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Abstract 

INTRODUCTION: Continuous electroencephalography (cEEG) is increasingly used for prognostication 

after cardiac arrest (CA). The first 24 hours of EEG after resuscitation are reported to have the highest 

prognostic value for neurological outcome. Easy-to-apply adhesive electrodes, like the BrainStatus, or 

a reduced number of electrodes can both contribute to early start of cEEG monitoring. Furthermore, 

quantitative EEG analysis can be a helpful tool to support prediction of neurological outcome. 

OBJECTIVE: During this study, we investigated the possibilities for using adhesive electrodes and 

reduced montages for cEEG monitoring while preserving the predictive value. 

METHODS: Continuous EEG was obtained from postanoxic comatose patients after CA admitted to the 

ICU for all parts of the study. Monitoring with the BrainStatus was done prospectively, simultaneously 

with conventional EEG monitoring, and with intermittent check-ups. A visual scoring application was 

used to score EEG epochs from the BrainStatus. Secondly, a total of 221 EEG epochs was visually 

scored in a 4-channel frontotemporal montage. All scored classifications were compared to the 

classifications in the 9-channel bipolar montage. Lastly, a logistic regression (LR) model was used for 

the prediction of neurological outcome. Features extracted from reduced electrode montages were used 

as input, and model performance was compared to the full montage. 

RESULTS: Classification agreement of EEG background patterns between the BrainStatus and the 

bipolar montage was moderate (κ = 0.48), based on six patients. Agreement between the frontotemporal 

montage and the bipolar montage was substantial (κ = 0.76). Sensitivity and specificity for predicting 

neurological outcome were not significantly different for the frontotemporal montage compared to the 

bipolar montage. Baseline performance of the LR model for the bipolar montage equals an AUC of 0.897 

(0.885-0.908), Se100 of 77% (74-79) for predicting poor outcome and Se95 of 71% (68-74) for good 

outcome at 12 hours after CA. For 24 hours after CA, the AUC equals 0.879 (0.873-0.886), with Se100 

of 63% (62-65) for predicting poor outcome and Se95 of 50% (47-52) for good outcome. Performance 

of the model on the frontotemporal montage significantly increases for Se100 at 12h after CA, and for 

AUC and Se100 at 24h after CA. 

CONCLUSION: Intermittent check-ups did not improve the signal quality of the BrainStatus recordings. 

Reducing the number of electrodes from 9 to 4 does not affect EEG classification or prognostic accuracy 

in patients with postanoxic coma. For qEEG analysis, the 4-channel montage showed significant better 

performance for outcome prediction than the 9-channel montage.  
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1 Introduction 

Out-of-hospital cardiac arrest (OHCA) is a serious health issue and a major cause of unexpected death 

in developed countries, with survival rates ranging from less than 5% to 35%.1 Patients who achieve 

return of spontaneous circulation (ROSC) after OHCA are usually admitted to the Intensive Care Unit 

(ICU) and treated with targeted temperature management (TTM), including standardized sedation to 

prevent shivering that might lead to warming.1–3 Due to cessation of blood supply to the brain during CA, 

these patients often suffer from hypoxic-ischemic brain injury and postanoxic coma. Approximately 

176,000 patients with postanoxic coma after CA are admitted to the ICU yearly in Europe.4 Of these 

patients, 40-66% never regain consciousness as a result of severe postanoxic encephalopathy.4 In case 

a patient does not wake up after TTM is terminated and sedation is discontinued, the decision has to be 

made between continuation or withdrawal of life-sustaining treatment. Early prediction of recovery 

perspectives may guide these decisions. Identification of patients with poor neurological outcome in an 

early stage can prevent continuation of futile medical treatment, decrease ICU stay and medical costs, 

and shorten the time of uncertainty for the patient’s family.5,6 

Continuous electroencephalography (cEEG) is increasingly used for prognostication after 

cardiac arrest, and several studies report that the first 24 hours of EEG after resuscitation have the 

highest prognostic value for neurological outcome.6–9 Hofmeijer et al.10 showed that rapid recovery 

towards continuous EEG patterns within 12 hours was almost invariably associated with a good 

neurological outcome. These results emphasize the importance of initiation of EEG monitoring as soon 

as possible after ROSC. However, nowadays in clinical practice, the ICU staff is not trained in recording 

and reviewing EEG.11,12 The role of technicians and clinical neurophysiologists is essential for successful 

EEG monitoring, but they are usually not based in the ICU, resulting in shortage of 24/7 availability of 

specialized staff.13,14 Furthermore, the electrode locations have to be determined very accurately, which 

is time-consuming. These factors can cause delayed start of monitoring, resulting in missing useful 

information from registration shortly after ROSC. 

In addition to the issues regarding the application of the electrodes, the EEG signals obtained 

from continuous monitoring are currently visually analyzed to interpret the clinical value. This visual 

assessment has to be performed by trained and experienced specialists and can be very time-

consuming and partially subjective.15–18 Quantitative EEG measures can be a helpful solution for these 

issues.15,19 Tjepkema-Cloostermans et al. composed a Cerebral Recovery Index (CRI) based on 

extraction of specific features from the EEG signal, and several revisions of the algorithm have 

followed.8,9,20 These studies show promising results with high prognostic value for both poor and good 

neurological outcome, with highest performance at 9h after CA with a sensitivity of 78% at 100% 

specificity and 63% sensitivity at 95% specificity, respectively.20 Also, logistic regression models are 

being developed, and interest in using neural networks for EEG analysis is growing and showing 

potentially useful predictions.21–24 However, these studies all used data obtained from 9 or even 21 EEG 

electrodes. Interest in using simplified, reduced montages for qEEG analysis is growing to improve the 

ease and speed of lead application in clinical practice.25 
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The extensive procedure of electrode application introduces the need for EEG solutions that are fast 

and easy to set up without extensive training. One of the clinically available, easy-to-use options is the 

BrainStatus, developed by Lepola et al.26,27 The BrainStatus consists of 16 electrodes, all embedded 

into a flexible polyester film and coated with an adhesive hydrogel membrane. An overview of the 

BrainStatus is given in Appendix A.1. Lepola et al. already showed promising results by testing the 

BrainStatus for ruling out status epilepticus in a low number of patients.28,29 To explore if the BrainStatus 

would also be suitable for cEEG monitoring, several explorative studies have been performed in the 

Amsterdam UMC.30–32 Unfortunately, the first results showed a substantial presence of artefacts in the 

EEG signals measured with the BrainStatus, presumed to be caused by increasing impedance due to 

loosening of the electrodes32, impeding reliable analysis of the EEG pattern. A possible solution might 

be to perform intermittent check-ups and thereby decrease the number of artefacts and improve the 

signal quality.  

Furthermore, an explorative study is currently running at the AMC for testing the ability of 

alternative, adhesive electrodes from other domains (ECG, EMG) to register EEG signals with sufficient 

signal quality. Preliminary results show acceptable impedances, for example for the Ambu® Neuroline 

720, resulting in signal quality comparable to the conventional cup electrodes, raising the question if 

these electrodes could also have potential to be used for cEEG monitoring after CA at the ICU.33 

Alternative monitoring methods with adhesive electrodes are inseparably linked to limited 

possible locations for electrode placement, resulting in reduced electrode montages. Several studies 

have been conducted to find the efficacy of reduced electrode sets for prediction of neurological outcome 

using qEEG analysis. The results offer potential in developing a clinically practical method for cEEG 

monitoring.25,34–37 An earlier study in the AMC compared the performance of a CRI algorithm on a bipolar 

montage consisting of 9 electrodes and a central montage based on 3 electrodes and reported better 

performance for the central montage.38 Although the first results are promising, validation of the 

predictive value of reduced electrode sets is required for both visual assessment and qEEG analysis.  

During this study, we aimed to optimize both the monitoring and analysis methods for using 

cEEG in the ICU as a predictive tool for neurological outcome after CA. The main objective was to 

explore possibilities for simplifying the application procedure while preserving the predictive value of the 

EEG signal for both visual assessment and qEEG analysis. Three components of the study can be 

distinguished. First, the BrainStatus electrode was used to investigate if its registration quality improves 

with intermittent check-ups. Second, the classification agreement and predictive value of a 4-channel 

frontotemporal montage compared to the conventional 9-channel bipolar montage were examined to 

validate the use of a reduced sub-hairline montage for visual assessment. Lastly, we aimed to answer 

the question whether reduced montages can be used for reliable prognostication after CA using qEEG 

analysis, with minimal decrease of performance compared to full montages. 
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2 Materials and methods 

Study population 

Continuous EEG was obtained from postanoxic comatose patients after CA admitted to the ICU of 

Amsterdam UMC – location AMC. Patients were eligible for inclusion if cEEG monitoring was started 

within 24 hours after CA. Exclusion criteria included traumatic brain injury, acute stroke, progressive 

neurodegenerative disease, prearrest modified Rankin scale ≥ 4 or prearrest life expectancy ≤ 6 months 

based on comorbidity. The exact study population was different for the three subparts of the study, 

described in corresponding subsections. 

 

Outcome assessment 

Neurological outcome was used as the primary outcome measure for all parts of the study, defined as 

a score on the Cerebral Performance Category (CPC) scale. Outcome was dichotomized into good 

outcome for CPC 1-2 (indicating no or mild neurological impairment) and poor outcome for CPC 3-5 

(indicating severe neurological impairment vegetative state or death).39,40 Also, several EEG patterns at 

specific timepoints are associated with either poor or good neurological outcome, according to the Dutch 

guidelines for prognosis of postanoxic coma.41 Patterns known as indicative for a poor neurological 

outcome are a suppressed background pattern, burst suppression with identical bursts or a continuous 

background pattern with low voltage at 24 hours after CA. Continuous background patterns with normal 

voltage at 12 hours after CA are categorized as indicative for good outcome.6,8,39,41  

 

Standard of care and monitoring 

Conventional monitoring of cEEG on the ICU in the AMC is done with eleven Ag/AgCl cup electrodes 

and was registered for all patients in all parts of the study. Electrodes are being placed according to the 

standardized 10-20 system at positions Fp1, Fp2, T3, T4, C3, C4, Cz, O1 and O2, and the ground and 

reference electrode are placed in mid-line. Recording is started as soon as possible after the start of 

TTM and is continued up to three days unless the patient regains consciousness or dies. As soon as 

the patient is admitted to the ICU, TTM is started at 36 °C and maintained for 24 hours. During TTM, 

propofol is administered with a maximum of 5 mg/kg/hour to keep the patient sedated to a Richmond 

Agitation-Sedation Scale of -4.42  

 

Epoch selection and EEG montages 

Epoch selection and preprocessing were done using Matlab R2020b. We selected 5-minute epochs 

from the cEEG data from a 20-minute window around specified timepoints. Selection was based on the 

least number of artefacts, using an earlier developed algorithm.9  The number of artefacts is based on 

the number of high voltage peaks, the power frequency ratio between the EEG range and higher 

frequencies, and the number of channels containing zeros. Epochs were selected using this algorithm 

around 12 and 24 hours after CA if available for all patients in all parts of the study. For patients 

monitored with the BrainStatus, epochs were selected around every whole hour available after CA.  
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All EEG signals were re-referenced into a specific montage before analysis. Three different EEG 

montages were used for the different parts of the study: a longitudinal bipolar montage, a frontotemporal 

montage, and a montage where all electrodes are referenced to Cz. An overview of the electrode 

positions of all used montages is shown in Figure 1. We used the Cz montage to create a single channel 

for each electrode position while keeping comparable distances between the electrode and Cz used as 

reference for all channels. The montage for EEG signals registered with the BrainStatus is based on the 

electrode positions and channels from the frontotemporal montage. 

 

 

Figure 1: Schematic overview of electrode positions and used EEG montages: longitudinal bipolar montage (left), 
frontotemporal montage (middle) and all electrodes referenced to Cz (right). Electrode locations used from the 
BrainStatus are based on the locations of the frontotemporal montage. 

 

Visual scoring application 

The EEG epochs to be visually scored were presented to three experienced EEG readers (AFvR, JH, 

MMA) individually using a custom-built Matlab application, built using Matlab R2020b. Within the app, 

the signals were preprocessed by applying an adjustable third-order Butterworth band-pass filter (high-

pass cut-off 0.300, 0.530, 1, 1.6, 5.3 or 10 Hz, low-pass 2, 10, 15, 20, 30, 50, 60, 70 or 120 Hz) and a 

switchable notch filter (band-stop for 49-51 Hz). Additionally, all EEG samples were resampled to 256 

Hz and re-referenced into a longitudinal bipolar montage, a frontotemporal montage and if applicable 

into a BrainStatus montage. The observers were blinded for patients’ condition, outcome, electrode sets 

and the time after cardiac arrest. All EEG samples were scored on background pattern and rhythmic 

pattern individually by all observers with the help of systematic drop-down menus. Scoring criteria were 

based on Hirsch’ standardized terminology.43  Background pattern could be scored as suppressed, 

burst-suppression with or without identical bursts, discontinuous or continuous. Independently, rhythmic 

pattern was scored as spike-wave pattern, periodic discharges, rhythmic delta, or none. For the user 

interface and additional information on the drop-down menus and scoring criteria, see Appendix A.2. 

Majority vote was used to determine the final classification of the epoch for all characteristics. When 

there was no majority vote, a consensus meeting was planned to reach agreement between the 

observers. This resulted in one classification for each EEG epoch. The performance was evaluated by 

calculating the inter-rater reliability and the classification agreement between either the BrainStatus 

montage or the frontotemporal montage and the 9-channel bipolar montage as the golden standard. As 

prognostication is mainly based on the background pattern, this was the main characteristic to evaluate. 
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Inter-rater reliability 

We calculated the inter-rater variability using the intra-class correlation coefficient (ICC) and its 95% 

confidence interval, based on an average of independent measurements, absolute-agreement, two-way 

random-effects model. According to the value of the ICC, a distinction was made between poor (< 0.50), 

moderate (0.50 – 0.75), good (0.75 – 0.90) or excellent (> 0.90) inter-rater reliability.44 

 

Classification agreement 

The classifications of all EEG epochs were plotted in confusion matrices and Cohen’s kappa was 

calculated to evaluate the agreement in classification between the different montages. Labels were 

assigned to certain ranges of the value of kappa to indicate the strength of agreement, according to the 

benchmarks of Landis and Koch.45 We distinguished between poor (< 0), slight (0 – 0.20), fair (0.21 – 

0.40), moderate (0.41-0.60), substantial (0.61 – 0.80) and (almost) perfect (0.81 – 1.00) agreement. The 

agreement between two montages was defined as reliable if the strength of agreement was at least 

substantial, so a value for kappa of at least 0.61. 

 

2.1 BrainStatus 

Study population and outcome assessment 

Data for the BrainStatus analysis was included prospectively on the ICU in the AMC, with additional 

exclusion criteria being proved or suspected COVID-19 infection, treatment with an extracorporeal 

membrane oxygenation (ECMO) machine or planned transfer to another hospital within one day. Due 

to the prospective inclusion, neurological outcome at 6 months after CA was not yet available, so we 

only assigned an outcome prediction to all EEG samples based on the visual scoring. 

 

Monitoring and check-ups 

Monitoring with the BrainStatus was always done simultaneously with the conventional EEG monitoring. 

Overlapping electrodes (Fp1 and Fp2) were placed as close as possible to their intended location. To 

investigate if the artefacts found in the EEG signals registered with the BrainStatus result from increasing 

impedance and loosening of electrodes, intermittent check-ups were performed. A check-up was done 

every 2,5 to 3 hours from the start of registration with the BrainStatus, during office hours. During the 

check-ups, we pressed the BrainStatus firmly upon the skin and checked and saved the impedance just 

before and directly after doing this. The signals registered with the BrainStatus electrodes are evaluated 

based on the agreement in visual scoring and the signal quality over time.  

 

Visual scoring 

The EEG signal of all patients monitored with the BrainStatus was visually scored in three different 

montages: the longitudinal bipolar montage, the frontotemporal montage and the BrainStatus montage. 

The performance was evaluated by calculation of the inter-rater variability and classification agreement 

between the different montages. 
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Evaluation of signal quality 

To evaluate the signal quality over time, we extracted 5-minute epochs from the EEG signal around 

every whole hour after the time of cardiac arrest. Signals from all single channels were extracted from 

the file and were resampled to 256 Hz. We calculated an artefact score for all epochs for all channels 

of the conventional cup electrodes and all channels of the BrainStatus, based on the number of high 

amplitude peaks and the power frequency ratio. All epochs are split in fragments of 30 seconds for 

calculation. Before calculating the number of high amplitude peaks, we applied a third-order Butterworth 

band-pass filter between 0.5 and 30 Hz. Peaks are assigned as high amplitude if the amplitude is above 

the mean plus two times the standard deviation of that fragment. The final amplitude score is the number 

of times the amplitude exceeds the threshold divided by the total length of the signal. Because higher 

frequencies are essential for the calculation of the power frequency ratio, a third-order Butterworth high-

pass filter of 0.5 Hz was applied instead of a band-pass filter. We calculated the power frequency ratio 

between the EEG frequency band (0.5-25 Hz) and the EMG frequency band (25-40 Hz). The final 

frequency artefact score was determined as EMG power divided by EEG power. Both scores resulted 

in values between 0 and 1. The scores were averaged over the time fragments and subsequently 

summed to obtain one artefact score per channel and per epoch.  

 

2.2 Electrode reduction for visual assessment  

Study population and outcome assessment 

Data used for visual assessment of the frontotemporal montage was based on the dataset from an 

earlier outcome prediction study from Admiraal et al.46 Data was included between April 2015 and 

February 2018. The assigned outcome prediction based on visual scoring and the neurological outcome 

at 6 months after CA were both used for this analysis.  

 

Visual scoring 

To validate the predictive value of the frontotemporal montage, we reassessed 221 EEG epochs that 

were visually scored in a bipolar montage in Admiraal’s reactivity study.46 The same EEG epochs were 

assessed in the frontotemporal montage by the same three observers (AFvR, JH, MMA), using the 

visual scoring application. 

 

Outcome prediction 

In addition to the calculation of the inter-rater reliability and the classification agreement between the 

two montages, we compared the sensitivity and specificity for prediction of neurological outcome 

between the bipolar montage and the frontotemporal montage. The predictive value of patterns 

indicative for both poor and good neurological outcome was evaluated in both montages and compared 

using a McNemar test. 
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2.3 Electrode reduction for qEEG analysis 

Study population and outcome assessment 

The dataset for qEEG analysis was based on the dataset from another earlier outcome prediction study 

in the AMC24 and was included between May 2014 and January 2020. Neurological outcome at 6 months 

after CA was assessed for all patients. 

 
Preprocessing and model input 

Before feature extraction, we filtered the EEG signal with a third-order Butterworth band-pass filter 

between 0.5 and 30 Hz and resampled the signal to 128 Hz. Subsequently, we re-referenced the EEG 

signal into the longitudinal bipolar montage and the Cz montage, and both montages were separately 

used for feature extraction. Testing the possibilities of reduced electrode sets for prediction of 

neurological outcome was based on an earlier developed algorithm using logistic regression (LR).24  We 

extracted features from the EEG signal to use as the input for the model. Neurological outcome at 6 

months after CA was used as output parameter, where a value of 1 represents poor outcome and a 

value equal to 0 represents good neurological outcome.  

 
Feature extraction 

The preprocessed 5-minute EEG epochs were segmented into 30 non-overlapping 10-second time 

fragments. A total of 12 features was extracted from the EEG signal, calculated for all channels and time 

fragments separately. After calculation, all features were averaged over all used channels and time 

fragments. All features were normalized and scaled between 0 and 1 with respect to the same feature 

of all patients. Extracted features were in line with previous studies in the AMC and based on extensive 

literature study and multicollinearity analysis.24,47 Table 1 summarizes the extracted features, 

categorized into three domains. 

 
Logistic regression model 

The LR model was built using Pytorch 1.6.0 in Python 3.7.10. Within the model, we used a sigmoid 

activation function to obtain the probability of the outcome being equal to 1. The dataset was randomly 

divided into 10-folds for cross-validation. Another 10% of the data was used for validation during training, 

resulting in 80% actual training set, 10% validation set and 10% test set. The validation set was used to 

implement learning rate decay with early stopping for optimal performance. The initial learning rate was 

set at α equal to 0.01 and after decay the learning rate α was 0.0001. To obtain a reliable and robust 

estimation of the model performance, we repeated the 10-fold cross-validation 50 times. 

 
Performance metrics 

In line with earlier reported outcome prediction studies, the model’s performance was evaluated using 

three metrics retrieved from the receiver operating characteristic (ROC) curve: area under the curve 

(AUC) and sensitivities for predefined specificity thresholds for good and poor outcome. To avoid 

withdrawal of life-sustaining treatment in patients with a viable outcome, it is imperative to predict poor 

outcome at a zero false positive rate. Therefore, we used sensitivity at 100% specificity (Se100) for 

prediction of poor outcome. For good outcome, we retrieved the sensitivity at 95% specificity (Se95). 
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Table 1: Extracted qEEG features and descriptions. Table adapted from Van Poppel24. 

Domain  Feature Description 

Complexity 1 Tsallis entropy48,49 A measure to quantify the uncertainty of a stochastic signal 

2 
 
 

False nearest neighbour 
(FNN)50 
 

A measure to quantify the degree of stochasticity in a signal by 
estimating the embedding dimension, indicating its constancy 
and smoothness 

3 
 

Autoregressive  (AR) 
coefficient 251,52 

Estimated nonseasonal autoregressive term coefficient at t-2 
of a second-order autoregressive model given the EEG signal 

Category 4 Normalized theta power53–55 Theta power (4-7 Hz) divided by the total power (0.5-30 Hz) 

5 Normalized alpha power53–55 Alpha power (8-13 Hz) divided by the total power (0.5-30 Hz) 

6 Normalized beta power53–55 Beta power (14-30 Hz) divided by the total power (0.5-30 Hz) 

7 Signal power53–55 The total power in the frequency range of interest (0.5-30 Hz) 

8 Regularity9  A measure to quantify regularity in amplitude of the signal 

9 Number of epileptic spikes56 The number of epileptiform spikes in the EEG 

10 
Burst suppression ratio 
(BSR)20 

The ratio of the duration of the EEG signal with an amplitude 
equal or lower than 5 µV to the duration of the entire signal 

Connectivity 11 Delta coherence9 A measure to quantify the degree of similarity in the delta band 

12 Phase lag index (PLI)57 
A measure to quantify phase synchronization, indicating the 
level of asymmetry between two signals 

 

Predetermined reduced sets 

To test the performance of the LR model with input features based on a reduced number of electrodes, 

we predefined reduced electrode sets. We compared these model performances with the performance 

on the full montage. We created montages consisting of the two adjacent channels of one electrode 

from the bipolar montage (e.g. Fp1-T3 and Fp1-C3 for Fp1), and single channels were used from the 

Cz reference montage (e.g. Fp1-Cz). The two connectivity features (delta coherence and phase lag 

index) are calculated for all combinations of channels within a montage, so were assumed unreliable in 

these reduced montages and left out as input features. Additionally, we created a reduced montage 

according to the electrode locations from the frontotemporal montage (Fp1-Fp2, Fp1-T3, Fp2-T4). The 

differences between the model’s performance metrics were compared using an unpaired two-sample 

students t-test. The difference was considered statistically significant if p < 0.05. 

 

L1 regularization 

To see if the LR model was able to identify which electrode channels contributed most to the outcome 

prediction within the model, we applied L1 regularization, which pushes the weights of less essential 

features towards zero. To distinguish between electrode channels, isolation of the channels is required 

to obtain a single feature value per channel. First, a change in feature value must resemble a similar 

outcome change for all features. When necessary, normalized features were inverted, resulting in a 

higher feature value indicating a higher probability for poor outcome. Which features to invert was based 

on the median value of the feature for all subjects. Subsequently, we summed all features per channel, 

resulting in one feature value per channel. We determined the average of the absolute weights over all 

repetitions of the LR model for each channel, alongside performance tracking of the model, while 

applying different values of the regularization factor λ. 
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3 Results 

The results of the study are separated into three subparts, including the BrainStatus study, the electrode 

reduction for visual assessment and electrode reduction for qEEG analysis. All parts of the study have 

separate study populations and patient characteristics. 

 

3.1 BrainStatus 

Patient characteristics 

Table 2 shows the characteristics of included patients in the BrainStatus study with additional check-

ups. A total of six patients was included from October 2020 till April 2021. EEG was monitored at 12 

hours after CA for three patients and the timepoint 24 hours after CA was available for four patients. 

EEG patterns were extracted from the patient file.  

 
Table 2: Patient and cEEG characteristics BrainStatus 

Data presented as median [interquartile range] or n/total (%). 
OHCA: out of hospital cardiac arrest; ROSC: return of spontaneous 
circulation; EEG: electroencephalography; CA: cardiac arrest; 
BS: burst-suppression 

Inter-rater reliability 

The inter-rater variability for scoring background pattern was poor for the BrainStatus montage (ICC = 

0.07, 95% CI: -3.24-0.84) and good in the bipolar montage (ICC = 0.82, 95% CI: 0.37-0.97). This 

indicates a lower level of agreement between the observers when scoring the epochs in the BrainStatus 

montage compared to the bipolar montage. Values for the ICC for scoring rhythmic pattern and the 

assigned outcome prediction can be found in Appendix A.3 for all montages. 

 
Classification agreement 

The confusion matrix for the scored background pattern in the BrainStatus montage compared to the 

bipolar montage is shown in Figure 2. The classification within the BrainStatus montage disagreed with 

the bipolar montage on two EEG epochs. The corresponding value for Cohen’s kappa equals 0.48 (95% 

 Monitored with 
Brainstatus (n = 6) 

Patient characteristics 

Age 
Male 

OHCA 
Witnessed arrest 
Time to ROSC (min) 
Initial rhythm shockable 
Cardiac etiology 

Died at ICU 

 

75 [60-79] 
3/6 (50%) 

4/6 (67%) 
6/6 (100%) 
21 [12-38] 

4/6 (67%) 
5/5 (100%) 

2/6 (33%) 

cEEG characteristics 

EEG pattern at 12h after CA (n = 3) 
BS without identical bursts 
Discontinuous 

EEG pattern at 24h after CA (n = 4) 
BS without identical bursts 
Discontinuous 
Continuous 

 

 
2 
1 

 
1 
2 
1 
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CI: -0.13-1.09), indicating a moderate agreement. Confusion matrices and kappa values for other 

montage combinations and characteristics can be found in Appendix A.3. It should be noted that the 

patterns scored using the visual scoring app do not entirely agree with the assessed EEG patterns 

extracted from the patient files as shown in Table 2. 

 

Figure 2: Confusion matrix for scored EEG background patterns comparing the BrainStatus montage with the 
bipolar montage. N/A is not assessable, blue colour indicates conformity and red represents disagreement. Colour 
saturation corresponds with the relative number of observations. The classification in the BrainStatus montage 
disagrees with the classification in the bipolar montage for two EEG epochs. 

 

Signal quality 

The artefact score was determined for all available timepoints for all included patients. If the EEG 

recording was paused or too many artefacts were present in the signal, no epoch could be extracted for 

that timepoint. For two patients, the artefact score for the Brainstatus increases clearly over time and 

increases more rapidly than the conventional cup electrodes. For two other patients, the mean artefact 

score is slightly higher for the cup electrodes than for the BrainStatus electrodes. And for the last two 

patients, the mean artefact scores for the cup electrodes and the BrainStatus are nearly equal. No 

evident decreases or other changes are seen directly after the check-ups. The artefact scores over time 

for all patients separately can be found in Appendix A.4 

 

3.2 Electrode reduction for visual assessment 

Patient characteristics 

An existing dataset of 154 patients was used, with characteristics as described in Table 3. For 69 of 

these patients, EEG at 12 hours after CA was available and EEG at 24 hours after CA was available for 

almost all (152) patients. A distinction is made between patients with good neurological outcome and 

patients with poor outcome. 
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Figure 3: Confusion matrix for scored EEG background patterns comparing the 4-channel frontotemporal montage 
with the 9-channel bipolar montage. N/A is not assessable, blue colour indicates conformity and red represents 
disagreement. Colour saturation corresponds with the relative number of observations. For 186 of 221 EEG epochs 
the scored background pattern agreed between the two montages. 

 

Table 3: Patient characteristics FT montage 

 Good outcome 
(n = 78) 

Poor outcome 
(n = 76) 

Patient characteristics 

Age 
Male 

OHCA 
Witnessed arrest 
Time to ROSC (min) 
Initial rhythm shockable 
Cardiac etiology 

 

62 [51-70] 
65/78 (83%) 

72/78 (92%) 
62/76 (82%) 
13 [10-18]a 

69/74 (93%) 
63/71 (89%) 

 

65 [52-73] 
53/76 (70%) 

65/76 (86%) 
50/72 (69%) 
22 [15-32]b 

37/73 (51%) 
35/66 (53%) 

cEEG characteristics 

EEG pattern at 12h after CA (n = 69) 
Suppressed 
BS with identical bursts 
BS without identical bursts 
Discontinuous 
Continuous 
Unknown 

EEG pattern at 24h after CA (n = 152) 
Suppressed 
BS with identical bursts 
BS without identical bursts 
Discontinuous 
Continuous  
Unknown 

 

 
0/39 (0%) 
0/39 (0%) 
0/39 (0%) 

13/39 (33%) 
25/39 (64%) 
1/39 (3%) 

 
0/78 (0%) 
0/78 (0%) 
2/78 (3%) 
9/78 (12%) 
66/78 (85%) 
1/78 (1%) 

 

 
11/30 (37%) 
2/30 (7%) 
7/30 (23%) 
5/30 (17%) 
4/30 (13%) 
1/30 (3%) 

 
20/74 (27%) 
5/74 (7%) 

10/74 (14%) 
10/74 (14%) 
26/74 (35%) 
3/74 (4%) 

Data presented as median [interquartile range] or n/total (%). OHCA: out of hospital cardiac arrest; 
ROSC: return of spontaneous circulation; EEG: electroencephalography; CA: cardiac arrest; 
BS: burst-suppression. an = 75, bn = 69. 

Inter-rater reliability 

The calculated ICC for scoring background pattern equals 0.94 for both montages with a 95% 

confidence interval of 0.92-0.95 in the frontotemporal montage and 0.93-0.95 in the bipolar montage, 

indicating excellent agreement between the three observers. Values for the ICC for scoring rhythmic 

pattern and the assigned outcome prediction can be found in Appendix A.5 for both montages. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

   



  19 

Classification agreement 

The classification agreement between the two montages for scoring background pattern is shown in the 

confusion matrix in Figure 3. The corresponding value for kappa equals 0.76 (95% CI: 0.69-0.83), 

indicating substantial agreement between the two montages. The confusion matrices and kappa values 

for rhythmic pattern and assigned outcome prediction can be found in Appendix A.5.

 

Outcome prediction 

The 2x2 tables for prediction of poor 

outcome at 24 hours after CA and 

prediction of good outcome at 12 hours 

after CA can be found in Table 4 and 

Table 5. Sensitivities and specificities for 

both good and poor outcome are shown 

in Table 6. Poor outcome was predicted 

with 100% specificity in both montages 

and 34% and 31% sensitivity in 

respectively the bipolar montage and 

frontotemporal montage. Prediction of 

good outcome based on continuous 

EEG pattern at 12 hours after CA could 

be done with a specificity of 87% for both 

montages and sensitivities of 64% and 

59% for the bipolar montage and the 

frontotemporal montage, respectively. 

The McNemar test showed no statistical 

difference between the sensitivities and 

specificities of the bipolar and 

frontotemporal montage for both good 

and poor neurological outcome. 

 
 
 
Table 4: 2x2 table for the prediction of poor outcome at 24h after 

CA based on 9-channel bipolar montage and 4-channel 
frontotemporal montage. 

 Poor 
outcome 

Good 
Outcome 

Background pattern scored 

Bipolar montage 
Suppressed, BS with identical 
bursts or low voltage 
Other 

Frontotemporal montage 
Suppressed, BS with identical 
bursts or low voltage 
Other 

 

 
25 

 
49 

 
23 

 
51 

 

 
0 
 

78 

 
0 
 

78 

BS: burst-suppression 

 

Table 5: 2x2 table for the prediction of good outcome at 12h after 
CA based on 9-channel bipolar montage and 4-channel 
frontotemporal montage. 

 Good 
outcome 

Poor 
outcome 

Background pattern scored 

Bipolar montage 
Continuous (normal voltage) 
Other 

Frontotemporal montage 
Continuous (normal voltage) 
Other 

 

 
25 
14 

 
23 
16 

 

 
4 
26 

 
4 
26 

 
Table 6: Sensitivity and specificity for prediction of neurological outcome based on EEG background pattern 
using a 9-channel bipolar montage and a 4-channel frontotemporal montage. 

EEG pattern 
Time 

after CA 
Predicting Montage 

Sens 
(95% CI) 

Spec 
(95% CI) 

Continuous (normal voltage) 
 

Suppressed, BS with identical  
bursts or low voltage 

12 h 
 

24 h 

Good 
outcome 

Poor 
outcome 

BP 
FT 

BP 
FT 

64 (47-79) 
59 (42-74) 

34 (23-46) 
31 (21-43) 

87 (69-96) 
87 (69-96) 

100 (95-100) 
100 (95-100) 

EEG: electroencephalography; BS: burst-suppression; CA: cardiac arrest; Sens: sensitivity; Spec: specificity; 
CI: confidence interval 
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3.3 Electrode reduction for qEEG analysis 

Patient characteristics 

An existing dataset of 186 patients monitored between May 2014 and January 2020 was used, with 

characteristics described in Table 7. For 78 of these patients, EEG at 12 hours after CA was available 

and EEG at 24 hours after CA was available for 181 patients. A distinction is made between patients 

with good neurological outcome and patients with poor outcome. 

 

Table 7: Patient characteristics qEEG analysis 

 Good outcome 
(n = 76) 

Poor outcome 
(n = 110) 

Patient characteristics 

Age 
Male 

OHCA 
Witnessed arrest 
Time to ROSC (min) 
Initial rhythm shockable 
Cardiac etiology 

 

61 [51-71] 
59/76 (78%) 

69/76 (91%) 
58/67 (87%) 
13 [9-18.5]a 

67/75 (89%) 
59/64 (92%) 

 

64 [53-72] 
80/110 (73%) 

92/110 (84%) 
62/91 (68%) 
23 [15-37]b 

53/106 (50%) 
53/93 (57%) 

cEEG characteristics 

EEG available at 12h after CA 
EEG available at 24h after CA 

 

41/76 (54%) 
74/76 (97%) 

 

37/110 (34%) 
107/110 (97%) 

Data presented as median [interquartile range] or n/total (%). OHCA: out of hospital cardiac arrest; 
ROSC: return of spontaneous circulation; EEG: electroencephalography; CA: cardiac arrest. 
an = 73, bn = 91. 

 

Predetermined reduced sets 

The input features averaged over all channels is used as the baseline input to compare with. All results 

are presented as mean (95% CI). The full bipolar montage shows an AUC of 0.897 (0.885-0.908) with 

a sensitivity of 77% (74-79) at 100% specificity for predicting poor outcome and 71% (68-74) sensitivity 

at 95% specificity for prediction of good outcome at 12 hours after CA. Its corresponding ROC curve 

with its standard deviation can be found in Figure 4a. For 24 hours after CA, the AUC equals 0.879 

(0.873-0.886), with a sensitivity of 63% (62-65) at 100% specificity for predicting poor outcome and 50% 

(47-52) sensitivity at 95% specificity for prediction of good outcome. The corresponding ROC curve is 

shown in Figure 4b. ROC curves for the reduced montages can be found in Appendix A.6. Eliminating 

the connectivity features from the input doesn’t affect the model’s performance at 12 hours after CA, but 

the Se95 at 24 hours after CA is significantly decreasing. Furthermore, the model’s performance is not 

negatively affected by reducing the input channels at 12 hours after CA. The channels adjacent to T4 

even show significantly higher values for the AUC and Se95. At 24 hours after CA, the performance 

increases for the channels related to T3 and C3, and some metrics decrease for the channels related 

to Fp2 and O2. Performance metrics with 95% confidence intervals and their corresponding p-values 

for all reduced montages compared to the full bipolar montage at 12 hours and 24 hours after CA can 

be found in Appendix A.7. 
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The baseline performance metrics for the full montage of all electrodes referenced to Cz equal an AUC 

of 0.912 (0.902-0.923), Se100 of 81% (79-83) for poor outcome and Se95 of 75% (72-77) for prediction 

of good outcome at 12 hours after CA, and an AUC of 0.910 (0.904-0.916), Se100 of 69% (67-71) for 

poor outcome and Se95 of 60% (57-62) for good outcome at 24 hours after CA. Corresponding ROC 

curves are shown in Figure 5, and ROC curves for the reduced montages in Appendix A.6. Eliminating 

the connectivity features only affects the Se100 at 12 hours after CA negatively. Furthermore, almost 

all single channels show significantly lower performance than the baseline performance. The 

performance metrics of the LR model with 95% confidence intervals and their corresponding p-values 

for the reduced montages compared to the full montage of all electrodes referenced to Cz at 12 hours 

and 24 hours after CA can be found in Appendix A.7. 

Figure 4: Mean ROC curve and its standard deviation over 50 iterations with input features averaged over all 
channels in the bipolar montage at a) 12 hours after CA and b) 24 hours after CA. The blue line represents the 
mean ROC with the grey area its mean standard deviation. The red dot represents the sensitivity at 100% specificity 
for prediction of poor outcome. The green dot represents the sensitivity at 95% specificity for prediction of good 
outcome. The performance at 12 hours after CA shows higher mean values for all performance metrics, but with a 
wider range for the standard deviation compared to 24 hours after CA. 

Figure 5: Mean ROC curve and its standard deviation over 50 iterations with input features averaged over all 
channels in the refCz montage at a) 12 hours after CA and b) 24 hours after CA. The blue line represents the mean 
ROC with the grey area its mean standard deviation. The red dot represents the sensitivity at 100% specificity for 
prediction of poor outcome. The green dot represents the sensitivity at 95% specificity for prediction of good 
outcome. The performance at 12 hours after CA shows higher mean values for all performance metrics, but with a 
wider range for the standard deviation compared to 24 hours after CA. 
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Figure 6: Mean ROC curves over 50 iterations for the frontotemporal montage (green) compared to the full bipolar 
montage (blue) at a) 12 hours after CA and b) 24 hours after CA. The frontotemporal montage outperforms the 
bipolar montage at both timepoints. 

For the frontotemporal montage at 12 hours after CA, the AUC equals 0.902 (0.890-0.913), with a 

sensitivity of 80% (78-82) at 100% specificity for predicting poor outcome and 73% (70-76) sensitivity at 

95% specificity for prediction of good outcome. Sensitivity for prediction of poor outcome is significantly 

higher in the frontotemporal montage compared to the full bipolar montage. The corresponding ROC 

curve in comparison to the ROC curve of the full bipolar montage is shown in Figure 6a. Given an AUC 

of 0.896 (0.889-0.902), Se100 of 68% (67-70) for predicting poor outcome and Se95 of 52% (50-55) for 

good outcome, the LR model shows better performance on the frontotemporal montage compared to 

the bipolar montage at 24 hours after cardiac arrest, with a significant increase of AUC and Se100. 

Corresponding ROC curves are shown in Figure 6b. All values for the performance metrics with 95% 

confidence intervals and their corresponding p-values for the frontotemporal montage compared to the 

full bipolar montage are shown in Appendix A.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1 regularization 

Boxplots of all feature values for good and poor outcome were used to determine which features should 

be modified before summation. All boxplots can be found in Appendix A.8. Four features were inverted 

before summation for both timepoints: Tsallis entropy, normalized theta power, total signal power and 

regularity. At 12 hours after CA, the baseline performance without regularizer equals an AUC of 0.871 

(0.858-0.883), with Se100 of 73% (70-75) for prediction of poor outcome and Se95 of 65% (61-68) for 

good outcome. The three most dominant channels found are T3, T4 and C3, with a mean of absolute 

values of the trained weights of 1.19, 0.91 and 0.67, respectively. Performance metrics at 24 hours after 

CA without regularizer equal an AUC of 0.837 (0.829-0.845), Se100 of 64% (63-66) for poor outcome 

and Se95 of 30% (28-33) for good outcome. The channels C3, Fp1 and O2 contributed most to the 

outcome prediction with mean trained weights of 1.44, 1.20 and 0.99, respectively. For both timepoints, 

the performance decreases slightly for λ = 0.0005 compared to no regularization but increases again 

when the value for λ increases, up to a value of λ = 0.1. When λ reaches a value of 0.5, the performance 

decreases again. Remarkably, all performance metrics reach the highest values when all weights, 

except for one, are in the range of 0.00 to 0.01. Performance metrics and trained weights for all values 

of λ are shown in Appendix A.9. 
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4 Discussion 

During this study, we aimed to optimize both the monitoring and analysis methods for using cEEG on 

the ICU as a predictive tool for neurological outcome after CA. The registration quality of the easy-to-

apply BrainStatus electrode was not sufficient for accurate scoring. In general, the prognostic value of 

EEG patterns does not seem to be affected by electrode reduction for both visual assessment and 

quantitative analysis. The three components of the study, testing the BrainStatus electrode, visual 

assessment of the EEG based on reduced electrode sets and electrode reduction for qEEG analysis, 

are discussed separately. 

 

4.1 BrainStatus 

In this part of the study, we aimed to evaluate the signal quality and visual assessment of the EEG signal 

monitored with the BrainStatus electrode, while intermittent check-ups of the electrode placement and 

impedances were performed. We did not see an explicit dependency between the check-ups and the 

artefact score of the BrainStatus signals, indicating these check-ups are not affecting the signal quality 

over time. The classification agreement between the BrainStatus montage and the bipolar montage for 

the three characteristics background pattern, rhythmic pattern and assigned outcome is moderate (κ = 

0.48), fair (κ = 0.38) and substantial (κ = 0.61), respectively. Unfortunately, the study population was 

very small, partially due to COVID-19 measures and an unusually high number of transfers due to bed 

shortage. This implies lower reliability of these values. 

The classification agreement between the BrainStatus montage and the bipolar montage seems 

slightly increased compared to earlier visual scoring assessment of BrainStatus EEG epochs without 

additional check-ups.31 The agreement in the previous report equals 0.45 for background pattern, a 

value of 0.26 for rhythmic pattern and for the assigned outcome prediction the value for kappa was 0.53.  

The current results imply a slight improvement of the agreement between the BrainStatus montage and 

the bipolar montage. However, the values for kappa are still moderate, and no significance can be 

measured due to the minor patient groups and wide range of 95% confidence intervals. 

The number of included patients for this part of the study is deficient. Given the small dataset 

and wide range of the 95% confidence intervals for both ICC and Cohen’s kappa, the reliability of these 

values should be questioned. According to literature, at least 30 heterogeneous samples should be 

involved to obtain reliable results.44 If this requirement is not met, lower values could also reflect the lack 

of variability among the samples or the small number of subjects. This could also explain the extremely 

low ICC value for scoring background pattern in the BrainStatus montage (ICC = 0.07), as the patterns 

are only scored as continuous or not assessable within this montage, which clearly shows a lack of 

variability. More samples should be included to improve the reliability of ICC and Cohen’s kappa. 

Another consequence of the limited dataset was found in the fact that observers were able to recognize 

patterns from the same patient in earlier montages. This devaluates the effect of being blinded for patient 

and patient’s condition. 

We aimed to obtain a well-distributed variety of background patterns registered with the 

BrainStatus. It turned out that patients with suppressed or low voltage background patterns were treated 

with ECMO more often, resulting in exclusion for the BrainStatus study. Therefore, we did not succeed 
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to include such patterns in this part of the study, resulting in an incomplete representation of the patient 

population admitted to the ICU after CA. 

The 9-channel bipolar montage was used as the golden standard for EEG pattern classification 

using the visual scoring app in this study. As this montage is used for clinical practice in the AMC, the 

expectation was to obtain similar classifications from the bipolar montage in the visual scoring app as 

the patterns described in the patient files. When comparing the results from Figure 3 with patient 

characteristics in Table 2 the patterns appear to be not in accordance with each other. This shows that 

the patterns scored in the bipolar montage with the scoring app are not in correspondence with the 

patterns scored clinically. This might be a result of the limited duration of only five minutes of the EEG 

epochs used for the visual scoring app, or a result of the preprocessing of the EEG signal. 

Based on the results from this study, the suitability for clinical application is not changed 

compared to previous research with the BrainStatus in the AMC.30–32 This means the BrainStatus was 

still not found to be reliable enough for early prognostication of postanoxic comatose patients at the ICU, 

also with additional intermittent check-ups. However, the study population is too small to definitely 

eliminate the BrainStatus as an easy-to-apply EEG possibility. 

 

4.2 Electrode reduction for visual assessment 

To evaluate the prognostic value of EEG recordings from a frontotemporal montage, we reassessed 

EEG recordings from postanoxic comatose patients after cardiac arrest in this reduced montage and 

compared this to the assessment of EEG patterns in a longitudinal bipolar montage based on 9 

electrodes. Reducing the number of electrodes did not affect the interobserver agreement for scoring 

the background pattern and assigned outcome. Also, the agreement in classification of the EEG 

background pattern was found to be reliable, and the reduced electrode set showed no significantly 

different prognostic value for outcome prediction. 

Any unfavourable EEG pattern (suppressed, low voltage or burst-suppression with identical 

bursts) at 24 hours after cardiac arrest was invariably associated with poor neurological outcome. The 

sensitivity at 100% specificity of 31-34% for predicting poor outcome in this study is slightly lower than 

some of the earlier reported sensitivities at 100% specificity based on EEG pattern.7,10,58,59 However, no 

difference is seen between the frontotemporal montage and the bipolar montage within this study, 

suggesting this lower sensitivity is not affected by the reduced montage. We found a continuous EEG 

pattern with normal voltage at 12 hours after CA to be strongly related with good neurological outcome 

in both the bipolar and the frontotemporal montage with sensitivities of 64% and 59%, respectively. 

These values are in accordance with earlier reported outcome prediction studies.7,10,58 

Several studies explored the quality of EEG monitoring with a reduced number of electrodes 

before. Tjepkema-Cloostermans et al.58 showed a successful reduction from 19 to 10 electrodes, without 

a decrease of prognostic value for neurological outcome after CA. Also, amplitude-integrated EEG 

based on two bipolar channels from 4 central electrodes was found to contain relevant information for 

outcome prediction in patients with postanoxic coma.60,61 Some studies specifically explored the 

possibilities for reducing to sub-hairline montages. Kortelainen et al.34 reported a reduced set with 

electrodes at locations Fp1, Fp2, F7 and F8 to be able to capture propofol-induced slow-wave activity 
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with comparable performance as a full 19-channel EEG cap. These results support the agreement found 

between the bipolar and the frontotemporal montage in this study. Additionally, Tanner et al.36 

investigated a sub-hairline electrode set with 6 ECG electrodes for classification of EEG recordings 

according to the Young-McLachlan classification system and for seizure detection. In general, the 

agreement between the two montages was only fair with a kappa of 0.30 (95% CI: 0.21-0.40). However, 

they state that sub-hairline EEG might be able to meet the clinical requirements in patients with less 

heterogeneous background and well-defined clinical questioning, which is the case in patients with 

postanoxic encephalopathy.  

The frontotemporal montage proved to be useful for outcome prediction of postanoxic comatose 

patients based on classification of EEG background patterns. From clinical perspective, it is essential 

that the absence of false positives for the prediction of poor outcome is still achieved within the reduced 

montage. It should be kept in mind that electrode reduction up to the usage of only four locations also 

increases the risk of not obtaining valid registrations. If only one or two electrodes fail to register proper 

signal due to artefacts or loosening electrodes, the classification of the EEG pattern will immediately be 

impeded. 

In this part of the study, we focused on the visual assessment of the EEG pattern based on a 

reduced montage. The prognostic value of the EEG background pattern is evaluated isolated from other 

clinical characteristics. To obtain reliable prognosis and diagnostic value, the EEG pattern should always 

be interpreted within a multimodal approach, also accounting for other clinical characteristics, such as 

somatosensory evoked potentials.2,10,41,46 

In conclusion, we can state that the prognostic value of EEG background patterns in postanoxic 

comatose patients at the ICU is not affected by reducing the number of electrodes from a 9-channel 

bipolar montage to a 4-channel frontotemporal montage. Using 4 electrodes at sub-hairline locations 

creates the opportunity to further explore the possibilities of using easy-to-apply adhesive electrodes for 

cEEG monitoring in the ICU. 

 

4.3 Electrode reduction for qEEG analysis 

In this part of the study, we evaluated the performance of a logistic regression model for outcome 

prediction on several reduced electrode sets, based on AUC of the ROC, Se100 for prediction of poor 

outcome and Se95 for good outcome prediction. Reduction from 8 to 2 channels within the bipolar 

montage did not decrease the model’s performance for prediction at 12 hours after CA. At 24 hours after 

CA, only two of the reduced montages showed decreased performance, and two other reduced 

montages showed increased performance metrics. The full refCz montage showed better performance 

than the bipolar montage. However, single channels extracted from this montage almost all showed less 

predictive value for neurological outcome. The frontotemporal montage showed a higher sensitivity for 

poor outcome prediction for both timepoints without a decrease of other performance metrics. 

By applying L1 regularization while using the sum of all features for single channels as input for 

the model, we show that the contribution to the prediction is not equal for all channels. At 12 hours after 

CA, the three most dominant channels found are T3, T4 and C3. Comparing this to the performance of 

the reduced montages, we see that the channels adjacent to T4 in the bipolar montage show increased 
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performance. At 24 hours after CA, L1 regularization shows that C3 contributes the most to the outcome 

prediction, and according to that, the channels adjacent to C3 show increased performance. On the 

contrary, the channels adjacent to O2 show decreased performance, while this channel also shows a 

high contribution to the outcome prediction according to the value of the weights. Furthermore, Fp1 

showed a high contribution to the model’s prediction at 24 hours after CA without changed performance 

for the reduced montage of its adjacent channels. Based on this inconsistency between performance 

on reduced montages and the weights per channel in L1 regularization, it remains unclear which 

electrode locations contribute most to the outcome prediction model. However, 3 of the 4 electrode 

locations from the frontotemporal montage (Fp1, T3 and T4) are represented in the top three most 

contributing channels at 12 and 24 hours after CA. In combination with the increased model’s 

performance on this input, this speaks in favour of the frontotemporal montage as useful electrode 

locations for outcome prediction using a LR model.  

In some cases, the predictive value of the model increases when reduced montages are used 

as the input. For all montages containing multiple channels, the features were averaged over all used 

channels, raising the question if information is lost by averaging over too many channels. On the 

contrary, the model’s performance decreases for almost all single channel inputs, indicating a lack of 

information for accurate outcome prediction. Further investigation is needed to find the optimal number 

of electrodes for this model. 

 The baseline LR model, with input from all channels in a bipolar montage, outperformed most 

of the earlier developed outcome prediction algorithms.8,20,21,23,24,38,62 Nagaraj et al.20 reported the best 

overall performance found in literature with an AUC of 0.94, Se100 of 0.66 for poor outcome and Se95 

of 0.72 for good outcome at 12 hours after CA. This outperforms our model on the AUC for all montages 

and on Se95 for good outcome when using the bipolar montage as input. At 24 hours after CA, Nagaraj 

et al. reported an AUC of 0.88, Se100 of 0.60 and Se95 of 0.40, which are all lower than the performance 

metrics found in this study. Detailed comparison of the performance metrics found in literature can be 

found in Appendix A.10. 

The model used in this study was based on the LR model from an earlier study in the AMC by 

Van Poppel24 and showed comparable results, except for the prediction of good outcome at 12 hours 

after CA (0.30 vs 0.71). This can be assigned to a calculation error and confusion between the false 

positive rate and the specificity in Van Poppel’s research, which we restored in this study. From clinical 

perspective, it makes sense that the sensitivity of predicting good outcome declines over time. Several 

papers reported the evolution of EEG background pattern over time, including Oh et al.16 They showed 

that almost no patients with poor neurological outcome had a continuous EEG background pattern at 

12 hours after CA, and from 20 hours after CA, this number of patients is increasing, resulting in a 

continuous background pattern becoming less specific for good neurological outcome. 

Based on the performance of the LR model on reduced electrode sets from the bipolar montage, 

the assumption can be made that just a few electrodes can gather enough information for a functional 

outcome prediction. This supports the potential of using a reduced (frontotemporal) montage in clinical 

practice. The prognostic values at 12 hours after CA are higher than at 24 hours after CA for all 

performance metrics and all montages. This emphasizes the importance of early start of cEEG 
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registrations in the ICU. The suitability of reduced montages for outcome prediction creates 

opportunities for the use of easy-to-apply adhesive electrodes for cEEG monitoring in the ICU, which 

will contribute to earlier start of monitoring. 

The model’s performance based on reduced montages of only two channels from the bipolar 

montage is promising. However, the model was trained and tested on a limited dataset, especially for 

12 hours after CA, and this data was obtained from only one centre. External validation with larger 

datasets is required to validate the LR model with full montages and reduced montages further.  

 

5 Recommendations 

Results from this study show high potential for the use of sub-hairline EEG montages for prognostication 

after CA for both visual scoring and qEEG analysis. Yet, the BrainStatus electrode set does not fulfil the 

requirements for adequate EEG monitoring at this point. To find alternative easy-to-apply EEG set-ups, 

future research could focus on using alternative, adhesive electrodes from other domains like ECG and 

EMG to register EEG signals with sufficient signal quality. Preliminary research into several adhesive 

electrodes showed promising results for the Ambu® Neuroline 720 regarding impedances and signal 

quality.33 These electrodes were only tested on healthy subjects for a short period of time, and no 

information is known about the suitability in an ICU setting yet. We would recommend continuing this 

research and start monitoring postanoxic comatose patients in the ICU with these electrodes, 

simultaneously with the conventional cup electrodes. 

We showed that the prognostic value of EEG background patterns in postanoxic comatose 

patients at the ICU is not affected by reducing the number of electrodes from a 9-channel bipolar 

montage to a 4-channel frontotemporal montage. This suggests that clinical application of reduced 

montages might be possible in the future. A possible way to start implementing this could be to start 

EEG monitoring as soon as possible with the reduced montage. If any irregularities are seen on the 

reduced EEG or the signal cannot be appropriately assessed, the EEG montage can be expanded to 

the full bipolar montage.  

The performance of the LR model on reduced montages seems very promising. To confirm the 

validity of these results, an external validation should be performed. We would also recommend a multi-

centre approach to test the model on EEG registrations from different centres. Expansion of the dataset 

is recommended to obtain more robust results, especially for the dataset at 12 hours after CA. 

 

6 Conclusion 

We showed that intermittent check-ups did not improve the signal quality of the BrainStatus, which is 

required to use the BrainStatus as a reliable monitoring tool. However, the prognostic value of visual 

scoring of EEG patterns is unchanged by reducing the number of electrodes from 9 to 4. Also, the qEEG 

analysis showed significant better performance for the 4-channel frontotemporal montage compared to 

the conventional 9-channel bipolar montage. This strongly suggests a high suitability of this montage 

for clinical use in prognostication for postanoxic comatose patients. Overall, the performance of the LR 

model was preserved while using reduced montages of only two channels as input.  
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Appendices 

 

Appendix A.1 BrainStatus 

The BrainStatus is a disposable screen-printed electrode set that is easy to apply thus suitable for 

emergency cases. It consists of ten EEG electrodes, two electro-oculography (EOG) electrodes, two 

ground electrodes and two reference electrodes. All electrodes were coated with an adhesive hydrogel 

membrane to improve contact with the skin. Figure A.1 shows an overview of the BrainStatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

Figure A.1: An overview of the BrainStatus, the electrode placement on a subject’s head 
(left), a backside view and diagram of a single electrode (right). Image adapted from Lepola 
et al.28  
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Appendix A.2. User interface scoring application 

Six different characteristics were assessed for all EEG samples with the scoring application: rhythmic 

pattern, rhythmic abundancy, background pattern, background voltage, background frequency and 

whether the assessment of the signal was obscured by the presence of artefacts. Rhythmic pattern 

could be scored as a spike-wave pattern, periodic discharges, rhythmic delta or none. If any of the 

patterns were present, their abundancy was scored as well. Independently, the background pattern was 

scored as suppressed (all activity below 10 µV), burst-suppression with or without identical bursts (50-

99% suppressed), discontinuous (10-49% suppressed) or continuous. In case of a continuous 

background pattern, a distinction was made between low voltage (<20 µV) or normal voltage (>20 µV), 

and the background frequency had to be scored. To indicate the presence of artefacts obscuring the 

assessment, a check box could be ticked. The user interface with an example EEG is shown in Figure 

A.2. 

 

 

Figure A.2: User interface of the web application for visual scoring of EEG, with example EEG. 
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Appendix A.3. Additional results BrainStatus 

Inter-rater reliability 

The inter-rater reliability and its 95% confidence interval for the three main characteristics and all 

montages are shown in Table A.1. 

 

Table A.1: ICC values representing inter-rater reliability and strength of agreement 
between observers. 

Montage Characteristic ICC (95% CI) Agreement 

9-channel bipolar 

Background pattern 0.82 (0.37-0.97) Good 

Rhythmic pattern 0.80 (0.27-0.96) Good 

Outcome 0.71 (-0.10-0.95) Moderate 

4-channel frontotemporal 

Background pattern 0.87 (0.56-0.98) Good 

Rhythmic pattern 0.79 (0.29-0.96) Good 

Outcome 0.97 (0.90-0.99) Excellent 

BrainStatus 

Background pattern 0.07 (-3.24-0.84) Poor 

Rhythmic pattern 0.71 (-0.21-0.95) Moderate 

Outcome 0.75 (0.12-0.95) Good 

 

 

Confusion matrices 

The confusion matrices for the three main characteristics (background pattern, rhythmic pattern and 

outcome) in all montage combinations (BrainStatus – bipolar, BrainStatus – frontotemporal and 

frontotemporal – bipolar) are shown in Figures A.3-A.11. For all figures, N/A is not assessable, blue 

colour indicates conformity, red represents disagreement and colour saturation corresponds with the 

relative number of observations. 

 

 

Figure A.3: Confusion matrix for scored EEG 
background patterns comparing the BrainStatus 
montage with the bipolar montage 

Figure A.4: Confusion matrix for scored EEG 
background patterns comparing the frontotemporal 
montage with the BrainStatus montage 
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Figure A.8: Confusion matrix for scored EEG 
rhythmic patterns comparing the frontotemporal 
montage with the bipolar montage 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

Figure A.5: Confusion matrix for scored EEG 
background patterns comparing the frontotemporal 
montage with the bipolar montage 

Figure A.6: Confusion matrix for scored EEG 
rhythmic patterns comparing the BrainStatus 
montage with the bipolar montage 

Figure A.7: Confusion matrix for scored EEG 
rhythmic patterns comparing the frontotemporal 
montage with the BrainStatus montage 
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Figure A.10: Confusion matrix for assigned outcome 
prediction comparing the BrainStatus montage with 
the bipolar montage 

Figure A.9: Confusion matrix for assigned outcome 
prediction comparing the frontotemporal montage with 
the BrainStatus montage 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

 

 

  

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Classification agreement 

The calculated values for Cohen’s kappa for background pattern, rhythmic pattern and assigned 

outcome for all montage combinations are shown in Table A.2. 

Table A.2: Classification agreement between the three electrode sets 

 

 

 

 

 

 

 

 

Montages Characteristic Cohen’s κ (95% CI) Agreement 

BrainStatus - bipolar 

Background pattern 0.48 (-0.13-1.09) Moderate 

Rhythmic pattern 0.38 (-0.15-0.91) Fair 

Outcome 0.61 (-0.09-1.32) Substantial 

Frontotemporal - BrainStatus 

Background pattern 0.48 (-0.13-1.09) Moderate 

Rhythmic pattern 0.73 (0.24-1.22) Substantial 

Outcome 0.61 (-0.09-1.32) Substantial 

Frontotemporal - bipolar 

Background pattern 1.00 (1.00-1.00) Perfect 

Rhythmic pattern 0.57 (0.05-1.07) Moderate 

Outcome 1.00 (1.00-1.00) Perfect 

Figure A.11: Confusion matrix for assigned outcome 
prediction comparing the frontotemporal montage with 
the bipolar montage 
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Figure A.12: Plots for the calculated artefact score over time for patient 1-6 in respectively Figures A.12a-A.12f. 
The lighter red lines represent single channels registered with the conventional cup electrodes, the lighter blue lines 
represent single channels from the BrainStatus electrode. The thicker red and blue lines represent the mean value 
of all single channels from the cup electrodes and the BrainStatus electrodes respectively. Black dashed lines 
indicate the check-ups of the BrainStatus. The artefact score is not consistently higher for the BrainStatus compared 
to the cup electrodes. In only two patients, the artefact score is clearly increasing over time for both electrodes. 

Appendix A.4. Artefact scores BrainStatus 

Figure A.12 shows the artefact score over time plotted for all patients separately. For patient 2 and 

patient 4 (Figure A.12b and A.12d), the artefact score for the Brainstatus increases clearly over time 

and increases more rapidly than the conventional cup electrodes. For patient 3, the monitoring with the 

BrainStatus was started later than the conventional monitoring, indicated in Figure A.12c. 
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Figure A.13: Confusion matrix for scored EEG 
rhythmic patterns comparing the frontotemporal 
montage with the bipolar montage 

Figure A.14: Confusion matrix for assigned outcome 
prediction comparing the frontotemporal montage with 
the bipolar montage 

Appendix A.5. Additional results electrode reduction for visual assessment 

Inter-rater reliability 

The inter-rater reliability and its 95% confidence interval for the three main characteristics and both 

montages are shown in Table A.3. 

Table A.3: ICC values representing inter-rater reliability and strength of agreement 
between observers. 

Montage Characteristic ICC (95% CI) Agreement 

9-channel bipolar 

Background pattern 0.94 (0.93 – 0.95) Excellent 

Rhythmic pattern 0.81 (0.77 – 0.85) Good 

Outcome 0.91 (0.89 – 0.93) Excellent 

4-channel frontotemporal 

Background pattern 0.94 (0.92 – 0.95) Excellent 

Rhythmic pattern 0.71 (0.63 – 0.77) Moderate 

Outcome 0.89 (0.87 – 0.92) Good 

ICC: intra-class correlation coefficient; CI: confidence interval 

Confusion matrices 

Additional confusion matrices for rhythmic pattern and outcome are shown in Figures A.13 and A.14. 

For all figures, N/A is not assessable, blue colour indicates conformity, red represents disagreement 

and colour saturation corresponds with the relative number of observations. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Classification agreement 

The calculated values for Cohen’s kappa for background pattern, rhythmic pattern and assigned 

outcome for all montage combinations are shown in Table A.4. 

Table A.4: Classification agreement between the frontotemporal montage and the bipolar 
montage. 

 

 

 

Montages Characteristic Cohen’s κ (95% CI) Agreement 

Frontotemporal - bipolar 

Background pattern 0.76 (0.69 – 0.83) Substantial 

Rhythmic pattern 0.57 (0.40 – 0.73) Moderate 

Outcome 0.86 (0.78 – 0.94) Almost perfect 
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Appendix A.6. ROC curves reduced montages 

ROC curves for all reduced montages are shown in Figure A.15. The reduced montages compared to 

the full bipolar montage are shown in Figure A.15a and A.15b for 12 and 24 hours after CA, respectively. 

The single channel montages compared to all channels referenced to Cz are shown in Figure A.15c and 

A.15d for both timepoints. 

 

Figure A.15: Mean ROC curves over 50 iterations for all reduced montages compared to the full montages at 12h 
and 24h after CA. The blue line represents the full montage, and the more transparent lines all represent one 
reduced montage. Reduced montages are the two adjacent channels of one electrode for the bipolar montage. The 
performance of these reduced montages is in most cases not significantly different from the bipolar montage at both 
timepoints. For the refCz montage, the reduced montages are single channels in reference to Cz. These reduced 

montages are all outperformed by the full montage at both timepoints. 
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Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels bipolar 0.897 (0.885-0.908) 0.767 (0.744-0.790) 0.713 (0.684-0.742)

Bipolar, features 1:10 0.897 (0.885-0.908) 0.97 0.764 (0.741-0.788) 0.86 0.725 (0.697-0.753) 0.56

Fp1T3, Fp1C3 0.889 (0.877-0.902) 0.40 0.770 (0.747-0.792) 0.88 0.688 (0.658-0.719) 0.25

Fp2T4, Fp2C4 0.906 (0.895-0.916) 0.24 0.771 (0.748-0.794) 0.83 0.733 (0.705-0.761) 0.32

Fp1T3, T3O1 0.892 (0.880-0.904) 0.61 0.760 (0.735-0.784) 0.66 0.711 (0.680-0.741) 0.91

Fp1C3, C3O1 0.882 (0.869-0.895) 0.10 0.754 (0.730-0.777) 0.43 0.681 (0.650-0.711) 0.13

Fp2C4, C4O2 0.910 (0.899-0.920) 0.09 0.791 (0.769-0.814) 0.14 0.749 (0.722-0.776) 0.07

Fp2T4, T4O2 0.914 (0.903-0.925) 0.03 0.782 (0.758-0.806) 0.39 0.773 (0.747-0.799) 0.003

T3O1, C3O1 0.888 (0.876-0.900) 0.31 0.749 (0.725-0.773) 0.28 0.708 (0.680-0.735) 0.79

T4O2, C4O2 0.904 (0.893-0.915) 0.35 0.776 (0.754-0.799) 0.58 0.747 (0.721-0.774) 0.08

12h after resuscitation

Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels bipolar 0.879 (0.873-0.886) 0.633 (0.616-0.650) 0.496 (0.474-0.518)

Bipolar, features 1:10 0.872 (0.864-0.879) 0.14 0.640 (0.622-0.657) 0.61 0.458 (0.433-0.482) 0.02

Fp1T3, Fp1C3 0.884 (0.877-0.891) 0.32 0.651 (0.634-0.668) 0.15 0.508 (0.484-0.532) 0.45

Fp2T4, Fp2C4 0.873 (0.866-0.880) 0.20 0.645 (0.629-0.661) 0.33 0.450 (0.427-0.474) 0.01

Fp1T3, T3O1 0.892 (0.885-0.898) 0.01 0.671 (0.655-0.688) 0.002 0.512 (0.488-0.536) 0.32

Fp1C3, C3O1 0.897 (0.891-0.904) < 0.001 0.670 (0.653-0.687) 0.003 0.580 (0.559-0.601) < 0.001

Fp2C4, C4O2 0.878 (0.871-0.885) 0.83 0.649 (0.633-0.666) 0.18 0.484 (0.460-0.508) 0.47

Fp2T4, T4O2 0.875 (0.867-0.882) 0.36 0.641 (0.624-0.657) 0.54 0.481 (0.458-0.504) 0.36

T3O1, C3O1 0.884 (0.877-0.891) 0.31 0.655 (0.639-0.672) 0.07 0.525 (0.502-0.547) 0.07

T4O2, C4O2 0.867 (0.860-0.874) 0.02 0.627 (0.610-0.645) 0.64 0.449 (0.423-0.474) 0.01

24h after resuscitation

Table A.5: Performance of the LR model at 12h after CA for all reduced montages compared to the full bipolar 
montage. 

 

 

Table A.6: Performance of the LR model at 24h after CA for all reduced montages compared to the full bipolar 
montage. 

 

 

 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 

Appendix A.7. Performance LR model reduced montages 

Performance metrics with 95% confidence intervals and their corresponding p-values for all reduced 

montages compared to the full bipolar montage at 12 hours and 24 hours after CA are shown in Table 

A.5 and A.6, respectively. The same metrics and values are shown in Table A.7 and A.8 for the single 

channel reduced montages compared to the full montage of all electrodes referenced to Cz. The 

comparison between the frontotemporal montage and full bipolar montage can be seen in Table A.9 

and A.10 for 12 and 24 hours after CA, respectively. For all tables, coloured cells indicate significant 

differences compared to the baseline input of all channels. Green represents significantly higher values 

and red indicates significantly lower values. 
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Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels refCz 0.912 (0.902-0.923) 0.814 (0.793-0.834) 0.745 (0.717-0.773)

RefCz, features 1:10 0.900 (0.889-0.911) 0.11 0.782 (0.761-0.803) 0.04 0.719 (0.691-0.748) 0.20

Fp1Cz 0.898 (0.886-0.910) 0.07 0.781 (0.759-0.803) 0.04 0.718 (0.689-0.748) 0.19

Fp2Cz 0.889 (0.876-0.902) 0.01 0.781 (0.759-0.804) 0.04 0.697 (0.666-0.727) 0.02

T3Cz 0.893 (0.880-0.905) 0.02 0.788 (0.767-0.810) 0.09 0.699 (0.669-0.729) 0.03

C3Cz 0.892 (0.881-0.904) 0.01 0.779 (0.758-0.801) 0.02 0.691 (0.661-0.720) 0.01

C4Cz 0.895 (0.884-0.906) 0.03 0.769 (0.746-0.791) 0.004 0.703 (0.673-0.732) 0.04

T4Cz 0.883 (0.870-0.896) < 0.001 0.785 (0.763-0.807) 0.06 0.671 (0.639-0.704) < 0.001

O1Cz 0.892 (0.881-0.903) 0.01 0.770 (0.748-0.792) 0.01 0.699 (0.670-0.727) 0.02

O2Cz 0.896 (0.885-0.908) 0.04 0.771 (0.749-0.793) 0.01 0.724 (0.698-0.750) 0.27

12h after resuscitation

Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels refCz 0.910 (0.904-0.916) 0.690 (0.673-0.706) 0.597 (0.573-0.622)

RefCz, features 1:10 0.902 (0.896-0.908) 0.08 0.685 (0.668-0.702) 0.70 0.565 (0.540-0.591) 0.07

Fp1Cz 0.884 (0.877-0.891) < 0.001 0.642 (0.625-0.659) < 0.001 0.541 (0.517-0.565) 0.001

Fp2Cz 0.880 (0.873-0.886) < 0.001 0.634 (0.618-0.651) < 0.001 0.510 (0.485-0.534) < 0.001

T3Cz 0.883 (0.876-0.890) < 0.001 0.654 (0.637-0.671) 0.003 0.491 (0.466-0.517) < 0.001

C3Cz 0.887 (0.880-0.894) < 0.001 0.671 (0.655-0.687) 0.11 0.496 (0.471-0.521) < 0.001

C4Cz 0.884 (0.876-0.891) < 0.001 0.659 (0.640-0.678) 0.01 0.459 (0.431-0.486) < 0.001

T4Cz 0.887 (0.879-0.894) < 0.001 0.671 (0.654-0.688) 0.13 0.505 (0.478-0.532) < 0.001

O1Cz 0.876 (0.869-0.883) < 0.001 0.646 (0.629-0.664) < 0.001 0.457 (0.428-0.486) < 0.001

O2Cz 0.872 (0.865-0.879) < 0.001 0.435 (0.408-0.462) < 0.001 0.435 (0.408-0.462) < 0.001

24h after resuscitation

Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels bipolar 0.897 (0.885-0.908) 0.767 (0.744-0.790) 0.713 (0.684-0.742)

FT montage 0.902 (0.890-0.913) 0.54 0.801 (0.779-0.823) 0.04 0.726 (0.696-0.756) 0.53

12h after resuscitation

Input AUC Se100 poor outcome Se95 good outcome

Mean (95% CI) p-value Mean (95% CI) p-value Mean (95% CI) p-value

All channels bipolar 0.879 (0.873-0.886) 0.633 (0.616-0.650) 0.496 (0.474-0.518)

FT montage 0.896 (0.889-0.902) < 0.001 0.682 (0.665-0.698) < 0.001 0.521 (0.496-0.545) 0.14

24h after resuscitation

Table A.7: Performance of the LR model at 12h after CA for all reduced montages compared to the full refCz 
montage. 

 

 

 

Table A.8: Performance of the LR model at 24h after CA for all reduced montages compared to the full refCz 
montage. 

Table A.9: Performance of the LR model at 12h after CA for the frontotemporal montage compared to the full bipolar 
montage. 

Table A.10: Performance of the LR model at 24h after CA for the frontotemporal montage compared to the full 
bipolar montage. 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 

 

AUC: area under the curve; Se100: sensitivity at 100% specificity; Se95: sensitivity at 95% specificity; 
CI: confidence interval 
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Appendix A.8. Boxplots feature values 
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Figure A.16: Boxplots of the feature values at 12 hours after CA for all patients with good and poor neurological 
outcome. The red central mark indicates the median of the data, the bottom and top edge of the box represent 25 
and 75 percentiles respectively. The whiskers extend to the most extreme data points, outliers excluded. Outliers 
are represented by the red plus signs. The features Tsallis entropy, normalized theta power, signal power and 
regularity show a lower median value in patients with poor outcome compared to patients with good outcome. All 
other features show higher median values for patients with poor outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

 



  43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  44 

Figure A.17: Boxplots of the feature values at 24 hours after CA for all patients with good and poor neurological 
outcome. The red central mark indicates the median of the data, the bottom and top edge of the box represent 25 
and 75 percentiles respectively. The whiskers extend to the most extreme data points, outliers excluded. Outliers 
are represented by the red plus signs. The features Tsallis entropy, normalized theta power, signal power and 
regularity show a lower median value in patients with poor outcome compared to patients with good outcome. All 
other features show higher median values for patients with poor outcome. 
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Input AUC Se100 poor Se95 good

No regularizer 0,871 0,726 0,646

L1, λ = 0.0005 0,858 0,696 0,641

L1, λ = 0.001 0,870 0,732 0,650

L1, λ = 0.005 0,878 0,729 0,664

L1, λ = 0.01 0,873 0,743 0,674

L1, λ = 0.05 0,886 0,779 0,687

L1, λ = 0.1 0,893 0,781 0,691

L1, λ = 0.5 0,795 0,666 0,607

12h after resuscitation

Trained weights

Mean of absolute

values

Input Fp1 Fp2 T3 C3 C4 T4 O1 O2

No regularizer 0,45 0,49 1,19 0,67 0,33 0,91 0,56 0,56

L1, λ = 0.0005 0,44 0,52 1,20 0,76 0,30 0,99 0,66 0,55

L1, λ = 0.001 0,41 0,48 1,10 0,74 0,25 0,89 0,55 0,52

L1, λ = 0.005 0,29 0,19 0,81 0,55 0,12 0,34 0,25 0,16

L1, λ = 0.01 0,14 0,09 0,57 0,39 0,08 0,04 0,03 0,05

L1, λ = 0.05 0,00 0,00 0,30 0,10 0,00 0,00 0,00 0,00

L1, λ = 0.1 0,00 0,00 0,03 0,01 0,00 0,00 0,00 0,00

L1, λ = 0.5 0,00 0,00 0,01 0,01 0,00 0,00 0,00 0,00

12h after resuscitation

Channels

Input AUC Se100 poor Se95 good

No regularizer 0,837 0,643 0,304

L1, λ = 0.0005 0,835 0,640 0,305

L1, λ = 0.001 0,841 0,643 0,317

L1, λ = 0.005 0,846 0,644 0,332

L1, λ = 0.01 0,849 0,654 0,322

L1, λ = 0.05 0,853 0,654 0,337

L1, λ = 0.1 0,853 0,650 0,351

L1, λ = 0.5 0,847 0,649 0,339

24h after resuscitation

Trained weights

Mean of absolute

values

Input Fp1 Fp2 T3 C3 C4 T4 O1 O2

No regularizer 1,20 0,71 0,25 1,44 0,30 0,59 0,34 0,99

L1, λ = 0.0005 1,10 0,56 0,20 1,41 0,25 0,47 0,29 0,94

L1, λ = 0.001 1,01 0,43 0,14 1,27 0,19 0,41 0,25 0,88

L1, λ = 0.005 0,46 0,01 0,03 1,04 0,01 0,17 0,03 0,25

L1, λ = 0.01 0,28 0,00 0,01 0,88 0,00 0,09 0,01 0,01

L1, λ = 0.05 0,00 0,00 0,00 0,15 0,00 0,00 0,00 0,00

L1, λ = 0.1 0,00 0,00 0,00 0,10 0,00 0,00 0,01 0,00

L1, λ = 0.5 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

24h after resuscitation

Channels

Table A.11: Trained weights for all input channels when applying L1 
regularization with different values of λ at 12h after CA. 

Table A.12: Corresponding model performance of the 
LR model using L1 regularization for different values of 
λ at 12h after CA. 

Table A.13: Trained weights for all input channels when applying L1 
regularization with different values of λ at 24h after CA. 

Table A.14: Corresponding model performance of the 
LR model using L1 regularization for different values of 
λ at 24h after CA. 

Appendix A.9. Performance and trained weights L1 regularization 

The mean of the absolute values of the trained weights and their corresponding performance metrics 

for different values of λ when performing L1 regularization are shown in Table A.11 and A.12 for 12 

hours after CA and in Table A.13 and A.14 for 24 hours after CA. 
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Appendix A.10. LR performance compared with literature 

 
Table A.15: Performance of outcome prediction models from earlier studies in the AMC and multiple other studies at 12 
hours after CA. 

12h after CA 

 
 
Model (montage) 

 
AUC of ROC 
Mean (95% CI) 

Sens (at Spec) for poor 
outcome prediction 
Mean (95% CI) 

Sens (at Spec) for good 
outcome prediction 
Mean (95% CI) 

Current model 

Current LR (9 electrodes, bipolar) 
Current LR (9 electrodes, refCz) 
Current LR (4 electrodes, frontotemporal) 

 

0.90 (0.89-0.91) 
0.91 (0.90-0.92) 
0.90 (0.89-0.91) 

 

0.77 (0.74-0.79) (100%) 
0.81 (0.79-0.83) (100%) 
0.80 (0.78-0.82) (100%) 

 

0.71 (0.68-0.74) (95%) 
0.75 (0.72-0.77) (95%) 
0.73 (0.70-0.76) (95%) 

Earlier studies AMC 

CRI (9 electrodes, bipolar)62 
CRI (3 electrodes, central)62 
rCRI (9 electrodes, bipolar)38 
rCRI (3 electrodes, central)38 
LR (9 electrodes, bipolar)24 
LSTM (9 electrodes, bipolar)24 

 

0.80 
0.83 
0.87 
0.91 
0.90 (0.89-0.91) 
0.90 (0.89-0.91) 

 

0.09 (0.01-0.29) (100%) 
0.22 (0.09-0.42) (100%) 
0.88                     (71%) 
0.65                    (100%) 
0.78 (0.76-0.80) (100%) 
0.79 (0.76-0.81) (100%) 

 

0.73 (0.39-0.94) (73%) 
0.90 (0.73-0.98) (70%) 
0.00                   (100%) 
0.21                   (100%) 
0.30 (0.27-0.32) (95%) 
0.30 (0.28-0.33) (95%) 

Literature 

CRI (21 electrodes, bipolar)8 
rCRI (21 electrodes)20 
CNN (21 electrodes, bipolar)23 
CNN (19 electrodes, single channels)21 

 

0.92 
0.94 
0.87 (0.87-0.88) 
0.89 (0.78-0.96) 

 

0.56 (0.41-0.70) (100%) 
0.66 (0.65-0.78) (100%) 
0.42 (0.36-0.48) (100%) 
0.78                     (89%) 

 

0.63 (0.46-0.77) (94%) 
0.72 (0.61-0.85) (95%) 
0.48 (0.45-0.51) (95%) 
 

CA: cardiac arrest; AUC: area under the curve; ROC: receiver operating characteristic; Se100: sensitivity at 100% 
specificity; Se95: sensitivity at 95% specificity; CI: confidence interval; LR: logistic regression; (r)CRI: (revised) cerebral 
recovery index; LSTM: long short-term memory recurrent neural network; CNN: convolutional neural network. 

 
Table A.16: Performance of outcome prediction models from earlier studies in the AMC and multiple other studies at 24 
hours after CA. 

24h after CA 

 
 
Model (montage) 

 
AUC of ROC 
Mean (95% CI) 

Sens (at Spec) for poor 
outcome prediction 
Mean (95% CI) 

Sens (at Spec) for good 
outcome prediction 
Mean (95% CI) 

Current model 

Current LR (9 electrodes, bipolar) 
Current LR (9 electrodes, refCz) 
Current LR (4 electrodes, frontotemporal) 

 

0.88 (0.87-0.89) 
0.91 (0.90-0.92) 
0.90 (0.89-0.90) 

 

0.63 (0.62-0.65) (100%) 
0.69 (0.67-0.71) (100%) 
0.68 (0.67-0.70) (100%) 

 

0.50 (0.47-0.52) (95%) 
0.60 (0.57-0.62) (95%) 
0.52 (0.50-0.55) (95%) 

Earlier studies AMC 

CRI (9 electrodes, bipolar)62 
CRI (3 electrodes, central)62 
rCRI (9 electrodes, bipolar)38 
rCRI (3 electrodes, central)38 
LR (9 electrodes, bipolar)24 
LSTM (9 electrodes, bipolar)24 

 

0.75 
0.70 
0.74 
0.86 
0.88 (0.88-0.89) 
0.90 (0.90-0.91) 

 

0.54 (0.36-0.70) (100%) 
0.39 (0.28-0.52) (98%) 
0.79                    (50%) 
0.34                   (100%) 
0.67 (0.66-0.69) (100%) 
0.68 (0.66-0.70) (100%) 

 

0.55 (0.23-0.83) (78%) 
0.82 (0.69-0.92) (58%) 
0.17                    (95%) 
0.45                    (97%) 
0.56 (0.53-0.58) (95%) 
0.44 (0.42-0.46) (95%) 

Literature 

CRI (21 electrodes, bipolar)8 
rCRI (21 electrodes)20 
CNN (21 electrodes, bipolar)23 

 

0.90 
0.88 
0.90 (0.90-0.91) 

 

0.65 (0.51-0.77) (94%) 
0.60 (0.51-0.75) (100%) 
0.57 (0.54-0.60) (100%) 

 

0.58 (0.43-0.71) (93%) 
0.40 (0.30-0.51) (95%) 
0.33 (0.30-0.36) (95%) 

CA: cardiac arrest; AUC: area under the curve; ROC: receiver operating characteristic; Se100: sensitivity at 100% 
specificity; Se95: sensitivity at 95% specificity; CI: confidence interval; LR: logistic regression; (r)CRI: (revised) cerebral 
recovery index; LSTM: long short-term memory recurrent neural network; CNN: convolutional neural network. 

 


	Preface
	Abstract
	List of figures
	List of tables
	1 Introduction
	2 Materials and methods
	Study population
	Outcome assessment
	Standard of care and monitoring
	Epoch selection and EEG montages
	Visual scoring application
	Inter-rater reliability
	Classification agreement
	2.1 BrainStatus
	Study population and outcome assessment
	Monitoring and check-ups
	Visual scoring
	Evaluation of signal quality

	2.2 Electrode reduction for visual assessment
	Study population and outcome assessment
	Visual scoring
	Outcome prediction

	2.3 Electrode reduction for qEEG analysis
	Study population and outcome assessment
	Preprocessing and model input
	Feature extraction
	Logistic regression model
	Performance metrics
	Predetermined reduced sets
	L1 regularization


	3 Results
	3.1 BrainStatus
	Patient characteristics
	Inter-rater reliability
	Classification agreement
	Signal quality

	3.2 Electrode reduction for visual assessment
	Patient characteristics
	Inter-rater reliability
	Classification agreement
	Outcome prediction

	3.3 Electrode reduction for qEEG analysis
	Patient characteristics
	Predetermined reduced sets
	L1 regularization


	4 Discussion
	4.1 BrainStatus
	4.2 Electrode reduction for visual assessment
	4.3 Electrode reduction for qEEG analysis

	5 Recommendations
	6 Conclusion
	References
	Appendices
	Appendix A.1 BrainStatus
	Appendix A.2. User interface scoring application
	Appendix A.3. Additional results BrainStatus
	Appendix A.4. Artefact scores BrainStatus
	Appendix A.5. Additional results electrode reduction for visual assessment
	Appendix A.6. ROC curves reduced montages
	Appendix A.7. Performance LR model reduced montages
	Appendix A.8. Boxplots feature values
	Appendix A.9. Performance and trained weights L1 regularization
	Appendix A.10. LR performance compared with literature


