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Abstract 
Facial expressions are an important aspect of non-verbal communication, showing reactions and 
attention. In patients with Disorders of Consciousness (DOC) facial expressions are commonly less 
pronounced. Diagnosis of these patients is partly based on their response to external stimuli, measured 
by their facial expression. As these can be difficult to objectively measure, a high misdiagnosis rate 
exists. Development of a method to detect and identify expressions could support diagnosis and 
possibly improve communication between patients and caregivers or loved-ones. The main goal of this 
research is to evaluate to what extent facial surface electromyography (sEMG) signals can be used to 
classify four facial expressions (happiness, anger, sadness and fear) in healthy subjects. In addition, 
micro expressions are evoked and measured to mimic the diminished expressions of DOC patients. 
Lastly the predictive value of various channels is evaluated to determine the most efficient 
experimental set-up. An experimental protocol using a 32-channel unipolar micro-electrode set-up 
was designed to obtain EMG signals. Twenty-nine models were included in in this study. It was found 
that the model Subspace K-Nearest Neighbor (KNN) and feature Difference Absolute Mean Value 
(DAMV) performed best at classifying expressions of subjects it had not been trained on (with a test 
accuracy of 55.7%). Happiness was most often identified correctly. Additionally, this research has 
demonstrated that micro expressions, evoked by exposure to images of facial expressions, occur and 
can be measured with sEMG. The model Subspace KNN and feature Waveform Length (WL) succeeds 
in predicting these micro expressions for one of the subjects with a test accuracy of 47.1%. Evaluation 
of the predictive value of the 32 channels shows that a comparable test accuracy (53.4%) is obtained 
for a subset of only 15 channels with model Subspace KNN and feature WL. To develop a method 
applicable in clinical practice further research is needed, this research provides a good starting point.   
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Samenvatting 
Gezichtsuitdrukkingen zijn een belangrijk aspect van non-verbale communicatie, en worden gebruikt 
voor het tonen van reacties en aandacht. Bij patiënten met een bewustzijnsstoornis zijn de 
gezichtsuitdrukkingen vaak minder uitgesproken. De diagnose van deze patiënten is onder andere 
gebaseerd op de reactie op prikkels van buitenaf, en wordt gemeten aan de hand van de 
gezichtsuitdrukking. Omdat dit moeilijk te meten is in deze patiëntengroep, is er een hoog percentage 
dat een verkeerde diagnose krijgt. De ontwikkeling van een methode om gezichtsuitdrukking te 
detecteren en identificeren zou artsen kunnen ondersteunen bij het stellen van een diagnose, en kan 
daarnaast mogelijk de communicatie tussen patiënten en zorgverleners of naasten verbeteren. Het 
belangrijkste doel van dit onderzoek is om te evalueren in hoeverre signalen van spieractiviteit (sEMG) 
gebruikt kunnen worden om vier gezichtsuitdrukkingen (blijdschap, woede, verdriet en angst) bij 
gezonde proefpersonen te classificeren. Daarnaast worden micro-expressies uitgelokt en gemeten om 
de verminderde gezichtsuitdrukking van patiënten met een bewustzijnsstoornis na te bootsen. Ten 
slotte wordt de voorspellende waarde van verschillende EMG-kanalen geëvalueerd om de meest 
efficiënte meetprocedure te bepalen. In dit onderzoek is een experimenteel protocol ontworpen dat 
met behulp van 32 micro-electroden de EMG signalen van verschillende spieren in het gezicht meet. 
Negenentwintig modellen werden geëvalueerd in deze studie. Hieruit bleek dat het model Subspace 
K-Nearest Neighbor (KNN) en feature Difference Absolute Mean Value (DAMV) het beste in staat was 
in het classificeren van uitdrukkingen van proefpersonen waarop het model niet was getraind (met 
een testnauwkeurigheid van 55,7%). Blijdschap was de uitdrukking die het vaakst correct 
geclassificeerd werd. Daarnaast heeft dit onderzoek aangetoond dat micro-expressies aanwezig zijn 
en gemeten kunnen worden door middel van sEMG. Het model Subspace KNN en feature Waveform 
Length (WL) slaagde erin om deze micro-expressies voor één van de proefpersonen te voorspellen met 
een testnauwkeurigheid van 47,1%. Evaluatie van de voorspellende waarde van de 32 kanalen laat zien 
dat een vergelijkbare testnauwkeurigheid (53,4%) wordt verkregen voor een subset van slechts 15 
kanalen met model Subspace KNN en feature WL. Voor de ontwikkeling van een methode die 
daadwerkelijk in een klinische setting gebruikt kan worden is meer onderzoek nodig. Deze studie biedt 
een goed uitgangspunt.   
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1. Background 
In this chapter the motivation and objectives of this research are defined. Additionally, relevant 

concepts will be described, including facial anatomy, different types of expressions, electromyography 

and classification models. 

1.1. Introduction 

1.1.1. Facial Expression Recognition 
Analysis of facial expression has been of great interest in several fields for quite some time. It has 
applications in marketing, surveillance, entertainment and healthcare, amongst others [1]. Obvious 
facial expressions that we all come across from time to time are disgust, fear, joy, surprise, sadness 
and anger (see Figure 1). Facial expressions are very important in non-verbal communication, showing 
reactions and attention. Although there are differences in communication between countries and 
cultures, these six facial expressions are universal [2].  
 

 
Figure 1: Facial characteristics of the six basic emotions: anger, joy, surprise, disgust, sadness and fear [3]. 

 
The faces in Figure 1 show exaggerated expressions. In real-life, much more often only subtle changes 
in expression take place as an expression of emotion. These subtle changes are more difficult to detect 
and distinguish. Some expressions are so subtle that they cannot be detected with the naked eye. 
Different techniques have been evaluated that could aid in detection of these expressions. Two 
methods with good prospects are video based facial expression detection and the use of EMG-signals.   
 
The first method is used to automatically detect expression in videos of faces, as its name might 
suggest. Pitfalls are that spontaneous expressions are only recognized to a limited extent, real-time 
recognition remains difficult and rotated faces or faces that are off-center make detection harder [4]. 
Some expressions remain too subtle to be recognized by computer vision systems. In addition, the 
systems are not practical for wearable applications, as you would have to point a camera on the face 
at all times. EMG based facial expression detection can provide information about subtle changes. It is 
a non-invasive method to measure muscle activity [5]. As it is able to measure minimal changes in 
muscle activity, it can detect micro expressions [6]. Besides, wireless electrodes exist, making this et-
up more suitable for wearable measurements. For both methods, video based and EMG based, 
classification learners (a type of machine learning) can be used to classify the facial expression based 
on the obtained signals.  
 

1.1.2. Clinical relevance 
People that would benefit from detection of their facial expressions are patients in whom these are 
less pronounced. In particular, patients with Disorders of Consciousness (DOC). This is an umbrella 
term for patients that awaken from a coma, but remain unaware. Their awareness might improve over 
time, and can depend on their response to external stimuli. One method to measure this response is 
by the patient’s facial expression [7], [8]. DOC patients are known for their limited expressions. Some 
of them are so subtle that they are not visible to the naked eye [9]–[11]. Development of a technique 
that can detect these subtle expressions might aid in diagnosing DOC patients in the future.  
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In addition, this technique could assist other patients with diminished muscle activity as well. For 
example people who suffer from neurological disorders, like Parkinson’s Disease. Their facial 
expressions are usually smaller, in some cases even absent, and take more time to take place [12]. 
Reduced facial expressions similarly occurs in other pathological cases. Damage in the facial nerve can 
result in weakness or inability to move the muscles, making it difficult to show emotions. Development 
of a method to detect and identify expressions could support diagnosis and possibly improve 
communication between patients and caregivers or loved-ones.   
 

1.1.3. Motivation and objectives 
This research aims at developing a method and experimental protocol for classification of facial 
expressions. Since EMG has a high potential to detect subtle expressions, this is the method selected 
in this study. Various classification models, features and window lengths will be explored to find an 
optimal combination to accurately predict facial expressions. The predictive power of a selection of 
channels will be evaluated to create a subset of required channels with a high information-density. 
Channels that show little predictive value can be disregarded in future research to simplify the protocol 
and make it more suitable in practice. In addition, this research will attempt to measure micro 
expressions to explore the ability of EMG to measure subtle expressions. If succeeded, these 
expression will be used for further examination of the classification accuracy of the models.  
 
In summary, the main objectives are: 

• Design of an experimental protocol to obtain facial EMG measurements; 

• Development of one or multiple machine learning models to classify expressions based on the 
EMG data; 

• Evaluation of the predictive power of all channels to create a subset of channels for 
simplification of data acquisition; 

• Measurement of micro-expressions, to possibly further investigate the classification accuracy 
of the models.  

 
 
Research question and hypothesis 
To achieve the goal(s) the main research question to be answered is: To what extent can facial EMG 
signals be used to classify the facial expression of healthy subjects? 
 
It is expected that EMG can be used to classify several facial expressions, as previous studies have 
proven (see section 1.2.4 State of the art). The expression of happiness will be most easily distinguished 
from the other expressions, due to characteristic activity in zygomatic major. Furthermore it is likely 
that electrodes located on muscles used in expressions explored in this research will yield the largest 

predictive value. Making predictions regarding micro expressions is difficult, as not every person will 

show them. Hopefully at least one of the subjects that participates will show them so they can be 
measured.   
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1.2. EMG and Facial Expressions 

1.2.1. Anatomy of the face 
The face has a complex anatomy, containing 42 muscles. These muscles can be divided into two groups: 
the muscles that control facial expressions (mimetic muscles) and the muscles that control movement 
of the jaw for chewing and grinding (muscles of mastication). For this research only the mimetic 
muscles will be discussed.  
 
Mimetic muscles 
The mimetic muscles originate from the skeleton and insert into skin. Contraction of these muscles 
creates folds in the skin, forming the basis of facial mimicry. In younger people this folding is reversible 
due to elasticity of the skin. However, in older people some folds may exist continuously. [13] 
 
The mimetic muscles overlap each other, some muscles lie deep and other superficial. A sub-division 
of the facial muscles into four groups can be made: muscles in the area of the skull, eyes, nose and 
mouth [13]. The functions of relevant mimetic muscles can be seen in Table 1, location of the muscles 
is shown in Figure 2 on the next page. 
 

Table 1: Relevant muscles and their function, divided into muscles of the skull, eyes, nose and mouth. Adapted from [13][14]. 

 Muscle Function 
Skull Frontalis Raising the eyebrows, creating wrinkles in the forehead 

Eyes Orbicularis oculi Closing the eye 

Corrugator supercilii Depressing the eyebrows, creating frown lines 

Nose Procerus Pulling the forehead downwards, creating horizontal folds at 
the bridge of the nose 

Nasalis Dilatation of nostrils 

Levator labii superioris 
(aleque nasi) 

Pulling skin of the nasal openings and upper lip upwards, 
dilating the nostrils 

Mouth Orbicularis oris Closing the lips 

Buccinator Pressing cheeks against teeth, and pulling the corners of the 
mouth outwards 

Zygomaticus major Pulling the corners of the mouth laterally upwards 

Risorius Pulling the corners of the mouth laterally 

Levator anguli oris Pulling the corners of the mouth upwards 

Depressor anguli oris Pulling the corners of the mouth downwards 

Depressor labii inferioris Lowering the bottom lip 

Mentalis Creating a fold between the chin an lips 

Platysma Depressing the lower lip, corners of the mouth, and mandible 
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Figure 2: Anatomy of the facial muscles, front view (top) and side view (bottom) [15].        
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1.2.2. Facial expression of emotions  
Emotions are expressed by contraction of certain mimetic muscles described in the previous section. 
The emotions and muscles can be linked by means of the EMFACS system, short for Emotional Facial 
Action Coding System [16]. Within this coding system, emotions are linked to Action Units (AU), which 
describe the muscle(s) needed to perform a certain action [17]. E.g. AU1 describes the inner brow 
raiser, performed by contraction of the frontalis. In section 2.1.2 Expressions, the expressions 
evaluated in this research with their corresponding AU’s are presented.  
 
Macro and micro expressions 
Expressions are not always shown with the same intensity. On one hand there are the clear, significant 
expressions that can be observed with the naked eye. These are the ‘normal’ facial expressions, which 
typically last between 1 and 4 seconds [18]. Within this report these will be referred to as macro 
expressions. On the other hand, micro expressions exist. These are usually unconscious expressions 
with a duration of about half a second or less [18]. Micro expressions can be defined as a brief facial 
movement revealing an emotion that a person tries to conceal [19]. The two main factors that 
distinguish macro and micro expressions are the total duration and onset duration. In a study in 2013 
[20] these two factors were found to be respectively 500 ms and 260 ms. However, the onset duration 
(time after exposure) varies in studies. Another study [21] found an onset duration of 300-400 ms and 
an even higher duration, of 500 ms [22], was found as well.  
 
Multiple studies [22]–[24] have shown that micro expressions can be evoked by exposure to pictures 
of facial expressions. This means that when exposed to a happy face, people respond with higher 
activity in the Zygomaticus major (pulling the corners of the mouth laterally upwards) and when 
viewing an angry face, people respond with higher activity in the Corrugator supercilii (depressing the 
eyebrows). This corresponds with the findings of Wingenbach et al. [25], showing that covert facial 
mimicry (micro expressions) are emotion-specific. However, research has also shown that not all 
people are in possession of this quality. It is related to empathy [26]. Being highly empathic correlates 
with a higher reactivity to facial expressions. In addition, it may also vary based on the gender of the 
subject, females pronouncing a larger response to facial expressions [26]. It is thus uncertain that every 
person will show micro expressions at every occurrence. 
 

1.2.3. Electromyography (EMG) 
When muscles contract, electrical potentials originate from the motor units. These electrical potentials 
can be measured via electrodes, either directly in the muscle or on the surface of the skin [27]. This 
latter method, sEMG, is nowadays more widely used as it is non-invasive. The EMG signal is usually 
represented as µV over time, see Figure 3 below. The signals are typically relatively noisy, due to 
surrounding electrical circuits, movement artifacts and cross-talk between muscles [27], [28]. 
Thorough filtering needs to be performed to make the signals useful for further investigation, usually 
consisting of a bandpass filter to remove low-frequent movement artifacts and high-frequent noise, 
followed by a notch filter to remove powerline noise (50 or 60 Hz) [28].  
 
EMG signals contain a substantial amount of information. Researchers usually look at a selection of 
properties of the signal, also called features, to make it more convenient to work with. These EMG 
features are generally in the time or frequency domain. One of the most commonly used time domain 
features for EMG analysis is the Root Mean Square (RMS) of the signal [29], see bottom graph in Figure 
3. This feature is so popular due to its quick calculation and easy implementation, whilst preserving 
significative information. Many other features exist as well, and new ones are still being discovered, 
making selection of a compact, non-redundant feature set challenging.  
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Figure 3: Filtered EMG signal (top) and corresponding Root Mean Square (RMS) values (bottom). 

Two extensive studies [30], [31] have examined respectively 26 and 44 features for EMG-based 
algorithms. The first study [30] evaluated the features for myoelectric control based on wearable EMG 
sensors located on the wrist. They found that the features L-scale (LS), Integrated Absolute Value (IAV), 
Mean Absolute Value (MAV), Root Mean Square (RMS), Waveform Length (WL) and Difference 
Absolute Mean Value (DAMV), Difference Absolute Standard Deviation Value (DASDV) and Mean Value 
of the Square Root (MSR) have the best prospects in terms of classification rates. Most of these 
features are in agreement with findings of the second study [31], who evaluated the features for 
decoding of hand movements as well. They recommended MAV, Standard Deviation (STD), WL, DAMV 
and IAV to obtain high recognition accuracy and low processing time. As a result, the following 
selection of features will be used in this research: MAV, RMS, WL, SD, DAMV and IAV. The features are 
calculated with the formulas presented in Table 2 below, with the EMG data as 𝑥𝑖 and the number of 
samples in each time window as 𝑁. 
 

Table 2: The six features used in this research and their formula's, with EMG data as 𝑥𝑖 
and the number of samples in each time window as N. Adapted from [31], [32]. 

Feature Formula 

Mean Absolute Value 
(MAV) 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

Root Mean Square 
(RMS) 𝑅𝑀𝑆 = √

∑ |𝑥𝑖|
2𝑁

𝑖=1

𝑁
 

Waveform Length 
(WL) 

𝑊𝐿 =∑(|𝑥𝑖 − 𝑥𝑖−1|)

𝑁

𝑖=1

 

Standard Deviation 
(SD) 𝑆𝐷 = √

1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2
𝑁

𝑖=1

 

Difference Absolute Mean Value 
(DAMV) 

𝐷𝐴𝑀𝑉 =
1

𝑁
∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

Integrated Absolute Mean Value 
(IAV) 

𝐼𝐴𝑉 =∑|𝑥𝑖|

𝑁

𝑖=1
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1.2.4. State of the art 
Researchers have already paved the way for classification of emotions based on EMG signals. 
Numerous papers regarding this subject can be found, varying in the expressions examined, number 
of channels used, channel placement, and type of features and classifiers evaluated. Accuracies vary 
in the range of 60% to almost 99%. The vast number of variables between studies makes it difficult to 
directly compare performance in terms of prediction accuracy. Nonetheless, some works related to 
this research are summarized in Table 3 and discussed below. 
 

Table 3: Related research with some important properties. (FCM = fuzzy c-means, 
LDA = linear discriminant analysis, NARX = nonlinear autoregressive exogenous network). 

Ref. Expressions n 
subjects 

n 
channels 

Features Classifiers Accuracy 
(%) 

[33] 5 
Happiness, anger, 
rage, frowning, 
neutral  

4 2 bipolar 
sets 

Root Mean Square (RMS) FCM 90.8% 

[34] 11 
Anger, happiness, 
fear, sadness, 
surprise, neutral, 
clenching, half 
smile (left), half 
smile (right), 
frown, kiss 

42 10 Root Mean Square (RMS) 
Waveform Length (WL) 
Sample Entropy (SE) 
Cepstral Coefficient (CC) 

LDA 74.9% 

[35] 3 
Happiness, anger, 
disgust 

12 2 bipolar 
sets 

Wavelet Packet Transform 
(WPT):  
Mean 
Standard Deviation (STD) 
Energy 

LDA 91.7% 

[36] 4 
Joy, anger, 
sadness, pleasure 

Not 
reported 

Not 
reported 

Root Mean Square (RMS) 
Variance (VAR) 
Mean Absolute Value (MAV) 
Integrated EMG (IEMG) 

NARX 98.8% 
 

 
Hamedi et al. [33] obtained an accuracy of 90.8% on five expressions with only 2 bipolar electrode sets. 
However, clear explanation on which data was used as training data and which as test data is lacking. 
Therefor it is uncertain whether these results are for a personalized model or for a general model, a 
distinction that is very important for interpretation of these results. In [34] the researchers aimed at 
training the classification model with only 1 trial per subject. They succeeded with an accuracy of 74.9% 
for detection of 11 expressions. Kehri et al. [35] obtained an accuracy of 91.7% with only 4 bipolar 
electrodes, for detection of happiness, anger and disgust. They used Linear Discriminant Analysis (LDA) 
and Wavelet Packet Transformed (WPT) features. Some of the best results in the field of facial 
expression recognition are obtained with deep learning. In [36] an accuracy of 98.8% was achieved for 
the classification of four expressions: joy, anger, sadness and pleasure. Unfortunately, deep learning is 
not always applicable due to the requirement of a large dataset.  
 
An important aspect for application of a classification model on several patient groups is that a pre-
trained model should be able to make predictions on new subjects, as it is fairly unfeasible to train the 
model on patients with limited facial movements. To evaluate the ability of a model to do this, the 
accuracy of the model on a completely new subject should be calculated. To our knowledge, this 
measure has not been reported before. 
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1.3. Machine Learning 
Interest in machine learning has been rising 
in the last years. There are varying 
definitions going around, but the essence is 
that machine learning (ML) enables 
computers to think and learn independently, 
without explicit programming [37]. It is a 
type of artificial intelligence that can be 
applied in a widespread of domains: 
logistics, gaming, health-care, and so on. 
Some people confuse machine learning with 
deep learning and use those definitions 
interchangeably. However, that is incorrect. 
Deep learning is a type of machine learning, 
in which artificial neural networks adapt and 
learn from vast amounts of data, see Figure 
6. A vast amount of data is one of the main 
requirements for using a deep learning 
approach, as it will not function properly on a 
smaller dataset.  
 
Machine learning can be divided into supervised learning and unsupervised learning. The latter uses 
only input data to group and interpret the dataset, whereas the first makes predictions based on both 
input and output data. A problem that can be tackled using unsupervised learning is the clustering 
problem. The algorithm creates clusters based on similarities in the dataset, and new data is placed in 
the appropriate cluster. This type is also referred to as a statistic based approach. Supervised learning, 
where the outputs are known beforehand, can tackle either a classification or a regression problem. 
When the output is continuous, e.g. temperature in degrees Celsius, a regression model needs to be 
used. A categorical output, e.g. gender (being either male or female), calls for a classification model. 
This example is binary, but these type of models can also handle multi-class problems. [37] 
 
The problem addressed in this research is a multi-class classification problem, several expressions 
(classes) need to be recognized. Besides supervised and unsupervised learning there are more 
categories. However, these two are the most commonly used. The general workflow of machine 
learning is as follows: features and labels are extracted from raw or pre-processed data. The data is 
divided into a training/validation dataset and a testing dataset. The model is trained and validated 
using the first dataset, see Figure 7  for a schematic overview. Once a proper model is obtained, the 
test accuracy can be determined by evaluating the predictive performance on a completely new 
dataset, not seen by the model before (the testing dataset).   
 

 
 Figure 7: Workflow for machine learning. Features and labels are extracted from the raw data, which are then 

divided into a training, validation and testing dataset, used to create and test the model. Adapted from [57] 

Figure 6: Schematic overview of the field of algorithms, comprising 
artificial intelligence, machine learning and deep learning [56] 
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1.3.1. Classification algorithms 
EMG pattern recognition typically calls for a classification algorithm. Commonly used classifiers include 
Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), 
Random Forests and Naïve Bayes [38]. A comprehensive tool for evaluating the performance of 
multiple classifiers at once is MATLABs Classification Learner [39]. Roughly thirty classifiers can be 
trained in one go, see Table 4. Depending on data size this process can be time-consuming. 
Nonetheless, in this research all the classifiers are trained to explore as many options as possible. The 
most promising two are described below.  
 

Table 4: The 29 classifiers trained in this research, listed by type. 

Type Sub-type  Type Sub-type 

Tree Fine tree Discriminant 
Analysis 

Linear discriminant 
Medium tree Quadratic discriminant 

Coarse tree Naïve Bayes Gaussian Naïve Bayes 
K-nearest 
neighbors 
(KNN) 

Fine KNN Kernel Naïve Bayes 
Medium KNN Support 

Vector 
Machine 
(SVM) 

Linear SVM 
Coarse KNN Quadratic SVM 
Cosine KNN Cubic SVM 
Cubic KNN Fine Gaussian SVM 
Weighted KNN Medium Gaussian SVM 

Ensemble Boosted Trees Coarse Gaussian SVM 
Bagged Trees Neural 

Network 
(NN) 

Narrow NN 
Subspace Discriminant Medium NN 
Subspace KNN Wide NN 
RUSBoosted Trees Bilayered NN 

Trilayered NN 
 
Ensemble classifiers combine results from multiple learners into one model to improve predictive 
performance. By fusing various algorithms the weaknesses of single learners diminish while their 
strengths add up to improve the outcome [40]. The learners can be combined in several ways (e.g. 
bagged, boosted, subspace), creating different subtypes of classifiers. Bagged Trees and subspace KNN 
ensembles will be reviewed below.  
 
Ensemble classifier: Bagged Trees  
The ensemble of Bagged Trees combines different decision tree learners to improve accuracy. Decision 
trees essentially break down problems into smaller decisions. It starts with a root node, being the first 
decision to be made. From this node several paths can follow to new nodes, forming a new decision. 
The final node, where no other nodes extend from, is called the terminal node or leaf, see Figure 8. 
The number of layers a tree has is referred to as the depth of that tree. With deep trees one needs to 
be cautious of overfitting. [41] 

 
 
       Figure 8: Schematic overview of a decision tree learner, with the three different node types listed: 

root node (start), decision node (middle) and terminal node (end). 
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Bagging is a combination of bootstrap and aggregating. It generates bootstrap replicates from the 
training data (see Figure 11), trains numerous learners on these sets, and averages the results (majority 
vote) to create one prediction, see Figure 9. In this case the learners are all decision trees. Another 
term for bootstrap replicating is sampling with replacement. This means that datapoints used in one 
replicate set, go back to the original dataset, after which they can be chosen again for a new replicate 
set. In other words, datapoints can occur in multiple replicate sets and not all datapoints are required 
to be used in the replicate sets. [42], [43] 

 
 
 
 

Ensemble classifier: Subspace KNN 
The subspace KNN ensemble combines various K-nearest neighbor classifiers to improve accuracy. 
With KNN, data is classified according to the class of the k nearest neighbors of a datapoint [44]. E.g. 
the new datapoint in Figure 10 will be placed in either class A, B or C based on the smallest distance to 
a number of k datapoints in those classes. 

 
 
 
 

Those various KNN classifiers can be combined using the random subspace method. Random subsets 
of features are created, each training a weak learner. When new data is applied, the average class 
(majority vote) of all the weak learners is selected as prediction [45]. It is similar to bagging, however, 
the subsets are created across features instead of across training data, see Figure 11.  

 
Figure 11: Two methods to create ensemble classifiers: bagging (left) and random subspace 
(right). Subsets are created across the data or across the features respectively. 

Figure 9: Overview of the Bootstrap Aggregating (bagging) method for decision tree learners. The training data is 
divided into several subsets on which multiple decision trees are trained. A majority vote results in one final prediction. 

Figure 10: K-nearest neighbor (KNN) learner. The class of the new point will be determined 
based on the smallest distance to surrounding datapoints in either class A, B or C. 
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2. Methodology 
In this section the methods for the experimental procedure and data analysis are presented, together 

with substantiation and relevant literature.   

2.1. Experiments 
The experiments were conducted at a facility of the University of Twente: Zuid-Horst 285. This lab was 
equipped with a monitor, comfortable chair for the subjects and the TMSi Refa multichannel amplifier. 
For an elaborate list of used materials, see Appendix A: Protocol. Software used in the experiment 
include Matlab (version 2021b) with Psychtoolbox [46], TMSi Polybench toolbox [47], Stimulus 
Presenter toolbox [48] and Feature Extraction Toolbox [49]. This study received ethical approval from 
the ethical department of the University of Twente. Informed consent forms were obtained from all 
participants. 
 

2.1.1. Subjects 
The experiment was conducted on five healthy participants, no neuromuscular disorders and/or facial 
lesions were present. Each of the subjects had good vision, at least within 2 meters. Four of the subjects 
were female, one was male. Mean age of these subjects was 23.4 years with a standard deviation of 
1.02 years, all subjects were Caucasian and were students at the University of Twente. See Table 5 for 
an overview of the subjects. Dutch was the native language of the participants, but all spoke sufficiently 
English to take part in this study. 
 

Table 5: Information of the 5 participating subjects. 

Number of participants 5 

Gender 

- Male 1 

- Female 4 

Age  

- 22 1 

- 23 2 

- 24 1 

- 25 1 

Ethnicity 

- Caucasian 5 
 

2.1.2. Expressions 
This study focusses on four expressions: happiness, anger, sadness and fear, see Table 6. The first three 
are chosen due to their variation in action units. Anger and sadness share AU 4, which causes the 
eyebrows to lower. Other than that, these three expressions use different action units. In anger, there 
is more action around the eyes than only lowering of the eyebrows: the upper eyelids rise and tighten 
to get that intense look. The area around the mouth contracts as well, tightening the lips. In contrast 
to anger, the inner corners of the eyebrows can rise when sad. In addition sadness can usually be 
detected by depressed corners of the mouth: a characteristic feature of sadness, which is a main 
identification mark of the sad emoticon as well. Happiness is one of the main expressions where there 
is high activity in the Zygomatic Major, raising the corners of the mouth to create that distinctive smile. 
In addition, the muscles around the eye (Orbicularis Oculi) contract to raise the cheeks. The fourth 
expression is chosen for its similarities with sadness and anger, this is the expression of fear. Rising of 
the inner brow can occur when in fear, but it also appears when sad. Lowering of the brow and raising 
and tightening of the eyelids happens in both anger and fear. Action units that distinguish fear from 
the other three expressions are number 20 and 26: stretching the lips and dropping the jaw. The 
similarities and differences between these four expressions allow for proper investigation of the 
distinctive character of the expression classification algorithm(s).  
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Table 6: Emotions with corresponding Action Units (AU), muscles and resulting actions. Adapted from [50]. 

Emotion AU Related muscles Action 

Happiness 6 Orbicularis oculi, pars orbitalis Cheek raiser 

12 Zygomatic Major Lip corner puller 

Anger 4 Depressor Glabellae (procerus) 
Depressor Supercilli 
Corrugator 

Brow lowerer 

5 Levator palpebrae superioris Upper lid raiser 

7 Orbicularis oculi, pars palpebralis  Lid tightener 

23 Orbicularis Oris Lip tightener 

Sadness 1 Frontalis, pars medialis Inner brow raiser 

4 Depressor Glabellae (procerus) 
Depressor Supercilli 
Corrugator 

Brow lowerer 

15 Depressor anguli oris (triangularis) Lip corner depressor 

Fear 1 Frontalis, pars medialis Inner brow raiser 

2 Frontalis, pars lateralis Outer brow raiser 

4 Depressor Glabellae 
Depressor Supercilli 
Corrugator 

Brow lowerer 

5 Levator palpebrae superioris Upper lid raiser 

7 Orbicularis oculi, pars palpebralis  Lid tightener 

20 Risorius Lip stretcher 

26 Masseter; temporal and internal pterygoid relaxed Jaw drop 

 
 

2.1.3. Electrode configuration 
For this experiment, 32 unipolar microelectrodes were used. The placement of these electrodes is 
determined based on the action units described above, together with guidelines from Fridlund and 
Cacioppo [27], which are commonly used in facial EMG research. However, these guidelines were 
created for a bipolar configuration, and as unipolar electrodes are used in this research the positioning 
might vary slightly. 
 
First, muscles involved in the four expressions were covered with at least one electrode. These 
electrodes are represented in red in Figure 12. Additional electrodes, presented in blue, were added 
to cover a larger area of the face. All electrodes were located on muscle bellies as much as possible. 
Elaborate guidelines for placement of the electrodes can be seen in Appendix A: Protocol. Most 
positions are determined with relative distance to facial marks, others are placed at a fixed distance to 
certain points. Duo to anatomical variety within subjects, electrodes can be placed slightly different to 
this setup. Especially when expressing emotions, the skin may fold or wrinkle on some places making 
it difficult for electrodes to properly adhere to the skin.  
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2.1.4. Experimental procedure 
An overview of the setup used in the experiments can be seen in Figure 13 and Figure 14. The subject 

was seated in a comfortable chair, looking at the stimulus monitor. The stimulus monitor was 

controlled via the researchers laptop. The 32 microelectrode channels, plus the ground electrode, were 

connected to the researchers monitor via the EMG amplifier (TMSi Refa, with a 2048 Hz sampling 

frequency). A digital trigger device, connected to both the researchers laptop and the EMG amplifier, 

was used to send a trigger at the beginning of the experiment from the laptop to the amplifier for 

synchronization purposes.   

 

 

Figure 12: Configuration of the 32 unipolar microelectrodes, front view (left) and side view (right). Adapted from [58]. 

Figure 13: Schematic overview of the set-up for the experimental procedure. 
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The experiment consisted of three parts, all set up following the same construction (see Figure 15). 

There were four blocks in which 24 stimuli (either images of facial expressions or written expressions) 

were shown for a duration of 5 seconds, followed by a 3 second break (black screen). Once a block was 

finished, there was a longer break with a duration of 30 seconds. The stimuli was shown in a random 

order to vary within and between subjects.  

 

Figure 15: Schematic overview of the experimental procedure. 

  

Figure 14: Pictures taken during the experiment. The subject is seated in a chair in front of a screen on which stimuli are 
presented (left), the used electrode configuration (right). 



21 

 

This format was performed three times with varying stimuli and instructions (see Figure 16). The 
stimuli could either be an image of one of the four facial expressions, or this emotion shown as a word. 
The images were acquired from the FACES database [51]. These consisted of staged expressions, 
performed by subjects (male and female) of three different age groups: young, middle-aged and old. 
For all images used, see Appendix C: FACES database. 
 
In part I, subjects were instructed to look at the images without doing anything. They had to sit as still 
as possible to minimize movement artifacts. The goal of this part of the experiment was to measure 
micro-expressions, which have been shown to occur when looking at images of facial expressions. The 
theory behind this is to mimic the lower amplitude responses that can occur in DOC patients [52].  
 
The stimuli used for part II were the same as used for part I: the images of facial expressions were 
showed again in random order. This time, the instructions were different. The subjects were told to 
mimic the images for as long as the images appeared on the screen (5 seconds). They did not have to 
worry or think about which expressions were showed, they simply had to mirror the image. The goal 
of this setup was to measure high-amplitude expressions. The used images all showed distinct 
emotions, which ensured activations of the main muscles involved is the specific emotions when 
mirroring.  
 
Part III was added to the experiment to allow the subjects to express the emotions more naturally. The 
four emotions were randomly shown on screen in text (e.g. “Angry”, “Happy”). Subjects were 
instructed to express the emotion shown on screen for 5 seconds. They did not have to show exactly 
the same expression for each emotion, they were allowed to variate. The main objective was to 
naturally show these emotions, without giving it too much thought.   
 

 

 

  

Figure 16: Overview of the three parts of the experiment. 
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2.2. Data analysis 
Facial expression recognition algorithms based on EMG data usually consist of the following 
components: pre-processing, feature extraction and classification [38].  These three components will 
be discussed in the following sections. 
 

2.2.1. EMG pre-processing 
The raw EMG signals were processed offline, in MATLAB R2021a. Fast Fourier Transform (FFT) plots 
were created to inspect the frequency spectrum of the data and select appropriate filter values (see 
Figure 17). This resulted in filtering the signal at 40-500 Hz with a 4th order Butterworth bandpass filter, 
followed by a 50 Hz Notch filter to remove powerline noise. The signal was rectified and normalized as 
% of the baseline value, as done in previous research [53]. This baseline value was determined in the 
first 3 seconds of the experiments, where the participants looked at a cross positioned in the middle 
of the screen while maintaining a neutral face. 
 

             
 
 
 
Stimuli and EMG signals are synchronized by sending a digital signal to the EMG amplifier at the 
beginning of the experiment, at a known timepoint. The time between that trigger and all subsequent 
stimuli is known, therefore the corresponding EMG values can be detected and transformed to match 
the stimuli (see Figure 18 for a schematic overview). 
 

 
 
  

Figure 17: FFT plots of the raw signal (left) and filtered signal (right). Two filters are applied: a 4th order Butterworth bandpass 
filter at 40-500 Hz and a 50 Hz Notch filter. 

Figure 18: The process of synchronization. A digital trigger, sent at a known timepoint, is 
used to transform the data and match presented stimuli and EMG data. 
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2.2.2. Feature extraction 
As discussed in section 1.2.3 Electromyography (EMG), the six features used in this research were: 
MAV, RMS, WL, SD, DAMV and IAV. The features were extracted from the data with the Feature 
Extraction Toolbox [49]. All features were evaluated separately, after which the most promising were 
combined to possibly gain higher accuracy.  
 
Window length 
Features are not calculated over the whole signal at once but over epochs (time windows) of the signal. 
The length of these time windows varies between studies and substantiation for a certain length is 
often lacking. A comprehensive study [34] evaluated window lengths between 50 and 1500 ms, with a 
step size of 50 ms. Based on recognition accuracy an optimal window length was determined to be 
1100 ms. In general, increasing the window length increased predictive accuracy. However, between 
50 and 200 ms there was evident improvement in recognition accuracy, but after this point the 
recognition accuracy did not improve significantly. One also needs to take into account that a larger 
window contains more information. This means that processing takes more time, resulting in a possible 
delay when making real-time predictions. This relation between window length and amount of 
information has been evaluated, and a window length of 200 ms for static contractions and 300 ms for 
dynamic contractions was found to contain the maximum information [54]. In addition, it was found 
that the relation between the amount of information and window length varied between features. 
This shows that choosing the right window length is a meticulous decision, depending on required 
processing speed, selected features and type of contractions, among other things.  
 
To determine the most proper window length for this specific research, three different non-
overlapping window lengths were evaluated: 250, 500 and 1000 ms. After selection of the most 
promising window length, the remaining two lengths were disregarded from further analysis.   

 
 
 
Delay 
Each stimulus was shown for a duration of 5 seconds. However, there is a delay in the subjects between 
viewing the stimulus and expressing it. This is displayed in Figure 19: the stimulus appears on screen 
at the red dot (± 11.1 sec) and about 0.5 seconds later (± 11.6 sec) the facial muscles starts to contract. 
The length of this delay might vary between subjects. To ensure that only the period of muscle 
activation is selected for analysis, the first 1 second of every expression was excluded. 

 
 

Figure 19: The delay (±500 ms) between stimulus presentation (red dotted line) and the EMG signal (blue graph). 
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2.2.3. Classification 
MATLAB’s Classification Learner was used to train all 29 classifiers for all features and all three window 
lengths. This resulted in 29 × 6 × 3 = 522 model performances. Out of these results, the best two 
combinations of window length, feature(s) and model were optimized. Data used for this originates 
from part II and III from the experiment, where macro expressions were measured. The micro 
expressions were excluded from analysis for this part, their analysis can be found in section 2.2.4. Micro 
expressions. 
 
Model performance 
The model’s performance can be evaluated in terms of accuracy. There are two types of accuracy: 
validation accuracy and test accuracy. The first one is calculated based on the datasets used to train 
the model, see Figure 20. The test accuracy is calculated over a separate dataset, which the model has 
not seen before. All accuracies are calculated according to a 5-fold cross-validation method (see Figure 
21). Using this method, the data is divided into 5 equal parts. Subsequently, all parts are excluded from 
the dataset and used as testing dataset in an iterative process. The final model accuracy is calculated 
as the average of these 5 iterations.  

 
 
 
 
When developing a general model, as done in this research, it is important that a pre-trained model 
should be able to make predictions on new subjects. That is because it is not always possible to train a 
model on patients that are incapable of performing expressions voluntarily. To evaluate the ability of 
a model to predict well on new data, the testing accuracy is of utmost importance. Usually this is 
calculated using a subset of all the data, see the left image in Figure 21. This subset thus contains data 
 

             
 
 

Figure 20: Workflow for machine learning. Features and labels are extracted from the raw data, which are then divided into 
a training, validation and testing dataset, used to create and test the model. Adapted from [57]. 

Figure 21: Two methods for 5-fold cross-validation: random folds (left) and subject-based folds (right). Data is divided into 5 
equal parts. Subsequently all parts are excluded from the dataset and used as testing data. The final performance is calculated 
as the average of the 5 iterations. The colors represent the different subjects.  
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from all subjects used to train and validate the data as well. However, in this research we are interested 

in using a completely new subject as testing data. A proper way to evaluate the ability of the model to 

work with new data is by excluding subjects from the training dataset and using them as separate test 

datasets, see the right image in Figure 21. By doing this, the training data does not contain any data 

from that excluded subject. Consecutively this will be done for every subject, after which the average 

test accuracy can be calculated. When test accuracy is mentioned in the rest of this report, it refers to 

the latter method.  

2.2.4. Micro expressions 
The preprocessing steps for the micro expression data were similar to the macro expression data. The 
only difference is that features were extracted at other timepoints. As discussed in section 1.2.2. Facial 
expression of emotions, micro expression can occur within the first second after exposure to visual 
stimuli. Therefore features were calculated in this first second, which was excluded in analysis of the 
macro expressions.  
 
For evaluation of the models performances on micro expressions, first instances where these micro 
expressions occur had to be identified. This is because the true class needs to be known in order to 
calculate the accuracy of the model. To identify the true classes, i.e. the micro expressions, activity 
maps were created. These activity maps were generated for every subject and every possible micro 
expression, over the following time points: 0-250, 250-500, 500-750 and 750-1000 ms, which is the 
duration after stimulus presentation. These activity maps were manually compared to the mean 
activity maps of every subject for the respective expression, see Figure 22. These mean activity maps 
were calculated over the EMG signals obtained from the macro expressions. Occurrences from all 
subjects were a micro expression seemed to evolve were combined to create a test dataset, after 
which the accuracy of the model for identification of micro expressions was evaluated, following the 
same steps as described in the previous section.  
 

  
 
,  
 

2.2.5. Channel selection 
In this research data was acquired with a 32-channel EMG set-up. Not all of these channels will add to 
the model’s performance to the same extent. To simplify the experimental setup in the future, subsets 
of channels were evaluated. The predictive power of all channels was determined and interpreted via 
a predictor importance plot it MATLAB. Next, the models validation and test accuracies with the most 
important channels were determined. In an iterative process, channels were added consecutively to 
assess improvement of performance. During this iterative process facial symmetry was preserved, 
meaning that if a channel on one side of the face had a high predictive importance, the mirrored 
channel on the other side of the face was added as well. Based on these results, channels that show 
little predictive value can be disregarded in future research and an optimal channel subset can be 
established to accurately identify the four emotions included in this research. 

Figure 22: Overview of identification of micro-expressions, based on facial activity maps. The image at the third timepoint 
(500-750 ms) is a visual match for the mean activity map shown on the left. 
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3. Results 
In the following sections the results of the experiments and data analysis will be presented. This 
contains the model performance (in terms of validation accuracy and test accuracy), micro expressions 
and channel subsets.  
 

3.1. Model performance 

3.1.1. Validation accuracy 
For this research the validation accuracy of 29 classifiers, over 6 features and 3 window lengths has 
been evaluated. Results for all classifiers, features and window lengths can be found in Appendix D: 
Results for all classifiers, features and window lengths. Optimization was performed, but did not yield 
better results (see Appendix E: Optimization). The best accuracies were obtained with a window length 
of 250 ms and the ensemble models:  
 

- Subspace KNN with feature DAMV 
- Subspace KNN with feature WL 

- Bagged Trees with feature DAMV 
- Bagged Trees with feature WL 

 
Confusion matrices for each of these four models are shown in Figure 23. The numbers represent the 
percentages of the expressions horizontally classified as the expressions vertically. The expressions 
classified correctly most often are happiness and anger. Sadness is the expression most often 
misclassified, and was for the majority misidentified as anger. Overall performance is good, indicated 
by the deep blue color on the diagonal and a white color off diagonal.  
 

Subspace KNN - DAMV 

 
 
 

Bagged Trees – DAMV 

 
 

Subspace KNN – WL 

 

Bagged Trees – WL

 
 
Figure 23: Validation confusion matrices for all four models, the numbers represent the percentage (%) of each expression 
shown horizontally that was classified as the expressions vertically. (DAMV=Difference Absolute Mean Value; WL=Waveform 
Length). 
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The largest overall validation accuracy was 93.6% for the subspace KNN model with features WL and 
DAMV separately, see Figure 24. Bagged Trees performed slightly worse, with a validation accuracy of 
91.1% with feature WL and 91.2% with feature DAMV. 

 

 
Figure 24: Validation accuracies for the four models. From left to right: Subspace KNN with feature Waveform Length (WL), 
Subspace KNN with feature Difference Absolute Mean Value (DAMV), Bagged Trees with feature WL and Bagged Trees with 
feature DAMV.  

3.1.2. Test accuracy 
The confusion matrices for the test sets are presented in Figure 25. The subspace KNN models classified 

the expression of happiness most often correctly, with a true positive rate of 81.8% for feature DAMV 

and 80.3% for feature WL. Sadness was most often misclassified, in most cases as anger. In the Bagged 

Trees model with feature DAMV, happiness was also most often classified correctly, with a true 

positive rate of 68.8%. For the Bagged Trees model with feature WL, fear was most often correctly 

predicted, with a true positive rate of 66.0%. Sadness was most often misclassified, the models 

misidentified it as fear most often.  

Subspace KNN – DAMV 

 

 

Bagged Trees – DAMV 

 

Subspace KNN – WL 

 

Bagged Trees – WL 

 
Figure 25: Test confusion matrices for all four models. The numbers represent the percentage (%) of each expression shown 
horizontally that was classified as the expressions vertically. (DAMV=Difference Absolute Mean Value; WL=Waveform Length). 
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Test accuracies can be seen in Figure 26 below. Subspace KNN with feature DAMV performed best, 
with an accuracy of 55.7%, followed by Subspace KNN with feature WL (55.5%). Bagged Trees 
performed worse, with test accuracies of 51.0% and 50.6% for respectively feature DAMV and WL. 
 

 

Figure 26: Test accuracies for the four models. From left to right: Subspace KNN with feature Waveform Length (WL), Subspace 
KNN with feature Difference Absolute Mean Value (DAMV), Bagged Trees with feature WL and Bagged Trees with feature 
DAMV. 

3.2. Micro expressions 

3.2.1. Manual identification 
Mean activity maps per expression for all five subjects are shown in Table 8 on the next page. The 
number of micro expressions manually identified, based on these mean activity maps, is shown in Table 
7. For subject 1 the most micro expressions were detected, with a total of 33. For the other subjects 
there were significantly less micro expressions identified, with no expressions at all for subject 4.  
 

Table 7: Overview of the number of manually identified micro expressions per subject and in total. 

Subject ↓ 
Expression 

Total 
Happiness Anger Sadness Fear 

1 8 11 9 5 33 

2 3 1 2 3 9 

3 4 0 0 3 7 

4 0 0 0 0 0 

5 0 0 4 1 5 

Total 15 12 15 12 54 

  
The mean activity maps of subject 4 stand out, being almost identical for each of the four expressions, 
with high activity at the chin. Subject 1 shows overlap between anger, sadness and fear with high 
activity at the right eyebrow and forehead. For subject 2 anger and sadness overlap as well, with high 
activity around both eyebrows. Happiness and fear are dissimilar to each other and the rest. In subject 
3, both happiness and fear show activity at the left corner nearby the bottom lip, and both anger and 
sadness show high activity on the middle of the chin. Anger differs in that additionally there is high 
activity at the right eyebrow. For subject 5, both sadness and fear show increased activity at the left 
forehead. The activity map of anger shows distinctive activity at the right eyebrow, and happiness is 
characterized by high activity in the right cheek.  
 
The activity maps of all subjects for happiness show high activity in the right cheek, with exception of 
subject 4. When expressing anger, there is activity around the eyebrows for all subjects (excl. Subject 
4). For subjects 2, 3 and 5 this is mainly on the right side of the face, subject 2 shows higher activity on 
both sides. Sadness manifests in different ways. For subjects 3 and 4 the main activity is around the 
chin and for subject 1 the main activity is around the eyebrows. Subjects 2 and 5 show high activity 
both at the chin and eyebrows. The expression of fear also varies between subjects. Subject 2 and 3 
show mainly activity around the mouth region whereas subject 1 shows activity around the right 
eyebrow and forehead and subject 5 around the left forehead.  

55,5 55,7
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WL DAMV WL DAMV
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Table 8: Mean facial muscle activity maps for the four emotions (happiness, anger, sadness and fear) shown for all five 
subjects. Red indicates a high activity, blue indicates a low activity. 

 Expression 

Happiness Anger Sadness Fear 

Su
b

je
ct

 

1 

    
2 

    
3 

    
4 

    
5 
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An example viewing the progress of muscle activity over time is shown below in Figure 27. Normalized 

RMS values of all 32 channels are plotted as a function of time after exposure to a happy stimulus. The 

large peak at 750-1000 ms represents high activity in the left Zygomaticus major (cheek), as can be 

seen in the corresponding activity map (4). After 1 second the values rapidly decrease again. 

 

Figure 27: RMS of all 32 channels during exposure to happy stimulus (top), time on x-axis represents time after exposure. The 
corresponding facial activity maps are shown on the bottom. 

3.2.2. Model performance 
Only for subject 1 a sufficient amount of micro expressions were manually identified (Table 7). The 
maximum test accuracy (47.1%) for this subject was obtained with model subspace KNN and feature 
WL. The confusion matrix is presented in Figure 28. The model succeeds in predicting happiness and 
sadness, indicated by the dark blue color on the diagonal. Anger is mistaken as sadness in 79.2% of the 
cases, shown by the dark red square.  

 
 

Figure 28: Test confusion matrix for the micro expressions of subject 1.The numbers represent the 
percentage (%) of each expression shown horizontally that was classified as the expressions vertically. 
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3.3. Channel subsets 
The importance of all channels is shown in Figure 29. The 32 channels correspond to the values on the 
x-axis. It can be seen that the most important channel is number 4, followed by channel 2, 1, and 11. 
After an iterative process of adding and removing channels (see Appendix F: Channel subsets) two 
promising subsets have been found. The first set (set A) consists of 8 channels, represented by the blue 
dots in Figure 30. The second subset consists of 7 additional channels (red dots in Figure 30) leading 
up to a total of 15 chanels.  

 
 

Figure 29: Plot of the channel importance for bagged tree classification algorithms. The 32 channels correspond to the 
numbers on the x-axis. 

 
 

Figure 30: The electrode configuration of the two subsets of channels that have a high predictive value. 
Subset A is shown in blue (n=8), and subset B is shown in blue+red (n=15). 
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The validation and test accuracies for all channels (n=32) and the subsets (n=15 and n=8) are displayed 
respectivelyin Figure 31 and Figure 32. Largest validation accuracy for subset A (n=8) is obtained with 
Bagged Trees and feature WL (86.9%), and for subset B (n=15) with Subspace KNN and feature WL 
(92.1%). Highest test accuracies are achieved with Subspace KNN, feature WL (53.4%) and Bagged 
Trees, feature DAMV (45.9%) for respectively subset B (n=15) and subset A (n=8). 
 

 
 
Figure 31: Validation accuracies for electrode configurations with all channels (n=32) and subset A (n=8) and subset B (n=15). 
From left to right: Subspace KNN with feature Difference Absolute Mean Value (DAMV), Subspace KNN with feature Waveform 
Length (WL), Bagged Trees with feature DAMV and Bagged Trees with feature WL. 

 
 

 
 
Figure 32: Test accuracies for electrode configurations with all channels (n=32) and subset A (n=8) and subset B (n=15). From 
left to right: Subspace KNN with feature Difference Absolute Mean Value (DAMV), Subspace KNN with feature Waveform 
Length (WL), Bagged Trees with feature DAMV and Bagged Trees with feature WL. 

 
Confusion matrices for both subsets are shown in Figure 33 on the next page. It can be seen that for 
both subsets, the Subspace KNN models correctly classify the expression of happiness most often. For 
Bagged Tree models, fear is classified most often correctly, with exception of subset B (n=15) with 
feature DAMV, which correctly predicted happiness most often. In all models, sadness is misclassified 
most often. It is misidentified as fear in most of the cases cases.    
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Figure 33: Test confusion matrices for all four models, for channel set A (top) and set B (bottom). The numbers represent the 
percentage (%) of each expression shown horizontally that was classified as the expressions vertically. (DAMV=Difference 
Absolute Mean Value; WL=Waveform Length). 
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4. Discussion 
The main goal of this research was to evaluate to what extent facial sEMG signals can be used to classify 
the facial expression in healthy subjects. Twenty-nine models were included in this study, after which 
the most promising four models had been chosen for further development and validation. The model 
Subspace KNN and feature DAMV performed best at classifying expressions of subjects it had not been 
trained on (with a test accuracy of 55.7%). Evaluation of the predictive value of the 32 channels showed 
that a comparable test accuracy (53.4%) was obtained for a subset of only 15 channels with model 
Subspace KNN and feature WL. With 8 channels the maximum test accuracy reduced to a value of 
45.6% for that same model. Additionally, this research has demonstrated that micro expressions, 
evoked by exposure to images of facial expressions, occur and can be measured with sEMG. The model 
Subspace KNN and feature WL succeeded in predicting these micro expressions for one of the subjects 
with a test accuracy of 47.1%.  
 

4.1. Experimental procedure 
To obtain the facial sEMG measurements an experimental protocol was designed. This protocol proved 
successful in attaining all required measures, including both the macro and micro expressions. One of 
the practical weaknesses of the protocol is the time required for positioning the electrodes on the face 
of the subjects. This meticulous process of preparation and placement of the 32 unipolar electrodes 
took up about one hour per subject. However, this 32-channel set-up was never intended for use in 
practice. The reason for investigating this large amount of channels was to identify the locations of the 
face that are most important when identifying the four expressions included in this study. When used 
in a practical setting, fewer electrodes can be used, as the evaluation of the channel subsets in this 
research have shown. This will decrease the preparation time. 
 
In addition to being time consuming, the placement of the electrodes is rather subjective since the 
positioning is performed manually. Despite its subjectiveness, the placement instructions are based on 
the guidelines described by Fridlund and Cacioppo [27] which is the most commonly used method in 
facial EMG research. Nonetheless, variation in electrode positions between subjects could possibly 
lead to discrepancies in the signals measured, resulting in inaccurate predictions. Therefor the 
repeatability of this method should be thoroughly evaluated in future research. A possible method to 
position the electrodes more objectively would be to use a fixed template on which the electrodes are 
mounted. This is done by Cha et al. [34], who investigate the configuration of electrodes in a head-
mounted display. However, a drawback of such a fixed template is that it has to be suitable for all 
subjects. The probability that this is the case is small since there are is a lot of variety in the structure 
of people’s faces. In future research, possibilities to make the protocol more suitable for application in 
clinical practice should be evaluated. 
 

4.2. Window lengths 
The optimal window length (out of 250, 500 and 1000 ms) was found to be 250 ms. The longer the 
window length, the worse the validation accuracy became. An optimal length of 250 ms is consistent 
with a previous study [31] that states that EMG segments with a length between 100 and 300 ms 
contain the maximum information. However, there could be another explanation. With a shorter 
window length, the number of datapoints increases. E.g. one second of data will be divided into 1 
datapoint for a window length of 1000 ms, 2 datapoints for a window length of 500 ms and 4 datapoints 
for a window length of 250 ms. This thus results in a larger dataset to train the model on which contains 
datapoints similar to each other. In this way, it increases the chance that datapoints in the validation 
sets are comparable to datapoints in the training sets. To avoid this overlap in datapoints, the test 
accuracies should be calculated as done afterwards (by excluding each subject from the dataset 
subsequentially). Though, as that was a laborious process, it was not feasible to calculate it for all 
window lengths and features on all 29 models included in the research. Priorities had to be set in order 
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to complete this thesis in time. Additionally, the optimal window length of 250 ms is in the same order 
of magnitude as a length of 256 ms, frequently used in similar research [33][36][55]. Therefore it is not 
expected that the window lengths of 500 and 1000 ms would yield better results.  
 

4.3. Features 
The most promising features were found to be the Waveform Length (WL) and Difference Mean 
Absolute Value (DAMV) separately. Combinations of various features did not improve accuracy. This is 
not in accordance with previous studies that typically use multiple features [34], [36]. In our research 
the best accuracies were achieved with only one separate feature for roughly all 29 types of classifiers 
and all three window lengths, from which it can be concluded that it does not depend on these two 
variables. Possibly all six features included in this research behaved similar. Adding multiple features 
together would not add much predictive value in that case. The features have in common that they 
are all time domain features. This decision was made because of recommended features from 
Abbaspour et al. [31] and Phinyomark et al. [32]. However, as both of these studies evaluated muscles 
around the wrist, it could be that their optimal feature sets are not optimal for use on facial EMG. As 
a result it is possible that a combination of other features would improve accuracy when used in 
combination instead of separate, but this hypothesis will have to be examined to accept with certainty.  
 
Nonetheless, with features WL and DAMV separately, a maximum validation accuracy of 93.6% was 
achieved, comparable to related research using multiple features [33], [35]. When applying the 
classification algorithm in real-time, computation of only one feature could mean faster classification. 
However, this measure has not been elaborately explored in this research.  The prediction speed of all 
four models was determined using MATLAB’s classification learner (see Appendix G: Speed measures), 
but this did not include time for pre-processing steps (consisting of filtering, segmentation and 
extraction of the features). Therefore conclusions regarding the influence of the number of features 
on the prediction speed cannot be drawn yet. For future research into real-time applications, this is a 
measure that needs to be explored.  
 

4.4. Classifier performance 
Out of the 29 models included in this research, the ensemble models Subspace KNN and Bagged Trees 
outperformed all others. The acquired validation performances (with a maximum of 93.6%) are in 
comparison with results obtained by previous researchers. As cited in section 1.2.4 State of the art 
Kehri et al. [35] showed a classification accuracy of 91.66% on 12 subjects. The classifier used was a 
SVM and three facial emotions were classified: happiness, anger and disgust. Results obtained from 
SVM in our research are much lower, with a maximum validation accuracy of 73.4% (Fine Gaussian 
SVM – WL). These were non-optimized results, which may explain the poorer performance. This model 
was not optimized in this research because the ensemble classifiers outperformed all others. Another 
explanation for this large difference in validation accuracy of the SVM models could be the large variety 
between the studies. Kehri et al. use different expressions (disgust instead of fear and sadness), 
different features, use the Wavelet Packet Transform (WPT) and have a higher number of participants. 
This amount of variety between studies makes it difficult to pinpoint exactly what causes the 
differences. Researchers that have obtained higher accuracies often use deep learning [36] , which was 
not possible in this research due to the limited number of subjects. For future research, the assessment 
of deep learning algorithms is recommended, to possibly improve accuracy even more. 
 
The test performances (calculated by excluding each subject from the training set subsequently and 
testing the algorithm on that subject) were found to be 55.7%, 55.5%, 51.0% and 50.6% for respectively 
Subspace KNN (DAMV), Subspace KNN (WL), Bagged Trees (DAMV) and Bagged Trees (WL). There is 
room for improvement. A plausible explanation for these average results is the limited number of 
subjects used in this research. We attempted to create a generalized model. However, there is much 
more diversity in a population than displayed by these 5 people. In addition, possible deviations are 
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not smoothed out as much as would be when more people were used to train the model. The decision 
for such a limited number of subjects was made as this was a proof of principle study, to explore the 
practical potential. In this research the results from one of the subjects stood out, being much different 
than data from the other subjects. The mean test performance, without the results from testing that 
subject, show a maximum accuracy of 63.6% for Subspace KNN (DAMV). This is an absolute 
improvement of 7.9%, highlighting the influence of one subject on such a small sample group. It is 
expected that a larger subject group would yield better test performances.  
 
The confusion matrices provide insight into the extent to which the models were able to distinguish 
between specific expressions. Happiness was correctly identified most often. This is in accordance with 
expectations, as activity in the Zygomaticus major only occurs in expression of happiness, being a good 
predictor. Sadness was the expression most often misclassified. It was misidentified mostly as anger 
(for Subspace KNN) and fear (for Bagged Trees). This is also in accordance with expectations since these 
expressions use similar muscles.  
 
In practice, this would mean that sadness could be mistaken as anger or fear. To determine whether 
this would impose problems we need to take the desired application into account. For some 
applications it could be possible that discriminating between positive and negative expressions is more 
important than discriminating between the subcategories. Russell’s circumplex model of affect (see 
Figure 34) displays affective states in terms of arousal (vertical axis) and valence (horizontal axis). 
Expressions on the left side of the graph are generally unpleasant, and expressions on the right side of 
the graph are experienced as pleasant. From this it could be concluded that distinguishing between 
happiness versus fear, anger and sadness is most important. The classification models developed in 
this research, especially the Subspace KNN models, appear to succeed at this. The four expressions 
explored in this research were chosen from a engineering point of view. To determine which divisions 
are essential for application in certain patient groups, medical specialists should be consulted. 
 

 
  
  Figure 34: Russell’s circumplex model of affect. Emotions are displayed in term of 

arousal or activation (vertical axis) and valence or pleasantness (horizontal axis. [59]. 
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4.5. Micro expressions 
One of the sub-goals of this research was to explore the possibility to provoke and measure micro 
expressions. The experimental procedure to elicit the micro expressions was based on previous 
research of Dimberg et al. [22]–[24], showing that images of facial expressions can induce micro 
expressions in certain subjects. To determine whether micro expressions occurred, they looked at 
graphs of the EMG response after exposure to stimuli for the evaluated electrodes (n=2). As in our 
research a much larger amount of electrodes was evaluated (n=32), this exact method was found to 
be unsuitable. A similar approach of visualization of the electromyographic response over time was 
chosen by use of the facial activity maps.  
 
To identify micro expressions, mean facial activity maps for each expression were compared to the 
activity maps during the first second of exposure to the visual stimuli. Possible micro expressions were 
manually labelled, making this a subjective method. Nevertheless, micro expressions were identified 
in four out of five subjects. Subject 1 showed the most events with a total of 33 micro expressions. 
Following the method used by Dimberg et al. [22]–[24], Figure 27 confirms existence of micro 
expressions, and the ability of sEMG to measure them. This is in accordance with the expectations 
determined at the beginning of this research. Using the identified micro expressions as input for the 
machine learning models, a maximum test accuracy of 47.1% was obtained for subspace KNN with 
feature WL for subject 1. This shows a potential for classifiers trained on healthy subjects to function 
on patients will minimal facial activity as well. However, one side note that should be taken is that 
these micro expressions were studied to mimic the diminished facial expressions that occur in DOC 
patients. In this research only healthy subjects have been measured, and evoking micro expressions 
seemed like the most suitable method to simulate this behavior. In future research measurements 
should be performed on real DOC patients to determine whether the developed models properly 
function on that patient group.  
 
While evaluating the micro expressions, results from one of the subjects stood out. The mean activity 
maps from subject 4 appear to be similar for all expressions (see Table 8). This indicates that either 
subject 4 does not show a clear difference between the four evaluated expressions, or a more probable 
cause, that normalization of the data did not work correctly. It is expected that this subject was not 
sitting still during the measurement of the baseline value. This only became apparent after all models 
had been developed. Would it be detected earlier, an attempt would have been made to establish the 
baseline value at another timepoint. It is expected that this subject caused a slight decrease in the 
model performances in this research.  
 

4.6. Channel subsets 
Evaluation of the subsets of channels show that with only 8 and 15 channels, maximum test accuries 
of respectively 45.6% and 53.4% were obtained for the ensemble model of Subspace KNN and feature 
WL. The test accuracy for this model with all 32 channels was 55.5%. These results are relatively close 
to eachother. This shows that, for these expressions, the classifiers perform similar with data of fewer 
electrodes. However, this does not mean that the specific subsets work well for detection of other 
expression as well, as other muscles might be used in that case. This study provides evidence that an 
increase in electrodes does not yield a linear increase in predictor performance. In future research, 
once desired expressions to be detected have been determined, the subsets should be evaluated 
again. 
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5. Conclusion 
From the results of this research it can be concluded that facial sEMG signals can be used to detect 
four facial expressions (happiness, sadness, anger and fear). The ensemble classification algorithms 
Subspace KNN and Bagged Trees show the most promising results, with features WL and DAMV 
separately. Out of three window lengths, 250 milliseconds resulted in the largest classification 
accuracy. Based on the required expressions to be detected, a subset of channels could provide 
sufficient information for classification. In addition, this research has proven that micro expressions 
can be provoked in certain subjects by presenting images of facial expressions, and that these micro 
expressions can be measured with sEMG. 
 
Recommendations for future research include increasing the number of subjects to draw more 
significant conclusions. If a larger dataset is acquired, deep learning algorithms could be explored as 
well, avoiding the need for manual feature selection. In addition, medical experts should be consulted 
to determine which expressions need to be distinguished for the application on DOC patients, and 
possibly for other patient groups with weakened facial expressions as well. This will help to create an 
algorithm that is suitable for clinical application. 
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Appendices 

Appendix A: Protocol 
Location: ZH285. Duration: 2 hours (+/- 1 hour subject preparation and 1 hour experiment) 

Materials 
- Microelectrodes unipolar – 35 pcs. 
- Microelectrodes bipolar – 2 pcs.  
- ‘Regular’ electrodes – 1 pcs. 
- Stickers (to adhere the electrodes to 

the skin) – 37 pcs. 
- Electrode paste (Ten20) 
- Spatula/knife (to add gel) 
- Fine liner (to mark electrode locations 

before placement) 
- Measurement tape (to determine 

electrode locations) 
- Alcohol wipes 
- Cleansing peeling (Nuprep) 
- Face shield (Covid measures) 
- Face mask (Covid measures) 
- Protective gloves (Covid measures) 

 Hardware 
- Laptop 
- Monitor 
- TMSi Refa 
- Required cables to connect 

abovementioned 
 
Software 

- MATLAB 
- Psychtoolbox 
- TMSi Polybench toolbox 
- Stimuli presenter GUI 

 

 

 
 

 
 
 
 
 
 

Experimental protocol 
1. Preparation 
The following steps should be performed before 
subject arrival.  
 

1) Start the operator laptop.  
2) Connect the stimuli monitor to the laptop 

with a HDMI cable and ensure that the 
monitor is connected to the power supply.  

3) Set the connected monitor to be the main 
screen. To do this, go to ‘settings’ on the 
laptop, ‘monitor’ and select that screen 2 
should be the main screen. (note: if you skip 
this step, the stimuli will show on the 
operator laptop instead of on the separate 
monitor).  

4) Open two individual MATLAB windows. 
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1.1 MATLAB window A 

5) In window A, open the Matlab Stimulus Presenter. To do so, ensure the folder is added to the 
path, type ‘start’ in the command window and press enter.                      
 

 
 

6) Now a window will open titled ‘Stimulus design menu’. Click on ‘Start Experiment’. 

 
 

7) The following screen will open. There are three experiments available: 
1. Full_Experiment(4blocks)  one full part of the experiment 
2. Half_Experiment(2blocks)  half part of the experiment 
3. Test    one image, to test the setup  

  

 
 

8) In the same window there is a line with ‘Seed’. This number determines the order of the 
stimuli presented. The stimuli will be presented in a random order, but with the same seed 
value, the order will be identical. Therefore, for each subject and each part of the 
experiment, this number should be changed. Use the table below. 

9)  

Subject ID Part I Part II 

1 Seed = 0 Seed = 1 

2 Seed = 2 Seed = 3 

3 Seed = 4 Seed = 5 

4 Seed = 6 Seed = 7 

5 Seed = 8 Seed = 9 

 
10) On the top right a subject ID can be filled in. This ID will show in the results of the stimuli 

presentation script, that is automatically saved as excel file. In this file the order and timing 
of presented stimuli is saved. 
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1.2 MATLAB window B 
11) In the other MATLAB window, the scripts for impedance measurements and data acquisition 

can be opened. These script are called ‘ImpedanceTest’ and ‘PlotAndSave_Poly5’. 
 

1.3 Electrode preparation 
12) For easier application the electrodes can be grouped beforehand. A division can be made as 

seen in the table below. 

Area on face (left/right) Specific area Electrode numbers 

Left Forehead 1-5 

Cheeks 17-24 

Mouth 33-37 

Right Forehead 65-68 

Cheeks 81-88 

Mouth 97-101 

 
The electrodes should be grouped in the Refa as well, according to the figure below. The 
colors from the last column of the table correspond with the colors in the figure.  

 
 

13) Besides grouping, the double-sided stickers can already be placed on the electrodes.  
 
 
2. Electrode placement 
Once the subject arrives, they should be informed about the course of the experiment. They will be 
asked if they understand everything and they must sign an informed consent form at the beginning of 
the experiment. 
 

1) Prepare the face of the subject by rubbing the cleansing pealing on the skin with a cotton swab. 
cleaning it with an alcohol wipe. 

2) Then, clean the face with an alcohol wipe. This might sting a bit.  
3) Determine electrodes placement based on the information in the figures and tables below. 

Mark the positions with a fine liner. NOTE: place the mark 0,5 cm above where the center of 
the electrode should go. 

4) Once all positions are marked, place the electrodes (35 pcs.) on the skin. Use the knife/spatula 
to put a small drop of electrode gel in the hole of the electrode, peel of the sticker and stick to 
the skin. Don’t forget to attach the ground and electrodes on the biceps. 

5) Once all electrodes are in place, check the impedance. To do this, run the script 
‘ImpedanceTest’. The impedance values for all channels are calculated and saved. The 
impedance should be <10 kΩ, ideally 5 kΩ. If this is not the case, review your electrodes. 
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Electrode 
number 

Placement instructions Muscle(s) involved 

FOREHEAD 

1,65 Measure from deepest/lowest 
point on nasal bone 4 cm upwards 
onto the forehead. From this point 
on, go 2,5 cm outwards (both left 
and right) and place the electrodes. 

 

Frontalis, pars medialis (blue) and pars lateralis 
(green) 

 

2,66 Measure 2,5 cm outwards from 
electrode 1,65, and place the 
electrode there on both sides of the 
forehead. 

3,67 Place the electrodes right above 
the eyebrow, in the middle of 
electrodes 1-2 and 65-66. 

4,68 Place the electrodes just above the 
beginning of the eyebrow. 

Procerus (purple), Corrugator Supercilii (teal) 
and Depressor Supercilii (red) 

 
 

5 Place the electrode at the deepest 
point of the nasal bridge, between 
the inner eye corner and beginning 
of eyebrow. Ask subject to frown to 
determine place where electrodes 
can properly adhere. 

CHEEKS 

17,81 Place the electrodes in the outer 
corner of both eyes. Locate a bit 
out and under to avoid wrinkling of 
the skin when smiling. 

 

Orbiluclaris oculi 

   
 

18,82 Following the curve of the eye 
socket, place this electrode 2 cm 
from electrodes 17,81. 

19,83 Measure from the inner eye corner 
to outer point of nostril, place 
electrode at 1/2. 

 

Levator labii superioris alaeque nasi 

 
 

20,84 Place the electrodes 1 cm outwards 
from the outer point of the nostrils. 
Instruct the subject to smile, and 
ensure electrodes aren’t placed in 
skin crease.  

 

Levator labii superioris 

 
 

21,85 From 20,84, go 1 cm outwards, in 
direction of the angle of the 
mandible (palpate). 

 

Zygomaticus minor 
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22,86 Measure from the outer eye 
corners to the tragus, mark half. 
Then, from that mark to the corner 
of the mouth, mark half and place 
the electrodes. 

 

Zygomaticus Major 

 
 

23,87 Measure from the corner of the 
mouth to the tragus, place the 
electrode at 1/2.  

 

Masseter 

 
 

24,88 Measure from the corner of the 
mouth to the corner of the 
mandible (palpate). Place the 
electrodes at 1/3 from the corner 
of the mouth. 

 

Risorius 

 
 

MOUTH 

33,97 Place the electrodes between the 
nose and upperlip, as close to the 
crease as possible. Instruct subject 
to smile to determine exact 
placement. 

 

Orbicularis Oris (green) and Mentalis (purple) 

 
 

34,98 Follow the bottom lip and locate 
the electrodes at 1/3 distance from 
the corners of the mouth.  

36 Place the electrodes 2-2,5 cm 
below the electrodes 34,98, in the 
middle of the chin 

35,99 Locate between the corners of the 
mouth and the mandible, at 1/2. 

 

Depressor anguli oris (triangularis) 

   
 

GROUND ELECTRODE 
ground Palpate the left collarbone and place a ‘regular’ electrode (no microelectrode)  
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3. Experiment 
Now the real experiment can start. The experiment consists of three parts, each taking ±15 minutes. 
Four blocks of expressions will be showed during each part, all followed by a 20 second break. See the 
figure below for a complete time overview. 

 
 
Part I 

1) Instruct the subject that they have to view the screen and stay still. In between stimuli they 
should remain neutral. 

2) Ensure all scripts are set correct:  
a. Stimulus presentor: seed and subject ID on the correct number 
b. Data acquisition: subject ID and part of experiment in line 6. 

3) First start data acquisition in MATLAB window B. To do this, run the script. (All ranges can be 
set by 'r', a dialog allows to put in a range. Press 'a' for autoscale). 

4) Next, start the stimulus presentor by clicking on the ‘start’ button. 
5) Once the stimulus presentor is ended, stop the data acquisition by pressing ‘q’ or the cross. 
6) IMPORTANT: Go to the results folder of the stimulus presentor and manually set the name of 

the file to: ‘subjectX_partX’. (If you don’t change the name, the next file won’t be saved). 
7) Now the subject can have a 10 minute break to relax or stretch their face. The electrodes must 

remain in place. 
 
Part II 

8) Instruct the subject that they have to view the screen and mimic the expressions, for as long 
as the images appear on screen (5s). In between stimuli, they should remain neutral.  

9) Repeat steps 2-6 from Part I. IMPORTANT: set seed +1.  
 
Part III 

10) Instruct the subject that they have to view the screen and express the emotions written on 
screen, for as long as the words appear on screen (5s). In between they should remain neutral. 

11) Repeat steps 2-6 from Part I.  
 
Once the experiment is finished, all electrodes can be taken off, the face can be cleaned and the subject 
is free to go. 
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4. After the experiment 
 
1) Remove all stickers from the electrodes and clean all cables and the setup with an alcohol 

wipe.  
2) Check if you have six files for this subject: 

1. stimuli overview part I 
2. stimuli overview part II 
3. stimuli overview part III 
4. EMG data part I 
5. EMG data part II 
6. EMG data part III 
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Appendix B: Information Brochure and Informed Consent 

Information brochure 
High density EMG to detect and identify facial expression 
 
Dear reader, 
 
In this letter we would like to inform you about the research “High-density EMG to detect and identify 
facial expression” that you are asked to participate in. Your decision to accept or deny participation 
should be based on proper information. This letter consists of the aim of the research, details about 
the procedure, and possible risks. If you decide to participate, you are free to withdraw from the study 
at any time, without stating a reason. Within 24 hours after the experiment, you can decide that your 
data may not be used for the research after all, again, without statement of a reason.  
 
At the end of the entire research, you can be informed about the results obtained by means of a 
debriefing, if desired. Signing this document, you declare that you are a volunteer and will not receive 
remuneration. Details about the date and location of the experiment will be shared with you 
separately. 
 
Purpose of the research 
Analysis of facial expression has been of great interest in several fields for quite some time. It has 
applications in marketing, surveillance, entertainment, and healthcare, amongst others. Obvious facial 
expressions that we all come across from time to time are disgust, fear, joy, surprise, sadness and 
anger. Facial expressions are very important in non-verbal communication, showing reactions and 
attention. And even though there are differences in communication between countries/cultures, these 
six facial expressions are universal. In real-life, often only subtle changes in expression take place. 
These subtle changes can be difficult to detect and distinguish. Some expressions are so subtle that 
they cannot be detected with the naked eye. Different techniques have been evaluated that could aid 
in detection of these expressions. One method with good prospects is EMG based facial expression 
detection. 
 
In the proposed research, electromyography (EMG) measurements of the face will be recorded as 
response to presented pictures of facial expressions. These EMG measurements show the muscle 
activity corresponding with different emotions. As this research is in its initial state, the main aim is to 
verify the experimental setup and to check the feasibility of EMG to identify facial expressions. The 
results of this study (the established, tested and validated protocol) can be used to detect the facial 
expressions in patients in whom this is less evident (e.g. patients with facial paralysis, facial lesion or 
disorders of consciousness). It is expected to detect and identify the facial expressions in these patients 
with limited functionality, improving communication. 
 
Procedure 
Duration 
The experiment will take about two consecutive hours including 
preparation, familiarization, and performing the experimental task. 
 
Preparation 
In order to measure muscle activity, 32 micro electrodes will be 
placed on your face (see figure 1). To do this properly, the skin must 
be cleaned, and if needed, shaved. We will clean your face using 
alcohol and a cleansing peeling. The alcohol might dry out your skin. 
Be aware of this and, if desired, bring some moisturizing cream and/or 
make-up to apply afterwards.  Figure 1: Electrode configuration 
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Experiment 
During the measurements you will be seated in front of a screen. On this screen, several images of 
faces that display a specific emotion, and names of emotions, will be shown. You are informed to 
observe and/or mimic the emotions, during which your muscle activity will be measured. Several 
rounds of visual stimuli and measurements will take place. In between rounds there is time to rest and 
relax your muscles.   
 
Inclusion/Exclusion criteria 

- The participant should be 18 years or older; 
- The participant should not have any neuromuscular disorder and/or facial lesion. 

 
Benefits and risks 
There are no expected risks. Alcohol is used to clean the face which might dry the skin a bit. 
Furthermore, all equipment used in this experiment is completely safe. We will be cautious, no physical 
or mental harm is expected. You will be confronted with a number of pictures to induce a particular 
emotional state. Be aware that this might provoke unwanted feelings.  
 
There will be no direct benefits for you from participating in this research. On the long run, we hope 
to be able to detect facial expressions in persons with limited muscle activity, improving 
communication. 
 
Data collection 
Your data will be handled confidentially and will be anonymized right after the experiment. Your name 
will be in no manner connected to the data.  We will never disclose the data to third parties without 
your permission. Disclosure of data include, but is not limited to, publication in a journal, presentation 
at a conference, presentation in a colloquium, or discussion in internal consultation. In publication of 
this research, as MSc thesis and possibly scientific publications, the personal information (e.g. gender, 
age) will be given on group level, no individual data will be disclosed.  
 
Yours sincerely, 
 
 
 
 
Contact information 
 

Researcher 
Veerle Diederiks 
University of Twente 
+31657752130 
v.l.diederiks@student. 
utwente.nl  
 

Research leader 
Utku Yavuz 
University of Twente 
Faculty of EEMCS 
Horst -Zuidhorst De Horst 2 
7522LW Enschede 
The Netherlands 
Tel: +31(0)534898158 
s.u.yavuz@utwente.nl 
 

Ethics Committee member 
Dr.ir. J.R. Buitenweg 
University of Twente 
Faculty of EEMCS 
Horst -Zuidhorst De Horst 2 
7522LW Enschede 
The Netherlands 
Tel: +31534892705 
j.r.buitenweg@utwente.nl  
 

  

mailto:v.l.diederiks@student.utwente.nl
mailto:v.l.diederiks@student.utwente.nl
mailto:s.u.yavuz@utwente.nl
mailto:j.r.buitenweg@utwente.nl
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Informed consent  
High density EMG to detect and identify facial expression 
 

- I declare that I’ve read and understand the information brochure about the research titled: 
“High density EMG to detect and identify facial expression”. I have been able to ask 
questions and, if applicable, been answered to my satisfaction; 

- I declare that I voluntarily participate in the abovementioned experiment. I’m aware that I 
can withdraw from this study at any time, up to 24 hours after the experiment, without 
stating any reason; 

- I give permission to process my data in abovementioned manner. Data will be anonymized 
and not shared with any third parties without my consent.  

 
 

□ I would like to be informed in the future about the results of this study. I give permission to reach 
out to me at the following email address: 
 
 _____________________________________________  
 

 
……………………………………………………………………………………………………………………………………………………………. 
 
Participant information 
 
Age: _______ 
 
Gender:  

□ Male 
□ Female 
□ Other: ___________ 

 
……………………………………………………………………………………………………………………………………………………………. 
 
 
 
 
 
_________________________   ________________  ____ /_____ /______ 
 
Name participant    Signature   Date 
 
 
 
 
 
The researcher declares to have properly informed the participant about the research and, to the 
best his/her ability, ensured that the participant understands to what they are freely consenting. 
 
 
_________________________   ________________  ____ /_____ /______ 
 
Name researcher    Signature   Date 
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Appendix C: FACES database 
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Appendix D: Results for all classifiers, features and window lengths  
In the tables on the following three pages the results for all classifiers (n=29) and features (n=6) are 
shown for window lengths of 250, 500 and 1000 ms respectively. Results shown is validation 
accuracy (%). 
 

Window length = 250 ms Feature →  

Model ↓ MAV RMS WL SD DAMV IAV all 

Tree Fine tree 76.5 75.8 76.0 75.5 76.2 76.0 77.3 
Medium tree 69.4 68.6 68.0 68.2 68.8 69.5 68.9 
Coarse tree 55.5 55.6 56.9 56.1 56.7 55.5 58.4 

Discriminant 
Analysis 

Linear discriminant 54.7 54.8 55.8 54.5 56.0 54.6 61.1 
Quadratic discriminant 64.7 64.7 64.3 64.0 64.1 64.3 -* 

Naïve Bayes Gaussian Naïve Bayes 47.5 47.2 47.7 49.0 46.5 46.6 48.2 
Kernel Naïve Bayes 65.3 65.7 62.6 66.0 62.6 65.5 65.5 

Support 
Vector 
Machine 

Linear SVM 64.1 64.1 65.0 63.9 64.8 63.9 65.5 
Quadratic SVM 70.4 70.5 70.7 69.8 70.9 70.4 71.0 
Cubic SVM 72.4 72.1 72.8 71.4 72.6 72.1 72.3 
Fine Gaussian SVM 72.5 72.5 73.4 71.6 73.1 72.5 72.8 
Medium Gaussian SVM 69.3 69.0 69.5 68.9 69.4 69.1 69.5 
Coarse Gaussian SVM 63.7 63.3 63.8 63.5 63.9 63.8 64.1 

K-nearest 
neighbors 

Fine KNN 78.1 77.9 79.1 77.2 79.1 78.2 78.4 
Medium KNN 74.3 74.1 74.7 73.6 74.4 74.4 74.6 
Coarse KNN 66.6 66.4 66.7 66.5 66.5 66.3 66.4 
Cosine KNN 74.4 74.2 75.2 73.5 74.7 74.6 74.5 
Cubic KNN 73.9 73.8 74.4 72.9 74.1 73.9 74.1 
Weighted KNN 77.1 76.7 77.8 75.9 77.6 77.0 77.2 

Ensemble Boosted Trees 74.1 74.3 74.4 74.5 74.2 74.3 75.5 
Bagged Trees 90.2 90.1 91.5 89.5 91.0 90.1 90.9 
Subspace Discriminant 69.0 68.4 69.7 68.0 69.4 68.2 63.5 
Subspace KNN 92.8 92.4 93.6 91.7 93.6 92.8 87.2 
RUSBoosted Trees 69.4 68.6 68.0 68.2 68.8 69.5 68.9 

Neural 
Network 

Narrow NN 68.4 68.2 69.6 67.8 69.2 68.8 69.7 
Medium NN 71.2 70.8 71.6 70.5 71.8 71.2 71.5 
Wide NN 73.8 73.5 73.9 72.8 74.2 73.9 73.7 
Bilayered NN 68.8 68.9 69.7 68.2 69.4 68.7 70.1 
Trilayered NN 69.0 69.3 69.8 68.7 69.2 68.7 69.6 

* failed → error: one or more of the classes have singular covariance matrices for their predictor values. This 

makes training fial. Try the “Covariance structure: Diagonal” advanced option. 
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Window length = 500 ms Feature →  

Model ↓ MAV RMS WL SD DAMV IAV all 

Tree Fine tree 75.1 75.6 76.2 75.5 76.4 75.6 76.7 
Medium tree 68.6 68.3 67.6 69.2 68.1 69.1 69.4 
Coarse tree 54.8 55.5 57.3 55.7 57.6 55.4 58.2 

Discriminant 
Analysis 

Linear discriminant 55.6 55.7 56.7 55.3 56.9 55.7 62.5 
Quadratic discriminant 65.4 65.4 65.0 64.8 65.2 65.5 -* 

Naïve Bayes Gaussian Naïve Bayes 47.7 46.2 48.0 48.8 46.1 47.3 47.4 
Kernel Naïve Bayes 65.7 66.1 61.4 66.8 62.0 65.6 65.9 

Support 
Vector 
Machine 

Linear SVM 64.4 64.5 65.2 64.4 64.7 64.5 65.6 
Quadratic SVM 69.5 69.5 70.0 68.9 70.2 69.2 69.9 
Cubic SVM 70.8 70.7 71.1 70.3 71.0 70.8 70.8 
Fine Gaussian SVM 70.8 70.7 71.2 70.1 71.1 70.6 71.0 
Medium Gaussian SVM 68.0 68.1 68.0 68.2 68.5 67.8 68.2 
Coarse Gaussian SVM 61.8 61.9 61.7 61.6 61.9 61.4 62.0 

K-nearest 
neighbors 

Fine KNN 75.9 75.5 76.4 75.2 76.8 76.1 76.5 
Medium KNN 70.2 70.0 70.4 69.6 70.5 70.1 70.3 
Coarse KNN 63.8 63.9 64.1 63.5 64.1 64.0 64.1 
Cosine KNN 69.9 69.9 70.2 69.8 70.4 69.9 70.2 
Cubic KNN 69.6 69.9 70.0 69.1 70.1 69.7 70.0 
Weighted KNN 73.9 74.1 74.5 72.9 74.9 73.6 74.1 

Ensemble Boosted Trees 75.3 75.0 74.1 74.6 73.9 75.3 75.8 
Bagged Trees 87.5 87.9 88.1 86.8 87.9 87.6 87.8 
Subspace Discriminant 69.1 69.1 70.3 69.1 70.1 69.5 64.7 
Subspace KNN 89.9 89.4 90.1 89.1 90.4 89.7 86.9 
RUSBoosted Trees 68.6 68.3 67.6 69.2 68.0 69.1 69.4 

Neural 
Network 

Narrow NN 68.1 68.8 68.2 68.0 69.0 68.8 68.8 
Medium NN 70.4 70.1 71.2 69.6 71.0 70.3 70.6 
Wide NN 72.5 72.2 72.6 71.8 72.9 71.5 72.8 
Bilayered NN 68.2 68.6 68.8 68.1 68.6 68.1 69.5 
Trilayered NN 68.5 68.5 68.8 67.9 68.0 68.2 69.1 

 
  



59 

 

 
Window length = 1000 ms Feature →  

Model ↓ MAV RMS WL SD DAMV IAV all 

Tree Fine tree 74.2 74.9 75.3 74.8 74.7 75.3 75.8 
Medium tree 69.8 69.4 68.3 69.5 67.7 70.6 70.1 
Coarse tree 55.2 56.7 55.7 56.6 56.1 55.2 58.8 

Discriminant 
Analysis 

Linear discriminant 56.3 56.6 57.4 56.0 57.7 55.9 64.0 
Quadratic discriminant 66.3 66.4 66.1 66.5 66.1 65.7 -* 

Naïve Bayes Gaussian Naïve Bayes 48.4 46.7 44.7 47.3 47.3 45.4 45.9 
Kernel Naïve Bayes 65.1 66.2 61.1 66.6 60.8 65.5 64.8 

Support 
Vector 
Machine 

Linear SVM 64.4 64.5 64.7 64.7 65.0 64.5 65.3 
Quadratic SVM 68.3 68.3 68.6 68.0 69.1 69.2 68.2 
Cubic SVM 68.2 68.0 69.1 67.9 69.3 68.9 68.8 
Fine Gaussian SVM 68.1 68.2 68.0 67.3 68.3 68.1 67.9 
Medium Gaussian SVM 66.8 67.0 67.0 67.1 67.6 67.3 67.0 
Coarse Gaussian SVM 58.9 59.4 59.0 59.2 59.1 59.2 59.2 

K-nearest 
neighbors 

Fine KNN 70.4 70.3 70.8 70.1 71.3 70.4 70.3 
Medium KNN 66.9 67.6 67.9 67.1 67.8 67.6 67.8 
Coarse KNN 61.3 61.4 61.0 61.7 60.9 61.1 61.5 
Cosine KNN 66.9 66.8 67.3 66.5 67.6 67.3 67.2 
Cubic KNN 67.4 67.4 67.7 66.6 67.7 67.8 68.0 
Weighted KNN 69.3 70.0 69.9 69.7 69.9 70.0 69.0 

Ensemble Boosted Trees 73.8 75.1 73.6 75.0 73.6 74.3 75.4 
Bagged Trees 82.5 83.6 82.6 82.3 82.8 83.6 82.8 
Subspace Discriminant 69.7 69.7 70.8 69.9 70.6 69.7 66.2 
Subspace KNN 84.0 84.0 84.1 84.4 84.8 84.5 72.3 
RUSBoosted Trees 69.8 69.3 68.3 69.5 67.7 70.6 69.8 

Neural 
Network 

Narrow NN 67.7 68.0 68.7 66.0 68.1 66.9 67.6 
Medium NN 68.7 68.5 68.3 67.8 68.4 68.4 68.4 
Wide NN 69.4 69.1 69.1 69.2 69.5 69.6 69.1 
Bilayered NN 66.7 68.3 68.0 67.2 67.7 66.8 67.7 
Trilayered NN 67.5 68.0 67.3 67.0 68.5 67.1 68.3 
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Appendix E: Optimization 
For possible increase of performance, combinations of the features have been evaluated. Results show 
that accuracy did not improve significantly.  
 

 WL+DAMV WL+DAMV+MAV WL+MAV MAV+RMS 

Ensemble Bagged Trees 91.3% 91.2% 91.0% 90.1% 
Subspace KNN 93.4% 93.3% 93.5% 92.7% 

 
 

Appendix F: Channel subsets 
 
 

Channels a(b) 
with a and b being 
symmetrical channels 

Ensemble: subspace KNN Ensemble: bagged Trees 

DAMV WL DAMV WL 

+4(21), 11(27) 60.0% 60.3% 71.8% 71.8% 

+1(18) 69.0% 69.1% 84.2% 84.3% 

+2(19) 86.6% 86.2% 86.2% 86.8% 

+3(20) 86.8% 86.4% 87.4% 87.4% 

-1(18) 84.7% 85.1% 85.2% 84.9% 

+17, +1(18) 90.2% 91.1% 88.9% 88.6% 

+5 90.2% 91.2% 88.8% 89.2% 

+7(23), -5 90.8% 91.3% 89.4% 89.2% 

+16(32) 91.4% 91.4% 89.9% 89.8% 

+8(24) 92.2% 91.8% 90.1% 89.9% 

-3(20) 91.8% 90.7% 90.3% 90.0% 

 

 

Appendix G: Speed measures 
The table below shows the prediction speed (in classified objects per second) and training time (in 
seconds) for the four models: Subspace KNN with feature WL, Subspace KNN with feature DAMV, 
Bagged Trees with feature WL and Bagged Trees with feature DAMV. Bagged Trees operated 
significantly faster.  
 

 Subspace KNN Bagged Trees 

WL DAMV WL DAMV 

Prediction speed 686 obs/sec 838 obs/sec 29600 obs/sec 31600 obs/sec 

Training time 96.691 sec 77.18 sec 15.6129 sec 14.400 sec 

 


