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Abstract— In this paper, a state of charge (SOC) and state of
health (SOH) mobile estimation lab is developed, and the error of
the setup is quantified. Multiple implementations for estimating
the SOC and SOH are outlined below. However, the coulomb
counting estimation method is employed to estimate the SOC,
while the linear regression of the SOC is used to estimate the
SOH. This is accomplished by using a current probe connected
to an oscilloscope to record current levels. The data acquired
inputs into a Matlab script, which calculates the SOC and SOH
values. Experimental data show that this implementation can
estimate the SOC value and thus the implementation can also
estimate the SOH. However, a standalone coulomb counting
implementation has a couple of drawbacks. These drawbacks and
ways to overcome these drawbacks are detailed below. The setup
is validated by the open-circuit voltage method, and it is figured
out that the error of this implementation grows at 0.0013 ∆SOC

minute
.

I. INTRODUCTION

The ever-increasing use of portable electronic devices in
current generations, where rapid advances in technology and
the decreasing prices of electronics have boosted the demand
for batteries to power these portable devices. Electric vehicles
(EVs), portable electronic equipment, and a variety of other
power systems are examples of equipment that depend on
batteries to provide power. This rising demand necessitates a
better knowledge of these battery packs to ensure that they
do not represent a threat. A battery may pose a threat when
the limits of the batteries are exceeded, these batteries may
overheat and may spontaneously combust. These batteries
undergo intricate chemical and electrical processes which
cause the batteries to exhibit non-linear properties. Unlike
other electronic components such as resistors with linear
qualities, these batteries are unpredictable due to their
non-linear properties. As a result, further study is needed to
better understand these batteries. When performing battery
research, the SOC and SOH are two important states to be
aware of. This project aims to provide a mobile SOC and
SOH estimation set up to aid in future research and quantify
the error of the setup.

SOC is not a directly measurable quantity such as open-
circuit voltage or current from a battery pack, it must be
estimated by relating some of these measurable quantities
to the SOC. Several techniques have been developed to
estimate SOC which will be discussed below along with their

computational complexity, the accuracy of estimation, and
ease of implementation. At a first glance, it may seem that
the accuracy of the estimation has to be prioritized. However,
these qualities are equally important for example, to achieve
high accuracy of estimation, high computational complexity
is required, which makes it less suitable for real-time purposes.

The techniques to estimate SOC fall under two main cate-
gories [1]. These being, the direct techniques that measure the
battery’s electrical parameters, which arithmetically process
these values to estimate the SOC, and indirect techniques,
which indirectly associates the battery’s electrical parameters
to the SOC, utilizing a battery model of sorts as a mediator
between the battery’s electrical parameters and the SOC.

A. Direct methods to estimate SOC

The first technique to estimate SOC directly is known as the
open-circuit voltage (OCV) based estimation. This technique
takes advantage of the relation between the OCV of the battery
cell and its SOC. Since a specific OCV maps to a certain
SOC value. Usually, this relation is characterized through
a polynomial or a look-up table [1]. However, since this
method relies on the OCV of the battery pack, high-resolution
sensors are required to reliably estimate the SOC of the
battery pack. In addition, the OCV needs to reach equilibrium
to accurately measure it, this is what is known as battery
relaxation [2]. When the discharge/charge current from the
battery is removed, the OCV of the battery increases at a rapid
pace at first, then gradually climbs then reaches equilibrium
around two hours after the load has been disconnected [3]. As
a result, it’s not suited for real-time measurements.

B. Indirect methods to estimate SOC

There are a couple of distinct methods that fall under the
indirect methods; a model-based implementation, an adaptive
filter implementation, and a data-driven implementation [4].
These three methods use directly measurable quantities,
such as the OCV of the battery pack and the battery’s
charging/discharging current, and use them as inputs for their
respective systems.

First, the model-based techniques will be discussed. There
are two main models, other models are developed from these



two models. The first model is the electrical circuit model
(ECM). This model estimates the battery as a network of
resistors and capacitors whose values are known beforehand,
either from experimental data or from data sheets and alike.
This leads to a decrease in computational complexity but it
can not take into account other variables such as temperature
[3]. In addition, this method is an inflexible model, since
the parameters of the resistors and capacitors differ for each
battery and also would differ with changes in environmental
factors, such as ambient temperature. The second model is
the electrochemical model (EChm). This model is made up
of partial differential equations (PDE) to model the battery’s
chemical structure and the chemical reactions that happen
inside the battery. This model is highly credible, thus the
estimation of SOC would be highly accurate [3]. However,
the computational complexity of this model is high which
makes this model unsuitable for on-board implementation. A
derivative of the EChm model, the electrode-averaged model
(EAM), is suitable for real-time SOC estimation. This may
be attributed to its ability to handle rapid discontinuities for
electrode bulk concentration, such as in EVs with restorative
braking.

The second indirect method is an adaptive filter. This
method combines some direct methods and a battery model.
As the name suggests, the filter is a self-adjusting system,
adjusting its parameters to achieve the desired outcome, this
is done with the help of a feedback loop. An example of an
adaptive filter is the Kalman filter (KF) which uses a set of
measurements to estimate unknown variables, also known as
a hidden state. A KF estimates hidden states, such as SOC or
SOH, in a linear dynamic system derived from measurable
quantities where the error between the expected value, from
the battery model, and the observed value is minimized. Since
the inner workings of a battery is a non-linear process, this
filter needs to be linearized each time step with the help of a
first-order Taylor expansion. This results in what is known as
an extended Kalman filter. However, this filter assumes that
the noise that is inherently included in the expected value,
from modeling errors, and observed value, from measurement
errors, is white Gaussian random processes with zero mean
[1]. Which limits its field application where the noise is
not guaranteed to meet the criterion above, leading to the
estimation of SOC to diverge from the its true value.

Lastly, the third indirect method is adaptive artificial
intelligence. This method includes methods such as Fuzzy-
Logic-Based Estimation, Artificial Neural Networks-Based
Estimation, and Genetic Algorithm-Based Estimation [1]. An
advantage of this method is that it has a strong matching
ability [4], the ability to figure out patterns from measurement
values, allowing it to estimate unknown variables by figuring
out patterns from training data sets (the battery model).
However, this method also has the chance to over-fit the
training data sets [4].

C. Methods to estimate SOH

There are no commercially available sensors to directly
measure the capacitance nor the internal impedance of
the batteries. Thus, the main focus to estimate SOH is to
develop techniques to indirectly calculate the SOH using
quantities that commercially available sensors can measure.
The estimation of the SOH can be implemented in four
distinct ways. A model-based, a change in SOC based, and, a
differential voltage analysis/incremental capacitance analysis,
and an adaptive artificial-intelligence-based estimation. These
methods will be discussed further below.

There are two model-based approaches, one physics-based
and the other empirical-based. The physics-based model
describes the chemical reactions of the battery with the help
of PDEs. These chemical reactions are closely related to
the decay of the battery [4]. The physics-based model has
high accuracy, however, it puts a heavy strain on computing.
Which makes this model unsuitable for online applications.
The other model is the empirical-based model, which is
derived by fitting data from actual battery experimental data,
and a battery model can be formulated. This model can
achieve high computational efficiency. However, this method
is labor-intensive to formulate, as substantial aging tests need
to be carried out. These models also exhibit poor flexibility
[4] as the model is valid for certain conditions only.

The second method to estimate the SOH is an incremental
capacity analysis. This method estimates the capacity by
differentiating the battery’s capacity over its voltage when the
battery is in constant current charging mode, dq

dv . Graphing the
dq
dv and voltage results in a graph that has peaked on it, these
peaks can be used to predict the capacitance of the battery at
a certain cycle. In addition, this method has a high demand
for the resolution of current and voltage measurements, as a
lack of resolution in the measurement of current and voltage
results in quantization noise which will bias the results of the
IV curve, and thus also the SOH value.

Lastly, the adaptive artificial intelligence implementation
will be discussed. The methods to estimate the SOH through
adaptive artificial intelligence are, but are not limited to,
support vector machine and Gaussian process regression
[4]. These methods have the advantage of a model-free
reinforcement learning characteristic, where the model’s inner
workings do not need to be considered in real-time. However,
these algorithms need to be ”trained” with multiple data sets,
if only a few data sets are used for training, the algorithm
will over-fit the training data set and would not be suitable
for anything else.

As stated above, batteries are increasing in consumption
and research has to be done to both make these batteries
safer and better. The SOC and the SOH are two of a couple
of states that are used to characterize a battery cell or battery



pack. In order to quickly quantify the SOC and the SOH,
this paper proposes a simple implementation to estimate both
states.

The following is a breakdown of the paper’s structure. The
project’s essential information is discussed in section II. In
section III, the reader will go through how to set up the
estimation of SOC and SOH and justification of choices made
about the set up. In section IV, the reader can view the result of
the setup. The discussion follows in section V. Finally, section
VI brings the paper to a close.

II. THEORETICAL FRAMEWORK

A. Definition
In short, the SOC is like a fuel gauge on a vehicle. it

describes how much capacity a certain battery pack has left
compared to the maximum capacity a certain battery pack can
store. The SOC is expressed in percentages, from 1 to 0. The
SOC is 1 when the battery is fully charged and close to 0 when
the battery is completely discharged. A common mathematical
expression that is used to describe SOC is shown equation 1
and 2, as seen in [4].

SOC(t) = SOC(t0) +

∫ t0

t

I(t)η

Qn
(1)

SOC =
Cr − Cd

Cr
(2)

Where SOC(t) and SOC(t0) is the SOC of the battery
at time t and t0 respectively. I(t) is the output current of
the battery pack expressed in ampere, η is the coulombic
efficiency which describes how much capacity can be
discharged in comparison to how much charge is used to
charge the battery pack. Qn is the capacitance of the battery
expressed in ampere-hour (Ah). Cr is the rated capacitance,
and Cd is the discharged capacity, both expressed in ampere-
hour (Ah).

Next, the state of health (SOH), this state is important since
the battery degrades over time. It is defined as the ability
of a battery to store energy in comparison to its nominal
capacitance. Thus, SOH is expressed in percentages. Typically,
the battery’s SOH is initially, at the time of manufacture, 1.
This degradation can be seen from two aspects, the battery’s
capacitance and its internal impedance [4]. Two mathematical
expressions describing the SOH is shown in equations 3 and
4, as seen in [4].

SOH =
Ca

Cr
× 100% (3)

SOH =
Ra −Rr

Rr
× 100% (4)

Where Ca is the actual capacitance and Cr is the rated
capacitance. Ra is the actual internal impedance and Rr is the
rated impedance. A capacitance fade of 20% or an increase of
internal resistance of 100% is considered to be the battery’s
end of life (EOL) [4].

B. Method to estimate the SOC

To estimate the SOC a method known as the coulomb
counting method, which is a direct method, is employed,
this method is the most popular technique due to its
accuracy for short-term calculation [1]. This method requires
measurements of the current output of the battery pack to
estimate the change of charge in a battery pack. To do so, an
equation that relates the current and the SOC is presented, this
equation is equation 1. However, due to noisy measurements
and rounding errors, the integral (shown in equation 1)
accumulates these errors, and this method also suffers from
an initial value error, on account of the lack of initial SOC
value, which is usually assumed.

C. Method to estimate SOH

The method to estimate SOH takes advantage of the math-
ematical definition of SOC, stated in equation 1. Rearranging
equation 1 results in equation 5, which is the mathematical
basis for capacity fade [3].∫ t

t0

I(t)ηdt = Qn[SOC(t)− SOC(t0)] (5)

Equation 5 introduces a linear relationship between the
integrated current and the change of SOC, with Qn, the
actual capacitance being the slope. The actual capacity can be
calculated using linear regression methods. Linear regression
is an approximation of relating dependent variable(s) and
independent variable(s). A line of best fit, where the distance
of data points towards this line of best fit is minimized. By
calculating the current capacitance, the SOH can be calculated
using equation 3 with Ca being the current capacitance and
Cr being the rated capacitance, shown in equation 6.

SOH =
Ca

Cr
=

∫ t

t0
I(t)ηdt

SOC(t)− SOC(t0)
/Cr (6)



III. METHODOLOGY

Fig. 1. Setup of the discharge circuit

A. Data collection

This implementation of SOC and SOH estimation only
requires current readings as input. This current measurement
was obtained using a TA-189 current clamp attached to a
Picoscope 2208B oscilloscope connected to a laptop running
a Matlab script. Figure 3 shows the inner workings of the
Matlab script, the rhombus indicates an if statement, whose
input either comes from a variable analyzed by Matlab, such
as checking if there is an open connection, or input from
human in the form of a message box, such as in the case of
asking to plot live data. The rounded rectangles are processes
that the Matlab script executes.

A single battery pack consisting of four ICR 18650-26J
connected in series was used as a sample battery pack, whose
specifications are listed in table I. These battery cells are
not directly connected to the load, to increase the safety and
the longevity of the batteries, a battery management system
(BMS) was connected between the load and the battery pack.
A BMS can increase the safety and the longevity of the
batteries by acting as a fuse when certain thresholds are met,
such as overcharged voltage or the maximum current drawn.

Fig. 2. Discharge circuit

As a load, a power resistor, with a resistance of 9.9Ω, as
seen in figure 2. This resistor is made up of three 3.3Ω power
resistors connected in series, as seen in figure 1 labeled as load.
The reason for a low ohmic resistor was so that the current
output was high, minimizing random errors, which arise from
external factors. In addition, the battery was fully charged
before discharging. This is because the Matlab script used to
calculate the SOC and SOH assumes the starting SOC is one,
or completely charged. This is because the starting point SOC
can be guaranteed more easily when it is full, compared to
an intermediate value between 1 and 0. The battery is always
charged past the constant current phase and constant voltage
phase, until the current towards the battery is 0.05 A and the
voltage between the positive and negative terminals of the
battery pack is 16.8 V. This is to compensate for the lack of a
starting point and to standardize the amount of charge that is
in the battery pack.

TABLE I
SPECIFICATION OF BATTERY

Type ICR 18650-26JM
Nominal Capacitance/mAh 2600
Nominal Voltage/V 3.63
Charged Voltage/V 4.2
Maximum discharge current/A 5.200



Fig. 3. Flow chart of matlab script

B. Data processing

As previously indicated, the Matlab script handled all of the
data processing. As there was high-frequency noise present
in the readings, of the current clamp a low pass filter was
applied to the raw data from the current clamp. This noise
is present due to the cable acting as an antenna, picking
up background transmissions and incorporating them into the
current measurements. In addition, the current clamp records
current as a voltage with a conversion of 100 mV

A , thus the
script has to account for this conversion.

1) SOC estimation: For the calculation of SOC, equation
1 was implemented. The integration of current was done with
the help of the Matlab function cumtrapz, which provides
intermediate values for graphing purposes. However, this
function assumes that the distance between each successive
time points to be one second, thus a spacing increment needs

to be multiplied to the result of the cumtrapz. This spacing
increment is equal to B−A

N where ’N’ is the number of
samples, ’A’ is the starting time and ’B’ is the end time. The
starting SOC (SOC(t0)) was set to 1, so the battery pack was
assumed to be full at the start of the Matlab script when the
current measurement started. Lastly, the capacity (Qn) was the
rated capacitance of the battery.

2) SOH estimation: The linear regression was implemented
with a polynomial regression tool available in Matlab, polyfit
and polyval. Polyfit provides the polynomial coefficient of the
fitted SOC curve, and polyval evaluates the polynomial created
by polyfit at each time point. The SOH estimation takes into
account the whole experiment to reduce random errors and
errors due to fluctuation of current measurements, so the SOC
at the initial time (t0) was the SOC value at the start of the
first current measurement and the SOC at time t was the end
of the experiment (SOC(t)). Following that, equation 5 was
used to calculate the current capacitance and lastly, equation
3 was used to calculate the SOH. The SOH was displayed in
a popup message created with the msgbox function in Matlab.

C. Performance evaluation

Fig. 4. OCV-discharge capacity graph [5]

The performance of the SOC estimation has been validated
by checking the OCV of each battery cell and calculating how
much capacitance has been discharged according to the OCV-
discharge capacity graph shown in figure 4 and equation 3.
This calculated SOC has been regarded as the true value,
y, and the SOC from the Matlab script was the estimated
value, ŷ. The error rate was calculated with the mean absolute
error (MAE), shown in equation 7. Which calculates the
absolute distance each measured value was from the true
value. Moreover, another metric, the mean absolute percentage
error (MAPE), was included. This metric shows MAE as a
percentage of the true value, to give more meaning to the
error metric since the MAE is a deceptively low value, a value
below 1.

MAE =
1

n

n∑
n=1

|y − ŷ| (7)

MAPE =
1

n

n∑
n=1

|y − ŷ|
y

(8)



Equation 7 is as seen in [4] and equation 8 is as seen in
[6]. In addition, since the coulomb counting is also prone to
cumulative error, the error rate has also been calculated with
linear regression, of the first order, based on the difference of
the true value and the estimated value of the SOC. The reason
for using a first-order linear regression method is because the
background noise is assumed to have a non-zero mean, thus
the noise can be assumed to be of constant magnitude. As
a result of the integration of noise into the SOC graph, the
error was assumed to be additive, since the integration of a
constant magnitude results in a graph whose value increases
at a constant rate.

IV. RESULTS

A. SOC estimation

The output of the SOC estimation Matlab algorithm along
with the final current measurement is shown in figure 5. The
Matlab algorithm also works when the battery pack is being
charged too, as seen in figure 6.

Fig. 5. Current and SOC graph, discharging at 0.6C

Fig. 6. Current and SOC graph, charging at 0.5C

The battery pack could only be discharged for a maximum
of 112 minutes, at 0.6C, before the BMS trips, and the voltage
between the P+ and the P- terminal goes to zero, and the
current drops too. As can be seen in figure 7, which is the
voltage reading of an individual cell at the last 18 minutes
which has lasted 112 minutes, the cell’s voltage declines
rapidly until it reaches 2.53 V, at which point it recoils.

Fig. 7. Voltage of Cell



B. SOH estimation

Fig. 8. Degradation of SOH

The SOH estimation was estimated and graphed against
the number of discharge cycles, as seen in figure 8. This
line is derived from obtaining a line of best fit between 10
discharge cycles and extrapolated to predict the SOH after
100 discharge cycles. It was found that the SOH degraded at
a rate of 0.000329 per discharge cycle.

C. Performance evaluation

As stated in the methodology section, the accuracy of
the coulomb counting implementation was validated by the
OCV method described above. In addition, the OCV-discharge
capacitance curve depends on the current drawn from the
battery pack as seen in figure 4. Given that the experiments
were done in the same conditions and discharged on the same
resistor, as seen in figure 2, each experiment is comparable to
each other. The average current drawn from the battery pack
is 1.56 A. The absolute difference between the true value of
SOC, from the OCV method, and the measured value of SOC,
from the Matlab script, was graphed against the duration of
the measurements. Next, a linear regression method of the first
order was applied to those points and was plotted on the same
graph as seen in figure 9. From figure 9, the error rate was
calculated to be 0.0013 /minute in other words, the measured
SOC deviates from the true SOC value by 0.0013 ∆SOC

minute of
experimental duration. In addition, the graph shows that there
is an initial error of 0.0013 ∆SOC.

Fig. 9. Difference in predicted and measured SOC vs duration of measurement

With equation 7 the MAE was calculated to be 0.148 and
the MAPE was calculated to be 0.630. However, omitting the
trial with the longest duration results in an MAE of 0.143 and
a MAPE of 0.308.

V. DISCUSSION

The setup proposed is working as intended. However,
the error rate is unacceptable, since the error accumulates
and may grow indefinitely. Methods for overcoming the
constraints of the implementation provided in this study are
described in this section. A main limitation of the standalone
coulomb counting method is that this method is highly
error-prone from several sources. One is the accumulation
of measurement error, from rounding errors, and noise, from
the wires, acting as an antenna and receiving radiation from
external electronic equipment. These errors accumulate in
the integration of current (in equation 1) which leads to an
increase in error rate with a longer duration of the current
measurement. A further source of error is the starting point of
the SOC estimation, which is assumed to be full at the start of
the Matlab script. This is due to the setup’s limitation of not
being able to estimate the initial SOC. This is due to fact that
current measurement alone can only figure out the change
in SOC but not a specific SOC value at a certain time. In
addition, the Matlab script has no way to check if the battery
pack is fully charged initially. This discrepancy reflects on
the successive estimation of SOC. These limitations may be
overcome by employing the OCV method to both determine
the initial SOC of the battery pack and reinitialize the SOC
when the expected error crosses 1% with the help of figure 9.

To apply the OCV method, a voltage reading has to be
obtained, to measure the OCV of the battery pack. This reading
can be implemented using a voltmeter attached in parallel
to the battery pack, thus reading the voltage over the whole
battery. The OCV of a single battery can be calculated by
dividing the OCV of the battery pack by the number of battery



cells in the battery pack. In addition, the figure 4 should be
characterized in a lookup table. First, the OCV of the battery
pack will be measured when the Matlab code is run and from
that, the starting SOC may be initialized. Next, after the error
increases to 1%, from the rate of figure 9 it occurs after 6.7
minutes, the OCV will be measured again and the SOC is
calculated and reinitialized.

VI. CONCLUSION

In this paper, an onsite SOC and SOH estimation was
implemented with the coulomb counting method and linear
regression method, respectively. The method proposed can
successfully capture the nonlinear interaction between the
SOC and SOH, and measurable quantities, such as current,
according to test findings. The resulting setup results align
with previous findings, in terms of the errors encountered
along with its ability to relate current reading to the actual
SOC value. However, along with these test findings, the
shortcomings of a stand-alone coulomb counting method are
shown. One of these shortcomings is the cumulative error,
which is an error that increases with sample size, this can be
seen in figure 9 where the line of best fit, fitted curve, shows
that the difference of true and measured SOC and the duration
of the measurement is directly proportional. This demonstrates
that with an increase of measurement duration, the distance
between the true SOC and the measured SOC gets further,
thus increasing the error. Furthermore, omitting trials with
higher duration of measurement reading reduces the value of
MAE and MAPE. This demonstrates that measurements with a
longer time stray from their real value more. Besides this point,
the restriction of obtaining data past 112 minutes was caused
by the BMS’ over-discharge protection, as can be seen in figure
7, the voltage of the cell goes below the over-discharge voltage
threshold which is 2.55 volts per cell.
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