
BSc Thesis Applied Mathematics

Effect of travel restrictions
between provinces in the
Netherlands on the spread of
COVID-19

Wout Leemeijer

Supervisor: Matthias Schlottbom

June, 2021

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

I want to thank Matthias Schlottbom for his help and advice during my Bachelor Thesis.

Effect of travel restrictions between provinces in the
Netherlands on the spread of COVID-19

Wout Leemeijer

June, 2021

Abstract

To look at the effect of travel restrictions in the Netherlands, a model is developed
that integrates the effect of commuting into a basic SIR-model, which models the
spread of COVID-19 in each of the the Dutch provinces separately and in the entirety
of the Netherlands. Based on available commuting data, the commuting parameters
between each of the provinces are estimated, and based on the data on COVID-19
in the Netherlands the infection rate and the recovery rate are estimated by making
use of a least-squares approximation. This model shows that not allowing any travel
between the provinces will lead to less infections and hence less deaths in the entire
Netherlands. However, looking at the provinces, the amount of infections shows that
there are some differences. Some provinces will have less infections if commuting is
not allowed, but there are also some provinces that will have more infections in case
commuting is not allowed. This can be explained by the fraction of people commuting
in and out of the province and by the fraction of people that are infected in each
province. Future research in this model is possible, where vaccination is included into
the model or the infection and recovery rate is estimated with a different approach.

Keywords: COVID-19, SIR-model, Travel restrictions, Lockdown, Commuting

1 Introduction

In the last one-and-a-half years, the world has been in a (partial) lockdown caused by
the COVID-19 pandemic. This pandemic has left a big impact on the world by forcing
governments to enact regulations such as a curfew and travel restrictions. Now that the
world has been dealing with this crisis for the past one-and-a-half years it is interesting to
see what the effect is of certain measures.

Some research has already been conducted on the effect of travel restrictions on the spread
of the COVID-19 virus. For example, the global pandemic and mobility model (GLEAM)
has been used to look at the effect of the travel restrictions to and from China. This model
divides the world population into subpopulations that are centered around major trans-
portation hubs (usually airports) [2]. However, this research mainly looks at the effects of
worldwide travel restrictions. It is also interesting to look at travel restrictions on a smaller
scale. Especially, since countries, for example Italy, have enforced regional lockdowns in
an attempt to stop the spread of COVID-19 [7]. In Italy, the regional lockdowns still lead
to a nationwide lockdown eventually. Would this also be the case in the Netherlands?
Because of cultural differences, different population densities and commuting habits, this
conclusion can not be immediately drawn for the Netherlands. Therefore, it is interesting
to look at the effect of regional lockdowns in the Netherlands. Hence, in this paper the

1

following research question will be answered:

What is the effect of travel restrictions between provinces on the COVID-19 pandemic in
the Netherlands, compared to having no travel restrictions?

The goal of this paper is not to give a concrete answer whether travel restrictions between
provinces should be implemented in case of a future pandemic, since this decision is subject
to more factors, such as economical consequences of these travel restrictions. The goal is
to give a clear insight on the effect on the COVID-19 pandemic and whether the travel
restrictions will lead to fewer infections and deaths in the Netherlands and what the effect
is on the amount of infections and deaths in each of the provinces.

To get insight on how the COVID-19 pandemic develops over time, a SIR-model is con-
structed. Since the goal is to model the effect of travel restrictions between provinces
it is important to create a SIR-model for each of the 12 provinces in the Netherlands.
These provinces will be connected by making use of commuting parameters. Furthermore,
the infection and recovery parameters will be based on available data on COVID-19 in
the Netherlands. Finally, based on simulations of the model with the estimated parame-
ters, results will show what the effect is of having travel restrictions between provinces in
Netherlands during the COVID-19 pandemic.

2 Modelling

2.1 The SIR-model

To model the population, the SIR-model divides the population into three different classes:
the susceptibles S, which is the proportion of the population that can still be infected by
the COVID-19 virus, the infected I, which is the proportion of the population that is
currently infected with COVID-19 and the removed R, which is the proportion of people
that have died or recovered from COVID-19. Since each person needs to be in one of these
classes S+ I+R = 1, with S, I,R ∈ [0, 1]. People get infected with an infection rate κ > 0
and people go to the removed class with a recovery rate l > 0. The rate of change for each
of the classes can be expressed into the following set of differential equations [9]:

dS
dt = −κSI
dI
dt = κSI − lI
dR
dt = lI

(1)

As can be seen from these equations, the rate of change for the susceptible class (dSdt) only
depends on the proportion of people that are susceptible (S) or infected (I), but not on
the proportion of removed people (R). This is because the assumption is made that people
can be infected only once. Hence, once people are in the removed class, they will stay
in the removed class. Furthermore, the rate of change of the susceptibles depends on the
infection rate κ. From this equation, it can be seen that if nobody is infected, the rate of
change for the susceptibles is equal to zero. However, if a lot of people are infected the
rate of change for the susceptibles will be higher. Moreover, the proportion of susceptibles
is important. If a lot of people are still susceptible to the virus, the rate of change will
be higher, but if not a lot of people are susceptible any more the rate of change will be
lower. Hence, the rate of change for the susceptibles depends on the infection rate, on the

2

proportion of susceptibles and on the proportion of infected people at that time.

The rate of change for the infected class depends on the amount of people in the suscep-
tible class that get infected. People that will go out of the susceptible class will go into
the infected class. However, this rate of change also depends on the amount of people that
are removed, with recovery rate l. If a lot of people are infected, more people will recover
or die and if not a lot people are infected, less people can recover or die, because they
first need to be infected. Hence, the rate of change for the infected people depends on the
amount of people that get infected in the susceptible class minus the amount of people
that recover or die.

The rate of change for the removed class only depends on the amount of people that are
infected and on the recovery rate l. The people that are in the infected class, but have
recovered or have died, will move to the removed class, with a rate dependent on the
recovery rate and the proportion of infected people at that time.

2.2 The provinces model

To model each of the provinces in the Netherlands, the effect of commuting needs to be
taken into account. To do this, assumptions need to be made. First of all, no people will
enter the Netherlands from other countries. Also, the effect of new births and deaths not
related to COVID-19 are not taken into account. This means that the total population
in the Netherlands remains constant. Secondly, people will not move to another province
permanently, but only go there for a part of a day. This means that the amount of people
living in each province will remain constant. Lastly, the model will make time steps of one
day, since the available data makes time steps of one day.

To understand how the SIR-models for the provinces interact with each other, the inter-
action between two provinces will be considered, in this case Groningen and Friesland.
Considering the susceptibles in Groningen during one day, it can be reasoned that this
depends on the amount of susceptibles that live in Groningen, minus the amount of sus-
ceptibles that work in Friesland for a part of the day, plus the amount of susceptibles that
live in Friesland but work in Groningen for a part of the day. To look at the effective
fraction of susceptibles, the amount of susceptibles need to be normalized by dividing it
with the effective population inside Groningen during the day. Taking this into account,
the effective fraction of susceptibles in Groningen during a day becomes:

SGE
=

SG + w(−cGFSG + cFGSF)

NG + w(−cGFNG + cFGNF)
(2)

Here, SG is the amount of susceptibles living in Groningen, w ∈ [0, 1] is the fraction of a
day people are working, cGF ∈ [0, 1] is the percentage of people living in Groningen that
work in Friesland, cFG ∈ [0, 1] is the percentage of people living in Friesland that work
in Groningen, SF is the amount of susceptibles living in Friesland, NG is the amount of
people living in Groningen and NF is the amount of people living in Friesland. The same
way of reasoning can be used for the effective fraction of infected people in Groningen
during a day. However, since infected people are urged to stay home, the amount of travel
between provinces for infected people should be lower. The amount of travel is not equal to
0, because some people do not notice they are infected and hence still travel. The fraction
of infected people that still travel will be represented by q. Hence, the effective fraction of

3

infected people in Groningen during a day becomes:

IGE
=

IG + qw(−cGF IG + cFGIF)

NG + w(−cGFNG + cFGNF)
(3)

Here, IG is the amount of infected people living in Groningen and IF is the amount of
infected people living in Friesland. The same reasoning can be used to determine the
effective fraction of removed persons in Groningen in a day. However, since in the removed
class people that have died are also counted, the amount of commuting needs to lowered
with a fraction d ∈ [0, 1], which is the fraction of people still alive after having COVID-
19. This yields the following expression for the effective fraction of removed people in
Groningen during a day:

RGE
=
RG + dw(−cGFRG + cFGRF)

NG + w(−cGFNG + cFGNF)
(4)

Here, RG is the amount of removed people living in Groningen and RF is the amount of
infected people living in Friesland.

This way of reasoning can also be used to determine the expression of the effective fraction
of susceptibles during a day in Friesland, which yields:

SFE
=

SF + w(−cFGSF + cGFSG)

NF + w(−cFGNF + cGFNG)
(5)

And also, the effective fraction of infected people during a day in Friesland, which yields:

IFE
=

IF + qw(−cFGIF + cGF IG)

NF + w(−cFGNF + cGFNG)
(6)

The effective fraction of removed people in Friesland during a day is:

RFE
=
RF + dw(−cFGRF + cGFRG)

NF + w(−cFGNF + cGFNG)
(7)

Now, a SIR-model can be constructed for both Groningen and Friesland. For Groningen
the infection rate is κG > 0 and the recovery rate is lG > 0. For Friesland the infection
rate is κF > 0 and the recovery rate is lF > 0. Substituting equations (2) and (3) into
equation (1) gives the SIR-model for Groningen, while substituting equations (5) and
(6) into equation (1) gives the SIR-model for Friesland. This yields the following set of
differential equations for the effective rates of change that are in each province in a day:

Groningen:
dSGE
dt = −κGSGE

IGE
dIGE
dt = κGSGE

IGE
− lGIGE

dRGE
dt = lGIGE

Friesland:
dSFE
dt = −κFSFE

IFE
dIFE
dt = κGSFE

IFE
− lF IFE

dRFE
dt = lF IFE

(8)

4

From these SIR-models, it can be seen that the effective rate of change for the susceptibles
in Groningen now does not depend on the actual amount of susceptibles in Groningen, but
on the effective amount of susceptibles in Groningen. The same holds for rate of change
for infected and removed people in Groningen. The commuting parameters cFG and cGF
determine how big the influence is of one province on the other.

But what if there are three provinces in the model, for example Groningen, Friesland and
Drenthe. There are also people living in Groningen that work in Drenthe for a part of the
day, which need to be subtracted from the amount of susceptibles in Groningen. Moreover,
there are people working in Groningen for a part of the day, that live in Drenthe, which
need to be added to the amount of susceptibles in Groningen. Hence, equation (2) becomes:

SGE
=

SG + w(−(cGF + cGD)SG + cFGSF + cDGSD)

NG + w(−(cGF + cGD)NG + cFGNF + cDGND)
(9)

Here SD is the amount of susceptibles in Drenthe, cGD ∈ [0, 1] is the commuting parameter
from Groningen to Drenthe and cDG ∈ [0, 1] is the commuting parameter from Drenthe to
Groningen. With the same reasoning equation (3) becomes:

IGE
=

IG + qw(−(cGF + cGD)IG + cFGIF + cDGID)

NG + w(−(cGF + cGD)NG + cFGNF + cDGND)
(10)

where ID is the amount of infected persons in Drenthe. Finally, equation (4) becomes:

RGE
=
RG + dw(−(cGF + cGD)RG + cFGRF + cDGRD)

NG + w(−(cGF + cGD)NG + cFGNF + cDGND)
(11)

where RD is the amount of removed persons in Drenthe.
Now a general expression can be derived for the effective fraction of susceptible, infected
and removed persons in each province, in case there are n provinces. First define the
matrix C of size n× n as follows:

C =

0 c0,1 c0,2 · · · c0,n−1
c1,0 0 c1,2 · · · c1,n−1
c2,0 c2,1 0 · · · c2,n−1
...

...
...

. . .
...

cn−1,0 cn−1,1 cn−1,2 · · · 0

 (12)

where entry ci,j is the commuting parameter from province i to province j and let C′ be
the following n× n matrix:

C′ =

∑n−1
k 6=0 c0,k 0 0 · · · 0

0
∑n−1

k 6=1 c1,k 0 · · · 0

0 0
∑n−1

k 6=2 c2,k · · · 0
...

...
...

. . .
...

0 0 0 · · ·
∑n−1

k 6=n−1 cn−1,k

 (13)

From equations (2) and (9) the following equation for the effective fraction of susceptible
persons living in province i can be derived:

SiE =

Si + w

(
−C′(i, i)Si +

∑n−1
j=0 C(j, i)Sj

)
Ni + w

(
−C′(i, i)Ni +

∑n−1
j=0 C(j, i)Nj

) (14)

5

Here the provinces get an index going from 0 to n− 1, which means that Si is the current
amount of susceptibles living in province i ∈ [0, n−1] and Ni is the amount of people living
in province i. In equation (14), C′(i, i)Si is the fraction of susceptible people that live in
province i but work in another province for a part of the day and

∑n−1
j=0 C(j, i)Sj is the

fraction of susceptible people that live in another province, but work in province i. Now,
define a vector sE = [S1E S2E · · · SnE]

T which stores the effective fraction of susceptibles in
each province, define the vector s = [S1 S2 · · · Sn]T which stores the amount of susceptible
people living in each province and define the vector n = [N1 N2 · · · Nn]

T which stores the
amount of people living in each province. Then, writing equation (14) as follows, where
In is the identity matrix of size n× n, gives:

sE =
s + w(−C′s+CTs)

nE
=

(In − wC′ + wCT)s

nE
(15)

where nE is a vector that stores the effective population, defined by:

nE = n+ w(−C′n+CTn) = (In − wC ′ + wCT)n (16)

Equation (15) and (16) are both a linear transformation mapping a nonnegative vector to
a new nonnegative vector.
With the same reasoning, a general expression for the effective fraction of infections for n
provinces can be formed from equations (3) and (10). This yields:

IiE =

Ii + qw

(
−C′(i, i)Ii +

∑n−1
j=0 C(j, i)Ij

)
Ni + w

(
−C′(i, i)Ni +

∑n−1
j=0 C(j, i)Nj

) (17)

where Ii is the amount of people living in province i that are infected. Again, define a
vector iE = [I1E I2E · · · ITnE

] which stores the effective fraction of infected people in each
province and a vector i = [I1 I2 · · · In]T which stores the actual amount of infections in
each province. Now, equation (17) can be written in vector form:

iE =
i+ qw(−C′i+CT i)

nE
=

(In − qwC′ + qwCT)i

nE
(18)

This is also a linear transformation mapping a nonnegative vector to a new nonnegative
vector.
And again with the same reasoning, a general expression for the effective fraction of re-
moved people can be formed from equations (4) and (11):

RiE =

Ri + dw

(
−C′(i, i)Ri +

∑n−1
j=0 C(j, i)Rj

)
Ni + w

(
−C′(i, i)Ni +

∑n−1
j=0 C(j, i)Nj

) (19)

where Ri is the amount of people living in province i that have been removed. Defining
a vector rE = [R1E R2E · · · RTnE

] that stores the effective fraction of removed people in
each province during a day and another vector r = [R1 R2 · · · Rn]T that stores the actual
amount of removed people living in each province, gives the following vector form:

rE =
r + dw(−C′r +CTr)

nE
=

(In − dwC′ + dwCT)r

nE
(20)

6

Again, this is a linear transformation mapping a nonnegative vector to a new nonnegative
vector.

Now, a generalized SIR-model for the effective fraction of susceptible, infected and removed
persons for each province can be made, as in equation (8).

dsE
dt = −κsEiE
diE
dt = κsEiE − liE
drE
dt = liE

(21)

Here, κ is the vector [κ0 κ1 · · · κn−1] where κi > 0 is the infection rate in province i and l
is the vector [l0 l1 · · · ln−1], where li > 0 is the recovery rate in province i.

To get the actual amount of susceptible, infected and removed persons, the effective frac-
tions should be transformed again. Equations (15), (18) and (20) give that:

s = nE(In − wC′ + wCT)−1sE

i = nE(In − qwC′ + qwCT)−1iE

r = nE(In − dwC′ + dwCT)−1rE

(22)

This set of equations only holds if the matrices In−wC′+wCT , In− qwC′+ qwCT and
In − dwC′ + dwCT are invertible. Banach’s Lemma gives us that [19]:

Lemma 2.1 (Banach’s Lemma). Let B be an n×n matrix. If in some induced matrix
norm ‖B‖ < 1, then In +B is invertible and ‖(In +B)‖−1 ≤ 1

(1−‖B‖)

This lemma gives that the matrix In−wC′ +wCT is invertible if ‖−wC′ +wCT ‖1 < 1.
This yields the following:

B = −wC′+wCT =

−w

∑n−1
k 6=0 c0,k wc1,0 wc2,0 · · · wcn−1,0

wc0,1 −w
∑n−1

k 6=1 c1,k wc2,1 · · · wcn−1,1
wc0,2 wc1,2 −w

∑n−1
k 6=2 c2,k · · · wcn−1,2

...
...

...
. . .

...
wc0,n−1 wc1,n−1 wc2,n−1 · · · −w

∑n−1
k 6=n−1 cn−1,k

Since ‖B‖1 := max0≤j≤n−1

∑n−1
i=0 |Bi,j |, which is equal to the maximum column sum of B

we have that B,

‖B‖1 = max
0≤j≤n−1

(
| − w

n−1∑
k 6=j

cj,k|+ w|cj,0|+ w|cj,i|+ · · ·+ w|cj,j−1|+ w|cj,j+1|+ · · ·+ w|cj,n−1|
)

= max
0≤j≤n−1

(w

n−1∑
k 6=j
|cj,k|+ w

n−1∑
k 6=j
|cj,k|

)

= max
0≤j≤n−1

(
2w

n−1∑
k 6=j

cj,k

)
< 1

Applying the same reasoning to In − qwC′ + qwCT and In − dwC′ + dwCT gives the
following lemma:

7

Lemma 2.2. For the n × n identity matrix In and n × n-matrices C and C′ as defined
in equations (12) and (13), we have that In − wC′ + wCT is invertible if:

max
0≤j≤n−1

(n−1∑
k 6=j

cj,k

)
<

1

2w
(23)

Furthermore, In − qwC′ + qwCT is invertible if:

max
0≤j≤n−1

(n−1∑
k 6=j

cj,k

)
<

1

2qw
(24)

And In − dwC′ + dwCT is invertible if:

max
0≤j≤n−1

(n−1∑
k 6=j

cj,k

)
<

1

2dw
(25)

Since q, d ∈ [0, 1] and since ck,j ∈ [0, 1] is the fraction of people living in province k and
working in province j the sum

∑n−1
k 6=j ck,j < 1 for all k and j, it is clear that for w < 1

2 equa-
tions (23), (24) and (25) always hold. Therefore the set of equations in equation (22) hold
if w < 1

2 . Numerically checking the invertibility of In −wC′ +wCT , In − qwC′ + qwCT

and In − dwC′ + dwCT even shows that these matrices are even invertible in the most
extreme case, where w = 1, q = 1, d = 1 and

∑n−1
k 6=j ck,j = 1 for all j ∈ [0, n− 1].

The goal of the model is to get the actual fraction and amount of people for each province
for each of the classes susceptible, infected and removed. This means that the rate of change
for the susceptible, infected and removed people living in a province needs to be given as
output of the model. From equation (22) we therefore get the following expression:

ds
dt = nE(In − wC′ + wCT)−1 sEdt
i
dt = nE(In − wC′ + wCT)−1 iEdt
dr
dt = nE(In − wC′ + wCT)−1 rEdt

(26)

3 Data Analysis

3.1 Commuting Data

For the commuting parameters a data set published by het Centraal Bureau voor Statistiek
(CBS) is used [16]. This data set gives information about how many jobs there were in a
certain region for people living in a certain region for the years 2014, 2015, 2016, 2017, 2018
and 2019. This also contains data for the amount of jobs there are for people that live in
province i and work in province j for all the 12 provinces. All commuting parameters ci,j
for i ∈ [0, 11] and j ∈ [0, 11] are calculated by taking the average amount of jobs over these
6 years and dividing them by the population of province i. These commuting parameters
are then used to define matrices C and C′ in equations (12) and (13). Here the provinces
are indexed as follows:

• i=0 : Groningen

• i=1 : Friesland

8

• i=2 : Drenthe

• i=3 : Overijssel

• i=4 : Flevoland

• i=5 : Gelderland

• i=6 : Utrecht

• i=7 : Noord-Holland

• i=8 : Zuid-Holland

• i=9 : Zeeland

• i=10 : Noord-Brabant

• i=11 : Limburg

In the Netherlands men work on average 40.5 hours per week and women work on average
26 hours per week [3]. Assuming that in the Netherlands there are approximately the same
amount of men and women, the average person works 33.5 hours per week. Assuming a
person works the same amount of hours every day and people work on average 33.5

5 = 6.7
hours in a day, based on a five-day workweek. This means that people work 6.7

24 ≈ 28% of
the day. For simplicity, this is also assumed to be true in the weekends. Then w = 0.28,
which satisfies the invertibility condition needed for equations (23), (24) and (25).

Furthermore, a study conducted by, the Dutch National Institute for Public Health, the
RIVM shows that in the Netherlands 76% of the population stayed at home after being
infected with COVID-19 [13]. This means that the fraction of infected people that will
still travel despite being infected in the model is set to q = 1− 0.76 = 0.24.

The John Hopkins University and Medicine researched the mortality rate of COVID-19 in
all countries. For the Netherlands they determined the death rate to be 1.1% [10]. This
means that in the model the amount of removed people that will still travel d = 1−0.011 =
0.989.

3.2 COVID-19 Data

For the analysis of the COVID-19 data, a data set is used that collects the data about the
amount of new infections, hospital admissions, deaths and vaccinations for each day for
each of the provinces and municipalities in the Netherlands [15]. This data is recorded by,
among others, the RIVM and the CBS.

The SIR-model in equation (21) depends on the two parameters κ and l, where κ is the
infection rate and l is the recovery rate. These will be determined based on the amount of
susceptible persons and infections in the data set.

Since the spread of the COVID-19 virus is not constant over time, this means that the
infection rate also needs to differ over time. To make sure that this happens in the model,
five time periods have been constructed, based on the regulations enforced by the Dutch
government at different times [12]. These time periods are defined to be the following:

9

• Time period 1: (3 March - 31 May:) The first lockdown in the Netherlands

• Time period 2: (1 June - 29 September:) The end of the first lockdown

• Time period 3: (30 September - 14 December:) Partial lockdown

• Time period 4: (15 December - 27 April:) Full Lockdown

• Time period 5: (28 April - Current Date:) End of Lockdown

For each of these time periods, the goal is to get an estimate for κ and for l. The available
data is not equal to the effective fraction of susceptible and infected people in a province,
but is equal to the actual amount of susceptible and infected people in the province. This
means that first the amount of susceptible and infected people from the data needs to
be expressed as the effective fraction of susceptible and infected people. This is done by
making use of equations (15) and (18).

The data collected by the RIVM is not perfect. For example, the amount of new infections
recorded each day is not always correct, since they can also include infections of the previous
day which had not been recorded yet. Hence, the data contains some noise. To filter
out this noise, cubic spline interpolation is used. A cubic spline is a function which is
defined piecewise by cubic polynomials. This means that instead of trying to fit one
higher order polynomial which estimates all of the data points, the data is estimated by
several piecewise cubic polynomials, inbetween each of the data points. This also prevents
Runge’s phenomenon, which occurs with polynomial interpolation of a high degree, where
oscillation in the polynomial occurs at the edges of the interval where the polynomial is
defined [18]. This means that between every time point ti, which is day i in the data set,
and ti+1 the goal is to find a polynomial p which minimizes the error between the value of
p at ti and the effective fraction of susceptibles at ti. This leads to the following:

min
p

(|p(ti)− sE(ti)|22) (27)

And the same holds for the cubic spline to estimate the effective fraction of infected persons
at ti, but now for a polynomial q:

min
q

(|q(ti)− iE(ti)|22) (28)

Since there is only data available on the amount of infections and susceptible people, but
not on the amount of removed people in a day, the infection rate κ and l can be estimated
from the following equations from the SIR-model in equation (21):{

dsE
dt = −κsEiE
diE
dt = κsEiE − liE

(29)

Making use of the cubic spline for the susceptibles in equation (27) the expression for dsE
dt

in equation (29) at time ti becomes:

p′(ti) = −κp(ti)q(ti) (30)

Next, making use of the cubic spline for the infected in equation (28) the expression for
diE
dt in equation (29) becomes

q′(ti) = κp(ti)q(ti)− lq(ti) (31)

10

To find the optimal value for κ and l at time ti least-square approximation can be used.
Define a matrix A as follows:

A =

[
−p(ti)q(ti) 0
p(ti)q(ti) −q(ti)

]
(32)

Furthermore, define vectors x = [κ l]T and b = [p′(ti) q
′(ti)]

T . This yields that Ax = b
gives the same equations at time ti as in equation (29), but now using cubic splines. To
find κ and l, now the following least square approximation can be used:

min
x
|Ax− b|22 (33)

However, the goal is not to estimate κ at each time point, but to estimate one κ for each
time period. This means that for a time period t = [t0 t1 t2 · · · tn] the matrix A and the
vector b should be extended as follows:

A =

−p(t0)q(t0) 0
p(t0)q(t0) −q(t0)
−p(t1)q(t1) 0
p(t1)q(t1) −q(t1)
−p(t2)q(t2) 0
p(t2)q(t2) −q(t2)

...
...

−p(tn)q(tn) 0
p(tn)q(tn) −q(tn)

(34)

and

b =

p′(t0)
q′(t0)
p′(t1)
q′(t1)
p′(t2)
q′(t2)

...
p′(tn)
q′(tn)

(35)

Now applying the least squares approximation from equation (33) to this matrix A and
vectors x and b, gives the optimal value for x and hence κ and l in the time period t = [t0
t1 t2 · · · tn].

Since the infection rates in each of the provinces differ from each other, it is interesting
to determine κ and l for each of the provinces separately. Applying the method explained
above to each time period and each province gives the values for κ as shown in table 1 and
the values for l as shown in table 2.

4 Results

For the results the model will be simulated based on the parameters discussed in the pre-
vious section. For all tests a comparison will be made between the case that commuting

11

Time period 1 2 3 4 5
Groningen 0.93 0.96 0.99 1.02 1.06
Friesland 0.93 0.92 0.99 1.02 1.04
Drenthe 0.95 0.93 0.99 1.02 1.06
Overijssel 0.96 0.97 0.99 1.04 1.09
Flevoland 0.92 0.94 0.97 1.03 1.06
Gelderland 0.97 0.97 1.01 1.03 1.09
Utrecht 0.93 0.97 1.01 1.07 1.11

Noord-Holland 0.97 0.98 1.02 1.07 1.12
Zuid-Holland 0.96 0.97 1.02 1.06 1.13

Zeeland 0.94 0.91 0.99 1.02 1.07
Noord-Brabant 0.97 0.99 1.01 1.06 1.12

Limburg 0.94 0.97 1.00 1.05 1.10

Table 1: Values for κ in each of provinces in each of the time periods.

Time period 1 2 3 4 5
Groningen 0.93 0.96 0.97 0.98 1.01
Friesland 0.93 0.96 0.97 0.97 0.99
Drenthe 0.93 0.96 0.98 0.98 0.99
Overijssel 0.93 0.96 0.96 0.97 01.02
Flevoland 0.93 0.96 0.95 0.95 0.97
Gelderland 0.93 0.96 0.95 0.96 0.94
Utrecht 0.93 0.96 0.91 0.95 0.97

Noord-Holland 0.93 0.95 0.95 0.94 1.03
Zuid-Holland 0.93 0.96 0.96 0.95 0.91

Zeeland 0.93 0.96 0.97 1.69 0.99
Noord-Brabant 0.93 0.95 0.95 0.95 0.99

Limburg 0.93 0.96 0.96 0.95 0.96

Table 2: Values for l in each of provinces in each of the time periods.

between provinces is still possible and the case that commuting is not possible anymore
which means that all entries in the matrices C and C′ in equations (12) and (13) are
set to 0. Since the data set on COVID-19 contains data starting from 3 March 2020, the
simulations will start at this point, hence t = 0 is 3 March 2020. And the simulations run
until 24 June 2021, meaning that it ends at t = 478. The Python models used for the
simulations can be found in appendix A.

In table 3 the amount of infections in each province on 3 March 2020 are shown. Running
the model with these starting values gives the trajectory for the fraction of infected persons
in each province as shown in figure 1 in case commuting is not allowed. In this figure the
dashed lines represent the different time periods.

Since commuting is not allowed and some provinces do not have any infected persons at
the start, it can be seen that most provinces won’t have any infections at all. However,
this case is not realistic. It is not likely that these travel restrictions would have been
implemented immediately. Moreover, in some provinces there could be some undetected

12

Provinces Amount of infections on 3 March 2020
Groningen 0
Friesland 0
Drenthe 2
Overijssel 0
Flevoland 0
Gelderland 0
Utrecht 3
Noord-Holland 3
Zuid-Holland 3
Zeeland 2
Noord-Brabant 12
Limburg 0

Table 3: Amount of infections on 3 March 2020.

Figure 1: Fraction of infected persons in each province over time if commuting is
not allowed and starting conditions are based on actual data.

cases of COVID-19, which can still cause people to get infected. Hence, it is not likely that
some provinces will not have any infections at all during the COVID-19 pandemic with
these travel restrictions. Therefore, to test the model, each province is set to have one
infected person from the start. Simulating gives the trajectory of the fraction of infected
persons as shown in figure 2.

For this simulation, there are a couple interesting statistics to compare. First of all, the
amount of infections in the entire Netherlands and in each of the provinces will be consid-
ered. In figure 3 the modelled fraction of infections in the entire Netherlands can be seen
for both the case where commuting is allowed and where commuting is not allowed. As
can be seen from this figure, the amount of infections when commuting is allowed differs
at some points from the case where commuting is not allowed. Therefore, it is interesting
to look at the exact number of infections.

In tables 4 and 5 the maximum amount of infections in a day, total infections during the

13

Figure 2: Fraction of infected persons in each province over time if commuting is
not allowed and each province has one infected person at the start.

Figure 3: Fraction of infections in the Netherlands over time.

COVID-19 pandemic until today and the total amount of deaths calculated from the death
rate of 1.1% are shown in case commuting is allowed and in case commuting is not allowed,
respectively.
As can be seen, in the case where commuting is not allowed, the total number of infections,
and hence the amount of deaths, will decrease in the Netherlands. However, for some of
the provinces the total amount increases when commuting is not allowed. Therefore, it is
interesting to compare the relative change in the amount of total infections, between when
commuting is allowed and when it is not allowed. This is shown in table 6. In figure 4 a
geographical representation of table 6 is shown.

As can be seen from table 6 and figure 4, some provinces will have approximately the same
amount of infections, but other provinces will have significantly less or more infections.
This can be caused by the amount of commuting that was done before and fraction of the
population that is infected in that province. The fraction of the population that is infected

14

Commuting Allowed
maximum amount of infections total amount of infections total amount of deaths

Netherlands 33824 2781523 30597
Groningen 529 37020 407
Friesland 710 43944 483
Drenthe 754 37635 413
Overijssel 1947 141064 1551
Flevoland 1090 60723 667
Gelderland 3286 273506 3009
Utrecht 7156 288532 3173
Noord-Holland 6009 542977 5972
Zuid-Holland 18734 762676 8389
Zeeland 2 46 1
Noord-Brabant 3275 401214 4413
Limburg 4052 192187 2214

Table 4: Infection numbers in case commuting between provinces is allowed.

Commuting Not Allowed
maximum amount of infections total amount of infections total amount of deaths

Netherlands 33677 2708962 29799
Groningen 551 36916 406
Friesland 118 2719 30
Drenthe 783 20811 229
Overijssel 1974 142126 1563
Flevoland 1177 63751 701
Gelderland 3298 273017 3003
Utrecht 7291 289764 3187
Noord-Holland 5942 532785 5861
Zuid-Holland 18225 753402 8287
Zeeland 2 191 2
Noord-Brabant 3262 398816 4387
Limburg 4141 194664 2141

Table 5: Infection numbers in case commuting between provinces is not allowed.

in case commuting is allowed and in case commuting is not allowed is shown in table 7.

Looking at the matrix C as defined in equation (12), it can be seen that the sum of row
i is the percentage of the population i commuting out of the province. The amount of
people commuting into province i can be found by realising that entry cj,i is the amount
of people coming in from province j relative to the population of province j. Therefore,
this number should be normalised to the amount of people living in province i. This leads
to the following expression for percentage of people commuting into province i, defined to
be ĉi:

ĉi =
∑
j 6=i

cj,i
n(j)

n(i)
(36)

Here, n(j) is the amount of people living in province j and n(i) is the amount of people
living in province i. This gives the percentages of people commuting in and out of the
different provinces, as shown in table 8.

15

Relative change
Netherlands -2.61 %
Groningen -0.28 %
Friesland -93.14 %
Drenthe -44.75 %
Overijssel -0.75 %
Flevoland 4.99 %
Gelderland -0.18 %
Utrecht 0.43 %
Noord-Holland -1.88 %
Zuid-Holland -1.22 %
Zeeland 315 %
Noord-Brabant -0.60 %
Limburg 1.29 %

Table 6: Relative change in total amount of infections in case commuting is not
allowed anymore.

Figure 4: Map of the Netherlands showing the relative change in infections in
case commuting is not allowed.

As can be seen from tables 6, 7 and 8, Friesland and Drenthe have a significant decrease in
infections if commuting is not allowed. This is caused by the fact that in these provinces a
low amount of people have been infected and more people are going out to other provinces
with a higher fraction of infections than are coming in. This means that if commuting
is allowed people in these provinces are more likely to come in contact with people that
are infected, since they meet people from other provinces. Hence, if commuting is not
allowed they will only meet people in their own province, where the fraction of infections
is lower. Meaning that they are less likely to be infected. In Noord-Holland the amount
of infections will slightly decrease, this is mainly because a lot more people are coming in

16

Commuting allowed Commuting not allowed
Nederland 16.0 % 15.6 %
Groningen 6.4 % 6.3 %
Friesland 6.8 % 0.42 %
Drenthe 7.7 % 4.3 %
Overijssel 12.1 % 12.2 %
Flevoland 14.4 % 15.1 %
Gelderland 13.1 % 13.1 %
Utrecht 21.3 % 21.4 %
Noord-Holland 18.9 % 18.5 %
Zuid-Holland 20.6 % 20.3%
Zeeland 0.012 % 0.050 %
Noord-Brabant 15.7 % 15.6%
Limburg 17.2 % 17.4 %

Table 7: Percentage of infected persons in each province.

Going out Coming in
Groningen 9.8 % 9.3 %
Friesland 8.1 % 4.2 %
Drenthe 15.1 % 11.1 %
Overijssel 9.0 % 8.9 %
Flevoland 23.3 % 11.8 %
Gelderland 11.6 % 9.1 %
Utrecht 14.9 % 19.6 %
Noord-Holland 5.4 % 10.7 %
Zuid-Holland 7.4 % 6.5 %
Zeeland 11.0 % 6.4 %
Noord-Brabant 7.7 % 8.3 %
Limburg 8.6 % 6.4 %

Table 8: Fraction of people commuting into each province or commuting out of
each province.

than going out if commuting is allowed. Hence, if commuting is not allowed, there will be
less people in a day in Noord-Holland, hence less people can infect other people during a
day. In Zuid-Holland there are also slightly less infections. This is likely to be caused by
the fact that if commuting is allowed a lot infections are from people in Utrecht, since this
is the only province with a higher fraction of infections. Other explanations are less likely,
since there are more people leaving the province than coming in, hence if commuting is
not allowed there are more people in the province. Moreover, Zuid-Holland has, except for
Utrecht, a higher fraction of infections than the rest of the provinces. In Flevoland and
Limburg, the amount of infections will slightly increase. This is caused by the fact that
when commuting is allowed, more people are leaving the province than coming in. Hence,
when commuting is allowed more people are in the province during the day and therefore
there are also more infected people in the province during a day. Leading to more infections
in these provinces. In Zeeland there is a large increase of infections, but here the result
doesn’t seem likely. Compared to all other provinces Zeeland has a much lower fraction of
infected people. This seems unlikely and therefore likely to be caused by incorrect data

17

and hence and incorrect estimation of κ and l. Because Zeeland only has a small number
of infections a small absolute increase quickly leads to a large relative increase, explaining
the 315% increase in infections.

Lastly, looking at the amount of susceptible people in the Netherlands, as shown in figure 5,
it can be seen that on 24 June 2021 approximately 85% of the population in the Netherlands
is still susceptible. This means that a new outbreak of COVID-19 is still possible at a later
moment.

Figure 5: Fraction of susceptible people in the Netherlands.

5 Discussion

In the development of this model a few assumptions were made which simplify the real
world situation. For future research, these assumptions might be changed. Also, there are
other ways that this model can be extended in the future.

First of all, the assumption was made that people cannot be infected twice. While a study
by Stokel-Walker shows that reinfection with the COVID-19 virus is unlikely, he states that
there are still cases reported where people got reinfected [14]. Hence, to make the model
more complete this could be added to the model, which would give a better estimation of
the amount of people that are still susceptible at a certain time.

Furthermore, the SIR-model now only consists of the classes susceptible, infected and re-
moved. This can also be extended by adding more classes. For example, adding a class
for the deceased people, which separates the class removed into deceased and recovered
people. In a study conducted by Giordano et al. on the COVID-19 pandemic in Italy a
SIDHARTHE-model is developed, where they have the classes susceptible, infected, diag-
nosed, healed, ailing, recognized, threatened and extinct [6]. In this model, a more clear
distinction is made in the population, which is helpful since in a normal SIR-model it is
not clear which part of the infected people are hospitalized and in risk of dying. Making
the SIR-model more extensive by adding more classes gives more insight in the state of
the pandemic, helping governments to make the right decisions. Future research into the

18

model presented in this paper can extend the model by adding more classes.

Moreover, in this model vaccination is not taken into account. Vaccination makes sure
that less people are susceptible to attract the virus and therefore there are less infections
during the pandemic. There are several studies available that already include this into a
SIR-model, either by adding a class vaccinated or by changing the parameters κ and l,
showing that vaccination can greatly reduce the risk of major outbreaks of the virus [4, 5].
This is also a interesting factor to add into the model developed in this paper for future
research.

Next to this, in the model now only the case is tested when there are travel restrictions
for everyone, while in real life it is likely that some traffic between provinces is necessary.
This can be implemented in the model by adding a constant h ∈ [0, 1] to the matrices c
in (12) and c′ in (13). In this case h = 0 would mean no commuting between provinces is
allowed, and h = 1 would mean all commuting is allowed and any number between 0 and
1 would mean h is partially allowed. This could also show the effect of a partial lockdown
between provinces.

In the model, the commuting parameters are solely based on travel to work. However,
in real life, more traffic is going on between the provinces, but since no data is available
on all different kinds of traffic between the provinces and how long people stay in the
other province, this is not added into this model. If in the future more data is available,
this could be added to give a more complete overview of the effect of travel restrictions
between provinces. Moreover, travel time is also not taken into account. For this different
types of commuting can be considered. A person is much more likely to get infected in a
train than in their car. Hence, a distinction in the model can be made between people who
commute by car and those who commute by train and the duration of their commuting trip.

Next to this, the data set of COVID-19 in the Netherlands is not entirely complete. In the
beginning of the pandemic, there was not enough test capacity, meaning that a lot of the
infected people were not detected. Also, since not everyone gets tested when feeling ill and
not everyone gets symptoms of COVID-19, there are undetected cases of COVID-19. This
means that these cases are at the moment not included in the model, since the model is
purely based on the data available. However, Ivorra et al. have introduced a method that
take the undetected cases into account in China [8]. This approach can also be used in this
model to get an even better representation of the COVID-19 situation in the Netherlands.

Furthermore, the parameters κ and l are now estimated based on the defined time periods.
However, these time periods might not be perfect, and using different time periods might
yield better results. This means that more research can be conducted into the estimation
of κ and l. Next to this, there are also studies that estimate κ as a continuous function
of time. For example, a study conducted by Atkeson considers a function κ(t) which also
includes the effect of the different seasons and the effect of people less and less willing to
comply with the measures taken against the spread of the pandemic [1]. Future research
into the model can also include looking at continuous functions of κ, to see if this will
yield more accurate results. In many models, the recovery rate l is also kept as a constant,
based on the nature of the virus, instead of determining l from the data [17].
Another approach to optimize the estimation for κ and l is to make use of different nu-
merical optimization approaches and regularization, which can prevent overfitting of the

19

data, to the approximation. This means that if a function F : (κ, l) −→ (S, I,R), the goal
is to minimize the following least squares expression with regularization:

min
κ,l
|F (κ, l)− Sd, Id, RD)|22 + α

wκκ
2 + wll

2

2
(37)

Here Sd, Id, Rd are the values for the amount of susceptibles, infected and removed people
from the data, respectively. The parameter α can be determined based on the noise of the
data, for example if for

|Sd − S| ≤ δ (38)

and if the same holds for Id and Rd, α can be set to δ according to the a-priori choice rule.
The parameters wκ and wl are weights that can be assigned to κ and l in the regularization.
To solve this least squares problem different numerical methods can be used, for example
the Gauss-Newton method or the Levenberg-Marquardt method [11].

Since vaccination is not included in the model and the estimation of κ and l might not be
perfect, the model overestimates the total amount of infections. The model gives 2781523
infections in the Netherlands if commuting is allowed, but according to the real data there
are only 1681580 infections reported [15]. Hence, the results in the model are not com-
pletely accurate. However, by looking at the relative change in infections the effect of travel
restrictions can still be seen. Therefore, because the results are not completely accurate
and because the values for κ and l might differ in the future, no prediction is made for
the future course of the pandemic, since the results won’t be a good representation of reality.

Lastly, this model is now designed for the Dutch provinces. However, it can also be used
on a different scale, for example for Dutch municipalities. Since there is also data available
on the amount of infections in each municipality in the Netherlands, the parameters κ and
l can still be estimated. To make sure this model works, the Python code in appendix A
only needs some slight adjustments to store the necessary results, since it is now designed
to work for the provinces. Hence, the model could also be used to look at the effect of
travel restrictions on a smaller or on a larger scale.

6 Conclusion

The model developed in this paper shows that commuting between provinces does have an
effect on the spread of COVID-19 in the Netherlands. If commuting between provinces is
not allowed anymore, there will be 2.61% less infections and deaths in the Netherlands up
until the 24 June 2021. This accumulates to 72561 less infections and 798 less deaths caused
by COVID-19 according to the model. In the provinces the effect of travel restrictions is
different, some provinces have less infections when commuting is not allowed, but others
have more infections. This is caused by the fact that in some provinces more people are
coming into the province when commuting is allowed. This means that the effective pop-
ulation in a day in these provinces is higher than the actual population of these provinces.
Not allowing commuting then makes sure that this is not possible, meaning that there are
less people in the province and hence reducing the amount of infections.

Looking at the provinces separately shows that provinces like Utrecht and Zuid-Holland
have been most affected by the COVID-19 pandemic, since 21.3% and 20.6% of their popu-
lation have been infected, respectively. This differs a lot from the most northern provinces

20

Groningen, Friesland and Drenthe, where only 6.4%, 6.8% and 7.7% of the people are
infected, respectively. This shows that there is a big difference between provinces and
that this model gives a better insight in how COVID-19 has affected the entirety of the
Netherlands.

All in all, this model shows that commuting leads to more infections and deaths, but that
there are significant differences between the effect of commuting for each province. Since
the goal of this paper is only to look at the effect of travel restrictions on COVID-19
infections, there will not be a conclusion drawn whether this measure should be taken in
case of a future pandemic. For this decision a lot more factors are relevant, for example
the economical consequences of a lockdown. However, this model can be used by the
government to make the consideration whether travel restrictions are necessary in case
of a future outbreak of COVID-19 or a new pandemic, but let’s hope that that is not
happening.

21

References

[1] Andrew Atkeson. A parsimonious behavioral seir model of the 2020 covid epidemic
in the united states and the united kingdom. Technical report, National Bureau of
Economic Research, 2021.

[2] Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova,
Stefano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al.
The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19)
outbreak. Science, 368(6489):395–400, 2020.

[3] Christine R Cousins and Ning Tang. Working time and work and family conflict in
the netherlands, sweden and the uk. Work, employment and society, 18(3):531–549,
2004.

[4] M De la Sen and A Ibeas. On an se (is)(ih) ar epidemic model with combined vaccina-
tion and antiviral controls for covid-19 pandemic. Advances in Difference Equations,
2021(1):1–30, 2021.

[5] Carolina Fransson and Pieter Trapman. Sir epidemics and vaccination on random
graphs with clustering. Journal of mathematical biology, 78(7):2369–2398, 2019.

[6] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro
Di Filippo, Angela Di Matteo, and Marta Colaneri. Modelling the covid-19 epi-
demic and implementation of population-wide interventions in italy. Nature medicine,
26(6):855–860, 2020.

[7] Giorgio Guzzetta, Flavia Riccardo, Valentina Marziano, Piero Poletti, Filippo Tren-
tini, Antonino Bella, Xanthi Andrianou, Martina Del Manso, Massimo Fabiani, Stefa-
nia Bellino, et al. The impact of a nation-wide lockdown on covid-19 transmissibility
in italy. arXiv preprint arXiv:2004.12338, 2020.

[8] Benjamin Ivorra, M Ruiz Ferrández, Marıa Vela-Pérez, and AM Ramos. Mathematical
modeling of the spread of the coronavirus disease 2019 (covid-19) taking into account
the undetected infections. the case of china. Communications in nonlinear science
and numerical simulation, 88:105303, 2020.

[9] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the math-
ematical theory of epidemics. Proceedings of the royal society of london. Series A,
Containing papers of a mathematical and physical character, 115(772):700–721, 1927.

[10] John Hopkins University & Medicine. Mortality analyses.
https://coronavirus.jhu.edu/data/mortality, 2021.

[11] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[12] Rijksoverheid. Coronavirus tijdlijn. https://www.rijksoverheid.nl/onderwerpen/coronavirus-
tijdlijn, 2021.

[13] RIVM. Naleven gedragsregels. https://www.rivm.nl/gedragsonderzoek/maatregelen-
welbevinden/naleven-gedragsregels#Testen, 2021.

[14] Chris Stokel-Walker. What we know about covid-19 reinfection so far. British Medical
Journal, 372, 2021.

22

[15] W. van Bijsterveld. Coronagegevens van het rivm, cbs, nice, lcps &
ecdc, dagelijks verzameld. https://service.openinfo.nl/downloads/
corona-cijfers-per-dag-op-gemeente-provincie-en-landelijk-niveau/,
2021.

[16] CBS (Centraal Bureau voor Statistiek). Banen van werknemers naar woon- en
werkregio. https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=
CBS&tableId=83628NED&_theme=244, 2021.

[17] Jacco Wallinga and Marc Lipsitch. How generation intervals shape the relationship
between growth rates and reproductive numbers. Proceedings of the Royal Society B:
Biological Sciences, 274(1609):599–604, 2007.

[18] Kai Wang. A study of cubic spline interpolation. InSight: Rivier Academic Journal,
9(2), 2013.

[19] Dirk Werner. Funktionalanalysis. Springer, 2018.

23

https://service.openinfo.nl/downloads/corona-cijfers-per-dag-op-gemeente-provincie-en-landelijk-niveau/
https://service.openinfo.nl/downloads/corona-cijfers-per-dag-op-gemeente-provincie-en-landelijk-niveau/
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=83628NED&_theme=244
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=83628NED&_theme=244

A Python code

A.1 Commuting Data

1 import pandas as pd
2 import numpy as np
3

4 #defining the population vector
5 N = np.zeros(12)
6 N[0] = 582649 # 0: Groningen
7 N[1] = 646092 # 1: Friesland
8 N[2] = 488871 # 2: Drenthe
9 N[3] = 1162406 # 3: Overijssel

10 N[4] = 423021 # 4: Flevoland
11 N[5] = 2085952 # 5: Gelderland
12 N[6] = 1354834 # 6: Utrecht
13 N[7] = 2879527 # 7: Noord-Holland
14 N[8] = 3708696 # 8: Zuid-Holland
15 N[9] = 383488 # 9: Zeeland
16 N[10] = 2562955 # 10: Noord-Brabant
17 N[11] = 1117201 # 11: Limburg
18

19 x1 = pd.read_excel('CommutingData.xlsx')
20

21 T=[] #initializing T vector
22 c=np.zeros((len(N), len(N))) #initializing commuting matrix
23

24 #Selecting the right data from the table
25 Gr = x1.iloc[1, 1]
26 Fr = x1.iloc[7, 2]
27 Dr = x1.iloc[13, 2]
28 Ov = x1.iloc[19, 2]
29 Fl = x1.iloc[25, 2]
30 Ge = x1.iloc[31, 2]
31 Ut = x1.iloc[37, 2]
32 NH = x1.iloc[43, 2]
33 ZH = x1.iloc[49, 2]
34 Ze = x1.iloc[55, 2]
35 NB = x1.iloc[61, 2]
36 Li = x1.iloc[67, 2]
37 print(Ze)
38 provinces = [Gr, Fr, Dr, Ov, Fl, Ge, Ut, NH, ZH, Ze, NB, Li] #Vector ...

with all provinces in them
39

40

41 i=0
42 while i<len(x1): #total length of the table
43 j=0
44 while j≤11: #iterating all provinces
45 if x1.iloc[i,1] == provinces[j]:
46 k=0
47 while k≤11: #iterating all other provinces
48 if k is not j: #making sure that the commuting zero ...

parameter within the province stays zero
49 if x1.iloc[i,2] == provinces[k]:
50 T.append(x1.iat[i,4])
51 if len(T)==6:
52 c[j,k]=(sum(T)/6 * 1000)/N[j] #Calculating ...

commuting parameter.

24

53 T=[]
54 k += 1
55 j+=1
56 i+=1
57

58 cprime = np.zeros((len(N), len(N))) #Initializing the c prime matrix
59 i=0
60 while i< len(N):
61 cprime[i, i] = sum(c[i,]) #calculating the elements of c'
62 i+=1
63

64 i=0
65 while i < len(N):
66 print('outgoing=', sum(c[i,:]))
67 j=0
68 incom =[]
69 while j< len(N):
70 if j is not i:
71 incoming = c[j,i]*N[j]/N[i]
72 incom.append(incoming)
73 j+=1
74 print('incoming=', sum(incom))
75 i += 1

A.2 COVID-19 Data

1 import numpy as np
2 from scipy import optimize
3 import pandas as pd
4 import xlrd
5 import matplotlib.pyplot as plt
6 import numpy as np
7 from DataProvincie import c, N, cprime
8 from scipy import interpolate
9

10 #reading the necessary data sheets
11 x1 = pd.read_excel('Coronatest.xlsx', sheet_name='Besmettingen_verschil')
12 x2 = pd.read_excel('Coronatest.xlsx', sheet_name='Besmettingen')
13

14 #deleting unneccessary info from the data sheet
15 del x1['Regiocode']
16 del x1['Regiosoort']
17 del x1['Regionaam']
18 del x1['Provincienaam']
19 del x2['Regiocode']
20 del x2['Regiosoort']
21 del x2['Regionaam']
22 del x2['Provincienaam']
23

24 #initializing w and q
25 w = (33.5/7)/24 #work parameter
26 q= 1-0.76 #quarantaine paramter
27

28 #t=range(26*7)
29

30 #Deleting more unneccesary info from the data sheet
31 i=13
32 while i ≤ 380:

25

33 x1=x1.drop(i)
34 x2=x2.drop(i)
35 i += 1
36

37 #Transpose and flipping the order of x1 and x2
38 x1=x1.T
39 x1=x1[::-1]
40 x2=x2.T
41 x2=x2[::-1]
42

43 #Initializing vectors for the susceptibles in each province
44 NederlandS=[]
45 DrentheS=[]
46 FlevolandS=[]
47 FrieslandS=[]
48 GelderlandS=[]
49 GroningenS=[]
50 LimburgS=[]
51 NoordBrabantS=[]
52 NoordHollandS=[]
53 OverijsselS=[]
54 UtrechtS=[]
55 ZeelandS=[]
56 ZuidHollandS=[]
57

58 #Initializing vectors for the infected in each province
59 NederlandI=[]
60 DrentheI=[]
61 FlevolandI=[]
62 FrieslandI=[]
63 GelderlandI=[]
64 GroningenI=[]
65 LimburgI=[]
66 NoordBrabantI=[]
67 NoordHollandI=[]
68 OverijsselI=[]
69 UtrechtI=[]
70 ZeelandI=[]
71 ZuidHollandI=[]
72

73 i=0
74 while i < len(x1):
75 #adding the amount susceptibles per time step to the susceptible ...

vector of each province
76 NederlandS.append(sum(N)-x2.iat[i, 0])
77 DrentheS.append(N[2]-x2.iat[i, 1])
78 FlevolandS.append(N[4]-x2.iat[i, 2])
79 FrieslandS.append(N[1]-x2.iat[i, 3])
80 GelderlandS.append(N[5]-x2.iat[i, 4])
81 GroningenS.append(N[0]-x2.iat[i, 5])
82 LimburgS.append(N[11]-x2.iat[i, 6])
83 NoordBrabantS.append(N[10]-x2.iat[i, 7])
84 NoordHollandS.append(N[7]-x2.iat[i, 8])
85 OverijsselS.append(N[3]-x2.iat[i, 9])
86 UtrechtS.append(N[6]-x2.iat[i, 10])
87 ZeelandS.append(N[9]-x2.iat[i, 11])
88 ZuidHollandS.append(N[8]-x2.iat[i, 12])
89

90 #adding the amount infected per time step to the infected vector of ...
each province

91 NederlandI.append(x1.iat[i, 0])

26

92 DrentheI.append(x1.iat[i, 1])
93 FlevolandI.append(x1.iat[i, 2])
94 FrieslandI.append(x1.iat[i, 3])
95 GelderlandI.append(x1.iat[i, 4])
96 GroningenI.append(x1.iat[i, 5])
97 LimburgI.append(x1.iat[i, 6])
98 NoordBrabantI.append(x1.iat[i, 7])
99 NoordHollandI.append(x1.iat[i, 8])

100 OverijsselI.append(x1.iat[i, 9])
101 UtrechtI.append(x1.iat[i, 10])
102 ZeelandI.append(x1.iat[i, 11])
103 ZuidHollandI.append(x1.iat[i, 12])
104 i += 1
105

106

107 #initialzing matrices storing all susceptibles and infected persons for ...
each province

108 DataS = np.zeros((12, len(x1)))
109 DataI = np.zeros((12, len(x1)))
110 #initialzing matrices storing all effective susceptibles and infected ...

persons for each province
111 EffectiveI = np.zeros((12, len(x1)))
112 EffectiveS = np.zeros((12, len(x1)))
113 #initialzing matrices storing the derivatives of the amount ...

susceptibles and infected persons for each province
114 dS = np.zeros((12, len(x1)))
115 dI = np.zeros((12, len(x1)))
116

117 #Defining the 5 different time periods
118 time=np.arange(len(x1))
119 Time1 = range(0,89)
120 Time2= range(89, 211)
121 Time3= range(211, 287)
122 Time4 = range(287, 421)
123 Time5= range(421, len(x1))
124

125 #Filling the susceptible matrix
126 DataS[0, :] = GroningenS
127 DataS[1, :] = FrieslandS
128 DataS[2, :] = DrentheS
129 DataS[3, :] = OverijsselS
130 DataS[4, :] = FlevolandS
131 DataS[5, :] = GelderlandS
132 DataS[6, :] = UtrechtS
133 DataS[7, :] = NoordHollandS
134 DataS[8, :] = ZuidHollandS
135 DataS[9, :] = ZeelandS
136 DataS[10, :] = NoordBrabantS
137 DataS[11, :] = LimburgS
138

139 #Filling the infected matrix
140 DataI[0, :] = GroningenI
141 DataI[1, :] = FrieslandI
142 DataI[2, :] = DrentheI
143 DataI[3, :] = OverijsselI
144 DataI[4, :] = FlevolandI
145 DataI[5, :] = GelderlandI
146 DataI[6, :] = UtrechtI
147 DataI[7, :] = NoordHollandI
148 DataI[8, :] = ZuidHollandI
149 DataI[9, :] = ZeelandI

27

150 DataI[10, :] = NoordBrabantI
151 DataI[11, :] = LimburgI
152

153 #Calculating the matrices to go from actual to effective amount of ...
susceptibles and infected

154 M_S = np.identity(len(N)) - w * cprime + w * np.transpose(c)
155 M_I = np.identity(len(N)) - q*w * cprime + q*w * np.transpose(c)
156

157 #Calculating the effective amount of population
158 EffectiveN =M_S.dot(N.T)
159

160 #Calculating the effective amount of susceptibles and infected at each ...
time step

161 i=0
162 while i < len(x1):
163 EffectiveS[:,i] = M_S.dot(DataS[:,i])/EffectiveN
164 EffectiveI[:,i] = M_I.dot(DataI[:,i])/EffectiveN
165 i += 1
166

167 #Cubic spline interpolation for the effective susceptibles
168 csSGr = interpolate.CubicSpline(time, EffectiveS[0,:])
169 csSFr = interpolate.CubicSpline(time, EffectiveS[1,:])
170 csSDr = interpolate.CubicSpline(time, EffectiveS[2,:])
171 csSOv = interpolate.CubicSpline(time, EffectiveS[3,:])
172 csSFl = interpolate.CubicSpline(time, EffectiveS[4,:])
173 csSGe = interpolate.CubicSpline(time, EffectiveS[5,:])
174 csSUt = interpolate.CubicSpline(time, EffectiveS[6,:])
175 csSNH = interpolate.CubicSpline(time, EffectiveS[7,:])
176 csSZH = interpolate.CubicSpline(time, EffectiveS[8,:])
177 csSZe = interpolate.CubicSpline(time, EffectiveS[9,:])
178 csSNB = interpolate.CubicSpline(time, EffectiveS[10,:])
179 csSLi = interpolate.CubicSpline(time, EffectiveS[11,:])
180

181 #Storing all cubic splines for susceptibles in one vector
182 csS =[]
183 csS.append(csSGr)
184 csS.append(csSFr)
185 csS.append(csSDr)
186 csS.append(csSOv)
187 csS.append(csSFl)
188 csS.append(csSGe)
189 csS.append(csSUt)
190 csS.append(csSNH)
191 csS.append(csSZH)
192 csS.append(csSZe)
193 csS.append(csSNB)
194 csS.append(csSLi)
195

196 #Cubic spline interpolation for the effective infected
197 csIGr = interpolate.CubicSpline(time, EffectiveI[0,:])
198 csIFr = interpolate.CubicSpline(time, EffectiveI[1,:])
199 csIDr = interpolate.CubicSpline(time, EffectiveI[2,:])
200 csIOv = interpolate.CubicSpline(time, EffectiveI[3,:])
201 csIFl = interpolate.CubicSpline(time, EffectiveI[4,:])
202 csIGe = interpolate.CubicSpline(time, EffectiveI[5,:])
203 csIUt = interpolate.CubicSpline(time, EffectiveI[6,:])
204 csINH = interpolate.CubicSpline(time, EffectiveI[7,:])
205 csIZH = interpolate.CubicSpline(time, EffectiveI[8,:])
206 csIZe = interpolate.CubicSpline(time, EffectiveI[9,:])
207 csINB = interpolate.CubicSpline(time, EffectiveI[10,:])
208 csILi = interpolate.CubicSpline(time, EffectiveI[11,:])

28

209

210 #Storing all cubic splines for infected in one vector
211 csI =[]
212 csI.append(csIGr)
213 csI.append(csIFr)
214 csI.append(csIDr)
215 csI.append(csIOv)
216 csI.append(csIFl)
217 csI.append(csIGe)
218 csI.append(csIUt)
219 csI.append(csINH)
220 csI.append(csIZH)
221 csI.append(csIZe)
222 csI.append(csINB)
223 csI.append(csILi)
224

225 #initialzing matrix filled with -S*I
226 rightsideS = np.zeros((12,len(x1)))
227

228 #Filling the rightsideS matrix and the derivative matrices
229 i=0
230 while i<12:
231 rightsideS[i,:] = - csS[i](time) * csI[i](time)
232 dS[i,:] = csS[i](time, 1)
233 dI[i,:] = csI[i](time, 1)
234 EffectiveS[i,:] = csS[i](time)
235 EffectiveI[i,:] = csI[i](time)
236 i+=1
237

238 #Timeperiod1: 3 March - 1 June
239 #Making vectors with all data for timeperiod 1 to 5
240 dS1 = dS[:,Time1]
241 dS2 = dS[:,Time2]
242 dS3 = dS[:,Time3]
243 dS4 = dS[:,Time4]
244 dS5 = dS[:,Time5]
245

246 dI1 = dI[:,Time1]
247 dI2 = dI[:,Time2]
248 dI3 = dI[:,Time3]
249 dI4 = dI[:,Time4]
250 dI5 = dI[:,Time5]
251

252 rightsideS1 = rightsideS[:,Time1]
253 rightsideS2 = rightsideS[:,Time2]
254 rightsideS3 = rightsideS[:,Time3]
255 rightsideS4 = rightsideS[:,Time4]
256 rightsideS5 = rightsideS[:,Time5]
257

258 leftsideI = np.zeros((12, len(x1)))
259 leftsideI1 = leftsideI[:,Time1]
260 leftsideI2 = leftsideI[:,Time2]
261 leftsideI3 = leftsideI[:,Time3]
262 leftsideI4 = leftsideI[:,Time4]
263 leftsideI5 = leftsideI[:,Time5]
264

265

266 EffectiveS1 = EffectiveS[:, Time1]
267 EffectiveS2 = EffectiveS[:, Time2]
268 EffectiveS3 = EffectiveS[:, Time3]
269 EffectiveS4 = EffectiveS[:, Time4]

29

270 EffectiveS5 = EffectiveS[:, Time5]
271

272 EffectiveI1 = EffectiveI[:, Time1]
273 EffectiveI2 = EffectiveI[:, Time2]
274 EffectiveI3 = EffectiveI[:, Time3]
275 EffectiveI4 = EffectiveI[:, Time4]
276 EffectiveI5 = EffectiveI[:, Time5]
277

278 #Defining function to fit optimize curve
279 def func1(x, a):
280 y = a*x
281 return y
282

283 #Initializing vectors for k in each time period
284 k1 = np.zeros(12)
285 k2 = np.zeros(12)
286 k3 = np.zeros(12)
287 k4 = np.zeros(12)
288 k5 = np.zeros(12)
289

290 #Filling the k vectors by applying a least square curve fit to all vectors
291 i = 0
292 while i<12:
293 k1[i] = optimize.curve_fit(func1, xdata=rightsideS1[i, :], ...

ydata=dS1[i, :])[0]
294 k2[i] = optimize.curve_fit(func1, xdata=rightsideS2[i, :], ...

ydata=dS2[i, :])[0]
295 k3[i] = optimize.curve_fit(func1, xdata=rightsideS3[i, :], ...

ydata=dS3[i, :])[0]
296 k4[i] = optimize.curve_fit(func1, xdata=rightsideS4[i, :], ...

ydata=dS4[i, :])[0]
297 k5[i] = optimize.curve_fit(func1, xdata=rightsideS5[i, :], ...

ydata=dS5[i, :])[0]
298 i +=1
299

300 #Filling the leftsideI matrix with (dI/dt)/I
301 i =0
302 while i < 12:
303 leftsideI[i,:] = dI[i,:]/EffectiveI[i,:]
304 leftsideI1[i,:] = dI1[i,:]/EffectiveI1[i,:]
305 leftsideI2[i,:] = dI2[i,:]/EffectiveI2[i,:]
306 leftsideI3[i,:] = dI3[i,:]/EffectiveI3[i,:]
307 leftsideI4[i,:] = dI4[i,:]/EffectiveI4[i,:]
308 leftsideI5[i,:] = dI5[i,:]/EffectiveI5[i,:]
309 i += 1
310

311 #Defining new function for optimize curve fit
312 def func2(x, b, c):
313 y = b*x-c
314 return y
315

316 i=0
317 #Define matrix that stores kappa in first column and l in second column
318 l1=np.zeros((12,2))
319 l2=np.zeros((12,2))
320 l3=np.zeros((12,2))
321 l4=np.zeros((12,2))
322 l5=np.zeros((12,2))
323 while i<12:
324 l1[i] = optimize.curve_fit(func2, xdata= EffectiveS1[i,:], ...

ydata=leftsideI1[i,:])[0]

30

325 l2[i] = optimize.curve_fit(func2, xdata = EffectiveS2[i,:], ...
ydata=leftsideI2[i,:])[0]

326 l3[i] = optimize.curve_fit(func2, xdata = EffectiveS3[i,:], ...
ydata=leftsideI3[i,:])[0]

327 l4[i] = optimize.curve_fit(func2, xdata = EffectiveS4[i,:], ...
ydata=leftsideI4[i,:])[0]

328 l5[i] = optimize.curve_fit(func2, xdata = EffectiveS5[i,:], ...
ydata=leftsideI5[i,:])[0]

329 i+=1
330

331

332 #Initialize empty norm vectors
333 norm1 = np.zeros(12)
334 norm2 = np.zeros(12)
335 norm3 = np.zeros(12)
336 norm4 = np.zeros(12)
337 norm5 = np.zeros(12)
338

339 #Normalize l to kappa value as calculated before
340 for i in range(len(N)):
341 norm1[i] = l1[i,0]
342 l1[i, 0] = k1[i]
343 l1[i, 1] = l1[i,1]/norm1[i]*k1[0]
344

345 norm2[i] = l2[i, 0]
346 l2[i, 0] = k2[i]
347 l2[i, 1] = l2[i, 1] / norm2[i] * k2[0]
348

349 norm3[i] = l3[i, 0]
350 l3[i, 0] = k3[i]
351 l3[i, 1] = l3[i, 1] / norm3[i] * k3[0]
352

353 norm4[i] = l4[i, 0]
354 l4[i, 0] = k4[i]
355 l4[i, 1] = l4[i, 1] / norm4[i] * k4[0]
356

357 norm5[i] = l5[i, 0]
358 l5[i, 0] = k5[i]
359 l5[i, 1] = l5[i, 1] / norm5[i] * k5[0]
360

361 #Print kappa vectors
362 print('k1=', l1[:,0])
363 print('k2=', l2[:,0])
364 print('k3=', l3[:,0])
365 print('k4=', l4[:,0])
366 print('k5=', l5[:,0])
367

368 #Print l vectors
369 print('l1=', l1[:,1])
370 print('l2=', l2[:,1])
371 print('l3=', l3[:,1])
372 print('l4=', l4[:,1])
373 print('l5=', l5[:,1])

A.3 The Province Model

1 import matplotlib.pyplot as plt
2 plt.rcParams["figure.figsize"] = (11, 5) #set default figure size

31

3 import numpy as np
4 from numpy import exp
5 from scipy.integrate import odeint
6 from DataProvincie import c, N, provinces, cprime
7 from DataCovid import l1, l2, l3, l4, l5, w, q, x1
8 d= 0.95 #fraction of people that didn't die
9

10 #initializing vectors for the effective rate of change of s, i and r
11 dseff = np.zeros(12)
12 dieff = np.zeros(12)
13 dreff = np.zeros(12)
14

15 #Calculating the matrice to go from actual to effective amount of ...
susceptibles and its inverse

16 M_S = np.identity(len(N)) - w * cprime + w * np.transpose(c)
17 inverseM_S = np.linalg.inv(M_S)
18

19 #Calculating the matrice to go from actual to effective amount of ...
infected and its inverse

20 M_I = np.identity(len(N)) - q*w * cprime + q*w * np.transpose(c)
21 inverseM_I = np.linalg.inv(M_I)
22

23 #Calculating the matrice to go from actual to effective amount of ...
removed and its inverse

24 M_R = np.identity(len(N)) - d*w * cprime + d*w * np.transpose(c)
25 inverseM_R = np.linalg.inv(M_R)
26

27 #Calculating effective population for each province
28 EffectiveN =M_S.dot(N.T)
29

30 def F(x, t): #Function to calculate the differential equations ds, di, dr
31 global counter
32 #Loading in the necessary variables for the function:
33 S_Gr, S_Fr, S_Dr, S_Ov, S_Fl, S_Ge, S_Ut, S_NH, S_ZH, S_Ze, S_NB, ...

S_Li, I_Gr, I_Fr, I_Dr, I_Ov, I_Fl, I_Ge, I_Ut, I_NH, I_ZH, ...
I_Ze, I_NB, I_Li, R_Gr, R_Fr, R_Dr, R_Ov, R_Fl, R_Ge, R_Ut, ...
R_NH, R_ZH, R_Ze, R_NB, R_Li = x

34 #Defining vector S, I and R
35 S=[S_Gr, S_Fr, S_Dr, S_Ov, S_Fl, S_Ge, S_Ut, S_NH, S_ZH, S_Ze, ...

S_NB, S_Li]
36 I=[I_Gr, I_Fr, I_Dr, I_Ov, I_Fl, I_Ge, I_Ut, I_NH, I_ZH, I_Ze, ...

I_NB, I_Li]
37 R=[R_Gr, R_Fr, R_Dr, R_Ov, R_Fl, R_Ge, R_Ut, R_NH, R_ZH, R_Ze, ...

R_NB, R_Li]
38

39 #Timeperiod 1
40 if t≤89:
41 k = l1[:,0]
42 l = l1[:,1]
43 #Timeperiod 2
44 elif t<211:
45 k = l2[:, 0]
46 l = l2[:, 1]
47 elif t<287:
48 #Timeperiod 3
49 k = l3[:, 0]
50 l = l3[:, 1]
51 #Timeperiod 4
52 elif t<421:
53 k = l4[:, 0]
54 l = l4[:, 1]

32

55 #Timeperiod 5
56 else:
57 k = l5[:, 0]
58 l = l5[:, 1]
59

60 #Calculating effective fraction of suscetible, infected and removed
61 Seff = M_S.dot(S)/EffectiveN
62 Ieff = M_I.dot(I)/EffectiveN
63 Reff = M_R.dot(R)/EffectiveN
64

65 #Calculating the differential equations:
66 i=0
67 while i ≤ len(N)-1:
68 dseff[i] = -k[i]*Seff[i]*Ieff[i]
69 dieff[i] = (k[i]*Seff[i]*Ieff[i]) - l[i]*Ieff[i]
70 dreff[i] = - l[i] * Ieff[i]
71 i+=1
72

73 #Calculating actual rate of change of susceptible, infected and removed
74 ds = inverseM_S.dot(dseff)*EffectiveN
75 di = inverseM_I.dot(dieff)*EffectiveN
76 dr = inverseM_R.dot(dreff)*EffectiveN
77

78 #Making sure the final output can be used in odeint
79 result = np.reshape([ds, di, dr], len(S)*3)
80 return result
81

82 # initial conditions of S, I and R (Every province one infection at the ...
start)

83 i=0
84 Sstart=[]
85 Istart=[]
86 Rstart=[]
87 while i ≤ len(N)-1:
88 Sstart.append((N[i]-1)) #Making sure everyone but 1 person is ...

susceptible at the start
89 Istart.append(1) #Making sure only 1 person is infected ...

at the start
90 Rstart.append(0) #Making sure there are no removed ...

people at the start
91 i += 1
92

93 # initial conditions of S, I and R (Every province according to actual ...
data)

94 #Sstart=np.ones(12)
95 #Istart=np.zeros(12)
96 #Rstart=np.zeros(12)
97

98 #Sstart[0] = N[0] #0 infections in Groningen
99 #Sstart[1] = N[1] #0 infections in Friesland

100 #Sstart[2] = N[2] - 2 # 2 infections in Drenthe
101 #Sstart[3] = N[3] #0 infections in Overijssel
102 #Sstart[4] = N[4] #0 infections in Flevoland
103 #Sstart[5] = N[5] #0 infections in Gelderland
104 #Sstart[6] =N[6] - 3 # 3 Infections in Utrecht
105 #Sstart[7] = N[7] - 3 # 3 Infections in Noord-Holland
106 #Sstart[8] = N[8] - 3 # 3 Infections in Zuid-Holland
107 #Sstart[9] = N[9] # 0 Infections in Zeeland
108 #Sstart[10] = N[10] - 12 # 12 Infections in Noord-Brabant
109 #Sstart[11] = N[11] #0 infections in Limburg
110

33

111 #Istart[2] = 2 # 2 infections in Drenthe
112 #Istart[6] = 3 # 3 Infections in Utrecht
113 #Istart[7] = 3 # 3 Infections in Noord-Holland
114 #Istart[8] = 3 # 3 Infections in Zuid-Holland
115 #Istart[10] = 12 # 12 Infections in Noord-Brabant
116

117

118 x_0 = np.reshape([Sstart, Istart, Rstart], len(N)*3)
119

120 #Making a time vector for the plots.
121 #actual time
122 t_length = len(x1)
123 grid_size = len(x1)
124

125 t_vec = np.linspace(0, t_length, grid_size)
126

127

128 def solve_path(t_vec, x_init=x_0):
129 """
130 Solve for S(t), I(t) and R(t) via numerical integration,
131 given the time path for R0.
132 """
133 G = lambda x, t: F(x, t)
134 S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, S_Ge_path, ...

S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, S_NB_path, ...
S_Li_path, I_Gr_path, I_Fr_path, I_Dr_path, I_Ov_path, ...
I_Fl_path, I_Ge_path, I_Ut_path, I_NH_path, I_ZH_path, ...
I_Ze_path, I_NB_path, I_Li_path, R_Gr_path, R_Fr_path, ...
R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, R_Ut_path, ...
R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path = ...
odeint(G, x_init, t_vec).transpose()

135

136 return S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, ...
S_Ge_path, S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, ...
S_NB_path, S_Li_path, I_Gr_path, I_Fr_path, I_Dr_path, ...
I_Ov_path, I_Fl_path, I_Ge_path, I_Ut_path, I_NH_path, ...
I_ZH_path, I_Ze_path, I_NB_path, I_Li_path, R_Gr_path, ...
R_Fr_path, R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, ...
R_Ut_path, R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path

137

138 #Initializing vectors to store the results
139 S_prov, I_prov, R_prov = [], [], []
140 S_NL_paths, I_NL_paths, R_NL_paths = [], [], []
141

142 #Calculating the results:
143 S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, S_Ge_path, ...

S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, S_NB_path, S_Li_path, ...
I_Gr_path, I_Fr_path, I_Dr_path, I_Ov_path, I_Fl_path, I_Ge_path, ...
I_Ut_path, I_NH_path, I_ZH_path, I_Ze_path, I_NB_path, I_Li_path, ...
R_Gr_path, R_Fr_path, R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, ...
R_Ut_path, R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path = ...
solve_path(t_vec)

144 #Making the vector with the paths of the susceptibles in all provinces.
145 S_prov.append(S_Gr_path)
146 S_prov.append(S_Fr_path)
147 S_prov.append(S_Dr_path)
148 S_prov.append(S_Ov_path)
149 S_prov.append(S_Fl_path)
150 S_prov.append(S_Ge_path)
151 S_prov.append(S_Ut_path)
152 S_prov.append(S_NH_path)

34

153 S_prov.append(S_ZH_path)
154 S_prov.append(S_Ze_path)
155 S_prov.append(S_NB_path)
156 S_prov.append(S_Li_path)
157 #Making the vector with the paths of the infected in all provinces.
158 I_prov.append(I_Gr_path)
159 I_prov.append(I_Fr_path)
160 I_prov.append(I_Dr_path)
161 I_prov.append(I_Ov_path)
162 I_prov.append(I_Fl_path)
163 I_prov.append(I_Ge_path)
164 I_prov.append(I_Ut_path)
165 I_prov.append(I_NH_path)
166 I_prov.append(I_ZH_path)
167 I_prov.append(I_Ze_path)
168 I_prov.append(I_NB_path)
169 I_prov.append(I_Li_path)
170 #Making the vector with the paths of the Removed in all provinces.
171 R_prov.append(R_Gr_path)
172 R_prov.append(R_Fr_path)
173 R_prov.append(R_Dr_path)
174 R_prov.append(R_Ov_path)
175 R_prov.append(R_Fl_path)
176 R_prov.append(R_Ge_path)
177 R_prov.append(R_Ut_path)
178 R_prov.append(R_NH_path)
179 R_prov.append(R_ZH_path)
180 R_prov.append(R_Ze_path)
181 R_prov.append(R_NB_path)
182 R_prov.append(R_Li_path)
183 #Calculating the total fraction of S, I and R in the Netherlands.
184 S_NL_path = (S_Gr_path+S_Fr_path+S_Dr_path+S_Ov_path+ S_Fl_path+ ...

S_Ge_path+S_Ut_path+S_NH_path + S_ZH_path+ S_Ze_path+ S_NB_path + ...
S_Li_path)

185 I_NL_path = (I_Gr_path+I_Fr_path+I_Dr_path+I_Ov_path+ I_Fl_path + ...
I_Ge_path +I_Ut_path +I_NH_path + I_ZH_path + I_Ze_path + I_NB_path ...
+ I_Li_path)

186 R_NL_path = (R_Gr_path+R_Fr_path+R_Dr_path+R_Ov_path+ R_Fl_path + ...
R_Ge_path +R_Ut_path+R_NH_path+ R_ZH_path+ R_Ze_path + R_NB_path+ ...
R_Li_path)/sum(N)

187

188 colors = ['red', 'blue', 'green', 'orange', 'yellow', 'black', 'grey', ...
'purple', 'pink', 'magenta', 'cyan', 'deepskyblue']

189

190 ##Plotting the susceptibles
191 #Plotting the time periods
192 #plt.axvline(89, ls='--', color='grey', lw= 0.5)
193 #plt.axvline(211, ls='--', color='grey', lw=0.5)
194 #plt.axvline(287, ls='--', color='grey', lw=0.5)
195 #plt.axvline(421, ls='--', color='grey', lw=0.5)
196

197 #for i in range(len(S_prov)):
198 # plt.plot(t_vec, S_prov[i]/N[i], label=provinces[i])
199 #plt.xlabel('Time (days)')
200 #plt.ylabel('Fraction of total population')
201 #plt.title('Susceptibles in each province')
202 #plt.legend()
203 #plt.show()
204

205 ##Plotting the infected
206 #Plotting the timeperiods

35

207 plt.axvline(89, ls='--', color='grey', lw= 0.5)
208 plt.axvline(211, ls='--', color='grey', lw=0.5)
209 plt.axvline(287, ls='--', color='grey', lw=0.5)
210 plt.axvline(421, ls='--', color='grey', lw=0.5)
211

212 for i in range(len(N)):
213 plt.plot(t_vec, I_prov[i]/N[i], label=provinces[i], color= colors[i])
214 plt.xlabel('Time (days)')
215 plt.ylabel('Fraction of total population')
216 plt.title('Infected people in each province')
217 plt.legend()
218 plt.show()
219

220 ##Plotting the removed
221 #Plotting the timeperiods
222 #plt.axvline(89, ls='--', color='grey', lw= 0.5)
223 #plt.axvline(211, ls='--', color='grey', lw=0.5)
224 #plt.axvline(287, ls='--', color='grey', lw=0.5)
225 #plt.axvline(421, ls='--', color='grey', lw=0.5)
226 #for i in range(len(R_prov)):
227 # plt.plot(t_vec, R_prov[i]/N[i], label=provinces[i])
228 #plt.xlabel('Time (days)')
229 #plt.ylabel('Fraction of total population')
230 #plt.title('Removed people in each province')
231 #plt.legend()
232 #plt.show()
233

234 ##printing the results
235 print('max I_NL =',max(I_NL_path))
236 print('sum I_NL =',sum(I_NL_path))
237 print('max I_Gr =',max(I_Gr_path))
238 print('sum I_Gr =',sum(I_Gr_path))
239 print('max I_Fr =',max(I_Fr_path))
240 print('sum I_Fr =',sum(I_Fr_path))
241 print('max I_Dr =',max(I_Dr_path))
242 print('sum I_Dr =',sum(I_Dr_path))
243 print('max I_Ov =',max(I_Ov_path))
244 print('sum I_Ov =',sum(I_Ov_path))
245 print('max I_Fl =',max(I_Fl_path))
246 print('sum I_Fl =',sum(I_Fl_path))
247 print('max I_Ge =',max(I_Ge_path))
248 print('sum I_Ge =',sum(I_Ge_path))
249 print('max I_Ut =',max(I_Ut_path))
250 print('sum I_Ut =',sum(I_Ut_path))
251 print('max I_NH =',max(I_NH_path))
252 print('sum I_NH =',sum(I_NH_path))
253 print('max I_ZH =',max(I_ZH_path))
254 print('sum I_ZH =',sum(I_ZH_path))
255 print('max I_Ze =',max(I_Ze_path))
256 print('sum I_Ze =',sum(I_Ze_path))
257 print('max I_NB =',max(I_NB_path))
258 print('sum I_NB =',sum(I_NB_path))
259 print('max I_Li =',max(I_Li_path))
260 print('sum I_Li =',sum(I_Li_path))
261

262 print('deaths NL=', sum(I_NL_path)*0.011)
263 print('deaths Gr=',sum(I_Gr_path)*0.011)
264 print('deaths Fr=',sum(I_Fr_path)*0.011)
265 print('deaths Dr=',sum(I_Dr_path)*0.011)
266 print('deaths Ov=',sum(I_Ov_path)*0.011)
267 print('deaths Fl=',sum(I_Fl_path)*0.011)

36

268 print('deaths Ge=',sum(I_Ge_path)*0.011)
269 print('deaths Ut=',sum(I_Ut_path)*0.011)
270 print('deaths NH=',sum(I_NH_path)*0.011)
271 print('deaths ZH=',sum(I_ZH_path)*0.011)
272 print('deaths Ze=',sum(I_Ze_path)*0.011)
273 print('deaths NB=',sum(I_NB_path)*0.011)
274 print('deaths Li=',sum(I_Li_path)*0.011)
275

276 commutingI = np.zeros(13)
277 commutingI[0] = sum(I_NL_path)
278 commutingI[1] = sum(I_Gr_path)
279 commutingI[2] = sum(I_Fr_path)
280 commutingI[3] = sum(I_Dr_path)
281 commutingI[4] = sum(I_Ov_path)
282 commutingI[5] = sum(I_Fl_path)
283 commutingI[6] = sum(I_Ge_path)
284 commutingI[7] = sum(I_Ut_path)
285 commutingI[8] = sum(I_NH_path)
286 commutingI[9] = sum(I_ZH_path)
287 commutingI[10] = sum(I_Ze_path)
288 commutingI[11] = sum(I_NB_path)
289 commutingI[12] = sum(I_Li_path)
290

291 print('fraction I_NL =', sum(I_NL_path)/sum(N))
292 print('fraction I_Gr =',sum(I_Gr_path)/N[0])
293 print('fraction I_Fr =',sum(I_Fr_path)/N[1])
294 print('fraction I_Dr =',sum(I_Dr_path)/N[2])
295 print('fraction I_Ov =',sum(I_Ov_path)/N[3])
296 print('fraction I_Fl =',sum(I_Fl_path)/N[4])
297 print('fraction I_Ge =',sum(I_Ge_path)/N[5])
298 print('fraction I_Ut =',sum(I_Ut_path)/N[6])
299 print('fraction I_NH =',sum(I_NH_path)/N[7])
300 print('fraction I_ZH =',sum(I_ZH_path)/N[8])
301 print('fraction I_Ze =',sum(I_Ze_path)/N[9])
302 print('fraction I_NB =',sum(I_NB_path)/N[10])
303 print('fraction I_Li =',sum(I_Li_path)/N[11])
304

305 ##Plotting the entire Netherlands
306 #Plotting the timezones
307 #plt.axvline(89, ls='--', color='grey', lw= 0.5)
308 #plt.axvline(211, ls='--', color='grey', lw=0.5)
309 #plt.axvline(287, ls='--', color='grey', lw=0.5)
310 #plt.axvline(421, ls='--', color='grey', lw=0.5)
311 #plt.plot(t_vec, S_NL_path/sum(N), label ='S (Commuting is allowed)')
312 #plt.plot(t_vec, I_NL_path/sum(N), label ='I (Commuting is allowed)')
313 #plt.plot(t_vec, R_NL_path/sum(N), label ='R (Commuting is not allowed)')
314 #plt.xlabel('Time (days)')
315 #plt.ylabel('Fraction of total population')
316 #plt.title('Infected people in the Netherlands')
317 #plt.legend()
318 #plt.show()
319

320 print('COMMUTING IS NOT ALLOWED')
321

322 #Changing c
323 c=np.zeros((len(N), len(N)))
324 cprime = np.zeros((len(N), len(N)))
325

326 #initializing vectors for the effective rate of change of s, i and r
327 dseff = np.zeros(12)
328 dieff = np.zeros(12)

37

329 dreff = np.zeros(12)
330

331 #Calculating the matrice to go from actual to effective amount of ...
susceptibles and its inverse

332 M_S = np.identity(len(N)) - w * cprime + w * np.transpose(c)
333 inverseM_S = np.linalg.inv(M_S)
334

335 #Calculating the matrice to go from actual to effective amount of ...
infected and its inverse

336 M_I = np.identity(len(N)) - q*w * cprime + q*w * np.transpose(c)
337 inverseM_I = np.linalg.inv(M_I)
338

339 #Calculating the matrice to go from actual to effective amount of ...
removed and its inverse

340 M_R = np.identity(len(N)) - d*w * cprime + d*w * np.transpose(c)
341 inverseM_R = np.linalg.inv(M_R)
342

343 #Calculating effective population for each province
344 EffectiveN =M_S.dot(N.T)
345

346 def F(x, t): #Function to calculate the differential equations ds, di, dr
347 global counter
348 #Loading in the necessary variables for the function:
349 S_Gr, S_Fr, S_Dr, S_Ov, S_Fl, S_Ge, S_Ut, S_NH, S_ZH, S_Ze, S_NB, ...

S_Li, I_Gr, I_Fr, I_Dr, I_Ov, I_Fl, I_Ge, I_Ut, I_NH, I_ZH, ...
I_Ze, I_NB, I_Li, R_Gr, R_Fr, R_Dr, R_Ov, R_Fl, R_Ge, R_Ut, ...
R_NH, R_ZH, R_Ze, R_NB, R_Li = x

350 #Defining vector S, I and R
351 S=[S_Gr, S_Fr, S_Dr, S_Ov, S_Fl, S_Ge, S_Ut, S_NH, S_ZH, S_Ze, ...

S_NB, S_Li]
352 I=[I_Gr, I_Fr, I_Dr, I_Ov, I_Fl, I_Ge, I_Ut, I_NH, I_ZH, I_Ze, ...

I_NB, I_Li]
353 R=[R_Gr, R_Fr, R_Dr, R_Ov, R_Fl, R_Ge, R_Ut, R_NH, R_ZH, R_Ze, ...

R_NB, R_Li]
354

355 #Timeperiod 1
356 if t≤89:
357 k = l1[:,0]
358 l = l1[:,1]
359 #Timeperiod 2
360 elif t<211:
361 k = l2[:, 0]
362 l = l2[:, 1]
363 elif t<287:
364 #Timeperiod 3
365 k = l3[:, 0]
366 l = l3[:, 1]
367 #Timeperiod 4
368 elif t<421:
369 k = l4[:, 0]
370 l = l4[:, 1]
371 #Timeperiod 5
372 else:
373 k = l5[:, 0]
374 l = l5[:, 1]
375

376 #Calculating effective fraction of suscetible, infected and removed
377 Seff = M_S.dot(S)/EffectiveN
378 Ieff = M_I.dot(I)/EffectiveN
379 Reff = M_R.dot(R)/EffectiveN
380

38

381 #Calculating the differential equations:
382 i=0
383 while i ≤ len(N)-1:
384 dseff[i] = -k[i]*Seff[i]*Ieff[i]
385 dieff[i] = (k[i]*Seff[i]*Ieff[i]) - l[i]*Ieff[i]
386 dreff[i] = - l[i] * Ieff[i]
387 i+=1
388

389 #Calculating actual rate of change of susceptible, infected and removed
390 ds = inverseM_S.dot(dseff)*EffectiveN
391 di = inverseM_I.dot(dieff)*EffectiveN
392 dr = inverseM_R.dot(dreff)*EffectiveN
393

394 #Making sure the final output can be used in odeint
395 result = np.reshape([ds, di, dr], len(S)*3)
396 return result
397

398 # initial conditions of S, I and R (Every province one infection at the ...
start)

399 i=0
400 Sstart=[]
401 Istart=[]
402 Rstart=[]
403 while i ≤ len(N)-1:
404 Sstart.append((N[i]-1)) #Making sure everyone but 1 person is ...

susceptible at the start
405 Istart.append(1) #Making sure only 1 person is infected ...

at the start
406 Rstart.append(0) #Making sure there are no removed ...

people at the start
407 i += 1
408

409 # initial conditions of S, I and R (Every province according to actual ...
data)

410 #Sstart=np.ones(12)
411 #Istart=np.zeros(12)
412 #Rstart=np.zeros(12)
413

414 #Sstart[0] = N[0] #0 infections in Groningen
415 #Sstart[1] = N[1] #0 infections in Friesland
416 #Sstart[2] = N[2] - 2 # 2 infections in Drenthe
417 #Sstart[3] = N[3] #0 infections in Overijssel
418 #Sstart[4] = N[4] #0 infections in Flevoland
419 #Sstart[5] = N[5] #0 infections in Gelderland
420 #Sstart[6] =N[6] - 3 # 3 Infections in Utrecht
421 #Sstart[7] = N[7] - 3 # 3 Infections in Noord-Holland
422 #Sstart[8] = N[8] - 3 # 3 Infections in Zuid-Holland
423 #Sstart[9] = N[9] # 0 Infections in Zeeland
424 #Sstart[10] = N[10] - 12 # 12 Infections in Noord-Brabant
425 #Sstart[11] = N[11] #0 infections in Limburg
426

427 #Istart[2] = 2 # 2 infections in Drenthe
428 #Istart[6] = 3 # 3 Infections in Utrecht
429 #Istart[7] = 3 # 3 Infections in Noord-Holland
430 #Istart[8] = 3 # 3 Infections in Zuid-Holland
431 #Istart[10] = 12 # 12 Infections in Noord-Brabant
432

433 x_0 = np.reshape([Sstart, Istart, Rstart], len(N)*3)
434

435 #Making a time vector for the plots.
436 #Actual time

39

437 t_length = len(x1)
438 grid_size = len(x1)
439

440 t_vec = np.linspace(0, t_length, grid_size)
441

442

443 def solve_path(t_vec, x_init=x_0):
444 """
445 Solve for S(t), I(t) and R(t) via numerical integration,
446 given the time path for R0.
447 """
448 G = lambda x, t: F(x, t)
449 S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, S_Ge_path, ...

S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, S_NB_path, ...
S_Li_path, I_Gr_path, I_Fr_path, I_Dr_path, I_Ov_path, ...
I_Fl_path, I_Ge_path, I_Ut_path, I_NH_path, I_ZH_path, ...
I_Ze_path, I_NB_path, I_Li_path, R_Gr_path, R_Fr_path, ...
R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, R_Ut_path, ...
R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path = ...
odeint(G, x_init, t_vec).transpose()

450

451 return S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, ...
S_Ge_path, S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, ...
S_NB_path, S_Li_path, I_Gr_path, I_Fr_path, I_Dr_path, ...
I_Ov_path, I_Fl_path, I_Ge_path, I_Ut_path, I_NH_path, ...
I_ZH_path, I_Ze_path, I_NB_path, I_Li_path, R_Gr_path, ...
R_Fr_path, R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, ...
R_Ut_path, R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path

452

453 #Initializing vectors to store the results
454 S_prov, I_prov, R_prov = [], [], []
455 S_NL_paths, I_NL_paths, R_NL_paths = [], [], []
456

457 #Calculating the results:
458 S_Gr_path, S_Fr_path, S_Dr_path, S_Ov_path, S_Fl_path, S_Ge_path, ...

S_Ut_path, S_NH_path, S_ZH_path, S_Ze_path, S_NB_path, S_Li_path, ...
I_Gr_path, I_Fr_path, I_Dr_path, I_Ov_path, I_Fl_path, I_Ge_path, ...
I_Ut_path, I_NH_path, I_ZH_path, I_Ze_path, I_NB_path, I_Li_path, ...
R_Gr_path, R_Fr_path, R_Dr_path, R_Ov_path, R_Fl_path, R_Ge_path, ...
R_Ut_path, R_NH_path, R_ZH_path, R_Ze_path, R_NB_path, R_Li_path = ...
solve_path(t_vec)

459 #Making the vector with the paths of the susceptibles in all provinces.
460 S_prov.append(S_Gr_path)
461 S_prov.append(S_Fr_path)
462 S_prov.append(S_Dr_path)
463 S_prov.append(S_Ov_path)
464 S_prov.append(S_Fl_path)
465 S_prov.append(S_Ge_path)
466 S_prov.append(S_Ut_path)
467 S_prov.append(S_NH_path)
468 S_prov.append(S_ZH_path)
469 S_prov.append(S_Ze_path)
470 S_prov.append(S_NB_path)
471 S_prov.append(S_Li_path)
472 #Making the vector with the paths of the infected in all provinces.
473 I_prov.append(I_Gr_path)
474 I_prov.append(I_Fr_path)
475 I_prov.append(I_Dr_path)
476 I_prov.append(I_Ov_path)
477 I_prov.append(I_Fl_path)
478 I_prov.append(I_Ge_path)

40

479 I_prov.append(I_Ut_path)
480 I_prov.append(I_NH_path)
481 I_prov.append(I_ZH_path)
482 I_prov.append(I_Ze_path)
483 I_prov.append(I_NB_path)
484 I_prov.append(I_Li_path)
485 #Making the vector with the paths of the Removed in all provinces.
486 R_prov.append(R_Gr_path)
487 R_prov.append(R_Fr_path)
488 R_prov.append(R_Dr_path)
489 R_prov.append(R_Ov_path)
490 R_prov.append(R_Fl_path)
491 R_prov.append(R_Ge_path)
492 R_prov.append(R_Ut_path)
493 R_prov.append(R_NH_path)
494 R_prov.append(R_ZH_path)
495 R_prov.append(R_Ze_path)
496 R_prov.append(R_NB_path)
497 R_prov.append(R_Li_path)
498 #Calculating the total fraction of S, I and R in the Netherlands.
499 S_NL_path = (S_Gr_path+S_Fr_path+S_Dr_path+S_Ov_path+ S_Fl_path+ ...

S_Ge_path+S_Ut_path+S_NH_path + S_ZH_path+ S_Ze_path+ S_NB_path + ...
S_Li_path)

500 I_NL_path = (I_Gr_path+I_Fr_path+I_Dr_path+I_Ov_path+ I_Fl_path + ...
I_Ge_path +I_Ut_path +I_NH_path + I_ZH_path + I_Ze_path + I_NB_path ...
+ I_Li_path)

501 R_NL_path = (R_Gr_path+R_Fr_path+R_Dr_path+R_Ov_path+ R_Fl_path + ...
R_Ge_path +R_Ut_path+R_NH_path+ R_ZH_path+ R_Ze_path + R_NB_path+ ...
R_Li_path)/sum(N)

502

503 colors = ['red', 'blue', 'green', 'orange', 'yellow', 'black', 'grey', ...
'purple', 'pink', 'magenta', 'cyan', 'deepskyblue']

504

505 ##Plotting the susceptibles
506 #Plotting the time periods
507 #plt.axvline(89, ls='--', color='grey', lw= 0.5)
508 #plt.axvline(211, ls='--', color='grey', lw=0.5)
509 #plt.axvline(287, ls='--', color='grey', lw=0.5)
510 #plt.axvline(421, ls='--', color='grey', lw=0.5)
511

512 #for i in range(len(S_prov)):
513 # plt.plot(t_vec, S_prov[i]/N[i], label=provinces[i])
514 #plt.xlabel('Time (days)')
515 #plt.ylabel('Fraction of total population')
516 #plt.title('Susceptibles in each province')
517 #plt.legend()
518 #plt.show()
519

520 ##Plotting the infected
521 #Plotting the timeperiods
522 plt.axvline(89, ls='--', color='grey', lw= 0.5)
523 plt.axvline(211, ls='--', color='grey', lw=0.5)
524 plt.axvline(287, ls='--', color='grey', lw=0.5)
525 plt.axvline(421, ls='--', color='grey', lw=0.5)
526

527 for i in range(len(N)):
528 plt.plot(t_vec, I_prov[i]/N[i], label=provinces[i], color= colors[i])
529 plt.xlabel('Time (days)')
530 plt.ylabel('Fraction of total population')
531 plt.title('Infected people in each province')
532 plt.legend()

41

533 plt.show()
534

535 ##Plotting the removed
536 #Plotting the timeperiods
537 #plt.axvline(89, ls='--', color='grey', lw= 0.5)
538 #plt.axvline(211, ls='--', color='grey', lw=0.5)
539 #plt.axvline(287, ls='--', color='grey', lw=0.5)
540 #plt.axvline(421, ls='--', color='grey', lw=0.5)
541 #for i in range(len(R_prov)):
542 # plt.plot(t_vec, R_prov[i]/N[i], label=provinces[i])
543 #plt.xlabel('Time (days)')
544 #plt.ylabel('Fraction of total population')
545 #plt.title('Removed people in each province')
546 #plt.legend()
547 #plt.show()
548

549 ##printing the results
550 print('max I_NL =',max(I_NL_path))
551 print('sum I_NL =',sum(I_NL_path))
552 print('max I_Gr =',max(I_Gr_path))
553 print('sum I_Gr =',sum(I_Gr_path))
554 print('max I_Fr =',max(I_Fr_path))
555 print('sum I_Fr =',sum(I_Fr_path))
556 print('max I_Dr =',max(I_Dr_path))
557 print('sum I_Dr =',sum(I_Dr_path))
558 print('max I_Ov =',max(I_Ov_path))
559 print('sum I_Ov =',sum(I_Ov_path))
560 print('max I_Fl =',max(I_Fl_path))
561 print('sum I_Fl =',sum(I_Fl_path))
562 print('max I_Ge =',max(I_Ge_path))
563 print('sum I_Ge =',sum(I_Ge_path))
564 print('max I_Ut =',max(I_Ut_path))
565 print('sum I_Ut =',sum(I_Ut_path))
566 print('max I_NH =',max(I_NH_path))
567 print('sum I_NH =',sum(I_NH_path))
568 print('max I_ZH =',max(I_ZH_path))
569 print('sum I_ZH =',sum(I_ZH_path))
570 print('max I_Ze =',max(I_Ze_path))
571 print('sum I_Ze =',sum(I_Ze_path))
572 print('max I_NB =',max(I_NB_path))
573 print('sum I_NB =',sum(I_NB_path))
574 print('max I_Li =',max(I_Li_path))
575 print('sum I_Li =',sum(I_Li_path))
576

577 print('deaths NL=', sum(I_NL_path)*0.011)
578 print('deaths Gr=',sum(I_Gr_path)*0.011)
579 print('deaths Fr=',sum(I_Fr_path)*0.011)
580 print('deaths Dr=',sum(I_Dr_path)*0.011)
581 print('deaths Ov=',sum(I_Ov_path)*0.011)
582 print('deaths Fl=',sum(I_Fl_path)*0.011)
583 print('deaths Ge=',sum(I_Ge_path)*0.011)
584 print('deaths Ut=',sum(I_Ut_path)*0.011)
585 print('deaths NH=',sum(I_NH_path)*0.011)
586 print('deaths ZH=',sum(I_ZH_path)*0.011)
587 print('deaths Ze=',sum(I_Ze_path)*0.011)
588 print('deaths NB=',sum(I_NB_path)*0.011)
589 print('deaths Li=',sum(I_Li_path)*0.011)
590

591 notcommutingI = np.zeros(13)
592 notcommutingI[0] = sum(I_NL_path)
593 notcommutingI[1] = sum(I_Gr_path)

42

594 notcommutingI[2] = sum(I_Fr_path)
595 notcommutingI[3] = sum(I_Dr_path)
596 notcommutingI[4] = sum(I_Ov_path)
597 notcommutingI[5] = sum(I_Fl_path)
598 notcommutingI[6] = sum(I_Ge_path)
599 notcommutingI[7] = sum(I_Ut_path)
600 notcommutingI[8] = sum(I_NH_path)
601 notcommutingI[9] = sum(I_ZH_path)
602 notcommutingI[10] = sum(I_Ze_path)
603 notcommutingI[11] = sum(I_NB_path)
604 notcommutingI[12] = sum(I_Li_path)
605

606 change = (notcommutingI-commutingI)/commutingI * 1001
607

608 print('percentage change =', change)
609

610 print('fraction I_NL =', sum(I_NL_path)/sum(N))
611 print('fraction I_Gr =',sum(I_Gr_path)/N[0])
612 print('fraction I_Fr =',sum(I_Fr_path)/N[1])
613 print('fraction I_Dr =',sum(I_Dr_path)/N[2])
614 print('fraction I_Ov =',sum(I_Ov_path)/N[3])
615 print('fraction I_Fl =',sum(I_Fl_path)/N[4])
616 print('fraction I_Ge =',sum(I_Ge_path)/N[5])
617 print('fraction I_Ut =',sum(I_Ut_path)/N[6])
618 print('fraction I_NH =',sum(I_NH_path)/N[7])
619 print('fraction I_ZH =',sum(I_ZH_path)/N[8])
620 print('fraction I_Ze =',sum(I_Ze_path)/N[9])
621 print('fraction I_NB =',sum(I_NB_path)/N[10])
622 print('fraction I_Li =',sum(I_Li_path)/N[11])
623

624 ##Plotting the entire Netherlands
625 #Plotting the timezones
626 plt.axvline(89, ls='--', color='grey', lw= 0.5)
627 plt.axvline(211, ls='--', color='grey', lw=0.5)
628 plt.axvline(287, ls='--', color='grey', lw=0.5)
629 plt.axvline(421, ls='--', color='grey', lw=0.5)
630 #plt.plot(t_vec, S_NL_path/sum(N), label ='S (Commuting is not allowed)')
631 #plt.show()
632 #plt.plot(t_vec, I_NL_path/sum(N), label ='I (Commuting is not allowed)')
633 #plt.plot(t_vec, R_NL_path/sum(N), label ='R (Commuting is not allowed)')
634 plt.xlabel('Time (days)')
635 plt.ylabel('Fraction of total population')
636 plt.title('Infected people in the Netherlands')
637 plt.legend()
638 #plt.show()

A.4 Numerical analysis invertibility

1 from DataProvincie import c, cprime, N
2 import numpy as np
3

4 #setting w, q, and d to their maximum value
5 w = 1
6 q = 1
7 d = 1
8

9 #setting cprime and c to their maximum value
10 for i in range(len(N)):

43

11 cprime[i,i] = 1
12 for j in range(len(N)):
13 if j is not i:
14 c[i,j]=1/11
15

16 #calculating the inverses
17 M_S = np.identity(len(N)) - w * cprime + w * np.transpose(c)
18 inverseM_S = np.linalg.inv(M_S)
19

20 M_I = np.identity(len(N)) - q*w * cprime + q*w * np.transpose(c)
21 inverseM_I = np.linalg.inv(M_I)
22

23 M_R = np.identity(len(N)) - d*w * cprime + d*w * np.transpose(c)
24 inverseM_R = np.linalg.inv(M_R)
25

26 print(inverseM_I)
27 print(inverseM_R)
28 print(inverseM_S)

44

	Introduction
	Modelling
	The SIR-model
	The provinces model

	Data Analysis
	Commuting Data
	COVID-19 Data

	Results
	Discussion
	Conclusion
	Python code
	Commuting Data
	COVID-19 Data
	The Province Model
	Numerical analysis invertibility

