-distribution between brackets.

at station 2, it needs to be decided which of these jobs switches to station 1. For example,
this job can be chosen to be the job that has been present for the longest time (first in,
first out, FIFO) or the shortest time (last in, first out, LIFO). Another option could be to
select an arbitrary job (random). Because of the memoryless property of the exponential
distribution, this choice should not affect the steady-state distribution if the service times
follow the exponential distribution. On the other hand, if the service times are lognormally
distributed and µ1

11 = µ1
12, this may not be the case. In this section, it is assumed that the

overflowed type 1 job that has been in service for the longest time switches to station 1 (i.e.
FIFO). It is mentioned, though, that LIFO and random lead to similar conclusions.

Next, it can be seen that the steady-state probabilities in Table 13 do no significantly differ
from the corresponding steady-state probabilities in Table 12 if the service times are exponentially
distributed (see also Appendix C.3). By comparing these steady-state probabilities with those under
the assumption of lognormal service times, it can then be studied whether the serial overflow system
with call packing and serial overflow system without call packing can be expected to be insensitive.

First of all, the serial overflow system with call packing does not appear to be insensitive if the
service is completely restarted after an overflowed type 1 job switches from station 2 to station 1
(resample). If the service times are lognormally distributed with a coefficient of variation of 0.2
or 5, the steady-state probability B1 is significantly different from the corresponding steady-state
probability in Table 12. This holds true for scenario 1 as well as scenario 2.

Besides that, the simulation results of this experiment as well as others seem to indicate that
the serial overflow system with call packing is also not insensitive if the service is preemptively
resumed after switching from station 2 to station 1 (resume) and µ1

11 6= µ1
12 (see scenario 1). It is

noted, though, that the steady-state probabilities do not appear to be much affected by the service
time distribution. For example, if the service times are lognormally distributed with a coefficient
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of variation of 5, the steady-state probability B1 is not found to be significantly different from B1

for the exponential case. On the other hand, it appears that the serial overflow system with call
packing might be insensitive if the service is preemptively resumed after switching from station 2
to station 1 (resume) and µ1

11 = µ1
12 (see scenario 2). In Section 3.6.2, this is formally proven.

Finally, the serial overflow system without call packing does not appear to possess the insen-
sitivity property. For scenario 1 as well as scenario 2, the steady-state probability B1 under the
assumption of lognormal service times turns out to be significantly different from that under the
assumption of exponential service times.

3.6.2 System with call packing: Proof of insensitivity (assuming µ1
11 = µ1

12)

In Section 3.6.1, it is studied whether the serial overflow system with call packing is insensitive,
that is, whether the product form (39) is also valid if the service times are non-exponential. The
simulation results then indicate that the system is not insensitive for all µ1

11 6= µ1
12. On the other

hand, there might be insensitivity if it is assumed that µ1
11 = µ1

12 and that the service is preemptively
resumed after an overflowed type 1 job switches from station 2 to station 1. In this section, a proof
for this last statement is provided. To this end, it is first shown that the product-form solution for the
steady-state distribution remains valid if the service time distribution is given by a mixture of Erlang
distributions. From this, the result can then be concluded for general service time distributions as
well (see Remark 15 at the end of this section).

For the most part, the notation that is used in this section follows the notation that is given
in Section 3.3. However, we also need some additional notation that is introduced below. The
majority of this notation can be seen as an adapted version of the notation that is used in [58, 60].

First of all, if µ1
11 = µ1

12 and service is preemptively resumed after an overflowed type 1 job
switches from station 2 to station 1, it is not necessary to distinguish between type 1 jobs that are
served at station 1 and overflowed jobs that are served at station 2. Instead, we only need to keep
track of the total number of type 1 jobs with primary station 1 (i.e. the type 1 jobs at station 1 and
overflowed type 1 jobs at station 2). To this end, the following shorthand notation is introduced:

n1
1 = n1

11 + n1
12; µ1

1 = µ1
11 = µ1

12 (55)

Next, the distribution function of the service times is defined. As mentioned before, it is assumed
that the service time distribution is given by a mixture of Erlang distributions. This means that
the distribution function of the service times for type 1 jobs with primary station 1, denoted by G1

1,
is as follows:

G1
1 =

∞∑
k=1

q1
1(k)E(k, ν1

1) (56)

Here, q1
1(k) is the probability that the service distribution is an Erlang distribution of k expo-

nential phases with parameter ν1
1 , which is denoted by E(k, ν1

1).
Similarly, the distribution functions of non-overflowed type 1 and type 2 jobs at station 2 (de-
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noted by G1
22 and G2

22, respectively) are given by:

Gt22 =
∞∑
k=1

qt22(k)E(k, νt22), t = 1, 2 (57)

Furthermore, the following notation is introduced for type 1 jobs with primary station 1:

τ1
1 =

∞∑
k=1

q1
1(k) k

ν1
1

and µ1
1 = 1

τ1
1

(58)

H1
1 (r) = µ1

1
ν1

1

∞∑
k=r

q1
1(k) (59)

Here, τ1
1 is the mean service requirement of type 1 jobs with primary station 1. Besides that,

µ1
1 is the mean service rate, which is similar to the parameter for the exponential case. Finally,

the terms H1
1 (·) sum to one and can be interpreted as “steady-state probabilities for the number of

residual exponential phases up to a next renewal in a discrete renewal process with (inter) renewal
distribution function G1

1” ([58], p. 19). From (59), it can also be verified that the following discrete
renewal relation holds:

H1
1 (r) = H1

1 (r + 1) +H1
1 (1)q1

1(r) (60)

Next, similar definitions can be given for non-overflowed type 1 and type 2 jobs at station 2:

τ t22 =
∞∑
k=1

qt22(k) k
νt22

and µt22 = 1
τ t22

, t = 1, 2 (61)

Ht
22(r) = µt22

νt22

∞∑
k=r

qt22(k), t = 1, 2 (62)

Ht
22(r) = Ht

22(r + 1) +Ht
22(1)qt22(r), t = 1, 2 (63)

In order to describe the state of the system, the number of residual phases for each present job
must be kept track of. For this purpose, each job is allocated a position or label l amongst the jobs
in the same class, where three job classes are distinguished: type 1 jobs with primary station 1,
non-overflowed type 1 jobs at station 2 and type 2 jobs at station 2. In order to refer to these
job classes, superscripts and subscripts are added. More specifically, when there are n1

1 type 1 jobs
with primary station 1, n1

22 non-overflowed type 1 jobs at station 2 and n2
22 type 2 jobs at station 2

present, the following applies:
• l11 ∈ {1, ..., n1

1} denotes the position of the l11th type 1 job with primary station 1 (i.e. either
a type 1 job at station 1 or overflowed type 1 job at station 2).

• l122 ∈ {1, ..., n1
22} denotes the position of the l122th non-overflowed type 1 job at station 2.

• l222 ∈ {1, ..., n2
22} denotes the position of the l222th type 2 job at station 2.

An arriving job is then randomly allocated a position amongst the jobs of the same class.
Moreover, in order to make sure that the positions remain successive, a shift protocol is used. More
specifically, if a job arrives and n− 1 jobs in the same class are already present, the job is assigned
position l amongst these jobs with probability 1/n, for all l = 1, ..., n. The jobs that were previously
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at positions l, ..., n−1 then shift to positions l+ 1, ..., n. Besides that, if n jobs of a certain class are
present and the job at position l amongst these jobs leaves, the jobs that were at positions l+1, ..., n
then shift to positions l, ..., n− 1.

Now, the serial overflow system with call packing and mixtures of Erlang distributions as service
time distributions can be represented by a continuous-time Markov chain. This Markov chain has
the following state description:

R = [X,Y ,Z], where X = (x1, ..., xn1
1
), Y = (y1, ..., yn1

22
) and Z = (z1, ..., zn2

22
) (64)

Here, X is a 1×n1
1 vector whose l11th element denotes that the job at position l11 amongst the jobs

with primary station 1 has xl11 residual exponential phases, each with parameter ν1
1 (l11 = 1, ..., n1

1).
Y and Z have a similar interpretation.

Moreover, the state space of the Markov chain, denoted by Sd, is equal to:

Sd ={[X,Y ,Z] | ([n1
1 −N1]+ + n1

22, n
2
22) ∈ C2, xl11

= 1, 2, ... (l11 = 1, ..., n1
1),

yl122
= 1, 2, ... (l122 = 1, ..., n1

22), zl222
= 1, 2, ... (l222 = 1, ..., n2

22)}
(65)

Finally, some shorthand notation that is used in the proof of Theorem 3 is mentioned. It is
noted that, although not explicitly introduced below, similar notation is also used for Y and Z.
The shorthand notation is then as follows:

X − (xl11)l11 = (x1, ..., xl11−1, xl11+1, ..., xn1
1
) (66)

X − (xl11)l11 + (xl11 + 1)l11 = (x1, ..., xl11−1, (xl11 + 1), xl11+1, ..., xn1
1
) (67)

X + (1)l11 = (x1, ..., xl11−1, 1, xl11 , xl11+1, ..., xn1
1
) (68)

Here, in (66) the job at position l11 is deleted, and the jobs that were at positions l11 +1, ..., n1
1 are

moved to positions l11, ..., n1
1 − 1. Besides that, in (67) the number of residual phases for the job at

position l11 is changed from xl11
to xl11 + 1. Finally, in (68) a job with one residual phase is added at

position l11, and the jobs that were at positions l11 + 1, ..., n1
1 are moved to positions l11 + 1, ..., n1

1 + 1.
The following detailed product form can now be proven. From this detailed product form, in

turn, the insensitivity result that is aimed for can be concluded (see Corollary 1).

Theorem 3 (A detailed product-form result). Consider the serial overflow system with call packing,
where µ1

11 = µ1
12 = µ1

1 and each of the service time distributions is a mixture of Erlang distributions
(i.e. the distribution functions are as in (56) and (57)). Let c be a normalizing constant and the
state space Sd be as given in (65). For R = [X,Y ,Z] ∈ Sd, the following detailed product form,
denoted by πd, then applies:

πd(R) = c
1
n1

1!

n1
1∏

l11=1

{
λ1
µ1

1
H1

1 (xl11)
} 1
n1

22!

n1
22∏

l122=1

{
p1

1,2λ1

µ1
22

H1
22(yl122

)
}

1
n2

22!

n2
22∏

l222=1

{
λ2
µ2

22
H2

22(zl222
)
}

(69)

Proof. In order to prove the detailed product form (69), the global balance equations are again
formulated and verified.
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First of all, the rate out of state R ∈ Sd is given by (70.1) + ...+ (70.5):

1{n1
1>0}

n1
1∑

l11=1
πd([X,Y ,Z])ν1

1 (70.1)

1{n1
22>0}

n1
22∑

l122=1
πd([X,Y ,Z])ν1

22 (70.2)

1{n2
22>0}

n2
22∑

l222=1
πd([X,Y ,Z])ν2

22 (70.3)

n1
1+1∑
l11=1

πd([X,Y ,Z]) 1
n1

1 + 1
λ1
(
1{n1

1<N1} + 1{n1
1≥N1}1{([n1

1−N1]+n1
22+1,n2

22)∈C2}

)
(70.4)

n2
22+1∑
l222=1

πd([X,Y ,Z]) 1
n2

22 + 1
λ21{([n1

1−N1]++n1
22,n

2
22+1)∈C2} (70.5)

Similarly, the rate into state R ∈ Sd is given by (70.1)′+ ...+(70.5)′ (note that (70.4)′ is divided
into three parts):

1{n1
1>0}

n1
1∑

l11=1

{
πd([X − (xl11)l11 ,Y ,Z]) 1

n1
1
q1

1(xl11)λ1+

πd([X − (xl11)l11 + (xl11 + 1)l11 ,Y ,Z])ν1
1

} (70.1)′

1{n1
22>0}

n1
22∑

l122=1

{ n1
1+1∑
l11=1

(
πd([X + (1)l11 ,Y − (yl122

)l122
,Z])p1

1,2
1
n1

22
q1

22(yl122
)ν1

1

)
+

πd([X,Y − (yl122
)l122

+ (yl122
+ 1)l122

,Z])ν1
22

} (70.2)′

1{n2
22>0}

n2
22∑

l222=1

{
πd([X,Y ,Z − (zl222

)l222
]) 1
n2

22
q2

22(zl222
)λ2+

πd([X,Y ,Z − (zl222
)l222

+ (zl222
+ 1)l222

])ν2
22

} (70.3)′



n1
1+1∑
l11=1

πd([X + (1)l11 ,Y ,Z])p1
1,0ν

1
1

(
1{n1

1<N1} + 1{n1
1≥N1}1{([n1

1−N1]+n1
22+1,n2

22)∈C2}

)
+

n1
1+1∑
l11=1

πd([X + (1)l11 ,Y ,Z])p1
1,2ν

1
11{n1

1<N1}1{(n1
22+1,n2

22)/∈C2}+

n1
22+1∑
l122=1

πd([X,Y + (1)l122
,Z])ν1

221{([n1
1−N1]++n1

22+1,n2
22)∈C2}

(70.4a)′

(70.4b)′

(70.4c)′
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n2
22+1∑
l222=1

πd([X,Y ,Z + (1)l222
])ν2

221{([n1
1−N1]++n1

22,n
2
22+1)∈C2} (70.5)′

Subsequently, it can be verified that (70.i) = (70.i)′, i = 1, ..., 5, by substitution of the detailed
product form (69). See Appendix A.2 for technical details of this verification. Therefore, since
(70.1) + ...+ (70.5) = (70.1)′+ ...+ (70.5)′, it follows that the global balance equations are satisfied
by substituting the detailed product form (69). This completes the proof.

Next, the result in Theorem 3 can be used to show that the product form (39) is also valid when
each of the service time distributions is a mixture of Erlang distributions.

Corollary 1 (Corollary of Theorem 3). Consider the serial overflow system with call packing, where
µ1

11 = µ1
12 = µ1

1. Moreover, let the distribution functions of the service times be as given in (56) and
(57), that is, let each of the service time distributions be a mixture of Erlang distributions. The same
product-form solution for the steady-state distribution then applies as in case of exponential service
times. More specifically, the steady-state distribution is as given in (39) in Theorem 2. Therefore,
as µ1

11 = µ1
12 = µ1

1, the steady-state distribution π = (π(n), n ∈ S) is as follows:

π(n) = c
1

(n1
11 + n1

12)!

(
λ1
µ1

1

)n1
11
(
λ1
µ1

1

)n1
12 1
n1

22!

(
p1

1,2λ1

µ1
22

)n1
22 1
n2

22!

(
λ2
µ2

22

)n2
22
, n ∈ S (71)

Here, c is a normalizing constant, n = (n1
11, n

1
12, n

1
22, n

2
22) and S the state space, which is:

S = {n | n1
11 < N1, n

1
12 = 0, (n1

22, n
2
22) ∈ C2 or n1

11 = N1, (n1
12 + n1

22, n
2
22) ∈ C2} (72)

Proof. Consider an arbitrary state n = (n1
11, n

1
12, n

1
22, n

2
22) ∈ S, and let n1

1 = n1
11 + n1

12. In order
to prove the result, we first determine the steady-state probability that there are n1

1 type 1 jobs
with primary station 1 (i.e. non-overflowed jobs at station 1 and overflowed jobs at station 2), n1

22
non-overflowed type 1 jobs at station 2 and n2

22 type 2 jobs at station 2 present, which is denoted
by P (n1

1, n
1
22, n

2
22). To this end, the detailed product form (69) is summed over all states with n1

1
type 1 jobs with primary station 1, n1

22 non-overflowed type 1 jobs at station 2 and n2
22 type 2 jobs

at station 2. It can be noted that this means that we have to sum over all possible phases xl11 , yl122

and zl222
for all positions l11 = 1, ..., n1

1, l122 = 1, ..., n1
22 and l222 = 1, ..., n2

22. This yields the following:

P (n1
1, n

1
22, n

2
22) = c

∞∑
x1=1
· · ·

∞∑
x

n1
1
=1

1
n1

1!

n1
1∏

l11=1

{
λ1
µ1

1
H1

1 (xl11)
}
×

∞∑
y1=1
· · ·

∞∑
y

n1
22

=1

1
n1

22!

n1
22∏

l122=1

{
p1

1,2λ1

µ1
22

H1
22(yl122

)
}
×

∞∑
z1=1
· · ·

∞∑
z

n2
22

=1

1
n2

22!

n2
22∏

l222=1

{
λ2
µ2

22
H2

22(zl222
)
}
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= c
1
n1

1!

(
λ1
µ1

1

)n1
1 1
n1

22!

(
p1

1,2λ1

µ1
22

)n1
22 1
n2

22!

(
λ2
µ2

22

)n2
22 ∞∑
x1=1
· · ·

∞∑
x

n1
1
=1

n1
1∏

l11=1

{
H1

1 (xl11)
}
×

∞∑
y1=1
· · ·

∞∑
y

n1
22

=1

n1
22∏

l122=1

{
H1

22(yl122
)
} ∞∑
z1=1
· · ·

∞∑
z

n2
22

=1

n2
22∏

l222=1

{
H2

22(zl222
)
}

= c
1
n1

1!

(
λ1
µ1

1

)n1
1 1
n1

22!

(
p1

1,2λ1

µ1
22

)n1
22 1
n2

22!

(
λ2
µ2

22

)n2
22

n1
1∏

l11=1


∞∑

x
l11

=1
H1

1 (xl11)

×
n1

22∏
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Here, the last step follows by noting that the terms H1
1 (·), H1

22(·) and H2
22(·) sum to one.

Next, it is noted that in the overflow system with call packing there is only one possibility to
have n1

1 type 1 jobs with primary station 1, which is if n1
11 = min{n1

1, N1} and n1
12 = [n1

1 − N1]+.
Therefore, the steady-state probability π(n) is equal to the steady-state probability P (n1

1, n
1
22, n

2
22).

Hence, by substitution of n1
11 + n1

12 for n1
1 in (73), the following expression for π can be concluded:
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This completes the proof.

Remark 15 (General service time distributions). In Corollary 1, the product form (39) is shown to
remain valid when each of the service time distributions is a mixture of Erlang distributions. It is
then noted that an arbitrary, non-negative and continuous distribution can be arbitrarily closely
approximated by a mixture of Erlang distributions (see e.g. [55, 58, 60] and references therein). By
using similar arguments as in [58, 60], the result of Corollary 1 can therefore be expected to remain
valid for general service time distributions. Hence, this implies that the overflow system with call
packing is insensitive to the service time distributions if it is assumed that µ1

11 = µ1
12 and that the

service is preemptively resumed after an overflowed type 1 job switches from station 2 to station 1.

3.7 Conclusions

This chapter considers a two-station overflow system that stands out in the following ways:
• It has a serial structure, which means that jobs that complete service at the primary station

may also be routed to the secondary station.
• It allows for service rates that are dependent on the station at which the job is served, the

job type and whether or not the job is overflowed (i.e. µ1
11 6= µ1

12 6= µ1
22 6= µ2

22).
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• It includes both overflow and jump-over blocking. More specifically, if (primary) station 1
is fully occupied, arriving type 1 jobs are overflowed to (secondary) station 2. On the other
hand, if all servers at station 2 are occupied, arriving type 1 jobs that come from station 1
are rejected and leave the system, which can be seen as if they ‘jump over’ station 2.

• It assumes that the number of jobs that can be present at station 2 is restricted to a coordinate
convex set C2.

This is in contrast with most studies regarding overflow systems in literature, since these mainly
consider systems with a parallel structure. Moreover, some restrictions on the parameters are also
not uncommon.

The overflow system is then studied under two different assumptions. The first assumption
that is considered is that overflowed type 1 jobs immediately switch from (secondary) station 2
to (primary) station 1 once a server at this station becomes available (i.e. the system with call
packing). Secondly, the system is also considered under the assumption that overflowed type 1 jobs
finish service at (secondary) station 2, even if a server at (primary) station 1 becomes available (i.e.
the system without call packing).

The following results are then obtained:
• The joint steady-state distribution of the number of jobs that are present in the overflow

system is determined. For the system with call packing, a product-form solution for the
steady-state distribution is obtained. For the system without call packing, the steady-state
distribution is determined by applying the Gauss-Seidel method or GTH algorithm.

• For both the system with call packing and the system without call packing, the blocking
probabilities of interest (b1, B1, O1, B2, B1

11,2 and B1
1,2) are determined from the obtained

steady-state distribution. This is done either by exploiting the PASTA property of Poisson
arrivals (b1, B1, O1 and B2) or by computation of a Palm probability (B1

11,2 and B1
1,2). Next,

as an illustration, numerical results of the blocking probabilities are also given.
• It is studied by discrete-event simulation whether the overflow system can be expected to be

insensitive to the service time distributions. If this is the case, the steady-state distribution
is not dependent on the service time distributions other than through their means. It then
appears that both the system with call packing and the system without call packing are not
insensitive. The simulation results indicate, though, that the system with call packing is not
very sensitive if service is preemptively resumed after an overflowed type 1 job switches from
station 2 to station 1. Moreover, if additionally it is assumed that µ1

11 = µ1
12, the system with

call packing might even be insensitive. A proof for this statement is provided by showing
that, under these conditions, the product-form solution for the steady-state distribution is
also valid when each of the service time distributions is a mixture of Erlang distributions.
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Chapter 4

An application: ICU-SDU modelling

In Chapter 3, an overflow system with serial structure is studied. This chapter aims to illustrate a
possible application of such an overflow system. To this end, it is described how an adapted version
of the overflow system in Chapter 3 could be useful to model the interaction between an intensive
care unit (ICU) and a step-down unit (SDU).

4.1 Outline of chapter

This chapter is outlined as follows:
• Section 4.2 describes the notation that is used in this chapter.
• In Section 4.3, a description of ICUs and SDUs is provided. Besides that, some studies that

consider ICUs and/or SDUs from a queueing perspective are described. Finally, a discussion
of papers that are concerned with overflow in a health care system is also included.

• In Section 4.4, the ICU-SDU system is described. Moreover, it is discussed how the system
relates to the overflow system that is studied in Chapter 3.

• Section 4.5 discusses how a product-form solution for the joint steady-state distribution of the
number of patients in the ICU and SDU can be obtained.

• In Section 4.6, it is briefly discussed how the steady-state distribution can be of help to obtain
insight into the (expected) performance of the ICU-SDU system. In particular, it is described
how the probability to find the ICU and/or SDU fully occupied can be computed.

• In Section 4.7, the chapter concludes with a discussion and conclusions.

Finally, it is noted that an alternative proof of Theorem 4 is provided in Appendix A.4.

4.2 Notation

This section discusses the notation that is used in this chapter. It is noted that the notation is
in line with the notation that is used in Chapter 3 (see Section 3.2), where station 1 corresponds
to the ICU and station 2 to the SDU. For completeness, a complete description of the notation is
given in this section. Beforehand, it is again mentioned that a subscript is used to refer to a station,
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while a superscript is used for referring to the patient type. Here, as discussed in Section 4.4 (see
Assumption A2), the patient type depends on whether the patient arrives from outside the system
at the ICU (type 1) or at the SDU (type 2).

The notation for the input parameters is then as follows:

Table 14: Notation: Input parameters

λ1: Arrival rate of patients at station 1 (ICU), λ1 ≥ 0.
λ2: Arrival rate of patients at station 2 (SDU), λ2 ≥ 0.
µ1

11: Service rate of type 1 patients with primary station 1 (ICU) that are present at station 1 (ICU), µ1
11 > 0.

µ1
12: Service rate of type 1 patients with primary station 1 (ICU) that are present at station 2 (SDU), µ1

12 > 0.
µ1

2: Service rate of type 1 patients with primary station 2 (SDU) that are present in the SDU or ICU, µ1
2 > 0.(a)

µ2
2: Service rate of type 2 patients with primary station 2 (SDU) that are present in the SDU or ICU, µ2

2 > 0.(a)

p1
1,2: Probability that a type 1 patients with primary station 1 (ICU) is routed to station 2 (SDU) after finishing

service, p1
1,2 ∈ [0, 1].(b)

p1
1,0: Probability that a type 1 patient with primary station 1 (ICU) leaves the system after finishing service,

p1
1,0 = 1− p1

1,2.(b)

N1: Number of operational beds at station 1 (ICU), N1 ∈ N.
N2: Number of operational beds at station 2 (SDU), N2 ∈ N.
(a)The service rates of overflowed and non-overflowed patients with primary station 2 (SDU) are assumed to be the

same. Therefore, they are only dependent on the primary station (and not the actual station).
(b)The routing probabilities for overflowed and non-overflowed patients are assumed to be equal. Hence, they only

depend on the primary station (and not on the actual station).

Besides that, in order to denote the state of the system, the following notation is used:

Table 15: Notation: State of the system

n1
11: Number of type 1 patients with primary station 1 (ICU) that are present at station 1 (ICU), n1

11 ∈ N.
n1

12: Number of type 1 patients with primary station 1 (ICU) that are present at station 2 (SDU), n1
12 ∈ N.

n1
2: Number of present (non-overflowed and overflowed) type 1 patients with primary station 2 (SDU), n1

2 ∈ N.(a)

n2
2: Number of present (non-overflowed and overflowed) type 2 patients with primary station 2 (SDU), n2

2 ∈ N.(a)

n: State of the system, n = (n1
11, n

1
12, n

1
2, n

2
2).

S: Set of admissible states.
π(n): Steady-state probability to observe state n, where n ∈ S.
(a)As the service rates of overflowed and non-overflowed patients with primary station 2 (SDU) are assumed to be
equal, only the total number of patients with primary station 2 (SDU) is kept track of (see also Section 4.4).

Moreover, the following notation also comes in handy:

Table 16: Notation: Some additional notation

n− e1
11: The same state with n1

11 decreased by one, that is, n− e1
11 = (n1

11 − 1, n1
12, n

1
2, n

2
2).

n− e1
12: The same state with n1

12 decreased by one, that is, n− e1
12 = (n1

11, n
1
12 − 1, n1

2, n
2
2).

n− e1
2: The same state with n1

2 decreased by one, that is, n− e1
2 = (n1

11, n
1
12, n

1
2 − 1, n2

2).
n− e2

2: The same state with n2
2 decreased by one, that is, n− e2

2 = (n1
11, n

1
12, n

1
2, n

2
2 − 1).

1{C}: Indicator that is 1 if condition C is true and 0 otherwise.
[E]+: Expression that is 0 if E ≤ 0 and E otherwise.
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Finally, in Section 4.6, the computation of the blocking probabilities is illustrated by two exam-
ples. These blocking probabilities are denoted as follows:

Table 17: Notation: Blocking probabilities

b1: Probability that a patient who arrives from outside at station 1 (ICU) is blocked and lost or overflowed to
station 2 (SDU).

B1: Probability that a patient who arrives from outside at station 1 (ICU) is blocked and lost.

4.3 Literature

In this section, some literature related to ICUs and SDUs is discussed. First of all, Section 4.3.1
provides a description of ICUs and SDUs. Secondly, in order to provide some insight into mathemat-
ical modelling of ICUs and SDUs, Section 4.3.2 discusses several studies that consider ICUs and/or
SDUs from the viewpoint of queueing theory. Finally, Section 4.3.3 contains a brief discussion of
papers that are concerned with overflow in health care systems.

4.3.1 ICUs and SDUs

Patients are admitted to an ICU or SDU if they require more intensive monitoring, treatment and
care than that is possible in a general ward. These patients are either emergency patients, whose
arrivals are unscheduled, or elective patients, whose admissions are scheduled (see e.g. [19, 39, 59]).

In this section, a brief description of ICUs and SDUs is then given. See, for example, [44, 64]
and references therein for a more extensive discussion.

Intensive care units

In an ICU, monitoring, treatment and care is provided for patients who are critically ill. More
precisely, according to [64] (p. 8, translated from Dutch), an ICU patient can be defined as “a
patient with one or more acutely threatened or disturbed vital functions for which continuous
monitoring is necessary and treatment of a potentially reversible condition can lead to recovery of
vital functions”. This means that specialized medical staff, such as intensivists and intensive care
(IC) nurses, and specialized medical equipment, such as ventilators, should be present in an ICU,
so that the required care can be provided (see e.g. [2, 64]).

Arrivals of ICU patients can occur in a variety of ways. For example, arriving ICU patients
can be patients with a deteriorating condition who were already present in a general ward, patients
from the operating theatre who require ICU care after a major surgery or patients who arrive at
the ICU after having a serious accident. However, because ICUs are costly to operate, it may occur
that no staffed ICU bed is available upon arrival of an ICU patient. Depending on the situation,
this can have several consequences (see e.g. [39]). For example, the surgery of an elective patient
may be postponed, a patient may be transferred to an ICU at another hospital or an over-bed may
be created (see also Example 1 in Section 1.1.1).
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Step-down units

An SDU provides a level of monitoring and care that is intermediate between the level that is
provided in an ICU and the level that is provided in a general ward. This means that the number
of nurses per patient (i.e. the nurse-to-patient ratio) in an SDU is generally smaller than in an ICU.
Besides that, an SDU may not be able to provide specific organ support, such as invasive ventilation
(see e.g. [2, 44]). Most SDU patients can be categorized into three groups (see [44], p. 1212). First
of all, SDU patients could be “step-down” patients, who come from the ICU and no longer have
full intensive care requirements, but still need more intensive monitoring and care than that can
be provided in a general ward. Secondly, SDU patients could also be “step-up” patients, who come
from a general ward or the Emergency Department (ED) and require a higher level of care. Lastly,
the third main group of SDU patients consists of postoperative patients, who are admitted to the
SDU from the operating theatre.

Finally, it is noted that various terminology is used to describe units in which an intermediate
level of monitoring and care is provided (see e.g. [2, 44] and references therein). For example,
SDUs (or related units) are also known as intermediate care units, transitional care units and high
dependency care units. Besides that, different definitions of SDUs (or related units) can also be
found (see e.g. [44], pp. 1210-1212), which implies that the exact use of step-down units may differ
across hospitals and countries. For example, this also appears from [2], in which it is mentioned
that in many hospitals the SDU is staffed by critical-care nurses, but that this is not the case for
all hospitals.

4.3.2 Mathematical modelling of ICUs and SDUs

Hospital wards have frequently been studied from the viewpoint of queueing theory. This section
briefly describes some of these studies, where the main focus lies on papers that are related to ICUs
and/or SDUs. First of all, several studies that consider the ICU or SDU in isolation are discussed.
Next, some papers that study an ICU-SDU system are described.

Modelling the ICU and/or SDU in isolation

There are many studies that use a mathematical (queueing) model to analyze the ICU and/or SDU
in isolation. Below, some of these studies are briefly mentioned.

There are several studies that model the ICU and/or SDU as an Erlang loss system or, using
Kendall’s notation,M |G|N |N queue, where N is the number of beds in the unit (see also Example 2
in Section 2.2.1). For example, in [19], several hospital wards (including a medical ICU, surgical
ICU and Medium Care Unit, which can be seen as similar to an SDU) are modelled as an Erlang loss
system. Furthermore, in [42], theM |G|N |N queue is used to study a medical-surgical ICU. Another
paper that is worthwhile to mention in this context is [59]. In this reference, a tandem queue with
an ICU and operating theatre is studied. It is then shown that the blocking probability for an
M |G|N |N queue can be regarded as a (reasonably accurate) lower bound for the ICU rejection
probability when taking into account the interaction between the ICU and operating theatre.
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If the ICU and/or SDU are modelled as an Erlang loss system, it is assumed that patients
are blocked if all beds in the unit are occupied. Instead, it could also be assumed that patients
wait until a bed becomes available. As a consequence, there are also several studies that model a
hospital ward as an (Erlang) delay system. For example, this includes [23], in which the M |M |N
queue (with N again the number of beds in the unit) is used to predict ICU congestion and delays.
Another example is [25]. In this reference, an ICU is modelled as an M |H|N queue, where the H
in the second field means that the service times are assumed to be hyperexponential.

Finally, it is noted that many other studies that consider a mathematical (queueing) model of
an ICU in isolation can be found. See, for example, the references in the papers that are mentioned
above for a further discussion.

Modelling ICU-SDU systems

Instead of modelling the ICU and/or SDU in isolation, it can also be an option to consider an
ICU-SDU system. This would make it possible to take into account the interaction between the
units, but it has as disadvantage that it usually leads to a more complicated model. Below, two
papers that consider an ICU-SDU system are discussed.

First of all, [41] considers a system that consists of a medical ICU and SDU at a tertiary-care
hospital. Historical data are used to estimate the arrival rate, length of stay, which consists of
a “service time” and “time to transfer”, and acuity level, which is either “acute” or “subacute”.
Acute patients must be admitted to the ICU, while subacute patients are assigned an SDU bed if
possible. However, if the SDU is fully occupied, subacute patients could also be admitted to the
ICU. If no suitable bed is available upon arrival of a patient, the patient waits in a priority queue
(based on the acuity level and whether the patient arrives from the ED or not). In order to study
the performance of this ICU-SDU system, a discrete-event simulation model is then developed. In
this way, the effect of several hypothetical scenarios (e.g. reserving ICU beds for acute patients or
expansion of the ICU) on the wait times and occupancy is studied.

Secondly, in [2], an ICU-SDU system is modelled as a queueing network that incorporates
waiting, abandonment, balking and bumping. Similar as in [41], a distinction is made between two
patient groups: “critical patients”, who arrive at the ICU, and “semi-critical patients”, who can be
treated in the SDU. The ICU-SDU system is then examined by using fluid and diffusion analysis.
Furthermore, simulation is used to study a more complex ICU-SDU system. This makes it possible
to include several additional features, such as critical patients who are “off-placed” in the SDU if
the ICU is congested, direct SDU arrivals (next to arrivals of step-down patients from the ICU) and
readmissions.

4.3.3 Overflow in health care systems

In this chapter, it is assumed that SDU patients can be overflowed to the ICU if all SDU beds
are occupied, and vice versa (see Assumptions A4 and A5 in Section 4.4). The question that then
arises is under which conditions these assumptions can be made. Therefore, this section contains
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a discussion on ICUs, SDUs and overflow. Furthermore, some studies that consider an overflow
system in a hospital setting are also discussed.

ICU, SDU and overflow

In this chapter, an ICU-SDU system is modelled as an overflow system. Below, a brief discussion
on ICUs, SDUs and overflow is therefore included.

First of all, it appears reasonable to assume that SDU patients can be overflowed to the ICU. For
example, in [2] (pp. 859-860), it is mentioned that ICU beds can be regarded as “flexible servers”,
since ICUs can provide care for critically ill patients, but also for semi-critical patients. In this
reference, it is therefore assumed that semi-critical patients can be treated in the SDU or in the
ICU. The length of stay of semi-critical patients does then not depend on whether they are treated
in the ICU or in the SDU. Besides that, in [41], it is assumed that subacute patients can be admitted
to the ICU if no SDU bed is available (see also Section 4.3.2 for a further discussion of these papers).

Secondly, it is not always possible to assume that ICU patients can be overflowed to the SDU,
since specialized medical equipment (e.g. ventilators) and qualified personnel (e.g. IC nurses) should
then be present in the SDU. As a consequence, an SDU is often not equipped to provide care for
ICU patients, which means that overflow of ICU patients to the SDU is not always a reasonable
assumption. For example, in [41], it is assumed that acute patients can only be admitted to the ICU.

Nevertheless, in certain cases, it could be reasonable to assume that ICU patients can be over-
flowed to the SDU. For example, the simulation model that is considered in [2] relies on the assump-
tion that critical patients can be “off-placed” in the SDU if the ICU is fully occupied. If an ICU
bed becomes available, an off-placed critical patient may be transferred from the SDU to the ICU.
However, it is mentioned that the SDU cannot provide the same level of monitoring and care for
critical patients as they would receive in the ICU, which leads to a reduction of the quality of care
([2], p. 860). In this reference, the mean length of stay of critical patients is therefore multiplied by
a factor x if the patient is off-placed in the SDU, where x is chosen equal to 1.5.

Furthermore, in [44] (pp. 1212-1213), it is mentioned that SDU beds could be located in a stand-
alone unit, but also colocated within an ICU or general ward. In the latter case, the SDU beds
can be separate beds that are reserved for patients who require intermediate care or “flexible” beds
whose designation may change based on the needs of the patient. Therefore, if the SDU beds are
designated, “flexible” beds that are colocated within an ICU, it may be reasonable to assume that
ICU patients can be overflowed to the SDU.

Overflow systems in a hospital setting

Below, some papers that are concerned with overflow systems in a hospital setting are briefly
discussed. An example of such a paper is [9]. In this reference, several policies are studied and
compared, among which separate wards and earmarking. In the latter case, it is assumed that there
is a number of “earmarked” beds for each patient type, which can only be occupied by patients of
this specific type. Besides that, there is an overflow ward with fully flexible beds, which can be
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occupied by all patients irrespective of their type. It is then mentioned that “the earmarked beds
should always be used as much as possible” ([9], p. 457). Hence, this means that patients can be
transferred from the overflow ward to an earmarked bed if an earmarked bed becomes available.

Besides that, in [63], a short stay unit (SSU) and multiple inpatient wards are modelled as an
overflow system, where the wards correspond to the primary stations and the SSU to the secondary
station. More specifically, urgent patients who arrive at ward i are overflowed to the SSU if they
find all beds in this ward occupied. It is then assumed that these patients may be repatriated from
the SSU to ward i with a rate γi, where 0 ≤ γi ≤ ∞. Moreover, it is noted that some other patient
streams, such as direct arrivals at the SSU, are also incorporated.

Another paper that considers overflow in a hospital setting is [29]. In this reference, a system
with multiple primary wards and multiple overflow wards is studied. More specifically, the primary
wards consist of dedicated wards for each specialty. Besides that, the specialties are divided into
clusters, and specialties that are in the same cluster then share one overflow ward. Patients who
find all beds in the primary ward occupied go to the corresponding overflow ward. If the overflow
ward is also fully occupied, they are rejected.

The references that are discussed up to now study systems with overflow wards that are located
within the same hospital. Instead, it could also occur that a patient is overflowed to a ward at
another hospital. For example, [39] considers a queueing network with multiple ICUs at different
hospitals in the same region and an extra (virtual) ICU, which consists of reserved beds that are
distributed over the ICUs. This extra (virtual) ICU is then specifically meant to care for (overflowed)
regional emergency patients who are rejected at an original ICU. In [16], a similar overflow system
with several ICUs is considered. Finally, in this context, it is also worthwhile to mention [3]. In
this reference, a network of neonatal hospitals is modelled as a loss network with overflow.

4.4 Model and assumptions

In this section, the ICU-SDU system that is studied in this chapter is described. The notation follows
the notation that is given in Section 4.2. The ICU-SDU system is then depicted in Figure 14. It is
noted that the system is similar to the serial overflow system with call packing that is studied in
Chapter 3 (see also Remark 16 at the end of this section).

Below, the assumptions of the model are discussed. Here, it is noted that each assumption is
accompanied by some comments that explain why the assumption could be reasonable. The model
then relies on the following assumptions:
(A1) The system consists of an ICU (station 1) and SDU (station 2). The ICU has N1 operational

beds, while N2 operational beds are present in the SDU.

Comments: It is common to describe the capacity of a hospital ward in terms of operational
or staffed beds. These are beds for which both the necessary medical equipment and personnel
are available (see e.g. [9, 19]).

(A2) Patients arrive from outside the system at the ICU and SDU according to a Poisson process
with rates λ1 and λ2, respectively. Patients who arrive from outside at the ICU are referred
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Figure 14: The ICU-SDU system that is studied in this chapter. Routing probabilities (p1
1,k, k = 0, 2) are

mentioned next to the applicable arrows

to as type 1 patients. Similarly, patients arriving from outside at the SDU are called type 2
patients.

Comments: In literature, it is frequently assumed that arrivals at the ICU and/or SDU (or
a related unit) follow a Poisson process (see e.g. [2, 16, 19, 23, 25, 39, 41, 42, 59]). In
particular, the arrival process of emergency patients is found to be well approximated by a
Poisson process. Moreover, the Poisson process can be considered as a reasonable assumption
for the arrival process of elective patients as well (see e.g. [19, 39] for a further discussion).

(A3) Patients stay in the ICU or SDU for an exponential length of stay (see also Assumption A7).
After service completion, ICU patients become an SDU patient with probability p1

1,2, while
they leave the system with probability p1

1,0, where p1
1,0 = 1− p1

1,2. SDU patients always leave
the system after their service is completed.

Comments: It can be noted that transfers of ICU patients who become SDU patients (i.e.
step-down patients) are incorporated. On the other hand, since transfers of SDU patients who
become ICU patients can be expected to occur less often, these are not taken into account. It
is noted that this assumption is in line with, for example, [2] (see Section 4.3.2 for a further
discussion of this paper).

(A4) If arriving type 1 patients find all N1 ICU beds occupied, they are overflowed to the SDU. If
the SDU is also fully occupied, arriving type 1 patients are blocked and leave the system.

Comments: First of all, it is not always possible to assume that ICU patients can be overflowed
to the SDU, since this would require the presence of specialized medical staff and equipment
in the SDU. However, as more widely discussed in Section 4.3.3, overflow of ICU patients to
the SDU may be a reasonable assumption in certain cases. An example of such a situation is
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when no (separate) SDU is present, and SDU care is provided in the ICU. The beds in the
ICU could then be designated as either an ICU bed or an SDU bed, where the main difference
between these beds is the nurse-to-patient ratio. Secondly, it is not uncommon to assume that
arriving ICU patients are blocked if all beds are occupied (see e.g. [19, 42, 59]). In practice,
this could mean, for example, that the patient is transferred to another hospital.

(A5) As mentioned above, arriving SDU patients are either finished ICU patients (type 1) or patients
who arrive from outside the system (type 2). First of all, overflowed ICU patients who were
already present in the SDU can always be admitted, since they already occupy an SDU bed.
On the other hand, type 1 patients from the ICU and type 2 patients from outside may find
the SDU fully occupied. In this case, type 1 patients stay in the ICU (note that this is always
possible, since they already occupy an ICU bed), and type 2 patients are overflowed to the
ICU (note that this may not be possible). If all ICU beds are also occupied, arriving type 2
patients are blocked and leave the system.

Comments: First of all, as more extensively discussed in Section 4.3.3, it can generally be
assumed that SDU patients can also be admitted to the ICU if the SDU is fully occupied.
Secondly, it is also not unusual to assume that patients who arrive at a hospital ward are
blocked if all beds are occupied (see e.g. [9, 19, 29, 42, 59]).

(A6) An overflowed ICU patient in the SDU, if present, immediately goes to the ICU and preemp-
tively resumes service once an operational bed in the ICU becomes available. Similarly, an
overflowed SDU patient in the ICU (of type 1 or type 2), if present, goes to the SDU and
preemptively resumes service as soon as an operational bed in the SDU becomes available.

Comments: This assumption basically says that overflow capacity is only used if own capacity
is not available, which implies that patients are treated in their primary unit as much as
possible. In this sense, this assumption can seen as similar to the assumption in [9] (p. 457)
for the earmarking policy, which states that “earmarked beds should always be used as much
as possible” (see Section 4.3.3 for a further discussion of this paper). Besides that, in [2],
it is assumed that critical patients who are off-placed in the SDU may be transferred to the
ICU if an ICU bed becomes available. In this reference, however, semi-critical patients who
are treated in the ICU do not go to the SDU if an SDU bed becomes available (although
they may be bumped to the SDU by an arriving critical patient). Finally, in [63], overflowed
patients who are present in the short stay unit may be repatriated to their primary ward if
a bed in this ward becomes available (see again Section 4.3.3 for a further discussion of this
paper). In this reference, however, it is assumed that transfers do not occur immediately, but
after a certain delay ([63], p. 22). Hence, although not exactly the same, these papers make a
similar assumption. Therefore, also considering analytical tractability, this assumption may
be considered as a reasonable (simplifying) assumption.

(A7) The lengths of stay in the ICU and SDU are assumed to be exponentially distributed with
rates µ1

11 for non-overflowed ICU patients in the ICU, µ1
12 for overflowed ICU patients in the

SDU, µ1
2 for SDU patients of type 1 and µ2

2 for SDU patients of type 2. It can thus be noted
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that non-overflowed and overflowed ICU patients may have a different mean length of stay
(i.e. µ1

11 6= µ1
12). On the other hand, it is assumed that SDU patients who are overflowed to

the ICU have the same service parameter as non-overflowed SDU patients of the same type.
However, the mean length of stay of SDU patients may depend on whether the patient is a
step-down patient (type 1) or comes from outside the system (type 2), that is, it is allowed
that µ1

2 6= µ2
2.

Comments: First of all, for analytical tractability, it is not uncommon that the length of stay
in the ICU or SDU is assumed to be exponentially distributed (see e.g. [2, 16, 23, 39, 59]).
It is noted, though, that in several references it is found that the length of stay in the ICU is
better described by another distribution, such as the lognormal distribution (see e.g. [39]) or
hyperexponential distribution (see e.g. [25]). Secondly, the assumption that it is allowed that
µ1

11 6= µ1
12, while non-overflowed and overflowed SDU patients of the same type are assumed

to have the same mean length of stay is in line with the discussion in Section 4.3.3.

It can thus be noted that several simplifying assumptions are made. Some of these are already
discussed above (e.g. exponential lengths of stay), while some are not explicitly mentioned (e.g.
no distinction is made between elective and emergency arrivals, and readmissions are regarded as
new arrivals from outside). It is expected that (most of) the assumptions that are not explicitly
mentioned are in line with literature. For example, in among others [19, 39, 41, 42, 59], a similar
assumption regarding readmissions seems to be made.

Subsequently, the state of the system is given by n = (n1
11, n

1
12, n

1
2, n

2
2), where:

• n1
11: The number of (non-overflowed) ICU patients who are present in the ICU.

• n1
12: The number of (overflowed) ICU patients who are present in the SDU.

• n1
2: The number of SDU patients of type 1 who are present (i.e. the sum of the number of

non-overflowed type 1 patients in the SDU and overflowed type 1 patients in the ICU).
• n2

2: The number of SDU patients of type 2 who are present (i.e. the sum of the number of
non-overflowed type 2 patients in the SDU and overflowed type 2 patients in the ICU).

It can thus be noted that three patient groups (or classes) are distinguished: ICU patients of
type 1, SDU patients of type 1 and SDU patients of type 2. Moreover, since it is allowed that
µ1

11 6= µ1
12 (see Assumption A7), a distinction is made between non-overflowed ICU patients in the

ICU and overflowed ICU patients in the SDU. On the other hand, such a distinction is not made
for SDU patients of type 1 and SDU patients of type 2, since it is assumed that non-overflowed and
overflowed SDU patients of the same type have the same mean length of stay (see Assumption A7).

Finally, the section ends with a remark that describes how the ICU-SDU system in Figure 14
relates to the overflow system that is studied in Chapter 3.

Remark 16 (ICU-SDU system and overflow system in Chapter 3). It can be noted that the ICU-
SDU system as described above is similar to the serial overflow system with call packing that is
studied in Chapter 3. However, it differs from the system in Chapter 3 in two points. First of all, for
simplicity, the coordinate convex structure at station 2 (SDU) is now left out of account. Secondly,

64



it is assumed that type 1 and type 2 patients can also be overflowed to the ICU if the SDU is fully
occupied. This is different from the serial overflow system with call packing in Chapter 3, in which
it is assumed that arrivals of type 1 jobs that come from station 1 and type 2 jobs from outside the
system are blocked if no server at station 2 is available.

4.5 Steady-state distribution

For the ICU-SDU system that is described in Section 4.4, a product-form solution for the joint
steady-state distribution of the number of patients in the system can be obtained. To this end, it
is first noted that, because of Assumption A6, there can only be overflowed ICU patients present
in the SDU if the ICU is fully occupied, and vice versa. Moreover, a situation with overflowed
SDU patients in the ICU and overflowed ICU patients in the SDU at the same time cannot occur.
Therefore, for every admissible state n, one of the following conditions must apply:

• No overflowed patients (n1
11 ≤ N1, n1

12 = 0 and n1
2 + n2

2 ≤ N2).
• Overflowed ICU patients in the SDU (n1

11 = N1, n1
12 > 0 and n1

2 + n2
2 < N2).

• Overflowed SDU patients in the ICU (n1
11 < N1, n1

12 = 0 and n1
2 + n2

2 > N2).

As a consequence, the state space, denoted by S, is as follows:

S = {n | n1
12 = 0, 0 ≤ n1

11 ≤ N1, 0 ≤ n1
2 + n2

2 ≤ N2 or

n1
12 > 0, n1

11 = N1, 0 ≤ n1
12 + n1

2 + n2
2 ≤ N2 or

n1
12 = 0, 0 ≤ n1

11 + [n1
2 + n2

2 −N2] ≤ N1, n
1
2 + n2

2 > N2}

(75)

Now, a product-form solution for the steady-state distribution can be obtained.

Theorem 4 (ICU-SDU system: Product form). The ICU-SDU system as described in Section 4.4
has the following steady-state distribution π = (π(n), n ∈ S):

π(n) = cF (n1
12) 1

n1
11!

(
λ1
µ1

11

)n1
11 1
n1

2!

(
p1

1,2λ1

µ1
2

)n1
2 1
n2

2!

(
λ2
µ2

2

)n2
2
, n = (n1

11, n
1
12, n

1
2, n

2
2) ∈ S (76)

Here, c is a normalizing constant, S the state space as defined in (75) and F a function, which
is as follows:

F (n) =

 (λ1)n/
∏n
k=1(N1µ

1
11 + kµ1

12) n > 0

1 n = 0
(77)

Proof. The result follows by showing that the global balance equations (78) are satisfied for each
n ∈ S by substitution of the product form (76). Here, beforehand, it is noted that, similar as in
the proof of Theorem 2, the terms in the left-hand side and right-hand side of the global balance
equations are ordered in such a way that each part has an interpretation of either a flow out of n
(left-hand side) or flow into state n (right-hand side). Moreover, this makes it possible to show that
the global balance equations are satisfied by verifying specific class balances.
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Table 18: Verification of the global balance equations in (78)

Patient class Class balance

Non-overflowed ICU patients of type 1 in ICU (78.1) = (78.9)
Overflowed ICU patients of type 1 in SDU (78.2) = (78.10)
SDU patients of type 1(a) (78.3) = (78.11) + (78.12) + (78.13)
SDU patients of type 2(a) (78.4) = (78.14)
Type 1 patients at the outside (78.5) + (78.6) = (78.15) + (78.16) + (78.17) + (78.18)
Type 2 patients at the outside (78.7) + (78.8) = (78.19) + (78.20)

(a) Consisting of both non-overflowed SDU patients in the SDU and overflowed SDU patients in the ICU.

The global balance equations are then as follows (for n ∈ S):



π(n)n1
11µ

1
111{n1

11>0}1{n1
12=0}+

π(n)(N1µ
1
11 + n1

12µ
1
12)1{n1

11=N1}1{n1
12>0}+

π(n)n1
2µ

1
21{n1

2>0}+
π(n)n2

2µ
2
21{n2

2>0}+
π(n)λ11{n1

11<N1}+
π(n)λ11{n1

11=N1}1{n1
12+n1

2+n2
2<N2}+

π(n)λ21{n1
12+n1

2+n2
2<N2}+

π(n)λ21{n1
11+[n1

2+n2
2−N2]<N1}1{n1

2+n2
2≥N2}



(78.1)
(78.2)
(78.3)
(78.4)
(78.5)
(78.6)
(78.7)
(78.8)

= (78)

π(n− e1
11)λ11{n1

11>0}1{n1
12=0}+

π(n− e1
12)λ11{n1

11=N1}1{n1
12>0}+

π(n + e1
11 − e1

2)p1
1,2(n1

11 + 1)µ1
111{n1

11<N1}1{n1
2>0}1{n1

2+n2
2≤N2}+

π(n + e1
11 − e1

2)p1
1,2(n1

11 + 1)µ1
111{n1

2>0}1{n1
2+n2

2>N2}+
π(n + e1

12 − e1
2)p1

1,2(N1µ
1
11 + (n1

12 + 1)µ1
12)1{n1

11=N1}1{n1
2>0}1{n1

2+n2
2≤N2}+

π(n− e2
2)λ21{n2

2>0}+
π(n + e1

11)p1
1,0(n1

11 + 1)µ1
111{n1

11<N1}+
π(n + e1

12)p1
1,0(N1µ

1
11 + (n1

12 + 1)µ1
12)1{n1

11=N1}1{n1
12+n1

2+n2
2<N2}+

π(n + e1
2)(n1

2 + 1)µ1
21{n1

12+n1
2+n2

2<N2}+
π(n + e1

2)(n1
2 + 1)µ1

21{n1
11+[n1

2+n2
2−N2]<N1}1{n1

2+n2
2≥N2}+

π(n + e2
2)(n2

2 + 1)µ2
21{n1

12+n1
2+n2

2<N2}+
π(n + e2

2)(n2
2 + 1)µ2

21{n1
11+[n1

2+n2
2−N2]<N1}1{n1

2+n2
2≥N2}



(78.9)
(78.10)
(78.11)
(78.12)
(78.13)
(78.14)
(78.15)
(78.16)
(78.17)
(78.18)
(78.19)
(78.20)

Now, the product form (76) can be substituted in the global balance equations (78), after which
it can be verified that these are satisfied. As in the proof of Theorem 2, this can be done by verifying
specific class balance equations. These class balance equations are given in Table 18 and can be
verified in a similar manner as in the proof of Theorem 2. Then, since the class balances in Table 18
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are satisfied, it immediately follows that the global balance equations (41) are also satisfied for all
n ∈ S. Hence, this completes the proof.

Remark 17 (Alternative proof of Theorem 4). The proof of Theorem 4 that is given above is based
on the global balance equations. It is noted that the product form (76) could also be concluded
from the product-form result in [26]. Moreover, it can then be shown that the ICU-SDU system
is insensitive if µ1

11 = µ1
12, that is, the product form (76) is also valid for non-exponential service

times if µ1
11 = µ1

12. In Appendix A.4, further details are provided.

Remark 18 (Insensitivity). As mentioned in Remark 17 and shown in Appendix A.4, the ICU-SDU
system that is studied in this chapter is insensitive to the service time distributions if it is assumed
that µ1

11 = µ1
12. It can be expected that this result could also be proven along similar lines as in

the proof in Section 3.6.2, but this is not fully worked out. If µ1
11 6= µ1

12, in contrast, the ICU-SDU
system of interest is conjectured to be (slightly) sensitive based on a short simulation study. This is
thus similar to the results for the serial overflow system that is subject of Chapter 3 (see Section 3.6).

4.6 Blocking probabilities and other performance measures

From the product-form solution for the steady-state distribution that is obtained in Section 4.5,
several performance measures can be obtained. For example, it could be of interest to determine
the fraction of time that overflowed ICU patients are present in the SDU or the probability that
at least K overflowed ICU patients are present in the SDU (for K ∈ {1, ..., N2}). Besides that,
blocking probabilities can also be computed. These blocking probabilities can be obtained in a
similar manner as for the overflow system that is studied in Chapter 3 (see Section 3.5.2).

The main difference is that it is now also possible that overflowed patients are present in the
ICU (station 1). This means that the blocking probabilities that can be of interest are slightly
different than those for the overflow system in Chapter 3 (see Section 3.5.1). For example, these
now include the probability that an arriving type 2 patient at the SDU finds the SDU congested
and is overflowed to the ICU and the probability that a step-down patient from the ICU finds the
SDU congested and stays in the ICU. Furthermore, because of the possible presence of overflowed
SDU patients in the ICU, the computation of the blocking probabilities is also slightly different.
Below, the computation is illustrated for two blocking probabilities, which are b1 and B1.

First of all, the probability that an arriving type 1 patient at the ICU finds the ICU fully occupied
and is blocked and lost or overflowed to the SDU, denoted by b1, can be computed as follows:

b1 =
∑

n∈Sb1

π(n), where Sb1 = {n ∈ S | n1
11 + [n1

2 + n2
2 −N2]+ = N1} (79)

Secondly, the probability that an arriving type 1 patient finds both the ICU and SDU fully
occupied and is blocked and lost, denoted by B1, can be determined as follows:

B1 =
∑

n∈SB1

π(n), where SB1 = {n ∈ S | n1
11 + [n1

2 + n2
2 −N2]+ = N1, n

1
12 + n1

2 + n2
2 ≥ N2} (80)
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4.7 Discussion and conclusions

In this chapter, an ICU-SDU system is modelled as an overflow system with serial structure. This
overflow system can be seen as similar to the serial overflow system with call packing that is studied
in Chapter 3 (see also Remark 16 in Section 4.4). It is then shown that a product-form solution for
the joint steady-state distribution of the number of patients in the system can be found. From this
product form, several performance measures, such as blocking probabilities, can then be computed.
This could be useful to get a (quick) indication of the (expected) performance of the ICU-SDU
system.

Another way to obtain (quick) insight into the performance of ICUs and SDUs is to model the
units in isolation. For this purpose, several single-station queueing systems, such as the Erlang
loss system, have been proposed in literature (see also Section 4.3.2). Compared with these single-
station queueing systems, the ICU-SDU system as studied in this chapter has the advantage that
it takes into account the interaction between the ICU and SDU. This is done in two ways. First of
all, it is assumed that SDU patients can be admitted to the ICU if the SDU is fully occupied, and
vice versa. Besides that, transfers of step-down patients who leave the ICU and go to the SDU are
incorporated. Therefore, the overflow system that is studied in Chapter 3, in adapted form, could
be useful to model the interaction between an ICU and SDU. However, some critical comments
should also be made.

First of all, it is important to note that (most of) the model assumptions are based on scientific
literature regarding ICUs and SDUs and that the model is not tested in practice for a (real) ICU-
SDU system. It would therefore be useful to study whether a specific, real ICU-SDU system can be
accurately described by the model as presented in Section 4.4. In particular, it would be interesting
to test whether the observed performance measures can be well approximated by the model.

Secondly, it is assumed that ICU patients can be admitted to the SDU if the ICU is fully
occupied. This means that specialized medical staff and equipment should be present in the SDU.
As a consequence, it is not expected that the ICU-SDU system as studied in this chapter provides
an adequate representation of all ICU-SDU systems. Nevertheless, in certain cases, this assumption
may be reasonable. An example is the situation in which no (separate) SDU is present, and SDU
care is provided in the ICU. In this case, the beds in the ICU could be designated as either an ICU
bed or an SDU bed, where the main difference between these beds is the nurse-to-patient ratio (see
Section 4.3.3 for a more extensive discussion).

Thirdly, in order to obtain an analytical (product-form) result, some simplifying assumptions
are made. For example, it is assumed that the lengths of stay are exponentially distributed, and
that overflowed patients are always immediately transferred to their primary unit once a bed at
this unit becomes available. It could therefore be interesting to study the effect of these simplifying
assumptions. For this purpose, discrete-event simulation could be a viable approach, since it allows
for more complicated modelling assumptions.
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Chapter 5

Conclusion

In this chapter, the objectives are briefly restated, the main findings are summarized, and some
suggestions for further research are given.

Overflow system of interest and objectives

This report is concerned with the study of queueing systems with overflow. In particular, the focus is
on the two-station overflow loss system with two job types that is formally described in Section 3.3.
This system has the following distinguishing characteristics. First of all, it has a serial structure in
the sense that it is possible that jobs that finish service at (primary) station 1 also go to (secondary)
station 2. Secondly, the service rates may depend on the job type, the station at which the job is
served and whether or not the job is overflowed (i.e. µ1

11 6= µ1
12 6= µ1

22 6= µ2
22). Thirdly, overflow as

well as jump-over blocking are included. Finally, it is assumed that the number of jobs that can be
present station 2 is restricted to a coordinate convex set.

The overflow system is then studied under the assumption of (immediate) repacking or call
packing. This means that overflowed jobs at (secondary) station 2 immediately switch to (primary)
station 1 once a server at this station becomes available. Besides that, the system without the
assumption of call packing is also considered. In this case, overflowed jobs always finish service at
(secondary) station 2, even if a server at (primary) station 1 becomes available.

As more widely discussed in Section 1.2, the objectives are to determine the joint steady-state
distribution of the number of jobs in the overflow system, to compute and compare blocking prob-
abilities, and to examine the feature of insensitivity. Moreover, it is aimed to illustrate a possible
application of (an adapted version of) the overflow system to ICU-SDU modelling. Below, the main
findings are then summarized chapter by chapter.

Summary of main findings

First of all, before studying the overflow system of interest, some theoretical background is provided
in Chapter 2. In this chapter, several concepts, models and methods from queueing theory that are
useful for the research project are identified and described. In particular, these include stochastic
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Table 19: Summary of results that are obtained in Chapter 3

Overflow system with call packing Overflow system without call packing

Steady-state distribution Determined by obtaining a product-form
solution.

Determined by using Gauss-Seidel method
and GTH algorithm.

Blocking probabilities Determined by using PASTA property or
computing a Palm probability. Illustrated
by providing numerical results.

Determined by using PASTA property or
computing a Palm probability. Illustrated
by providing numerical results.

(In)sensitivity Simulation indicates that the system is
not insensitive for all µ1

11 6= µ1
12. It is

then shown that the system is insensitive
if µ1

11 = µ1
12 and resume are assumed.

Simulation indicates that the system is
sensitive.

processes, Markov chains, queueing networks, product forms, the Gauss-Seidel method, the GTH
algorithm, the PASTA property, Palm probabilities, discrete-event simulation and insensitivity.
Besides that, an overflow system with parallel structure is studied as an illustration, and some
other related literature regarding overflow systems is briefly discussed.

Secondly, in Chapter 3, the overflow system of interest is studied as to steady-state distribution,
blocking probabilities and insensitivity. This is done for the system with call packing as well as the
system without call packing. The results of this analysis are summarized in Table 19. Besides that,
Section 3.7 contains a more extensive discussion of the results.

Thirdly, Chapter 4 aims to illustrate a possible practical use of the overflow system of interest by
studying an application to ICU-SDU modelling. Literature that is concerned with ICUs and SDUs
is discussed, which provides insight into which assumptions are reasonable to make. It is then found
that an adapted version of the overflow system could be useful to obtain a (quick) indication of
several performance measures, such as blocking probabilities, if it can be assumed that ICU patients
may be overflowed to the SDU in case of a congested ICU. This assumption is not applicable for
all ICU-SDU systems, but may be reasonable in certain cases. In Section 4.7, a more extensive
discussion of the results is included.

Finally, the alternative proofs that are provided in Appendices A.3 and A.4 are also worthwhile
to mention. These proofs illustrate how the product-form results that are given in this report are
related to other product-form results in literature. More specifically, in Appendix A.3, it is shown
that the product form for a parallel overflow system with call packing can also be concluded from
the product-form result in [13], which focuses on applications to stochastic Petri nets. Besides that,
the alternative proof in Appendix A.4 illustrates that the product form for the ICU-SDU system
that is studied in Chapter 4 can also be concluded from the product-form result in [26], which
considers (alternative routing) queueing networks from a telecommunications perspective.
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Further research

From both a theoretical and practical point of view, several points for further research remain of
interest. For example, these include the following:

• Further study how the blocking probabilities for the overflow system with call packing compare
to those for the overflow system without call packing and under which conditions on the
parameters an ordering can be expected.

• Examine whether and how already existing methods to approximate blocking probabilities,
which are often designed for overflow systems with a parallel structure, can also be used for
overflow systems with a serial structure.

• Further examine the ICU-SDU system that is described in Chapter 4. For example, it can
be interesting to study how the resulting performance measures compare to those of single-
station queueing systems, such as the Erlang loss system, and to those of a real ICU-SDU
system. Furthermore, it can also be useful to study the effect of the (simpifying) assumptions
by using discrete-event simulation, which allows for more complicated modelling.
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Appendix A

Proofs: Additional information

A.1 Proof details of Theorem 2

In Section 3.4.1, it is shown that the joint steady-state distribution of the number of jobs in the
system has a product-form solution, which is given by (39) (see Theorem 2). This appendix contains
further details of the proof of Theorem 2. More specifically, it is shown how the class balances in
Table 5 can be verified.

Proof (cont.). Below, it is described how the class balance equations in Table 5 can be verified for
an arbitrary n ∈ S.

(41.1) = (41.8): First of all, it is noted that the indicators on the left-hand side and right-
hand side are the same. This means that the non-zero case (n1

11 > 0 and n1
12 = 0) is only left to

be verified. To this end, the product form (39) is substituted and both sides are divided by π(n).
This yields the following for the right-hand side rhs and left-hand side lhs:

rhs = π(n− e1
11)

π(n) λ1 = n1
11µ

1
11

λ1
λ1 = n1

11µ
1
11 = lhs (81)

Hence, since lhs = rhs, it follows that (41.1) = (41.8).
(41.2) = (41.9): First of all, it is noted that the same indicators are included on the left-hand

side and right-hand side. This means that we only need to verify the non-zero case (n1
11 = N1 and

n1
12 > 0). To this end, the product form (39) is substituted and both sides are divided by π(n).

This leads to the following for the right-hand side rhs and left-hand side lhs:

rhs = π(n− e1
12)

π(n) λ1 = N1µ
1
11 + n1

12µ
1
12

λ1
λ1 = N1µ

1
11 + n1

12µ
1
12 = lhs (82)

Hence, it follows that lhs = rhs, which means that (41.2) = (41.9).
(41.3) = (41.10) + (41.11): A distinction is made between two cases: n1

11 < N1 (Case I) and
n1

11 = N1 (Case II).
Case I: In this case, the expression in (41.11) is equal to zero. Moreover, the same indicator

remains in (41.3) and (41.10), which is 1{n1
22>0}. Therefore, it must be verified that (41.3) = (41.10)
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if n1
11 < N1 and n1

22 > 0. To this end, the product form (39) is substituted and both sides are
divided by π(n). This yields the following for the right-hand side rhs and left-hand side lhs:

rhs = π(n + e1
11 − e1

22)
π(n) p1

1,2(n1
11 + 1)µ1

11

= λ1
(n1

11 + 1)µ1
11

n1
22µ

1
22

p1
1,2λ1

p1
1,2(n1

11 + 1)µ1
11

= n1
22µ

1
22

= lhs (83)

Hence, since lhs = rhs, we have that (41.3) = (41.10) if n1
11 < N1.

Case II: In this case, the expression in (41.10) is equal to zero. Moreover, the same indicator
remains in (41.3) and (41.11), which is 1{n1

22>0}. Therefore, it is only left to be verified that
(41.3) = (41.11) if n1

11 = N1 and n1
22 > 0. To this end, the product form (39) is substituted and

both sides are divided by π(n). This leads to the following for the right-hand side rhs and left-hand
side lhs:

rhs = π(n + e1
12 − e1

22)
π(n) p1

1,2(N1µ
1
11 + (n1

12 + 1)µ1
12)

= λ1
N1µ1

11 + (n1
12 + 1)µ1

12

n1
22µ

1
22

p1
1,2λ1

p1
1,2(N1µ

1
11 + (n1

12 + 1)µ1
12)

= n1
22µ

1
22

= lhs (84)

Hence, since lhs = rhs, it follows that (41.3) = (41.11) if n1
11 = N1.

From this, it can thus be concluded that (41.3) = (41.10) + (41.11).
(41.4) = (41.12): First of all, it is noted that the left-hand side and right-hand side contain

the same indicator. Therefore, we only need to verify the non-zero case (n2
22 > 0). To this end, the

product form (39) is substituted and both sides are divided by π(n). This leads to the following for
the right-hand side rhs and left-hand side lhs:

rhs = π(n− e2
22)

π(n) λ2 = n2
22µ

2
22

λ2
λ2 = n2

22µ
2
22 = lhs (85)

Therefore, we have that lhs = rhs, which means that (41.4) = (41.12).
(41.5) + (41.6) = (41.13) + (41.14) + (41.15) + (41.16): At first, the indicators on both

sides are disregarded. Then, the product form (39) is substituted and both sides are divided by π(n).
This yields the following for the left-hand side, consisting of lhs5 and lhs6:

lhs5 = lhs6 = λ1 (86)

Moreover, the following expressions are obtained for the right-hand side, consisting of rhs13,
rhs14, rhs15 and rhs16:

rhs13 = π(n + e1
11)

π(n) p1
1,0(n1

11 + 1)µ1
11 = λ1

(n1
11 + 1)µ1

11
p1

1,0(n1
11 + 1)µ1

11 = p1
1,0λ1 (87)
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rhs14 = π(n + e1
12)

π(n) p1
1,0(N1µ

1
11 + (n1

12 + 1)µ1
12) =

λ1p
1
1,0(N1µ

1
11 + (n1

12 + 1)µ1
12)

N1µ1
11 + (n1

12 + 1)µ1
12

= p1
1,0λ1 (88)

rhs15 = π(n + e1
11)

π(n) p1
1,2(n1

11 + 1)µ1
11 = λ1

(n1
11 + 1)µ1

11
p1

1,2(n1
11 + 1)µ1

11 = p1
1,2λ1 (89)

rhs16 = π(n + e1
22)

π(n) (n1
22 + 1)µ1

22 =
p1

1,2λ1

(n1
22 + 1)µ1

22
(n1

22 + 1)µ1
22 = p1

1,2λ1 (90)

Then, since p1
1,0 + p1

1,2 = 1, it follows that:

lhs5 = rhs13 + rhs16 (91)

lhs5 = rhs13 + rhs15 (92)

lhs6 = rhs14 + rhs16 (93)

Now, the indicators on the left-hand side and right-hand side are also taken into account. It is
then verified that (41.5) + (41.6) = (41.13) + (41.14) + (41.15) + (41.16) by considering the following
cases:

• Case I: n1
11 < N1, (n1

12 +n1
22 +1, n2

22) ∈ C2. In this case, the expressions in (41.6), (41.14) and
(41.15) are equal to zero, while the indicators in the other equations simplify to one. Because
of (91), the class balance is therefore verified for Case I.

• Case II: n1
11 < N1, (n1

12 +n1
22 +1, n2

22) /∈ C2. In this case, the expressions in (41.6), (41.14) and
(41.16) are equal to zero, while the indicators in the other equations simplify to one. From
(92), the class balance is then verified for Case II.

• Case III: n1
11 = N1, (n1

12 + n1
22 + 1, n2

22) ∈ C2. In this case, the expressions in (41.5), (41.13)
and (41.15) are equal to zero, while the indicators in the other equations simplify to one.
Because of (93), the class balance is therefore verified for Case III.

• Case IV: n1
11 = N1, (n1

12 + n1
22 + 1, n2

22) /∈ C2. In this case, the expressions in (41.5), (41.6),
(41.13), (41.14), (41.15) and (41.16) are now all equal to zero. Therefore, the class balance is
then immediately verified for Case IV as well.

Hence, it can be concluded that (41.5) + (41.6) = (41.13) + (41.14) + (41.15) + (41.16).
(41.7) = (41.17): First of all, it is noted that the same indicators are included on the left-hand

side and right-hand side. Hence, only the non-zero case ((n1
12 + n1

22, n
2
22 + 1) ∈ C2) is left to be

verified. To this end, the product form (39) is substituted and both sides are divided by π(n). This
yields the following for the right-hand side rhs and left-hand side lhs:

rhs = π(n + e2
22)

π(n) (n2
22 + 1)µ2

22 = λ2
(n2

22 + 1)µ2
22

(n2
22 + 1)µ2

22 = λ2 = lhs (94)

Hence, lhs = rhs, which means that (41.7) = (41.17).

A.2 Proof details of Theorem 3

In Section 3.6.2, an insensitivity result is established. To this end, a detailed product form is first
proven in Theorem 3. This is done by formulating and verifying the global balance equations. In

74



this appendix, further details of the proof of Theorem 3 are given. More specifically, it is explained
how it can be verified that (70.i) = (70.i)′, i = 1, ..., 5.

Proof (cont.). Consider an arbitrary state R = [X,Y ,Z] ∈ Sd. Below, it is then verified that
(70.i) = (70.i)′, i = 1, ..., 5.

(70.1) = (70.1)′: First of all, it is noted that the indicators on the left-hand side and right-
hand side are the same. This means that we only need to verify the non-zero case (n1

1 > 0). To
this end, the detailed product form (69) is substituted and both sides are divided by πd(R)ν1

1 . This
yields the following for the left-hand side lhs:

lhs =
n1

1∑
l11=1

πd([X,Y ,Z])
πd([X,Y ,Z])ν1

1
ν1

1 = n1
1 (95)

Similarly, after cancelling out terms, it follows that the right-hand side rhs is equal to:

rhs =
n1

1∑
l11=1

(
πd([X − (xl11)l11 ,Y ,Z])

πd([X,Y ,Z])ν1
1

1
n1

1
q1

1(xl11)λ1 +
πd([X − (xl11)l11 + (xl11 + 1)l11 ,Y ,Z])

πd([X,Y ,Z])ν1
1

ν1
1

)

=
n1

1∑
l11=1

(
n1

1
µ1

1
λ1

1
H1

1 (xl11)
1
ν1

1

1
n1

1
q1

1(xl11)λ1 +
H1

1 (xl11 + 1)
H1

1 (xl11)
ν1

1
ν1

1

)

=
n1

1∑
l11=1

q1
1(xl11) · (µ1

1/ν
1
1) +H1

1 (xl11 + 1)
H1

1 (xl11)

= n1
1 (96)

Here, the last step follows from the discrete renewal relation (60) and noting thatH1
1 (1) = µ1

1/ν
1
1 .

Hence, since lhs = rhs, it follows that (70.1) = (70.1)′.
(70.2) = (70.2)′: First of all, it is noted that the same indicator is included on the left-hand

side and right-hand side. Therefore, it suffices to consider the non-zero case (n1
22 > 0). To this end,

the detailed product form (69) is substituted and both sides are divided by πd(R)ν1
22. This yields

the following for the left-hand side lhs:
n1

22∑
l122=1

πd([X,Y ,Z])
πd([X,Y ,Z])ν1

22
ν1

22 = n1
22 (97)

Similarly, after cancelling out and rearranging terms, the right-hand side rhs simplifies to:

rhs =
n1

22∑
l122=1

( n1
1+1∑
l11=1

πd([X + (1)l11 ,Y − (yl122
)l122

,Z])
πd([X,Y ,Z])ν1

22
p1

1,2
1
n1

22
q1

22(yl122
)ν1

1+

πd([X,Y − (yl122
)l122

+ (yl122
+ 1)l122

,Z])
πd([X,Y ,Z])ν1

22
ν1

22

)

=
n1

22∑
l122=1

n1
1+1∑
l11=1

1
n1

1 + 1
λ1
µ1

1
H1

1 (1)n1
22

µ1
22

p1
1,2λ1

1
H1

22(yl122
)

1
ν1

22
p1

1,2
1
n1

22
q1

22(yl122
)ν1

1 +
H1

22(yl122
+ 1)

H1
22(yl122

)
ν1

22
ν1

22
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=
n1

22∑
l122=1

 q1
22(yl122

)
H1

22(yl122
)
µ1

22
ν1

22

1
n1

1 + 1
ν1

1
µ1

1

n1
1+1∑
l11=1

H1
1 (1) +

H1
22(yl122

+ 1)
H1

22(yl122
)


=

n1
22∑

l122=1

(
q1

22(yl122
)

H1
22(yl122

)
µ1

22
ν1

22

1
n1

1 + 1
ν1

1
µ1

1
(n1

1 + 1)µ
1
1
ν1

1
+
H1

22(yl122
+ 1)

H1
22(yl122

)

)

=
n1

22∑
l122=1

q1
22(yl122

) · (µ1
22/ν

1
22) +H1

22(yl122
+ 1)

H1
22(yl122

)

= n1
22 (98)

Here, the last step follows from the discrete renewal relation (63) and noting thatH1
22(1) = µ1

22/ν
1
22.

Therefore, lhs = rhs, from which it can be concluded that (70.2) = (70.2)′.
(70.3) = (70.3)′: First of all, it is noted that the indicators on both sides are equal. Therefore,

the non-zero case (n2
22 > 0) is only left to be verified. To this end, the detailed product form (69)

is substituted and both sides are divided by πd(R)ν2
22. The left-hand side lhs is then as follows:

n2
22∑

l222=1

πd([X,Y ,Z])
πd([X,Y ,Z])ν2

22
ν2

22 = n2
22 (99)

Similarly, after cancelling out terms, the right-hand side rhs is as follows:

rhs =
n2

22∑
l222=1

(
πd([X,Y ,Z − (zl222

)l222
])

πd([X,Y ,Z])ν2
22

q2
22(zl222

)λ2

n2
22

+
πd([X,Y ,Z − (zl222

)l222
+ (zl222

+ 1)l222
])

πd([X,Y ,Z])ν2
22

ν2
22

)

=
n2

22∑
l222=1

(
n2

22
µ2

22
λ2

1
H2

22(zl222
)

1
ν2

22

q2
22(zl222

)λ2

n2
22

+
H2

22(zl222
+ 1)

H2
22(zl222

)
ν2

22
ν2

22

)

=
n2

22∑
l222=1

q2
22(zl222

) · (µ2
22/ν

2
22) +H2

22(zl222
+ 1)

H2
22(zl222

)

= n2
22 (100)

Here, the last step follows from the discrete renewal relation (63) and noting thatH2
22(1) = µ2

22/ν
2
22.

Hence, as lhs = rhs, it follows that (70.3) = (70.3)′.
(70.4) = (70.4)′: Since the right-hand side is divided into three parts, it must be verified that

(70.4) = (70.4)′, where (70.4)′ = (70.4a)′ + (70.4b)′ + (70.4c)′. At first, the indicators on both sides
are disregarded. Then, the detailed product form (69) is substituted and both sides are divided by
πd(R). This leads to the following for the left-hand side lhs:

lhs =
n1

1+1∑
l11=1

πd([X,Y ,Z])
πd([X,Y ,Z])

1
n1

1 + 1
λ1 = (n1

1 + 1) 1
n1

1 + 1
λ1 = λ1 (101)

Similarly, the right-hand side, which consists of rhsa, rhsb and rhsc, is then given by:

rhsa =
n1

1+1∑
l11=1

πd([X + (1)l11 ,Y ,Z])
πd([X,Y ,Z]) p1

1,0ν
1
1 =

n1
1+1∑
l11=1

1
n1

1 + 1
λ1
µ1

1
H1

1 (1)p1
1,0ν

1
1 = p1

1,0λ1 (102)
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rhsb =
n1

1+1∑
l11=1

πd([X + (1)l11 ,Y ,Z])
πd([X,Y ,Z]) p1

1,2ν
1
1 =

n1
1+1∑
l11=1

1
n1

1 + 1
λ1
µ1

1
H1

1 (1)p1
1,2ν

1
1 = p1

1,2λ1 (103)

rhsc =
n1

22+1∑
l122=1

πd([X,Y + (1)l122
,Z])

πd([X,Y ,Z]) ν1
22 =

n1
22+1∑
l122=1

1
n1

22 + 1
p1

1,2λ1

µ1
22

H1
22(1)ν1

22 = p1
1,2λ1 (104)

Now, since p1
1,0 + p1

1,2 = 1, it follows that:

lhs = rhsa + rhsb (105)

lhs = rhsa + rhsc (106)

Next, the indicators on the left-hand side and right-hand side are also taken into account. It
can then be verified that (70.4) = (70.4)′ by considering the following four cases.

• Case I: n1
1 < N1 and (n1

22 + 1, n2
22) ∈ C2. The expression in (70.4b)′ is equal to zero, while

the indicators in the other equations simplify to one. From (106), it therefore follows that
(70.4) = (70.4)′ for Case I.

• Case II: n1
1 < N1 and (n1

22 + 1, n2
22) /∈ C2. The expression in (70.4c)′ is equal to zero, while

the indicators in the other equations simplify to one. From (105), it therefore follows that
(70.4) = (70.4)′ for Case II.

• Case III: n1
1 ≥ N1 and ([n1

1 −N1] + n1
22 + 1, n2

22) ∈ C2. The expression in (70.4b)′ is equal to
zero, while the indicators in the other equations again simplify to one. From (106), it therefore
follows that (70.4) = (70.4)′ for Case III.

• Case IV: n1
1 ≥ N1 and ([n1

1 − N1] + n1
22 + 1, n2

22) /∈ C2. The expressions in (70.4), (70.4a)′,
(70.4b)′ and (70.4c)′ are now all equal to zero. Hence, it can immediately be concluded that
(70.4) = (70.4)′ for Case IV as well.

For all possible cases, it is thus shown that (70.4) = (70.4)′.
(70.5) = (70.5)′: First of all, it is noted that the left-hand side and right-hand side contain

the same indicator. Therefore, the non-zero case (([n1
1 −N1]+ + n1

22, n
2
22 + 1) ∈ C2) is only left to

be verified. To this end, the detailed product form (69) is substituted and both sides are divided
by πd(R). This yields the following for left-hand side lhs:

lhs =
n2

22+1∑
l222=1

πd([X,Y ,Z])
πd([X,Y ,Z])

1
n2

22 + 1
λ2 = (n2

22 + 1) 1
n2

22 + 1
λ2 = λ2 (107)

Similarly, after cancelling out terms, the right-hand side rhs is then as follows:

rhs =
n2

22+1∑
l222=1

πd([X,Y ,Z + (1)l222
])

πd([X,Y ,Z]) ν2
22

=
n2

22+1∑
l222=1

1
n2

22 + 1
λ2
µ2

22
H2

22(1)ν2
22
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= (n2
22 + 1) 1

n2
22 + 1

λ2
µ2

22

(
µ2

22
ν2

22

)
ν2

22

= λ2 (108)

Hence, lhs = rhs, from which it can be concluded that (70.5) = (70.5)′.

A.3 Alternative proof of Theorem 1

Theorem 1 in Section 2.7.1 states that the parallel overflow system with call packing has a product-
form solution for the joint steady-state distribution of the number of jobs in the system, which
is given by (31). It is also mentioned that this result can be proven by modelling the parallel
overflow system with call packing as competing Markov chains. The product form (31) can then be
concluded from the product-form result in [13]. In [60] (pp. 29-31), this is illustrated for the case
without type 2 jobs and coordinate convex structure at station 2. In this appendix, a proof is given
for the case that type 2 jobs and coordinate convex structure at station 2 are included as well.

Proof. In order to describe the parallel overflow system with call packing as competing Markov
chains, the following two continuous-time Markov chains are first defined (i.e. K = 2).

Markov chain 1: First of all, Markov chain 1 describes the transitions of type 1 jobs at
station 1. This means that the state space, denoted by S1, is given by:

S1 = {n1|0 ≤ n1 ≤ N1} (109)

Moreover, the transition rates q1 = (q1(n1, n
′
1), n1, n

′
1 ∈ S1) are as follows:

q1(n1, n
′
1) =


λ1 n′1 = n1 + 1

n1µ1 n′1 = n1 − 1

0 else

, n1 6= n′1 (110)

q1(n1, n1) = −
∑

n′1∈S1\n1

q(n1, n
′
1) (111)

Next, it is noted that Markov chain 1 describes a standard Erlang loss system (M |M |N1|N1

queue) with arrival rate λ1 and mean service rate µ1. Therefore, it immediately follows that the
steady-state distribution π1 is as follows:

π1(n1) = c1
1
n1!

(
λ1
µ1

)n1

, n1 ∈ S1 (112)

Here, c1 is a normalizing constant.
Markov chain 2: Secondly, Markov chain 2 describes the transitions of both overflowed type 1

jobs at station 2 when station 1 is congested (i.e. n1 = N1) and type 2 jobs at station 2. This
means that the set of admissible states, denoted by S2, is as follows:

S2 = {(n2,m)|(n2,m) ∈ C} (113)
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Moreover, the transition rates q2 = (q2((n2,m), (n2,m)′), (n2,m), (n2,m)′ ∈ S2), are given by:

q2((n2,m), (n2,m)′) =



λ1 (n2,m)′ = (n2,m+ 1)

λ2 (n2,m)′ = (n2 + 1,m)

N1µ1 +mγ (n2,m)′ = (n2,m− 1)

n2µ2 (n2,m)′ = (n2 − 1,m)

0 else

, (n2,m) 6= (n2,m)′ (114)

q2((n2,m), (n2,m)) = −
∑

(n2,m)′∈S2\(n2,m)
q2((n2,m), (n2,m)′) (115)

Here, it is noted that the term N1µ1 is included, since an overflowed type 1 job at station 2 also
leaves if a job at station 1 completes its service (because of call packing).

Then, with c2 a normalizing constant, the following steady-state distribution π2 results:

π2(n2,m) =


c2

1
n2!

(
λ2
µ2

)n2 if m = 0

c2
1
n2!

(
λ2
µ2

)n2 (λ1)m∏m

k=1(N1µ1+kγ) if m > 0
, (n2,m) ∈ S2 (116)

This can be shown by verifying the following global balance equations by substitution of the
expression for π2 in (116) (note that (117.i) = (117.i)′, i = 1, ..., 4):

π2(n2,m)(N1µ1 +mγ)1{m>0}+
π2(n2,m)n2µ21{n2>0}+
π2(n2,m)λ11{(n2,m+1)∈C}+
π2(n2,m)λ21{(n2+1,m)∈C}


(117.1)
(117.2)
(117.3)
(117.4)

= (117)
π2(n2,m− 1)λ11{m>0}+
π2(n2 − 1,m)λ21{n2>0}+
π2(n2,m+ 1)(N1µ1 + (m+ 1)γ)1{(n2,m+1)∈C}+
π2(n2 + 1,m)(n2 + 1)µ21{(n2+1,m)∈C}


(117.1)′

(117.2)′

(117.3)′

(117.4)′

Next, as becomes apparent later on, it is necessary to distinguish between the transitions of
overflowed type 1 jobs and type 2 jobs at station 2. Therefore, the transition rates for Markov
chain 2 are separated into two parts (i.e. R2 = 2). These are a part that describes the behaviour
of overflowed type 1 jobs (denoted by q(1)

2 ) and a part that describes the behaviour of type 2 jobs
(denoted by q(2)

2 ). Hence, for (n2,m), (n2,m)′ ∈ S2, the transition rates q(1)
2 and q(2)

2 are as follows:

q
(1)
2 ((n2,m), (n2,m)′) =


λ1 (n2,m)′ = (n2,m+ 1)

N1µ1 +mγ (n2,m)′ = (n2,m− 1)

0 else

, (n2,m) 6= (n2,m)′ (118)

q
(1)
2 ((n2,m), (n2,m)) = −

∑
(n2,m)′∈S2\(n2,m)

q
(1)
2 ((n2,m), (n2,m)′) (119)
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q
(2)
2 ((n2,m), (n2,m)′) =


λ2 (n2,m)′ = (n2 + 1,m)

n2µ2 (n2,m)′ = (n2 − 1,m)

0 else

, (n2,m) 6= (n2,m)′ (120)

q
(2)
2 ((n2,m), (n2,m)) = −

∑
(n2,m)′∈S2\(n2,m)

q
(2)
2 ((n2,m), (n2,m)′) (121)

Hence, q(1)
2 and q(2)

2 are defined such that, for all (n2,m), (n2,m)′ ∈ S2, the following holds:

q2((n2,m), (n2,m)′) = q
(1)
2 ((n2,m), (n2,m)′) + q

(2)
2 ((n2,m), (n2,m)′) (122)

Moreover, it can be seen that Markov chain 2 is locally balanced with respect to the separation
(122). Here, Markov chain 2 is said to be locally balanced with respect to this separation if the
following is satisfied by the steady-state distribution π2 for r = 1, 2 (see [13], p. 539):∑

(n2,m)′∈S2

{
π((n2,m))q(r)

2 ((n2,m), (n2,m)′)− π((n2,m)′)q(r)
2 ((n2,m)′, (n2,m))

}
= 0 (123)

It can then be seen from the global balance equations (117) that this condition holds for r = 1, 2
by noting that (117.1) + (117.3) = (117.1)′ + (117.3)′ and (117.2) + (117.4) = (117.2)′ + (117.4)′.

The processes with transition rates q(1)
2 and q(2)

2 are then Markov chains on their own. These
Markov chains are referred to as Markov chain (2,1) for overflowed type 1 jobs at station 2 and
Markov chain (2,2) for type 2 jobs at station 2. It is noted that these Markov chains operate on
the same state space, which is S2.

In contrast, the transition rates of Markov chain 1 are not separated into multiple Markov
chains. For notational purposes, however, this is seen as if the transition rates of Markov chain 1
are ‘separated’ into one part (i.e. R1 = 1). The resulting chain is then referred to as Markov chain
(1,1) and its transition rates are denoted by q(1)

1 , where:

q
(1)
1 (n1, n

′
1) = q1(n1, n

′
1), n1, n

′
1 ∈ S1 (124)

Hence, three Markov chains are obtained:
• Markov chain (1,1) describing the transitions of type 1 jobs at station 1.
• Markov chain (2,1) describing the transitions of overflowed type 1 jobs at station 2.
• Markov chain (2,2) describing the transitions of type 2 jobs at station 2.

However, it can be noted that the parallel overflow system with call packing is not accurately
described by these Markov chains yet. More specifically, if n1 < N1 (and hence m = 0), there
should be no arrivals of overflowed type 1 jobs at station 2, since arriving type 1 jobs would go to
station 1. Moreover, if m > 0 (and hence n1 = N1), there should be no departures from station 1,
since an overflowed type 1 job from station 2 would immediately take the place of a departing job
at station 1 (because of call packing). Therefore, the competition mechanism is introduced.

To this end, define the index set I = {1, 2}, and let A(k,r),i and C(k,r),i, k = 1, 2, r = 1, ..., Rk
and i ∈ I, be as follows (see [13] for the precise interpretations):

A(1,1),1 = {n1|n1 = N1}; C(1,1),1 = ∅ (125)
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A(1,1),2 = {n1|0 ≤ n1 < N1}; C(1,1),2 = {(2, 1)} (126)

A(2,1),1 = {(n2,m)|m = 0, (n2, 0) ∈ C}; C(2,1),1 = ∅ (127)

A(2,1),2 = {(n2,m)|m > 0, (n2,m) ∈ C}; C(2,1),2 = {(1, 1)} (128)

A(2,2),1 = {(n2,m)|m = 0, (n2, 0) ∈ C}; C(2,2),1 = ∅ (129)

A(2,2),2 = {(n2,m)|m > 0, (n2,m) ∈ C}; C(2,2),2 = ∅ (130)

Hence, Markov chains (1,1) and (2,1) compete over resource 2, while they do not compete
over resource 1. Moreover, Markov chain (2,2) does not compete over resources at all. More
specifically, all Markov chains can make a transition if n1 ∈ A(1,1),1 and (n2,m) ∈ A(2,1),1 (then,
none of the Markov chains are frozen). On the other hand, only Markov chains (1,1) and (2,2)
are allowed to make a transition if n1 ∈ A(1,1),2 and (n2,m) ∈ A(2,1),1 (then, Markov chain (2,1)
is frozen). Similarly, only Markov chains (2,1) and (2,2) can make a transition if n1 ∈ A(1,1),1 and
(n2,m) ∈ A(2,1),2 (then, Markov chain (1,1) is frozen). Finally, it is not possible to be in a state
(n1, n2,m) with n1 ∈ A(1,1),2 and (n2,m) ∈ A(2,1),2.

Here, it is noted that Markov chain (2,2) does not compete over resources, which means that it
is never frozen (i.e. it can always make a transition independent of the state). As a consequence,
if n1 < N1, Markov chain (2,2) can still undergo transitions, while Markov chain (2,1) is frozen.
Hence, type 2 jobs can still arrive at and leave from station 2, while arrivals of overflowed type 1
jobs cannot occur, which is as desired. Besides that, note that, as C(2,2),1 = C(2,2),2 = ∅, there are
multiple possibilities to choose A(2,2),1 and A(2,2),2.

As mentioned before, because of the competition mechanism, a state (n1, n2,m) with both
n1 ∈ A(1,1),2 and (n2,m) ∈ A(2,1),2 cannot occur. Therefore, the state space S is as follows:

S = S1 × S2\A(1,1),2 ×A(2,1),2

= {(n1, n2,m) | 0 ≤ n1 < N1, m = 0, (n2, 0) ∈ C or n1 = N1, (n2,m) ∈ C} (131)

Subsequently, the coefficients c1(n1) and c2(n2,m) are chosen equal to one for all n1 ∈ S1 and
(n2,m) ∈ S2, respectively. The transition rates q = (q(n̄, n̄′), n̄, n̄′ ∈ S), where n̄ = (n1, (n2,m))
and n̄′ = (n′1, (n2,m)′), are then given by:

q(n̄, n̄′) = q
(1)
1 (n1, n

′
1)1{(n2,m)=(n2,m)′∈A(2,1),1}+

q
(1)
2 ((n2,m), (n2,m)′)1{n1=n′1∈A(1,1),1} + q

(2)
2 ((n2,m), (n2,m)′)1{n1=n′1}

(132)

Here, q(1)
1 , q(1)

2 and q(2)
2 are as defined in (124), (118) and (120), respectively.

Summarizing, Markov chain 1 and Markov chain 2 are defined, after which the transition rates
of Markov chain 2 are separated into two parts, as in (122). Moreover, Markov chain 2 is locally
balanced with respect to this separation. Subsequently, competition between the Markov chains is
introduced. This results in the Markov chain at state space S as given in (131) and with transition
rates q as defined in (132). This Markov chain accurately describes the behaviour of the parallel
overflow system with call packing.
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Moreover, the conditions to apply Theorem 2 in [13] (p. 539) are satisfied. Therefore, it follows
that the steady-state distribution πcp is as follows:

πcp(n1, n2,m) = Bπ1(n1)π2(n2,m), (n1, n2,m) ∈ S (133)

Here, B is the normalizing constant, which is determined by the competition mechanism.
Next, (112) and (116) are substituted for π1 and π2, respectively. Then, with ccp the normalizing

constant, the following product form results:

πcp(n1, n2,m) =


ccp

1
n1!

(
λ1
µ1

)n1 1
n2!

(
λ2
µ2

)n2 if m = 0

ccp
1
n1!

(
λ1
µ1

)n1 1
n2!

(
λ2
µ2

)n2 (λ1)m∏m

k=1(N1µ1+kγ) if m > 0
, (n1, n2,m) ∈ S (134)

It can be noted that this expression is equal to the product form (31). Hence, this completes
the (alternative) proof of Theorem 1.

A.4 Alternative proof of Theorem 4

In Section 4.5, the ICU-SDU system that is subject of Chapter 4 is shown to exhibit a product-form
solution for the steady-state distribution (see (76) in Theorem 4). To this end, it is verified that the
global balance equations are solved by the product form (76). As another approach, the product
form (76) can also be concluded from the product-form result in [26]. In this appendix, this is
further explained.

Proof. In order to prove the result, it is shown that the ICU-SDU system as described in Section 4.4
satisfies conditions (a) to (g) as stated in [26] and also given below. It is noted, though, that the
formulation below is slightly adapted by changing “calls” to “patients” and “type” to “class” (as
type is already used in a different context in this report).

First of all, the patients are categorized into three classes: type 1 patients who require ICU care
(class 1a), type 1 patients who require SDU care (class 1b) and type 2 patients who require SDU
care (class 2). Then, some notation is introduced.

Let T = {1a, 1b, 2}, and n = {n(t), t ∈ T} = {n(1a), n(1b), n(2)}, where:
• n(1a): The number of present type 1 patients who require ICU care (i.e. n(1a) = n1

11 + n1
12).

• n(1b): The number of present type 1 patients who require SDU care (i.e. n(1b) = n1
2).

• n(2): The number of present type 2 patients who require SDU care (i.e. n(2) = n2
2).

Hence, the state vector n now only contains the total number of present type 1 patients who re-
quire ICU care, which is denoted by n(1a), instead of the number of non-overflowed type 1 patients at
the ICU (i.e. n1

11) and overflowed type 1 patients at the SDU (i.e. n1
12) separately. However, n1

11 and
n1

12 can be obtained from n(1a) by noting that n1
11 = min{n(1a), N1} and n1

12 = max{n(1a)−N1, 0}.
Next, e(t) denotes the state that consists of exactly one patient of class t, t ∈ T . Moreover, the

arrival rate of class t patients, which is denoted by λ(t) (t ∈ T ), is as follows:

λ(1a) = λ1; λ(1b) = 0; λ(2) = λ2 (135)
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Subsequently, the set of feasible states F is given by S, where S is as specified by (75). Using
the notation that is introduced in this appendix, this means that F is as follows:

F = {n | 0 ≤ n(1a) ≤ N1, 0 ≤ n(1b) + n(2) ≤ N2 or

n(1a) > N1, 0 ≤ [n(1a)−N1] + n(1b) + n(2) ≤ N2 or

0 ≤ n(1a) + [n(1b) + n(2)−N2] ≤ N1, n(1b) + n(2) > N2}

(136)

Afterwards, the following non-negative function φ(n), n ∈ F , is defined:

φ(n) =


1

n(1a)!

(
1
µ1

11

)n(1a) 1
n(1b)!

(
1
µ1

2

)n(1b) 1
n(2)!

(
1
µ2

2

)n(2)
for n(1a) ≤ N1

1
N1!

(
1
µ1

11

)N1 1∏n(1a)−N1
k=1 (N1µ1

11+kµ1
12)

1
n(1b)!

(
1
µ1

2

)n(1b) 1
n(2)!

(
1
µ2

2

)n(2)
for n(1a) > N1

(137)

Finally, in order to describe the ICU-SDU system, r(t), p(t, s), δt(l,n) and γt(l,n) are defined
as follows (see below for the interpretations of these functions):

r(1a) = p1
1,0 (138)

r(t) = 1 t ∈ {1b, 2} (139)

p(1a, 1b) = p1
1,2 (140)

p(t, s) = 0 t ∈ {1a, 1b, 2}, s ∈ {1a, 1b, 2} (except t = 1a, s = 1b) (141)

δ1a(l,n) = 1/n(1a) for l = 1, ..., n(1a) n ∈ F with n(1a) ≤ N1 (142)

δ1a(l,n) =

 0

1

for l = 1, ..., , n(1a)− 1

for l = n(1a)
n ∈ F with n(1a) > N1 (143)

δ1b(l,n) = 1/n(1b) for l = 1, ..., n(1b) n ∈ F (144)

δ2(l,n) = 1/n(2) for l = 1, ..., n(2) n ∈ F (145)

γ1a(l,n) = 1/n(1a) for l = 1, ..., n(1a) n ∈ F with n(1a) ≤ N1 (146)

γ1a(l,n) =


µ1

11
N1µ1

11+(n(1a)−N1)µ1
12

µ1
12

N1µ1
11+(n(1a)−N1)µ1

12

for l = 1, ..., N1

for l = N1 + 1, ..., n(1a)
n ∈ F with n(1a) > N1 (147)

γ1b(l,n) = 1/n(1b) for l = 1, ..., n(1b) n ∈ F (148)

γ2(l,n) = 1/n(2) for l = 1, ..., n(2) n ∈ F (149)

Now, conditions (a) to (g) as given in [26] (pp. 5.1B.2.1-5.1B.2.2) can be verified. This can be
done as follows.

(a) Patients of class t arrive in a Poisson stream with parameter λ(t).
By (135) and Assumption A2, it immediately follows that condition (a) is satisfied.

(b) For all n with n(t) > 0, the service facility serves patients of class t at a total rate given by:

c(t,n) = φ(n− e(t))
φ(n) (150)
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with φ any arbitrary non-negative function.
Let the function φ be as in (137). Then, c(t,n) is as follows for all n with n(t) > 0 and t ∈ T :

c(1a,n) =

 n(1a)µ1
11 if n(1a) ≤ N1

N1µ
1
11 + (n(1a)−N1)µ1

12 if n(1a) > N1
(151)

c(1b,n) = n(1b)µ1
2 (152)

c(2,n) = n(2)µ2
2 (153)

Hence, it can be concluded that condition (b) is satisfied.

(c) A patient of class t who finishes service departs the network with probability r(t) or changes
into a patient of class s with probability p(t, s) where r(t) +

∑
s∈T p(t, s) = 1 for all t ∈ T .

Let r(t), t ∈ T , and p(t, s), t, s ∈ T , be as defined in (138), (139), (140) and (141). Then, by
Assumption A3, it immediately follows that condition (c) is satisfied.

(d) A patient of class t who arrives to find the network in state n − e(t) is allocated label l
amongst the class t patients with probability δt(l,n). When this happens, patients with labels
l, l + 1, ..., n(t)− 1 are relabelled l + 1, l + 2, ..., n(t).
First of all, let δ1a(l,n) be as defined in (142) and (143). Then, by (142), an arriving class 1a
patient is randomly allocated a label l amongst the class 1a patients if n(1a) ≤ N1 (i.e. there
are no overflowed patients at the SDU). Moreover, by (143), if n(1a) > N1 (i.e. there are
overflowed patients at the SDU), an arriving class 1a patient is allocated label n(1a) amongst
the class 1a patients (see also condition (e) below). It can thus be noted that a distinction
is made between non-overflowed class 1a patients, who have a label l that is smaller than or
equal to N1, and overflowed class 1a patients, who have a label l that is greater than N1.
This is necessary, since it is allowed that these patients have a different service rate (i.e.
µ1

11 6= µ1
12). Next, let δ1b(l,n) be as defined in (144). This means that arriving class 1b

patients are randomly allocated a label l amongst the class 1b patients. This is possible,
since the service rates of non-overflowed and overflowed class 1b patients are assumed to be
equal. As a consequence, it is not necessary to distinguish between these patients (see also
Section 4.5). Finally, let δ2(l,n) be as in (145). This means that arriving class 2 patients are
randomly allocated a label l amongst the class 2 patients. Similar as for class 1b patients,
this can be done, because non-overflowed and overflowed class 2 patients are assumed to have
an equal service rate. Hence, it follows that condition (d) is satisfied.

(e) The proportion of service effort that is given to the lth patient of class t when the state is n
is γt(l,n). When a patient with label l departs, patients with labels l + 1, l + 2, ..., n(t) are
relabelled l, l + 1, ..., n(t)− 1.
First of all, let γ1a(l,n) be as defined in (146) and (147). In that case, the service rate of a
non-overflowed class 1a patient, who, by design, has a label l that is smaller than or equal to
N1 (see also condition (d) above), is µ1

11. Moreover, the service rate of an overflowed class 1a
patient, who has a label that is greater than N1 (see again condition (d) above), is equal
to µ1

12. Subsequently, let γ1b(l,n) and γ2(l,n) be as defined in (148) and (149), respectively.
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Then, class 1b patients are served with rate µ1
2, while the service rate of class 2 patients is

equal to µ2
2. The first part of condition (e) is therefore satisfied. In order to verify the second

part of condition (e), it is important to pay attention to the situation that a class 1a patient
with label N1 + 1 is relabelled N1. More specifically, if n(1a) > N1 and a non-overflowed
class 1a patient with a label l that is smaller than or equal to N1 departs, the class 1a patient
with label N1 + 1 is relabelled N1. This can be interpreted as that this overflowed class 1a
patient goes from the SDU to the ICU. Moreover, because of (143), this patient is present for
a longer time than the other overflowed class 1a patients (i.e. FIFO). Hence, assuming FIFO,
the second part of condition (e) is also satisfied. Moreover, it is noted that, instead of FIFO,
several other assumptions (e.g. LIFO or random) could also be made by defining δ1a(l,n)
in (143) in a different way.

(f) If class t patients have a non-exponential service time distribution, then δt(l,n) = γt(l,n).
Since the service times are assumed to be exponentially distributed (see Assumption A7),
condition (f) is satisfied. On the other hand, because δ1a(l,n) 6= γ1a(l,n), condition (f) would
not be satisfied if the service time distribution is assumed to be non-exponential. It is noted,
though, that this is not the case if the service rates of non-overflowed and overflowed class 1a
patients are assumed to be equal (i.e. µ1

11 = µ1
12). More specifically, similar as for class 1b

and class 2 patients, δ1a(l,n) can then be chosen equal to 1/n(1a) for all l = 1, ..., n(1a), even
if n(1a) > N1. Moreover, if µ1

11 = µ1
12, γ1a(l,n) simplifies to 1/n(1a) for all l = 1, ..., n(1a).

Therefore, it follows that δ1a(l,n) = γ1a(l,n), which means that condition (f) is also satisfied
for non-exponential service times if µ1

11 = µ1
12.

(g) For all t ∈ T and n + e(t) ∈ F , if λ(t) > 0 or r(t) > 0, then n ∈ F , and if p(s, t) > 0 or
p(t, s) > 0, then n + e(s) ∈ F .
Since r(t) > 0 for t ∈ {1b, 2}, r(1a) = p1

1,0 and p(1a, 1b) = p1
1,2, where p1

1,0 and p1
1,2 may be

larger than zero, it follows that the following conditions must hold:

n + e(1a) ∈ F ⇒ n ∈ F (154)

n + e(1b) ∈ F ⇒ n ∈ F (155)

n + e(2) ∈ F ⇒ n ∈ F (156)

n + e(1a) ∈ F ⇒ n + e(1b) ∈ F (157)

n + e(1b) ∈ F ⇒ n + e(1a) ∈ F (158)

Now, from (136), it can be readily seen that these conditions are fulfilled. Hence, it can be
concluded that condition (g) is satisfied.

It is thus verified that conditions (a) to (g) are satisfied by the ICU-SDU system as introduced
in Section 4.4. Hence, it can be concluded from Theorem 2 in [26] (p. 5.1B.2.2) that the steady-state
distribution π(n), n ∈ F , has the following solution:

π(n) = cφ(n)
∏
t∈T

[y(t)]n(t) (159)
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Here, c is the normalizing constant and the y(t) satisfy:

y(t) = λ(t) +
∑
s∈T

y(s)p(s, t) for t ∈ T (160)

It can therefore be noted that the y(t), t ∈ T , are as follows:

y(1a) = λ(1a) + 0 = λ1; y(1b) = 0 + y(1a)p(1a, 1b) = p1
1,2λ1; y(2) = λ(2) + 0 = λ2 (161)

Consequently, the following expression for π(n), n ∈ F , is obtained:

π(n) =


1

n(1a)!

(
λ1
µ1

11

)n(1a) 1
n(1b)!

(
p1

1,2λ1

µ1
2

)n(1b)
1

n(2)!

(
λ2
µ2

2

)n(2)
n(1a) ≤ N1

1
N1!

(
λ1
µ1

11

)N1 (λ1)n(1)−N1∏n(1a)−N1
k=1 (N1µ1

11+kµ1
12)

1
n(1b)!

(
p1

1,2λ1

µ1
2

)n(1b)
1

n(2)!

(
λ2
µ2

2

)n(2)
n(1a) > N1

(162)

Next, since n1
11 = min{n(1a), N1}, n1

12 = max{n(1a) − N1, 0}, n1
2 = n(1b) and n2

2 = n(2), the
following expression for π(n1

11, n
1
12, n

1
2, n

2
2), (n1

11, n
1
12, n

1
2, n

2
2) ∈ S, can be obtained:

π(n1
11, n

1
12, n

1
2, n

2
2) =


1
n1

11!

(
λ1
µ1

11

)n1
11 1

n1
2!

(
p1

1,2λ1

µ1
2

)n1
2 1
n2

2!

(
λ2
µ2

2

)n2
2 if n1

12 = 0

1
N1!

(
λ1
µ1

11

)N1 (λ1)n1
12∏n1

12
k=1(N1µ1

11+kµ1
12)

1
n1

2!

(
p1

1,2λ1

µ1
2

)n1
2 1
n2

2!

(
λ2
µ2

2

)n2
2 if n1

12 > 0
(163)

This expression is equivalent to the product-form solution for the steady-state distribution
in (76). Hence, this completes the (alternative) proof of Theorem 4.

Remark 19 (Overflow system in Chapter 3). It is noted that the overflow system with call packing
that is studied in Chapter 3 does not satisfy conditions (a) to (g), since condition (g) is not fulfilled.
This can be illustrated by the following example. Let N1 = N2 = M1

2 = M2
2 = 5 and consider the

admissible state (3, 0, 1, 4), that is, there are three type 1 jobs at station 1, no overflowed type 1 jobs
at station 2, one non-overflowed type 1 job at station 2 and four type 2 jobs at station 2 present.
Then, if p1

1,2 > 0, condition (g) would require that (2, 0, 2, 4) (i.e. the same state with one less
type 1 job at station 1 and one more non-overflowed type 1 job at station 2) is also an admissible
state. However, as (2, 4) /∈ C2, this is not the case, which means that condition (g) is not satisfied.
This means that the product form (39) cannot be concluded from Theorem 2 in [26]. It is noted,
though, that the product form may be concluded from Theorem 1 in [26] if it is possible to model
the required restrictions on the state space via the functions that are mentioned in conditions (a)
to (f) instead of using condition (g). However, this is not fully worked out.
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Appendix B

Blocking probabilities: Additional
information

In Chapter 3, an overflow system with serial structure is studied, where Section 3.5 focuses on
the blocking probabilities for this system. This appendix provides some additional information
regarding these blocking probabilities. First of all, in Appendix B.1, details on the calculation of
the blocking probabilities are given. Secondly, Appendix B.2 contains some numerical results.

B.1 Calculation of the blocking probabilities

In Section 3.5.2, it is briefly described how the blocking probabilities for the overflow system that
is studied in Chapter 3 can be determined from the steady-state distributions. This appendix
provides additional details on these calculations. First of all, in Appendix B.1.1, it is described how
the blocking probabilities for the overflow system with call packing can be calculated. Next, the
computations of the blocking probabilities for the overflow system without call packing are discussed
in Appendix B.1.2.

B.1.1 Serial overflow system with call packing

Let π be the steady-state distribution of the number of jobs in the serial overflow system with
call packing as given in (39). Because of the PASTA property of Poisson arrivals, the blocking
probabilities b1, B1, O1 and B2 can then be calculated by summing π(n) over the appropriate
states n = (n1

11, n
1
12, n

1
22, n

2
22). This yields:

b1 =
M1

2∑
n1

12=0

M1
2−n

1
12∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) = B1 +O1 (164)

B1 =
M1

2∑
n1

12=0

min{M2
2 ,N2−n1

12}∑
n2

22=0
π(N1, n

1
12,min{M1

2 − n1
12, N2 − n1

12 − n2
22}, n2

22) = b1 −O1 (165)
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O1 =
M1

2−1∑
n1

12=0

M1
2−n

1
12−1∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22−1}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) = b1 −B1 (166)

B2 =
N1−1∑
n1

11=0

M1
2∑

n1
22=0

π(n1
11, 0, n1

22,min{M2
2 , N2 − n1

22})+

M1
2∑

n1
12=0

M1
2−n

1
12∑

n1
22=0

π(N1, n
1
12, n

1
22,min{M2

2 , N2 − n1
12 − n1

22})

(167)

However, the PASTA property can no longer be used when the arrivals come from one of the
stations instead of from outside the system. Instead, the blocking probability can then be determined
by computation of a Palm probability. This means that B1

11,2 can be computed as follows:

B1
11,2 = U

V +W
, where (168)

U = 1
c

N1∑
n1

11=1

M2
2∑

n2
22=0

π(n1
11, 0,min{M1

2 , N2 − n2
22}, n2

22) · (p1
1,2n

1
11µ

1
11) (169)

V = 1
c

N1−1∑
n1

11=1

M1
2∑

n1
22=0

min{M2
2 ,N2−n1

22}∑
n2

22=0
π(n1

11, 0, n1
22, n

2
22) · (p1

1,2n
1
11µ

1
11) (170)

W = 1
c

M1
2∑

n1
12=0

M1
2−n

1
12∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) · (p1

1,2n
1
11µ

1
11) (171)

Similarly, B1
1,2 can be determined as follows:

B1
1,2 = X

Y + Z
, where (172)

X = 1
c

N1∑
n1

11=1

M2
2∑

n2
22=0

π(n1
11, 0,min{M1

2 , N2 − n2
22}, n2

22) · (p1
1,2n

1
11µ

1
11) (173)

Y = 1
c

N1−1∑
n1

11=1

M1
2∑

n1
22=0

min{M2
2 ,N2−n1

22}∑
n2

22=0
π(n1

11, 0, n1
22, n

2
22) · (p1

1,2n
1
11µ

1
11) (174)

Z = 1
c

M1
2∑

n1
12=0

M1
2−n

1
12∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) · (p1

1,2n
1
11µ

1
11 + p1

1,2n
1
12µ

1
12) (175)

It can be noted that in (169) and (173) we only sum over states with zero overflowed type 1 jobs
at station 2 (n1

12 = 0). The reason for this is that, because of the call packing assumption, a job
that finishes service at station 1 can only be blocked at station 2 if there are no overflowed type 1
jobs present. It is also noted that there is only one difference between (168) and (172), which is that
the arrival stream of finished overflowed type 1 jobs is only included in (172). This is reflected in
the addition of the term p1

1,2n
1
12µ

1
12 in (175). Finally, it can be seen that the factor 1/c is included in

the expressions for U , V , W , X, Y and Z. The reason for this is that it is not necessary to compute
the normalizing constant c in the product form (39), since these cancel out in (168) and (172).
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B.1.2 Serial overflow system without call packing

Let π be the steady-state distribution of the number of jobs in the serial overflow system without call
packing. For example, π can be determined by using a numerical algorithm (e.g. GTH algorithm),
as discussed in Section 3.4.2. Because of the PASTA property of Poisson arrivals, the blocking
probabilities b1, B1, O1 and B2 can then be computed by summing π(n) over the appropriate states
n = (n1

11, n
1
12, n

1
22, n

2
22). This yields:

b1 =
M1

2∑
n1

12=0

M1
2−n

1
12∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) = B1 +O1 (176)

B1 =
M1

2∑
n1

12=0

min{M2
2 ,N2−n1

12}∑
n2

22=0
π(N1, n

1
12,min{M1

2 − n1
12, N2 − n1

12 − n2
22}, n2

22) = b1 −O1 (177)

O1 =
M1

2−1∑
n1

12=0

M1
2−n

1
12−1∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22−1}∑

n2
22=0

π(N1, n
1
12, n

1
22, n

2
22) = b1 −B1 (178)

B2 =
N1∑

n1
11=0

M1
2∑

n1
12=0

M1
2−n

1
12∑

n1
22=0

π(N1, n
1
12, n

1
22,min{M2

2 , N2 − n1
12 − n1

22}) (179)

Here, it is noted that the situation at station 2 does not have any effect on the number of jobs
at station 1 when overflowed type 1 jobs at station 2 do no switch to station 1. As a consequence,
b1 can also be calculated using the Erlang loss formula (see also (23) in Example 7 in Section 2.5.1),
that is, b1 can also be determined as follows:

b1 = BEr(λ1, µ1, N1) =

 N1∑
n=0

1
n!

(
λ1
µ1

)n−1
1
N1!

(
λ1
µ1

)N1

(180)

Next, the PASTA property can no longer be used when the arrivals come from one of the
stations instead of from outside the system. Instead, the blocking probability can be determined
by computation of a Palm probability. This means that B1

11,2 can be computed as follows:

B1
11,2 = D

F
, where (181)

D =
N1∑

n1
11=0

M1
2∑
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12=0

min{M2
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12}∑
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π(n1

11, n
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22) · (p1
1,2n

1
11µ

1
11) (182)
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1
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1
11µ

1
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Similarly, B1
1,2 can be determined as follows:

B1
1,2 = G

H
, where (184)

G =
N1∑

n1
11=0

M1
2∑

n1
12=0

min{M2
2 ,N2−n1

12}∑
n2

22=0
π(n1

11, n
1
12,min{M1

2 − n1
12, N2 − n1

12 − n2
22}, n2

22) · (p1
1,2n

1
11µ

1
11) (185)
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H =
N1∑

n1
11=0

M1
2∑

n1
12=0

M1
2−n

1
12∑

n1
22=0

min{M2
2 ,N2−n1

12−n
1
22}∑

n2
22=0

π(n1
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1
12, n

1
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2
22) · (p1
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1
11µ
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1
12µ

1
12) (186)

It is noted that the only difference between (181) and (184) is the arrival stream of overflowed
type 1 jobs that complete service, which is included in (184), but not in (181). As a consequence,
the term p1

1,2n
1
12µ

1
12 is only added in (186).

B.2 Results of numerical experiments

Section 3.5.3 contains some numerical results of the blocking probabilities for the overflow system
that is subject of Chapter 3. In this appendix, some additional numerical results are provided.
Table 20 contains the parameter values, and the resulting blocking probabilities are given in Table 21.
Here, it is noted that the parameter values for the experiments correspond to the parameter values
for the experiments in Section 3.5.3.

Table 20: Numerical experiments: Parameter values

Experiment # λ1 λ2 µ1
11 µ1

12 µ1
22 µ2

22 p1
1,2 N1 N2 M1

2 M2
2

Experiment 1 50 15 10 - 20 16 1 5 5 5 1
Experiment 2 15 30 1 2 3 4 - 15 10 10 10
Experiment 3 14 16 3 2 4 6 1 7 10 - 10

Table 21: Numerical experiments: Resulting blocking probabilities

Experiment # µ1
12, p1

1,2 or M1
2 CP?(a) b1 B1 O1 B2 B1

11,2 B1
1,2

Experiment 1

µ1
12 = 1 Yes 0.5562 0.1617 0.3945 0.5360 0.0577 0.0567
µ1

12 = 1 No 0.2849 0.2109 0.0739 0.7679 0.7170 0.6498
µ1

12 = 15 Yes 0.4633 0.0974 0.3658 0.5166 0.0731 0.0637
µ1

12 = 15 No 0.2849 0.0652 0.2197 0.5314 0.2097 0.1605

Experiment 2

p1
1,2 = 0.1 Yes 0.3764 0.0741 0.3023 0.1500 0.0879 0.0819
p1

1,2 = 0.1 No 0.1803 0.0477 0.1327 0.1815 0.1883 0.1621
p1

1,2 = 1 Yes 0.3116 0.1161 0.1955 0.3377 0.2612 0.2507
p1

1,2 = 1 No 0.1803 0.0716 0.1088 0.3694 0.3728 0.3291

Experiment 3

M1
2 = 1 Yes 0.1120 0.0901 0.0219 0.0011 0.7606 0.7590

M1
2 = 1 No 0.1000 0.0823 0.0177 0.0011 0.8047 0.7892

M1
2 = 10 Yes 0.1882 0.0167 0.1715 0.0560 0.0410 0.0400

M1
2 = 10 No 0.1000 0.0096 0.0905 0.0795 0.0832 0.0756

(a) Blocking probabilities for system with call packing (Yes) or system without call packing (No).
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Appendix C

Simulation: Additional information

In Section 3.6.1, the serial overflow system that is subject of Chapter 3 is analyzed by discrete-
event simulation. This appendix provides some information on how the simulations are performed.
First of all, the simulation model, and in particular the required input and provided output of the
simulation model, are discussed in Appendix C.1. Next, Appendix C.2 describes how the length
of the warm-up period, run length and number of replications are determined. Finally, verification
and validation are discussed in Appendix C.3.

C.1 The simulation model

In Section 3.6.1, discrete-event simulation is used to analyze whether or not the overflow system that
is studied in Chapter 3 is insensitive. The simulation model of the overflow system is implemented
in Rockwell’s Arena software. The Arena file can be obtained from the author upon request. Below,
it is discussed which input is required by the simulation model and which output it produces.

First of all, the simulation model requires the following input (see also Table 1 in Section 3.2):
• The number of servers at station 1, N1 ∈ N.
• The number of servers at station 2, N2 ∈ N.
• The maximum number of type 1 jobs allowed at station 2, M1

2 ∈ {0, ..., N2}.
• The maximum number of type 2 jobs allowed at station 2, M2

2 ∈ {0, ..., N2}.
• The arrival rate of type 1 jobs at station 1, λ1 > 0.
• The arrival rate of type 2 jobs at station 2, λ2 > 0.
• The service rate of type 1 jobs at station 1, µ1

11 > 0.
• The service rate of overflowed type 1 jobs at station 2, µ1

12 > 0.
• The service rate of non-overflowed type 1 jobs at station 2, µ1

22 > 0.
• The service rate of type 2 jobs at station 2, µ2

22 > 0.
• Probability that a type 1 job that completes service at station 1 goes to station 2, p1

1,2 ∈ [0, 1].
• The service time distribution, which is assumed to be either exponential or lognormal. More-

over, if the service times are lognormally distributed, the coefficient of variation (denoted
by cv) is required, cv > 0.
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• It must be specified whether the system with call packing or the system without call packing
is considered. If the system with call packing is considered, it must also be specified whether
the service of an overflowed type 1 job that switches from station 2 to station 1 is preemptively
resumed (resume) or completely started over (resample). Besides that, by default, the over-
flowed job that is present for the longest time switches from station 2 to station 1 (i.e. FIFO).
This could be changed to either LIFO or random.

As discussed in Section 3.6.1, we are interested in determining the steady-state probability B1,
which is equal to the proportion of time that the system spends in a state n with n1

11 = N1 and
(n1

12 + n1
22 + 1, n2

22) /∈ C2.1 To this end, we formulate a Boolean expression that is equal to one if
the system is in such a state and equal to zero otherwise. Subsequently, a time-persistent statistic
on this expression is created (see Appendix C.2.2 and, for example, [48] for a further discussion on
time-persistent statistics). This makes it possible to keep track of the time that the system spends
in a state n with n1

11 = N1 and (n1
12 + n1

22 + 1, n2
22) /∈ C2.

Moreover, next to the time-persistent statistic, the following counter statistics are also defined:
• The number of type 1 jobs that arrive at station 1.
• The number of type 1 jobs that are blocked at station 1.
• The number of type 1 jobs that are overflowed to station 2.
• The number of type 2 jobs that arrive at station 2.
• The number of type 2 jobs that are blocked at station 2.
• The number of type 1 jobs that complete service at station 1 and are then routed to station 2.
• The number of overflowed type 1 jobs that stay at station 2 after service completion.
• The number of non-overflowed type 1 jobs that are blocked at station 2.

From these counter statistics, the blocking probabilities that are described in Section 3.5.1 can
be determined. This can be useful, for example, when verifying the simulation model. It is noted,
though, that Section 3.6.1 only presents results of the time-persistent statistic.

C.2 Warm-up period, run length and number of replications

C.2.1 Non-terminating simulation and method of replication-deletion

In Section 3.6.1, discrete-event simulation is used to determine the steady-state probability B1 when
the service times are lognormally distributed. The simulation model can therefore be referred to as
a non-terminating (or infinite-horizon or steady-state) simulation model (see e.g. [6, 35, 37, 40, 48]
and references therein). This means that a “natural” event that specifies the length of a run does
not exist ([37], p. 79). A method that is often used for non-terminating simulations and also used
in this report is the method of replication-deletion (see e.g. [37, 48]). This means that multiple
replications are executed, and for each replication the observations from the beginning of a run

1Because of the PASTA property of Poisson arrivals, this probability can also be interpreted as the blocking
probability of type 1 jobs that arrive at station 1. Therefore, it is denoted by B1 (see also Section 3.6.1).
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(i.e. from the warm-up period) are deleted. In order to use the method of replication-deletion, the
following three things should thus be specified:

• Length of the warm-up period.
• Run length.
• Number of replications.

In Appendix C.2.2, it is discussed how the length of the warm-up period is determined. Besides
that, the determination of the run length and number of replications is described in Appendix C.2.3.

C.2.2 Determining the length of the warm-up period

As discussed in Appendices C.1 and C.2.1, the steady-state (or long-run) behaviour of the overflow
system that is studied by simulation, and in particular the steady-state probability B1, are of
interest. In order to study the steady-state behaviour accurately, it is important that the effects of
the initial conditions do not influence the simulation results (see e.g. [6]). Therefore, it is useful to
“warm up” the simulation model (see e.g. [6, 35, 37, 38, 40, 48]). This means that a so-called warm-
up period is specified, for which the observations are excluded. Then, only the observations that
are obtained after the warm-up period has ended are used to estimate the performance measure(s)
of interest.

The question that then arises is which length of the warm-up period should be chosen. For
this purpose, many methods have been developed (see e.g. [40, 48] and references therein). One of
the most frequently used techniques for determining the length of the warm-up period is Welch’s
method, which is also applied in this report. The steps of Welch’s method are given in Algorithm 3.
It can be seen that the number of replications n, run length m and window w should be specified
whenWelch’s method is applied. It is then stated in [48] that the number of replications n is typically
recommended to be at least five, while the run length m should be longer than the expected length
of the warm-up period. Besides that, in [38, 40], it is suggested to choose the window w as the
smallest value of w for which the graph appears smooth.

In order to performWelch’s method, the value of Yji should then be determined for all j = 1, ..., n
and i = 1, ...,m. In the current context, Yji denotes the fraction of time that the system spends in
a state n with n1

11 = N1 and (n1
12 +n1

22 + 1, n2
22) /∈ C2 during the ith interval of the jth replication.

As discussed in Appendix C.1, a time-persistent statistic is defined in order to keep track of the
time that the system spends in such a state. The value of Yji (j = 1, ..., n, i = 1, ...,m) can therefore
be determined from these time-persistent observations.

To this end, it is noted that the output that results from the simulation consists of a vector
with times, denoted by ~t, and a vector with corresponding values, denoted by ~v. Here, the vector ~t
contains the times at which the state of the system changes from a state n for which n1

11 = N1 and
(n1

12 + n1
22 + 1, n2

22) /∈ C2 do not hold to a state for which these conditions hold or vice versa (i.e.
the times that the Boolean expression changes from one to zero or from zero to one).2 The vector ~v

2The value of the Boolean expression is also recorded at times 0, m and L, where m and L are the run length and
length of the warm-up period, respectively.
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Algorithm 3 Welch’s method for determining the length of the warm-up period ([38], cited
in [40], p. 664)
Require: Simulation output of n replications each of length m, n,m ∈ N. Let Yji denote the ith

observation of the jth replication for i = 1, ...,m and j = 1, ..., n. Moreover, the window w,
which is a positive integer (i.e. w ∈ N) that is smaller than or equal to m/4 (i.e. w ≤ m/4)
should be specified.

1: Calculate the average Y i for i = 1, ...,m, where:

Y i = 1
n

n∑
j=1

Yji, i = 1, ...,m (187)

2: Define a moving average Y i(w) to smooth out the high-frequency oscillations in Y 1,...,Y m:

Y i(w) =



1
2i− 1

i−1∑
s=−(i−1)

Y i+s for i = 1, 2, ..., w

1
2w + 1

w∑
s=−w

Y i+s for i = w,w + 1, ...,m− w
(188)

3: Plot Y i(w) for i = 1, ...,m − w, and choose the warm-up length to be the value of i beyond
which Y i(w) appears to be converged.

4: return Length of the warm-up period.
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Figure 15: Example of the values of the time-persistent statistic when the run length is m and the length
of the warm-up period is 0
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Algorithm 4 Determining Yji for replication j and all i = 1, ...,m
Require: Simulation output for replication j consisting of a K×1 vector with times, denoted by ~t,

and a K × 1 vector with corresponding values, denoted by ~v. Let ~t(k) and ~v(k) denote the kth
element of vector ~t and ~v, respectively.

1: Obtain a K × 1 vector, denoted by ~a, that has the following entries, denoted by ~a(k):

~a(1) = 0; ~a(k) = ~a(k − 1) + {~t(k)− ~t(k − 1)} · ~v(k − 1), k = 2, ...,K (189)

Note that ~a(k) represents the amount of time that the system is in a state n with n1
11 = N1 and

(n1
12 + n1

22 + 1, n2
22) /∈ C2 up to time ~t(k).

2: for i = 1, ...,m− 1 do
3: Find the largest element of vector ~t that is still smaller than or equal to i. Let l be the

corresponding index, that is, ~t(l) ≤ i and ~t(l + 1) > i.
4: Determine Yji. This can be done as follows:

Yji =


~a(l + 1)− {~t(l + 1)− i} · ~v(l) i = 1

~a(l + 1)− {~t(l + 1)− i} · ~v(l)−
i−1∑
s=1

Yjs i > 1
(190)

5: end for
6: Determine Yjm. Since the last element of ~t is equal to m, this can be done by subtracting∑m−1

s=1 Yjs from the last element of ~a, denoted by ~a(K) (i.e. Yjm = ~a(K)−
∑m−1
s=1 Yjs).

7: return An m× 1 vector that contains the value of Yji at entry i.

then contains the corresponding values (i.e. zero or one). This means that the value of the Boolean
expression between times ~t(k− 1) and ~t(k) is equal to ~v(k− 1), where ~t(k) and ~v(k) denote the kth
element of ~t and ~v, respectively. This is visually illustrated by Figure 15.

Hence, before performing Welch’s method, the Yji (i = 1, ...,m, j = 1, ..., n) must first be
determined from the simulation output. This can be done as described in Algorithm 4. Then, the
length of the warm-up period can be determined by Welch’s method (see Algorithm 3). This is
illustrated for two examples below.

Example 14 (Welch’s method, 1/2). Consider the serial overflow system with call packing
(resume, FIFO) and exponential service times. Moreover, let the parameter values be as
given in Table 11 (scenario 1) in Section 3.6.1. The required length of the warm-up period is
then determined using Welch’s method (see Algorithm 3) as follows.

First of all, ten replications (i.e. n = 10) of length one year (i.e. m = 24·365 = 8760 hours)
are performed. From the obtained simulation output, the Yji (i = 1, ...,m, j = 1, ..., n), which
are required as input for Welch’s method, are then computed using Algorithm 4. Next, a
window of 1000 is chosen. This leads to the plot of Y i(w) that is shown in Figure 16. From
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Figure 16: Welch’s method: Plot of moving averages corresponding to Example 14

this plot, it appears that Y i(w) is converged beyond m = 200. Therefore, the required length
of the warm-up period is found to be 200 hours.

Example 15 (Welch’s method, 2/2). Consider the serial overflow system with call packing
(resume, FIFO). Moreover, let the service times be lognormally distributed with a coeffi-
cient of variation of five and the parameter values be as given in Table 11 (scenario 1) in
Section 3.6.1. The required length of the warm-up period is then determined using Welch’s
method (see Algorithm 3) as follows.

First of all, ten replications (i.e. n = 10) of length one year (i.e. m = 24·365 = 8760 hours)
are performed. From the obtained simulation output, the Yji (i = 1, ...,m, j = 1, ..., n), which
are required as input, are then determined using Algorithm 4. Subsequently, the window is
chosen to be 1000. This results in the plot of Y i(w) that is shown in Figure 17. From this
plot, it appears that Y i(w) is converged beyond m = 400. Consequently, it is concluded that
the required length of the warm-up period is 400 hours.

For the other cases, the required length of the warm-up period is determined using Welch’s
method in a similar manner as in Examples 14 and 15. This leads to the required lengths of the
warm-up periods that are mentioned in Table 22. It can thus be seen that a slightly longer warm-
up period is required when the service times are assumed to be lognormally distributed with a
coefficient of variation of five. Moreover, it can be noted that the required lengths of the warm-up
periods for scenario 1 and scenario 2 are more or less similar.

Ultimately, it is chosen to use a warm-up period of 1000 hours for all simulations. This is done
for the following reasons. First of all, it is more convenient to choose the same warm-up period for
all simulations. Secondly, it takes into account that Welch’s method is a subjective method (see
e.g. [40, 48]), which means that others may conclude that longer warm-up periods than those that

96



0 1000 2000 3000 4000 5000 6000 7000

Time

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b
ili

ty
 B

1

Figure 17: Welch’s method: Plot of moving averages corresponding to Example 15

Table 22: Insensitivity experiment: Required lengths of the warm-up periods based on Welch’s method

Assumptions Distribution CV Scenario 1 Scenario 2

Call packing
Resample
FIFO

Exponential 1 200 200
Lognormal 0.2 250 250
Lognormal 5 350 350

Call packing
Resume
FIFO

Exponential 1 200 (see Example 14) 200
Lognormal 0.2 250 250
Lognormal 5 400 (see Example 15) 450

Without
call packing

Exponential 1 250 250
Lognormal 0.2 300 300
Lognormal 5 400 400

Note: times are assumed to be in hours.

are mentioned in Table 22 are necessary.

C.2.3 Determining the run length and number of replications

After the length of the warm-up period is specified, the run length and number of replications should
also be determined. In this section, it is discussed how this can be done. The information that is
provided is mainly based on [6, 35, 37, 48].

First of all, the run length should be much larger than the length of the warm-up period ([37],
p. 81). There are then several ways to get an indication of an appropriate run length. For example,
in [7], it is mentioned that, as a rule of thumb, the run length should be at least ten times the length
of the warm-up period. Besides that, more sophisticated methods to determine the run length, such
as the convergence method that is mentioned in [46] (see also e.g. [50]), could also be thought of.
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Secondly, the number of replications is often chosen such that the 100(1 − α)% confidence
intervals of the performance measures of interest (in this case, the steady-state probability B1) are
not too wide. Therefore, it is first described how the confidence interval of a performance measure
can be determined. To this end, let Xn be the average value of the performance measure across n
replications. The 100(1− α)% confidence interval, denoted by CI, can then be found as follows:

CI = [Xn − h,Xn + h] (191)

Here, h is the half-width, which is as follows:

h = tn−1,1−α/2
Sn√
n
, (192)

Here, n is the number of replications, Sn the standard deviation across the n replications and
tn−1,1−α/2 the upper 1 − α/2 critical value for a t-distribution with n − 1 degrees of freedom.
Besides that, it is noted that the observed values of the performance measure across the replications
should be independent and identically distributed and normally distributed, which can be reasonably
assumed (see e.g. [35], pp. 237-239, for a further discussion).

As mentioned above, it is thus desired to choose the number of replications such that the (1−α)%
confidence interval in (191) is not too wide. This means that the half-width h should be smaller
than or equal to a desired half-width, denoted by hd. Multiple methods to achieve this desired half-
width hd can then be thought of. For example, it can be chosen to sequentially increase the number of
replications and compute the half-width after each replication. The simulation can then be stopped
when the desired half-width hd is met. Another option is to perform a pilot run of n0 replications.
If this leads to a half-width h0 that is larger than the desired half-width hd (i.e. h0 > hd), some
more replications can be made. The required number of replications, denoted by nr, can then be
approximated in several ways. For example, if it is assumed that tnr−1,1−α/2 ≈ tn0−1,1−α/2 and
Snr ≈ Sn0 , the following expression for nr can be derived from (192):

nr ≈ n0

(
h0
hd

)2
(193)

Hence, if it appears from the simulation results that the desired half-width hd is not met yet,
the number of replications can be increased to nr. Besides that, instead of increasing the number
of replications, the precision can also be improved by increasing the run length.

The following two examples then illustrate how the run length and number of replications are
determined.

Example 16 (Run length and number of replications, 1/2). Consider the overflow system
with call packing (resume, FIFO) and exponential service times. Moreover, let the parameter
values be as given in Table 11 (scenario 1) in Section 3.6.1. For this system, the steady-state
probability B1 is determined using discrete-event simulation. To this end, the length of
the warm-up period is first determined, which leads to a warm-up period of 1000 hours (see
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Appendix C.2.2). Besides that, the run length is set equal to five years (i.e. 24·365·5 = 43800
hours), which is considerably longer than the warm-up period. Finally, a level of significance α
of 0.05 and a desired half-width hd of 0.0005 are chosen.

Now, a pilot run of ten replications is performed (i.e. n0 = 10). From the simulation
output, the average value of B1 across the ten replications, denoted by X10, and standard
deviation, denoted by S10, can then be obtained. Subsequently, the half-width, denoted
by h0, is as follows:

h0 = t9,0.975
S10√

10
≈ 0.0004 < hd (194)

It can thus be noted that the resulting half-width h0 is already smaller than the desired
half-width hd. The steady-state probability B1 and corresponding 95% confidence interval
CI are therefore found to be as follows:

B1 = X10 ≈ 0.0828; CI = [X10 − h0, X10 + h0] ≈ [0.0825, 0.0832] (195)

Example 17 (Run length and number of replications, 2/2). Consider the overflow system
with call packing (resume, FIFO). Moreover, let the service times be lognormally distributed
with a coefficient of variation of five, and let the parameter values be as given in Table 11
(scenario 1) in Section 3.6.1. Discrete-event simulation is then used to determine the steady-
state probability B1. To this end, the length of the warm-up period is first determined, which
leads to a warm-up period of 1000 hours (see Appendix C.2.2). Besides that, a run length of
five years (i.e. 24 ·365 ·5 = 43800 hours) is (initially) chosen. Finally, a level of significance α
of 0.05 and a desired half-width hd of 0.0005 are chosen.

Then, a pilot run of ten replications is performed (i.e. n0 = 10). The average value of
B1 across the ten replications, denoted by X10, and standard deviation, denoted by S10, can
then be obtained from the simulation output. The following half-width, denoted by h0, is
then obtained:

h0 = t9,0.975
S10√

10
≈ 0.0013 > hd (196)

Hence, it appears that the resulting half-width h0 is larger than the desired half-width hd.
In order to meet the desired half-width, it can therefore be an option to increase the number
of replications. As mentioned above, the number of replications that is required to achieve
the desired half-width hd, denoted by nr, can then be approximated in several ways. For
example, according to the approximation in (193), nr is as follows:

nr ≈ 10 ·
(
h0
hd

)2
≈ 65 (197)

The number of replications could therefore be set to 65, after which the simulation can be
performed with the same warm-up period of 1000 hours and run length of five years. However,
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instead of increasing the number of replications, the half-width could also be reduced by
increasing the run length. It is therefore chosen to set the run length to ten years (i.e.
24 · 365 · 10 = 87600 hours) and the number of replications to 30. This leads to the following
half-width, denoted by h:

h = t29,0.975
S30√

30
≈ 0.0003 < hd (198)

It can thus be seen that the resulting half-width is now smaller than the desired half-
width hd. The following steady-state probability B1 and corresponding 95% confidence in-
terval CI are therefore obtained:

B1 = X30 ≈ 0.0827; CI = [X30 − h,X30 + h] ≈ [0.0824, 0.0830] (199)

For the other cases, the run length and number of replications are determined in a similar manner
as in Examples 16 and 17. This leads to a run length of five years (i.e. 24 · 365 · 5 = 43800 hours)
and ten replications for all instances that are considered in Section 3.6.1, except those that consider
lognormally distributed service times with a coefficient of variation of five. For these cases, the run
length is set equal to ten years (i.e. 24 · 365 · 10 = 87600 hours), and the number of replications is
chosen equal to 30. This results in the steady-state probabilities and corresponding 95% confidence
intervals that are given in Table 13 in Section 3.6.1.

C.3 Verification and validation

An important aspect when a simulation analysis is performed is to verify and validate the simulation
model. Therefore, this appendix briefly discusses verification and validation. The information that
is provided is mainly based on [6] (pp. 22-25), [35] (pp. 512-514) and [48] (pp. 14-15).

First of all, it is important that it is ensured that the simulation model behaves as intended.
This task can be referred to as verification. Moreover, when the simulation model represents a
real system (instead of a conceptual system), it should also be validated. This means that it is
determined whether the simulation model provides an adequate representation of the real system.

In this report, discrete-event simulation is used to study the overflow system that is described
in Section 3.3 under the assumption of lognormally distributed service times. In order to verify the
simulation model, several steps are then taken, among which the following:

• The simulation model is considered with deterministic interarrival and service times and only
a limited number of jobs. It is then watched how these jobs flow through the system in order
to check whether the model behaves as expected.

• As discussed in Section 3.6.1, the steady-state probability B1 is computed as the proportion of
time that the system spends in a state with n1

11 = N1 and (n1
12 + n1

22 + 1, n2
22) /∈ C2. Because

of the PASTA property of Poisson arrivals, this steady-state probability should be the same as
the probability that type 1 jobs that arrive at station 1 are blocked. Therefore, the resulting
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Table 23: Insensitivity experiment: Verification of simulation model by comparison of B1

Assumptions Scenario Numerical/analytical(a) Simulation

Call packing (resample, FIFO)
Scenario 1 0.0829 0.0829 (0.0825-0.0833)
Scenario 2 0.0898 0.0897 (0.0893-0.0901)

Call packing (resume, FIFO)
Scenario 1 0.0829 0.0828 (0.0825-0.0832)
Scenario 2 0.0898 0.0895 (0.0892-0.0898)

Without call packing
Scenario 1 0.0592 0.0592 (0.0589-0.0594)
Scenario 2 0.0636 0.0636 (0.0633-0.0639)

(a)For the system with call packing (both for resume and resample), the steady-state probability B1 is computed
from the product form (39). For the system without call packing, the steady-state probability B1 is determined

from the steady-state distribution that is obtained by applying the Gauss-Seidel method.

steady-state probability is compared with the resulting blocking probability, which indeed
leads to similar results.

• The simulation model is considered with service times that are exponentially distributed
instead of lognormally distributed. In this case, the steady-state probability B1 can also be
analytically or numerically determined (see Section 3.6.1). If the simulation model behaves as
intended, the resulting steady-state probabilities should therefore be close to the corresponding
analytical and numerical steady-state probabilities. As illustrated by the results in Table 23,
this indeed appears to be the case.
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Appendix D

Matlab code

This appendix contains and discusses the Matlab code that is used in this report. Because of space
considerations, the appendix is included in a separate file. It can be obtained from the author upon
request.
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