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Abstract
Security misconfigurations are one of the biggest threats

to cloud environments. In recent years, misconfigura-
tions of cloud services have led to major security inci-
dents and large-scale data breaches. Proper configura-
tion of identity and access management services is es-
sential in maintaining a secure cloud environment. Due
to the dynamic and complex nature of cloud environ-
ments, misconfigurations can be easily introduced and
go undetected for a long period. Therefore, it is critical
to detect any potential misconfigurations before they
can be abused.

In this paper, we present a novel misconfiguration de-
tection approach for identity and access management
policies in AWS. Our approach is based on a graph
model representation of identity and access manage-
ment data. We assume that similar identity and ac-
cess management policies also have similar graph rep-
resentations. Therefore, properly configured policies
are similar to each other, and misconfigurations are
different. Our main insight therefore is that we can
use anomaly detection techniques to spot outliers, and
therefore detect potential misconfigurations. Our pro-
posed approach first creates a graph model from all the
identity and access management policies in a cloud envi-
ronment. Then, the graph is transformed into a vector
representation. Finally, we apply anomaly detection on
new observations to determine whether they are poten-
tial misconfigurations or not. We evaluate our approach
on real-world identity and access management policy
data of three cloud environments and demonstrate its
effectiveness to detect misconfigurations (precision of
85%, recall of 73%).

1. INTRODUCTION
Data breaches are still an increasing threat to society

[1]. A few years ago a data breach that compromised
a hundred data records would have been major news.
Nowadays, data breaches of hundreds of millions or even
billions of data records can be considered common. In

2019, Capital One, an American bank holding suffered
a data breach, where data of over a hundred of million
people was stolen [2]. More recently, the credit card de-
tails of more than a hundred million hotel guests were
stolen [3], the personal data of over 10 million church-
goers was leaked [4], and inmate records were leaked
from a prison system [5]. These data breaches only
demonstrate part of a much larger problem, as there
are online lists that collect vulnerable cloud systems
[6] [7]. All these breaches could have been prevented
and have two characteristics in common. First, all the
breached databases were hosted in the cloud. Second,
the systems were vulnerable due to security misconfigu-
rations in the used cloud resources, e.g. Amazon Simple
Storage Service (S3) [8].

Ever since its introduction in 2006, cloud computing
has been on the rise. Cloud computing allows for the
delivery of on-demand computing services, which range
from computing power to storage services. Due to the
pay-as-you-go nature of the services, users can bene-
fit from a flexible cost structure, with no considerable
investments needed upfront. While the use of cloud ser-
vices offers a wide range of benefits, it also comes with
several security challenges [9]. As the aforementioned
data breaches already demonstrate, security misconfig-
urations, like for example publicly accessible private
data, are a considerable threat to cloud security. The
problem is even larger than we see since only misconfig-
urations that lead to incidents are reported [10]. This is
also confirmed in multiple surveys on cloud security [11]
[12], where security misconfigurations are always listed
as one of the most important security threats to cloud
computing. In fact misconfigurations have a higher im-
pact on cloud environments since these environments
generally are exposed to the Internet, which creates a
larger attack surface and makes it easier for malicious
actors to abuse the misconfigurations.

To prevent the aforementioned breaches, proper iden-
tity and access management (IAM) is needed. IAM is
about defining and managing the roles and access priv-
ileges of network users and systems. When configured
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correctly, IAM systems prevent unauthorized access to
the protected resources, ultimately making sure that
only the right users get access to the right resources.
However, errors can be made during the configuration
of IAM systems: this is what we call misconfigurations.
Examples of IAM misconfigurations can be:

• Attaching IAM policies to users instead of groups
or roles;

• Granting all privileges to all users instead of adopt-
ing the least privilege principle (over permissive
policies);

• Resource-based policies are not attached to the de-
fined resource.

Cloud providers have adopted the shared responsi-
bility model [13]. In essence, this means that cloud
providers are responsible for the security of the cloud
infrastructure and physical machines, while customers
are responsible for the security of whatever is hosted
in the cloud. Therefore, in this model, the configura-
tion of identity and access management systems is the
customer’s responsibility [14]. However, cloud environ-
ments are often large, dynamic, and complex, which
can make the configuration of security services difficult,
intensive, and error-prone. Therefore, there is a need
for systems to detect potential misconfigurations, be-
fore any misconfigurations can be abused.

Cloud Custodian [15] is a widely used open-source
tool, which utilizes a rule-based approach to prevent the
introduction of security misconfigurations in cloud envi-
ronments. Each new resource is first compared against
the created rules before it is deployed. Rule-based ap-
proaches are limited by the fact that rules need to be
created and maintained to adhere to security policies.
This can be error-prone and require a large effort. Fur-
thermore, resources are only checked on creation, while
in dynamic cloud environments misconfigurations can
be introduced through changes to the policies or re-
sources. A second widely used tool is P-DIFF [16],
which is a tool for monitoring access and control behav-
ior by using decision tree algorithms. P-DIFF relies on
a reactive approach, and misconfigurations will be de-
tected when they are already abused, which is also the
tool’s biggest limitation. Furthermore, P-DIFF learns
access control policies from access logs and therefore
it is limited to the information contained in the access
logs.

To overcome the limitations of existing solutions, we
propose a novel misconfiguration detection approach.
We aim to detect potential misconfigurations in a fully
automated, proactive, and generic way while requiring
low effort and maintenance. First, we collect all iden-
tity and access management policies from cloud envi-
ronments. Due to the connected nature of identity and

access management policies, our approach relies on a
graph-based model of the policies. Thus, we transform
the collected policies into graph representations. We as-
sume that similar policies also have similar graph rep-
resentations. Properly configured policies are similar
to each other and therefore, have similar graph repre-
sentations. Misconfigurations, on the other hand, are
generally over-permissive and therefore, are different.
Based on this assumption, our main insight is that we
can use anomaly detection techniques to detect poten-
tial misconfigurations.

For the implementation of our approach, we use Python
for the policy retrieval and anomaly detection steps. For
the graph model implementation, we use Neo4j [17], a
graph database platform.

To validate our proposed approach, we have collected
real-world identity and access management policy data
of three AWS cloud environments from three different
companies. We manually labeled the data for benign
policies and potential misconfigurations, and then eval-
uated our proposed approach. On average our proposed
approach has a precision of 85% and a recall of 73%.

In short, our paper makes the following contributions:

• We introduce an approach to model identity and
access management policies, and the attached en-
tities, using a graph-based representation;

• We present a novel misconfiguration detection sys-
tem that, based on our approach, uses anomaly
detection techniques to identify potential miscon-
figurations;

• We evaluate our proposed approach on real-world
identity and access management policy data from
three AWS cloud environments.

In spirit of open science, our Python source code
implementing our approach is available at https://

github.com/utwente-scs/iam-collector.

2. BACKGROUND AND MOTIVATION
In this section, we introduce the identity and access

management policies used in AWS environments, which
is the focus of this research project. Then, we discuss
the current challenges in this domain and the goals of
our proposed approach.

2.1 IAM in AWS
Identity and access management enables customers

to manage their access to AWS services and resources
securely. Using IAM, the customer can create and man-
age AWS users, groups, and roles, which are called enti-
ties. Furthermore, permissions can be used to allow and
deny certain actions on AWS resources. Within AWS,
IAM is offered as a dedicated service [18] which allows
for fine-grained access control for all the resources.
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{

"Version":"2012-10-17",

"name":"AdministratorAccess",

"Statement":{

"Effect":"Allow",

"Action":"*",

"Resource":"*"

}

}

Figure 1: AdministratorAccess policy, allowing
all actions on all resources

The permissions, which control the actions on re-
sources, are captured in policies and are stored in JSON
format. These policies can contain some top-level ele-
ments, like name and creation data, as well as one or
multiple statements. Within statements, actions are
specified, as well as the resources on which the actions
work. Actions are either allowed or denied. An exam-
ple of a policy can be found in Figure 1. First, we have
some top-level elements, in this case, version and name,
which are followed by a statement. The “*” character in
AWS policies is a wildcard symbol and is equivalent to
“all”. Therefore, the above policy allows for all actions
to be performed on all resources.

Before policies can be used, they need to be attached
to an entity. This means either to a user, group, or
role. The entity is then granted the permissions listed
in the policy. In AWS, roles can be assumed by either
users or other systems. By assuming a role, the user
is then granted all the permissions listed in the policies
attached to that role.

2.2 Problem Statement
Under the previously mentioned shared responsibil-

ity model [13] customers are responsible for the proper
configuration of the IAM service in AWS. This means
that the customers are responsible for the proper cre-
ation and maintenance of the identity and access man-
agement policies, as well as attaching the policies to the
right entities. This process can become quite complex
and demanding in cloud environments. Due to the dy-
namic nature of cloud environments, changes are made
frequently, which means that misconfigurations can be
introduced at any point in time, and can go undetected
for a long period. Creating over permissive policies,
or attaching policies to the wrong entities can lead to
dangerous misconfigurations. As a consequence, mis-
configurations often lead to large-scale data breaches
and other high-impact security incidents. Therefore, a
proper system is needed to detect potential misconfig-
urations before they can lead to security incidents.

2.3 Goals and Challenges
Detecting misconfigurations in cloud environments is

a fairly new field of research, therefore there are only
a limited number of existing solutions. We already
discussed a few, the other ones we discuss in Section
8. Each existing solution has several limitations, rule-
based approaches require a large effort to create and
maintain rules, while other tools rely on a reactive ap-
proach after the misconfiguration is already abused. There-
fore, there is a need for a novel misconfiguration de-
tection approach. The new approach should meet the
following requirements:

• Fully automated; The proposed solution should
not rely on manually created rules and detect mis-
configurations in a fully automated way;

• Proactive; Misconfigurations should be detected
before they can be abused;

• Generic; The system should detect misconfigura-
tions in a generic way, i.e. not only being able
to detect a certain type of misconfiguration, but
rather detect patterns of correctly configured re-
sources such that all possible misconfigurations can
be detected;

• Low effort and maintenance; Ideally the so-
lution should be deployed and forgotten, requir-
ing low effort and maintenance to keep the system
functioning.

3. APPROACH
We aim to detect potential misconfigurations in iden-

tity and access management policies on the basis of the
policy documents as well as the attached entities in the
environment. Identity and access management policies
by default have a connected nature. Policies connect
actions to resources, as well as permissions to users.
Therefore, our approach relies on a graph-based rep-
resentation of the policies. The graph representation
enables us to leverage the connected nature of policies,
and as an added benefit provides advantages for the
analysis and visualization of the policies.

We assume that when policies are similar to each
other, it also results in similar graph representations.
The similarity between policies is defined by the level
of permissiveness, meaning the specified amount of al-
lowed actions and resources, type of allowed actions
(e.g. read-only), as well as the amount and type of
attached entities. Based on this assumption, we also as-
sume that properly configured policies have similar lev-
els of permissiveness, and therefore have similar graph
representations. Misconfigurations, on the other hand,
are generally far more permissive, and therefore are dif-
ferent compared to properly configured policies, which
makes misconfigurations stand out.
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Furthermore, due to the dynamic nature of cloud
environments, misconfigurations can be introduced at
various points in time, through various changes to the
policies. Modifications can be made to existing policies,
new policies can be created, or policies can be removed.
Therefore, new observations must also be considered in
our approach.

Based on these assumptions and observations, our
main insight is that anomaly detection techniques [19]
capture misconfigurations, and therefore enable the de-
tection of misconfigurations. To achieve this, the anomaly
detection models need to be trained on properly config-
ured, or benign, policy data. Then, when new observa-
tions occur, they need to be evaluated and checked.

In summary, to detect misconfigurations in identity
and access management policies, we make the following
design decisions:

• The methodology uses a graph-based approach to
model IAM policies and their attached entities in
graph representations;

• The methodology is based on anomaly detection
techniques and only learns on benign policy data;

• The methodology creates an embedding represen-
tation of every policy node in the graph.

Overview. In Figure 2, we illustrate the flow of our
proposed approach during the testing phase, which con-
sists of three main stages: graph creation, graph em-
bedding, and anomaly detection. The goal of the ap-
proach is to detect potential misconfigurations by being
deployed in a cloud environment. The first stage is to
build a graph model from the identity and access man-
agement policies. The second stage is graph embedding.
In this stage, the graph model is transformed into a vec-
tor space, while maximally maintaining graph informa-
tion and structure. Finally, anomaly detection is per-
formed on new observations of policies in the embedded
vector space to detect outliers, and therefore potential
misconfigurations. If any outliers are detected, an alert
is raised.

Our proposed approach operates in two phases: the
training phase and the detection phase. The flow of the
detection phase has been described above. The flow
of the training phase is similar but has two important
distinctions. First, only benign policy data is used in
this phase, this means the anomaly detection model is
only trained on properly configured policies. Policies
are considered to be properly configured if they follow
security policies, adhere to industry best practices, or
are configured using existing solutions to ensure proper
configuration. Second, instead of using the anomaly
detector to evaluate new observations, the anomaly de-
tector is trained and the model is created.

Next, we describe each stage of our proposed ap-
proach in more detail.

Graph Creation. For the creation of the graph, we
define a cloud instance as c, where the graph representa-
tion of the policies is noted as G(c). The graph consists
of vertices and edges noted as (V,E). This gives us
the following graph representation of the policies in the
cloud as: G(c) = (V,E). Each node V in the graph is of
one of the following types: policy, action, resource, or
entity. Where entity can be one of the following: user,
group, or role. Policy nodes represent the actual iden-
tity and access management policies in the environment.
Action nodes represent the specified actions within the
permissions in the policy, while resource nodes repre-
sent the resources on which the actions apply. Entity
nodes are the identities that are present within the en-
vironment and can make use of the policies.

The relationships between the nodes are defined as
edges E in the graph as follows:

(Entity)-[ATTACHED_TO]->(Policy)

(Policy)-[ALLOWS | DENIES]->(Action)

(Action)-[WORKS_ON]->(Resource)

Graph Embedding. Graph models are not well suited
to be used in machine learning models. This is due to
the fact that working with graph models is computa-
tionally very expensive and transferring the information
contained in graphs to machine learning models is hard.
Therefore, we first need to transform the graph. In our,
approach we use a technique called graph embedding
[20]. With graph embedding, we are able to transform
our previously created graph into a vector representa-
tion, while still maximally maintaining important infor-
mation about the graph and graph structure. Informa-
tion that is maintained can for example be the number
of actions and resources in the policy or the attached
entities.

Graph embedding enables the model to learn contin-
uous feature representations of the nodes in the graph.
It learns a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving
graph neighborhoods of nodes. Therefore, nodes that
are similar and close to each other in the graph, also
remain similar and close to each other in the vector rep-
resentation. Node similarity can be seen as the level of
permissiveness they have, so the number of actions and
resources contained in the policy, but also the entities
that are attached to the policy. The graph embedding
is based on random path sampling through the graph,
which maximizes the neighborhood exploration.

The graph embedding technique is applied on the pol-
icy nodes in the graph. This is because the goal is to
detect potential misconfigurations at the policy level.

4



Figure 2: Overview of our proposed approach to detect potential misconfigurations. First, we create
graph model representations of the IAM policies in the cloud environment (Graph Creation); then,
we transform the graph model into vector representations (Graph Embedding), and finally, we apply
anomaly detection to spot outliers and therefore detect potential misconfigurations.

Because the other nodes are connected to the policy by
definition, they are considered in the graph embedding.

Anomaly Detection. The final stage in our pro-
posed approach is to use anomaly detection to detect
whether the embedding of a policy node is a potential
misconfiguration. We assume that similar policies also
have similar graph representations. Therefore, properly
configured policies are similar to each other, and mis-
configurations are different. Based on this assumption,
our main insight is that we can use anomaly detection
techniques to spot outliers and therefore detect poten-
tial misconfigurations. The anomaly detection model
is trained on properly configured, and therefore benign
data. These can be policies that follow security poli-
cies, adhere to industry best practices, or are created
through the use of existing tools to ensure proper con-
figuration. Then, when new observations occur, they
are checked against the model, if they are outliers, they
are marked as potential misconfigurations. This enables
our approach to monitor cloud environments over a pe-
riod of time since misconfigurations can be introduced
every time a change is made.

During the experimental evaluation of our proposed
approach, we have evaluated several anomaly detection
algorithms, the findings will be discussed in Section 5.
Based on these findings and the aforementioned fea-
tures, our proposed approach uses Local Outlier Factor
[21]. LOF is a density-based model, where a data point
is considered an outlier if it has a lower local density
compared to its neighbors. The model does not make
any assumption on the probability distribution of the
data, nor it attempts to divide the data using a single
curve, which makes it suitable for our approach.

4. IMPLEMENTATION
While in the core our proposed system is not depen-

dent on a specific cloud provider, we have decided to
focus on the AWS cloud platform during the develop-
ment. This due to the fact that AWS is currently still
the most popular and largest cloud provider [22].

Graph Creation. For the graph creation stage, we
make use of the graph database management system
Neo4j [17]. Neo4j is an open-source platform that en-
ables us to create and interact with graph databases.
The platform relies on the Cypher Query Language,
which allows for the easy creation of nodes and their
connecting edges.

To initially create the graph, we first create a node for
every policy. From the policies, we extract the action
and resource fields and create nodes for them as well.
When the nodes are created, we define the relationship
between the policy, actions, and resources. Finally, we
create nodes for the entities and attach them to the
policies that they can make use of. An example of such
a graph can be seen in Figure 3. Where the yellow node
is the policy, blue nodes are actions, and the purple node
is the resource.

Existing graphs can also be updated if changes are
made to the policies in the environment. This is done
by either adding new nodes or edges, deleting existing
nodes or edges or by modifying existing node properties.
This does not require the recreation of the whole graph.

Graph Embedding. The second stage of our ap-
proach is graph embedding, which is as explained needed
to transform a graph to vectors which we can then use
in machine learning models. To do this, we have used
the algorithm Node2vec [23]. This algorithm is con-
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Figure 3: Example of a graph representation of
a policy in the environment

sidered to be state-of-the-art in transforming graphs
into feature vector representations. Another major ad-
vantage of node2vec is that it is built-in in the Neo4j
platform. Therefore, using it on our created graphs
is very optimized. To use the algorithm, a call, with
the specification of parameters, can be made on the
whole database. We have used the default parameters
for node2vec, where the most important one is the di-
mension of the embedded vectors, which is 128. This
parameter has been chosen because it is currently con-
sidered industry best practice.

After running the node2vec function on the graph,
the embedded feature vectors are saved as node proper-
ties in the policy nodes. This means that we can access
the embedded vectors by querying the database. This
enables us to extract the vectors for the anomaly detec-
tion step.

Anomaly Detection. The final stage of our approach
is anomaly detection. For the implementation of the
anomaly detection techniques, we make use of the scikit-
learn Python tool kit [24]. This kit provides us access to
a wide range of machine learning algorithms, including
the Local Outlier Factor algorithm and other needed
algorithms. More details on the implementation of the
anomaly detection will be discussed in Section 5

5. EVALUATION
To evaluate our proposed approach, we seek to answer

the following research questions:

RQ1: What is the best performing anomaly detection
algorithm to detect potential misconfigurations?

RQ2: Are the optimal parameters of the anomaly detec-
tor transferable between datasets?

RQ3: What is the overall detection performance of our
proposed system in detecting potential misconfig-
urations?

To answer the above research questions, we designed
and performed several experiments on real-world data.
Next, we describe our experiments and their outcomes.

5.1 Datasets
In order to answer the above research questions, we

use real-world identity and access management data of
three AWS cloud environments. To collect the needed
data, we have implemented a data collection Python
program. The collector uses the AWS CLI [25] to in-
teract with the cloud environment and is accessible on
Github [26]. The collector collects all the identity and
access management policies, and all the entities (user,
groups, and roles). When the data is collected, it is ex-
ported in an Excel file. Before the export, we anonymize
all the sensitive information by using a secure crypto-
graphic hash function.

The composition of the three datasets can be found in
Table 1. The first two datasets belong to two different
Dutch enterprises. Dataset 1 belongs to a Dutch finan-
cial company and has approximately 12,000 employees.
Dataset 2 belongs to another Dutch financial company
with approximately 130 employees. Both companies are
clients, which enabled us to use their cloud environ-
ments. The third dataset belongs to a smaller Italian
company, with only 4 employees. The company was
willing to let us collect their data due to their interest
in our project.

Dataset
# of

policies
# of
users

# of
groups

# of
roles

# of
collections

1 842 0 0 55 8
2 812 0 0 34 2
3 826 2 1 10 12

Table 1: Composition of three collected datasets
used for the validation

As one can see in Table 1, the first two datasets
do not contain any users or user groups. This is be-
cause in those environments users are being federated.
This means they authenticate using another identity
provider, through which they receive temporary creden-
tials to use in the cloud environment, which they can
use to assume roles. This is a common industry practice
and does not impact our approach. The graph models
are created with only roles and therefore the anomaly
detectors only use roles as well.
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Furthermore, all three datasets have at least 2 points
of data collection, this can also be seen in Table 1. This
means that changes to the policies have also been cap-
tured, and we can verify whether misconfigurations have
been introduced at a later point in time, after the initial
configuration.

Data Labeling. In order to evaluate our proposed ap-
proach, we need labeled data. Therefore, we have manu-
ally labeled all three datasets for benign policy data and
potential misconfigurations. Each policy has been man-
ually reviewed for the level of permissiveness. Policies
that contain a high number of allowed actions, on a high
number of resources, were considered with extra care.
Each policy has been compared against the current in-
dustry best practices [27], and policies that were over
permissive have been labeled as potential misconfigura-
tions. An example of such a potential misconfiguration
is the previously mentioned AdministratorAccess pol-
icy. This policy has a high level of permissiveness since
it grants permission to perform all the actions on all
the resources. When not attached to the proper enti-
ties this policy could be a potential misconfiguration.
All three datasets are labeled, and respectively contain
12, 11, and 6 potential misconfigurations.

We also reviewed the changes that have been made to
the policies throughout the different collections that we
have performed. However, due to the limited access and
collections, no new misconfigurations were introduced
in the modifications. Therefore, we will simulate the
temporal aspect in our experiments.

5.2 Experiments
Best Suited Anomaly Detection. For the first ex-
periment, our goal was to answer RQ1. What is the
best performing anomaly detection technique for our
proposed approach? To answer this question, we focus
on one dataset, the most complete one, which is dataset
1. This dataset contains the most policies and roles. To
answer the question, we follow our proposed approach
as described in Section 3.

First, we create graph model representations from
the first IAM policy data collection, using the Neo4j
graph database platform. After the graph model is cre-
ated, we apply graph embedding to transform the pol-
icy nodes into vector representations. Before we apply
the anomaly detection techniques, we need to prepare
a training and testing set.

Dataset 1 contains a total of 842 policies and we
have spotted 12 misconfigurations. To ensure that the
anomaly detection model is solely trained on benign
data, we temporarily remove the misconfigurations from
the dataset. This leaves us with 830 benign policies.
From 90% of the benign policies, we create a training
set, therefore our training set size is 747 benign policies.

The test set consists of the remaining 10% of benign
policy data, or 83 policies, and the 12 misconfigura-
tions. The total test set size is therefore 95 policies.
We choose a 90/10 training testing split, because of the
nature of IAM policies in cloud environments. Most of
the policies are created initially when the environment
is created. New policies are added through the life-cycle
of the environment, but only comprise a small part of
the total amount. Furthermore, the test set is imbal-
anced, there are considerably more benign policies than
misconfigurations. This also represents the real world,
since misconfigurations are introduced much less fre-
quently, than benign modifications. This simulates the
temporal of cloud environment changes. The training
set can be seen as the cloud environment at the be-
ginning. The test set is then the changes made to the
policies in the environment, both additions of policies as
well as modifications, and can therefore be considered
new observations.

In order to evaluate the effectiveness of our proposed
approach, we implement 4 anomaly detection algorithms,
namely:

• One-Class Support Vector Machine

• Local Outlier Factor

• Isolation Forest

• Robust Covariance

Each anomaly detector goes through the same process.
We first train the model using the benign training set.
Then, we evaluate the performance of the model using
the test set, which contains both benign policies and
misconfigurations. To evaluate the performance we use
the following metrics: precision, recall, F1-score, and
ROC Area Under Curve. Precision is used to measure
the proportion of positive identifications that were ac-
tually correct. Recall is used to measure the proportion
of actual positives that were identified correctly. F1-
score is the harmonic mean of precision and recall, and
conveys the balance between the precision and the re-
call. ROC Area Under Curve (ROC AUC) is used to
measure the relationship between the True Positive and
False Positive Rate of the anomaly detector.

To maximize the performance of the anomaly de-
tectors we apply parameter optimization. Parameters
are internal model variables that determine the perfor-
mance of the model. By optimizing the parameters,
we maximize the performance of the model. The ef-
fect of the parameters on the performance metrics can
be found in Figure 4. The metrics which we optimize
for are ROC AUC, precision, and recall. Therefore,
this gives us the following optimal parameters for the
anomaly detectors:

• One-Class SVM: gamma = 0.001, nu = 0.5

• Local Outlier Factor: n neighbours = 5

7



• Isolation Forest: n estimators = 30

• Robust Covariance: contamination = 0.1

After selecting the optimal parameters, we evaluate
the performances of the four anomaly detection tech-
niques. The maximized performances can be found in
Table 2. The first thing that we notice, is that all four
techniques have relatively high precision. For the re-
call, however, there are bigger differences. Both met-
rics are important since precision measures how well
the anomaly detectors find only anomalies. While re-
call measures how well the detectors find all anomalies.
In our approach, a high recall is more important. This
is because we believe that potential misconfigurations
that are missed by the model will have a considerably
larger impact, than a false positive detection.

Looking at the results in Table 2, based on the recall
metric there is one algorithm that stands out, namely
the Local Outlier Factor (LOF). LOF has a recall of
0.69, which means that 69% of the misconfigurations are
correctly spotted. This means that 8 out of 12 miscon-
figurations are spotted by the anomaly detector. LOF
achieves a precision of 0.80, which means that 80% of
all policies that are marked as potential misconfigura-
tions, are actual misconfigurations, and 20% are false
positives.

Considering the combination of precision and recall,
as well as the ROC AUC, we can determine that LOF is
the best performing anomaly detector for our approach.
Therefore, we have answered RQ1.

Algorithm Precision Recall F1-Score ROC AUC
One-Class SVM 0.86 0.58 0.65 0.70
Local Outlier Factor 0.80 0.69 0.73 0.66
Isolation Forest 0.89 0.29 0.32 0.60
Robust Covariance 0.84 0.64 0.71 0.65

Table 2: Detection performance of the anomaly
detectors after parameter optimization on
dataset 1

Parameter Transferability. We design the second
experiment to answer RQ2. Is the optimal parameter,
that we have found in the previous experiment, trans-
ferable between datasets. To answer this question, we
use datasets 2 and 3. The basis of this experiment is
very similar to the first experiment. We first create
separate graph models for the two new datasets, then
we embed the policy nodes into vector representations.
However, instead of using all four anomaly detection
techniques, we only apply Local Outlier Factor as an
anomaly detector. Also, instead of performing param-
eter optimization, we use the previously found optimal
parameter, n neighbours = 5.

We also apply the same 90/10 training testing split
as before. Datasets 2 and 3 contain respectively 812
and 826 policies in total. For dataset 2 we create a

training set of 737 benign policies and a testing set of
11 misconfigurations, and 64 benign policies (total test
size: 75). For dataset 3 we create a training set of 743
benign policies and a testing set of 6 misconfigurations,
and 77 benign policies (total test size: 83).

Now that we have the training and testing sets for
both datasets, we can perform anomaly detection. For
both training sets, we create a LOF model, which we
train on the benign training sets, using the optimal pa-
rameter, n neighbours = 5. Finally, we evaluate the
performance of the anomaly detector using the two mixed
testing sets. The results can be found in Table 3

Dataset Precision Recall F1-Score ROC AUC
2 0.84 0.77 0.80 0.73
3 0.90 0.72 0.78 0.72

Table 3: LOF detection performance on dataset
2 and 3, with parameter n neighbours = 5

From the results, we observe that the detection per-
formance is even slightly higher compared to the previ-
ous results on dataset 1. All metrics for datasets 2 and 3
have improved compared to dataset 1. This shows that
the found optimal parameter, n neighbours = 5, is in-
deed transferable between datasets, and answers RQ2.

The fact that the parameter is transferable is no sur-
prise. We believe there are two reasons for this. First,
all three datasets are very similar to each other. This
is because the identity and access management policies
are all structured in the same way. Policies contain ac-
tions and resources and are attached to entities. This
is the same for all three datasets. Second, by default,
there are 515 IAM policies managed and provided by
AWS. Therefore, there is a significant overlap of data
between the datasets. Because of this, the model is able
to spot misconfigurations because it learns on properly
configured policies. This is the same, regardless of the
dataset.

We do notice that the performance of the LOF anomaly
detection is higher on the two new datasets. After
careful consideration and analysis, we do have an intu-
ition why this is the case. During the analysis, we no-
tice that there is a clearer distinction possible between
benign policy data and misconfigurations. We notice
that dataset 1 has more policies that offer a high level
of permissiveness, without being misconfiguration. In
datasets 2 and 3 however, we see that in general the poli-
cies are more conservative, and therefore have a lower
level of permissiveness. This enables the LOF anomaly
detector to create a clearer distinction between benign
data and misconfigurations and therefore enhances the
performance.

Overall Detection Performance. Finally, we can
answer RQ3, what is the overall detection performance
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Figure 4: Detection performance metrics during parameter optimization for the four anomaly detec-
tion techniques

of our proposed approach. In Table 4 we combine the re-
sults of the LOF anomaly detection on all three datasets.

Dataset Precision Recall F1-Score ROC AUC
1 0.80 0.69 0.73 0.66
2 0.84 0.77 0.80 0.73
3 0.90 0.72 0.78 0.72

Table 4: LOF detection performance on all three
datasets

For the overall detection performance of our approach,
we compute the weighted average precision and recall.
As weight factor, we use the proportion of policies in the
dataset to all collected policies. In total, the three col-
lected datasets contain 2480 policies, which gives us the
following weight factors: 0.34, 0.33, and 0.33. This gives
us a weighted average precision of 0.85 and a weighted
average recall of 0.73. In our approach a higher recall
is important. Since recall measures how many actual
misconfigurations are detected, and missing misconfig-
urations is very costly.

An average recall of 0.73 means that 73% of the mis-
configurations, that otherwise would go undetected, will
now be detected before leading to major problems. An
average precision of 0.85, means that of all policies marked
as misconfigurations, 85% are indeed misconfigurations,
and 15% are false positives. The percentage is not ideal
and can be improved, but it still manageable for a man-
ual review of all potential misconfigurations. Therefore,
we believe that our approach is effective in detecting po-
tential misconfigurations.

5.3 Runtime Performance
During the experiments, we also measured the run-

time performance of the graph creation and model train-
ing stage of our approach.

Graph Creation. First, we consider the graph cre-
ation stage. In this stage, the identity and access man-
agement policy data is transformed into a graph model
representation. The runtime performance of this stage
can be found in Figure 5. The performance scales lin-
early, but in the case of larger datasets can take a while.

In the case of our complete dataset, the graph creation
took 20 minutes and 55 seconds. It is worth mentioning
that only the initial graph creation is this long, this is
due to the fact that all the nodes need to be created.
Graph updates are considerably faster since the number
of new nodes is generally low.

Figure 5: Runtime performance of creating a
graph model from the policy data, as well as
embedding the graphs into vectors.

Model Training. We also consider the model training
overhead of the Local Outlier Factor anomaly detection
model. The LOF model is trained on benign data and
then used to determine whether new observations are
also benign or potential misconfigurations. We have
measured the runtime performance of the LOF model,
the results can be found in Figure 6. As can be seen,
LOF scales linearly for the number of policies to train
on. The training times are low because of the optimized
use of the vector representation of the policy data.

Furthermore, the testing of new observations is also
fast. Especially because only a relatively small number
of new observations happen at a time.
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Figure 6: Runtime performance of training the
LOF model

5.4 Discussion of Results
As closing remarks for this section, we discuss the

results and the cause of potential misclassifications in
the approach. First of all, we revisit the goals for our
approach. Our goals were to develop a fully automated,
proactive, generic, and requiring a low effort and main-
tenance approach. We believe that our proposed ap-
proach fulfills these goals. The proposed approach is
fully automated and does not require effort or mainte-
nance. After deployment, no user interaction is needed
to make the approach work. The approach is proactive
since it detects potential misconfigurations before they
can be abused. Finally, the approach is also generic,
as it does not require specific knowledge of misconfig-
urations. The approach learns a model based on prop-
erly configured policies and checks whether new obser-
vations adhere to the model. Therefore, all goals for
our approach have been fulfilled.

In our approach, false positives and false negatives
can occur. After investigating the cause of this, we have
found that false positives can occur on policies that have
a high level of permissiveness. This means that the poli-
cies permit a high number of actions on a high number
of resources. Even if the policy is properly configured,
and the allowed actions are restricted, it could still be
misclassified as a potential misconfiguration. An exam-
ple of such policy is the ReadOnly policy. This policy
permits 762 read-only actions, which makes it very per-
missive. However, since they are read-only permissions
on non-critical resources, we do not consider this a mis-
configuration, but the anomaly detector still classifies
it as a potential misconfiguration.

A similar situation happens in the case of false nega-
tives. False negatives can occur when a policy does not
seem permissive but actually allows certain high-impact
actions. An example of such a policy is the PowerUser-
Access policy. This policy only allows a small number
of actions, but they work critical resources and can have

a high impact.
Further research is needed to further improve the de-

tection performance, which we will discuss in the fol-
lowing sections.

6. LIMITATIONS
In this section, we discuss some limitations of our

proposed approach.

Benign Policy Data. First and foremost, a limita-
tion of our approach could be the assumption that we
only train the anomaly detection model on benign data.
This is because the policy data that has been collected is
from active and used cloud environments. Each dataset
has been manually reviewed, and potential misconfigu-
rations have been removed from the training set. There
are two limitations to this approach. First, the defini-
tion of what a misconfiguration is. In our approach we
have followed industry best practices to spot potential
misconfigurations, this could however mean that during
manual labeling, misclassification mistakes have been
made. Second, it is still possible that some misconfigu-
rations have gone unnoticed and ended up in the train-
ing set. We believe that due to very careful review, the
number of misconfigurations that have slipped through
is sufficiently low, to not have had a major impact on
the training.

Advanced Embedding and Anomaly Detection.
In our approach, we have used the graph embedding
technique Node2vec, which is currently in the state-of-
the-art of graph embedding. Node2vec in combination
with LOF has already provided us with good results in
detecting potential misconfigurations. There are how-
ever newer techniques in the making that might be able
to transform the graph in a better and more efficient
way. An example of such a new embedding technique
is GraphSage [28], which uses inductive representation
learning to also enable the embedding of node proper-
ties.

Furthermore, we have only considered four anomaly
detection algorithms in our approach. More complex
machine learning techniques could further enhance the
performance of our approach. Examples of such tech-
niques are Graph Convolutional Networks [29], and One-
Class Neural Networks [30].

Resource-Based Policies. In our current approach,
we only consider identity-based policies. There are,
however more identity and access management poli-
cies in cloud environments. For example, there are
also resource-based policies. These are policies that
are not attached to entities in the environment, but
rather directly to the resource. Therefore, specifying
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actions that are only allowed on that specific resource,
regardless of who is performing the action. An example
of a resource-based policy is setting a storage service
to be either publicly or privately accessible. Resource-
based policies are created and stored in the same way
as identity-based policies.

7. FUTURE WORKS
Apart from the limitations discussed in the previous

section, which will be addressed, we also see several
future works to further improve our proposed approach.

First, by adding a feedback loop in the future, the sys-
tem will be able to handle false positives better. When
a false positive occurs, or in case the raised alert is in-
tended behavior, the model will then be able to learn
from this and prevent another similar alert in the fu-
ture.

As we mentioned before, our current focus has been
on the AWS cloud platform. Although, we believe that
our proposed approach is not limited to just one cloud
platform. Therefore, future work is to evaluate the
performance of our approach on cloud environments of
other cloud providers.

Finally, link prediction techniques could be added
to the system. This will allow the system not only
to detect potential misconfigurations but also to de-
tect missing policies for entities that should have the
permissions. This will allow for remediation before it
leads to problems. Link prediction is possible with the
techniques used in our approach but is currently out of
scope.

8. RELATED WORKS
Access Control is a subfield of the broader area of
identity and access management and has been stud-
ied extensively. A number of tools have been proposed
to detect misconfigurations in access control systems.
These tools can be divided into two categories, internal
detection, and external detection tools.

First, we consider the internal detection solutions.
P-Diff [16] is a tool for monitoring access and control
behavior by using decision tree algorithms. While be-
ing effective, there are two major limitations, First, the
tool learns access control policies from access logs, and
therefore is limited to the information contained in the
access logs. Second, the approach can be considered re-
active, since the misconfiguration will only be detected
if it shows up in the access logs.

The second tool is Baaz [31]. Baaz infers permission
misconfigurations in an enterprise network my moni-
toring updates made to the access control metadata,
and looking for potential inconsistencies among peers.
Meaning that similar users, should also have similar per-
missions, if this is not the case, it might be a potential
misconfiguration. The major limitation of Baaz is that

it relies on the definition of what should be considered
as an inconsistency. This parameter can be tweaked
by administrators, but could still cause problems and
influence the performance of the system.

The second category consists of external detection
tools. A research study has been performed by Con-
tinella et al. [32], where the authors focused on Amazon
Simple Storage Service (S3) buckets [8]. The authors
focused on identifying misconfigurations, more specif-
ically key misuse, and permission configurations, that
affect users’ privacy and security. The most important
limitation of this work is that it only focused on the S3
storage service. Another research has been performed
on the cause of data leaks when cloud platforms are used
as mobile app back-ends [33], resulting in a tool called
LeakScope. The tool consists of three key components:
Cloud API identification, String Value Analysis, and
Vulnerability Identification. The tool has been proven
to be successful, however, some limitations have still
been found. First, it has false negatives, this is because
the list of used APIs might be incomplete, and there-
fore certain aspects can be missed. Secondly, the String
value analysis tool is not able to recognize dynamically
generated values. Furthermore, the ethical implications
posed as a limit in this research.

Rule-Based Solutions are the second category of so-
lutions. This approach relies on predefined rules to
which the newly created or modified cloud resources
need to adhere to. These rules have to be created, mon-
itored, and maintained throughout the life cycle of the
cloud environment. The set of defined rules are usually
created to be in line with the company security poli-
cies. There are several existing (open source) solutions
that implement this rule-based approach for detecting
security misconfigurations.

Cloud Custodian [15] is a widely used open-source
rule-based system. Cloud Custodian enables users to
be well managed in the cloud. It allows for an easy
definition of rules to manage the cloud infrastructure.
These rules are collected in policies. The policies can
be as simple or as complex as the person creating them
wants them to be. Examples of such policies can be
the blocking of all the public access to S3 buckets or
the detection of an account receiving admin privileges.
AWS Remediation Framework [34] is another example
of an open-source solution. As the name suggests, it is
a project that identifies and remediates AWS security
issues to ensure AWS usage is compliant with a set of
rules.

Although these rule-based solutions can be very pow-
erful and have clear advantages, there are also a number
of limitations. First of all, the rules need to be created
and maintained to adhere to security policies. This has
to be performed manually and can require a large ef-
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fort. Furthermore, this process can be error-prone, and
security policies can be insufficient to detect all miscon-
figurations. Secondly, cloud environments are generally
extremely dynamic and change frequently. There are
situations in which a certain action can be seen as a
misconfiguration, while it is needed for a certain op-
eration, predefined rules can therefore be too rigid to
handle these quick changes, which will impact the per-
formance of the system.

Cloud-Native Solutions are the final category. Cloud
providers have also started offering solutions for detect-
ing misconfigurations. AWS provides CloudTrail [35],
which is an AWS service that enables governance, com-
pliance, and auditing of the AWS account and all the
corresponding resources. It provides logging and contin-
uous monitoring of the AWS environment. Cloudtrail
can be used in two ways to detect misconfigurations.
First, it can be used to log and raise alerts in case any
changes are made to the identity and access manage-
ment configurations of the cloud resources. Second, it
can be used to detect unauthorized access if misconfigu-
rations are abused. Both ways have limitations. Either
over-alerting administrators on every change made, or
reacting to already happened abuse, thus being too late.

Furthermore, AWS has some mechanisms in place to
prevent misconfigurations. For example, when overly
permissive identity and access management roles are
created, the system raises a warning. This already cre-
ates the first line of defense, however, it can be easily
overridden by the administrator, and only identifies ma-
jor and obvious errors.

Anomaly Detection on graph-based models is becom-
ing widely used. Therefore, we also collected several re-
lated works in this field. This technique has been exten-
sively discussed in the survey on graph-based anomaly
detection [36]. In this survey, the authors provide a
general, comprehensive, and structured overview of the
state-of-the-art methods for anomaly detection in data
represented as graphs. They prove that graphs are very
capable of capturing data, and current anomaly detec-
tion techniques can be very powerful.

Secondly, we consider ProvDetector [37], which is a
provenance-based approach for detecting stealthy mal-
ware, where anomaly detection techniques are applied
on provenance graphs to detect malicious behavior. The
approach is similar to our approach. First, they create
a graph of the system calls, this graph is embedded and
finally, anomaly detection is applied. Although the ap-
proach is similar to ours, it is in a completely different
field.

Finally, we consider graph-based anomaly detection
approaches for fraud detection [38]. These approaches
are among the most popular techniques used to analyze

connectivity patterns in communication networks and
identify suspicious behaviors. Again, this is in a differ-
ent field, but there are two important things to consider
from this work: first, one should avoid feature engineer-
ing but, instead consider a range of graph representa-
tion learning techniques; and second, consider methods
to automate feedback for continuous model learning.

9. CONCLUSION
In this paper, we presented a novel approach for de-

tecting misconfigurations of AWS identity and access
management policies. The goals for this approach were
to be fully automated, proactive, generic, and requir-
ing low effort and maintenance. To achieve this, our
proposed approach first creates a graph model from the
identity and access management policy data. The graph
model is then embedded into vector representations of
the policy nodes. Finally, we train an anomaly detec-
tion model on benign policy data. Each new observa-
tion is then compared against the model and classified
as either benign data or potential misconfiguration. We
have evaluated our approach on real-world data from
three active cloud environments. The results show that
our approach has a relatively high precision and recall
for the evaluated policy data, demonstrating the effec-
tiveness of our proposed approach. Furthermore, we
have shown that optimal parameters for the anomaly
detection algorithms are transferable between environ-
ments, while still maintaining a similar detection per-
formance.

Although we have demonstrated the effectiveness of
our proposed approach, there are still improvements to
be made in the future. Newer embedding and anomaly
detection techniques could be investigated. Further-
more, our focus has been on AWS, but the proposed
approach can be applied to other cloud environments.

Security misconfigurations are a big problem, espe-
cially in cloud environments. We believe our approach
is a step in the right direction to mitigate the risk of
security misconfigurations in the future.
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