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Abstract
Scale-free networks are networks that have power-law degree distribution, at least

asymptotically. They are important in complex network theory because many real-
world networks are found to be scale-free. In complex network theory, preferential
attachment (PA) and fitness (F) are two hypothetical mechanisms that drive the evo-
lution of scale-free networks. Although both of them are able to generate scale-free
networks, they are different with respect to the temporal changes they produce dur-
ing the development of the networks, which might have implications for the future
structure of the networks. Therefore, how to discover the growth mechanisms behind
a network becomes important. The goal of this work is to do mathematical analysis
on distinctive features for discovering growth mechanisms in complex networks. We
propose a F-based model with exponentially distributed fitness value and show empir-
ically that it is able to generate scale-free networks for certain parameter values. In
addition, we analyze a PA-based model and the F-based model, and show that they
are different under certain conditions. In particular, we show that the expected value
of the distinctive feature - the average number of new links that a group of nodes
receive during a certain time interval after normalization - of the PA-based model is
strictly greater than that of the F-based model. Note that this article is part of a
larger project that aims to develop a classifier that, given a synthetic network, is able
to tell which mechanism from PA and F fits the network the best. The analytical re-
sults in this work will be compared to the empirical results obtained in Weiting Cai’s
work [3] of developing the machine-learning classifier.

Keywords: complex network, scale-free network, power-law, preferential attachment,
fitness

1 Introduction

Network is a powerful tool for modelling real-world complex systems, including social net-
works, biological networks and technological networks. Among these real-life networks,
many are found to be scale-free, which means that the asymptotic degree distribution of
the networks are power-law. So far, various mechanisms have been proposed to explain the
existence of scale-free networks in real life, such as preferential attachment, fitness, aging
etc. In addition, remarkable progress has been made in random graph theory on describ-
ing these mechanisms by formulating models based on these mechanisms and analyzing
statistical measures that characterize these mechanisms. However, current attempts fail
at discovering the mechanisms behind the growth of a given network, which might have
implications for predicting the future structure of the network and solving related problems
such as predicting the spreading of fake news on the internet.

∗Email: d.zhuang@student.utwente.nl
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1.1 Related Work

This article is part of a larger assignment. In this section, only work that is specific to the
scope of this article is discussed.

Preferential attachment (PA) and fitness (F) are two hypothetical mechanisms that are
able to generate scale-free networks. As for the PA mechanism, it is assumed that, in a
network, those vertices that already had many connections are more likely to receive new
connections in comparison to those that had fewer connections, which is called "the rich-
get-richer" effect. As for the F mechanism, it is assumed that every vertex has an intrinsic
value that characterizes its initial attractiveness, and those vertices that have higher intrin-
sic values are more likely to receive new connections than those that have lower intrinsic
values do.

Various models have been proposed for these two mechanisms. As for the PA mecha-
nism, Albert-László Barabási and Réka Albert proposed the Albert-Barabási model [1].
This model combines growth, the concept that the number of vertices in the network in-
creases over time, with the PA mechanism, trying to explain the existence of vertices with
extremely high degree in real-life networks. However, this model fails at formulating the
growing process of the network rigorously. It did not describe the status of the network
at the very beginning, neither did it specify how the edges were attached to the vertices,
which resulted in much confusion between mathematicians and theoretical physicists [6].
To solve this problem, Bollobás, Riordan, Spencer and Tusnády specified the initial net-
work and the attachment rule of edges in [2], making self-loops and multi-edges possible,
which is the PA-based model investigated in this article.

As for the F mechanism, Ghadge, Shilpa proposed a lognormal fitness attachment model
in [5]. Motivated by the fact that the initial attractiveness of a paper in citation networks
depends on multiple factors, this model assumes that the overall attractiveness of a pa-
per depends multiplicatively on these factors. Furthermore, this model assumes that each
factor that contributes to the overall attractiveness of a paper is of normal distribution.
Therefore, in this model, the fitness value of each vertex is a random variable of lognormal
distribution, which is a product of a number of normally distributed random variables.
However, although it has been shown empirically that this model is able to generate scale-
free networks, no formal proof was given. Furthermore, according to the attachment rule
proposed in [5], this model does not allow self-loop or multi-edge, which makes it incom-
parable to the PA-based model proposed by Bollobás, Riordan, Spencer and Tusnády in
[2]. Therefore, we formulate our own F-based model in Section 2.4, which allows self-loops
and multi-edges, showe empirically that it is able to generate scale-free networks and did
analysis based on it.

Although considerable progress on analyzing these two mechanisms has been achieved
in random graph theory, they are not useful for identifying the mechanisms in a given
network. In particular, current mathematical analysis is often limited to aggregated statis-
tics such as degree distribution and clustering coefficient [7][9], which does not provide
information about the temporal changes of the network. As both the PA mechanism and
the F mechanism could lead to scale-free networks, given a network generated by the F
mechanism and a network generated by the PA mechanism, it is likely that both networks
have similar values for the aggregated statistics, making it difficult to determine which
mechanism is the one that drives the development of the network. Therefore, to identify
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the mechanisms behind the growth of the networks, we need measures that incorporate
the temporal changes of the networks.

1.2 Research Question

This work is part of a larger project that aims to develop a machine-learning classifier
that, given a synthetic network, is able to tell which mechanism from PA and F fits the
network the best. The larger project consists of two bachelor assignments, this one and
the one of Weiting Cai [3]. In particular, in this work, by doing mathematical analysis on
the distinctive feature used in [3] to train the machine-learning classifier, the result of this
work explains the performance of the trained classifier in [3].

The overall research question of the larger project is as follows: What features of a network
can enable a machine learning classifier to identify the PA or F mechanism behind the
evolution of a network in a mathematically interpretable way?

Specifically, to answer the research question, the following tasks need to be completed:

• Task 1: Analyze a PA-based model and an F-based model and explore which statis-
tical characteristics are different for the two models.

• Task 2: Design features for the machine-learning classifier.

• Task 3: Train the machine-learning classifier using synthetic data.

• Task 4: Evaluate feature importance based on the training data and the performance
of the trained classifier, and compare the result with that of the mathematical anal-
ysis.

• Task 5: Interpret the results produced by the classifier based on the results of Task
1.

In this article, we will focus on Task 1 and Task 5, while Weiting Cai will focus on Task 2,
Task 3 and Task 4 in his article [3].

1.3 Present Work

At the end of Section 1.1, we argued that current mathematical analysis of aggregated
statistics of networks is not sufficient for identifying the mechanisms behind the growth of
networks because it is possible for two networks generated by different mechanisms to have
similar values for the aggregated statistics. Motivated by this, we propose and analyze an
incremental statistic, the average number of new links a vertex s could receive during time
interval [t0, t1] provided s < t0 < t1, that reflects the temporal changes of the networks,
showing that this incremental statistic could lead to a distinctive feature for discovering
growth mechanisms in complex networks under certain conditions.

In this article, we focus on two possible mechanisms behind the evolution of scale-free
networks: the preferential attachment (PA) mechanism and the fitness (F) mechanism.
In particular, we analyze, for the PA-based model defined by Remco van der Hofstad in
his book [6] and the F-based model defined in Section 2.4, the incremental statistic: the
average number of new links a vertex s could receive during time interval [t0, t1] provided
s < t0 < t1. Based on the analysis on the incremental statistic, we explore under which
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conditions do the incremental statistics of these two models lead to a distinctive feature
such that the scale-free networks generated by the models are distinguishable, which could
provide insights into the performance of the machine-learning classifier developed in Weit-
ing Cai’s work [3].

Overall our work makes the following contribution:

1. We propose an F-based model with exponentially distributed fitness value and show
empirically that it is able to generate scale-free networks given certain values of λ,
which is the parameter of the exponential distribution of the fitness values.

2. We propose an incremental statistic that reflects the temporal changes of networks
during their development.

3. Based on mathematical analysis on the incremental statistic, we show mathematically
that the distinctive feature used in Weiting Cai’s work [3] for networks generated by
the PA model is always greater than that for networks generated by the F model
under certain conditions.
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2 Theory

In this section, concepts and theories required for understanding the results are introduced.

2.1 Scale-free Networks

A network is scale-free if it has power-law degree distribution. Specifically, in a network,
if the proportion of vertices having degree k, denoted by P (k), goes to P (k) ∼ k−γ as k
goes large, then the network is a scale-free network. As an example, a typical scale-free
network looks like this:

Figure 1: scale-free network generated by the graph randomizer of Cytoscape
3.8.2, Barabasi-Albert model with N = 1000 and m = 1

2.2 Log-log Plot

A log-log plot is a 2-dimensional plot that describes numerical data using logarithmic scales
on both horizontal and vertical axes. Given equation

y = cxa, (1)

where c and a are constant real numbers, taking the logarithm of both sides gives:

log y = a log x+ log c, (2)

which is a straight line with slope a and intercept log c on the vertical axis in the log-log
plot. Therefore, given that the horizontal axis describes the logarithm of vertex degree k
and the vertical axis describes the logarithm of the fraction P (k) of vertices with degree
k, if the log-log plot is close to a straight line, such as the plot shown in Figure 2, then it
is likely that P (k) ∼ ka, where a is constant real number. That is, the degree distribution
is power-law.

2.3 Growing Model with Preferential Attachment

In this work, for the PA mechanism, we analyze the PA-based model defined by Remco
van der Hofstad in his book [6]. We introduce the model and a related theorem in this
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Figure 2: [8] log-log plot of a scale-free network

section. Note that the content in the quote blocks is directly quoted from the book [6].

In [6], the model is described as follows:

The model produces a graph sequence denoted by (PA(m,δ)
t )t≥1. At each time

step, the model generates a graph with t nodes andmt edges. As (PA(m,δ)
t )t≥1 is

defined in terms of (PA(1,δ/m)
mt )t≥1, we first introduce the special case (PA

(1,δ)
t )t≥1,

and then introduce the general case (PA(m,δ)
t )t≥1.

First, we describe the case m = 1. In this case, PA(1,t)
1 contains a single vertex

with a self-loop. We denote the vertices of PA(1,δ)
1 by v(1)

1 , v
(1)
2 , v

(1)
3 , .., v

(1)
t . We

denote the degree of vertex v(1)
i in PA(1,δ)

t by Di(t). By convention, a self-loop
increases the degree by 2. At each time step t, a vertex v(1)

t arrives with an
edge incident to it. The other end point of the edge is connected to v(1)

t with
probability (1 + δ)/(t(2 + δ) + (1 + δ)), and to v(1)

i i ∈ {1, 2, .., t − 1} with
probability (Di(t) + δ)/(t(2 + δ) + (1 + δ)).

Next, we describe the model with m > 1 in terms of the model with m = 1.
Fix δ ≥ −m, we start with PA(1,δ/m)

mt and denote the vertices in PA(1,δ/m)
mt by

v
(1)
1 , v

(1)
2 , v

(1)
3 , .., v

(1)
mt . Then we identify the vertices v(1)

1 , v
(1)
2 , v

(1)
3 , .., v

(1)
m to be

the vertex v(m)
1 in PA(m,δ)

t . In general, we collapse the vertices v(1)
(j−1)m+1, v

(1)
(j−1)m+2,

v
(1)
(j−1)m+3, .., v

(1)
jm to be the vertex v(m)

j in PA(m,δ)
t . The resulting graph would

be a multigraph with t vertices and mt edges.

The PA mechanisms assumes that, in a network, those vertices that already had many con-
nections are more likely to receive new connections in comparison to those that had fewer
connections, which is called "the rich-get-richer" effect. This can be seen from the formula
(Di(t)+δ)/(t(2+δ)+(1+δ)) in the model. Given δ, the value of (Di(t)+δ)/(t(2+δ)+(1+δ))
increases as the value of Di(t) increases, corresponding to the "rich-get-richer" effect. Note
that in this model, the "rich-get-richer" effect is equivalent to the "old-get-richer" effect,
meaning that vertices that arrived earlier are more likely to receive new links in comparison
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Figure 3: [3] visualization of the adjacency matrix of a PA-based synthetic network
with number of vertices equal to 100 and m = 10

to those that arrived later. There is an intuitive explanation for this equivalence: vertices
that arrived earlier have less competitors, thus are more likely to receive new connections,
which resulted in their becoming vertices with many connections later, attracting even
more new connections. Furthermore, to illustrate the idea of the "old-get-richer" effect,
visualization of the adjacency matrix of a synthetic network generated by the model might
help (Figure 3). The x-axis denotes the arriving vertices and the y-axis denotes the vertices
to be linked by the arriving vertices [3]. From this figure, it can be seen that most of the new
connections are linked to vertices {vt|0 < t < 10}, which are the vertices that arrived early.

In addition to the model, we introduce a related theorem that will be used in results:

Theorem 2.1. [6] Fix m = 1 and δ > −1. Then, Di(t)/t
1/(2+δ) converges almost surely

to a random variable ξi as t→∞ and

E[Di(t) + δ] =
Γ(t+ 1)Γ(i− 1/(2 + δ))

Γ(t+ 1+δ
2+δ )Γ(i)

(3)

2.4 Growing Model with Fitness

In this assignment, for the F mechanism, we introduce and analyze the F-based model
defined by ourselves. In this model, the fitness value of each vertex is an exponentially
distributed random variable with parameter λ. We introduce the model in this section and
show empirically that this model is able to generate scale-free networks for certain values
of λ. By analogy with PA, we consider m = 1 and m > 1 separately.

The model produces a graph sequence denoted by (F(m,λ)
t )t≥1. At each time step, the

model generates a graph with t nodes and mt edges. We denote the vertices in F(m,λ)
t by

v1, v2, v3, .., vt. For each vertex vi, we denote the fitness value of the vertex, which is a
random variable of exp(λ) distribution, by Φi.

Given m ≥ 1, F(m,δ)
1 contains m isolated vertices and no edges. At each time step t ≥ 1, a

vertex vt with fitness value φt arrives with m edges incident to it. For each edge incident to
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Figure 4: [3] visualization of the adjacency matrix of a F-based synthetic network
with number of vertices equal to 100 and m = 10

vt, the other end of the edge is connected to vi with probability φi/
∑

j φj . The resulting
graph would be a multigraph with t vertices and mt edges.

To illustrate the difference between the F-based model and the PA-based model, we present
a visualization of the adjacency matrix of a synthetic network generated by the F-based
model. In Figure 4, it can be seen that, unlike Figure 3, new connections no longer concen-
trate at the bottom of the figure, meaning that the "rich-get-richer" or the "old-get-richer"
effect that exists in the PA networks disappears. That is, even a vertex arrived late, it
may still attract large number of new connections due to its high fitness value.

Below in Figure 5 and Figure 6 are two log-log plots of the eventual degree distribu-
tion of the networks generated by the above F-based model. It can be seen from the plots
that the above F-based model is able to generate scale-free networks for certain parameter
values. Using these log-log plots, we have shown empirically that the F-based model we
proposed is able to generate scale-free networks for 1 ≤ λ < 10. Since most of the networks
used in Weiting Cai’s work are of 1000 ≤ T ≤ 2000 and 10 ≤ m ≤ 15 [3], for consistency,
we only show plots for networks with T ∈ {1000, 2000} and m ∈ {10, 15}. For more plots,
see Appendix A.
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Figure 5: m = 10, T = 1000, λ = 1

Figure 6: m = 15, T = 2000, λ = 1
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2.5 The Distinctive Feature

As explained in Section 1.2, this work is part of a larger project, which consists of this
bachelor assignment and the bachelor assignment of Weiting Cai. To connect our results
to the results of Weiting Cai’s work [3], in this section, we introduce the definition of the
feature matrix used in Weiting Cai’s work for training the machine-learning model.

In Weiting Cai’s work [3], for feature engineering, he proposed a flexible and scalable
feature design that organizes features in a matrix Ma×b as follows:

Rows of this matrix correspond to time, columns correspond to groups of nodes,
and the cells contain the network’s incremental statistics.

Formally, learned from the work of our supervisors, the general a × b feature
matrix is defined as follows:

Let G(T ) be the set of vertices generated on the interval [0,T ] and dk(t) be
the degree of each vertex vk at time step t. Define

FT (x) =
1

T

∑
vk∈G(T )

1{dk(T ) ≤ x}, x ∈ [0, 1, .., max
vk∈G(T )

dk(T )],

to be the empirical distribution of the vertex degrees in the final network. For
each dk(T ), let qk be such that dk(T ) is the qk-quantile of FT (x). Then we
divide G(T ) into b groups as follows:

Gj = {vk ∈ G(T ) :
j − 1

b
< qk ≤

j

b
}, j ∈ {1, 2, .., b}.

In particular, G1 contains the vertices, of which degrees end up in the high-
est 1

b%, while Gb contains the vertices with degrees ending up in the lowest 1
b%.

Then we divide the time into a consecutive non-overlapping intervals with equal
length, which are T1 = [0,Ta ], T2 = [Ta ,

2T
a ],.., Ta = [ (a−1)T

a ,T ].

Finally, we compute the incremental statistics in the cells - Mij = the av-
erage number of new links received per vertex in vertex group Gj during time
interval Ti) - as follows:

Mij =
1

|Gj |
∑
vk∈Gj

(
dk

(
i

b
T

)
− dk

(
i− 1

b
T

))
, i ∈ {1, 2, .., a}, j ∈ {1, 2, .., b}.

Next, to reduce overfitting, he normalized M so that the sum of all entries of M is equal
to 1. Let M ′ denote the normalized matrix, we have:

M ′ij =
Mij∑

k∈{1,2,..,a},l∈{1,2,..,b}Mkl
, i ∈ {1, 2, .., a}, j ∈ {1, 2, .., b}.

In Weiting’s work, he randomly picks a = 3 and b = 4. In this work, for consistency, we
keep these values. Denote the feature in the upper left corner of the normalized matrix by
(T1, G1), T1 = [0, T/3] and G1 = {vk ∈ G(T ) : 1

4 < qk ≤ 1}.

10



3 Results

In this section, the results of analyzing the incremental statistic, the average number of
new links a vertex s could receive during time interval [t0, t1] provided s < t0 < t1, for both
the PA-based model introduced in Section 2.3 and the F-based model defined in Section 2.4
are presented. Specifically, for both models, the expected value of the incremental statistic
is computed. For the PA-based model, a lower bound is derived for the expected value.
For the F-based model, an upper bound is derived for the expected value. Finally, we
discuss a special case for δ = 0 and λ = 1, by connecting the analysis on the incremental
statistic to the distinctive feature defined in Section 2.5, we show that the distinctive feature
introduced in Section 2.5 can be used to distinguish the synthetic networks generated by
the two models under this condition.

3.1 Analysis of the PA-based model

In this section, the incremental statistic is analyzed for the PA-based model introduced
in Section 2.3. First, we derive a formula for the expectation of the incremental statistic.
Next, we derive a lower bound for the expectation.

In Theorem 3.1, the expectation of the incremental statistic for the PA-based model is
derived for m = 1.

Theorem 3.1. Let (PA(1,δ)
t )t≥1 be a graph sequence defined in Section 2.3. Suppose

X
(1)
s (t0, t1) is the number of new links that vertex v(1)

s could receive during time interval
[t0, t1] (s < t0 < t1), then E[X

(1)
s (t0, t1)] =

∑t1
t=t0

1+δ
t(2+δ)+(1+δ)

Γ(t+1)Γ(s−1/(2+δ))
Γ(t+(1+δ)/(2+δ))Γ(s) .

Proof. Let vs ←− vt denote the fact that vt is connected to vs.

E[X(1)
s (t0, t1)|Ds(t0), Ds(t0 + 1), .., Ds(t1)] = E[

t1∑
t=t0

1[vs ←− vt|Ds(t)]]

=

t1∑
t=t0

E[1[vs ←− vt|Ds(t)]]

=

t1∑
t=t0

P (vs ←− vt|Ds(t))

=

t1∑
t=t0

Ds(t) + δ

t(2 + δ) + (1 + δ)
,

(4)

where Ds(t) is a random variable. By Theorem 2.1, the expected value of Ds(t) + δ is:

E[Ds(t) + δ] = (1 + δ)
Γ(t+ 1)Γ(s− 1/(2 + δ))

Γ(t+ (1 + δ)/(2 + δ))Γ(s)
(5)

Therefore,

E[X(1)
s (t0, t1)] = E[E[X(1)

s (t0, t1)|Ds(t0), Ds(t0 + 1), .., Ds(t1)]]

=

t1∑
t=t0

1 + δ

t(2 + δ) + (1 + δ)

Γ(t+ 1)Γ(s− 1/(2 + δ))

Γ(t+ (1 + δ)/(2 + δ))Γ(s)

(6)
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In Theorem 3.2, the result of Theorem 3.1 is extended to m > 1.

Theorem 3.2. Let (PA(m,δ)
t )t≥1 be a graph sequence defined in 2.3. Note that m > 1.

Suppose X(m)
s (t0, t1) is the number of new links that vertex v(m)

s could receive during time
interval [t0, t1] (s < t0 < t1). We have

E[X(m)
s (t0, t1)] =

1 + δ/m

t(2 + δ/m) + (1 + δ/m)

ms∑
k=m(s−1)+1

mt1∑
t=mt0

Γ(t+ 1)Γ(k − 1/(2 + δ/m))

Γ(t+ (1 + δ/m)/(2 + δ/m))Γ(k)
.

(7)

Proof. By definition of (PA(m,δ)
t )t≥1 (m ≥ 1), it is obtained by collapsing (PA(1,δ/m)

mt )t≥1.
Therefore, the number of new links that node v(m)

s could receive during time interval [t0, t1]

is equal to the number of new links that nodes v(1)
m(s−1)+1, v

(1)
m(s−1)+2, .., v

(1)
sm could receive

during time interval [mt0,mt1].

By Theorem 3.1, for a graph sequence PA(1,δ/m)
mt )t≥1, the expected number of new links

that v(1)
k could receive during time interval [mt0,mt1], denoted by X(1)

k (mt0,mt1) is

E[X
(1)
k (mt0,mt1)] =

mt1∑
t=mt0

1 + δ/m

t(2 + δ/m) + (1 + δ/m)

Γ(t+ 1)Γ(k − 1/(2 + δ/m))

Γ(t+ (1 + δ/m)/(2 + δ/m))Γ(k)
(8)

Therefore,

E[X(m)
s (t0, t1)] =

ms∑
k=m(s−1)+1

E[Z
(1)
k (mt0,mt1)]

=

ms∑
k=m(s−1)+1

mt1∑
t=mt0

1 + δ/m

t(2 + δ/m) + (1 + δ/m)

Γ(t+ 1)Γ(k − 1/(2 + δ/m))

Γ(t+ (1 + δ/m)/(2 + δ/m))Γ(k)

(9)

In Theorem 3.3, a lower bound is derived for the expectation obtained in Theorem 3.2.

Theorem 3.3. Let (PA(m,δ)
t )t≥1 be a graph sequence defined in Section 2.3. Note that

m ≥ 1. Suppose X(m)
s (t0, t1) is the number of new links that vertex s could receive during

time interval [t0, t1] (s < t0 < t1). Then we have

E[X(m)
s (t0, t1)] <

1 + δ

2 + δ

ms∑
k=m(s−1)+1

mt1∑
t=mt0

Γ(k − 1/(2 + δ))

Γ(k)

t1/(2+δ)

t+ (1 + δ)/(2 + δ)
(10)

.

Proof. By Theorem 3.2,

E[X(m)
s (t0, t1)] =

ms∑
k=m(s−1)+1

mt1∑
t=mt0

1 + δ/m

t(2 + δ/m) + (1 + δ/m)

Γ(t+ 1)Γ(k − 1/(2 + δ/m))

Γ(t+ (1 + δ/m)/(2 + δ/m))Γ(k)

(11)
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By Gautschi’s inequality [4], x1−s < Γ(x+1)
Γ(x+s) < (x + 1)1−s for positive and real number x

and s ∈ (0, 1). Therefore,

Γ(t+ 1)

Γ(t+ (1 + δ/m)/(2 + δ/m))
> t1/(2+δ/m) (12)

, which implies:

E[Xs] =

ms∑
k=m(s−1)+1

mt1∑
t=mt0

1 + δ/m

t(2 + δ/m) + (1 + δ/m)

Γ(t+ 1)Γ(s− 1/(2 + δ/m))

Γ(t+ (1 + δ/m)/(2 + δ/m))Γ(s)

>
1 + δ

2 + δ

ms∑
k=m(s−1)+1

mt1∑
t=mt0

Γ(k − 1/(2 + δ))

Γ(k)

t1/(2+δ)

t+ (1 + δ)/(2 + δ)

(13)

3.2 Analysis of the F-based model

In this section, the incremental statistic is analyzed for the F-based model defined in Sec-
tion 2.4. First, we derive a formula for the expectation of the incremental statistic. Next,
we derive an upper bound for the expectation.

In Theorem 3.4, for the F-based model, the expectation of the incremental statistic condi-
tioned on the fitness value Φs of vertex vs is derived.

Theorem 3.4. Let (F(m,λ)
t )t≥1 be a graph sequence defined in Section 2.4. Suppose Xs(t0, t1)

is the number of new links that vertex vs could receive during time interval [t0, t1] (s < t0 <
t1). Given that the fitness value of vertex s is φs, E[Xs(t0, t1)] =

∑t1
t=t0

E[ φs
Yt+φs

], where Yt
is a random variable of distribution Gamma(t− 1, λ).

Proof. By definition, in a graph sequence (F(m,λ)
t )t≥1, each vertex vi arrives with m edges

incident to it. We denote the edges that are incident to vi when vi arrives by ei1, .., eim. Let
vs ←− eti denote the fact that the other end of eti is connected to vs. By definition,

E[Xs(t0, t1)|Φs = φs] = E[

t1∑
t=t0

m∑
i=1

1[vs ←− eti|Φs = φs]]

= E[

t1∑
t=t0

m∑
i=1

P (vs ←− eti|Φs = φs)]

=

t1∑
t=t0

m∑
i=1

E[P (vs ←− eti|Φs = φs)]

=

t1∑
t=t0

m∑
i=1

E[P (vs ←− eti|Φs = φs)]

=

t1∑
t=t0

m∑
i=1

E[
φs

Φ1 + ..+ φs + Φs+1 + ..+ Φt
]

= m

t1∑
t=t0

E[
φs

Φ1 + ..+ φs + Φs+1 + ..+ Φt
]

(14)

13



Since sum of n exponentially distributed random variables with parameter λ is a Gamma
distribution with parameters (n− 1, λ), the above expression is equal to:

E[Xs(t0, t1)|Φs = φs] = m

t1∑
t=t0

E[
φs

Φ1 + ..+ φs + Φs+1 + ..+ Φt
]

= m

t1∑
t=t0

E[
φs

Yt + φs
]

(15)

, where Yt is a random variable of distribution Gamma(t− 1, λ).

In Theorem 3.5, for the F-based model, an upper bound is derived for the expectation
of the incremental statistic derived in Theorem 3.4.

Theorem 3.5. Let (F(m,λ)
t )t≥1 be a graph sequence defined in Section 2.4. Suppose Xs(t0, t1)

is the number of new links that vertex vs could receive during time interval [t0, t1] pro-
vided s < t0 < t1 and t0 > 2. Given that the fitness value of vertex s is φs, then
E[Xs(t0, t1)|Φs = φs] < φs

∑t1
t=t0

λt−1 1
t−2 .

Proof. By Theorem 3.4, the expectation of Xs(t0, t1) is equal to m
∑t1

t=t0
E[ φs

Y+φs
]. Assume

λ ≥ 1, given Y ∼ Gamma(t − 1, λ), substitute the probability density function of Y ,
p(y) = λt−1yt−2e−λy

Γ(t−1) , into the expectation, we obtain:

E[Xs(t0, t1)|Φs = φs] = m

t1∑
t=t0

E[
φs

Y + φs
]

= m

t1∑
t=t0

∫ ∞
0

φs
y + φs

p(y)dy

= m

t1∑
t=t0

∫ ∞
0

φs
y + φs

λt−1yt−2e−λy

Γ(t− 1)
dy

≤ m
t1∑
t=t0

λt−1

∫ ∞
0

φs
y + φs

yt−2e−y

Γ(t− 1)
dy

= m

t1∑
t=t0

φsλ
t−1

Γ(t− 1)

∫ ∞
0

yt−2e−y

y + φs
dy

< m

t1∑
t=t0

φsλ
t−1

Γ(t− 1)

∫ ∞
0

yt−2e−y

y
dy

= m

t1∑
t=t0

φsλ
t−1

Γ(t− 1)

∫ ∞
0

yt−3e−ydy

(16)

By definition of Gamma function,Γ(n) = (n − 1)! for n ∈ N, Γ(y) =
∫∞

0 xy−1e−ydy for

14



y ∈ R. Therefore, the inequality in (16) is equivalent to:

E[Xs(t0, t1)|Φs = φs] = m

t1∑
t=t0

E[
φs

Y + φs
]

< mφs

t1∑
t=t0

λt−1 Γ(t− 2)

Γ(t− 1)

= mφs

t1∑
t=t0

λt−1 1

t− 2

(17)

In Theorem 3.6, for the F-based model, an upper bound is derived for the expectation
of the incremental statistic without conditioning.

Theorem 3.6. Let (F(m,λ)
t )t≥1 be a graph sequence defined in Section 2.4. Suppose Xs(t0, t1)

is the number of new links that vertex vs could receive during time interval [t0, t1] provided
s < t0 < t1 and t0 > 2. Then we have E[Xs(t0, t1)] < m

∑t1
t=t0

λt−2 1
t−2 .

Proof. By Theorem 3.5,

E[Xs(t0, t1)|Φs = φs] < mφs

t1∑
t=t0

λt−1 1

t− 2
(18)

Therefore,

E[Xs(t0, t1)] = E[E[Xs(t0, t1)|Φs]]

< E[mΦs

t1∑
t=t0

λt−1 1

t− 2
]

= mE[Φs]

t1∑
t=t0

λt−1 1

t− 2

= m

t1∑
t=t0

λt−2 1

t− 2

(19)

3.3 Special Case

In this section, we discuss a special case of the above results, when δ = 0 and λ = 1. We
combine our results and the results obtained in Weiting Cai’s work [3], trying to explain
the performance of the machine-learning classifier in [3].

According to the feature importance analysis in Weiting Cai’s work, (T1, G1) alone is
sufficient to distinguish the networks generated by the two models with δ = 0 and λ = 1.
Therefore, in this section, we will only analyze (T1, G1).

First, using the expected values of the incremental statistic we obtained in Section 3.1,
we give an estimate of the expected value of the feature (T1, G1) for the networks gener-
ated by the PA-based model.

15



Let (PA(m,δ)
t )1≤t≤T be a graph sequence generated by the PA-based model during time

interval [0, T ]. Let T1 and G1 be the same as in Section 2.5. That is, T1 = [0, T3 ] and
G1 = {vk ∈ G(T ) : 1

4 < qk ≤ 1}. As for the PA-based model, due to the "old-get-richer"
effect, we may use vertices that arrive during time interval [0, T4 ] to approximate the ver-
tices that end up in G1. Since vertices that arrive earlier are more likely to attract new
connections than those that arrive later, it is likely that the vertices that arrive during
time interval [0, T4 ] are also vertices that end up with degrees in the first quantile of the
overall degree distribution at time step T (vertices in G1). Given this approximation, we
formulate an estimate for the expected value of the feature (T1, G1) for the PA-based
model:

E[(T1, G1)] ≈
∑

s∈[0,T
4

]

E[Xs(s,
T

3
)], (20)

where the definition of Xs(s,
T
3 ) is the same as in Section 3.1 with t0 = s and t1 = T

3 . Note
that t0 = s because vertex vs will start receiving new connections only after it has arrived
at time step s.

Furthermore, by Theorem 3.3,

E[Xs(s,
T

3
)] >

1

2

ms∑
k=m(s−1)+1

mT
3∑

t=ms

Γ(k − 1/2)

Γ(k)

t1/2

t+ 1/2
(21)

Therefore, this estimate has a lower bound for δ = 0:

E[(T1, G1)] ≈
∑

s∈[0,T
4

]

E[Xs(s,
T

3
)]

>
1

2

∑
s∈[0,T

4
]

ms∑
k=m(s−1)+1

mT
3∑

t=ms

Γ(k − 1/2)

Γ(k)

t1/2

t+ 1/2
:= Lpa

(22)

Let (F(m,λ)
t )1≤t≤T be a graph sequence generated by the F-based model during time interval

[0, T ]. Let T1 and G1 be the same as in Section 2.5. That is, T1 = [0, T3 ] and G1 = {vk ∈
G(T ) : 1

4 < qk ≤ 1}. As for the F-based model, due to the effect of the fitness value,
vertices that arrive during time interval [0, T4 ] are not good approximate of the vertices
that end up in G1. However, for those vertices that arrive after T

4 but end up in G1, the
number of new connections they could receive during time interval [0, T4 ] is 0, which does
not contribute to (T1, G1), while those vertices that arrive during [0, T4 ] but did not end
up in G1 could receive more connections during [0, T4 ]. Therefore, although replacing the
vertices in G1 by the vertices that arrive [0, T4 ] could not lead to a good estimate of the
expected value of (T1, G1), it could result in an upper bound for (T1, G1). Therefore, by
the above analysis and Theorem 3.6, for λ = 1,

E[(T1, G1)] ≤
∑

s∈[0,m]

E[Xs(m+ 1,
T

3
)] +

∑
s∈[m+1,T

4
]

E[Xs(s,
T

3
)]

< m
∑

s∈[0,m]

T
3∑

t=m+1

1

t− 2
+m

∑
s∈[m+1,T

4
]

T
3∑
t=s

1

t− 2
:= Uf

(23)
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Figure 7: values of Uf and Lpa for various T and m

Note that the addition in the inequality (23) is due to the initial status of the F-based
model: at time step 1, there are m isolated vertices in the graph.

Computing the lower bound Lpa in the inequality (22) and the upper bound Uf in the
inequality (23) for various T and m, we obtain the results in Figure 7. It can be seen that
Lpa varies around 0.326 and Uf varies between 0.295 and 0.321, indicating that the ex-
pected value of the feature (T1, G1) for the PA-based model is always greater than that for
the F-based model and that the threshold value to distinguish the networks generated by
the two models is around 0.321. Furthermore, according to the results obtained by Weit-
ing Cai, the threshold value that the decision tree uses to classify the synthetic networks
generated by the two models is around 0.315 [3], which is very close to the theoretical
approximation 0.321 we obtained. Note that the choices of T and m are made based on
the training and testing data used in Weiting Cai’s work [3].
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4 Discussion

In this work, only the case with δ = 0 and λ = 1 is analysed, which is not sufficient to
provide insights into the performance of the machine learning classifier in general. In addi-
tion, while the expected values of the distinctive features of the two models are compared,
the variances of the distinctive features are not analyzed.

Furthermore, it should be noted that the results are based on approximation of the lower
bound and the upper bound of the distinctive features.

18



5 Conclusions

In conclusion, in this article, we propose an F-based model and show empirically that it
is able to generate scale-free networks for certain values of λ. We define an incremental
statistic for complex networks and derive a lower bound for the expected value of this
incremental statistic in PA networks and an upper bound for that in F networks. Using
the lower bound and the upper bound of the incremental statistic, we give an estimate on
a lower bound of the expected value of the distinctive feature (defined in Section 2.5) for
the PA networks and an upper bound of that for the F networks.

Finally, by computing the estimated lower bound and upper bound of the distinctive
feature for the two models separately and for different T and m, we show that under
certain conditions, the estimated lower bound is always greater than the estimated upper
bound, implying that these two types of networks are distinguishable under these condi-
tions. Furthermore, according to the computation result, the estimated threshold value
that distinguishes the two types of networks is around 0.321, which is close to the empiri-
cal value 0.315 obtained in Weiting Cai’s work [3]. This, in combination with the results
obtained by Weiting Cai [3], answers the general research question.

6 Recommendations

In this assignment, only two separate mechanisms are analyzed, namely the preferential
attachment mechanism and the fitness mechanism. If time allows, it would be interesting to
analyze the combination of the two mechanisms and other mechanisms such as aging (A),
which assumes that a vertex’s attractiveness decline over time. Intuitively, it is expected
that the combination of PA and A could exhibit similar characteristics as F only because
both the A mechanism and the F mechanism could counteract the "old-get-richer" effect as
network grows. In addition, it would also be exciting to prove that the F-based model we
proposed indeed generates scale-free networks, as the plots show exactly this. Furthermore,
our current analysis does not investigate how varying values δ and λ will influence the
performance of the classifier, while Weiting Cai has found that these two types of networks
are still distinguishable with varying values of parameters, just with a different feature and
a different threshold value [3]. Therefore, it would also be interesting to investigate the
general relationship of the two derived bounds.
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A Log-log plots of degree distribution for F networks

Figure 8: m = 10, T = 1000, λ = 1.0

Figure 9: m = 10, T = 1000, λ = 1.5
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Figure 10: m = 10, T = 1000, λ = 2.0

Figure 11: m = 10, T = 1000, λ = 2.5

Figure 12: m = 10, T = 1000, λ = 3.0
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Figure 13: m = 10, T = 1000, λ = 3.5

Figure 14: m = 10, T = 1000, λ = 7

Figure 15: m = 10, T = 1000, λ = 8
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Figure 16: m = 10, T = 1000, λ = 9

Figure 17: Caption

Figure 18: m = 10, T = 2000, λ = 1.5
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Figure 19: m = 10, T = 2000, λ = 2.0

Figure 20: m = 10, T = 2000, λ = 2.5

Figure 21: m = 10, T = 2000, λ = 3.0

25



Figure 22: m = 10, T = 2000, λ = 3.6

Figure 23: m = 10, T = 2000, λ = 7

Figure 24: m = 10, T = 2000, λ = 8
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Figure 25: m = 10, T = 2000, λ = 9

Figure 26: m = 15, T = 1000, λ = 1.0

Figure 27: m = 15, T = 1000, λ = 1.5
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Figure 28: m = 15, T = 1000, λ = 2.0

Figure 29: m = 15, T = 1000, λ = 2.5

Figure 30: m = 15, T = 1000, λ = 3.0
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Figure 31: m = 15, T = 1000, λ = 3.5

Figure 32: m = 15, T = 1000, λ = 7

Figure 33: m = 15, T = 1000, λ = 8
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Figure 34: m = 15, T = 1000, λ = 9

Figure 35: m = 15, T = 2000, λ = 1.0

Figure 36: m = 15, T = 2000, λ = 1.5
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BscThesisAM/f_scale_free_plots/m15_t2000_lambda2.0_F.jpg

Figure 37: m = 15, T = 2000, λ = 2.0

Figure 38: m = 15, T = 2000, λ = 2.5

Figure 39: m = 15, T = 2000, λ = 3.0
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Figure 40: m = 15, T = 2000, λ = 3.5

Figure 41: m = 15, T = 2000, λ = 7

Figure 42: m = 15, T = 2000, λ = 8
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Figure 43: m = 15, T = 2000, λ = 9
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