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1 Introduction

The female pelvic floor muscles provide support to the pelvic floor organs and also facilitates
the passage of the baby during delivery. This group of muscles is known as the Levator Ani
Muscles (LAM). The Puborectalis Muscle (PRM) is one of the muscles in LAM. PRM can stretch
up to 250% of their original length during vaginal delivery. This may cause permanent muscle
trauma. As a consequence, one fourth to one sixth of all women above the age of sixty suffer
from urinary incontinence and pelvic organ prolapse (POP), respectively. This can cause major
inconveniences in their daily life. To better understand the mechanisms associated with the
pelvic floor muscles, it is necessary to obtain functional and diagnostic information about these
muscles.

In order to observe these muscle movements, particularly the PRM, 3D/4D Transperineal Ultra-
sound (TPUS) is used. While a female candidate voluntarily contracts and relaxes her muscles,
the movements of the pelvic muscles are captured in US volumes. Although MRI scans directly
generate 3D anatomical visualizations, compared to Ultrasound, they are also more expensive.

1.1 Research goal

The goal of this master assignment is to develop a Quantitative Ultrasound (QUS) tissue char-
acterization technique that can detect pathological changes due to muscle trauma in the PRM.
For this purpose, US images of the PRM will be analyzed and through appropriate techniques
and models, the state of the muscular tissue will be evaluated.

Ideally the method should be fully automated and provide an accurate classification of the ex-
tent of the damage of PRM. To this extent, more specific research questions must be answered
thoroughly:

• How are skeletal muscle injuries portrayed in an US image?

• How can the dynamic assessment of a muscle determine the presence of damage?

• What are the main sources that can affect the characterization of the tissue?

• Which image processing techniques can be used to better distinguish between a dam-
aged muscle and an undamaged one?

1.2 Thesis outline

First chapter provides an introduction to the topic alongside the research goal and an outline
of the master thesis. Second chapter includes the research article which is the results of the
master thesis assignment. The research article is structured as follows: Introduction, Method,
Results, Discussion and Conclusion. The conclusion also includes recommendations for future
work. Last chapter concludes the thesis by presenting answers to the research questions and
an overall conclusion of the results.

Robotics and Mechatronics Catalin Cernat
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Abstract—Pelvic floor muscles have the role to prevent pelvic
organs’ descent. During crowning the puborectalis muscle (PRM),
one of the female pelvic floor muscles, can be damaged. This can
potentially cause irreversible muscle trauma and even lead to
disconnection from its insertion point i.e. avulsion. Ultrasound
imaging allows diagnosis of such trauma based on geometric
features

We developed a quantitative ultrasound (QUS) tissue charac-
terization method to obtain information about the state of the
tissue of the PRM. The muscle was divided into seven regions
of interest (ROIs) and the mean echogenicity, the entropy and
the shape parameter of the statistical distribution of gray values
were analyzed. This analysis was performed when the muscle
was at rest and when it was contracted. We found that, for
PRMs with unilateral avulsion compared to undamaged PRMs,
the shape parameter was higher (p < 0.01), the entropy was
lower(p < 0.01) and mean echogenicity was higher(p = 0.02).
This method might be easily applicable on quantifying PRM
damage.

I. INTRODUCTION

The female pelvic floor muscles provide support to the
pelvic floor organs and also facilitate the passage of the baby
during delivery1. This group of muscles is known as the
Levator Ani Muscles (LAM). The Puborectalis Muscle (PRM)
is one of the muscles in LAM. PRM can stretch up to 250%
of its original length during vaginal delivery2. This may cause
permanent muscle trauma and represents a risk factor for later-
life pelvic floor dysfunction. After vaginal childbirth, about
half of all women present substantial alteration of functional
anatomy affecting the puborectalis muscle (PRM) which is
currently the best-defined etiological factor in the pathogenesis
of pelvic organ prolapse (POP)3. As a consequence, one fourth
to one sixth of all women above the age of forty suffer
from pelvic organ prolapse (POP) and urinary incontinence,
respectively4 5. This can cause major inconveniences in their
daily life. To better understand the mechanisms associated
with the pelvic floor muscles and trauma caused to them,
functional and diagnostic information about these muscles
might be beneficial.

A. Muscle trauma in ultrasound

Microstructural composition of muscle tissue can be as-
sessed indirectly by measuring echogenicity (grayscale with
a range 0–255)6. As presented by Woodhouse and McNally,

strains, tears and laceration are muscle injuries most com-
monly cause by the overelongation of muscles in the body.
These indirect muscle lesions can be visualized with an
ultrasound image as areas of altered echogenicity within the
muscle. In figure 1 an example of partial tear of muscle fibers
of the rectus femoris (located in the upper leg) and a small
hematoma are shown.

Fig. 1: Rectus femoris showing partial tears(arrowheads) and
a small hematoma(arrows)7

Recurrent and/or sever muscle injury, on the other hand, can
leave behind intramuscular scars which appear as hyperreflec-
tive focus or hyperechogenic areas and can alter the functional
dynamics of the surrounding muscle7. Such an example of a
hyperechogenic region due to damage can be seen in figure 2.

Fig. 2: Scar formation seen after recurrent injury(arrows)7



B. Damage and its diagnosis

One of the most common form of macroscopic damage
of the LAM is avulsion. Avulsion is the dislodgment (dis-
connection by force) of the PRM from its insertion, the
pubic symphysis (PS)3. In case of unilateral avulsion, this
disconnection of the muscle is from any one side of the bone
PS whereas in case of bilateral avulsion, disconnection is from
both sides of the PS. This can be diagnosed according to
Dietz by palpation or digital assessment of the pelvic floor
muscle (PFM) via the vaginal or transanal route. However, this
method poses a challenge since the clinician must be trained
to diagnose it correctly and the distinction between partial or
complete trauma can be hard to detect8.

The alternative, more reproducible way of diagnosing such
trauma is with the aid of ultrasound imaging. 3D/4D Transper-
ineal Ultrasound (TPUS) was first described in 20048 to
render volumes which then the clinician evaluates by assessing
different interslice intervals (2D images within the volume)
containing the PRM. Diagnosis of unilateral avulsion is per-
formed by measuring the distance of each end of the insertion
point of PRM from the urethra in the 2D images. If this
distance is larger than 25mm, then that end of the PRM is
considered to be disconnected from its insertion point8. Hence
the diagnosis is unilateral avulsion.

The aim of this study is to develop a quantitative ultrasound
(QUS) tissue characterization method to obtain functional and
diagnostic information about the state of the tissue of the PRM.
We hypothesized that a change in the state of the tissue within
the PRM will result in a change in the statistical distribution
of gray values in a B-mode image of the PRM. For this
purpose PRMs without avulsion and with unilateral avulsion
have been investigated. Furthermore, two distinct scenarios
were analyzed: first, when the muscle was at rest and second
when the muscle was voluntarily contracted. Based on the
findings made by Crema et al., it is expected that the two
scenarios will show different results since muscle damages
such as tears are more prominent in a contracted muscle.
The developed QUS method is then evaluated for statistical
significance and using receiver operating characteristic curve
(ROC) at various threshold settings.

II. METHOD

A. Data acquisition

For this work, 3D/4D Transperineal Ultrasound (TPUS) was
acquired using Philips X6-1 matrix transducer connected to
an EPIQ 7G US machine (Philips Healthcare, Bothell, WA,
USA), at the University Medical Centre (UMC), Utrecht, The
Netherlands. Data was acquired from the PRM in women
without an avulsion (n=8) and in women with unilateral
avulsion (n=6). The Medical Research Ethics Committee of
UMC Utrecht exempted the project from approval, and all
volunteers signed appropriate research consent forms.

All the data from women with undamaged as well as
unilateral avulsion of PRM were acquired with the same preset
in the US machine. The time gain compensation (TGC) and

other settings like filtering or processing were not changed
for any acquisition. One volume consists of 352x229x277
pixels(in the X, Y and Z direction respectively) for a total
physical volume of 14.78x13.74x9.41 centimeters. In figure 3,
a slice of the 3D volume containing the PRM can be seen.
The highlighted yellow area represents the PRM. The data
were stored in the Digital Imaging and Communications in
Medicine (DICOM) format. The volumetric data was acquired
at a rate of approximately 1.5 volumes/sec resulting in 22 vol-
umes which span over 15 seconds. During this time window,
the women voluntarily contracted their pelvic floor muscles,
from rest. Based on the principle of altered echogenicity due
to muscle trauma, Crema et al. presented a new approach
towards detecting minor muscle injuries. Dynamic ultrasound
assessment involves the candidate voluntarily contracting the
muscle in order to better expose areas of low echogenicity
inside the muscle. These areas could be minor partial tears
or minor strains of muscle fibers. These partial tears or
minor strains look like ill-defined hypoechogenic areas at rest.
Whereas, at contraction these appear as much more prominent
areas of low echogenicity. This is analogous to our situation,
as the female candidate voluntarily contracts her PRM starting
from rest.

Fig. 3: Slice of a US volume of PRM (top view)

B. Muscle segmentation

The PRM was automatically segmented in the 3D volume
using an Active Appearance Model (AAM)10. The study
showed that automatic segmentation provides volumes similar
to manual segmentation of the PRM. For the purpose of this
work, the segmented PRM was used. The 3D volume of the
segmented muscle can be seen in figure 4.

The segmented volume of the muscle at rest (fig. 4) was
tracked over the contraction cycle by calculating intervolumet-
ric displacements for each pair of subsequent volumes using a
3D normalized cross-correlation algorithm11 12. The resulting
segmentation made it possible to also analyze the PRM in the
contracted state. From now on, the 3D segmentation of the
PRM, both at rest and contracted, will be referred to as the
mask.



Fig. 4: 3D volume of segmented PRM at rest

A PRM with unilateral avulsion presents a disconnection,
on one end, from the PS. Meanwhile, an undamaged PRM,
without avulsion, has both ends connected to the insertion
point on the PS. To better exploit this particularity, the muscle
has been further divided into seven regions of interest (ROIs)
as shown in figure 5. This has been done by collapsing the
3D mask of the PRM onto a 2D plane which represents the
top view of the muscle and was saved as a binary mask.
Afterwards, the binary mask was automatically divided into
seven ROIs of equal number of points and each ROI has
been multiplied, element wise, with the 3D mask. The gray
values were extracted by multiplying each ROI with the US
volume, slice by slice. When analyzing an undamaged PRM,
both regions one and seven were used, while for a PRM with
unilateral avulsion, either region one or seven was used. This
depends on whether the avulsion is located on the left (region
one) or on the right (region seven). This has been done in order
to analyze the areas closest to a possible damage, therefore the
areas closest to the insertion points.

Fig. 5: ROIs of PRM

C. Mean echogenicity

Bellos-Grob showed that structural changes in the puborec-

talis muscle can be distinguished and analyzed by measuring
the mean echogenicity of the muscle (MEP), during and after
pregnancy. It was shown that six months postpartrum, MEP
was significantly (p < 0.001) lower than the values during
pregnancy. Therefore it is expected that structural changes due
to muscle trauma can also be analyzed using mean echogenic-
ity. Mean echogenicity can be calculated by summing the grey
values of the pixels in each ROI and dividing the result by the
number of pixels in that ROI.

D. Shannon’s entropy

Shannon’s entropy is a widely used QUS technique for
ultrasound tissue characterization which measures the signal
uncertainty or level of information. Chen et al. investigated
the clinical value of Shannon’s entropy in grading different
stages of hepatic steatosis. The results were compared to a
deep learning VGG-16 model. It was shown that Shannon’s
entropy outperformed VGG-16 in identifying candidates with
moderate or severe hepatic steatosis. Furthermore, Chen et al.
showed that when compared to a conventional statistical
parametric based on Nakagami distribution, Shannon’s entropy
outperformed it with a 10% higher area under the receiver op-
erating characteristic (ROC) curve. For a given ROI, Shannon’s
entropy can be calculated as13:

HC = −
n∑

i=1

w (yi) log2 [w (yi)] (1)

where w (yi) represents the probability value obtained from
the normalized histogram counts, n is the number of bins in
the histogram and yi is the discrete random variable of the
backscattered echo intensity.

It is expected that a change in the structure of the PRM will
result in a change in the entropy, therefore change in the level
of information that an area within the PRM may contain.

E. Statistical distribution of gray values

As mentioned by Girardi, tissue microstructure information
can be found in the envelope of the backscattered ultra-
sonic echo. The radio-frequency (RF) signals backscattered
from tissue are dependent on the shape, size and density
of the scatterers inside the tissue15. According to statistics
of ultrasound echoes measured from biological tissues, the
envelope can be classified as pre-Rayleigh, Rayleigh, and post-
Rayleigh distributions. All these three types of distributions
can be modeled by Nakagami distribution. The probability
distribution of the Nakagami model is given by16:

pA(A | m,Ω) =
2mmA2m−1

Γ(m)Ωm
∗ exp

(−mA2

Ω

)
∗ U(A) (2)

where U(·) is the unit step function, Γ(·) is the gamma
function, m is the Nakagami shape(or spread) parameter and
Ω is the scaling factor.

If the envelope follows a Nakagami distribution, then the
intensity follows a gamma distribution17 and the probability
density function (PDF) is given by:



PGamma (I | α, β) =
βα

Γ(α)
Iα−1e−βI (3)

where α is the shape parameter, and β is the rate parameter.
The shape parameter of the Gamma distribution resulted

from the pixels distribution within each ROI of the B-MODE
image of the PRM. It was determined using a maximum
likelihood estimator. It is expected that a change in the tissue
microstructure will be reflected in a change of the pixel
distribution in each ROI, resulting in a change in the shape
parameter as well.

F. Analysis procedure

The mean echogenicity, entropy and the shape parameter
values of the Gamma distribution were computed for each
ROI. Since the sample size was small, the Wilcoxon Rank Sum
Test was used to determine whether the computed values could
be described by distributions with equal medians implying
that, the proposed parameters cannot be used to distinguish
between a damaged or an undamaged PRM. Furthermore, for
each parameter, the receiver operating characteristic (ROC)
curve was computed and the area under the curve (AUC)

was calculated in order to compare the diagnostic ability of a
classifier using each of the three parameters described above.
The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold
settings. Since the amount of data points in the graph is equal
to the dataset, a polynomial curve was fit on top of the original
graph18. This has been done in order to the an idea of the trend
presented by the points.

III. RESULTS

Figure 6 presents the results for the mean echogenicity,
entropy and shape parameter values as boxplots in a side by
side comparison for the undamaged and damaged PRM both
at rest and at contraction. ”On each box, the central mark
indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered
outliers. The outliers are plotted individually using the ′+′

symbol.”19

Figure 7 shows the ROC curves for the same scenarios. Here
the blue dots represent discrete transition points while the red
line represents the approximated curve based on those points.

(a) Mean echogenicity at rest (b) Entropy at rest (c) Shape parameter at rest

(d) Mean echogenicity at contraction (e) Entropy at contraction (f) Shape parameter at contraction

Fig. 6: Mean echogenicity, entropy and shape parameter value for PRM without avulsion and with unilateral avulsion, at rest
(top row) and contracted (bottom row)



(a) ROC mean echogenicity at rest (b) ROC entropy at rest (c) ROC shape parameter at rest

(d) ROC mean echogenicity at contraction (e) ROC entropy at contraction (f) ROC shape parameter at contraction

Fig. 7: ROC curves for mean echogenicity, entropy and shape parameter when PRMs were at rest (top row) and when PRMs
were at contraction (bottom row). Here the blue dots represent discrete transition points, while the red line is the approximated
(fitted) curve based on those points

A. Mean echogenicity

When PRMs were at rest, the mean echogenicity showed
an increase (p-value=0.02) for PRMs with unilateral avulsion
compared to PRMs without avulsion. The distance between the
estimated means of the two classes was found to be 25.22 and
the AUC for the fitted curve of 0.81. For the case when PRMs
were at contraction, the mean echogenicity showed an increase
(p-value=0.28) for PRMs with unilateral avulsion compared to
PRMs without avulsion. However this is not visible in figure
6d due to the fact that the boxplots focus on the median
rather than mean values. This is desirable since for small
datasets, median values give a much accurate representation.
The distance between the estimated means of the two classes
was found to be 5.93 and the AUC for the fitted curve was
0.55.

B. Entropy

When PRMs were at rest, the entropy showed a decrease
(p − value < 0.01) for PRMs with unilateral avulsion
compared to PRMs without avulsion. The distance between
the estimated means of the two classes was found to be 0.412
and the AUC for the fitted curve was 0.91. For the case when

PRMs were at contraction, the entropy showed a decrease (p-
value=0.22) for PRMs with unilateral avulsion compared to
PRMs without avulsion. The distance between the estimated
means of the two classes was found to be 0.24 and the AUC
for the fitted curve was 0.61.

C. Shape parameter of Gamma distribution

When PRMs were at rest, the shape parameter value showed
an increase (p − value < 0.01) for PRMs with unilateral
avulsion compared to PRMs without avulsion. The distance
between the estimated means of the two classes was found
to be 48.44 and the AUC for the fitted curve was 0.91. For
the case when PRMs were at contraction, the shape parameter
showed an increase (p-value=0.28) for PRMs with unilateral
avulsion compared to PRMs without avulsion. The distance
between the estimated means of the two classes was found to
be 23.3 and the AUC for the fitted curve was 0.67.

D. Summarized results

The summarized results for the distance between the means,
the statistical significance and the AUC for the fitted curve and



(a) Undamaged PRM with all pixels in each ROI
replaced by the shape parameter value

(b) Damaged PRM with all pixels in each ROI
replaced by the shape parameter value

Fig. 8: Visual representation of the shape parameter change for an undamaged and damaged PRM

the exact curve for each parameter can be found in table I for
PRMs at rest and in table II for PRMs at contraction.

TABLE I: Summarized results for the three parameters with
PRMs at rest

AT REST
Mean

echogenicity Entropy Shape
parameter

Distance between
means 25.22 0.41 48.44

Statistical significance
(p-value) 0.02 < 0.01 < 0.01

AUC fitted curve 0.81 0.91 0.91
AUC exact curve 0.87 0.93 0.93

TABLE II: Summarized results for the three parameters with
PRMs at contraction

AT CONTRACTION
Mean

echogenicity Entropy Shape
parameter

Distance between
means 5.93 0.24 23.3

Statistical significance
(p-value) 0.66 0.22 0.28

AUC fitted curve 0.55 0.61 0.67
AUC exact value 0.58 0.70 0.68

IV. DISCUSSION

In this paper we described a method for quantitative ultra-
sound analysis of the damaged PRM to distinguish the avul-
sion from the non-avulsion side. The principal finding of the
study is that the echogenicity parameters investigated in this
study for the avulsion side are different from the non-avulsion
side when the PRM is at rest. In women without avulsion, the
echogenicity based parameters of the two sides of the PRM are
similar. During contraction, the difference between avulsion
and non-avulsion side is not present anymore. We noticed that
at rest, the statistical significance and the AUC (< 0.01 and
0.91 respectively) for entropy and shape parameter are similar.
At contraction, all parameters performed worse in classifying
the damaged PRMs from the undamaged ones. This could hint
that formation of scar tissue is predominant since according
to Crema et al. only tears are better distinguishable when
a muscle contracts. However, since the parameters analyzed
cannot discern between tears and scar tissue this has to be
further investigated.

Furthermore, by assessing each ROI within the PRM the
value of the shape parameter, images were created which can
provide visual aid to the clinician in diagnosing all sections of
the PRM, not only the ones closest to the insertion point. This
way, information regarding the locality of the damage within
the PRM were brought to surface. Such an example can be
seen in figures 8a and 8b. Here the blue color corresponding
to low values of the shape parameter indicates areas of
undamaged tissue. Yellow color, corresponding to high values
of the shape parameter indicates areas of damaged tissue.

A. Limitations and shortcomings

On main limitation and two shortcomings of the method
have been identified. The limitation is that the size of the



dataset (n=14) was small which resulted in the use of a non
parametric test for evaluation. This limits the techniques that
could be used to rather conventional ones as opposed to more
modern, machine learning/deep learning oriented ones.

The first shortcoming was the use of the B-MODE images
instead of RF data. It makes the application of this method
machine dependent. Although for this work the data acquisi-
tion has been performed by the same clinician, using the same
machine and settings, this criterion cannot always be ensured.
Further investigation on different data formats and machines
is necessary to ensure consistency.

The second shortcoming is that although the methods
proposed can distinguish between PRMs with and without
avulsion relative to each other, no conclusion can be drawn
regarding the type of damage/trauma each muscle had suf-
fered. The increase in the mean echogenicity of the PRMs
with unilateral avulsion, at rest, might indicate scar tissue
formation, although this conclusion cannot be drawn from this
measurement alone.

Furthermore, although Woodhouse and McNally indicates
that High-frequency linear array probes, > 7MHz and prefer-
ably > 10MHz, are required to adequately image muscle, a
1 − 6MHz matrix probe has been used. This is due to the
fact that increased depth resolution (achieved through higher
ultrasound frequencies) comes at the cost of decreased ability
to image deep structures7. Therefore it was crucial that depth
penetration was ensured such that the PRM can be captured
completely.

B. Future directions

The results obtained in this paper show the potential of
quantitative echography to identify PRM avulsion. The dif-
ferent parameters could serve as input (a so called feature) for
more specialized machine learning algorithms such as neural
networks. However, it is crucial for such applications that the
dataset is enlarged to a level which allows training and testing
of such algorithms.

On the other hand, a deep learning approach could be
used for both feature detection and classification. An entire
segmented PRM could be fed to a deep neural network
(DNN) or convolutional neural network (CNN) which could
potentially classify both the state of the muscle (damaged and
undamaged) as well as the type of trauma that the muscle
could have suffered. For this scenario, only the database of
segmented PRMs has to be increased.

V. CONCLUSION

In this study, we used mean echogenicity, Shannon’s entropy
and shape parameter value based on log-compressed B-MODE
images for assessing the state of the puborectalis muscle
(PRM) in two scenarios: at rest and contracted. The results
demonstrate that the shape parameter of the first order statistics
of the speckle (gray value distribution) is the strongest param-
eter to distinguish intact and damaged PRM resulting in the
highest AUC. The entropy has slightly less performance. Anal-
ysis of the muscle at contraction has decreased performance

with respect to analysis at rest. This supports the hypothesis
that a change in the state of the tissue will result in a change
in the statistical distribution of gray values in a B-mode image
of the PRM.
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2 Conclusion

The results presented in this work demonstrate that the shape parameter of the first or-
der statistics of the speckle has the strongest statistical significance as well as highest AUC.
Throughout the research conducted, the research questions proposed in the first chapter have
been answered thoroughly.

How are skeletal muscle injuries portrayed in an US image?

Based on the US image, muscle injuries can be categorized as follows: injuries that produce
low echogenicity hypogechogenic or areas inside the US image of the muscle and injuries that
produce hyperechogenic areas. Injuries that produce hypogechogenic areas are tears, lacera-
tions and hematomas. Formation of scar tissue after repeated and/or severe muscle trauma,
however, can be seen as areas or hyperechogenicity within a US image of the muscle.

It was expected that through image processing, this difference can be evaluated for PRMs with
avulsion and PRMs without avulsion. It has been shown through the analysis that the mean
echogenicity, entropy and shape parameter values differ for undamaged PRMs and damaged
PRMs, both at contraction and at rest.

How can the dynamic assessment of a muscle determine the presence of damage?

Literature review revealed that dynamic ultrasound assessment involves voluntarily contrac-
tion of the muscle by the candidate in order to better expose areas of low echogenicity in the
muscle image. These areas could be minor partial tears or minor strains of muscle fibers which,
at rest, look like ill defined hypoechogenic areas. It has been shown through the analysis that
the mean echogenicity, entropy and shape parameter values differ for PRMs at rest and PRMs
at contraction. This difference has been noticed mostly for the PRMs with avulsion.

What are the main sources that can affect the characterization of the tissue?

For the purpose of this assignment, B-mode images have been analyzed. Through literature re-
view, it has been found that this introduces machine dependency. This dependency is variable
because not all US machines compress and post process the RF data the same way. Fortunately
for this assignment, the same machine has been used for all data acquisition.

Furthermore, the same settings (such as Time Gain Compensation (TGC), filtering etc) have
been preserved while acquiring 3D volumes of the pelvic floor. This enabled analysis for PRMs
of different women without the need for additional corrections, therefore simplifying the pro-
cess.

Which image processing techniques can be used to better distinguish between a damaged muscle
and an undamaged one?

Through literature review it has been found that statistical distribution of the gray values within
a B-mode image can be analyzed. The distribution can be modeled using the Gamma distri-
bution. Furthermore, entropy and mean echogenicity values can be calculated for any given
ROI in the muscle. Those parameters have been used in earlier studies to characterize different
tissues and it is expected that they could be used to characterize the PRM as well.

It has been shown through the analysis that the mean echogenicity, entropy and shape param-
eter values can be used to distinguish between a damaged and undamaged PRMs. Statistical
analysis revealed that the differences found in PRMs with avulsion compared to the ones with-
out avulsion is statistically significant, therefore the results obtained are not random.
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A Appendix 1

A.1 Optimal division of the PRM into multiple subdivisions of the segmenta-
tion/ROIs

Division of the PRM into multiple subdivisions of the segmentation/ROIs has been done in
order to enable the analysis of the areas closest to the site of the avulsion. It is known that when
the PRM suffers a trauma, it can be a unilateral avulsion or a bilateral avulsion. Therefore, the
most damaged areas are represented by the muscle tissue closest to the insertion point.To this
extent, analysis of those subdivisions of the segmentation/ROIs is preferred over analysis of the
entire segmentation of the PRM.

To assess the quality of the subdivisions of the PRM, the distance between the means of the
shape parameter for the two categories(with and without avulsion) and the length of the inter-
val for the estimated mean with 95% confidence have been used. A higher difference between
the means represents a better discrimination between damaged and undamaged PRMs. Lower
interval length of the estimated mean results in a better approximation of the mean.

Due to the relatively low number of included women, the Student’s t distribution with n-1 de-
grees of freedom was used to determine the confidence interval of the mean shape parameter.
The results of the estimated mean vs. number of subdivisions of the PRM can be seen in figure
A.1. From this figure alone we can conclude that the optimal number of subdivisions of the
PRM is eight.

Figure A.1: Mean distance between the two categories of PRM (with and without avulsion) vs. the num-
ber of subdivisions

In figure A.2 the length of the interval of the estimated mean with 95% confidence can be seen
plotted against the number of subdivisions. From this figure alone, we can conclude that higher
number of subdivisions leads to higher the interval length. Higher interval length means that
it is harder to accurately approximate the mean.
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Figure A.2: Interval length for damaged and undamaged PRMs

However, the optimal number of subdivision of the PRM can be achieved by looking at both
figures A.1 and A.2 together. To do so, the mean interval length has been calculated for both the
damaged and undamaged PRMs. The distance between the means of the shape parameter has
been divided by the mean interval length in order to identify the optimal division of the PRM.
The results can be seen in figure A.3 and the optimal number of divisions of the PRM was found
to be seven.

Figure A.3: Ratio vs. number of subdivisions
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A.2 Shape parameter mapping for all PRMs
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