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Chapter 1

Introduction

Scholars [1] state that the reason security related academic solutions are not being

adopted in commercial settings, is that while the results are very promising, they are

not representative. The use of these solutions is important, as companies rely more on

their digital infrastructure, the need for better protection of digital systems becomes

increasingly important. These systems can be protected with Intrusion Detection Sys-

tems (IDS). The IDS can monitor hosts (HIDS) and network (NIDS) [2]. Based on the

availability of data, this research focuses on network data.

The industry standard for a NIDS is to use signature-based detection mechanisms

[3], because it has a low false positive rate and is fast enough for real-time classification

[4]. This type of detection is created when an attack has been observed and a signature

of the attack can be made. In the other extreme, signature-based detection offers no

protection against attacks which have not been seen before, and therefore have no

signature yet [5]. A solution to this problem would be to use anomaly-based detection.

Anomaly-based detection finds traffic that stands out from normal traffic and therefore

does not rely on signatures. The problem with anomaly-based detection is a high

False Positive Rate, an unsuitable efficiency for real-time detection and the black box

nature of many methods. In addition to that, data is needed to train data-driven

anomaly-based methods. Numerous datasets [6]–[12] are presented for the development

of anomaly-based methods. These datasets contain labeled data, while in commercial

settings it is too expensive to label data.

The methods used for anomaly-based NIDS in academic literature can be divided

into two categories: statistical methods [13]–[15] and machine learning methods [16]–

[18]. In a preliminary evaluation, machine learning methods show the best results in

terms of performance and efficiency. However, the used methods rely on supervised

learning, by having a labeled dataset of normal and attack data. Unfortunately, it is

costly and currently not viable in a commercial setting to label production data. In

unsupervised learning, there is no need for labeled data, since unsupervised methods

simply indicate whether certain data points belong together. The state-of-the-art in

1



2 Chapter 1. Introduction

unsupervised learning for anomaly-based NIDS focuses on Clustering [19]–[21] and,

more recently, on Auto Encoders [22], [23].

The problem this research addresses is the inadequate performance and efficiency

of unsupervised anomaly-based detection, to make it suitable for practical use. In com-

mercial use, the IDS signals detections which are then analyzed by a human security

specialist. Therefore, it is important that the security specialist is not flooded with

false detections, for this the False Positive Rate needs to be reduced. Similarly, it is

important that all malicious traffic is detected, for this the True Positive Rate needs

to be increased. Finally, the IDS must be able to operate in real-time, for this the

time-complexity needs to be reduced. This research aims to improve both the perfor-

mance, by reducing the False Positive Rate and increasing the True Positive Rate, and

efficiency, by reducing the time complexity for unsupervised anomaly-based detection.

From a preliminary evaluation Auto Encoders show results that could make them

viable for practical use. A literature study will be conducted on the state-of-the-art of

unsupervised anomaly detection to confirm whether Auto Encoders are indeed a viable

method for practical use. A method of data processing will be proposed to improve the

performance and efficiency of unsupervised anomaly-based NIDS. The selected method

from the state-of-the-art will be used for the evaluation of the proposed method. For

the evaluation, experiments will be conducted in which the performance and efficiency

of the proposed method will be tested on two popular datasets and on data captured

from a commercial NIDS.

To structure this research, the following research questions have been formulated:

• RQ 1: Are Auto-Encoders the most viable method for practical use in the state-

of-the-art of anomaly-based NIDS?

• RQ 2: What improvements can be made on Auto Encoders for anomaly-based

NIDS?

• RQ 3: How can we achieve unsupervised anomaly-based NIDS for practical use?

The scientific contribution of this research is a method for data processing which

improves the performance and efficiency of Auto Encoders for unsupervised anomaly-

based NIDS. The attention for making anomaly-based detection viable for commercial

use came from our partnership with Northwave Nederland B.V. [24].

The remainder of this work is organized as follows. In chapter 2 a literature study is

conducted on state-of-the-art in anomaly based NIDS. Chapter 3 evaluates the methods

found in the state-of-the-art on a popular dataset, discusses what the requirements are

in a practical setting and selects a method viable for practical use. Chapter 4 discusses

the methodology used in this research and a method of data preparation to improve

the performance and efficiency of unsupervised anomaly detection. Chapter 5 conducts
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experiments to demonstrate the improved performance and efficiency of the proposed

method on popular datasets. Chapter 6 conducts experiments to demonstrate the

improved performance and efficiency of the proposed method on data captured in

commercial production. Finally, Chapter 7 gives a recommendation for practical use,

discusses the research, draws conclusions and points to future work.



Chapter 2

Finding the state-of-the-art in

anomaly based NIDS

In this chapter the answer to research question 1: Are Auto-Encoders the most viable

method for practical use in the state-of-the-art of anomaly-based NIDS? will be ad-

dressed. Background on the material discussed in this research will be given. A survey

on the state-of-the-art in anomaly based NIDS will be conducted with a focus on the

used data, methods and achieved performance and efficiency. From the survey, the

most representative databased and the most viable methods for practical use will be

determined and these methods will be selected for further evaluation to confirm the

selection.

4



2.1. Background in Intrusion Detection 5

2.1 Background in Intrusion Detection

In this section, rudimentary background information is given on the topics discussed

in this research. The background information serves as a basic introduction into the

material and as a definition of the terms used in this work.

2.1.1 Intrusion Detection Systems (IDS)

IDS are deployed to detect attacks, the detection can then be used to mitigate the

treat. An IDS consists typically of a number of sensors, that gather information on a

system, and a decision engine that analyses the information from the sensors to signal

intrusions [2]. The IDS can be divided in two systems, as described below.

Host IDS (HIDS)

A HIDS monitors everything on a host by placing a sensor on every host in the network.

The sensor then collects logs of the traffic for that host, the system, running processes,

deletion or modification of files and configuration changes [2]. The logs are analyzed

in a central server, which can then raise alarms.

Network IDS (NIDS)

A NIDS detects attacks in network traffic by placing sensors such that all traffic passes

through it. The sensor then collects traffic packet or flow information from which

intrusions can be found. This can, for example, be done using information from the

TCP/IP stack, such as IP addresses or packet length.

2.1.2 Types of Detection in NIDS

To detect attacks, a NIDS employs different, or a combination of, methods. Which fall

in two categories, signature and anomaly based.

Signature

In signature based detection, attacks are found when the traffic matches the signature

of an attack. This is done by giving the IDS a set of rules to match the traffic against.

The rules are created by taking attacks and finding discerning features that are not,

or less, seen in normal traffic to create the signature.

Anomaly

In anomaly based detection, attacks are found when traffic deviates from what is

expected from normal traffic. This is done by comparing new traffic to normal traffic
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or attacks from the past. When new traffic is very similar to a previous attack or it is

very different from normal traffic it is assumed to be an attack. Therefore attacks that

are not exactly the same as previous attacks are still found, because they look more

like an attack than normal traffic.

2.1.3 Datasets

To evaluate the used methods, a number of databases have been created. A difference

in the used datasets is whether they use real or simulated data. Real data is captured

in an environment where actual attacks occur, which are not controlled by the creator

of the dataset. This means that there is more noise in the data and the data is often

harder to label. Simulated datasets are created by setting up a controlled environment

and controlling the launch of attacks. This creates clear attacks, which is necessary for

research. However, is less representative of actual network traffic.

2.1.4 Methods for Anomaly based NIDS

To create anomaly-based NIDS, a number of methods can be used, the methods in this

survey fall in two categories:

1. Machine Learning methods use models to learn from normal and attack data, to

find patterns to be able to classify new traffic;

2. Statistical methods use statistical properties to find traffic that stands out, for

example by entropy or Euclidean distance.

Supervised or unsupervised methods

Methods can be supervised or unsupervised. Supervised methods need labeled data.

Meaning they need to know whether the data is attack or normal data to be able to

create a baseline. With this baseline new inputs can be classified as attack or normal

data. As illustrated in figure 2.1 on the left side.

Unsupervised methods do not need labeled data. Meaning, they do not need to

know whether the data is attack or normal. Since they can evaluate the data and

determine whether new data is more similar to one class or the other. As illustrated

in figure 2.1 on the right side.

Machine Learning

Machine learning can be described as follows ”A machine learning algorithm is an

algorithm that is able to learn from data” [25]. With the rise of Deep Learning, tra-

ditional machine learning is now called Shallow Learning, since traditional machine
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Input 1 Attack

Input 2 Normal

Input 3 ?

Input 1 ?

Input 2 ?

Input 3 ?

Class 1

Class 2

?

Supervised Unsupervised

Attack Class 1

Figure 2.1: Supervised and unsupervised methods

learning consists of one layer, whereas deep learning has multiple. The surveyed Ma-

chine Learning methods in this survey are described below.

Decision Trees Decision Trees create a model of the data by finding choices that

differentiate the data. It evaluates the characteristics of normal an attack data to

build a tree. A simple example is drawn in figure 2.2, where a single choice would

determine whether an input is normal or an attack, in reality decision trees are much

bigger.

Attack 
characteristic?

AttackNormal

Figure 2.2: Decision Tree

Support Vector Machines A Support Vector Machine finds lines, or support vectors,

that differentiate the data. A simple example is drawn in figure 2.3. A SVM can use

multiple vectors to differentiate complex groups of data.

Deep Learning

Goodfellow et al. [25] describes Deep Learning as representation learning by introducing

representations that are expressed in terms of other, simpler representations. Deep

learning enables building complex concepts out of simpler concepts. The methods

described below are Deep Learning methods.

Deep Neural Networks A Deep Neural Network has multiple fully connected layers.

The layers give an abstraction of the input features by using weights to connect the
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Attack

Normal

Support v
ector

Figure 2.3: Support Vector Machine

hidden layers. The probability of an input being normal or attack data is determined.

An example is drawn in figure 2.4. If the output is incorrect, the weights get adjusted,

this is called backpropagation. To speed up this process, Extreme Learning Machines

(ELM) were created, in ELM the backpropagation is done using matrix inversion, which

makes it less accurate, but much faster.

Output

Input

Hidden layers

Figure 2.4: Deep Neural Network

Convolutional neural networks A Convolutional Neural Network has multiple con-

volution and pooling layers. In a convolution layer the matrix of the input data is

convolved or combined into a smaller representation. In the pooling the smaller repre-
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sentation of the convolutional layer is further reduced by taking the average or maxi-

mum value in that part of the matrix. What this means is that a CNN extracts larger

patterns from the data. This is useful in image classification, where one pixel does not

hold much information, but a group of pixels together form a part of an image.

Recurrent Neural Networks - LSTM In a Recurrent Neural Network each input is

not only evaluated on itself, but also the previous inputs. Therefore it is evaluated in the

context of the surrounding inputs, which is very useful to detect trends, assuming the

surrounding inputs are related. To improve RNN, Long Short Term Memory (LSTM)

was created. In LSTM, the model can forget irrelevant data and create a long-term

memory for classification, this is very useful when related inputs are not next to each

other. An example is drawn in figure 2.5. Here it can be seen that an input is evaluated

by the LSTM and the outcome is passed to the next LTSM node to evaluate the next

input.

LSTM LSTM

Input

Output

Figure 2.5: Recurrent Neural Network

Deep Belief Networks A Deep Belief Network consists of multiple layers that are

trained individually. Just as in Shallow Learning. The layers are trained using a greedy

training algorithm that forms connections between each node of each layer. Due to the

unsupervised layer, a DBN is suitable for feature selection, as in [26].

Auto Encoders An Auto Encoder consists of two parts, the encoder and the decoder.

The encoder creates a representation of the input data and the decoder tries to recreate

the input data from the representation. An example is drawn in figure 2.6. When the

decoder is able to recreate the input, it means the representation is able to recognize

all input data correctly. Which can then be used to classify new inputs. Since the

encoder creates the representation without knowing anything about the input data,

an auto encoder can work unsupervised. An Auto Encoder. can be used in feature

selection [27] or as a classifier [23].
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Encoder Decoder

Figure 2.6: Auto Encoder

Statistical Methods

In this section background for the surveyed statistical methods is given.

Clustering In clustering, similar inputs are placed in the same cluster and therefore

classify input data as normal or attack. First, a number of clusters are created and

then the input data is placed into the cluster where it is closest to. Clustering therefore

happens unsupervised.

Sketching / Hashing Sketching is a type of clustering, where hashing of input data

is used to create clusters. Hashing means that a mathematical computation is used to

transform the input data, for example by making it smaller. In this way, the input does

not need to be compared to previous data to determine the cluster, only the hashing

is needed to calculate in which cluster the data should be.

Outlier detection In Outlier detection the method finds input points that different in

respect to the points around them or in respect to the entire dataset. Popular methods

are Local Outlier Factor and Isolation Forest, both used by [28].

Principal Component Analysis Principal Component Analysis tries to describe the

dataset using only a few components. For example, a number of the features. When

new data cannot be explained by the principal components, it does not resemble normal

data and is therefore classified as an anomaly.

2.1.5 Performance metrics

To describe the performance of a method, the following metrics are often used. In table

2.1 a confusion matrix is shown. This table shows how the prediction of a classification
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is evaluated against the actual classes of the data.

Actual

Attack Normal

Predicted Attack True Positive (TP) False Positive (FP)

Normal False Negative (FN) True Negative (TN)

Table 2.1: Confusion Matrix

Accuracy describes the percentage of correctly classified data points with respect

to the total amount. This does not give insights into how well each class is classified.

Accuracy is calculated as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

True Positive Rate (TPR) shows the percentage of attack data found. The TPR is

also often called Recall or Detection Rate. The TPR is calculated as follows:

TPR =
TP

TP + FN

False Positive Rate (FPR) describes the percentage of normal data in the data

predicted as an attack. The FPR is often called the False Alarm Rate. The FPR is

calculated as follows:

FPR =
FP

FP + TN

Precision describes the percentage of attack data in the data predicted as attack.

It can be calculated by:

Precision =
TP

TP + FP

F1 score describes the harmonic mean of the Precision and the TPR. The F1 score

is calculated as follows:

F1 = 2 ∗ Precision ∗ TPR

Precision + TPR

2.1.6 Conclusions

In this chapter a basic understanding of Signature and Anomaly based NIDS, datasets,

12 anomaly based methods and 5 performance metrics have been given. This back-

ground information can be used in understanding the concepts which are discussed in

the remainder of this work.
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2.2 Methodology in finding the state-of-the-art

This section explains the methodology in finding the literature to conduct a survey

and answer the first research question to provide an overview of the state-of-the-art.

This section explains the used search engine, used search queries and selection criteria

for finding academic literature.

Search Engine

To conduct the survey, Google Scholar [29] has been used. This search engine has

been chosen, since it provides a wide range of works. Martin et al. [30] found that

Google Scholar holds almost all works of other popular search engines, Scopus and

Web of Science. The pitfall of using Google Scholar is that not all works have been

peer-reviewed and are of substantial quality.

Search queries

To find relevant works, a number of search queries have been used to get a broad

overview of the subject matter. The queries can be found in table 2.2. Where spaces

can be read as [OR] and spaces between quotes can be read as [AND]. Therefore, the

query: machine learning ”intrusion detection systems” can be read as machine OR

learning OR (intrusion AND detection AND systems).

For each query, the top 20 hits have been scanned. For search queries, broad

terms such as ”anomaly network intrusion detection systems” have been used to get

the top cited works and a good overview. Based on prior knowledge and knowledge

gained during the creation of the survey, more specific search queries, such as ”intrusion

detection locality sensitive hashing”, have been used to survey works that are less cited,

but still relevant to the state-of-the-art.

From these queries an overview of works could be collected. Where the broad

search queries returned the largest amount of useful works and surveys, especially

when looking at recent years. More specific queries often result in less useful works,

however they give the best overview of that specific part of the state-of-the-art. When

going from broad to specific queries, there is also some overlap. Queries with ID 2 and

3, from table 2.2, have a number of overlapping works as much of the recent anomaly

based research is into machine learning.

Selection Criteria

To collect works for the survey, some selection criteria were used. Since not all works

in Google Scholar are of the desired quality, works have been selected based on the

number of citations and, if possible on a reputable journal.
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ID Search Query Hits Scanned papers

1 signature network intrusion detection systems 167.000 20

2 anomaly network intrusion detection systems 162.000 20

3 machine learning network intrusion detection systems 149.000 20

4 network anomaly outlier 69.000 20

5 machine learning ”intrusion detection systems” 54.100 20

6 network intrusion detection clustering 35.400 20

7 unsupervised anomaly based intrusion detection 27.600 20

8 network anomaly detection hashing 24.400 20

9 intrusion detection locality sensitive hashing 17.400 20

Table 2.2: Search keywords

The second selection criterion has been how recent a work is. In the last years the

research field in anomaly-based NIDS has advanced significantly. Especially in the field

of using machine learning and deep learning for anomaly detection, works from 2019

and 2020 show much more promising results than earlier works. Furthermore, in the

search for works a preference has been given to surveys. In these works, the knowledge

of the state-of-the-art has been condensed and an overview of the selected works is

given, from which the most relevant works for this research have been selected. The

consulted surveys are discussed in section 2.3.1.

Third selection criterion is based on the found IDS datasets, discussed in section

2.3.2. Most dataset works ask to be cited when that dataset is used in a research.

Therefore the works that cite the dataset research give a good overview of recent and

relevant works. Google Scholar gives the option to search for works that cite a certain

research. This option was then used to find relevant works for our research. Lastly, for

each research the abstract and conclusion is read to determine its relevance. If deemed

relevant, the conclusion and results sections are used to fill table 2.5.

2.2.1 Concluding Remarks

In the surveyed works, most of the recent research is into the use of machine and

deep learning for anomaly detection. Whereas most the statistical or clustering based

methods have been researched earlier, as seen in figure 2.7. As recent as possible works

have been selected, to give the best comparison between methods.

All selected works are researches on anomaly-based NIDS, however some works also

include research on signature-based NIDS. From all scanned works, 33 academic works

have been selected in our survey on the state-of-the-art in Anomaly Based NIDS. The

results of the survey will be discussed in chapter 2.3.
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Figure 2.7: Academic works on Method per Year
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2.3 State-of-the-art in Anomaly Based NIDS

To answer the first research question and provide an overview of the state-of-the-

art, in this chapter, the results of our survey will be discussed. In section 2.3.1 the

found surveys are discussed. In section 2.3.2 the IDS datasets used in the surveyed

researches are discussed. In section 2.3.3 the methods used in the surveyed researches

are discussed, as well as the achieved performance and efficiency per method.

2.3.1 Surveys

A number of surveys have been consulted to answer RQ 1. The works in these surveys

have been analyzed and the most relevant works to the broader research have been

selected and added to the collection in table 2.5.

Ring et al. [31] show an overview of IDS datasets. The datasets are categorized by

size and usage of real or emulated data. For example, Sperotto et al. [7] use a honeypot

to capture real attacks. Aldweesh et al. [1] give an overview of the literature in deep

learning for IDS. They show the distribution of research into deep learning methods for

IDS over the years 2014 up to 2018. They also show the distribution of datasets used

in those researches and show that the majority is conducted using the KDD99 dataset

or the subsequent NSL-KDD dataset. Terzi et al. [32] give an overview of the usage of

big data for real-time anomaly-based NIDS and propose their own approach. Liu et

al. [33] give an overview of different machine learning and deep learning methods for

anomaly-based HIDS and NIDS. The reviewed works are categorized by the type of

data input they use, for example flow or packet inspection.

In table 2.3 the related surveys are summarized and their characteristics are noted.

Here it can be seen that Aldweesh et al. [1] and Liu et al. [33] give a detailed taxonomy

of Deep Learning and Machine Learning for anomaly-based IDS. While a detailed

taxonomy is not given in this document, this survey gives a background of the used

concepts in chapter 2.1.

ID Survey Main topic Covered years Academic works Taxonomy

1 Ring et al. [31] IDS Datasets 1998 - 2017 33 No

2 Aldweesh et al. [1] Deep Learning 2014 - 2018 35 Yes

3 Terzi et al. [32] Big Data 2014 - 2016 15 No

4 Liu et al. [33] Statistics and ML 2015 - 2019 26 Yes

5 This survey Statistics and ML 2012 - 2020 33 No

Table 2.3: IDS survey comparison
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2.3.2 Datasets

A selection of the most used IDS datasets was made to show the distribution of IDS

research on those datasets. This selection can be found in table 2.4. For each dataset,

the research that was at the basis of the dataset is cited and for those researches the

number of citations at the time of writing is shown. These citations are not all related

to anomaly-based IDS research, however, it estimates the popularity of the dataset.

Here it can be seen that the largest part of the researches is done on the NSL-KDD

dataset. Interesting to note is that while the CICIDS-2017 dataset is published in 2017,

since then there have been a significant number of researches on the dataset.

ID Dataset Works in this survey

using the dataset

Size Type of Data Citations as

of 5-11-2020

Publication

Year

Citations

per year

1 NSL-KDD [6] [34], [27], [35], [26],

[4]

150k points Simulated 2485 2009 204

2 Twente [7] [36] 14m flows Real 152 2009 14

3 Kyoto 2006+ [8] [37], [22] 93m points Real 201 2011 18

4 CTU-13 [9] [32] 81m flows Simulated 395 2014 66

5 UNSW-NB15 [10] [38], [39], [35] 2m points Simulated 603 2015 120

6 CICIDS2017 [12] [18], [40], [26] 3.1m flows Simulated 565 2017 188

7 CIDDS-001 [11] [39] 32m flows Simulated 65 2017 22

8 Bot-IoT [41] [42] 72m records Simulated 96 2018 48

Table 2.4: Dataset researches with number of citations

KDD99 - 11

NSL-KDD - 10

Real data - 5

Kyoto - 4
CICIDS 2017 - 3

UNSW-NB15 - 2

MAWI - 2
Twente - 1

UGR'16 - 1

AWID - 1

TUIDS - 1

CTU-13 - 1

CIDDS-001 - 1

Bot-IoT - 1

Other - 7

Figure 2.8: Datasets used in the surveyed works

The most used datasets in the surveyed researches are the KDD99 and the subse-

quent NSL-KDD. The NSL-KDD is based on the KDD99 dataset and was designed

to overcome the problems of the KDD99 datasets [6]. The KDD99 dataset contains

a lot of duplicate and redundant records and in the NSL-KDD dataset these are left

out. However, this means that the NSL-KDD dataset is much smaller. To improve
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upon the NSL-KDD dataset a number of datasets were created with simulated traffic.

The CICIDS 2017 [12], CIDDS-001, CTU-13, AWID, TUIDS, MAWI lab and Bot-IoT

datasets are all simulated datasets with different intentions, for example focusing on

botnets, DDoS or IoT traffic.

To evaluate the methods on a more representative dataset, a number of researches

work with real data, collected by themselves. This makes it difficult to compare between

those researches, since they each use their own dataset. To alleviate this problem,

datasets with real traffic captures have been created. The Kyoto 2006+ [8] and Twente

[7] datasets were created by collecting honeypot traffic. The Kyoto 2006+ dataset also

contains normal traces, whereas the Twente dataset only contains attack traffic. To

give researchers the opportunity to evaluate their methods over a longer period of time,

the UGR’16 dataset was created by capturing ISP traffic over the period of 4 months.

This dataset has both normal and attack traffic. Both the simulated and the captured

datasets are labeled to be able to evaluate the methods presented in the surveyed

researches.

2.3.3 Overview of methods

In this section, the methods presented in the surveyed works, summarized in table 2.5,

will be discussed, as well as their performance and efficiency. To compare the works

and evaluate the proposed methods, the works will be discussed per method used for

classification of the data.

Decision Trees (DT)

Kim et al. [43] show a hybrid system which is able to classify with low FPR, just like

the other DT works. DT are good at classifying large volumes of traffic, for example a

DDoS attack. However, since a DT favors a classification to the majority class, there is

a problem when trying to find anomalies. Meaning that attacks with a small amount

of network traffic, that might be even more detrimental to a network, go undetected.

Therefore, the accuracy metrics used to describe the performance does not provide

the entire overview. Better already is the TPR, as show by [44]. Here the score

of normal packets is not counted, only the malicious traffic score counts and gives a

better overview. However, the most important metric is to determine the detection

rates per class. This makes it possible to determine whether attacks with a small

amount of traffic are also detected.

Zhang et al. [27] display the average of all F1 scores per class. Using Stacked Sparse

Auto Encoders (SSAE) for feature selection and eXtreme Gradient Boosting (XGB)

for classification, they show that while most classes have a F1 score of over 0.98, the

class with the least traffic has a F1 score of 0.7789, resulting in an average F1 score
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of 0.9197 over all five classes. Indication that they were able to detect attacks with a

small amount of network traffic.

A strong point for using DT, is the efficiency. Verma et al. [39] show the fast

execution of Classification and Regression Trees (CART) and XGB, by classifying the

CICIDS2017 dataset in 3.2 seconds. Rathore et al. [44], use Hadoop for distributed

classification and are able to classify KDD99 in under 1 second. Meaning that these

methods can be used for real-time classification.

DT show strong performance but are sometimes lacking in detecting the minority

class, however, Zhang et al. [27] show strong performance in both. Strong efficiency is

shown by Verma et al. [39].

Support Vector Machines (SVM)

A number of surveyed works, [44], [34], [45], [18] show that the performance and espe-

cially the efficiency of SVM is lacking in comparison with other methods like DT.

To overcome this SVM is used in combination with other methods. Kim et al.

[43] proposes to first decompose the entire dataset into smaller subsets using a C4.5

DT and then classify the decomposed subsets using One Class SVM (OCSVM) as

anomaly detection in the decomposed subsets. Since the subsets will require far fewer

support vectors, the testing will go faster and improve efficiency. Because of the outlier

detection using the OCSVM, the system is able to find anomalies better than the DT

and therefore improve performance for unknown attacks and attacks with a small

amount of network traffic.

Khraisat et al. [42] combine the results of C5 DT and OCSVM, using stacked

ensemble learning, to gain a higher accuracy 0.9997 than either of the separate methods

(C5 DT 0.9330 OCSVM 0.9250). They show this on the Bot-Iot dataset and are able

to correctly classify the minority class with a TPR of 1.

Aminanto et al. [46] use SSAE in combination with SVM to achieve a good per-

formance, with high accuracy and low FPR. However, the efficiency is quite low, since

it takes 12000 seconds to classify the AWID dataset. The AWID dataset is an IoT

dataset with 1 hour of network capture.

Marir et al [26] use a Deep Belief Network (DBN) in combination with a multi-layer

SVM to reach high efficiency and classify the CICIDS2017 dataset in 0.1 seconds with

a high F1 score.

Shah et al [4] show the performance improvement SVM can have on signature-based

detection, when used with the firefly algorithm for feature selection. It can drastically

reduce false positives.

SVM show good performance, but poor efficiency. However, Marir et al. [26] show

that when SVM is used with another method, the efficiency can be strongly improved.
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Deep Neural Networks (DNN)

Vingeswaran et al. [45] and Vinayakumar et al. [18] both show the performance of a

DNN with 1 through 5 layers in comparison with shallow machine learning. These

researches are evaluated on the KDD99 dataset and show that DNN can improve the

classification of normal traffic and therefore have a low FPR. They also perform well

on attacks with a lot of traffic, such as probing and DDoS. However, the DNN performs

poorly at finding attacks with a small amount of network traffic.

Auto Encoders (AE)

AE can be used as a semi-supervised or even as an unsupervised method. Which

means that the method does not require labeled traffic or a normal baseline to learn.

As discussed in section 2.1.4. This is valuable for a real world application since it eases

the implementation in different networks.

Osada et al. [22] show the already impressive performance of an unsupervised Vari-

ational AE (VAE), as well as semi-supervised. Where they label 100 records and show

the improved performance on the Kyoto2006+ honeypot dataset. Interestingly the

performance on the honeypot dataset with real network captures is better than on the

NSL-KDD dataset with simulated data.

Nguyen et al. [23] show the efficiency of VAE for real-time classification of the UGR

16 dataset [47]. A dataset with captures of an entire day over a 4 month period with

110 million records per day. The research uses the following setup: A single graphical

processing unit (GPU) GTX 1080Ti with Intel Xeon CPU E5- 2683 (16 cores, 2.1GHz),

and 256Gb of RAM. This is hardware is not readily available in most networks. How-

ever, with this setup, real-time unsupervised anomaly detection is possible and shown

to outperform DT.

SSAE are also used for feature selection in works [27] and [46]. Since SSAE are

able to find connections that are not apparent, they are able to find better features for

each class and improve the performance.

AE show performance that is comparable to DT when used unsupervised and with

good efficiency. Additionally, when used together with other methods AE can strongly

improve the performance of those methods.

Convolutional Neural Networks (CNN)

Potluri et al. [35] use CNN for intrusion detection. While the performance for normal

traffic was good, the CNN was unable to find the attacks with a small amount of

network traffic and therefore the average F1 score over all classes is very low, with

0.4335. This is because the CNN looks for patterns in the data and when those attacks
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have a small amount of data, it is unable to find patterns. This makes that CNN is

unsuitable for anomaly detection.

Recurrent Neural Networks (RNN)

Anani et al. [48] use RNN - LSTM to classify the KDD99 dataset. The RNN is able to

classify with a strong accuracy and low FPR, by learning on trends around the data

and, due to the LSTM, by remembering anomalous packets from the past. However,

the RNN has a low efficiency and classifies the KDD99 dataset in over 2000 seconds.

This makes it unsuitable for real-time classification.

Clustering

Just like AE, as discussed in section 2.3.3, clustering can be used for unsupervised

classification. Since clustering groups similar types of traffic together, regardless of

classification.

Costa et al. [36], use Optimum-Path Forest Clustering to classify the Twente and

NSL-KDD datasets. They show a purity of 0.9577 for the Twente dataset, which means

that 95.77% of points were clustered. Since the Twente dataset has no normal traffic,

it is only important to group types of malicious traffic together. When introducing

normal traffic, with the NSL-KDD dataset a purity of 99.88% is reached.

Other clustering methods do not reach such a high level of accuracy. Researches [49]

and [20] reach TPR between 0.90 and 0.93, however, the FPR is between 0.01 and 0.013,

which is quite good and better than seen in most of the DT methods as discussed in

section 2.3.3.

While Terzi et al. [32] do not focus on the performance of their solution, they show

the efficiency of clustering on the large CTU-13 botnet dataset [9]. They use Spark, a

distributed computation framework, to speed up their method.

Bhuyan et al. [50] show that by combining tree based clustering with entropy-based

outlier detection, very good performance can be reached. An average F1 score of over

0.91 on the KDD99 dataset shows that they are successful at classifying the minority

class, however with a higher FPR than other clustering methods.

Al-Jarrah et al. [21] is able to reach a performance of TPR=0.99691 and FPR=0.01049

with only labeling 10 percent of the data. While this requires some labeling, it out-

performs all other clustering methods. The method does not outperform on efficiency,

however this can be improved using distributed classification.

Clustering shows strong performance, which is comparable to DT, while doing so

unsupervised. The performance even improves when a small portion of the data is

labeled. The efficiency of Clustering methods is very high, making it suitable for real

time anomaly detection.
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Sketching

Sketching, or hashing, can be used to improve the efficiency of comparing traffic in-

stances to determine whether they are malicious. Xie et al. [51] use locality sensitive

hashing to create buckets with similar traffic. Any new traffic can then quickly be com-

pared by only looking in their bucket. This can be considered as a type of clustering

and like clustering it also works unsupervised. Zhang et al. [52] show the performance

of different hashing methods, however, as opposed to Xie et al., the efficiency is very

poor.

Sketching shows some promising results with performance similar to Clustering,

however the efficiency shown in the available academic works is poor and therefore

unsuitable for anomaly based detection.

Outlier Detection

Outlier determination can be used to find traffic that deviates from the baseline of

normal traffic to find anomalies.

Goldstein et al. [53] propose a very simple method. By creating a histogram for all

features and showing traffic that stands out in the histogram, they are able to reach

an AUC performance of 0.9999. And are able to classify the KDD99 dataset in 0.06

seconds. This might not be suitable for real data, since malicious and benign traffic is

more alike.

Cheng et al. [28] use a combination of isolation forest and Local Outlier Factor

(LOF) to find outliers. Like the combination of methods as seen in section 2.3.3 and

2.3.3, isolation forest is used to find global outliers and LOF is used to find local outliers.

Since the efficiency of LOF is lower, but the performance is better. The performance

of the method of Cheng et al. gets varying results. On the most imbalanced dataset,

the accuracy is 0.9999 and the f1 score is 0.7692, which is due to a lower TPR, but a

very low FPR. However, on a more balanced dataset the performance is much poorer.

Overall, the performance and efficiency of outlier based methods are not sufficient

for anomaly-based detection in the available academic works. While the method of

Goldstein et al. [53] works well on the KDD99 dataset, it is doubtful it can be used on

real data.

Principal Component Analysis (PCA)

PCA can be used to find important features in datasets. Since network data has a

high number of features, it can improve the efficiency of a method to use only the most

important features. This might not only improve efficiency, but also performance, as

discussed in section 2.3.3 when SSAE are used for feature selection.
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Salo et al. [54] use a combination of Information Gain (IG) and PCA for feature

selection to improve the performance of their ensemble classifier, based on SVM, k-NN

and MLP. They use the Kyoto2006+ dataset to show that the F measure improves from

0.898 without, to 0.984 with IG-PCA and the efficiency improves from 59.02 seconds

to 7.07 seconds classification time.

PCA shows a good improvement in performance and efficiency when used together

with other methods for classification.

2.3.4 Findings

Decision Trees (DT), Auto Encoders (AE), Deep Belief Networks (DBN), Clustering

and Principal Component Analysis (PCA) show good performance with F1 rates of over

0.90, with low False Positive Rates and with efficiency that is sufficient for real-time

classification, making them suitable for anomaly-based detection. The other discussed

methods are either lacking in performance, in efficiency, or in both.

In the surveyed works, the used datasets vary greatly and therefore the comparison,

in many cases, is unclear. In figure 2.9, a number of researches, which presented the F1

score metrics on comparable datasets, are shown. However, in some cases the F1 score

over the entire dataset is given and sometimes the F1 score averaged over all classes,

like Zhang et al. [27]. When the score over all classes is averaged, the score is lower

when attacks with a small amount of network traffic are not found. This is the reason

CNN [35] scores relatively low.

In many researches the proposed methods are evaluated against older machine learn-

ing methods like Naive Bayes and Random Forest, in those cases the proposed method

clearly outperforms. Therefore, methods like Naive Bayes and Random Forest have

not been included in the survey.

For most methods, a number of researches is cited to give a good overview of the

state of the art for that method. For CNN and RNN only one research is cited. This is

due to the fact that for both methods a lacking performance and a clear reason for that

lacking performance was found, which makes them unsuitable for anomaly detection.

In recent years, more attention has gone to the efficiency of methods and how to make

them more efficient. Hybrid methods in the survey perform well on this aspect.
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Figure 2.9: F1 scores of different methods on different datasets

ID PublicationAlgorithm Dataset Performance Efficiency S

1

M
L

2014 [43] Hybrid DT +

SVM

KDD99 0.87 TPR, 0.04 FPR 11s KDD99 Yes

2 2015 [16] J48, RF Real data RF 0.966 AUC Yes

3 2016 [44] J48, RepTree KDD99 0.99 TPR, 0.000001

FPR

1s KDD99 Yes

4 2017 [46] SSAE + SVM AWID 0.9997 Acc, 0.0001

FPR

12000s AWID Yes

5 2017 [22] VAE NSL-KDD,

Kyoto 2006+

Kyoto 0.9533 TPR,

0.0344 FPR; NSL-

KDD 0.85991 TPR,

0.12106 FPR

Semi

6 2018 [34] ELM NSL-KDD 0.995 Acc, 0.015 FPR Yes

7 2018 [45] DNN KDD99 0.92 Acc, 0.95 F1 score Yes

8 2018 [4] SVM + Fire-

fly

NSL-KDD 0.973 Acc, 0.031 FPR Yes

9 2018 [27] SSAE + XGB NSL-KDD 0.9197 avg. F1 No
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Table 2.5 continued from the previous page

ID PublicationAlgorithm Dataset Performance Efficiency S

10 2018 [35] CNN NSL-KDD,

UNSW-NB15

0.4335 avg. F1 Yes

11 2018 [48] LSTM KDD99 0.9885 Acc, 0.009 FPR 2354s KDD99 Yes

12 2018 [26] DBN +

Multi-Layer

SVM

NSL-KDD,

CICIDS 2017

NSL-KDD 0.9465 F1;

CICIDS2017 0.9295 F1

0.1s CI-

CIDS2017

Yes

13 2019 [23] VAE UGR’16 0.947 AUC VAE in real-

time

No

14 2019 [40] DT CICIDS 2017 0.967 Acc, 0.011 FPR 2.27s CI-

CIDS2017

Yes

15 2019 [42] C5 DT +

OCSVM

Bot-Iot 0.9997 Acc Yes

16 2020 [39] CART, XGB CIDDS-001,

UNSW-NB15,

NSL-KDD

CART 0.967 Acc, 0.037

FPR; XGB 0.967 Acc,

0.038 FPR

3.2s CI-

CIDS2017

Yes

17 2020 [18] DNN CICIDS 2017 0.9 Acc Yes

18

C
lu

st
er

in
g

2012 [49] Sub-space

clustering

KDD-99 0.90 TPR, 0.013 FPR Unclear No

19 2014 [19] ASTUTE MAWI Lab 0.88 F1 score (0.28 im-

provement)

Real-time No

20 2015 [36] Optimum-

Path Forest

clustering

Twente, NSL-

KDD

Twente 0.9577 Purity;

NSL-KDD 0.9988 Pu-

rity

No

21 2015 [37] NKICAD KDD99, Ky-

oto2006+

0.975 Acc No

22 2016 [50] Entropy, Tree

based cluster-

ing

KDD99, TU-

IDS

KDD99 0.91 F1; TU-

IDS 0.97 avg. F1

No

23 2017 [32] K-NN, Eu-

clidean

distance

CTU-13 Bot-

net traffic

0.96 Acc No

24 2017 [20] DEP-SSEC Real data 0.93 TPR, 0.01 FPR 28 faster than

SEC

No

25 2018 [21] Multi-

Layered

Clustering

NSL-KDD,

Kyoto 2006+

Kyoto 0.99721 TPR,

0.00892 FPR

2.25s kyoto Semi

26 2017 [51] LSH Real data 1.00 Acc Unclear No
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Table 2.5 continued from the previous page

ID PublicationAlgorithm Dataset Performance Efficiency S

27

S
ke

tc
h

in
g

2017 [55] three-

dimension

reversible

sketches

MAWI lab 0.90 TPR, 0.05 FPR No

28 2017 [52] L2 LSH KDD99 0.963 AUC 5000s KDD99 No

29

O
u

tl
ie

r 2012 [53] Histogram-

based outlier

score (hbos)

KDD99 0.9999 AUC 0.06s KDD99 No

30 2015 [56] Adaptive

Stream Pro-

jected Outlier

deTector

(A-SPOT),

KDD99 0.85 TPR, 0.15 FPR Linear with

data

Yes

31 2019 [28] Isolation For-

est and LOF

Real data 0.96 Acc No

32

P
C

A 2016 [15] PCA - Mul-

tivariate

Statistical

Process Con-

trol (MSPC)

Real data 0.96 Acc, 0.05 FPR Yes

33 2019 [54] Information

Gain + PCA

NSL-KDD,

Kyoto 2006+

NSL-KDD 0.981 F1;

Kyoto 0.991 F1

2 - 7 seconds Yes

Table 2.5: Surveyed Works
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2.4 Challenges and Directions

From the overview of the state-of-the-art challenges have been identified that will be explored

further in the remainder of this research. The four categories that these challenges lie in, are

discussed below.

2.4.1 Methods

Several methods in the surveyed works have proven to be viable for real-time anomaly-based

NIDS. DTs show good performance and efficiency, however, they fail to find attacks with

little traffic. Just as DNN and CNN. One possible solution seems to be the use of DT in

combination with SVM. Another is to use SSAE for feature selection before using XGB. PCA

also shows good performance and efficiency. The downside of these approaches is the need

for labeling, which is very cost expensive in a real world setting.

Unsupervised learning is proposed as a solution in some of the works. With clustering

or AE, with good efficiency. However, the performance for most of these works is lacking in

respect to supervised methods. The performance increases when semi-supervised learning is

introduced, by labeling a small part of the data.

2.4.2 Datasets

A number of different datasets were used to evaluate the proposed solutions in the surveyed

works. While newer research tends to use the newer datasets, for example, CICIDS 2017

and UNSW-NB15, the criticized KDD99 and subsequent NSL-KDD dataset are still used

very often. Due to varying use of datasets it is difficult to compare the performance of the

proposed solutions.

Aside from the comparison problems, the use of some datasets is criticized because these

datasets are not representative of real data, therefore some researches use real captured data

to ensure that the data is representative. However, these real data captures are not always

published and are often only used by one or a handful of researches. Which makes it even

harder to compare. Sperotto et al [7] provide a labeled database of real captured traffic

from a honeypot as a baseline for real traffic. The limitation here is that the honeypot does

not receive normal traffic, therefore the dataset is not suitable to evaluate all methods as a

normal baseline is lacking. Song et al. [8] provide a honeypot with labeled data and normal

traffic in the Kyoto 2006+ dataset. However, the class balance is not representative. The

Kyoto 2006+ dataset contains 53,75 percent normal data and 46.25 percent attack data. In

normal traffic, this would more likely be 99.99 percent normal and 0.01 attack traffic. Macia

et al. [47] created the UGR’16 data set to evaluate methods over a longer time period.

Using representative data is the biggest challenge in creating a robust anomaly-based

NIDS. It will have to be explored whether the simulated or real datasets provide a represen-

tative evaluation.
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2.4.3 Performance Metrics

As can be seen in table 2.5 the metrics used in the surveyed researches vary a lot. Accuracy

(Acc), Area Under Curve (AUC), F1 measure and False Positive Rate (FPR) are among

metrics seen in the researches. Aside from the use of different databases, this makes it even

more difficult to compare the performance of the surveyed works.

For practical use in a commercial setting, it is important to have a high detection rate,

or True Positive Rate (TPR), since all malicious traffic needs to be found. As discussed

for decision trees in section 2.3.3, it is important to show the TPR for every classification

class. Equally important is a low FPR, since when an alarm is triggered, it takes effort to

investigate whether the alarm indicates malicious traffic. When more false alarms are raised,

the workload increases and makes it increasingly difficult to investigate all alarms, causing

malicious traffic to be found later. Therefore the average F1 score over all classes gives the

best indication of how well a method performs, as discussed in section 2.3.3.

2.4.4 Efficiency Metrics

The efficiency of the surveyed results displays how fast a certain solution is in classifying the

data. Since the works are evaluated on different datasets and different types of hardware and

since some researches simply do not present the efficiency of their solution. It is not possible

to give a comprehensive overview. Instead, the presented metrics in the works have been

added to table 2.5.

This shows that some solutions have a sufficient classification time to be used in real-time.

Other solutions are currently not suitable for real-time classification, as the classification will

not be able to keep up with the inflow of traffic. Techniques like distributed classification

using Hadoop or Spark, as discussed in section 2.3.3 and 2.3.3, might be able to speed up

classification times and make other methods viable for real-time classification. Specialized

hardware, as discussed in section 2.3.3, might also decrease classification time significantly.

With differences in datasets, hardware and the use of distributed classification, it is not

clear which solutions are suitable for real-time classification. However, it can be seen that

methods, such as Decision Trees, clustering, outlier detection and Auto Encoders show low

classification times. Hybrid methods can also be used to increase efficiency of methods like

SVM.
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2.5 Conclusions on the State-Of-The-Art

To answer research question 1: What is the most viable method for practical use in the state-of-

the-art in anomaly-based NIDS?, an overview of the state-of-the-art in anomaly-based NIDS

is given. A survey of 33 researches has been presented with a focus on their used methods,

used datasets, performance and efficiency. The overview of the surveyed works show that

the best performances are obtained by supervised methods, namely, Decision Trees. To

fit the criterion of using unlabeled data, an unsupervised method must be chosen. In this

category both clustering and Auto Encoders show good results in terms of performance

and efficiency. Auto Encoders showing better performance and Clustering showing better

efficiency. The comparison of different methods is complicated by the use of many different

intrusion detection datasets, with varying sizes and difficulty of classification. Therefore, the

3 most suitable unsupervised methods: OCSVM, Clustering and Auto Encoders, together

with Decision Trees as a benchmark method will be evaluated on the same dataset in the

next chapter, chapter 3. From the survey on related academic works, Auto Encoders are

shown as the most viable method for practical use in terms of performance, and while the

efficiency is lower than clustering, the efficiency is sufficient for practical use.



Chapter 3

Evaluation of the state-of-the-art

In this chapter the datasets and methods found in the state-of-the-art, discussed in chapter

2, will be discussed. The properties and available attacks of the popular UNSW-NB15 and

CICIDS 2017 datasets will be discussed. An experiment will be conducted with 4 methods

selected from the state-of-the-art to determine which method will be suitable for use in the

remainder of this research. Decision Trees, Clustering, Support Vector Machines and Auto

Encoders will be evaluated on the UNSW-NB15 dataset for their performance and efficiency.

Finally, the requirements for practical use will be discussed.
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3.1 Popular IDS datasets

To explore methods for intrusion detection. A number of popular IDS datasets have been

used. In the previous chapter, Chapter 2.2. Some of the most used datasets and their

corresponding works have been discussed. In this section, a deeper look is taking into these

datasets.

3.1.1 UNSW-NB15

The UNSW-NB15 dataset consists of captures spanning two days in which attacks are

launched with normal traffic for reference. Table 3.1 shows the distribution of different

attacks and normal data. The ratio between normal and attack data is roughly 10:1 and the

difference between normal data and the smallest attack category is much larger. Therefore,

classification for small classes is a bigger challenge. The attacks are divided into 9 categories

to give an overview of relevant attacks and while the worm and backdoor categories are the

smallest in number of records, they are also some of the most dangerous categories.

Attack categories Number of records

Normal 2218764

Generic 215481

Exploits 44525

Fuzzers 24246

DoS 16353

Reconnaissance 13987

Analysis 2677

Backdoor 1795

Shellcode 1511

Backdoors 534

Worms 174

Table 3.1: UNSW-NB15 test data

Figure 3.1 shows the principal component analysis of the UNSW-NB15 dataset. This

shows that some exploit and DoS connections are very different from the bulk of normal data

and therefore easier to discern. However, the other attack categories are harder to discern

from normal data, since their primary component overlap. Therefore these attack categories

will be harder to classify.

Figure 3.2 shows the principal component analysis of the training set and figure 3.3

shows the principal component analysis of testing set and of the UNSW-NB15 dataset. The

component analyses of both sets are similar and they are both similar to the analysis of the

entire dataset, so they are representative of the entire dataset. The only attack category that

is easier to separate from the normal data is the generic category.
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Figure 3.1: UNSW-NB15 Principal Components

Figure 3.2: UNSW-NB15 Principal

Components training set.

Figure 3.3: UNSW-NB15 Principal

Components testing set.

3.1.2 CICIDS-2017

The CICIDS-2017 dataset is a synthetic dataset captured over 5 days. During these 5 days,

several attacks have been launched to give a representation of the threat landscape.

In table 3.2 the distribution of records with different types of labels is shown. Here the

ratio between normal and attack data can be seen. The biggest difference in proportion is

between the labels BENIGN (normal) and Heartbleed (attack) in a ratio of about 160000:1.

Figure 3.4 the Principal Component Analysis is shown. It can be seen that some of the

normal data deviates greatly from the rest of the data and the attacks show similarities to

the normal data. Making the classification more difficult. Since the normal data also differs

greatly, it will be harder to create a normal baseline for the CICIDS 2017 dataset.
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Labels Number of records

BENIGN 1743179

FTP-Patator 7938

SSH-Patator 5897

DoS slowloris 5796

DoS Slowhttptest 5499

DoS Hulk 231073

DoS GoldenEye 10293

Heartbleed 11

Web Attack Brute Force 1507

Web Attack XSS 652

Web Attack Sql Injection 21

Infiltration 36

Bot 1966

DDoS 128027

PortScan 158930

Table 3.2: Number of records per attack.

Figure 3.4: CICIDS 2017 Principal Components
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3.2 Attack exploration

In this section, the network attacks available in the selected IDS datasets will be explored.

This will be done using the MITRE ATT&CK Enterprise framework, which is discussed

below. Then the attacks present in the datasets will be evaluated. The framework will be

used to evaluate whether the datasets give a comprehensive overview of the threat landscape.

3.2.1 MITRE ATT&CK framework

The MITRE ATT&CK framework is proposed by Strom et al. [57]. They describe the frame-

work as a ”curated knowledge base and model for cyber adversary behavior”. Meaning that

the framework tries to define behavior of attackers and from that categorizes attacks used by

those attackers. MITRE ATT&CK defines multiple frameworks, namely for Enterprise net-

works, Mobile networks and Industrial Control Systems. In this work, the MITRE ATT&CK

Enterprise framework will be used to categorize network attacks.

Tactics

The MITRE ATT&Ck enterprise framework divides attacks into 14 categories, called tactics.

These tactics define a goal for the attacker and consist of all techniques for acquiring that goal.

For example, the tactic reconnaissance has as goal to gather information about the target

and consists, among others, of the technique scanning. By scanning a network, possible weak

points could be found.

The tactics are divided and set up to give a clear overview of the process of the attacker

and their path through a network. First Reconnaissance is needed to gain a better under-

standing of the network. Followed by access to the system and maintaining that access. Then

moving through the system and ultimately acquiring and exfiltrating data and damaging the

system.

In table 3.3 The 14 tactics in the MITRE ATT&Ck enterprise framework, their goals and

associated types of attacks are noted. For each of the selected IDS datasets, it is displayed

which attacks are present. The table illustrates that while a large percentage of tactics are

present in both datasets, many tactics are still missing. This means that even using two

popular datasets does not give a complete overview of the threat landscape.

The tactics seen most often in IDS datasets are Reconnaissance, Initial Access and Impact.

These tactics correspond to attack such as scanning, fuzzing, exploits, shellcode usage and

DoS. While it gives a good basis to be able to defend against these attacks gives a good basis,

there are many more attacks being executed in the current threat landscape. Attacks from

the exfiltration tactic are hard to detect, but the impact of losing sensitive data might be

much higher than of a network scan.
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Table 3.3: Tactics and their presence in the selected databases.

ID Tactic Goal Types of Attacks 1.a 2.b

1 Reconnaissance Find information Scanning, fuzzing,

probing

x x

2 Resource Development Not in Network

3 Initial Access Achieve foothold phishing x x

4 Execution Run malicious code Exploits, shellcode x

5 Persistence Maintain foothold Create a backdoor x x

6 Privilege Escalation Gain higher permis-

sions

7 Defense Evasion Avoid detection

8 Credential Access Gather accounts and

passwords

Man-in-the-middle,

network sniffing

9 Discovery Gain understanding of

the system

Network service scan-

ning

x

10 Lateral Movement Move through the sys-

tem

Service hijacking

11 Collection Gather important data Email collection

12 Command and Control Control compromised

systems

Receive commands for

a central server

x

13 Exfiltration Extract important

data

Data transfer

14 Impact Disrupt systems DoS, Data manipula-

tion

x x

aUNSW-NB15
bCICIDS-2017
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3.3 Which methods perform

In this section, the methods that showed promising results in section 2.3.3, will be tested on

the UNSW-NB15 dataset, discussed in the previous section, section 3.1. This basic evaluation

will be conducted to demonstrate the strong and weak points of each method. The methods

could be tuned and improved further to obtain better results, however for this evaluation

basic settings are used.

All methods are trained and tested on the UNSW-NB15 training and testing set, as

discussed in 3.1.1. The training set consists of 175341 rows and 44 features, the testing set

consists of 82332 rows and 44 features. For the OCSVM and AE methods, only the normal

data is used for training, which are 56000 rows. In the testing set, all data is labeled either

as ”Normal” or ”Attack”, to create a binary classification. For all methods, the time needed

for training and testing is recorded.

3.3.1 Decision Trees

A Decision Tree learns certain characteristics about the data to make a classification. At

every leaf in the tree, new data is weighed to make a decision. For example, on the duration

of a connection. Then the model can predict whether a connection is normal or and attack

and which type of attack.

Decision Trees are a supervised method and therefore require labeled data. Decision Trees

are also sensitive to imbalanced training sets. If there is one class of, for example, normal

data which is much larger than the attack classes, the model will be inclined to predict more

new connections as normal data. It is therefore important that each class is the same size

in the training set. This can be done by decreasing the amount of connections in the largest

class or increase the amount in the smallest class. The latter can be done by synthetically

creating more connections that lie between the connections in a smaller class and can be done

using Synthetic Minority Oversampling Technique (SMOTE) [58].

Action Total time since start

SMOTE dataset 0:01:23.784247

Training 0:01:25.663109

Testing 0:01:25.682749

Table 3.4: Decision Tree efficiency

Actual

Attack Normal

Predicted
Attack 35902 3093

Normal 9430 33907

TPR = 0.7919 FPR = 0.0836

Table 3.5: Decision Tree confusion matrix on

the UNSW-NB15 test set

Table 3.4 shows the time needed for the model to make a classification. The training time

is a little less than 2 seconds and the testing time is a little less than 0.02 seconds. The time

for Decision Trees is very low, however the time needed to balance the data is much larger

and when the testing data would contain more than 2 classes, this time would increase. Table

3.5 shows the classification results and demonstrates that decision trees are able to reach a

high TPR and a low FPR with little tuning.
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3.3.2 OCSVM

One Class Support Vector Machines (OCSVM) draw vectors between the data and depending

on which side of a vector a data point falls determines the classification. This is the supervised

version of OCSVM, the method can also be used both in an unsupervised manner. In that

case, the method is trained on normal data and new data is scored on how similar it is to the

normal data. This can then be used to detect anomalies.

The time complexity of OCSVM is large and therefore it is advised to reduce the number

of features with which to train or the number of samples to train on.

Action Total time since start

Training 0:02:32.367852

Testing 0:04:23.562785

Table 3.6: OCSVM efficiency

Actual

Attack Normal

Predicted
Attack 39774 21968

Normal 5558 15032

TPR = 0.8774 FPR = 0.5937

Table 3.7: OCSVM confusion matrix on the

UNSW-NB15 test set

Table 3.6 shows the time needed for training and testing, this shows that with the large

number of features, the efficiency of OCSVMs is very low. Not only is the training time

of over 2 minutes and 32 seconds, very long, the testing time is also much longer than the

other methods. While the TPR is the highest overall methods, the FPR is also very high,

indicating that the classification favors the attack class.

3.3.3 Clustering

Clustering groups similar data together based on the distance between the data points, for

example the Euclidean distance between two connections can be used to determine their

similarity. The clustering method then determines a centroid for each cluster and any new

data point is assigned to the cluster of the closest centroid.

Finding the right parameter K, which determines the number of clusters is a known

difficult problem. In this evaluation K=2 is chosen. To create a cluster for normal and attack

data.

Action Total time since start

Training 0:00:00.854869

Testing 0:00:00.896214

Table 3.8: K-means Clustering effi-

ciency

Actual

Attack Normal

Predicted
Attack 30057 10810

Normal 15275 26190

TPR = 0.6630 FPR = 0.2922

Table 3.9: K-means clustering confusion ma-

trix on the UNSW-NB15 test set

In table 3.8 the high efficiency of k-means clustering is shown. Both the training and

testing time are low. In table 3.9 the classification results are presented which show that the

method is better able to classify than OCSVM, but is lacking in respect to Decision Trees.
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3.3.4 Auto Encoders

An Auto Encoder tries to reconstruct the input data as best as possible. When a model

is trained on a certain input, it will be able to reconstruct that input or data similar to

that input. When dissimilar data is used, it will not be recreated as well. The measure in

which the model fails to recreate the data is called the reconstruction error. When the model

encounters unfamiliar data, the reconstruction error for that data will be higher. This can

then be used to find anomalies. When a dataset contains a large amount of normal data

and only a small amount of anomalous data. The reconstruction error for the normal data

will be low and the reconstruction error for the anomalous data will be higher and therefore

be identifiable as an outlier. To calculate the reconstruction error, the Mean Squared Error

(MSE) formula is used. This calculates the difference between the input and output data, For

the implementation of our Auto Encoder model. Keras [59] has been used. Keras is a python

deep learning API, which can be used for fast implementation of deep learning models. Adam

was used as an optimization function, as presented by Kingma et al. [60]. ReLu is used as

the activation function in the hidden layer and the sigmoid activation function is used in the

in and output layers. A summary of used Auto Encoder model is shown in table 3.10.

Layer Neurons Activation function

1 64 Sigmoid

2 16 Sigmoid

3 64 Sigmoid

Table 3.10: The used Auto Encoder Model.

Action Total time since start

Training 0:00:11.546303

Testing 0:00:12.354565

Table 3.11: Auto Encoder efficiency

Actual

Attack Normal

Predicted
Attack 31781 6915

Normal 13551 30085

TPR = 0.7011 FPR = 0.1869

Table 3.12: Auto Encoder confusion matrix

on the UNSW-NB15 test set

Table 3.11 shows the efficiency of the Auto Encoder model, this shows that the training

and testing times are higher than clustering, but much lower than OCSVM. The classification

results, shown in table 3.12, demonstrate that the performance is better than clustering or

OCSVM. Therefore Auto Encoders show the best results of the unsupervised methods and

are the closest to Decision Trees, which is a supervised method.
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3.4 Practical requirements

By conducting the research in collaboration with Northwave [24], many of the important

aspects of practical use became clear. Desirable is a 100 percent True Positive Rate, however

a low False Positive Rate is essential as well. When the amount of False Positives is too high,

not every alert can be investigated and therefore attacks will be missed, regardless of the

True Positive Rate. Therefore, it is important to have the least number of False Positives

and at least as low that they can be investigated faster than they come in. For example, if

analyzing 10 detections takes 1 hour, then that is the limit. Then the highest True Positive

Rate is desirable to detect as many attacks as possible.

Furthermore, it is important to quickly report on detections, however it is not necessary

to do so instantly. A five-minute window in which network data is classified and attacks are

found is sufficiently fast.

3.5 Conclusions on selecting a method

In this chapter an analysis on the datasets and methods surveyed in chapter 2 have been

shown. The attacks present in the surveyed popular datasets are presented and section 3.1

demonstrates that the classification of the popular datasets is difficult due to the similarity

of the data. Section 3.3 shows a preliminary experiment on the UNSW-NB15 of 4 methods

found in chapter 2. This chapter shows that in a comparison of simple implementations

of the models, Auto Encoders show results that could make them viable for practical use,

in terms of both performance and efficiency. The requirements for practical use have been

discussed in ??. This analysis, together with the survey on the state-of-the-art shows that

Auto Encoders are a viable method of practical use in unsupervised anomaly-based NIDS

and will be selected to demonstrate the method proposed in the next chapter, chapter 5.



Chapter 4

Methodology

In this chapter, the methodology for conducting this research will be discussed. The method-

ology for conducting experiments on two popular datasets using Auto Encoders will be dis-

cussed. A method for data preparation will be presented, which improves the performance

and efficiency of unsupervised anomaly-based detection and the methodology for applying

this method will be presented. Finally, the methodology for creating a dataset from data

captured in a commercial NIDS, with service-specific features, will be discussed.
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4.1 Research Methodology

To conduct the rest of this research and find answers for the posed research questions, this

chapter describes the used methodology. First the methodology for conducting the experi-

ments and using Auto Encoders is described.

In the next section, section 4.3 a method for data preparation will be proposed in which

network data will be split per service protocol in the application layer. Then an Auto Encoder

model will be used per service. Meaning that there will be multiple Auto Encoder models

used, which can be executed in parallel. For the training of the Auto Encoder models, the

training data is split in a training and validation part, to confirm that the model does not

overfit and this validation part can also be used for parameter tuning. The model is then

only trained on normal data.

The proposed method of splitting data per service is evaluated on two popular datasets,

the UNSW-NB15 and CICIDS 2017 dataset. Using these datasets, the performance and

efficiency of the proposed method will be evaluated in terms of True and False Positive Rates

and time complexity. The datasets will also be used to find the optimal parameters and

configurations of the models.

To further evaluate the proposed method and determine the viability for practical use,

a dataset will be created from network data captured in a commercial NIDS. The obtained

parameters and configurations from the popular datasets will be used on the real dataset.

To evaluate the performance of the proposed method on the real dataset, attack and benign

data from the UNSW-NB15 dataset will be inserted in the captured network logs.
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4.2 Methodology for using Auto Encoders

In this section, the methodology for using Auto Encoders in the remainder of this research

will be explained. The background on using Auto Encoders for anomaly detection can be

found in section 2.1.

4.2.1 Data preparation

Before use, the data is transformed. Categorical features are one-hot encoded and continuous

features are transformed to have a Gaussian distribution. Peterson et al. [61] show the advan-

tages of Gaussian distributed preprocessing of data using Ordered Quantile normalization.

For this Scikit-learn’s QuantileTransformer [62] has been used. Transforming to a Gaussian

distribution gives more robustness to extreme outliers and creates more difference between

data points which are close to the median. This makes it easier to discern between data

points that are close together but with some differences.

For all used datasets label features are excluded from training and the model is only

trained on normal data. This includes actual labels, such as ”attack” or ”normal” or ”DoS”,

but also features that can directly be correlated to one of these features, for example, IP

addresses, source port numbers, timestamps or connection IDs.

The training data is split in a training and validation set, where the validation set is 0.2

of the total training data. The validation set is used in training of the model to make sure

the model does not over-fit and to be able to tune the hyper-parameters.

4.2.2 Methodology

The used Auto Encoder is a Deep Sparse Auto Encoder. For the implementation of this Auto

Encoder model Keras [59] has been used. Keras is a python deep learning API, which can be

used for fast implementation of deep learning models. Adam was used as a back-propagation

function, as presented by Kingma et al. [60].

The formula used as the loss function is Mean Squared Error and to prevent over-fitting

and create sparsity in the hidden layers, L1 regularization is used. In the in- and output

layers, no regularization is used. The exponential linear unit (ELU) is used as the activation

function in the hidden layers. The sigmoid activation function is used in the in and output

layers. A summary of the entire model is then given in table 4.1.

Hyper parameter tuning

To find the optimal parameters for the model, a grid search is performed. In the grid search

the α parameter of Adam is chosen between [0.5e-4, 1e-4, 2e-4, 5e-4] and the L1 regularization

parameter is chosen between [1e-5, 5e-06, 1e-06, 5e-07, 1e-07]. The batch size varies greatly

with the amount of data being processed, generally it is chosen by hand from the following

[32, 64, 128, 256]. Figure 4.1 shows the Area Under Curve (AUC) for different values in the
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Layer Neurons Activation function Regularization

1 64 Sigmoid -

2 48 ELU L1

3 32 ELU L1

4 16 ELU L1

5 32 ELU L1

6 48 ELU L1

7 64 Sigmoid -

Table 4.1: The used Auto Encoder Model.

grid search. Here it can be seen that the AUC varies greatly and therefore it is important to

choose the right parameters

Figure 4.1: Grid search for UNSW-NB15 data

This grid search is executed on the training set of the UNSW-NB15 dataset. Since this is

a labeled dataset, metrics such as accuracy and AUC can be used to find the best performing

settings. The training set of the CICIDS 2017 dataset contains only benign data. Therefore,

it is not possible to use accuracy or AUC as metrics for the grid search. For this problem,

solutions are proposed [63] and in related work these parameters are chosen empirically. In

this research the histogram of the reconstruction error of the validation split of the training set

is used to empirically choose the parameters. A histogram with a low average reconstruction

error, but with some outliers to make sure the model is not too general, provides the best

results.

Determining the threshold

To determine the threshold for classification of outliers, many different options exist. Yang

et al. [64] found in a survey of 100 randomly chosen works on outlier detection that the

top measures to automatically choose the threshold are using Standard Deviation, Median

Absolute Deviation and Inter Quantile Range. All three of these methods give poor results



4.2. Methodology for using Auto Encoders 43

with a large number of outliers, as is the case in the two used popular datasets. Moreover,

they are sensitive to parameters defined by the researcher.

In the experiments conducted in this research the threshold is set manually using the

ROC curve and a histogram of the test results. From the histogram, a dip in occurrences is

determined to cut off outliers. For example in Figure 4.2a a clear dip can be seen and from

this the threshold can be drawn.

(a) Without threshold. (b) With threshold.

Figure 4.2: Reconstruction error histogram of HTTP data of the UNSW-NB15

dataset.

To configure the threshold automatically, a custom piece of code has been created which

takes the average of a moving window, to disregard sudden jumps in bin size, and searches

for series of first decreasing and then increasing moving averages. This indicates a dip in

the data, such as in figure 4.2a between the blue and orange peaks. The first increasing

moving window value in the longest series of decreasing and increasing values is chosen as the

threshold. In figure 4.2b this does not result in the ideal threshold since the moving window

size is too large and the first increasing values are disregarded. However, in figure 4.3b the

threshold is well chosen, since there is a clearer divide between normal and outlier data.
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(a) Without threshold. (b) With threshold.

Figure 4.3: Histogram of DNS data reconstruction error
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4.3 Improvements on Auto Encoders

Network data is highly dimensional and highly heterogeneous, this makes it difficult for auto

encoders, and other deep learning models to learn a good representation of the data and thus

be able to identify anomalies. This raises the hypotheses that if the similarity of the data

can be improved, then the learned representation can be improved. One way to distinguish

different types of network data is to categorize the data per service. In related work, this

hypothesis has been approached in several ways.

In 2002, Krugel et al. [65] propose an anomaly detection method with features tailored

to specific services. They propose three features to determine an anomaly score:

• Type of Request;

• Length of Request;

• Payload Distribution.

With these three features, they are able to very accurately determine anomalies in DNS

traffic. DNS was chosen as since the packets are relatively small. The small packets and small

feature size were necessary to find anomalies with a good enough efficiency. This research

has been conducted a long time ago and computing power has since increased significantly,

making it possible to use larger datasets and feature sets.

In 2011, Sperotto et al. [66] use time series classification and Hidden Markov Models per

service to detect attacks in DNS and SSH traffic. The proposed method is based upon the

assumption that a network attack follows a certain procedure. For example, for a bruteforce

attack, there is first scanning and then a password spray. When those events happen after

each other, an attack is observed. However, this is unsuccessful in finding attacks with only

a few connections.

In 2020, Labonne et al. [67] split data on internet protocol and thus created separate

data streams. The split is obtained by analyzing the packet stream and dividing streams at

different levels of the TCP/IP stack. For the research, the 8 streams most prevalent in the

CICIDS 2017 dataset are chosen:

Frame, Ethernet, ARP, IP, TCP, UDP, DNS, and HTTP.

By selecting streams at different levels of the TCP/IP stack, it is possible to correlate

anomalies in the streams to find anomalous packets, the downside is that the amount of data

increases significantly. While the flow-based analysis of the CICIDS 2017 dataset results in

3.119.345 connections, the packet-based analysis results in 56.329.679 packets. When the

data is split, this leaves 11.701.690 packets in the largest splits, Frame and Ethernet, which

is still much larger than the entire flow-based dataset. Therefore it takes over 12 hours to

train the used models.

4.3.1 Our proposed method

To improve the performance of Auto Encoders for unsupervised detection. The performance

must be increased by increasing the True Positive Rate and reducing the False Positive Rate
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and the efficiency must be increased by reducing the time complexity of the detection.

Using flow-based detection reduces the number of samples on which to train. A flow

describes and summarizes connection characteristics therefore a classification can be made

on a connection without analyzing individual packets. This reduces the amount of data that

needs to be processed and therefore reduces the amount of time needed for classification.

By splitting the data on, for example, on the following service protocols, in the application

layer, both the performance and efficiency can be improved:

HTTP, SSH, FTP, DNS, SSL and other

When the data is categorized by only considering data of the same service, malicious

data will be more anomalous. This will increase the True Positive Rate and reduce the False

Positive Rate. When only considering one service at a time, it becomes possible to create

features specific to that service, as proposed by Krugel et al. [65]. With expert knowledge

about the services it is possible to create tailored features per service, which will further

increase the performance. Using service-specific features is not possible when considering all

services together, because a service specific feature might just be indicative of a service. When

that service is then a minority in the dataset, the service specific feature will be considered

an anomaly.

By splitting the data in different services, there is no overlap created, the data belongs

to one category or the other. Therefore, the largest split in the data is the DNS service with

957.812 connections, which is far less than the entire dataset with 3.119.345 connections. It

is then much faster to train a model on the DNS data. Since a separate model is created per

data split, each separate model can can be trained and used to classify in parallel, the entire

data set can then be used for training and testing much faster.

Concluding

Splitting the data per service protocol therefore increases both performance and efficiency

in unsupervised auto encoders, regardless of distribution of services in a dataset. Since each

service is considered individually, it is possible to select custom services for anomaly detection.

For example, the Remote Desktop Protocol (RDP) is often used for attacks, however, when

the service is disabled in a network, it is unnecessary to monitor it for anomalies. With

knowledge about a network a custom set of services, which are important to monitor can be

selected.
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4.4 Splitting Data per Service

To evaluate the proposed method of splitting data per service, the UNSW-NB15 and CICIDS

2017 datasets are used. When these datasets are split per service, it gives some splits that

are large enough to process as a separate dataset, As can be seen for the UNSW-NB15

dataset in table 4.2. Service 2 through 7 are large enough to serve as a separate dataset,

the other services do not hold enough benign connections to create a baseline for normal

data. Scikit-learn [68] state that even for simple Machine Learning models 50 samples is

the minimum, Deep Learning models such as Auto Encoders generally require more samples.

When the smaller services are used separately and the model is trained on, for example,

2 normal connections, the classification only indicates when a new connection is similar to

those 2 connections. There might be many more benign connections, which are not similar

to those 2 connections. About half of the total amount of data has no associated service and

service 8 through 13 are too small to be processed as a separate dataset and will need to be

added to the data without a specified service or classified together. Which might still be very

dissimilar.

ID Service Number of records

1 No Service specified 1.246.397

2 dns 781.668

3 http 206.273

4 ftp-data 125.783

5 smtp 81.645

6 ftp 49.090

7 ssh 47.160

8 pop3 1.533

9 dhcp 172

10 snmp 113

11 ssl 142

12 radius 40

13 irc 31

Total number of records 2.540.047

Table 4.2: Number of records per service in the UNSW-NB15 dataset

In the sections below, the split in data is discussed for the CICIDS 2017 and UNSW-NB15

datasets, with respect to the distribution of attack and normal data.

4.4.1 CICIDS 2017

Table 4.3 shows the distribution of normal and attack data per service. Since the CICIDS

2017 dataset does not specify individual services, but simply gives the destination ports of a

connection, the port numbers with their associated service are shown in the table.

The first thing that can be concluded from table 4.3 is that the attacks are not well

distributed per service. For example, DNS, NTP and HTTPS hold almost no attack data

and HTTP holds almost all attack data. From this, the mistake can be made that the DNS

and NTP protocols can be associated with normal traffic, while the HTTP protocol can be

associated with attack traffic. If these services are classified separately, the malicious traffic



48 Chapter 4. Methodology

will stand out more. The second observation is that for, for example, in FTP traffic there

is more attack data than normal data. Since the methods are finding anomalies, when the

majority of the data is attack data, the normal data will start to appear as an anomaly. A

way to counteract this, is to train the method only on normal data. The third observation is

that only the services with the top amounts of data have been included into table 4.3, which

means that for a large number of ports it will not be possible to gather enough data to be

able to classify them separately. Since there are less than 10 connections to that port and

creating a normal baseline will not be meaningful.

Destination Port Label Count

21 - FTP
Attack 8181

Normal 5341

22 - SSH
Attack 6140

Normal 10801

53 - DNS
Attack 159

Normal 957812

80 - HTTP
Attack 383239

Normal 235695

88 - Kerberos
Attack 159

Normal 5421

123 - NTP
Attack 1

Normal 23879

137 - NetBIOS Normal 7917

389 - LDAP
Attack 159

Normal 6247

443 - SSL
Attack 240

Normal 505470

564 - SMTP
Attack 160

Normal 3657

Table 4.3: CICIDS 2017 distribution of normal and attack data destination port

4.4.2 UNSW-NB15

In table 4.4, the distribution of normal and attack data per service is given. The UNSW-

NB15 dataset is created, in part, with the use of Zeek [69] logs. Zeek is a network logging

application and gives a classification for the used service, these classifications are presented

in the table.

Some of the same problems of the CICIDS 2017 dataset also reside in the UNSW-NB15

dataset. The SSH and FTP data services have a very skewed ratio of normal and attack data.

This is fixed in the selected training and testing sets. However, the training and testing sets

create an unnatural ratio in other services. DNS, for example, now holds far more attack

records than normal traffic, making the normal traffic the anomaly when considering the

entire training set. This can be alleviated by only selecting normal data for training, just as

with the CICIDS 2017 dataset. The next observation is that a number of services, almost,

exclusively hold attack data. SSL, DHCP, POP3, IRC and SNMP would be unsuitable for

anomaly classification on their own, a possible solution would be to group similar services
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together. For example, all services associated with e-mail could be grouped together. Better

would be to have sufficient data on each service.

Service Label Training set Testing set Entire dataset

No service
Normal 36512 27375 1166520

Attack 57656 19778 79877

dhcp Attack 94 26 172

dns
Normal 7493 3068 571037

Attack 39801 18299 210631

ftp
Normal 1218 758 46075

Attack 2210 794 3015

ftp-data
Normal 2552 949 123893

Attack 1443 447 1890

http
Normal 5348 4013 187426

Attack 13376 4274 18847

irc
Normal 0 0 1

Attack 25 5 30

pop3
Normal 4 0 4

Attack 1101 423 1529

radius
Normal 2 2 10

Attack 10 7 30

smtp
Normal 1579 635 76656

Attack 3479 1216 4989

snmp
Normal 1 0 1

Attack 79 29 112

ssh
Normal 1291 200 47141

Attack 11 4 19

ssl Attack 56 30 142

Table 4.4: UNSW-NB15 distribution of normal and attack data per service
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4.5 Capturing Real Data

To show the practical use of the proposed method, a dataset has been created from data

captured from a medium-sized network in commercial use. The connections were logged with

Zeek [69]. Zeek is an open source network traffic analyzer, used to collect extensive logs of

traffic passing through the network. The data has been captured during an entire day, for

the dataset, connections with a starting timestamp between 12:00 and 16:00, local time, have

been selected. In those 4 hours 4.511.173 connections have been observed.

The distribution of network services in the captured data can be found in table 4.5. This

shows, similar to the UNSW-NB15 dataset, that, according to the categories created by Zeek,

the ”No Service” category is the largest, followed by DNS traffic. The next largest service is

SSL, in contrast to the UNSW-NB15 dataset where HTTP is a large service.

The port distribution of the No Service category is shown in table 4.6. This shows that

the largest part of the ”No Service” category is traffic to port 443, associated with TLS/SSL.

The connections are given the ”No Service” label, since there is no additional information

about the connections in the ssl.log. However, since the connections would show similar

characteristics to the connections identified as SSL traffic they could be analyzed together.

Or at least separate from other traffic with the ”No Service” label, to other ports.

Service Amount

No Service 2397618

dns 1065914

ssl 713753

krb tcp 82741

dce rpc 66574

ntlm,dce rpc 54712

http 45675

krb,smb,gssapi 18603

dce rpc,ntlm 18253

gssapi,smb,krb 9351

Table 4.5: Service distribution in the

real dataset.

id.resp p amount

443.0 - ssl 1757725

389.0 - LDAP 152535

3389.0 - RDP 142428

5985.0 - WINRM 36175

1433.0 - ms-sql-s 26146

41121.0 - tentacle 24723

5246.0 - firewall 19212

80.0 - HTTP 16737

547.0 - DHCP 15086

135.0 - RPC 12435

Table 4.6: Port distribution of the

”No Service” category in

the real dataset.

Of all Zeek logs, the following six log files will be used:

conn.log, dns.log, ftp.log, http.log, ssh.log and ssl.log

These six log files give valuable information for detection and hold minimal PII informa-

tion. Using these files useful features can be extracted.
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Anonymization

Since the data is captured in a network, which is in commercial use, it contains Personal

Identifiable information (PII). For the six selected files, the fields which contain PII are

noted in table 4.7

Log file Field containing PII

conn.log src IP and dst IP;

dns.log src IP, dst IP, dns query and dns response;

ftp.log src IP, dst IP, user, password, arg, src data channel and dst data channel;

http.log src IP, dst IP, host, uri, filename, username and password;

ssh.log src IP, dst IP and server name;

ssl.log src ip, dst ip, subject, issuer, client subject and client issuer.

Table 4.7: Zeek log files and fields containing PII

The PII fields are then anonymised using three different methods, for different types of

data: IP addresses, dns queries and others.

The IP addresses are transformed to random IP addresses. The IP addresses are split in

octets and each octet is mapped to a random number between 0 and 256. Which means that

IP addresses in each octet are grouped together. For example: 1.2.3.50 and 1.2.3.100 might

be transformed to 9.222.51.2 and 9.222.51.244. Thus keeping information about IP addresses

originating from the same sub domain.

Something similar is done with dns queries. To be able to preserve information, the

domains at each level are mapped to the same random number (label) using scikit-learn’s

LabelEncoder [70]. For example: google.com and dns.google.com could be mapped to 5.3 and

1.5.3. If a dns query has more than 1 level of sub-domains, the entire sub-domain is mapped

to a number. For example, dns.google.com and dns.dns.google.com could be mapped to 1.5.3

and 2.5.3.

The other PII fields are encoded with scikitlearn’s LabelEncoder in its entirety. Which

means that the same inputs are mapped to the same number. Based on the occurrence of

that input, the input which occurs most often, is assigned 0 and so forth.

All transformation tables and LabelEncoders are deleted after the anonymisation process,

which makes it irreversible. Some meta-information is kept to be able to extract features for

classification, but the data cannot be traced back.

4.6 Feature creation

To build a database for anomaly detection from the collected data. Some features need to

be added. As a basis, the features from the UNSW-NB15 [10] have been analyzed, which in

turn were inspired by the features of the NSL-KDD [6] dataset. In addition to a selection

of the UNSW-NB15 features, some of our own features have been added. The features are

divided into three parts: features that can be extracted from Zeek’s [69] main connection
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log, conn.log; features that can be extracted from other connection logs, http.log, dns.log,

ftp.log, ssh.log and ssl.log, and features that are created from statistical analysis over that

connection and a number of connections before it.

Number UNSW-NB15

feature

Corresponding

feature

NSL-KDD feature Corresponding

feature

1 sload 24 src bytes 8

2 sbytes 8 service 6

3 ct state ttl X dst bytes 9

4 sttl 16 diff srv rate X

5 smeansz 26 flag X

6 dur 7 same srv rate X

7 dload 25 dst host srv count 29

8 dintpkt X dst host same srv rate X

9 dbytes 9 dst host diff srv rate X

10 dttl 17 dst host serror rate X

Table 4.8: Top 10 features per dataset and corresponding new feature, based on Mu-

tual Information

To determine which features from the UNSW-NB15 and NSL-KDD feature set are useful

to recreate, the Information Gain or Mutual Information has been calculated. The data is

split in two classes, attack data and normal data, and the Mutual Information is obtained

by calculating the relative entropy over those classes for each feature, using SciKit-learn’s

MutualInformation [71]. In table 4.8 the top 10 features from the UNSW-NB15 dataset and

the NSL-KDD dataset are shown, together with the number of the feature from our feature

set that corresponds to it or an X when the feature has not been added to our feature set.

Some features have been left out since they are hard to recreate from Zeek logs, for example

dintpkt, the destination inter packet arrival time feature from the UNSW-NB15 dataset.

These features are hard to recreate since Zeek logs information about the entire connection

and for the inter packet arrival time, information per packet is needed.

The first set of features can be found in table 4.9. Features 0 through 15 are readily

available in the standard version of Zeek. Features 16 and 17 are not readily available since

Zeek logs the entire connection, there is no information on individual packets. The TTL value

in a TCP connection is placed in a SYN packet and is therefore not included in information

about the entire connection. For this, a custom script has been created, which records the

TTL value in every SYN packet and adds the last seen values to the connection log. This

script can be found on Github [72]. Since the event has to be triggered this could cause a

performance overhead. To monitor this, the memory and CPU usage have been observed

during usage of the extra features and during normal operations. Figure 4.4 shows the free

memory on the device running Zeek. The area in grey shows the moment Zeek was restarted

with the extra features, the captured logs of that day, before that moment are then archived,
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ID Name Type

0 Timestamp Time

1 Source IP address String

2 Source port number Integer

3 Destination IP address String

4 Destination port number Integer

5 Transaction protocol String

6 Service String

7 Duration Float

8 Source bytes Integer

9 Destination bytes Integer

10 State String

11 Source is local origin Bool

12 Destination is local origin Bool

13 Missed bytes Integer

14 Source packet count Integer

15 Destination packet count Integer

16 Source TTL Integer

17 Destination TTL Integer

Table 4.9: Features extracted from conn.log

explaining the increased free memory. After the restart, the decrease in free memory is

comparable to the situation without recording the features. Figure 4.5 and Figure 4.6 show

the system and user CPU usage, respectively. The CPU usage follows an expected period

with decreased usage during lunch time and at the end of business. There is no noticeable

increase in CPU usage, only difference in the time peaks occur.

The second set of features can be found in table 4.10. Features 24 through 27 can be

created from the information of that particular feature, for example, feature 24 is created

by dividing feature 8, Source bytes, by feature 7, Duration. Features 28 through 24 are

created by a statistical analysis over the last 100 connections per connection. Therefore,

these features are cost expensive to create. While most of the code for this project is written

in Python code, these operations are written in C code to speed up feature creation. This

yielded a reduced feature creation time from 40 minutes to 2:30 minutes, for over 10 million

records.

These statistical features provide information on earlier connections and make it that not

every connection is weighed individually. For example, a Denial of Service attack, might be

recognizable by a short duration, but far more important is the number of connections per

100 connections.

The third set of features can be found in table 4.11. These features are created from



54 Chapter 4. Methodology

Figure 4.4: Free memory on the device running Zeek, with and without TTL features.

Figure 4.5: CPU usage by the system on

the device running Zeek, with

and without TTL features.

Figure 4.6: CPU usage by the user on the

device running Zeek, with and

without TTL features.

the other selected connection logs. These logs hold information on the services used in the

connection and are 0 if the service is not used. Therefore, there are only a limited amount

of connections that receive information on these extra features. These features provide more

information on a specific service and therefore give additional information on which to de-

termine whether a connection is an outlier. Features 35-54 hold extra information on DNS,

HTTP, SSH and SSL. These features can only be used when classifying the data separated

per service, because they are only applied to a limited number of connections. For example,

when only a small portion of the connections are SSH connections, the features only present

in SSH connections stand out as outliers. While they might just be normal connections.

Feature 55 is created from the weird log and is 1 if the connections are present in the weird

log. This log file contains information on connections that do not behave as expected. For

example, by having malformed packets or headers.
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ID Name Type

24 Source bytes per second Float

25 Destination bytes per second Float

26 Mean Source packet size Integer

27 Mean Destination packet size Integer

28 No. of connections that contain the same service (14) and source

address (1) in 100 connections

Integer

29 No. of connections that contain the same service (14) and destination

address (3) in 100 connections

Integer

30 No. of connections of the same destination address (3) in 100 connec-

tions

Integer

31 No. of connections of the same source address (1) in 100 connections Integer

32 No of connections of the same source address (1) and the destination

port (4) in 100 connections

Integer

33 No of connections of the same destination address (3) and the source

port (2) in 100 connections

Integer

34 No of connections of the same source (1) and the destination (3) ad-

dress in in 100 connections

Integer

Table 4.10: Statistical features created from other features presented above
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ID Name Source log Type

35 Query type DNS Integer

36 Return code DNS Integer

37 rtt DNS Integer

38 TTLs DNS Integer

39 dns query len DNS Integer

40 method HTTP String

41 trans depth HTTP Integer

42 http query len HTTP Integer

43 status code HTTP Integer

44 referrer bool HTTP Binary

45 auth success SSH Integer

46 auth attempts SSH Integer

47 direction SSH Binary

48 client SSL String

49 version SSL String

50 resumed SSL Binary

51 last alert SSL String

52 next protocol SSL String

53 established SSL Binary

54 validation status SSL

55 weird bool Weird Binary

Table 4.11: Features created from http.log, dns.log, ssh.log, ssl.log and weird.log



Chapter 5

Evaluation of the Proposed Method

on Popular Datasets

In this chapter the answer to research question 2: Which improvements can be made on

Auto Encoders for anomaly-based NIDS? will be addressed. A method of data preparation

has been proposed which improves the performance and efficiency of Auto Encoders for

unsupervised anomaly detection. The performance is considered improved if the True Positive

Rate can be increased and the False Positive Rate can be decreased, and the efficiency

is considered improved if the time complexity can be reduced. To evaluate the proposed

method, experiments will be conducted on two popular datasets, discussed in section 3.1. The

CICIDS 2017 and UNSW-NB15 dataset will be used to demonstrate that the performance

of unsupervised Auto Encoders increases, regardless of the used dataset. It will be discussed

and demonstrated how the proposed method will logically increase the efficiency.

57
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5.1 Performance on Popular Datasets

In this section, the improved performance with our presented method for unsupervised

anomaly-based intrusion detection is presented. Experiments are conducted on two pop-

ular IDS datasets to show that the performance of unsupervised Auto Encoders increases

when data is split per service. For all figures shown in this section, the points depict a con-

nection, the x axis the index of that connection and the y axis the reconstruction error of

that connection.

5.1.1 CICIDS-2017

Figure 5.1 shows the reconstruction error of all data in the CICIDS 2017 dataset. This shows

a large number of false positives. In figure 5.2a only the HTTP data is used for evaluation

and this shows a similar detection rate with a much lower false positive rate. Table 5.1

summarizes the classification of data, when all services are evaluated together and the results

when the services are evaluated separately. It can be seen that while the detection rate for

all data and HTTP data is similar the false positive rate is much lower. When looking at

SSH and FTP data, the detection rate also improves and the method is able to find attacks

that are not found when analyzing the entire dataset together.

Figure 5.1: Reconstruction error of all services of the CICIDS 2017 dataset together.

Figure 5.2 shows the reconstruction error for all separate services. When looking at

the reconstruction errors of the SSH, figure 5.2b, and especially FTP services, figure 5.2c, a

pattern can be observed. This pattern is due to the limited amount of training data, therefore

the model is not able to create a good general model over all features. The lines of the pattern

are created when a single feature is misclassified for all connections. For example, a certain

feature has had a value of 0 for all training connections and has a value of 1 for all testing

connections. Multiple lines then signal increasing amounts of features which are all classified

wrong. A more gradual increase in reconstruction error, such as with the ”other services”

category, figure 5.2f, shows that the training data holds more diverse values for each feature.
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(a) HTTP data. (b) SSH data.

(c) FTP data. (d) SSL data.

(e) DNS data. (f) Other data.

Figure 5.2: Reconstruction error of the CICIDS 2017 dataset

5.1.2 UNSW-NB15

Fig. 5.3 shows the reconstruction error of all data together. This shows that, while the attack

data has a higher reconstruction rate. There is still a large number of normal connections

with a large reconstruction error and therefore classified as an anomaly.

In Fig. 5.4 the results of classifying just the DNS service are shown, the Auto Encoder

model is trained with only normal data, to be able to classify the attack data as anomalies,

as discussed in section 4.4.2. As can be seen in Fig. 5.4, the attacks show a much larger

reconstruction error than normal data. This indicates that the model learns the normal data

well. Even though the ratio of normal and attack data for the DNS service is heavily skewed

towards attack data, the malicious data is successfully classified as anomalies.

When looking at a service which has more diverse data, such as the HTTP service or

traffic without an associated service, the distinction between normal and attack data is less
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Data All HTTP SSH FTP DNS SSL Other

A T A T A T A T A T A T A T

BENIGN 13242 1743179 2323 186133 242 8669 118 4381 1 743138 1253 364518 950 436279

Bot 11 1966 21 1261 0 705

DoS 170802 380688 212657 380685 0 3

FTP-Patator 0 7938 0 1 7920 7937

Heartbleed 11 11 9 11

Infiltration 0 36 7 36

PortScan 0 158930 188 533 243 243 140 244 159 159 191 449 156300 157302

SSH-Patator 0 5897 2921 5897

Web Attack 0 2180 0 2180

Table 5.1: Classification of CICIDS 2017 data for all data and data split per service.

A=Anomaly, T=Total

Figure 5.3: Reconstruction error of all data of the UNSW-NB15 dataset.

clear. As can be seen in Fig. 5.5a. This causes the model to classify more normal data as

anomalies and thus produce more false positives. Most False Positives are obtained in the

”No Service” category as can be seen in figure 5.5b.

Table 5.2 shows the classification results when all services are classified together and when

the services are classified separately. This shows that the True Positive Rates are similar,

however the False Positive Rate is much lower when each service is classified separately. The

majority of the False Positives originate from the ”No Service” category. While in the DNS

and HTTP services there are very few False Positives. All other services, which were too

small to classify separately, have been classified together in the ”Other” category. While the

results are good in this category, most of the normal data is SMTP and SSH service data

and most attacks reside in other services, as discussed in section 4.4. Therefore the model

might just classify the distinction between SMTP and SSH and other data in this category.

It can be concluded that the model is successful in classifying the attack and normal data in

the SMTP and SSH services, since these hold enough normal and attack data.
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Data All DNS HTTP FTP No Service OTHER

Anomaly Total Anomaly Total Anomaly Total Anomaly Total Anomaly Total Anomaly Total

Analysis 643 677 674 677

Backdoor 559 583 9 9 2 2 557 572

DoS 3841 4089 40 40 387 493 29 29 3173 3372 146 146

Exploits 10498 11132 68 68 2458 2804 912 941 5419 5839 1468 1468

Fuzzers 3256 6062 17 17 234 251 183 267 3686 5527

Generic 18748 18871 18162 18162 206 213 2 2 292 411 78 78

Normal 8774 37000 30 3068 352 4013 346 1707 5290 27375 13 837

Reconnaissance 2787 3496 12 12 463 470 1678 2992 22 22

Shellcode 262 378 209 378

Worms 31 44 34 34 5 10

Table 5.2: Classification of UNSW-NB15 data for all data and data split per service.

Figure 5.4: Reconstruction error of the DNS service data.

Concluding

Table 5.3 improvement on the True and False Positives rates of the UNSW-NB15 and CICIDS

2017 datasets when all services are classified together and with the proposed method of

splitting the data per service. For the UNSW-NB15 datasets this table shows similar True

Positive Rates, however there is a clear improvement in the False Positive Rate. For the

CICIDS 2017 dataset, there is a clear improvement on both the True Positive Rate and False

Positive Rate and table 5.1 shows that with the proposed method, attacks can be found

successfully that were not visible when classifying all data together.

TPR FPR

UNSW-NB15 All data 0.89616606 0.23713514

UNSW-NB15 Proposed Method 0.896232242 0.159621622

CICIDS 2017 All data 0.3063305 0.0075965

CICIDS 2017 Proposed Method 0.6827916 0.0028036

Table 5.3: Improved True and False Positives Rates using the proposed method.

Table 5.4 places the achieved results of the proposed method in the context of related

work, in terms of recall, precision and F1 score. The metrics are compared to researches which
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(a) HTTP data. (b) No Service data.

(c) FTP data. (d) Other data.

Figure 5.5: Reconstruction error of the UNSW-NB15 dataset

used the training and testing set of the UNSW-NB15 dataset. For the UNSW-NB15 dataset

the proposed method is performing the best in terms of recall and F1 score, even better

than the selected supervised method. Due to the chosen threshold, AE and Local Outlier

Factor [73] scores better in terms of precision, however the recall is also much lower. For

the CICIDS 2017 dataset, the proposed method does not outperform the related work. The

proposed method reaches the second highest precision, after Auto Encoders [74], but does

reach a recall which is almost 3 times higher. The supervised method clearly outperforms all

other methods in terms of Recall and F1 score on the CICIDS 2017 dataset.

Dataset Method Year Recall Precision F1 score Supervised

UNSW-NB15 ALAD [75] 2020 0.8583 0.8473 0.8527 No

MR-DHPN [76] 2019 0.862 0.844 0.853 Yes

AE+LOF [73] 2019 0.7 0.96 0.82 No

This research 2021 0.8691 0.8694 0.8694 No

CICIDS 2017 ALAD [75] 2020 0.8268 0.8260 0.8264 No

MR-DHPN [76] 2019 0.996 0.986 0.986 Yes

AE [74] 2019 0.2330 0.9993 NA No

AE+LOF [73] 2019 0.76 0.89 0.82 No

This research 2021 0.6828 0.9873 0.8073 No

Table 5.4: Results for the UNSW-NB15 and CICIDS 2017 datasets in related work.
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5.2 Efficiency on Popular Datasets

The improvement of the proposed method also applies to the efficiency, by reducing the time

complexity of the anomaly detection. Table 5.5 shows the time the model needs for training

and testing the complete CICIDS 2017 dataset, the DNS data and SSL data with 200 epochs

training. The table shows that the time decreases significantly when only the DNS data is

used for training, from 10 minutes and 34 seconds to 4 minutes 45 seconds. Further decrease

of the training time is shown where the training time for SSL data is 3 minutes and 5 seconds.

This follows logically, since there is less data, it takes less time to train. Table 5.5 also shows

the time it takes to test the different data streams. This shows that the testing time is

significantly less than the training time.

Type of

Data
Action

Number of

connections

Time

(no early stopping - 200 epochs)

Time

(with early stopping)

All Data
Training 529.918 0:10:34.25 0:02:59.09

Testing 2.300.825 0:00:51.14 0:00:51.14

DNS
Training 214.674 0:04:45.76 0:01:12.82

Testing 743.297 0:00:17.00 0:00:17.00

SSL
Training 140.952 0:03:05.35 0:01:32.72

Testing 365.119 0:00:05.20 0:00:06.79

Table 5.5: Training and testing times for the CICIDS 2017 dataset in h:mm:ss

The parameter of 200 epochs training is chosen by observing the results of the training and

at this time the model almost does not improve, as can be observed in figure 5.6. However,

similar results can be obtained with much less training. For this, early stopping is used. The

early stopping criterion is that the decrease in reconstruction error on the validation set is

lower than 0.00001 for 5 epochs, when that occurs the model stops training. This means that

when a model is trained until the data is learned well enough that there is little improvement,

as shown in figure 5.7. Instead of 200 epochs, only 64 epochs are needed to reach a sufficiently

low reconstruction error.

Table 5.5 shows the comparison of training times when early stopping is used. What is

interesting to note is that the training time of the DNS dataset is now lower than the training

time of the SSL dataset, even though it is trained with more data. This is due to the fact

that the DNS data is more similar and therefore the model is able to quicker reach a low

reconstruction error.

Figures 5.8 and 5.9 show the increase in training time for smaller and larger training

sets, respectively. This follows a linear increase in time with an increase in training size.

The connection is not completely clear, this is due to the model weights being initialized

randomly. This might lead to a quicker low reconstruction error is some cases.

In figure 5.10 the time needed for testing with increasing amounts of testing data is shown,

this shows a clear linear connection since there is no randomness involved in testing the data.
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Figure 5.6: Reconstruction error for

200 epochs for all CI-

CIDS 2017 data

Figure 5.7: Reconstruction error

with early stopping for

all CICIDS 2017 data

Figure 5.8: Training times for all

data in the CICIDS 2017

dataset

Figure 5.9: Training times for all

data in the CICIDS 2017

dataset

Concluding

In this section we have demonstrated the increase in efficiency of the proposed method, by

demonstrating the reduction in time complexity when data is split per service. We have shown

that there is a linear correlation in the training time and the amount of data for training,

meaning that Auto Encoders are more suitable for large amounts of training data than models

with a quadratic time complexity. This section also demonstrates that the testing time is far

smaller than the training time.
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Figure 5.10: Testing times for all data in the CICIDS 2017 dataset
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5.3 Conclusions on Improvement for Auto Encoders

In this chapter the answer to research question 2: Which improvements can be made on Auto

Encoders for anomaly-based NIDS? has been addressed. In this chapter is has been shown

that the performance and efficiency of Auto Encoders can be improved by splitting network

data on the service protocol in the application layer. The True Postive Rate is improved from

0.30 to 0.68 on the CICIDS 2017 dataset and the False Positive Rate is reduced from 0.0075

to 0.0028 on that dataset. On the UNSW-NB15 dataset the True Positive Rate is similar,

however the False Positive Rate is reduced from 0.24 to 0.16. The time needed for training is

reduced from 2:59 to 1:12 for the largest split and since the splits can be trained in parallel,

this could halve the training time.



Chapter 6

Evaluation of the Proposed Method

on Real Data

In this chapter the answer to research question 3: Can we achieve unsupervised anomaly-

based NIDS for practical use? will be discussed. The method proposed in section 4.3 will be

evaluated on data captured in a commercial network to determine whether it is suitable for

practical use. An experiment will be conducted on the captured real data to demonstrate

the practical use of the proposed method with unsupervised Auto Encoders. The practical

use of the proposed method will be discussed and it will be demonstrated that the method

is viable for practical use in terms of both performance and efficiency.
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6.1 Performance on Real Data

To evaluate the performance of the proposed method. The data has been split into a training

and testing set. The first 1 million connections, which correspond to a little over 30 minutes,

are used for the training set, the other 3.8 million connections, which correspond to little

over 3 hours, are the testing set.

The captured real dataset is unlabeled and expected to only contain benign data, since

there were no attacks detected in this time frame by signature-based methods. Figure 6.1

shows the reconstruction error for DNS traffic in the training set of the real dataset. The

threshold is based on the histogram and 0.15 percent of the data is reconstructed above the

threshold. This indicates that the model can reconstruct the data very well and that there

are some clear outliers in the data, which is to be expected in a production network.

Figure 6.1: Reconstruction error DNS data in the captured dataset

To be able to verify whether the proposed method could detect attacks, some attacks have

been inserted into the data. This has been done by taking logs from the UNSW-NB15 dataset

that correspond to attacks. These logs are ingested with the normal data and the statistical

features are created after the logs are combined as to make it seem like the connections

happened in the network. To verify that our method is not only classifying the UNSW logs

as anomalies instead of only classifying the attacks as anomalies, we have also inserted benign

data from the UNSW dataset as a baseline. Figure 6.2 shows the reconstruction error of the

testing set with the inserted logs and table 6.1 shows the amount of connections classified

as anomalies and the detection rates. In figure 6.2 it can be seen that the benign data from

the UNSW-NB15 data set is reconstructed with a low error, which means that it behaves

similarly to the normal data in the real dataset. The attack data of the UNSW-NB15 dataset

is reconstructed with a much higher error, table 6.1 confirms this and shows that 54 percent

of the attacks are classified as anomalies, while 0 percent of the benign data is classified as

an anomaly. Of the data from the real dataset, 0.15 percent is classified as an anomaly.

For the HTTP data, the division is less clear. Figure 6.3 shows the reconstruction error
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Figure 6.2: Reconstruction error DNS data in the captured dataset

True Class Anomaly Total DR

Normal 1195 835383 0.001430

UNSW Attack 80 148 0.540541

UNSW benign 0 14009 0.0

Table 6.1: Anomalies found in DNS connections of the real data testing set

of the HTTP data in the testing set of the real data set and table 6.2 shows the number

of connections classified as anomalies for each class. From figure 6.3 it can be seen that

the attack data from the UNSW-NB15 dataset has a higher reconstruction error than the

benign data and the data from the real dataset. Table 6.2 confirms this and shows that 81

percent of the attack data is classified as an anomaly while only 27 percent of the benign

data is classified as an anomaly. While this division is less clear than in the DNS data, it

still confirms that the UNSW-NB15 data is not simply classified as anomalies.

True Class Anomaly Total DR

Normal 1142 36145 0.031595

UNSW Attack 4129 5073 0.813917

UNSW benign 2036 7490 0.271829

Table 6.2: Anomalies found in HTTP connections of the real data testing set

In the HTTP data, 3 percent of data from the real dataset is classified as anomalous,

as can be seen in table 6.2. This is significantly higher than the anomalies found in the

DNS data. To determine whether such a False Positive Rate is feasible in a practical setting,

the cause of the anomalies has been investigated. In table 6.3 the source IP addresses are

shown which occurred as anomalies 10 times or more in the test set. IP address 1 through 7

are inserted from the UNSW-NB15 dataset and are therefore not anonymized, the other IP

addresses are captured in a commercial network and to preserve privacy they are anonymized

in this table. IP address 8, 9 and 10 have been checked with the owner of the network and
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Figure 6.3: Reconstruction error HTTP data in the captured dataset with UNSW

attacks and normal data

it has been found that the anomalous behavior of these addresses is to be expected.

The known anomalies can be disregarded and excluded from future detections, which

means that there remain, aside form the UNSW-NB15 IP addresses, three IP addresses to

investigate. IP address 12 is a known malicious IP, used for scanning and web attacks. IP

address 11 or 13 could not be confirmed with the owner of the network, nor were known

malicious IP addresses and therefore might be considered as False Positives. It is completely

feasible for a security specialist to investigate 3 IP addresses in a little more than 3 hours.

Which means that while the False Positive rate of 3 percent is higher than for DNS traffic,

it is still feasible to investigate the alarms this detection creates with the chosen threshold

of 10 anomalies. If the threshold is lowered, there would be more to investigate and there

would be more false positives. Therefore this threshold can be used to tune the detection.

ID IP Address Anomaly Count Anonymized Cause

1 175.45.176.2 1374 No UNSW attack

2 175.45.176.3 1100 No UNSW attack

3 175.45.176.0 839 No UNSW attack

4 175.45.176.1 816 No UNSW attack

5 59.166.0.5 723 No UNSW benign

6 59.166.0.7 665 No UNSW benign

7 59.166.0.8 648 No UNSW benign

8 134.32.95.87 225 Yes Known anomaly

9 134.32.95.115 130 Yes Known anomaly

10 123.167.67.120 86 Yes Known anomaly

11 123.167.67.222 30 Yes No information

12 13.139.58.167 20 Yes Known Malicious IP

13 247.209.145.27 11 Yes No information

Table 6.3: Source IP addresses classified as anomalies in the test set of the HTTP

data
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6.2 Efficiency of the real data setup

To determine whether the proposed method is suitable for practical implementation, the

efficiency must be considered. In packet based intrusion detection, there is no need to process

the network logs, since the classification is done on the packets themselves. In connection-

or flow-based intrusion detection, it is necessary to first process the connection logs into

data, which can be used for classification. With the proposed features per method, it is

also necessary to combine the information of multiple network logs. Then ultimately the

statistical features need to be created. The process can be viewed in table 6.4. The entire

process takes 13 minutes and 22 seconds for 10.866.099 connections, which is the amount

that has been captured in a little more than 14 hours. Step 1 and 2, reading and combining

the logs, are written in Python and not optimized. By writing this part of the process in

C, the efficiency could be improved. Step 3 is written in python, but by making use of the

underlying C engine, this reduces the processing time of a sample dataset from 40 minutes

to a little over 2 minutes.

ID Step Time Total time elapsed

1 Reading logs 04:27 04:27

2 Combining logs 03:11 07:38

3 Creating statistical features 04:48 13:22

Table 6.4: Data preparation time for 10.886.099 records in mm:ss

After all features are created, categorical features need to be one hot encoded and con-

tinuous features need to be normalized for training and testing. Table 6.5 shows the amount

of time needed to normalize the training and testing data. For 1.000.000 training records the

time for normalization is slightly shorter than for normalizing the DNS data, this is due to

the service specific features that are created for DNS. This increases the number of features

from 35 to 64. The time needed for normalizing the entire testing set is 22 seconds and

normalizing the 5 minute test window takes less than a second.

Amount Type Time

1.000.000 All - Training 0:00:05.975458

412.674 DNS - Training 0:00:06.499491

3.636.051 All - Testing - 3.5 hours 0:00:22.538049

104.732 All - Testing - 5 minutes 0:00:00.729722

Table 6.5: Time for normalizing real data for training and testing

Table 6.6 shows the training and testing time on the real dataset with early stopping

on the entire testing set. This shows that the efficiency is clearly improved by splitting the

data per service, since the largest split, the DNS data, takes significantly less time to train

than the entire dataset. As described in section 5.2 for the UNSW-NB15 and CICIDS 2017

datasets, the SSL and DNS data take similar amounts of time to train. This is because the

DNS data is more similar and therefore easier to reconstruct. The training time on port 3389
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data, associated with the RDP protocol, shows that smaller splits without service-specific

features also take less time to train. The port 443 traffic, associated with SSL, is more than

3 times as large as the SSL data, however since the service specific features cannot be used,

the training time is much shorter than 3 times the training time of the SSL data.

The time needed for testing shows a linear correlation with the amount of data, as dis-

cussed in section 5.2. For all data, it takes 44 seconds to classify the testing set. To demon-

strate the linear connection, the amount of DNS data captured in a span of 5 minutes is

shown in table 6.6, testing this amount of data costs less than half a second.

Type of

Data
Action

Amount of

connections

Time

(with early stopping)

All Data
Training 776.371 0:05:50.982308

Testing 3.636.051 0:00:44.226864

DNS
Training 184.424 0:01:29.271912

Testing - Total 849.540 0:00:14.300020

Testing - 5 minutes 24.317 0:00:00.452973

SSL
Training 120.137 0:01:31.562166

Testing 563611 0:00:14.300020

Port 3389 - RDP
Training 26.609 0:00:37.991699

Testing 113191 0:00:01.741728

Port 443 - (SSL/TLS)
Training 412.674 0:02:17.313138

Testing 1.941.678 0:00:31.462586

Table 6.6: Training and testing times for the real captured dataset in h:mm:ss

Concluding

In this section the efficiency of the dataset creation has been shown. It has been demonstrated

that 14 hours of network data can be processed in under 14 minutes. The time needed for

normalized data is efficient enough. The time needed for training and testing is low enough

to train data in a window of 1 hour and test data in a window of 5 minutes. With this, the

efficiency is sufficient for practical implementation.



6.3. Conclusions on the Use of Real Data 73

6.3 Conclusions on the Use of Real Data

In this chapter the answer to research question 3: Can we achieve unsupervised anomaly-

based NIDS for practical use? has been discussed. An experiment has been conducted on

a data captured in a commercial NIDS. It has been shown that using the proposed method

and a threshold of 10 anomalies per source IP over almost 3 hours, resulted in 13 detected

source IPs of which 4 were UNSW-NB15 attack IPs, 3 were UNSW-NB15 benign IPs, 3 were

known anomalies in the network, 1 was a known malicious IP, not detected by signature based

detection, and 2 IPs could not be retraced and can be considered False Positives. 12 source

IPs are few enough to be investigated in 3 hours by a security specialist and is therefore

suitable for practical use. The achieved efficiency is shown to be sufficient to train data in a

1 hour window and test in 5 minute windows and is therefore suitable for practical use.



Chapter 7

Discussion, Conclusions and Future

Work

In this chapter the results and methodology of this research will be discussed, the answers

to the research questions will be given and a suggestion for future work will be given. A

suggestion for the practical implementation of the proposed method will be presented.
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7.1 Practical Use

In this section, a proposal for the practical implementation of the proposed method will be

given.

7.1.1 Practical considerations

In a practical setting, any alarm which comes in is evaluated by a human security specialist.

The task of the security specialist is to determine whether the alarm is a true or false positive

and the extent of the impact of the attack. This means that when the number of false

positives determines the efficiency of the security specialist. When there are a large number

of false positives, the security specialist has less time per alarm to analyze and determine

whether it is a true positive. Therefore, if the load of false positives is very high, there will

not be enough time to analyze every alarm thoroughly and thus some true positive alarms

might be classified as false positives and therefore will go undetected or the extent of the

attack is not fully understood.

To improve this process, the number of false positives can be reduced, but also the time

it takes to determine whether an alarm is a true or false positive and the extent of the attack

can be reduced. The latter can be done by providing more information on a possible attack.

Labonne et al. [67] state the following: Collecting as much information as possible about the

attack is also a very important feature for an IDS. This information can then be used to stop

or to block the ongoing attack. For example, when an alarm contains just the information

there is an attack, it will take a lot of time to analyze every possibility and determine whether

there is an actual attack. Alternatively, when the alarm contains the information there is a

port scan from IP address X, it is fairly easy to confirm whether there is an actual port scan

or if the alarm is caused by benign behavior.

7.1.2 Creating an alarm

Since the data is analyzed per service, the detections are based on what happens in a service.

For example, when detecting anomalies in DNS traffic.

When the alarm states that anomalous DNS traffic has been detected, it gives already

much more information than stating that an anomaly, regardless of the service, has been

detected. This gives the security specialist an idea for which type of attacks to look for.

Reconstruction error profile

The reconstruction error provides more information. Since the reconstruction error per fea-

ture is known certain properties of the attack become visible. In figure 7.1 the absolute

reconstruction error is shown, this shows that Analysis and Backdoor attacks have a high

reconstruction error on the features shown in this figure. The absolute values are presented

to give a clear overview of how much reconstruction error there is. However, a more positive
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Figure 7.1: Absolute Reconstruction error per class over all UNSW-NB15 data.

or negative reconstruction error can give more information. For example, a negative recon-

struction error on the feature duration gives the indication that the connections are shorter

than expected. Which might indicate a network scan.

This information can be provided to the security specialist to help in determining whether

the alarm is an attack. By providing the most anomalous features per alarm, a security

specialist will know better what to analyze.

7.1.3 Attacks per service

As can be seen in table 7.1, different services are prone to different attacks. By providing the

security specialist with the service for which anomalous data has been found, the features

which have the most reconstruction error and are thus the most anomalous, and the types of

attacks associated with the service. The security specialist will have much more information

on the anomaly and will therefore better be able to judge whether an alarm constitutes an

attack.

Service DNS SSH FTP

Attacks

NXDOMAIN attack Bruteforce Anonymous authentication

DoS Credential abuse Directory attack

Scanning

Exploits

Attacks using malformed queries

Table 7.1: Attacks associated with services.

7.1.4 Further improvements

When alarms come in to be analyzed by a security specialist. The security specialist de-

termines whether the alarm is a true or false positive. In doing so, the security specialist is

creating a labeled dataset. In related work [22], it has been shown that using a semi-supervised

set-up can increase the performance of Auto Encoder methods. The labeled dataset created

by the security specialist can then be used for semi-supervised detection for future attacks.
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7.2 Discussion

One of the important assumptions that is made in this research, is that the majority of

network connections are benign. This assumption makes it possible to train an Auto Encoder

on normal data. When the assumption does not hold and a majority or even a large portion

of the data on which the Auto Encoder is trained, is attack data. The Auto Encoder will

learn the attack data as normal and therefore those attacks will go unnoticed in new data.

This could possibly be used by adversaries, to inject low impact attack data in the training

set, so that an high impact attack in the testing set will go unnoticed.

From the literature study and the preliminary evaluation, Auto Encoders were indicated

to be viable for commercial production in terms of performance and efficiency. Therefore,

in the remainder of the research, Auto Encoders have been used for testing and evaluating

the results of splitting data per service. It is possible that other methods perform better on

the split data than Auto Encoders. Support Vector Machines (SVM) were indicated to have

good performance, but are lacking in efficiency. When classifying services with less data, for

example, SSH, the efficiency of SVM might be sufficient and the performance might be better

than Auto Encoders. Due to the scope and time constraints of this research, this has not

been tested.

Auto Encoders have been found to be the most viable method for practical implementation

from the literature study conducted in chapter 2. For the demonstration of the improved

performance and efficiency of the proposed method, the used Auto Encoder model has been

sufficient. However, in related work there are good results shown by Stacked Auto Encoders,

Variational Auto Encoders or highly specialized clustering methods that might outperform

the Auto Encoder model used in this research.

To make the proposed solution practical, it is necessary that it can be executed in real-

time. We have shown that the efficiency of our method is high enough to be executed in

training batches of 1 hour and testing batches of 5 minutes, with the amount of data that a

medium sized commercial network produces. Since almost all code is written in Python, for

easier implementation, the process is far from optimized. When the method is refactored in

C code, there is still room for improvement in efficiency.

Thresholds for anomaly detection are often chosen visually in related work. In this re-

search an attempt to choose the threshold automatically has been made. The main difficulty

with this is knowing the number of anomalies. In the popular datasets some of the data splits

hold more malicious than normal data, this requires a different thresholding strategy than

when only a small amount of data is anomalous. Therefore, the thresholding strategy needs

to be developed further, due to time constraints and the scope of this research this has not

been fully researched.

Tuning parameters in a supervised setting is done using metrics such as Area Under

Curve (AUC), by having a labeled training set, the optimal parameter can be chosen. In an

unsupervised setting this is not possible. In academic works, there are suggestions on the

implementation of unsupervised parameter tuning. In this research, the parameters are tuned

visually using a histogram of the reconstruction error. However, since the AUC metrics proved
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to be susceptible to changing parameters, it will be worthwhile to automate and optimize the

parameter tuning process.

Each connection was separately determined as an anomaly or normal data. With this

approach, attacks with only a small number of connections can be detected. The downside is

that attacks often consist of a large number of connections and therefore it might be needed

to correlate these connections together to find an attack.

To evaluate the proposed method, data from a commercial network has been collected.

The signature-based detection showed no attacks on the network in that day. This gives no

guarantee, but an indication that there were no attacks. This was done to create a normal

baseline on which to train and validate the method. The attacks injected into the normal

traffic did not provide the most representative results, therefore it will be better to monitor

the network for a longer period to capture actual attacks in the network. This can then be

used for more representative results.

In related work, the combination of using Auto Encoders with other methods showed

promising results, due to the scope of this research and the time constraints this option has

not been fully explored.

The performance of the proposed method on the popular datasets show a clear improve-

ment for some services, mainly DNS and HTTP. However, deciding which data is split to-

gether proved vital. In the classification of the CICIDS 2017 dataset, the Heartbleed data

was grouped with ”Other data” since the connections had port 444 instead of port 443 as

destination. Then the detection rate of the Heartbleed attack decreased from 1 to 0. Which

means that it was detected when training on all data and it was not detected when the data

was split per service. One explanation for this is that since Heartbleed is an SSL attack, it is

better detected when it is weighed against SSL data. When the SSL split contains both port

443 and 444. The Heartbleed attack is detected again.

From the results presented for the classification of the CICIDS 2017 dataset it can clearly

be seen that DoS and scanning attacks are well detected, since DoS has a detection rate of

0.559 and scanning has a detection rate of 0,994. While web attacks and botnet traffic go

undetected. An explanation for this is that the traffic for these attacks is very similar to

benign traffic. Whereas in DoS and scanning, traffic characteristic such as frequency and

duration are different from benign traffic. By introducing service specific features, such as

query length, might improve the detection of attack similar to benign traffic.
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7.3 Conclusions

To guide this research, the following three research questions have been formulated and

answered:

7.3.1 RQ 1: Are Auto-Encoders the most viable method for prac-

tical use in the state-of-the-art of anomaly-based NIDS?

In chapter 2 we have presented an overview of the state-of-the-art in anomaly-based NIDS. By

discussing relevant datasets and methods presented in academic works. From the conducted

literature study Auto Encoders have been selected as a viable method for practical use,

in terms of both performance and efficiency. Supervised methods, such as Decision Trees,

presented the best results. However, in a practical setting, it is unfeasible to use labelled data.

Therefore Auto Encoders have been chosen as the best performing unsupervised method.

With F1-scores of over 0.90 and sufficient efficiency for classification in batches.

7.3.2 RQ 2: What improvements can be made on Auto Encoders

for anomaly-based NIDS?

In chapter 4 we have presented our methodology for using Auto Encoders and the proposed

method for data processing for the improvement of Auto Encoders. By splitting network data

per service, the data becomes more similar and anomalies stand out better. We have shown

that the True Positive Rate is improved from 0.30 to 0.68 on the CICIDS 2017 dataset and the

False Positive Rate is reduced from 0.0075 to 0.0028 on that dataset. On the UNSW-NB15

dataset the True Positive Rate is similar, however the False Positive Rate is reduced from

0.24 to 0.16. The time needed for training is reduced from 2:59 to 1:12 for the largest split

and since the splits can be trained in parallel, this could halve the training time. Therefore

Auto Encoders can be improved if the network data is first split per service protocol.

7.3.3 RQ 3: How can we achieve unsupervised anomaly-based

NIDS for practical use?

In chapter 4 a dataset has been presented from data captured in a commercial NIDS. In this

dataset, service-specific features, such as DNS query length, have been proposed to further

increase the performance of the proposed method. It has been shown that using the proposed

method and a threshold of 10 detections per source IP over almost 3 hours, this resulted in

13 detected source IPs of which 4 were UNSW-NB15 attack IPs, 3 were UNSW-NB15 benign

IPs, 3 were known anomalies in the network, 1 was a known malicious IP, not detected

by signature based detection and 2 IPs could not be retraced and can be considered False

Positives. 13 source IPs are few enough to be investigated in 3 hours by a security specialist

and the performance is therefore suitable for practical use. The achieved efficiency is sufficient

to train data in a 1 hour window and test in 5 minute windows and is therefore suitable for
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practical use. By splitting the data per service protocol, unsupervised anomaly-based NIDS

can be used for practical implementation.

7.3.4 Contributions

The academic contribution is a method for data processing that improves the results of Auto

Encoders for unsupervised anomaly-based NIDS regardless of the used dataset, in terms of

performance and efficiency. By increasing the True Positive Rate, reducing the False Positive

Rate and reducing the time complexity of the classification.

The engineering contribution is a Proof of Concept for the proposed method on Zeek logs

for unsupervised anomaly-based NIDS using Auto Encoders.
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7.4 Future Work

The implemented Auto Encoder model is sufficient for the method presented in this paper.

However, in related work, improved performance is shown using Variational Auto Encoders.

The current use of auto encoders classifies each connection separately. However, in many

attacks a large number of connections are used. It would therefore be beneficial to be able

to take into consideration what the classifications of related connections are. This is done to

some degree by using statistical features that provide information on the related connections.

A more in-depth correlation using LSTM Auto encoders or Hidden Markov Models could

improve performance.

In related work hybrid models, using Auto Encoders and Decision Trees or Support Vector

Machines show improved performance in respect to using only Auto Encoders. As described

in section 7.1, the labeled data generated by a human security specialist could be used for

semi-supervised hybrid detection using Auto Encoders and Decision Trees.

The data captured in a commercial NIDS did not contain any attacks that were detected

using signature-based detection. In future work it will be interesting to run the experiment

for a longer time to determine whether the attacks detected by signature-based detection are

also detected by the proposed method. Similarly, the number of False Positives in comparison

with the signature-based detections can be researched to determine the extent to which the

proposed method can be implemented.
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[67] M. Labonne, A. Olivereau, B. Polvé, and D. Zeghlache, “Unsupervised protocol-based

intrusion detection for real-world networks,” in 2020 International Conference on Com-

puting, Networking and Communications (ICNC). IEEE, 2020, pp. 299–303.

[68] “Scikit-learn cheatsheet,” https://scikit-learn.org/stable/tutorial/machine learning

map/index.html, accessed: 2021-06-08.

[69] “Zeek,” https://docs.zeek.org/en/current/index.html, accessed: 2021-02-04.

[70] “Scikit-learn labelencoder,” https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.LabelEncoder.html, accessed: 2021-03-23.

[71] “Scikit-learn mutualinformation,” https://scikit-learn.org/stable/modules/generated/

sklearn.feature selection.mutual info classif.html, accessed: 2021-04-08.

[72] “Zeek ttl script,” https://github.com/JKeijer/Zeek scripts, accessed: 2021-04-08.
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