
Program Verification for Quantum Algorithms

Pieter Bos, BSc.

Committee:
Prof. Dr. Marieke Huisman

Prof. Dr. Ir. Floris Zwanenburg
Dr. Ir. Marco Gerards

Formal Methods & Tools
University of Twente

June 25, 2021

Abstract

Quantum computers are improving fast, with several companies now presenting
quantum computers with dozens of qbits. As quantum computers will likely
be scarce for the foreseeable future, the correctness of quantum programs is an
important consideration. This research investigates a formal approach to the
verification of quantum programs, and evaluates the usability of that approach.
Three Hoare-style logics for quantum programs are discussed, and one is used for
a case study. A proof of Shor’s factoring algorithm is presented in the selected
logic. We conclude that while the logic is usable and a proof can be completed,
several avenues of improvement are possible.

i

Contents

1 Introduction 1
1.1 Objective . 2
1.2 Structure . 2

2 Program Verification 3
2.1 WHILE . 4
2.2 Axiomatic Semantics . 5

3 Quantum Computing 8
3.1 Conditions for Quantum Computing 8
3.2 An Abstract Quantum Computer 9
3.3 Mathematical Preliminaries . 10

4 Related Work 12
4.1 A Logic for Formal Verification of Quantum Programs (2009) [9] 13

4.1.1 Program Syntax and Semantics 13
4.1.2 Hoare Logic . 13

4.2 Floyd–Hoare Logic for Quantum Programs (2011) [13] 14
4.2.1 Program Syntax and Semantics 14
4.2.2 Hoare Logic . 14

4.3 Quantum Relational Hoare Logic (2018) [11] 15
4.3.1 Program Syntax and Semantics 15
4.3.2 Hoare Logic . 15

4.4 Logic for the Case Study . 15

5 Proof System 17
5.1 Syntax . 17
5.2 Semantics . 18
5.3 Formulae . 18
5.4 Proof Rules . 19

6 Shor’s Factoring Algorithm 21
6.1 Pseudocode . 23

7 Lemmas 25
7.1 Logic-Level Lemmas . 25

7.1.1 Probability is not Greater Than One 25
7.1.2 Measurement Outcome in Probability Predicate 25
7.1.3 Diagonal Formulae . 26

ii

7.1.4 Distribute over E0 and E1 28
7.1.5 Independent Measurement 29
7.1.6 Distribute Unitary Operations over ⊕ 30

7.2 Proof Rules . 30
7.2.1 Assign . 30
7.2.2 Repeated Declaration . 32
7.2.3 Constant Assignment . 32
7.2.4 Measure into Bits . 32
7.2.5 Distribute over E0 and E1 with Independent Measurements 33

7.3 Mathematical Lemmas . 33
7.3.1 Zero Diagonal . 33

8 Proof 34
8.1 Proof Tree . 35
8.2 Comparison to Theory . 41

9 Conclusion 43
9.1 Findings . 43
9.2 Future Work . 43

9.2.1 Formalization of Lemmas and Proof 43
9.2.2 Non-Probabilistic Classical Computing 44
9.2.3 Complete Quantum Logic 44
9.2.4 Automated Reasoning about Quantum Programs 44

9.3 Summary . 44

iii

Chapter 1

Introduction

Quantum computation is an emerging field that makes big promises: classes
of problems can be solved much faster when we base computers on quantum
mechanics, rather than classical logic gates. Quantum computers are built from
qbits: a special type of memory that stores an exponential amount of informa-
tion and, crucially, allows us to do computations on that entire state space.

Several companies, such as Google and IBM, boast quantum computers that
have dozens of qbits. While this may not sound like much, we have to remember
that the information in a quantum computer (measured in bits) expands expo-
nentially with the number of qbits, rather than linearly. We have in fact now
reached a point where working quantum computers can no longer be simulated
efficiently enough by classical computers to keep up (though this claim is still
contested). This is called quantum supremacy.

It will still be some time before every household has a quantum computer, if
such a time will ever come. For the time being it looks like quantum computers
will remain very expensive to make, and require extreme conditions, such as a
vacuum and extremely low temperature. It is likely that quantum computers
will follow a cloud computing model for some time, where we will be able to
interact with quantum computers over the internet.

If quantum computing will remain scarce, it will be important to be confident
in the correctness of your quantum program. This is in addition to the fact that
it is good to be confident in the correctness of your program in general, especially
when we rely upon its correctness for safety. A rigorous approach to ensuring
correctness of programs is via formal methods.

The word formal here refers to the fact that we use math to substantiate our
claims. We construct an abstract model of the computer, and use that model to
prove properties about the program. If we succeed in proving such properties,
we can be very confident that our program will respect that property. One such
type of model uses Hoare logic, in which we can be very precise about the inputs
a program accepts, and the output it will produce. This is the type of logic that
this thesis will deal with.

1

1.1 Objective

This thesis investigates the usability of a Hoare-style logic for quantum pro-
grams. The formal research questions are:

Q1. What is a representative example to show the usability of quantum logics?

Q2. How can the example be proven in existing logics?

Q3. How usable are existing logics for the verification of quantum programs?

Q4. Could the logics be adapted to be included in automated proof tools?

The example chosen for Q1 is Shor’s factoring algorithm. It is a well-known
algorithm that produces a factor of a composite number. The primary moti-
vation to choose this algorithm is that it contains both a non-trivial classical
part and quantum part. The algorithm is further motivated and explained in
Chapter 6.

The central proof of this work shows that an implementation of Shor’s algo-
rithm in a theoretical quantum programming language is correct: it produces a
factor of a composite number. The proof for Q2 is carried out in Chapter 8. As
for usability in Q3: a fair number of lemmas was needed to complete the proof,
as is reflected in Chapter 7. This is also discussed in the findings in Chapter 9.

Finally the end goal is to be able to construct tools that make proving
properties about quantum programs easy. For Q4 this is briefly reflected on in
the conclusion, and is left for future work.

1.2 Structure

A large part of the thesis is to set up the necessary background to do a formal
proof of a quantum algorithm. First background is given on program verification
in Chapter 2, and quantum computers in Chapter 3. An embedding of quantum
computation in a logic constitutes a quantum program logic, examples of which
are given in Chapter 4. We choose one logic to explain more deeply in Chapter
5, to be able to do a proof in it. The case study for the proof is explained
in Chapter 6. Finally, we carry out the proof by first giving some lemmas in
Chapter 7, and then constructing the proof in Chapter 8.

2

Chapter 2

Program Verification

This chapter gives background on a technique for program verification. In par-
ticular, we show how to design a Hoare-style proof system. We later need this
background together with Chapter 3 to reason about logics for quantum pro-
grams in Chapter 4.

This thesis deals with showing the correctness of programs. To do this, we
have to define some measure of correctness. In particular, we would like our
correctness to be mathematically rigorous, so we can be sure that a program is
correct.

We use derivatives of Hoare logic [7], which presents an intuitive way to
reason about programs. The intuition is that we first require the computer to
be in some state (the precondition, φ), then we execute the program P , and
then we promise something about the state of the computer (the postcondition,
ψ). This is then denoted as a Hoare triple:

{φ} P {ψ}

How we represent the state varies by logic, but one might imagine it describes the
memory of the computer, or the variables used in the program. For example,
a specified program that assigns a value to a variable x might look like the
following:

{x = 0} x := 2 {x = 2}
This then states: for every program state where x = 0, after executing x := 2,
we know that x = 2. That is of course too strict to be general: x can also
be 1 before the assignment, and it will still be 2 afterwards. We can therefore
broaden the precondition to not require anything about x:

{true} x := 2 {x = 2}

To make this more precise, we should specify two things: we need to know when
a state satisfies a pre- or postcondition, and we should know how a program
affects the state.

|= : (state× φ)→ B (2.1)

J·K(·) : (program× state) ⇀ state (2.2)

The symbol ‘|=’ in (2.1) is used for the relation between states and predicates
(pre- and postconditions). We say that a state satisfies φ when state |= φ.

3

The operator ‘J·K(·)’ in (2.2) is used to enact a program on a state. Given an
input state S and a program P , the result of executing P in state S is again
a state, and is denoted: JP K(S). This operator is said to define the semantics
of programs. It is partial, as defined in (2.2), because some programs never
complete.

A Hoare logic is assembled as a collection of proof rules and axioms. A proof
rule for two programs executed directly after each other typically looks like this:

{φ} P {φ′} {φ′} Q {ψ}
{φ} P; Q {ψ}

seq

This rule simply states that if {φ} P {φ′} holds, and {φ′} Q {ψ} holds, then
{φ} P; Q {ψ} must hold. Whether the logic itself is correct can then be
established by checking that we can only prove things that are true with respect
to the semantics of the program, and the satisfaction relation for predicates.
That is, we can only prove {φ} P {ψ} if S |= φ implies JP K(S) |= ψ. If this
always holds, we say the logic is sound. The opposite property also has a name:
a logic is said to be complete when for every P, S, φ, ψ where S |= φ implies
JP K(S) |= ψ, there is a proof leading to {φ} P {ψ}.

2.1 WHILE

To give an intuition on how a semantics might be structured, we give an example.
It is usual for the syntax of programs in a logic to be just powerful enough to
express useful programs, but restrained so that the semantics and proof rules
do not become unnecessarily cluttered. One such standard language is WHILE.
The syntax of WHILE is:

P ::= skip

| x := E

| P; P

| if B then P else P

| while B do P

(2.3)

E ::= n ∈ N | x ∈ X | f(E, . . . , E) (2.4)

B ::= E ≤ E | B ∧ B | ¬B (2.5)

Here x ranges over some arbitrary set of variable symbols X, and f denotes
total functions. The state used to describe the semantics of WHILE programs
is a function S : X → N. We can now define the semantics of WHILE:

JskipK(S) = S

Jx := EK(S) = S[x 7→ JEK(S)]

JP; QK(S) = JQK(JP K(S))

Jif B then P else QK(S) =

{
JP K(S) if JBK(S)

JQK(S) otherwise

Jwhile B do P K(S) =

{
Jwhile B do P K(JP K(S)) if JBK(S)

S otherwise

(2.6)

4

In a slight abuse of notation JEK(S) and JBK(S) are also used to interpret
expressions and conditions in a state:

Jn ∈ NK(S) = n

Jx ∈ XK(S) = S(x)

Jf(E1, . . . , En)K(S) = f(JE1K(S), . . . , JEnK(S))

JE1 ≤ E2K(S) = JE1K(S) ≤ JE2K(S)

JB1 ∧ B2K(S) = JB1K(S) ∧JB2K(S)

J¬BK(S) = ¬JBK(S)

(2.7)

2.2 Axiomatic Semantics

We can now start to design a set of proof rules and axioms that correspond to
our semantics of WHILE. For example, we can declare an axiom about skip:

{φ} skip {φ}
skip

(2.8)

This axiom is sound: clearly S |= φ implies JskipK(S) = S |= φ. We can
also inspect the completeness of this single-rule proof system, supposing for the
moment that the only possible program is skip. If we can find φ and ψ such
that S |= φ implies JskipK(S) |= ψ, and we cannot prove this with our proof
system (i.e. the one axiom), the proof system is not complete. This is rather
easy to show: a counterexample is {false} skip {true}. This statement is true,
as S 6|= false for any S, and so the constraint S |= false ⇒ JskipK(S) |= true is
satisfied. The triple {false} skip {true} does not follow from the axiom, as false
is not the same predicate as true.

To make this logic complete (for the program skip), at a minimum we have
to add a proof rule that says something about Hoare triples with an inequal pre-
and postcondition. Specifically, the rule we still need is one that can strengthen
preconditions (i.e. it excludes more states), and a rule that can weaken post-
conditions (i.e. it allows for more states):

{φ′} P {ψ} φ→ φ′

{φ} P {ψ}
pre-logic

(2.9)

{φ} P {ψ′} ψ′ → ψ

{φ} P {ψ}
post-logic

(2.10)

We can again show these rules are sound. For pre-logic we have to show that
given an S |= φ, JP K(S) |= ψ. We can see that S |= φ′, as otherwise S 6|= φ→ φ′.
From {φ′} P {ψ} we can then conclude that JP K(S) |= ψ. Rule post-logic
has a similar proof.

Our counterexample now no longer works: we can use false→ true to prove
{false} P {true}:

{true} skip {true}
skip

true→ false

{false} skip {true}
pre-logic

(2.11)

5

In fact, we can now prove the logic is complete for the program skip. Given
any {φ} skip {ψ}, we have S |= φ⇒ JP K(S) = S |= ψ. Clearly then S satisfies
φ→ ψ, and so we can build a proof tree for any {φ} skip {ψ}:

{ψ} skip {ψ}
skip

φ→ ψ

{φ} skip {ψ}
pre-logic

(2.12)

While completeness proofs are interesting, for the remaining syntactical con-
structs the proofs get quite involved, so we only prove soundness. The next
piece of syntax is assign:

{φ[e/x]} x := e {φ}
assign

(2.13)

By φ[e/x] we mean φ where every occurrence of x is replaced by e. Intuitively
this says that anything that is true for e in the precondition, is true for x in
the postcondition. For example, we can compute the precondition for the form
{. . . } x := 5 {x = 5}. We have to replace every occurence of x in x = 5 with
5, yielding {5 = 5} x := 5 {x = 5}.

This rule is also sound, since the rule matches the definition of the semantics
of assignment: S |= φ[e/x] iff S[x 7→ JeK(S)] |= φ. That is: it is equivalent to
replace x with e in the formula, and to assign e to x in the state. A precise
proof of this requires a proof by structural induction on the formula φ. The
intent is however not to provide a precise axiomatization of WHILE, but rather
to sketch how a logic is structured in general, and how it might be used, and so
we skip further detailed proofs.

Next is sequential composition. For this rule we have to provide a formula
that holds inbetween two statements that are executed after each other. When
the postcondition of the first statement and the precondition of the second
statement match, we can connect them:

{φ} P {φ′} {φ′} Q {ψ}
{φ} P; Q {ψ}

seq
(2.14)

To show soundness, we can use the two hoare triples that we know hold:

∀S : S |= φ⇒ JP K(S) |= φ′, ∀S : S |= φ′ ⇒ JQK(S) |= ψ

We can therefore conclude that for all S: S |= φ implies JQK(JP K(S)) |= ψ.
This matches the semantics of sequential composition, and so S |= φ implies
JP; QK |= ψ.

Lastly we have the two branching instructions, the first of which is if. In
the branch when the condition is true, we can copy the precondition of the if

statement, and add that the condition is true. Conversely in the branch where
the condition is false we may add that the condition is false. To be able to join
the branches again, their postconditions should match:

{φ ∧ c} T {ψ} {φ ∧ ¬c} F {ψ}
{φ} if c then T else F {ψ}

if
(2.15)

Here the core insight is that we can move the condition out of the formula in the
branches: S |= φ ∧ c iff JcK(S) ∧ S |= φ , and similarly S |= φ ∧ ¬c iff ¬JcK(S) ∧ S |=

6

φ. Then we can simplify unfold the semantics of if into its two branches:

S |= φ⇒

(
Jif c then T else F K(S) =

{
JT K(S) if JcK(S)

JF K(S) otherwise

)
|= ψ

iff (S |= φ ∧JcK(S)⇒ JT K(S) |= ψ) ∧(S |= φ ∧ ¬JcK(S)⇒ JF K(S) |= ψ)

iff (S |= φ ∧ c⇒ JT K(S) |= ψ) ∧(S |= φ ∧ ¬c⇒ JF K(S) |= ψ

The other branching statement is while. For loops we use the concept of a loop
invariant : a condition which must be maintained for every iteration of the loop.
For the loop body we then want to prove that if the invariant holds before the
body (and the condition is true), it also holds after execution of the body. If
this is the case the invariant must also be true after the whole loop (and the
condition will be false).

{φ ∧ c} P {φ}
{φ} while c do P {φ ∧ ¬c}

while
(2.16)

For soundness we want:

S |= φ⇒

({
Jwhile c do P K(JP K(S)) if JcK(S)

S otherwise

)
|= φ ∧ ¬c (2.17)

When JcK(S) is false, clearly S satisfies φ ∧ ¬c. On the other hand when JcK(S)
is true, we use {φ ∧ c} P {φ} to obtain JP K(S) |= φ. If we assume that the
loop as a whole terminates in some number of iterations, we can then prove by
induction that the loop as a whole will maintain φ.

7

Chapter 3

Quantum Computing

This chapter gives background on the mechanics of quantum computing. We
use the conditions set out by DiVincenzo in [6] as a guide to an abstract mathe-
matical model of quantum systems that we can use to do quantum computation.
Together with the background on program verification logic from Chapter 2 this
chapter is used to reason about quantum program logics in Chapter 4.

Computers are based on the fact that there exist physical phenomena that we
can exploit to automate logic. Modern computers are based on semi-conductors,
which we use to construct transistors, and in turn logic gates. Computers are
only about as complex as the number of logic gates it has, and the number of
computations it can do with them per unit of time. Given enough paper, pens,
and patience, a human could do the same computation in a constant multiple
of time that the computer can do the computation in.

Quantum computers on the other hand are based on a physical process that
does not scale linearly in the same way. The goal is to find particles that can
act as a qbit. Qbits compose into a quantum system where the state space grows
exponentially with the number of qbits, as well as the atomic operations we can
perform on the state space. It is important to note that we cannot perform
arbitrary operations on a quantum system, and correspondingly quantum com-
puting does not trivially provide an exponential speed-up for every algorithm.

A more precise characterization of quantum computers is given by DiVin-
cenzo as five criteria in [6]. These criteria are enumerated and explained below
to motivate the choices made in the quantum computing language presented in
Chapter 5.

3.1 Conditions for Quantum Computing

“A scalable physical system with well characterized [qbits]”: a qbit is
a quantum system (for example: one particle), that can be in two states. The
two states are usually denoted |0〉 and |1〉. The crucial properties that quantum
computing uses is superposition and entanglement. Superposition refers to the
fact that a qbit is generally not in a ground state, in this case either |0〉 or
|1〉. In actuality, the qbit has some probability of ending up in either state.
Entanglement refers to the fact that the probability of ground states of two
entangled qbits cannot be considered individually. Two entangled qbits have

8

some probability of ending up as |00〉, |01〉, |10〉 and |11〉. It is important to
note that these properties correspond to the physical reality that a quantum
system can be in a superposition, rather than that we prefer to model the
system probabilistically. If we start with the presumption that in actuality the
quantum system must have started in some ground state, we are bound to arrive
at a contradiction: an entangled quantum system in a superposition simply
stores more information than a ground state, which a quantum computer can
demonstrate. Well characterized refers to several physical properties, of which
computer scientists may hope they do not have to deal with. For example, if a
qbit has a secret third state, the probability of ending up in it should be low.
Scalable refers to the number of qbits we can successfully entangle.

“The ability to initialize the state of the [qbits] to a simple fidu-
cial state, such as |000 . . .〉”: Though normally the quantum system is in a
superposition, we want to be able to control the state that it starts in. Thus, we
need the ability to initialize the quantum system into one known ground state.

“A [qbit]-specific measurement capability”: A good measurement is
usually thought of as to interfere with the system it measures as little as possible.
For quantum systems the opposite is true: measurement of a qbit makes it so
that the qbit is thereafter in a ground state, corresponding to the measurement
outcome. Measurement is thus also understood to be an action on the system.
For quantum computation to work, it is important that we are able to measure
only one or a set of qbits, rather than the whole system.

“A ‘universal’ set of quantum gates”: Quantum gates are the compu-
tational operation on quantum systems, drawing on the analogy of a logic gate.
Quantum algorithms often contain operations on a large part of the system, e.g.
a Fourier transform on a set of qbits. These are often not implemented directly,
but composed from a set of universal quantum gates. The term universal means
that the set is sufficient to construct any allowed transformation on the quantum
system.

“Long relevant decoherence times, much longer than the gate op-
eration time”: Decoherence is a specific physical process, where the state of a
quantum system decays into a different state. For a computer it is quite undesir-
able that its state spontaneously evolves. The exact mechanics of decoherence
are not further discussed here.

3.2 An Abstract Quantum Computer

To be able to reason about quantum computers, we have to make some as-
sumptions. First and foremost, we assume that there are no error conditions
for the quantum computer: any invalid states are unreachable. Furthermore,
there are none of the usual spontaneous effects on quantum systems: no deco-
herence, no measurement unless we specify it, and operations perform exactly
the transformation we prescribe.

These assumptions map well to the assumptions normally made about regu-
lar computers: in formal methods, effects like electrical noise are not considered.
We choose an abstraction layer and stick with that, and so we do the same here.
Now that we have specified how a quantum computer should work, and what
assumptions we make, we can construct a mathematical model of it.

9

3.3 Mathematical Preliminaries

As said before, the true state of a quantum system is probabilistic. For example,
in a 5-qbit system the system has 25 possible ground states. To capture the
state of the quantum system, we have to store the probability of each ground
state. Correspondingly a quantum system is modeled as a vector space, with
a dimension per ground state. For ground states we use a shorthand notation
called a ‘ket’, part of Dirac notation [5]:

|0〉 ≡ e0 ≡
[
1
0

]
, |1〉 ≡ e1 ≡

[
0
1

]
(3.1)

Also in common use is the ‘bra’, which is the transpose of the ‘ket’:

〈φ| ≡ |φ〉T (3.2)

The vector space is over C, where a scalar is called a probability amplitude. When
we say that a probability corresponds to a ground state, what we really mean
is that when we measure the system, that is the probability we will measure
that state. This does not mean that the system was secretly in that state the
entire time: it remains in an ensemble of ground states until we measure it.
To obtain the probability assigned to a ground state, we project the system to
its corresponding dimension, and take the square of its 2-norm. For a one-qbit
system, the projection operators are:

E0 ≡
[
1 0
0 0

]
, E1 ≡

[
0 0
0 1

]
(3.3)

For a system A we can then obtain the probability of measurement outcome 0
as |E0A|2, and the probability of measurement outcome 1 as |E1A|2. A mea-
surement is also an action on the system, namely the same projection to a
ground state. In particular, when we measure a 0, the system will then be in
state E0A/|E0A|2. When we measure a 1, the system will then be in state
E1A/|E1A|2.

Of course we are interested in multi-qbit systems, so we want to compose
them. We might enumerate all possible ground states manually again, as such:

|00〉 =

1
0
0
0

 , |01〉 =

0
1
0
0

 , |10〉 =

0
0
1
0

 , |11〉 =

0
0
0
1

Since the dimension of the vector space grows exponentially with the number
of qbits, this quickly becomes unwieldy. Luckily, we can use the tensor product
to do the work for us instead, defined for two matrices as such:

Am×n �Bo×p =

a11 ·B . . . a1n ·B
...

. . .
...

am1 ·B . . . amn ·B

 (3.4)

The B matrix is expanded in place for each element of A, resulting in a matrix
in R(m·o)×(n·p). We can now define |00〉 as |0〉� |0〉, |000〉 as |0〉� |0〉� |0〉, etc.

10

Of course we cannot apply our projection operators in (3.3) to multi-qbit
systems, but we can expand them by taking the tensor product with I. In this
way, the project operator only projects the qbit we are interested in, while not
measuring other qbits. Due to entanglement a qbit that is not measured may
still be affected. For example: in the system (|01〉+ |10〉)/

√
2 measuring either

qbit affects the other qbit. To project the second qbit in a three-qbit system
to |0〉, the operator would be I � E0 � I. Usually qbits, or collections of qbits,
are named and in some implied order, in which case we may write a projection
operator as aE0, which is understood to measure qbit a and is in some form
I � . . .� E0 � . . .� I.

For reasons not explained in detail here it is sometimes more natural to
represent a quantum system with a density matrix instead. Whereas the state
φ was earlier represented as |φ〉, we now represent it as |φ〉〈φ|. That is: we take
the original representation, and take the outer product with itself.

The state of a quantum system should obey the laws of probability. To that
end density matrices must obey three properties: it is positive semi-definite,
Hermitian, and has trace 1.

• A Hermitian matrix is defined to be equal to its conjugate transpose, by
convention written as A† ≡ AT .

• The trace of a matrix is the sum of its diagonal: tr(An×n) ≡
∑n
i=1Aii.

• A matrix An×n is said to be positive semi-definite when for all x ∈ Cn:
x†Ax ≥ 0.

A closely related concept is that of a partial density matrix. In a regular
density matrix, the trace being one is a reflection of the fact that the sum over
all ground states of the probability of measuring that ground state must be one.
In a partial density matrix this restriction is replaced by the restriction that
the trace must be less than or equal to one. It is implicitly greater than or
equal to zero because of the fact that the matrix is positive semi-definite. This
is helpful, since this allows us to perform a probabilistic branch. For example,
after measuring a qbit we can consider the case that it is now in ground state
|0〉 and in ground state |1〉 separately (i.e. without normalization), and later
join them by adding them together, which gives us a density matrix again.

Finally, we introduce some extra notation as syntactic sugar:

• |n ∈ N〉 implicitly translates n into binary, with some implied width. For
example, for a four-qbit register we have |5〉 = |0101〉.

• aEn∈N similarly measures multiple qbits, where n is translated into binary.

11

Chapter 4

Related Work

This thesis evaluates the usability of an existing quantum logic. In this chap-
ter we explore some works that propose a logic for the verification of quantum
programs, in order to select one to do a case study in. The chosen logic is ex-
plained more deeply in Chapter 5. All three papers listed below ([9], [13], and
[11]) give Hoare-like logics for verification of quantum programs, using different
formalisms for quantum programs and predicates in the Hoare logic. Their ex-
planation relies on the background on program verification set out in Chapter 2
and quantum computation in Chatper 3. However, we will give a broad intuition
here to what a quantum program might look like and how that corresponds to
reality.

Firstly, it is important to note that physical quantum computers tend to
be imperative. The quantum system is composed of some number of qbits, to
which we can apply operators. It is imperative in the sense that we must enact
some change on the system to transition it to another state; the system is stable
under no operation. Therefore it makes some sense to choose an imperative
programming model for quantum programs.

The approach each of the related works has chosen is to embed quantum
operators in a classical imperative language. That is, we choose a language that
has variables, conditionals, loops, etc. and add statements that can interact
with a quantum system. Thus, a quantum algorithm transforms a given problem
into a format where a quantum system can provide a speed-up: initialize the
quantum system in some condition, perform transformations on the system
and then measure the result. The result is then transformed back to a useful
answer. As quantum algorithms are often probabilistic, the process is often
repeated. This is either because the answer was known-wrong, or to increase
the confidence that the answer is right if this cannot be ascertained easily with
classical computing.

For each paper we will discuss the quantum program language used and its
informal semantics, as well as the logic used for verification.

12

4.1 A Logic for Formal Verification of Quantum
Programs (2009) [9]

4.1.1 Program Syntax and Semantics

This logic uses an adaptation of WHILE, the language introduced in Section
2.1. Programs in this syntax have a mixed state space of bits and qbits. This
means it can contain variables as in regular programming languages, as well as
named qbits that span a quantum system we can interact with.

Firstly, a statement is added that can initialize an individual qbit, to either
0 or 1. This is different from the requirement specified earlier in [6], where we
required that we can initialize the whole system to a known state. Of course we
can still do that within the language by assigning all of the qbits some state,
but the reverse is not true: we cannot force a specific qbit into a state while
retaining the coherence with other qbits. Furthermore, a statement is added
that applies a unitary transformation to a set of qbits.

Secondly, there are two branching statements: measure and if. if is a
classical boolean branch, whereas measure first performs a measurement, and
then performs a classical branch based on the measured value. if just reads
a value from the state space, measure also acts on it by forcing a qbit into a
ground state.

Finally, the set of declared variables and their type (bit or qbit) is carried
through the program as well. There is also a statement that drops a variable so
it is no longer available for use.

In the denotational semantics, the state is carried through the program as a
density operator, with the probability encoded in the density operator.

4.1.2 Hoare Logic

Predicates in Hoare logic reason about the state of a program, which in our
case is a partial density operator. This logic uses first order logic, with these
extensions:

• pr(x), meaning the probability that x holds after measurement of all qbits.

• Φ1 ⊕ Φ2 is satisfied by a partial density operator ρ, when it can be split
as ρ = ρ1 +ρ2, such that ρ1 satisfies Φ1 and ρ2 satisfies Φ2. This operator
is borrowed from den Hartog [4].

• tΦ is satisfied by ρ when there is some ρ′ for which t ·ρ′ = ρ and ρ′ satisfies
Φ. In other words, this operator scales the partial density operator.

• MΦ is the unitary transformation of Φ with M .

An example that highlights some of the operators is:

{E0φ} P0 {ψ0} {E1φ} P1 {ψ1}
{φ} measure q then P1 else P0 {ψ0 ⊕ ψ1}

Measure

Here E0φ and E1φ are not normalized, such that E0φ⊕E1φ = φ, as E0 and
E1 represent all measurement outcomes. We then combine the conclusions ψ0

and ψ1 with ⊕.

13

4.2 Floyd–Hoare Logic for Quantum Programs
(2011) [13]

4.2.1 Program Syntax and Semantics

This logic also uses a version of WHILE. These are the adaptations made to
make it work in the quantum case:

• The state space is replaced by a (possibly infinite) set of qbits. q below is
used to denote a quantum register, which is a set of qbits.

• Assignment is replaced by two statements: q := 0 (initialization) and
q := Uq (unitary transformation).

• while and if are replaced by similar statements, where the conditional is
replaced by a measurement on a quantum register, denoted M [q]. The if

statement is associated with a number of branches equal to the number of
measurement outcomes, whereas the while condition must have only two
measurement outcomes.

The operational semantics makes no presumption on the initial values of the
state space, so the state is carried through the program as a partial density
operator. Initialization and unitary transformation are defined by applying the
statement to the partial density operator. Sequential composition is defined in
the conventional way. The if-like operator is called measure and is defined as
follows:

〈measureM [q] : S, ρ〉 → 〈Sm,MmρM
†
m〉

Measurement

One might expect a probabilistic transition here with probability p(m) =
tr(MmρM

†
m) and subsequent state MmρM

†
m/p(m). The author has chosen to

instead fold the probability into the partial density operator, modeling choice
as non-determinism instead. while is defined similarly:

〈whileM [q] = 1 do S, ρ〉 → 〈E,M0ρM
†
0 〉

Loop 0

〈whileM [q] = 1 do S, ρ〉 → 〈S; whileM [q] = 1 do S,M1ρM
†
1 〉

Loop 1

Note the non-determinism again, where the while is duplicated again in the
regular way when the condition is measured to be true.

4.2.2 Hoare Logic

Predicates say something about the state of a program, which in our case is a
partial density operator. Here, predicates are defined as operators, subject to

14

some conditions that will not be further discussed here. The idea is to constrain
the partial density operator such that we measure only the probability over
desired situations, e.g. certain measurement outcomes.

|=total {P} S {Q} iff tr(Pρ) ≤ tr(QJSK(ρ))

|=partial {P} S {Q} iff tr(Pρ) ≤ tr(QJSK(ρ)) + (tr(ρ)− tr(JSK(ρ)))

The trace operator of a partial density operator represents the total proba-
bility encoded in the partial density operator, so tr(Pρ) can be understood to
be the probability of P being ‘true’ within the density operator. Consequen-
tially, the properties express that Q is at least as likely as P to be true after the
program has executed. In the partial case we simply add the probability of the
program diverging.

4.3 Quantum Relational Hoare Logic (2018) [11]

This logic does not reason about single quantum programs, but instead about
the equivalence of two quantum programs.

4.3.1 Program Syntax and Semantics

The program syntax and semantics are very similar to the previous two definition
adapting WHILE, except that measurement is done as an action separate from
while or if constructs, and assigned to a classic variable. The classic variable
may then be used in a condition.

The operational semantics is defined over a partial density operator again.
The program equivalence part is only dealt with after the operational semantics,
but the general idea is that both related programs can advance independently.
As with the other logics, the probabilistic part of the semantics is folded into
the partial density operator. The language also contains a classically probabilis-
tic sampling operator (‘random’), which is again folded in the partial density
operator.

4.3.2 Hoare Logic

Predicates are represented by a subspace of the of the state space. A predicate
A is then satisfied by a partial density operator when supp ρ ⊆ A. This means
that the predicate essentially describes a set of pure states that we allow: if we
would measure the system, the chance that the state of the quantum system is
not in A is zero. Of the three logics described, this is the least general predicate.

The Hoare triples in the logic borrow from classical relational Hoare logic
[2], written here as {A} c ∼ d {B}. This intuitively claims that if A holds before
execution of either c or d, both programs behave equivalently by ensuring B.

4.4 Logic for the Case Study

The logic selected for the case study is that introduced in [9]. Initially we
proposed to do a case study in all three logics described in this chapter (i.e.

15

formulate a proof for an equivalent program in each proof system), but due to
time constraints one proof was completed.

The logic is however a logical starting point. In particular we want to demon-
strate the correctness of a quantum program, and so a relational Hoare logic
such as the one in [11] is not an obvious fit. Between [9] and [13] the formulae
admitted in preconditions and postconditions made the difference. In the former
a formula language is introduced to reason about the state, whereas the latter
resorts to an operator over the quantum system. The choice was thus made to
do the case study in [9], which is explained in depth in Chapter 5.

16

Chapter 5

Proof System

This chapter contains an overview of the syntax of the quantum programming
language [9], as well as a listing of relevant proof rules. Moreover, the syntax
for formulae and their meaning is also discussed formally, as we need some
additional lemmas in the proof of Shor’s algorithm.

5.1 Syntax

The syntax is defined as an extension of WHILE:

P ≡ skip | P; P

| bit x | qbit x | discard x

| x := 0 | x := 1 | x, . . . , x *= U

| if x then P else P

| while x do P

| measure x then P else P

bit x and qbit x respectively declare a bit and qbit. discard x removes a
bit or qbit from the typing context, which we do not consider. measure is
the quantum equivalent of if: it measures a qbit and branches on the result.
Finally, x, . . . , x *= U performs a unitary transformation on qbits x, . . . , x.

We also use some of the defined syntax sugar:

bit x[N] ≡ bit x[0]; . . . ; bit x[N − 1]

qbit x[N] ≡ qbit x[0]; . . . ; qbit x[N − 1]

b := measure q ≡ measure q then b := 1 else b := 0

b[] := measure q[] ≡ b[0] := measure q[0]; . . . ; b[N − 1] := measure q[N − 1]

b[] := n ∈ N ≡ b[0] := n2,0; . . . ; b[N − 1] := n2,N−1

By the notation n2,i we mean the ith bit of n in base 2, starting from the
least significant bit. Note that the x[i] notation has no special meaning: it is
one literal name.

17

5.2 Semantics

The semantics also includes typing judgements, which decide the shape of the
state in the semantics. We skip these typing judgements to simplify later proofs.
The state of a qbit is encoded as a density matrix in C2×2. A bit is a diago-
nal density matrix in C2×2. The state of the whole system is then the tensor
product over the states of all bits and qbits. The order of the variables is de-
termined by the typing context, but since we ignore that, we assume that there
is some implied order. Additionally, the semantics assumes that the state that
statements relate to are in front, so we assume A is permuted as needed. The
semantics is then given as such:

N = |0〉〈1|+ |1〉〈0|
πi(A) = (Ei � I)A(Ei � I)

ν(A) = (N � I)A(N � I)

JskipK(A) = A

JP; QK(A) = JQK(JP K(A))

Jbit bK(A) = E0 �A

Jqbit qK(A) = E0 �A

Jdiscard xK(A) = (e†0 � I)A(e0 � I) + (e†1 � I)A(e1 � I)

Jb := 0K(A) = π0(A) + ν(π1(A))

Jb := 1K(A) = ν(π0(A)) + π1(A)

Jx, . . . , x *= UK(A) = (U � I)A(U† � I)

Jif b then P1 else P0K(A) = JP0K(π0(A)) + JP1K(π1(A))

Jwhile b do P K(A) =

∞∑
n=0

π0((JP K ◦ π1)n(A))

Jmeasure q then P1 else P0K(A) = JP0K(π0(A)) + JP1K(π1(A))

5.3 Formulae

Formulae are interpreted with a partial density operator A. The satisfaction
relation of a formula is denoted as A |= φ. The (|=) operator also denotes
semantic consequence between formulae as φ |= ψ. We additionally chain this
operator: φ |= φ′ |= φ′′ is understood to mean φ |= φ′, φ′ |= φ′′. The satisfaction
relation is defined as such:

A |= t1 ≤ t2 iff t◦1 ≤ t◦1
A |= int(t) iff t◦ ∈ Z
A |= tφ iff ∃A′ : A = t◦A′ ∧ A′ |= φ

A |= φ1 ⊕ φ2 iff ∃A1, A2 : A = A1 +A2 ∧ A1 |= φ1 ∧ A2 |= φ2

A |= rMφ iff ∃A′ : A = rMA′rM† ∧ A′ |= φ

A |= ¬φ iff ¬(A |= φ)

A |= φ1 ∧ φ2 iff (A |= φ1) ∧(A |= φ2)

A |= ∀α : φ iff ∀β ∈ R : A |= φ[β/α] (5.1)

18

A term may contain constants, function applications and a special operator
pr(ρ) that evaluates the probability of ρ holding true. The interpretation of a
term t is denoted as t◦. We also use the notation t◦A if the model used for
interpretation (A in that case) is ambiguous.

r◦ ≡ r
f(t1, . . . , tn)◦ ≡ f(t◦1, . . . , t

◦
n)

pr(ρ)◦ ≡
∑
{u†Au | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � . . .� ein

∧ ρ[i1/x1, . . . , in/xn] is true}

This definition is slightly altered with respect to [9]. The original model for
a formula consists of a density operator A, typing context Γ and binding of
quantified and free variables v. The typing context is mostly irrelevant for (|=),
except for the transformation rule rMφ, where the typing context Γ is used to
permute A. In this research we instead assume that rM denotes the correct
extension of M for A instead. Whereas bindings introduced by (∀) originally
are put in v, this research uses substitution instead of adding to v, as in equation
(5.1).

We also use one definition as syntactic sugar:

[ρ] ≡ pr(ρ) = pr()

5.4 Proof Rules

The following proof rules are used throughout the proof. Sequential composition
is standard:

{φ} P {γ} {γ} Q {ψ}
{φ} P; Q {ψ}

seq

Declaring a bit or qbit initializes it to zero:

{(pr() = 1) ∧ φ} bit b {(pr(b = 0) = 1) ∧ φ}
new-bit

{(pr() = 1) ∧ φ} bit q {(pr(q = 0) = 1) ∧ φ}
new-qbit

Assigning a constant to a bit or qbit transforms the system state to only that
outcome. Intuitively bE0φ filters for the situation where b = 0, whereas bNE1φ
filters for the situation b = 1, and then inverts b.

{φ} b := 0 {bE0φ⊕ bNE1φ}
assign0

{φ} b := 1 {bNE0φ⊕ bE1φ}
assign1

Unitary transformation transforms the system with U :

{
−→qU†φ} −→q *= U {φ}

unitary

19

Alternatively, U may equivalently appear in the postcondition instead:

{φ} −→q *= U {
−→qUφ}

unitary

if is modeled as a probabilistic branch. In the negative case we filter for b = 0
and obtain postcondition ψ0. In the positive case the opposite holds. ψ0 and
ψ1 are then joined again with probabilistic sum.

{bE0φ} P0 {ψ0} {bE1φ} P1 {ψ1}
{φ} if b then P1 else P0 {ψ0 ⊕ ψ1}

if

The rule for while allows for a predicate to be parametric on the number of
iterations:

{bE1φn} P {φn+1} (n ∈ N) {bE0φn | n ∈ N} |= ψ

{φ0} while b do P {ψ}
while

If all φi are instead equal, the rule becomes the standard rule for while with a
loop invariant. This is the variant we use:

{bE1φ} P {φ}
{φ} while b do P {bE0φ}

while

measure is the equivalent of if for qbits and is otherwise identical to the if
rule.

{qE0φ} P0 {ψ0} {qE1φ} P1 {ψ1}
{φ} measure q then P1 else P0 {ψ0 ⊕ ψ1}

measure

We may apply standard logic to strengthen the precondition, or weaken the
postcondition:

φ |= φ′ {φ′} P {ψ′} ψ′ |= ψ

{φ} P {ψ}
logic

20

Chapter 6

Shor’s Factoring Algorithm

Shor’s factoring algorithm [10] produces, as the name suggests, a non-trivial
factor of a composite number. The speed-up as compared to the fastest known
classical algorithm is enormous. With n the number of bits of the number
to be factored the classical algorithm is in Õ(2n/4+o(1)), whereas the quantum
algorithm is in Õ(n3) [8]. For the algorithm to work we first must rule out some
situations we can deal with efficiently with classical computing. This makes it a
good case to evaluate both the ability of a logic to deal with quantum concepts,
as well as the interaction with classical code.

Below is an introduction to how the algorithm works. The description is
largely taken from [12], though we will not reproduce some parts of the motiva-
tion of steps of the algorithm here.

The algorithm starts by reducing factor-finding to the problem of finding
the period of a function. Suppose we are trying to decompose N . We may
assume that N is not even, and N is not the power of a prime (@i >
1, p prime : N = pi), since we can efficiently rule out those situations with
classical computing.

We randomly choose an integer x ∈ [2, N). We may assume x is coprime
with N , since otherwise we have already found a non-trivial factor accidentally
and we are done. The function we will consider the period of is:

f(a) = xa mod N

It follows that f(0) = 1. Since the function can have at most N distinct out-
comes, there must be a minimal 0 < r ≤ N such that f(0) = f(r) = 1. Since
f(a+b) = f(a) ·f(b) mod N , we can see that f(a) = f(a+r) = f(a+2r) = . . .
Therefore we call r the period of the function f .

We can now use r (for which we have not yet given an algorithm) to find a
non-trivial factor of N due to the following equivalencies:

xr = 1 mod N

(xr/2)2 = 1 mod N

(xr/2 + 1)(xr/2 − 1) = 0 mod N

It can be shown that with probability greater than 1/2 that r is even, and
neither (xr/2 + 1) nor (xr/2 − 1) are multiples of N . A constant non-zero

21

probability is sufficient, since we only need to repeat the algorithm a constant
number of times to achieve a desired likelihood of finding a factor. Since neither
quantity (xr/2 + 1) nor (xr/2 − 1) contains all factors of N , but both quantities
together contain all factors of N , they both share a non-trivial factor with N .
These factors then are gcd(xr/2 + 1, N) and gcd(xr/2− 1, N), which are easy to
compute classically.

This concludes the reduction of factor-finding to period-finding. Here follows
a description of Shor’s period-finding algorithm.

The algorithm starts with a quantum register a of size l = blogN2c + 1
and a quantum register fa of size n = dlogNe. For convenience we introduce
q = 2l to count over the possible values of a. We initialize the first register a
to have uniform likelihood over all measurement outcomes. The second register
fa is initialized to 0. The algorithm also requires a black-box operator Of that
transforms |a〉|0〉 to |a〉|f(a)〉.

The system starts in superposition:

1
√
q

q−1∑
a=0

|a〉|0〉

We then apply the black-box operator Of :

1
√
q

q−1∑
a=0

|a〉|f(a)〉

We take a measurement of the fa register, which we denote with f(s) where
s < r. Of course f(s) = f(s + r) = f(s + 2r) = . . . , so there are either
m = dq/re or m = bq/rc remaining possible outcomes for a. The fa register is
in the classical state f(s) due to the measurement, so we only consider the a
register from here. This register is now in the superposition:

1√
m

m−1∑
j=0

|s+ jr〉

We apply the quantum Fourier transform (QFT) to a, leaving us with:

1√
m

m−1∑
j=0

1
√
q

q−1∑
b=0

e2πi
(s+jr)b

q |b〉 (6.1)

=
1
√
mq

q−1∑
b=0

e2πisb/q

m−1∑
j=0

(e2πirb/q)j

 |b〉
We are now interested in which measurements of a are likely. That means we
must determine which |b〉 have a high probability amplitude before them. The
expression (e2πirb/q)j denotes a geometric series, so we can simplify:

m−1∑
j=0

(e2πirb/q)j =

m when e2πirb/q = 0 (6.2)

1− e2πimrb/q

1− e2πirb/q
when e2πirb/q 6= 0 (6.3)

22

Case (6.2) is vanishingly unlikely, so we will only consider the amplitude of case
(6.3): ∣∣∣∣1− e2πimrb/q1− e2πirb/q

∣∣∣∣ =
|1− e2πimrb/q|
|1− e2πirb/q|

=
| sinπmrb/q|
| sinπrb/q|

(6.4)

The value in (6.4) is high when the denominator | sinπrb/q| is small, which is
the case when b is close to a multiple of q/r: rb/q is then close to an integer.
For most such b, the numerator is not close to 0, because usually rb/q is not
exactly an integer and r/bq. is multiplied with m in the numerator.

Finally, we measure a, giving us some measurement outcome b as above.
With high likelihood there is a c such that b is close to cq/r, or equivalently b/q
is close to c/r. In fact, with high probability we can find the unique c, r ∈ N
such that: ∣∣∣∣ bq − c

r

∣∣∣∣ ≤ 1

2q

The fraction c/r can be obtained using continued fraction expansion, a pro-
cedure than can be done efficiently classically [3]. This will not be further
explained here.

6.1 Pseudocode

We give an implementation of the factoring algorithm in pseudocode, so we can
show a correspondence between this implementation and the implementation
in the quantum language of the logic in Chapter 5. The program is given in
Algorithm 6.1.

23

1: if N is even then
2: return 2
3: else
4: if N is a power of prime p then
5: return p
6: else
7: loop
8: x← sample [2, N)
9: a← 0

10: fa ← 0
11: a← QFT(a)
12: a : fa ← Of(a : fa)
13: ← measure fa
14: a← QFT(a)
15: b← measure a
16: Apply continued fraction expansion to b/q yielding c/r
17: if 1 < gcd(xr/2 + 1, N) < N then
18: return gcd(xr/2 + 1, N)
19: else if 1 < gcd(xr/2 − 1, N) < N then
20: return gcd(xr/2 − 1, N)
21: end if
22: end loop
23: end if
24: end if

Algorithm 1: Pseudocode implementation of Shor’s algorithm

24

Chapter 7

Lemmas

In this chapter we introduce lemmas that are necessary for the case study in
Chapter 8. The lemmas are broadly divided into logic-level lemmas that prove
equivalent formulae (as defined in Section 5.3), extra proof rules (similar to the
ones in Section 5.4), and mathematical lemmas.

7.1 Logic-Level Lemmas

We start by introducing some lemmas that state equivalences between predi-
cates. These are used in later extra proof rules, and with the logic rule.

7.1.1 Probability is not Greater Than One

As described above, pr(ρ) measures a probability. We show that pr(ρ) does not
evaluate to more than pr(). Furthermore A is a partial density matrix, so we
can state that pr(ρ) never evaluates to more than 1.

Lemma 1. pr(ρ)◦ ≤ pr()◦ ≤ 1

Proof. Both inequalities are shown by expanding the definition of pr(ρ)◦:

pr(ρ)◦ =
∑
{u†Au | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � . . .� ein

∧ ρ[i1/x1, . . . , in/xn] is true}

≤
∑
{u†Au | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � . . .� ein}

= pr()◦

= tr(A) ≤ 1

7.1.2 Measurement Outcome in Probability Predicate

It is often useful to use a measurement outcome in a probability predicate pr(ρ).
This can be done as follows:

25

Lemma 2. For i ∈ {0, 1}: rEipr(ρ) = pr() |= rEipr(ρ ∧ r = i) = pr()

Proof. By definition the relation above is true when for any partial density
operator A: A |= rEipr(ρ) = pr() implies A |= rEipr(ρ ∧ r = i) = pr().

Assuming A |= rEipr(ρ) = pr(), we have that there is A′ such that A =
rEiA

′rEi and A′ |= pr(ρ) = pr(). Furthermore, since rEiA
rEi = rEiA

′rEi, we
also have A = rEiA

rEi. It is then sufficient to show that A |= pr(ρ ∧ r = i) =
pr().

We now interpret the remaining formula pr(ρ ∧ r = i) = pr() with the model
A, unfolding the definition of pr(ρ):

pr(ρ ∧ r = i)◦ =
∑
{u†Au |i1, . . . , in ∈ {0, 1},

(ρ ∧ r = i)[r1/i1, . . . , rn/in] is true,

u = ei1 � · · ·� ein} = pr()◦

Since A is a density matrix, we know u†Au ≥ 0. We continue with a proof
by contradiction, noting that if the equality above is not true, there must be
some u†Au > 0 and (ρ ∧ r = i) false under interpretation with i1, . . . , in.

If we have ir = i, we can compute:

u†Au = u†rEiA
′rEiu

= u†rEiA
′rEi(ei1 � . . .� eir � . . .� ein)

= u†rEiA
′rEi(ei1 � . . .� ei � . . .� ein)

= u†rEiA
′0

= 0

This contradicts u†Au > 0. If we have on the other hand that ir = i, we can
derive from pr(ρ)◦ = pr()◦ under interpretation with A′ that either ρ is true
under interpretation with i1, . . . , in, or u†A′u = 0. Clearly we then also have
(ρ ∧ r = i) is true, or u†rEiA

′rEiu = u†Au = 0: a contradiction.
We therefore conclude that pr(ρ ∧ r = i)◦ = pr()◦ under A, and hence the

lemma holds.

7.1.3 Diagonal Formulae

We start by defining diagonal formulae. Diagonal formulae are a regular formula
in the logic, that are restricted in all occurences of the form Mφ: M must be
diagonal.1 For example, Nφ is not diagonal, since N is not a diagonal matrix.
As another example, E0φ ⊕ E1ψ is diagonal iff φ and ψ are diagonal. For
completeness sake, we define the diagonal of a matrix M as the column vector:

diag(M)i = Mii

We prove that diagonal formulae only depends on the diagonal of an interpre-
tation A. First we define t◦D (interpretation of term t with D) and D |= φ,

1A diagonal matrix is zero in all off-diagonal entries.

26

where D is the vector that represents the diagonal of a matrix. Then we show
that A |= φ iff diag(A) |= φ.

r◦D = r

(f(t1, . . . , tn))◦D = f(t◦D1 , . . . , t◦Dn)

(pr(ρ))◦D =
∑
{u†D | i1, · · · ∈ {0, 1} ∧ u = ei1 � · · · ∧ ρ[i1/r1, . . .] is true}

D |= t1 ≤ t2 iff t◦D1 ≤ t◦D2
D |= int(t) iff t◦D ∈ Z
D |= tφ iff ∃D′ : D = t◦DD′ ∧ D′ |= φ

D |= φ1 ⊕ φ2 iff ∃D1, D2 : D = D1 +D2 ∧ D1 |= φ1 ∧ D2 |= φ2

D |= rMφ iff ∃D′ : D = rMDrM† ∧ D′ |= φ

D |= ¬φ iff ¬(D |= φ)

D |= φ1 ∧ φ2 iff (D |= φ1) ∧(D |= φ2)

D |= ∀α : φ iff ∀β ∈ R : D |= φ[β/α]

We can show with simple algebra that t◦A is equal to t◦diag(A). Consequently,
t◦ may interchangeably mean interpretation with diag(A) or A below. Left to
prove is then that for diagonal formulae A |= φ if and only if diag(A) |= φ:

Lemma 3. For diagonal φ: A |= φ iff diag(A) |= φ

Proof. The proof is by complete structural induction on φ. That is: for every
way to construct a formula and assuming that all smaller formulae obey our
desired property, we prove the new larger formula has that property. We may
then conclude that all formulae have the desired property.

• A |= t1 ≤ t2 iff diag(A) |= t1 ≤ t2: Terms are equal under interpretation
with A and diag(A).

• A |= int(t) iff diag(A) |= int(t): The same argument holds.

• A |= tφ iff diag(A) |= tφ: By definition, we have to show ∃D′ : diag(A) =
t◦diag(A)D′ ∧ D′ |= φ iff ∃A′ : A = t◦AA′ ∧ A′ |= φ. We can see that
diag(A) = diag(t◦AA′) = t◦Adiag(A′). If t◦A = 0 the result follows triv-
ially. Otherwise D′ = diag(A′) and by the induction hypothesis A′ |=
φ iff diag(A′) |= φ.

• A |= φ1 ⊕ φ2 iff diag(A) |= φ1 ⊕ φ2
Expanding the definition we must show:

∃A1, A2 : A = A1 +A2 ∧ A1 |= φ1 ∧ A2 |= φ2

iff ∃D1, D2 : diag(A) = D1 +D2 ∧ D1 |= φ1 ∧ D2 |= φ2

(⇒) If we obtain such A1, A2 we may set D1 = diag(A1), D2 = diag(A2).
By the induction hypothesis D1 |= φ1 and D2 |= φ2.

(⇐) Similarly fromD1, D2 we can set A1 = diag−1(D1), A2 = A−A1.2 We
have diag(A1) = diag(diag−1(D1)) = D1 and diag(A2) = diag(A − A1) =
diag(A) − diag(A1) = D2. By the induction hypothesis we have A1 |= φ1
and A2 |= φ2.

2We take diag−1(D) to mean the diagonal matrix with diagonal D

27

• A |= rMφ iff diag(A) |= rMφ

By definition this equates to:

∃A′ : A = rMA′M† ∧ A′ |= φ

iff ∃D′ : diag(A) = rMD′M† ∧ D′ |= φ

(⇒) We have A′ such that A = rMA′M† and A′ |= φ. Since M is diagonal,
we can establish that diag(rMA′rM†) = rMdiag(A′)rM†. By assigning
D′ = diag(A′) we have:

diag(A) = diag(rMA′M†)

= rMdiag(A′)M†

= rMD′M†

From the induction hypothesis we have A′ |= φ⇒ D′ |= φ, so we are done.

(⇐) We have D′ such that diag(A) = rMD′M† and D′ |= φ. Due to the

fact that M is diagonal, we have Aij = MiiA
′
ijM

†
jj . We can therefore set

the diagonal of A′ to D′, which will be sufficient to satisfy A′ |= φ due to
the induction hypothesis. The off-diagonals must satisfy A = rMA′M†:

A′ij =

D′i if i = j

0 if Mii = 0 ∨Mjj = 0

Aij/(MiiM
†
jj) otherwise

• A |= ¬φ iff diag(A) |= ¬φ: Expanding the definition we get the induction
hypothesis: ¬(A |= φ) iff ¬(diag(A) |= φ).

• A |= φ1 ∧ φ2 iff diag(A) |= φ1 ∧ φ2
From the definition we must prove: A |= φ1 ∧ A |= φ2 iff diag(A) |=
φ1 ∧ diag(A) |= φ2, which follows from the induction hypothesis.

• A |= ∀α : φ iff diag(A) |= ∀α : φ

Again from the definition this is equivalent to: (∀β ∈ R : A |= φ[β/α]) iff (∀β ∈
R : diag(A) |= φ[β/α]). For any β we have A |= φ[β/α] iff diag(A) |=
φ[β/α], since substitution with a constant leaves us with a smaller for-
mula.

We can conclude that for diagonal φ: A |= φ iff diag(A) |= φ.

7.1.4 Distribute over E0 and E1

We show that pr(ρ) = pr() is equivalent to E0(pr(ρ) = pr())⊕E1(pr(ρ) = pr()):

Lemma 4. pr(ρ) = pr() |=, |=E0(pr(ρ) = pr())⊕ E1(pr(ρ) = pr())

Proof. By Lemma 3 we may prove instead:

D |= pr(ρ) = pr() iff D |= E0(pr(ρ) = pr())⊕ E1(pr(ρ) = pr())

(⇒) Set D0 = E0DE0, D1 = E1DE1, D′0 = D0, D′1 = D1. Clearly D =
D0 + D1, D0 = E0D

′
0E0 and D1 = E1D

′
1E1. Then D′0 |= pr(ρ) = pr()

and D′1 |= pr(ρ) = pr().

28

(⇐) We have D0, D1 such that D = D0 + D1, D0 |= E0(pr(ρ) = pr()) and
D1 |= E1(pr(ρ) = pr()). By Lemma 2 we have D0 |= E0(pr(ρ ∧ r = 0) =
pr()) and D1 |= E1(pr(ρ ∧ r = 1) = pr()). We then obtain D′0, D′1 such
that D0 = E0D

′
0E0, D1 = E1D

′
1E1, D′0 |= pr(ρ ∧ r = 0) = pr() and

D′1 |= pr(ρ ∧ r = 1) = pr(). Then:

pr(ρ ∧ r = 0)◦D
′
0 =

∑
{u†D′0 | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � · · ·� ein

∧(ρ ∧ r = 0)[i1/r1, . . . , in/rn] is true}

=
∑
{u†D′0 | i1, . . . , in ∈ {0, 1} ∧ ir = 0

∧ u = ei1 � · · ·� ein

∧ ρ[i1/r1, . . . , in/rn] is true}

=
∑
{u†E0D

′
0E0 | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � · · ·� ein

∧ ρ[i1/r1, . . . , in/rn] is true}

=
∑
{u†D0 | i1, . . . , in ∈ {0, 1}

∧ u = ei1 � · · ·� ein

∧ ρ[i1/r1, . . . , in/rn] is true}

= pr(ρ)◦D0

pr()◦D0 =
∑
{u†D0 | i1, . . . , in ∈ {0, 1} ∧ u = ei1 � · · ·� ein}

=
∑
{u†E0D

′
0E0 | i1, . . . , in ∈ {0, 1} ∧ u = ei1 � · · ·� ein}

=
∑
{u†D′0 | i1, . . . , in ∈ {0, 1} ∧ u = ei1 � · · ·� ein}

= pr()◦D
′
0

Similarly pr(ρ ∧ r = 1)◦D
′
1 = pr(ρ)◦D1 and pr()◦D1 = pr()◦D

′
1 . Since

D = D0 +D1, we have:

pr(ρ)◦D = pr(ρ)◦D0 + pr(ρ)◦D1

= pr(ρ ∧ r = 0)◦D
′
0 + pr(ρ ∧ r = 1)◦D

′
1

= pr()◦D
′
0 + pr()◦D

′
1

= pr()◦D0 + pr()◦D1

= pr()◦D

We can therefore conclude that D |= pr(ρ) = pr().

7.1.5 Independent Measurement

We show that measurement of two different bits r and q is commutative:

Lemma 5. r 6= q ⇒ (A |= rEi
qEjφ iff A |= qEj

rEiφ)

29

Proof. Noting that the matrices rEi and qEj are already commutative we inter-
pret the formula with A:

A |= rEi
qEjφ

iff ∃A′ : A = rEiA
′rEi ∧ A′ |= qEjφ

iff ∃A′ : A = rEiA
′rEi ∧ ∃A′′ : A′ = qEjA

′′qEj ∧ A′′ |= φ

iff ∃A′, A′′ : A = rEiA
′rEi ∧ A′ = qEjA

′′qEj ∧ A′′ |= φ

iff ∃A′′ : A = rEi
qEjA

′′qEj
rEi ∧ A′′ |= φ ∧ ∃A′ : A′ = qEjA

′′qEj

iff ∃A′′ : A = rEi
qEjA

′′qEj
rEi ∧ A′′ |= φ

iff ∃A′′ : A = qEj
rEiA

′′rEi
qEj ∧ A′′ |= φ

iff A |= qEj
rEiφ

7.1.6 Distribute Unitary Operations over ⊕
We show that unitary operations distribute over probabilistic sum, that is:

Lemma 6. A |= M(φ⊕ ψ) iff A |= Mφ⊕Mψ

Proof. This is established from the fact that the matrix M distributes over
addition, unfolding definitions of formulae:

A |= M(φ⊕ ψ)

iff ∃A′ : A = MA′M† ∧ A′ |= φ⊕ ψ
iff ∃A′, A′φ, A′ψ : A = MA′M† ∧ A′ = A′φ +A′ψ ∧ A′φ |= φ ∧ A′ψ |= ψ

iff ∃A′φ, A′ψ : A = M(A′φ +A′ψ)M† ∧ A′φ |= φ ∧ A′ψ |= ψ

iff ∃A′φ, A′ψ : A = MA′φM
† +MA′ψM

† ∧ A′φ |= φ ∧ A′ψ |= ψ

iff ∃Aφ, Aψ : A = Aφ +Aψ ∧ Aφ |= Mφ ∧ Aψ |= Mψ

iff A |= Mφ⊕Mψ

7.2 Proof Rules

This section contains extra proof rules. They broaden existing proof rules, as
well as specify rules for the introduced syntactic sugar introduced in Section
5.1.

7.2.1 Assign

By axioms assign-0 and assign-1 we have:

{φ} x := i {NxEiφ⊕
xEiφ}

assign-i

30

We want to show that:

{[φ ∧ x = c]} x := i {[φ ∧ x = i]}

Applying the assign rule we already have:

{[φ ∧ x = c]} x := i {NxEi[φ ∧ x = c]⊕ xEi[φ ∧ x = c]}

We should therefore show that NxEi[φ ∧ x = c]⊕xEi[φ ∧ x = c] |= [φ ∧ x =
i], or: (Al |= NxEi[φ ∧ x = c]) ∧(Ar |= xEi[φ ∧ x = c]) ⇒ Al + Ar |= [φ ∧ x =
i]. We now split by i = c and i 6= c:

• i = c: because i 6= c we can derive that Al = 0. For Ar we have Ar =
xEcA

′
r
xEc and A′r |= [φ ∧ x = c]. Since in the formula x = c we can

derive xEcA
′
r
xEc = 0. Therefore pr(φ ∧ x = c)◦A

′
r = pr(φ ∧ x = c)◦Ar

and Ar |= [φ ∧ x = i].

• i 6= c: similarly we can deriveAr = 0. ForAl we haveAl = xNxEcA
′
l
xEc

xN =
xEcA

′
l
xEc and A′l |= [φ ∧ x = c]. Again we have in the formula x = c and

hence xEcA
′
l
xEc = 0, and therefore pr(φ ∧ x = c)◦A

′
l = pr(φ ∧ x = c)◦Al

and Al |= [φ ∧ x = i].

We conclude that Al +Ar |= [φ ∧ x = i] and hence:

{[φ ∧ x = c]} x := i {[φ ∧ x = i]}
assign-pr-i

We continue by proving that the Hoare triple may be framed with transfor-
mations unrelated to the assigned variable:

{φ} x := i {ψ}
MxEi = xEiM MxEi = xEiM MxN = xNM

{Mφ} x := i {Mψ}
frame-assign-i

Since {φ} x := i {ψ} we have that for any A |= φ, [x := i](A) |= ψ. We
want to show that (A |= Mφ) ⇒ ([x := i](A) |= Mψ). By definition we have
A′ |= φ ∧ A = MA′M†, so it is sufficient to show [x := i](MA′M†) |= Mψ.
We can use that M commutes with xEi,

xEi and xN :

[x := i](MA′M†) = xEiMA′M†xEi + xNxEiMA′M†xEi
xN

= MxEiA
′xEiM

† +MxNxEiA
′xEi

xNM†

= M(xEiA
′xEi + xNxEiA

′xEi
xN)M†

= M [x := i](A′)M†

Since A′ |= φ we have that [x := i](A′) |= ψ and so we can conclude
M [x := i](A′)M† |= Mψ. From here we abbreviate proof trees that are a
repeated application of frame-assign-i to assign-pr-i to simply assign.

31

7.2.2 Repeated Declaration

Repeated declaration accumulates a series of (q)bits that are zero. After bit x[0]
we have [x[0] = 0], then after bit x[1] we have [x[0] = 0 ∧ x[1] = 0] etc. We
can see that the syntactic sugar for repeated declarations follows:

{[φ]} bit x[N] {[φ ∧ x = 0]}
new-bit

{[φ]} qbit x[N] {[φ ∧ x = 0]}
new-qbit

7.2.3 Constant Assignment

In a similar fashion we can repeat assignment setting the bits of a sequence of
(q)bits. Using the assign-pr-i rule, we can define a similar rule for the syntactic
sugar for assigning a constant to multiple (q)bits:

{[x = c]} x[] := n {[x = n]}
assign-pr

7.2.4 Measure into Bits

The definition of the syntactic sugar to measure into a bit is as such:

b := measure q ≡ measure q then b := 1 else b := 0

Since b and q are distinct registers, we have by assign:

{qEi[φ ∧ b = c]} b := i {qEi[φ ∧ b = i]}

We can also use q = i in the probability predicate, to conclude that b = q in the
postcondition:

{qEi[φ ∧ b = c]} b := i {qEi[φ ∧ b = q]}

Then by measure we can combine the branches:

{qE0[φ ∧ b = c]} b := 0 {qE0[φ ∧ b = q]}
{qE1[φ ∧ b = c]} b := 1 {qE1[φ ∧ b = q]}

{[φ ∧ b = c]} b := measure q {qE0[φ ∧ b = q]⊕ qE1[φ ∧ b = q]}
measure

{[φ ∧ b = c]} b := measure q {[φ ∧ b = q]}
logic

The syntactic sugar for measuring multiple qbits into bits follows:

{[φ ∧ b = c]} b[] := measure q[] {[φ ∧ b = q]}
measure

We may forego recombining qE0 and qE1 if they are not immediately followed
by a pr(·) predicate. This is useful in combination with frame-assign-i.

{qE0φ} b := 0 {qE0ψ0} {qE1φ} b := 1 {qE1ψ1}
{φ} b := measure q {qE0ψ0 ⊕ qE1ψ1}

measure

32

7.2.5 Distribute over E0 and E1 with Independent Mea-
surements

We can use independent measurements to reorder measurements, which is use-
ful in nested if statements. If we have some chain of measurements M =
b1Ei1 . . .

bnEin where bi 6= a we can use the following equivalencies:

A |= aE0M [ρ]⊕ aE1M [ρ]

iff A |= MaE0[ρ]⊕MaE1[ρ] (by Lemma 5)

iff A |= M(aE0[ρ]⊕ aE1[ρ]) (by Lemma 6)

iff A |= M [ρ] (by Lemma 4)

We can then restate if as:

{aE0φ} P {aE0M [ρ]}
{aE1φ} Q {aE1M [ρ]} M = b1Ei1 . . .

bnEin ∧ bi 6= a

{φ} if a then P else Q {M [ρ]}
if

7.3 Mathematical Lemmas

7.3.1 Zero Diagonal

The interpretation A of a formula φ is restricted to be a (partial) density oper-
ator, which is a Hermitian positive semi-definite matrix. We want to show that
when an element of the diagonal of A is zero (Aii = 0), the corresponding row
and column are zero as well:

Lemma 7. For a partial density matrix A: Aii = 0⇒ ∀j : Aij = Aji = 0

Proof. (based on [1]) The proof is by contradiction. Since A is Hermitian, we

have that Aij = A†ji, so Aij 6= 0 if and only if Aji 6= 0. We continue w.l.o.g.
assuming Aij 6= 0. Consider this matrix A′, a submatrix of A:

A′ ≡
[

0 Aij
A†ij Ajj

]
A well-known result is that the determinant of a matrix is the product of its
eigenvalues. We can see that det(A′) = 0 ·Ajj −A†ij ·Aij < 0, and so one of the
eigenvalues of A′ is negative. Consequently A′ is not positive semi-definite, and
we may obtain a vector x′ such that x′TA′x′ < 0.

Next we extend x′ to the size of A, where xi = x1, xj = x2 and zero other-
wise. Although we started with the assumption that A is positive semi-definite,
we have now found a counterexample: xTAx = x′TA′x′ < 0, a contradic-
tion.

33

Chapter 8

Proof

This chapter presents the central proof of the thesis: we prove the case study of
Shor’s factoring algorithm (introduced in Chapter 6) in the logic presented in
Chapter 5. To keep the textual size of predicates in the proof trees somewhat
manageable, we introduce these shorthands:

• We use the notation d|N to say that d is a nontrivial divisor of N : d fits
an integer number of times in N (d · n = N), and it is not trivial: d 6= 1
and d 6= N .

• Nstd ≡ N > 1 ∧ N is not prime ∧ N is not even ∧ N is not a prime power ∧ P =
0

• Scases ≡ (S = 1⇒ d = 0) ∧(S = 0⇒ d|N)

• Zi,j,··· ≡ i = 0 ∧ j = 0 ∧ · · ·

34

8.1 Proof Tree

The only input to the program is an integer N greater than 1. The language has no notion of dynamic allocation, so we must know in advance how many bits and qbits
to allocate. For this we obtain integers q, l such that q = 2l and N2 < q ≤ 2N2, and integer n such that N ≤ 2n. The program we verify is thus parametric over q, l
and n, but only for trivial reasons.

We start by declaring all the variables used. d is the divisor of N , P is used to store whether N is a prime power, S is the boolean determining whether we are still
searching for a factor, x, a and fa are the values at the core of Shor’s algorithm, b is a as measured, c and r are the fraction expansion of b/q.

{[N > 1 ∧ N is not prime]} bit d[n] {[N > 1 ∧ N is not prime ∧ Zd]} (decld)
{[N > 1 ∧ N is not prime ∧ Zd]} bit P[n] {[N > 1 ∧ N is not prime ∧ Zd,P]} (declp)
{[N > 1 ∧ N is not prime ∧ Zd,P]} bit S {[N > 1 ∧ N is not prime ∧ Zd,P,S]} (decls)

{[N > 1 ∧ N is not prime ∧ Zd,P,S]} bit x[n] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x]} (declx)
{[N > 1 ∧ N is not prime ∧ Zd,P,S,x]} qbit a[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a]} (decla)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a]} qbit fa[n] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa]} (declfa)
{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa]} bit b[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b]} (declb)
{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b]} bit c[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c]} (declc)
{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c]} bit r[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} (declr)

{[N > 1 ∧ N is not prime]} . . . {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]}
seq

(declare)

The declarations can be derived from the new-(q)bit axioms:

{[N > 1 ∧ N is not prime]} bit d[n] {[N > 1 ∧ N is not prime ∧ Zd]}
new-bit

(decld)

{[N > 1 ∧ N is not prime ∧ Zd]} bit P[n] {[N > 1 ∧ N is not prime ∧ Zd,P]}
new-bit

(declp)

{[N > 1 ∧ N is not prime ∧ Zd,P]} bit S {[N > 1 ∧ N is not prime ∧ Zd,P,S]}
new-bit

(decls)

{[N > 1 ∧ N is not prime ∧ Zd,P,S]} bit x[n] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x]}
new-bit

(declx)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x]} qbit a[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a]}
new-qbit

(decla)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a]} qbit fa[n] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa]}
new-qbit

(declfa)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa]} bit b[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b]}
new-bit

(declb)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b]} bit c[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c]}
new-bit

(declc)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c]} bit r[l] {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]}
new-bit

(declr)

We want to show that d is a non-trivial divisor of N in the postcondition:

35

{[N > 1 ∧ N is not prime]} . . . {[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} (declare)
{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} if N[0] then . . . else d[] := 2 (line 1-24) {[d|N]} (ifeven)

{[N > 1 ∧ N is not prime]} . . . (line 1-24) {[d|N]}
seq

(all)

For Shor’s algorithm to work, N must not be even, and not be the power of a single prime. We first establish whether N is even by inspecting its least significant
bit:

{N [0]E0[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} d[] := 2 (line 2) {N [0]E0[d|N]} (even)

{N [0]E1[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} . . . (line 4-23) {N [0]E1[d|N]} (noteven)

{[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} if N[0] then . . . else d[] := 2 (line 1-24) {[d|N]}
if

(ifeven)

{N [0]E0[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} d[] := 2 (line 2) {N [0]E0[N > 1 ∧ N is not prime ∧ ZP,S,x,a,fa,b,c,r ∧ d = 2]}
assign

N [0]E0[N > 1 ∧ N is not prime ∧ ZP,S,x,a,fa,b,c,r ∧ d = 2] |= N [0]E0[N > 1 ∧ N is not prime ∧ d = 2 ∧ N is even] |= N [0]E0[d|N]

{N [0]E0[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} d[] := 2 (line 2) {N [0]E0[d|N]}
logic

(even)

We claim without proof that it is possible to determine classically whether or not N is a prime power in the syntax available to us. In the below code the
implementation gives us a prime P that divides N if N is a prime power, and 0 otherwise:

{N [0]E1[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]}
. . . (line 4)

{N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]} (primepower)

Next we use P [0] to determine whether we have found such a prime. If we have found it, we can use it as a non-trivial factor of N :

{P [0]E1
N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

d[] := P[] (line 5)

{P [0]E1
N [0]E1[N > 1 ∧ N is not prime ∧ ZS,x,a,fa,b,c,r ∧ d = P ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

assign

N > 1 ∧ N is not prime ∧ d = P ∧ P 6= 0 ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))⇒ d|N

{P [0]E1
N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

d[] := P[] (line 5)

{P [0]E1
N [0]E1[d|N]}

logic

(yesprime)

36

{. . . } S := 1; while S do . . . (line 7-22) {. . . } (noprime) {. . . } d[] := P[] (line 5) {. . . } (yesprime)

{N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}
if P[0] then d[] := P[] else . . . (line 4-23)

{N [0]E1[d|N]}

if

(ifprimepow)

{. . . } . . . (line 4) {. . . } (primepower) {. . . } if P[0] then d[] := P[] else . . . (line 4-23) {. . . } (ifprimepow)

{N [0]E1[N > 1 ∧ N is not prime ∧ Zd,P,S,x,a,fa,b,c,r]} . . . (line 4-23) {N [0]E1[d|N]}
seq

(noteven)

The main loop repeatedly executes the Shor algorithm to produce a non-trivial factor, since the algorithm only produces a factor with high probability. We will
declare a boolean S (‘searching’) to indicate that d does not yet contain a valid factor.

{P [0]E0
N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

S := 1 (line 7)

{P [0]E0
N [0]E1[N > 1 ∧ N is not prime ∧ S = 1 ∧ Zd,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

assign

(search)

While we have not found a factor, we execute the period-finding algorithm. When we have found a factor, it should conform to our final postcondition. The logic
gives us the ability to make the pre- and postcondition of the loop body dependent on the iteration number, but we forego this ability and instead use a loop invariant.
Our loop therefore looks like this:

{. . . } . . . (line 8-21) {. . . } (loopbodytrue)

{P [0]E0
N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]}
while S do . . . (line 7-22)

{SE0
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]}

while

SE0
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r] |= SE0
P [0]E0

N [0]E1[S = 0 ∧ Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r] |= SE0
P [0]E0

N [0]E1[d|N] |= P [0]E0
N [0]E1[d|N]

{P [0]E0
N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]}
while S do . . . (line 7-22)

{P [0]E0
N [0]E1[d|N]}

logic

(loop)

37

{. . . } S := 1 (line 7) {. . . } (search) {. . . } while S do . . . (line 7-22) {. . . } (loop)
P [0]E0

N [0]E1[N > 1 ∧ N is not prime ∧ S = 1 ∧ Zd,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]

|= P [0]E0
N [0]E1[P2,0 = 0 ∧ N2,0 = 1 ∧ N > 1 ∧ N is not prime ∧ S = 1 ∧ Zd,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]

|= P [0]E0
N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]

{P [0]E0
N [0]E1[N > 1 ∧ N is not prime ∧ Zd,S,x,a,fa,b,c,r ∧((P = 0 ∧ N is not a prime power) ∨ (P |N ∧ P is prime))]}

S := 1; while S do . . . (line 7-22)

{P [0]E0
N [0]E1[d|N]}

seq

(noprime)

First we must obtain a uniform sample x ∈ [2, N). The syntactic sugar already contains syntax to sample a fixed number of bits. Since the success of the algorithm
is probabilistic to start with, we might as well sample the range [0, q) and retry until a valid sample is found.

{SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]}
x[] := rnd [2, N) (line 8)

{
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

sample

(samplex)

We make each measurement outcome of a equally likely by applying the QFT to it.

{
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

a[] *= QFT (line 11)

{aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

unitary

(dista)

Next, we apply the quantum operator that computes xa over the superposition of a:

{aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

a[], fa[] *= Of (line 12)

{a:faO†f
aQFT †

⊕
x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

unitary

(applymagic)

38

We measure fa, the outcome of xa:

{a:faO†f
aQFT †

⊕
x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

measure fa[] (line 13)

{
⊕

a′∈[0,N)

faEa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

measure

(measurefa)

Finally, we apply the QFT to a again:

{
⊕

fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

a[] *= QFT (line 14)

{aQFT †
⊕

fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

unitary

(qfta)

When we now measure a, we are likely to get a sample that will produce a factor for us:

{aQFT †
⊕

fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ Zd,a,fa,b,c,r]}

b[] := measure a[] (line 15)

{
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ Zd,a,fa,c,r]}

measure

(measurea)

Using our obtained sample b we perform continued fraction expansion on the fraction b/q. This is a classical problem, so we will not implement it here. Instead we
will assume we obtain a fraction c/r, where we are interested in r: the likely candidate for the period of the modular exponentiation of x.

{
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ Zd,a,fa,c,r]}

CFE (line 16)

{
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ |b/q − c/r| ≤ 1/2q ∧ Zd,a,fa]}

assumed

(cfe)

39

Finally, it is likely that r yields a non-trivial factor of N : it is likely that either gcd(xr/2 − 1, N) or gcd(xr/2 + 1, N) is a factor of N greater than 1. Determining the
greatest common divisor is once again a classical process, so we omit it here:

{
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ |b/q − c/r| ≤ 1/2q ∧ Zd,a,fa]}

GCD (line 17-21)

{
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ |b/q − c/r| ≤ 1/2q ∧ Zd,a,fa]}

assumed

(gcdresult)

The last step is to simply combine the steps of the core algorithm.

{. . . } x[] := rnd [2, N) (line 8) {. . . } (samplex) {. . . } a[] *= QFT (line 11) {. . . } (dista)
{. . . } a[], fa[] *= Of (line 12) {. . . } (applymagic) {. . . } measure fa[] (line 13) {. . . } (measurefa) {. . . } a[] *= QFT (line 14) {. . . } (qfta)

{. . . } b[] := measure a[] (line 15) {. . . } (measurea) {. . . } CFE (line 16) {. . . } (cfe) {. . . } GCD (line 17-21) {. . . } (gcdresult)

{SE1
P [0]E0

N [0]E1[Nstd ∧ Scases ∧ Zd,x,a,fa,b,c,r]}
. . . (line 8-21)

{P [0]E0
N [0]E1[Nstd ∧ Scases]}

seq

(loopbodytrue)

40

8.2 Comparison to Theory

The result of continued fraction expansion (cfe) and obtaining an actual factor
from the GCD (gcdresult) is assumed. We should therefore make sure that
we have actually established sufficient conditions for Shor’s period-finding algo-
rithm to be likely to have worked. To show this we compare the probability of
a measurement outcome b in the precondition of cfe to the corresponding state
in Shor’s period-finding algorithm. Before cfe our program is in some state A
satisfying:

A |=
⊕

a′∈[0,q)

aEa′
aQFT †

⊕
fa′∈[0,N)

faEfa′
a:faO†f

aQFT †
⊕

x′∈[2,N)

SE1
P [0]E0

N [0]E1[. . .]

Interpreting the formula with A, and considering that matrix multiplication
(transformations) distribute over addition (probabilistic sum ⊕), we can ascer-
tain that this is equivalent to:

A =
∑

a′∈[0,q)

∑
f ′
a∈[0,N)

∑
x′∈[2,N)

A(a′, f ′a, x
′)

A(a′, f ′a, x
′) |=aEa′

aQFT †faEfa′
a:faO†f

aQFT †SE1
P [0]E0

N [0]E1

[Nstd ∧ Scases ∧ x = x′ ∧ b = a′ ∧ Zd,a,fa,c,r]

We can establish that A(a′, f ′a, x
′) has non-zero entries only where b = a′. The

total probability of
∑
f ′
a

∑
x′ A(a′, f ′a, x

′) then represents the probability of mea-
surement outcome b. To show the equivalence with the state in the theoretical
algorithm, we use Dirac notation. This notation corresponds with program
states A when we choose the standard basis e0, e1. We start with a system
that satisfies the probability predicate, and apply the transformations outward
from there. Unfolding Nstd and Scases we can find that a = 0, fa = 0, d = 0,
P = 0, N [0] = 0 and S = 1. Consequently, diagonal entries in A(a′, f ′a, x

′) that
do not correspond to these conditions are zero, as are the corresponding rows
and columns by Lemma 7. The system is thus in the form:

c|0〉a〈0|� |0〉fa〈0|� |0〉d〈0|� |0〉P 〈0|� |0〉N [0]〈0|� |1〉S〈1|� T

The transformations in the formula do not affect or depend on T , so we do not
consider it here. We are interested in the result:

aEa′
aQFT †faEfa′

a:faO†f
aQFT †SE1

P [0]E0
N [0]E1

c|0〉a〈0|� |0〉fa〈0|� |0〉d〈0|� |0〉P 〈0|� |0〉N [0]〈0|� |1〉S〈1|
aE†a′

aQFT faE†fa′
a:faOf

aQFTSE†1
P [0]E†0

N [0]E†1

=cvv†

41

For ease of computation we define v as follows:

v =aEa′
aQFT †faEfa′

a:faO†f
aQFT †SE1

P [0]E0
N [0]E1|0〉a|0〉fa |0〉d|0〉P |0〉N [0]|1〉S

=aEa′
aQFT †faEfa′

a:faO†f
aQFT †|0〉a|0〉fa |0〉d|0〉P |0〉N [0]|1〉S

=aEa′
aQFT †faEfa′

a:faO†f
1
√
q

q−1∑
a=0

|a〉a|0〉fa |0〉d|0〉P |0〉N [0]|1〉S

=aEa′
aQFT †faEfa′

1
√
q

q−1∑
a=0

|a〉a|f(a)〉fa |0〉d|0〉P |0〉N [0]|1〉S

=aEa′
aQFT †

1√
m

m−1∑
j=0

|jr + s〉a|f ′a〉fa |0〉d|0〉P |0〉N [0]|1〉S

=aEa′
1
√
mq

m−1∑
j=0

q−1∑
b=0

(e2πi
(jr+s)b

q |b〉a)|f ′a〉fa |0〉d|0〉P |0〉N [0]|1〉S

=
1
√
mq

m−1∑
j=0

e2πi
(jr+s)a′

q

 |a′〉a|f ′a〉fa |0〉d|0〉P |0〉N [0]|1〉S

Thus, given a value of x, the probability of the system matches that of the
theory in Equation (6.1). Note that we are being imprecise about x here: it
should be uniformly distributed over [2, N). With the approach we have chosen
(‘valid’ probabilistic predicates) this is hard to specify, so we have chosen not
to solve this.

42

Chapter 9

Conclusion

In this work we have performed a case study that illustrates the usability of a
logic that reasons about the correctness of quantum programs. This chapter
discusses the findings we learned from this effort, and what is left for future
work. Finally we conclude by summarizing the thesis.

9.1 Findings

The case study of Shor’s factoring algorithm shows that it is in fact possible to
prove a non-trivial example in the logic. This did however require a fair number
of lemmas. On balance the logic is certainly usable, but it could be improved
by rules that improve the completeness of the logic.

The lemmas do hint at some possible avenues for improvement. The formulae
in the logic cannot directly state properties about the state of the system (e.g.
“this register is 1”). This is however possible in probability predicates, where
we have to be precise about the probability that a statement about the system
is true. A trick we then use is that of valid probability predicates: a statement
of the form pr(ρ) = pr(true). If we specify everything this way we do lose total
correctness, but it is much more natural to specify properties about the system
in this way.

Other lemmas focus on more fundamental additions. For example, we proved
properties like transformations being distributive over probabilistic addition
(⊕), and reordering of independent measurements. These are not new insights
about quantum systems, but could be good additions to the logic in some form.

Finally we give some rules for the verification of syntactic sugar introduced
in the logic. While these are fairly obvious, it is still good to make them precise.
In addition, it would be good to make precise the equivalence between multi-qbit
registers and bounded integers.

9.2 Future Work

9.2.1 Formalization of Lemmas and Proof

Some of the lemmas, and the proof itself are quite involved. The presented proofs
in the thesis do not require particularly deep mathematical insight: the difficulty

43

is rather in finding lemmas (or from the perspective of the proof system: axioms
and proof rules) that assist with the proof of an algorithm. In fact, proofs such
as the one in Section 7.1.3 are almost mechanical. For that reason, and to
further increase the confidence in the correctness of these proofs, it might be a
good idea to formalize them in a theorem prover.

9.2.2 Non-Probabilistic Classical Computing

Since quantum computing is fundamentally probabilistic, the quantum program-
ming language is probabilistic as well. This however drags the classical part of
the language into the probabilistic domain as well. Writing probabilistic specifi-
cations for classical parts that are not probabilistic is cumbersome. To increase
usability it would be better if there was some notion of embedding a probabilistic
program into a deterministic program.

9.2.3 Complete Quantum Logic

This thesis proposes some lemmas that may contribute towards making a more
complete axiomatization of the quantum programming language, but more work
is needed to make it truly complete.

9.2.4 Automated Reasoning about Quantum Programs

Some predicates in the central proof are simultaneously quite long, and entirely
mechanical. As an example, the rule for unitary operations is complete and
requires no choice, and thus is a good candidate for automation. Following the
tradition of tools based on Hoare logic, we could pair the programming language
with a specification language and automate as much of the proof as possible.

9.3 Summary

In Chapter 2 we gave an introduction to formal program verification. An ex-
ample logic was given for a small toy language called WHILE.

Chapter 3 introduced the important concepts of quantum computing. For
the characterization we use the five criteria as laid out in [6]. Furthermore we
explain a foundation for the math of quantum systems.

Having explained program verification and quantum computing Chapter 4
gives an intuition for the structure of several proposed logics designed for ver-
ification of quantum algorithms. In the next chapter (Chapter 5) one of these
was fully explained, as this is the logic that was used for the case study.

In Chapter 6 we explained the algorithm that was used as a case study:
Shor’s factoring algorithm. We gave a sketch of the proof why this algorithm
works, and lay out a pseudocode implementation of the algorithm, later to be
translated to the toy language of the logic from Chapter 5.

To complete the proof a fair number of additional lemmas were needed.
This is expected, as the logic introduced in [9] makes no claim to be complete,
and remarks in its section on future work that more work is needed to make a
complete axiomatization. The lemmas required for our proof are explained in
Chapter 7.

44

Finally, the case study is formally verified in Chapter 8. Although the pro-
gram indeed provides the desirable result (d is a non-trivial divisor of N), to
further establish the correspondence to the algorithm the state of the program
in the core part of the factor-finding loop is compared to the theoretical state
as explained in Chapter 6.

45

Bibliography

[1] EuYu (https://math.stackexchange.com/users/9246/euyu). Ze-
ros diagonal element of a semidefinite matrix leads to zeros row/column.
Why? Feb. 10, 2014. url: https://math.stackexchange.com/q/671156
(visited on 05/24/2021).

[2] Nick Benton. “Simple relational correctness proofs for static analyses and
program transformations”. In: ACM SIGPLAN Notices 39.1 (2004), pp. 14–
25.

[3] Arne Johan Brentjes. “Multi-dimensional continued fraction algorithms”.
In: MC Tracts (1981). url: https://ir.cwi.nl/pub/13005.

[4] JI Den Hartog and Erik P de Vink. “Verifying probabilistic programs using
a Hoare like logic”. In: International journal of foundations of computer
science 13.03 (2002), pp. 315–340.

[5] Paul Adrien Maurice Dirac. “A new notation for quantum mechanics”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 35.
3. Cambridge University Press. 1939, pp. 416–418.

[6] David P DiVincenzo. “The physical implementation of quantum compu-
tation”. In: Fortschritte der Physik: Progress of Physics 48.9-11 (2000),
pp. 771–783.

[7] Charles Antony Richard Hoare. “An axiomatic basis for computer pro-
gramming”. In: Communications of the ACM 12.10 (1969), pp. 576–580.

[8] Stephen Joran. Quantum Algorithm Zoo. Feb. 1, 2021. url: https://
quantumalgorithmzoo.org/ (visited on 05/11/2021).

[9] Yoshihiko Kakutani. “A logic for formal verification of quantum pro-
grams”. In: Annual Asian Computing Science Conference. Springer. 2009,
pp. 79–93.

[10] Peter W Shor. “Algorithms for quantum computation: discrete logarithms
and factoring”. In: Proceedings 35th annual symposium on foundations of
computer science. Ieee. 1994, pp. 124–134.

[11] Dominique Unruh. “Quantum relational Hoare logic”. In: Proceedings of
the ACM on Programming Languages 3.POPL (2019), pp. 1–31.

[12] Ronald de Wolf. Quantum Computing: Lecture Notes. Jan. 20, 2021. url:
https : / / homepages . cwi . nl / ~rdewolf / qcnotes . pdf (visited on
05/03/2021).

46

https://math.stackexchange.com/users/9246/euyu
https://math.stackexchange.com/q/671156
https://ir.cwi.nl/pub/13005
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf

[13] Mingsheng Ying. “Floyd–hoare logic for quantum programs”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 33.6
(2012), pp. 1–49.

47

	Introduction
	Objective
	Structure

	Program Verification
	WHILE
	Axiomatic Semantics

	Quantum Computing
	Conditions for Quantum Computing
	An Abstract Quantum Computer
	Mathematical Preliminaries

	Related Work
	A Logic for Formal Verification of Quantum Programs (2009) kakutani2009logic
	Program Syntax and Semantics
	Hoare Logic

	Floyd–Hoare Logic for Quantum Programs (2011) ying2012floyd
	Program Syntax and Semantics
	Hoare Logic

	Quantum Relational Hoare Logic (2018) unruh2019quantum
	Program Syntax and Semantics
	Hoare Logic

	Logic for the Case Study

	Proof System
	Syntax
	Semantics
	Formulae
	Proof Rules

	Shor's Factoring Algorithm
	Pseudocode

	Lemmas
	Logic-Level Lemmas
	Probability is not Greater Than One
	Measurement Outcome in Probability Predicate
	Diagonal Formulae
	Distribute over E0 and E1
	Independent Measurement
	Distribute Unitary Operations over

	Proof Rules
	Assign
	Repeated Declaration
	Constant Assignment
	Measure into Bits
	Distribute over E0 and E1 with Independent Measurements

	Mathematical Lemmas
	Zero Diagonal

	Proof
	Proof Tree
	Comparison to Theory

	Conclusion
	Findings
	Future Work
	Formalization of Lemmas and Proof
	Non-Probabilistic Classical Computing
	Complete Quantum Logic
	Automated Reasoning about Quantum Programs

	Summary

