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Abstract

Over the years the freight transportation industry has become more complex, with increasing delivery
demands and more parties involved. To increase the efficiency in the logistics sector it is necessary to
manage goods during transportation, leading to a dynamic supply chain. This can be achieved by introducing
the Internet of Things (IoT) into transportation making the logistics ‘smart’. IoT objects can give real-time
information on transit times, alternative routes and interact with operations by making decisions, which
increase the flexibility of the routing system. One major challenge in smart logistics is securing the vast
amounts of collected data stored on sensing devices or in a central database from unauthorized access.
Since IoT objects consists of resource constrained sensing devices there is need for a secure and efficient
authentication scheme. This work proposes to use a randomized version of the sensed data from the [oT
objects itself for use in a Sensor PUF for authentication. Three Random Number Generators (RNGs) are
designed and tested on a created dataset that is similar to transportation data. The tested randomization
methods are based on bitwise XOR, multiplication with a natural constant or the Fast Fourier Transform
(FFT). The RNGs are tested for their randomization abilities with the NIST statistical test suite, as well as
their time complexity and time consumption. The results show that the best and most constant randomization
results are achieved by first applying the FFT and subsequently a bitwise XOR operation on the sensed data.
Further tests also indicate that this RNG works well on short term data gathering (one second), which is
required for real-time applications.



1 INTRODUCTION

Over the years the freight transportation industry has undergone some significant changes. Transportation
companies have more vehicles to manage, customers have higher delivery demands and the transportation
network has become more complex [31]. The introduction of intermodal transportation has caused a reduction
of costs and delivery times in logistics [20]. UNECE (United Nations Economic Commission for Europe) [51]
has defined intermodal transportation as: “the movement of goods in one and the same loading unit or road
vehicle, which uses successively two or more modes of transport (rail, sea, air, or inland waterway), without
moving the goods themselves in changing modes”. Intermodal transport causes more parties to be involved in
one shipment, which influences the decision making time and process, leading to a suboptimal solution for
the customer. To increase the efficiency in logistics further, it is necessary to be able to manage goods during
transportation [20] (for example re-routing in case of a disruption) leading to a more dynamic supply chain.

A dynamic supply chain can be achieved by making logistics ‘smart’. According to Verduijn and van
de Loo [52] smart logistics contains three important features which lead to a more efficient and dynamic
transportation model, i.e. connectivity, transparency and planning. Smart logistics can be achieved by
introducing the Internet of Things (IoT) in the logistics sector. The Internet of Things (IoT) is a network of
smart objects, which are equipped with sensors, processors and communication modules, to monitor their
environment, communicate with other smart objects and their network and to reason to make their own
decisions, to improve the operations and surroundings [15,39,42].

IoT applications can be found in all fields and industries, e.g. healthcare, transportation, agriculture, smart
cities and smart homes. For example, in the agricultural industry IoT can be used to monitor the soil and crops
and accordingly optimize water management. In logistics the smart objects can give real-time information on
transit times, alternative routes and interact with the operations by making decisions, which increases the
flexibility of the routing system. For a more comprehensive list of applications, see [43].

One of the challenges in IoT are the constrained resources of the smart objects, which means limitations
must be taken into account during development. One of these challenges is limited power consumption, as the
devices are often deployed in a remote area, running on batteries, which are not easy to renew. This means
the device must use the limited energy source efficiently [15,39].

Another challenge is the collection of vast amounts of sensed data, which may be stored on the device or
transmitted to other devices or a central database. Many companies want to protect the data of the devices for
unauthorized access with, among others, authentication measures.

Since the rising need for more secure communication in Wireless Sensor Networks (WSNs) and 10T,
research focused more towards developing secure and efficient authentication schemes. Many authentication
protocols use encryption keys to validate users [1,3,53]. In [18] encryption is based on attributes and key-
exchange is based on landmarks, to achieve segmented access control. However, the authors have developed
the scheme for mobile devices, which have more powerful resources than the constrained IoT devices. For
smart logistics, the limited power, storage and computational resources of the IoT devices must be taken into
account when developing an authentication scheme.

The authors of [41] and [47] have done this by reducing overhead with the use of Elliptic Curve (EC)
cryptography. The benefit of EC cryptography is the smaller key size, compared to the more conventional
RSA encryption keys, without compromising on security. The authors of [2] assure mutual authentication by
exploiting hardware anomalies, in the form of Physical Unclonable Functions (PUFs). PUFs use manufactur-
ing variations to generate a unique function output, similar to a fingerprint.

Another important requirement for authentication in smart logistics is authentication without human involve-



ment. This means that the IoT devices must be able to authenticate themselves and others in an implicit
manner. This we refer to as implicit authentication, which can be achieved by using encryption keys. Random
sequences play an important role in secure encryption keys. In this research we aim to use sensor data from
an IoT sensor node to create a random sequence for cryptographic purposes.

The rest of the report is organized as follows. Section 2 explains terminology regarding Random
Number Generators and cryptography. Section 3 explains Physical Unclonable Functions (PUFs) and
discusses different PUF variants, including the Sensor PUF. Section 4 states the research problem this study
addresses. Section 5 discusses the dataset creation, analyses the randomness of the created dataset and
presents three Random Number Generators. Section 6 discusses the randomization performance of the
presented randomization algorithms, as well as their complexity, time consumption and security against
malicious attacks. Section 7 draws a conclusion.

2 DEFINITIONS

In this section terminology regarding random numbers and cryptographic mechanisms is introduced.

RANDOM NUMBER GENERATOR (RNG)

A random sequence can be produced by a random number generator (RNG). This generated sequence cannot
be determined, other than by random chance. There are two types of RNGs, a pseudo random number
generator (PRNG) and a truly random number generator (TRNG).

PSEUDO RANDOM NUMBER GENERATOR (PRNG)

A PRNG is a deterministic function that produces a sequences of seemingly random numbers. The output
sequence approximates randomness; the sequence appears random, but can be regenerated when the same
input is given to the PRNG. This initial input is called the seed. A PRNG will produce the same output each
time the exact same seed is applied.

TRUE RANDOM NUMBER GENERATOR (TRNG)

A TRNG uses physical phenomena which are assumed to be random as input source to create a sequence
of random digits. Examples of such phenomena are atmospheric noise, cosmic background radiation and
thermal noise in electrical components.

ENTROPY

Entropy is the amount of ‘unexpectedness’ in a sequence of digits. Entropy is expressed in bits, from zero to
one bit. Zero bits entropy means there is no information in advance on what the outcome of the bit will be (0
or 1). One bit entropy means that it is known precisely what the outcome of the bit is [21].

3 PHYSICAL UNCLONABLE FUNCTIONS

As explained above, the introduction of smart objects in the transportation industry, so called Intelligent
Products (IPs), induces the need for implicit authentication measures. PUFs (Physical Unclonable Functions)



are a very good candidate, as they are very secure by relying on uncontrollable manufacturing variations
and are suitable for constrained devices. Therefore, this research will focus on the use of Random Number
Generators for PUFs for implicit mutual authentication in smart logistics.

PUFs are based on the natural variabilities that emerge from the manufacturing process. These un-
controllable, device specific variations serve as a digital fingerprint to the device and can be used in
device-identification & -authentication and in encryption key generation. The unclonability stems from
the uncontrollable manufacturing variabilities, which make it impossible to create an identical device with the
same circuit characteristics. When the manufacturing variations need to be explicitly added to the device, the
PUF is called an ‘explicit PUF’. Variations inherent to the device result in an ‘implicit PUF’.

As mentioned, PUFs can serve different applications. During identification one wants to retrieve the
identity (ID) of a known entity or give an ID to a new entity. With authentication the claimed device ID is
verified. One way of authenticating a device is by using challenge-response-pairs (CRPs), a procedure based
on the challenge-response authentication protocols (e.g. password authentication) often used in computer
systems. PUFs can also be used for encryption-key generation. Their unique characteristics and unclonability
makes it difficult for an adversary to get the secret key, which make PUFs very secure. The PUF response can
be used as input to a key generation algorithm or directly as secret key. In the latter case, the response must
be significantly large to be secure, possibly resulting in a large, expensive PUF.

3.1 PUF TYPES

Many different PUF types have been designed in the last decade. This section gives a non-inclusive overview
of the different PUFs, a more complete overview can be found in [38].

The optical PUF consists of a transparent optical medium that is explicitly added to the device during
manufacturing. This optical medium creates a unique speckle pattern when hit with a laser beam at a certain
angle. The PUF challenges are formed by varying the laser beam angle and the response is the Gabor hash
derived from the speckle pattern. The Phosphor PUF [38] uses a similar principle, in which the pattern
created by phosphorescent particles is measured with UV light. The different challenges are formed by
varying the measured section of the phosphorescent layer.

The coating PUF is an explicit PUF based on a coating layer added on the chip. This coating consists of
dielectric particles that randomly vary in shape and size, making it unclonable [50]. The capacitance of the
coating varies for different voltage levels. Thus the adjustable voltage is the PUF challenge and the measured
capacitance the PUF response. The PUF is tamper proof, since any physical attacks on the coating alter the
dielectric coating and consequently the PUF response [35].

The magnetic PUF [38] is used for the authentication of magnetic swipe cards. On the magnetic strip
a ferromagnetic material is added, consisting of particles varying in size, shape and position. The formed
particle distribution is unique for each magnetic swipe card, due to the manufacturing variations of the
ferromagnetic particles.

Memory based PUFs are implicit PUFs based on the preferred stable state of memory cells. A memory
cell transitions from an unstable state into a preferred stable state. This preference is determined by the
physical mismatch between the transistors [8]. The state of the memory cell is a 1-bit PUF response. To
achieve a secure PUF, many memory cells are needed to create a significantly large bit array as response.
There are several kinds of memory PUFs, which differ slightly in their operation. The memory cells of
the SRAM PUF [38] and the DFlipFlop PUF [35] settle to a stable state on device power-up. This means
that in order to get a new PUF response during run-time, the device must first be powered off and on again.
The Butterfly PUF [35] solves this problem by using latches which can be put in an unstable state, and



subsequently reach a stable state, while powered.

The threshold voltage (V;) PUF [38] is based on the manufacturing variations of transistors. The Vi PUF
measures the threshold voltage (V) of a transistor in the circuit. The challenge of the PUF is the selected
transistor and the PUF response is the measured V. The output of this PUF only varies when a different
challenge is given, therefore this PUF can only provide security for a CRP based application.

Another PUF exploiting the manufacturing variations of the transistor is the carbon nanotube PUF [38].
In this PUF carbon nanotube transistors are placed in two columns. One row is selected and with an arbiter
circuit is determined which carbon nanotube transistor has more current flowing through. Correspondingly,
the arbiter returns a ‘0’ or a ‘1’. The PUF challenge is the selection of the carbon nanotube transistor and the
response is the measured current. Since the transistors need to be placed in a specific configuration, the PUF
is explicit.

In a power distribution PUF [38] the unique characteristics of power transfer lines in the power distribution
grid in a circuit are used to identify a system. The measured resistance of each power transfer line is particular
to that power line. To make sure only the resistance of the power transfer line is measured, the grid is
modified to be able to bypass any existing components in the circuit. Therefore, this PUF requires additional
manufacturing steps, resulting in an explicit PUF.

The acoustical PUF [38] uses acoustical delay lines of a circuit to characterize a system. Acoustical delay
lines are used to delay a signal with the use of mechanical oscillation. Due to manufacturing variations each
acoustical delay line generates a different constant frequency response, which serve as the PUF response. The
PUF challenge is the acoustical delay line of which the response is measured.

The super high information content (SHIC) PUF [38] uses nano-diodes in a matrix configuration, where
each diode has a unique output. Because the nano-diodes are arranged in a matrix, a large number of CRPs are
possible. The SHIC PUF has a minimal response time, which means that potential attackers have insufficient
time to read out the CRPs. The PUF is explicit, since it requires the addition of a nano-diode matrix.

A board PUF [38] is an explicit PUF consisting of a layer of capacitors implemented on a printed
circuit board (PCB), to authenticate a PCB or generate an encryption key. The capacitors vary based on
manufacturing variations and thus the measured capacitance will vary per capacitor. The PUF challenge
consists of a particular capacitor or group of capacitors and the PUF response is the measured capacitance.

A delay based PUF is an implicit PUF based on variations in delay of two identical paths in the chip
circuit. In the Arbiter PUF [38] a comparator determines which path is the fastest and accordingly outputs a
‘0’ or a ‘1’ as PUF response. To get a multiple-bits response one can add the responses to sequential given
challenges or combine multiple delay circuits in parallel. The Clock PUF [38] is very similar to the Arbiter
PUF, as it determines the fastest path in the clock network of the circuit. The clock network distributes the
clock signal throughout the circuit, to minimize the latency between clock signals in different parts of the
circuit. Some latency always remains, which can be used to determine the clock difference between two parts
of the circuit. The difference is unique per circuit, due to the manufacturing variations in the clock signal lines
and can, therefore, serve as a PUF. A Ring-Oscillator (RO) PUF [38] measures the delay of two identical
circuit paths in a different manner, as it is based on an oscillating frequency. From the oscillating frequency
the delay is determined by edge-detectors and -counters, of which the value of the latter is the PUF response.
The RO PUF is more reliable and easier to implement than the Arbiter PUF. The Arbiter PUF, however, is
faster, smaller and consumes less power, making it more suitable for constrained devices [10].

A Radio Frequency (RF) based PUF uses the characteristics of a radio frequency wave to identify a
system. The RF-DNA PUF [38] utilizes radio frequency scattering, similar to how an optical PUF utilizes
light scattering. In the RF-DNA PUF the scattering of the radio frequency wave is caused by a randomly
arranged copper wire grid. The scattering is influenced by the radio wave frequency and is measured by a
RF scanner. Another RF based PUF is the LC PUF [38], where L is the symbol for inductance and C for



the capacitance. In the LC PUF a passive LC circuit is used to absorb power, by placing it onto an RF field.
The amount of absorbed power is dependent on the amplitude and frequency, that in turn are determined
by the values of the inductance and capacitance. Since the characteristics of the inductor and capacitor are
unique, due to manufacturing variations, the CRPs are unique as well. Both RF based PUFs are explicit and
only have a varying response, when the challenge is varied. Chatterjee et al. [12] did introduce an implicit
RF-PUF, that can be used to identify and authenticate a radio transmitter. The PUF uses two artificial neural
networks to learn both the data and signal characteristics of the transmitter nodes in the network. This requires
more power and computational resources than a typical sensor node has, meaning that this PUF can only be
implemented on the less-resource-constrained hubs. As such, the RF-PUF described in [12] is not suitable for
mutual authentication in a remote wireless sensor network.

The reconfigurable PUF [35] is not a stand alone PUF, but an extension to an existing PUF. With this
extension PUF the basic PUF can be randomly and irreversibly reconfigured, causing the CRPs to change.
The alteration of CRPs can be used to prolong the PUF’s life or to reset the PUF before using it in a different
application. An example of such a PUF is a reconfigurable optical PUF [29]. By melting the transparent
optical medium, the configuration of the medium changes, leading to changes in the speckle pattern. The
reconfigured optical PUF will now give different responses to the unchanged challenges.

Another type of PUF is the Sensor PUF, where the manufacturing variations in sensors are used to create
the PUF. There are several definitions and types of Sensor PUFs, which are discussed in the next section.

3.2 SENSOR PUF

The Sensor PUF is first mentioned in [44] where they use a twofold PUF, consisting of a sensing PUF and a
conventional PUF. Combining two PUFs into one results in the combination of cryptography and sensing. The
PUF challenge consists of both a binary challenge and a physical quantity (PQ), i.e the sensor measurement.
The sensing part of the PUF is explicitly added to the PUF in the form of photo-diodes and a coating, making
it an explicit PUF. A similar approach is used in [33] where a transducer is used to convert a PQ to a voltage
level, which is then used together with a challenge as input to an RO-PUF. The output is the PQ measurement
encrypted by the Ring-Oscillator (RO) PUF. The combination of PQ and RO-PUF is described as Sensor PUF.

In [13] the authors describe a single PUF which is used a both a sensor and a encryption device. They use
DRAM memory cells to measure the temperature, as the DRAM cells will switch state due to current leakage.
This current leakage is influenced by temperature and manufacturing variations of the DRAM cells. Because
of the manufacturing variations the output can be used for authentication purposes as well. A similar concept
is used in [48] where they use microelectromechanical (MEM) relays to measure pressure, as the voltage level
of the relays depends on pressure and manufacturing variations. Both the PUFs from [13] and [48] are weak
PUFs as they only have a 1 bit response per cell or relay, which means many sequential PUFs are needed to
get a strong response. Furthermore, the resolution of the sensor aspect of the MEM relay PUF is too low for
the PUF to function well as a sensor.

In [38] a PUF that uses existing sensors to create a Sensor PUF, for authentication or encryption purposes,
is described. The PUF is based on MEMS sensing units, where an array of accelerometers and gyroscopes
are used for the PUF. Due to the manufacturing variations each accelerometer or gyroscope behaves slightly
different, even when they share the exact same movements. The MEMS PUF provides a challenge, an
electrostatic pulse, to a subset of accelerometers/gyroscopes in an array of accelerometers/gyroscopes. The
PUF response consists of the measured values. Considering a WSN sensing node typically contains just one
sensor of a certain type and not an array of sensors, the MEMS PUF in this form is not suitable for a sensor
node.



There are several papers in which only one accelerometer is used for authentication or key generation, by
shaking the device. In [37] and [7] two handheld devices are authenticated by shaking them together, to create
a common shared random secret, for example a cryptographic key. The same key is created on both devices
only if the two devices are shaken together in one hand. Because each device creates its own symmetric key,
there is no need to share any acceleration data or cryptographic keys for authentication. In [17] a similar
Sensor PUF is used to authenticate the user to a wearable device. By shaking the wearable a 128 bit key is
computed from the maximum and minimum accelerometer values, which is used for authentication.

The authors of [11] describe a Sensor PUF that besides authentication is used as a sensor. A CMOS image
sensor is used to create an image and consequently use the feature vectors, timestamp and a PUF challenge to
create a fingerprint on the image. The fingerprint can be used to determine from which sensor this image
originated from.

3.3 PUF COMPARISON

In the previous sections an extensive overview of the different PUF types was provided and in this section we
will compare these PUFs and discuss their limitations. In Table 3.1 an overview of the comparison is given. It
shows that there are many possible parameters to use in a PUF. However, not all PUF implementations are
feasible for an implicit mutual authentication PUF for smart logistics applications.

As can be seen from Table 3.1 most PUFs are explicit and have extrinsic evaluation. This is the case for
the following PUFs: optical, phosphor, coating, carbon nanotube, power distribution, SHIC, board, RF-DNA,
LC, MEMS and the Sensor PUF of [44]. This means that for all these PUFs additional manufacturing steps
are needed, which costs valuable time and money. Extrinsic evaluation means the output is evaluated outside
the PUF device, intrinsic evaluation happens on the PUF device. The magnetic-, arbiter-, clock-, RO- and
RF-PUF are implicit, however, not intrinsically evaluative, which means there is still need for additional steps
and there are additional costs.

The comparison Table 3.1 also shows that the sensor-related PUFs are not tamper proof. For PUFs used
in logistics operations it is crucial to be tamper proof, since they will be unattended most of the time, leaving
them vulnerable to physical attacks. Consequently, they must also be protected against modeling attacks.
Instead of making the PUF tamper proof, one can make the sensor device tamper proof, with for example
protective casing.

Several of the discussed PUFs are most suitable for CRP related applications, which requires the use of a
database. These are the optical-, phosphor-, coating-, magnetic-, memory based-, threshold voltage-, carbon
nanotube-, power distribution-, SHIC-, board-, delay based-, RF-DNA-, LC- and MEMS-PUF. In logistical
WSNs a database is not always reachable, which means that the obligation of a database should be avoided.
This can be done by using an unpredictable varying PUF output that does not need to be compared to an entity
in a database or not need to be pre-generated and stored in a database. This output can be used to generated
an encryption key for authentication, instead of using CRPs.

Most of the PUFs discussed are suitable for resource constrained devices. However, this is not the case
for the RF-PUF, as it is designed to be implemented on the receiver-hub of the WSN. This also means that
with the RF-PUF mutual authentication is not possible in an implicit way. Two of the memory based PUFs,
the SRAM PUF and the DFlipFlop PUF, are not suitable for WSNs because of the need to power the device
off and on for each authentication. This disrupts the usage of the sensor node in the network, making it less
valuable to the WSN.

Now that we have defined the limitations of the current PUFs for implicit mutual authentication in smart
logistics, we can define the focus of this research in the next section.



Table 3.1: PUF comparison. The FHD inter is the similarity between the output from two different PUFs to
the same input. The FHD intra is the similarity between the output from one input given to the same PUF
twice. In modeling attacks, the PUF can be cloned when input-output pairs are known.

~ ~ E el
£ & 3 i
3 £ . £ 5§ 3 =
g 2 3 5 = = 5 £
a : 2 £ & & §F 3
1 1=
£ & £ = = = I =
Optical [35,40] Light intensity Explicit  Extrinsic  49.79 2525 yes Not possible
Phosphor [14,38] UV light intensity Explicit  Extrinsic ? ? yes ?
Coating [35,49] Capacitance Explicit  Extrinsic ~ ~50 <5 yes Possible
Magnetic [25,38] Magnetic field Implicit  Extrinsic ? ? yes ?
SRAM [22,35] Transistor power-up state Implicit  Intrinsic  49.97 3.57 ? Possible
D-FlipFlop [34,35] FlipFlop power-up state Implicit  Intrinsic ~50 <5 yes Possible
Butterfly [28,35] Logical stable states Implicit  Intrinsic ~50 <5 ? Possible
Threshold Voltage [32,38] Transistor voltage Implicit Intrinsic  50.00 1.30 ? ?
Carbon Nanotube [27,38] Transistor current Explicit ~ Extrinsic ~ 49.67 1.90 ?  Not possible
Power Distribution [24,35] Resistance Explicit  Extrinsic ? ? yes ?
Acoustical [35,54] Frequency spectrum Implicit  Extrinsic ? ? yes Possible
SHIC [38,46] Voltage/current Explicit  Extrinsic ? ? ?  Not possible
Board [38,55] capacitance Explicit ~ Extrinsic = 47.21 3.63 yes  Not possible
Arbiter [30,35] Signal delays Implicit ~ Extrinsic  23.00  5.00 ? Possible
Clock [38,56] Clock signal Implicit  Extrinsic  50.30  5.07 yes ?
RO [19,35] Frequency Implicit  Extrinsic 46.00 0.48 ? Possible
RF-DNA [16,35] Radio frequency scattering  Explicit  Extrinsic ? ? yes ?
LC [23,35] Power absorption Explicit  Extrinsic ? ? yes ?
MEMS [4,38] Accelerometer values Explicit ~ Extrinsic  42.64 92.17* ? ?
Sensor PUF [44] Characteristics photo diodes  Explicit ~ Extrinsic ? ? no ?
Sensor Wearable PUF [17] Accelerometer values Implicit  Intrinsic ? ? no ?
RF-PUF [12] Tx characteristics Implicit  Extrinsic ? ? no Possible

4 RESEARCH PROPOSAL

To make a PUF more suitable for implicit authentication in smart logistics and given the study of the advan-
tages and disadvantages of the different PUF types in the previous section, we propose a Sensor PUF that uses
the physical properties of the sensors in the system for the creation of a secure encryption key. In literature
there are several definitions of Sensor PUFs or PUF sensors, as can be seen from the paragraph on Sensor
PUFs in Section 3.2. In this research we define the following terms:

A PUF protected sensor is a sensor that is protected against attacks with the use of a PUF. A PUF based
sensor means a PUF that is used as a sensor [13]. A Sensor PUF is a PUF based on the intrinsic physical
properties of a sensor. This remainder of this paper focuses on the latter, i.e. the Sensor PUF.

The Sensor PUF will use the varying sensor output in the generation of the encryption key. The use of
cryptography for authentication eliminates the use of a database. Some sensors are more applicable to a
Sensor PUF than others. This depends in part on their randomness, the update interval and number of
measurement parameters, as will be discussed further in Section 4.2.

We discuss how a sensor node’s sensor data can be used in a Random Number Generator for use in
a Sensor PUF. The Random Number Generator will use a sensor or a combination of multiple sensors to



produce the random sequence. It is assumed that the sensing devices are tamper proof and consequently that
the final Sensor PUF is secure to physical attacks. To conduct this research, several research questions are
formulated in the next section.

4.1 RESEARCH QUESTIONS

In particular, this thesis will examine the following main research question:
How can a sensor node in a smart logistics wireless sensor network be used to create a Random Number
Generator for use in a Sensor PUF?

To answer this question, a set of three sub-research questions has been formulated:

1. Which sensors or combinations of sensors of an Intelligent Product (i.e. sensor node) are applicable to
create random data for a Sensor PUF?

2. How can we obtain useful data from these (combinations of) sensors for encryption purposes?

3. Is the extraction method suitable for constrained devices, as found in a smart logistics wireless sensor
network?

4.2 HYPOTHESIS

The suitability of sensors for a RNG in a Sensor PUF depends on the randomness of the output data, the
sensing interval and the number of measurement parameters. The randomness indicates how uniformly
distributed the output in the sensor is, which is important for secure key generation. A higher randomness
makes it more difficult to guess an encryption key, which makes the key more secure. The update interval
indicates how quickly the physical quantity changes over time. For example, the temperature changes less
over time than accelerometer values. The number of measurement parameters is based on the different output
parameters of one sensor. For example, a temperature sensor has one measurement parameter, the temperature,
whereas an accelerometer has three measurement parameters, the acceleration on the x-, y- and z-axis.

Table 4.1 gives an estimation of which sensors can be used for the ideal Sensor PUF RNG. The estimation
contains the randomness, update interval and measurement parameters. Together these three aspects are
used to form the final score. As the table shows, it is expected that certain sensors are more applicable to a
Sensor PUF than others. Sensors with a higher update interval are likely to produce more varying output over
time than sensors with a low update interval. The randomness in the measurement values is also important,
since with a repetitive output, the encryption key is easier to predict. The table shows that we expect the
accelerometer, gyroscope and gas sensor to be valuable candidates for a PUF sensor. Of these three, we expect
the accelerometer and gyroscope most likely to be present in a smart logistics application. It is improbable
that the gyroscope alone will be sufficient for a functioning Sensor PUF, based on that a gyroscope does not
generate uniform distributed data and the results of [17]. We do expect that combining the gyroscope with
other sensors will result in a more ideal Sensor PUF, opposed to when only one sensor is used.



Table 4.1: The ideal Sensor PUF

Sensor Randomness Update interval Measurement parameters Final Score

Temperature -- -- -- -
Accelerometer ++ ++ ++ ++

Gyroscope -- ++ ++ +
Gas + - + +
GPS + - - i
Light + - = -
Rain + -- - -

Additionally, in terms of efficiency we expect the computation time and energy consumption of the
extraction method to be proportional to the size of the data to be randomized. A larger packet size results in a
larger computation time and more energy consumption. This also follows from the correlation between the
computation time and the energy consumption.

The next step is to create a dataset of sensor data, distributed uniformly, to form the input of the Sensor
PUF. This dataset should contain single sensors and combinations of sensors. Since the Sensor PUF will run
on a constrained device (a sensor node), the Random Number Generator must be designed for limited energy
consumption, memory usage and processing time. It is important that the extracted values are uniformly
distributed, therefore this property should be tested with standard statistical tests. When the distribution has
been proven to be uniform, the Sensor PUF output is suitable for usage in authentication systems. In the
next section the process to create the sensor-data dataset is described in more detail, as well as the different
extraction methods used.

5 DATA RANDOMIZATION

As described previously, the mechanism to obtain random sensor data for encryption purposes must be
designed for constrained devices. This means that for data extraction and processing the limitations for
computational power and memory usage must be taken into account. This section aims to construct and
implement a mechanism with which a dataset of random sensor data can be obtained. First, data will be
gathered with a sensor device, after which its randomness is evaluated with statistical tests. When this
unaltered sensor data proves to be non-random, an algorithm will be used to generate random data from the
sensor dataset.

5.1 CREATION OF DATASET

In the previous section it was concluded that the dataset should contain data from single sensors as well as
combinations of sensors. Table 4.1 shows us that the accelerometer and gyroscope are good candidates for a
Sensor PUF in smart logistics. These two claims combined result in the choice for an Inertial Measurement
Unit (IMU) to gather data, see Figure 5.1. An IMU uses an accelerometer, gyroscope and magnetometer to
determine, with an on-board processor, the linear and angular motion of the object it is attached to.

The IMU used to create the dataset for this research is the Sparkfun 9DoF Razor IMU MO!, which

lhttps ://learn.sparkfun.com/tutorials/9dof-razor-imu-m0-hookup-guide/all, accessed 12-12-2020
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Figure 5.1: Inertial Measurement Unit (IMU) is used to gather the movement data.

contains, besides the three sensors, a LiPo battery connector and a SD card slot. This makes the IMU portable,
which is needed to be able to generate similar data as an Intelligent Product (e.g. smart pallet) in the logistics
sector would. The Razor IMU MO uses the on-board processor to calculate the quaternions, yaw, pitch,
roll and heading of the device. This gives a set of both single sensor data and data of combinations of
sensors, namely: accelerometer x-, y- and z-axis, gyroscope X-, y- and z-axis, magnetometer Xx-, y- and z-axis,
quaternions w-, X-, y- and z-axis, yaw, pitch, roll and heading. See Appendix E for the full description of the
dataset.

Before collecting the data, various pre-tests were done to determine the optimal sensor configuration on
the IMU for the generation of the dataset. The test results led to a minimal required accelerometer range of
+2g and a gyroscope range of +500 dps (degrees per second). The default setting of the non-configurable
magnetometer is +4800uT (Tesla). The data was sampled at 100Hz. The data was obtained by driving in a
car (to mimic road transportation), in trips ranging from 50 km to 150 km. The dataset contains subsets from
different car trips, each with the same IMU configurations and positioning of the IMU in the car console.

Now that a dataset with sensor data is created, the next step is to see if this sensor data is random. The
performed randomness test is described in the next section.

5.2 DATA RANDOMNESS TEST

The proposed technique is to use the Sensor PUF as an input for the encryption/authentication. Therefore, the
sensor data in the created dataset should be random. This means the data should have a uniform distribution
of 0’s and 1’s, should be non-repetitive and should be unpredictable. This is tested with the NIST test suite [6].
The NIST test suite contains multiple statistical tests, designed for cryptographic purposes, that analyses a
binary sequence for its randomness. The test suite performs the followin 15 tests; Frequency, Block Frequency,
Runs, Longest run of ones, Rank, Fast Fourier Transform, Non Overlapping Template, Overlapping Template,
Universal, Linear complexity, Serial, Approximate Entropy, Cumulative Sums, Random Excursions and
Random Excursions Variant. Some tests perform multiple subtests. For example the Cumulative Sums
test consists of two subtests, performing the test in both forward and backwards direction. The Random
Excursions and Random Excursions Varient tests are only exectued under certain circumstances. For these
tests to be performed, the Frequency tests must have been passed and the length of the input bits must be
greater than 100000 [36].

Before the data could be tested with the NIST test suite, post-processing of the data was needed. The
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first and last 30 seconds of data of each trip were removed, because during this time the car is assumed to be
stationary, making it very unlikely random data would be created by the sensors. At a sampling rate of 100Hz,
30 seconds of data amounts to 3000 samples. After removing these samples, the data on the different axes of
sensors with multiple axes was combined into one data stream. For example, the accelerometer generates data
on three axes; x-axis, y-axis and z-axis. This was combined into one accelerometer data stream as follows:
Accy,, Accy,, Accy, Accy,, Accy,, Accy,, Accy,, etc. The same was done for the gyroscope-, magnetometer-
data and the quaternions. The latter has data on four axes, which was combined in the same manner. The yaw,
pitch and roll (YPR) data were combined in a similar manner too. Before combining the YPR data into one
stream, the decimal values were extracted, to be used for the tests. The integer values were discarded, since
visual inspection showed that these were not random values. Lastly, the same was done for the heading data.
In the remainder of this thesis only the decimal values of the YPR and heading data are considered.

Besides combining the data of one sensor, a data combination of multiple sensors was tested too, to study the
effect of combined sensor streams on randomness. These combinations were accelerometer + gyroscope +
magnetometer, gyroscope + magnetometer and magnetometer + quaternions. The data was combined in a
similar manner; Accy,, Gyroy,, Magy,, Accy,, Gyroy,, Mag,,, Acc;,, Gyro,,, Mag;,, Accy,, Gyroy,, Magy,,
etc. The last step was to convert the data to binary values to be suitable for the NIST test suite. A list of all
tested combinations can be found in Table 5.1.

For all NIST tests performed in this study the standard configuration was used, which means that all
available statistical tests were performed. The data was formatted as ASCII’s 0’s and 1’s and was tested in
one sequence. The results of the tests on the sensor data are shown in Appendix A.l. The data of two driving
trips were tested.

The results of the tests are consistent for all tested combinations. In Figure 5.2 the percentage of statistical
tests passed for each tested combination is shown. For a combination to be called random it should pass
at least seven NIST tests [36], which yields a 50% pass rate in Figure 5.2. We can conclude that none of
the tested data from sensors and combinations of sensors are random. All tested configurations failed the
following tests: Frequency, Block Frequency, Cumulative Sums, Runs, Longest Run, FFT (Fast Fourier
Transform), Non Overlapping Template, Overlapping Template, Universal, Approximate Entropy and Serial.
Since none of the combinations passed the Frequency tests, the Random Excursions- and Random Excursions
Variant-test are not applicable either, therefore there are no results of these tests. As can be seen in Appendix
A.1 only 13 out of 16 combinations passed two tests, the Rank and Linear Complexity tests, and thus none of
the tested sequences pass the required seven or more NIST test. The Rank test checks the linear dependency
of substrings to the input sequence [6]. The Linear complexity test determines if the "sequence is complex
enough to be considered random" according to the length of a linear feedback shift register [6]. As none
of the tested combinations passed more than 20% of the tests, we conclude that the gathered dataset is not
random and thus as such not suitable for cryptographic usage.

Despite this, sensor data can still be valuable for authentication or cryptography purposes in smart logistics.
With a randomization algorithm the sensor data can be randomized enough to pass the required seven or more
NIST tests. To randomize the extracted sensor data we have come up with three algorithms. These algorithms
are described in the next section. The results on the randomness introduced into the data by these algorithms
is described in Section 6.
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Table 5.1: The combinations of sensor data from the dataset used in the NIST test to determine the randomness
of the dataset. Acc = accelerometer, Gyro = gyroscope, Mag = magnetometer, Q = quaternions. Gyro+Mag
and Mag+Quaternions were only tested for the 07082020 subset.

Tested combinations dataset

Accy, Accy, Acc,
Gyroy, Gyroy, Gyro,
Mag,, Mag,, Mag,
Qu, Qx, Qy, Qz
Yaw, Pitch, Roll
Heading

Acc, Gyro, Mag
Gyro, Mag

Mag, Quaternions
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Figure 5.2: The results of the NIST randomness tests for the gathered dataset. On the y-axis the percentage of
tests passed is shown for each tested sequence, for both the 19072020 part and 07082020 part of the dataset.
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5.3 DATA RANDOMIZATION ALGORITHMS

In this section the three randomization algorithms designed to randomize the data in the sensor dataset are
discussed. The goal of the algorithms is to achieve a uniform distribution of 0’s and 1’s in the dataset, such
that the tested sequences passes seven or more tests from the NIST test suite. Furthermore, the algorithm
must be minimized in complexity, which is expressed as the number of computations, and in memory usage,
while obtaining maximum randomness. All three algorithms were implemented in Matlab.

The unprocessed sensor data of Section 5.2 were generated in one sequence, which took = 40 minutes. This
means that the randomness results are based upon long term data gathering. In practice the Intelligent Product
might not have the time to generate data for more than a few seconds before outputting a random sequence to
be used in cryptography. Moreover, a constrained device is unlikely to have the required amount of memory
available to store this data. Therefore, the algorithms must also provide a random sequence with a limited
amount of sensor data. Consequently, Algorithm 3 will also be tested with 100 and 500 data samples (one
and five seconds of data gathering, respectively), as the outcome of this algorithm depends on the number of
datapoints inputted. Next, each of the three algorithms is described in detail.

5.3.1 ALGORITHM 1: BITWISE XOR

The first algorithm performs a bitwise XOR operation on various combinations of data samples. In order to do
so, the text files containing the data of one driving trip are loaded into Matlab and the first and last 30 seconds
of data is removed. As described above, this is done to exclude the data from when the car is stationary. Next,
the absolute value of all data is taken and in some occasions the decimal parts of the Yaw, Pitch and Roll and
Heading data is extracted, to be used in the algorithm. Each datapoint is converted to a binary value, to be
able to perform the bitwise XOR operation. Up until this point no data streams of (different) sensors have
been combined. Next the XOR operation takes place, in various combinations. In Table 5.2 the different
XOR combinations are given. The bitwise XOR has been performed in the order stated in this table. For
example; Accy, Gyroy,, Mag, means that first the Accy data was XORed with the Gyroy, data and the result
was XORed with Mag,. After the XOR operation, the result is saved to a text file, to be later used to test for
its randomness with the NIST test suite. The pseudo-code in shown in Algorithm 1.

As discussed in the beginning of Section 5.3, real-time data randomization is a requirement for Intelligent
Products, as long term data gathering is not feasible. Therefore, the algorithms should not only be tested on
large datasets, but especially on smaller sets as well, to mimic real time processing. However, since the XOR
is a bitwise operation and thus data is processed per bit, the output of Algorithm 1 will not change when
processing the data in different sized chunks.

5.3.2 ALGORITHM 2: CONSTANT MULTIPLICATION

The second algorithm aims to randomize the sensor data by multiplying it with a set of three decimal digits of
the constants e or 7. For both constants up to a trillion digits are known?, therefore this algorithm does not
have to reuse the digits for a considerable time. Even if the algorithm would randomize a data stream of one
million datapoints, the constants e and & would last at least, without reusing digits, 10 million and 16 million
times, respectively.

The basis for the second algorithm is the same as for the first algorithm. First, the text files containing the
data of one driving trip are loaded into Matlab and the first and last 30 seconds of data are removed. Next the

2http://www.numberworld.org/digitS/E/, http://www.numberworld.org/digits/Pi/, last accessed
10/12/2020.
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Algorithm 1: Random Sequence generation with XORing of sensor data

Input: SensorData
Output: RandomSequence

for i > 3000 to i < length(SensorData)-3000) do
L DataToProcess — SensorData

for i < length(DataToProcess) do
| AbsDataToProcess < abs(DataToProcess)
for i < length(DataToProcess) do
DataToProcess.Yaw — extract_decimals(DataToProcess. Yaw)
DataToProcess.Pitch — extract_decimals(DataToProcess.Pitch)
DataToProcess.Roll — extract_decimals(DataToProcess.Roll)
DataToProcess.Heading — extract_decimals(DataToProcess.Heading)

for i < length(AbsDataToProcess) do
| BinaryData — convert_to_binary(AbsDataToProcess)

for i < length(BinaryData) do
XORResult| — BinaryData; @ BinaryData;
XORResult; — XORResult; @ BinaryDatajz

RandomSequence — XORResult,

decimal parts of the Yaw, Pitch, Roll and Heading data are extracted, to be used in the algorithm and the first
five million digits of both constants e and 7 are loaded into Matlab. For both constants their decimals are
grouped per three decimals. This yields that each datapoint will be multiplied with a value ranging from 0 to
999. Next, the data is multiplied with the constants decimal values, from either e or 7. In one data stream,
each datapoint is multiplied with one group of three digits. For example, multiplication of combination
Accy, Accy, Acc, with constant e is as follows: Accy * e1-3, Accyy * e4—6, ACCz1 * €7-9, ACCx2 * €10-12,
Accyz * e13-15, etc. The data stream combinations applied in Algorithm 2 are shown in Table 5.2. All of these
combinations in the table have been multiplied with both e and 7. The pseudo-code is shown in Algorithm
2. Similar to Algorithm 1, the outcome of Algorithm 2 is not dependent on the size of data blocks that
are multiplied. Multiplication happens per datapoint, therefore, multiplying 100, 500 or all samples with a
constant is all equivalent.

After the multiplication the absolute value of the result is taken and the result is converted to binary. The
binary stream is saved to a text file, to be tested later on with the NIST test suite.

5.3.3 ALGORITHM 3: FOURIER TRANSFORM

The third algorithm is an extension of the first algorithm. This algorithm combines frequency analysis with
a bitwise logical operation. First, the Fast Fourier Transform (FFT) is applied to the data, after which the
XOR operation from algorithm one is performed. The basis of this algorithm is, again, equal to the other two
algorithms. First, the text files containing the data of one driving trip are loaded into Matlab. Subsequently,
the first and last 30 seconds of data is removed and the decimal parts of the Yaw, Pitch, Roll and Heading data
are extracted. Next the FFT of each data stream is taken separately. This means that no sensors are combined
and that the multiple data streams from one sensor are kept separated as well. The result of a FFT consists
of a real and an imaginary part, both decimal numbers. The algorithm is only based on the real number, so
the imaginary number is discarded. Besides this, the integer part is discarded as well. Even though the real
numbers can be negative, there is no need to take the absolute value if we only keep the decimal part of the
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Table 5.2: The sensor combinations applied in Algorithm 1, Algorithm 2 and Algorithm 3. Acc = accelerome-
ter, Gyro = gyroscope, Mag = magnetometer, Q = quaternions.

Algorithm 1 Algorithm 2 Algorithm 3

Accy, Accy, Acc, Accy, Accy, Acc, Accy, Accy, Acc,

Gyroy, Gyroy, Gyro, Accy Gyroy, Gyroy, Gyro,

Mag,, Mag,, Mag, Gyroy, Gyroy, Gyro, Mag,, Mag,, Mag,

Accy, Gyroy,, Mag, Gyroy Accy, Gyroy,, Mag,

Quw, Qx, Qy, Qz Quw, Qx. Qy, Q; Quw, Qx, Qy, Q2

Yaw, Pitch, Roll Qu Yaw, Pitch, Roll, Heading

Yaw, Pitch, Roll, Heading Yaw, Pitch, Roll Qu, Yaw, Heading,

Quw, Yaw, Heading, Yaw, Pitch, Roll, Heading  Qy, Yaw, Heading, Accy, Gyro,, Mag,

Qu, Yaw, Heading, Accy, Gyro,, Mag, Heading

Algorithm 2: Random Sequence generation by multiplication with 7

Input: SensorData
Output: RandomSequence
for i > 3000 to i < length(SensorData)-3000) do
L DataToProcess — SensorData
PiDecimals — load_file(DecimalsPi)
for i < (length(PiDecimals) - 3) do
GroupedPiDecimals — ((PiDecimals(i) x 100) + (PiDecimals(i + 1) x 10) + PiDecimals(i + 2))
i=i+3
for i < length(DataToProcess) do
DataToProcess.YPR «— extract_decimals(DataToProcess.YPR)
L DataToProcess.Heading — extract_decimals(DataToProcess.Heading)
for i < length(DataToProcess) do
| MultipliedData < DataToProcess(i) x GroupedPiDecimals(i)

for i < length(MultipliedData) do
| AbsMultipliedData «— abs(MultipliedData)

RandomSequence — AbsMultipliedData
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number.

The next step is to convert every data stream to binary values, to be able to perform the bitwise logical
XOR operation. Similar to Algorithm 1, the XOR operation is applied to various data combinations. These
combinations are shown in Table 5.2. The final step is to save the data to a text file, applicable for the NIST
test suite. The pseudo-code in shown in Algorithm 3.

Algorithm 3: Random Sequence generation with XORing of FFT processed sensor data

Input: SensorData
Output: RandomSequence

for i > 3000 to i < length(SensorData)-3000) do
| DataToProcess <— SensorData

for i < length(DataToProcess) do
| AbsDataToProcess < abs(DataToProcess)
for i < length(DataToProcess) do
DataToProcess.YPR «— extract_decimals(DataToProcess.YPR)
DataToProcess.Heading — extract_decimals(DataToProcess.Heading)
for i < length(DataToProcess) do
FFTData — take_fft(DataToProcess)
RealPartFFTData — FFTData.real
AbsRealFFTData — abs(RealPartFFTData)

for i < length(AbsRealFFTData) do
| DecimalsAbsRealFFTData — extract_decimals(AbsRealFFTData)

for i < length(AbsDataToProcess) do
| BinaryFFTData < convert_to_binary(DecimalsAbsRealFFTData)

for i < length(BinaryData) do
XORResult; — BinaryFFTData; @ BinaryFFTData,
XORResult; — XORResult; @ BinaryFFTDatas

RandomSequence — XORResult,

6 RESULTS & DISCUSSION

The previous section discusses the design of three algorithms to randomize sensor data. For each of these
three algorithms tests were executed in which the data from the dataset, as described in Section 5.1, was fed
into the algorithm. The results were tested for their randomness with the NIST test suite and the aim was to
have randomized the data. As a comparison for how more random or less random the data has become, we
use the randomness tests on the dataset from Section 5.2. This chapter discusses the results of the randomness
tests performed with the NIST test suite.

6.1 RANDOMNESS RESULTS

For Algorithm 1, based on XORing data-points, most individual tests are passed and consequently most tested
sequences (combinations) are considered random. This is visualized in Figure 6.1. For both the 19072020 and
070820202 data subsets the results are similar. The results per test for Algorithm 1 are shown in Appendix
B.1. Compared to the raw data, more sequences, five out of nine for both subset, were tested with the Random
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Excursions and Random Excursions Variants tests. This is related to the fact that more combinations for
Algorithm 1 passed the Frequency test. Each time these two tests were performed, the tests passed. For
both subsets the sequence Accy, Accy, Acc, (for Algorithm 1; Combi 1 in Figure 6.1) is not randomized
by Algorithm 1. A plausible explanation for this could be that the accelerometer values on the z-axis do not
vary significantly. Most absolute values are between 15000 and 17999. This means that for all z-axis values
the first digit is a 1 and the second digit is likely a 5, 6 or 7. This leads to repetition in the sequence, which
instantly means the sequence is not random. All other tested combinations passed more than 50% of the tests,
some with little margin, and thus are random.

For Algorithm 2 the tests were only performed on subset 07082020, for both multiplication by constants
e and . Figure 6.1a shows that the majority (six out of nine) of the tested combinations for both constants
passed none of the statistical tests. The remaining three combinations passed < 20% of the tests. Subsequently,
none of the sequences generated by Algorithm 2 are random and therefore we conclude that Algorithm 2 is
a poor randomization algorithm. In Appendix C.1 the results per test for each combination are shown. For
three out of nine tests the Rank and Linear Complexity tests passed, for both e or 7.
When comparing Figure 5.2 and Figure 6.1a we can see that even less tests were passed after manipulation by
Algorithm 2, compared to the raw data as tested in Section 5.2. From this we can conclude that multiplying
with the digits of the constant e and 7 adds predictability and pattern to the data. This can be explained by the
fact that natural constants are not truly random numbers [5].

For the tests of Algorithm 3 the same sequences were used as for Algorithm 1, except for Algorithm 3 the
Yaw@Pitch@Roll was not calculated. Therefore, in Figure 6.1 Combi 9 does not contain Algorithm 3 results.
Algorithm 3 has been applied on the full dataset and a subset of 5 seconds of data (500 data-points) and 1
second of data (100 data-points). The exact test results are shown in Appendix D.1, D.2 and D.3, respectively.
It can be seen from the graphs in Figure 6.1 that all tested sequences are random by a large margin. Compared
to Algorithm 1, Algorithm 3 does randomize sequence Accy, Accy, Acc,. For this particular sequence we
can conclude that the Fourier Transform adds additional randomness to the sequence with respect to the XOR
operation.

Compared to Algorithm 1 and Algorithm 2, the Random Excursions and Random Excursions Variants
tests are executed often for Algorithm 3. Each time these tests were executed, the tests passed. From the
graphs in Figure 6.1 it can be concluded that Algorithm 2 is the worst performing algorithm regarding
randomization and should not be used for authentication purposes. The randomization abilities of Algorithm
1 and Algorithm 3 are fairly close to each other. The graphs show that several combinations Algorithm 1 have
a higher percentage of passed tests than ‘Algorithm 3 - 100’ and ‘Algorithm 3 - 500’. This is mostly because
the Random Excursions and Random Excursions Variant tests are not performed for the smaller datasets of
Algorithm 3, likely due to the smaller sequence length, whereas these tests are often performed for Algorithm
1. Overall, all three runs of Algorithm 3 give more consistant results than Algorithm 1, which is important
for authentication purposes. When the algorithm sometimes does not succeed at randomization, there is a
chance that the sequence used for authentication is not random. This makes the system vulnerable to attacks,
as further discussed in Section 6.4.

As discussed before, IoT devices operate in real-time and therefore, the randomization algorithm must be
able to generate a random sequence within a few seconds. To analyse This effect of short term data gathering
on the randomization, the most succesfull algorithm, Algorithm 3, is also tested with 100 and 500 datapoints.
In the next section we will discuss these results.

18



100
i . | I | I I I | I
H n
é W Ajgorithm 1
g
E 50 ® Algorithm 2
el E
‘E Algorithm 2
£ s n
5 I | I | I | I I I I I .Awnmm 3
] Al
a
40 m Algorithm 3
500
Algorithm 3
100
0
Combi 1 Combi 2 Combi 3 Combi 4 Combi 5 Combi 6 Combi 7 Combi 8 Combi 9
(a) Randomness results for dataset 07082020.
100
90
70 I r I
% m Algorithm 1
= 0 I I I W Algonthm 3
2 Al
z
E = I I I Algorthm 3
z 500
2
@ I I I ® Algorithm 3
= 100
= | | i
” | | i
: | | i

Combi 1 Combi 2 ‘Combi 3 Combi 4 Combi 5 Combi 6 Combi 7 Combi 8 Combi 9

(b) Randomness results for dataset 19072020. Algorithm 2 was not tested for this dataset.

Figure 6.1: The results of the NIST randomness tests. On the y-axis the percentage of tests passed is shown
for each tested sequence per algorithm. Algorithm 3 was only tested on 8 combinations.

6.1.1 RESULTS SHORT TERM DATA GATHERING

Algorithm 3 was not only applied to the full dataset, but also to a subset of 100 datapoints and 500 datapoints.
This is equivalent to 1 second and 5 seconds of data gathering, respectively, in the case of our dataset. The
comparison of randomness between the three tested sets of Algorithm 3 is shown in the graphs in Figure 6.2.
The graphs clearly show the smaller datasets pass less statistical tests of the NIST test suite. However, as can
be seen from the detailed test results in Appendix D, the tests Random Excursions and Random Excursions
Variant are not performed for the 100 and 500 datapoints, which explains the smaller percentage of tests
passed in Figure 6.2. The results of all three tested variants of Algorithm 3 are consistant and sufficiently
random. This means that Algorithm 3 can also randomize short data streams that are gathered in one second.
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Therefore, Algorithm 3 is expected to work in real-time Intelligent Products in Smart Logistics.
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Figure 6.2: The results of the NIST randomness tests for Algoritm 3 for all datapoints and a subset of 100 and
500 datapoints. On the y-axis the percentage of tests passed is shown for each tested sequence

6.2 COMPLEXITY

Besides the ability of the algorithms to randomize data, their complexity is also of importance when evaluat-
ing their usefulness in smart logistics. Intelligent products used in smart logistics are constrained devices,
regarding their computational and memory resources. This means the algorithm used to randomize the sensor
data cannot be too powerful and cannot use unconstrained amounts of memory. In this section we will
evaluate and compare the complexity of the designed algorithms. In this evaluation the amount of function
calls is taken into account, as well as the time complexity of the functions and the memory-storage and -usage
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required.

Algorithm 1 and Algorithm 3 are related to each other, as Algorithm 3 in an extension of Algorithm
1. Algorithm 1 only uses a XOR operation on each data-point, after conversion to binary, Algorithm 3,
on the other hand, takes the fourier transform of each sensor stream prior to the XOR task. The Fourier
transform used is the build-in Matlab function, FFT, defined as follows: Y (k) = ;?:1 X(HWp(j-k(k-1),

where W), = e=2"0/"_ The time complexity of the FFT function is O(NlogN), where N is the number of
data-points. The time complexity of a bitwise XOR is O(N), where N is the length of the binary sequence.
The graph in Figure 6.3 shows that the computational steps for implementations of O(INlogN) complexity
(FFT) increase more with increasing input size N, compared to implementations with O(N) complexity. This
means that for Algorithm 3 the number of computations increases more for increasing input size than for
Algorithm 1. Moreover, after the FFT function is applied in Algorithm 3, the real and imaginary part of the
results must be separated and subsequently the mantissa and integer part. Therefore, Algorithm 3 does not
only use more complex functions than Algorithm 1, but also more function calls in general. This makes
Algorithm 3 relatively heavy computational wise, compared to Algorithm 1.

The amount of preprocessing and post processing done in Algorithm 2 is similar to Algorithm 1. However,
Algorithm 2 uses a multiplication operation, which, depending on the implemenation, can have a time
complexity as bad as O(N?), where N is the number of digits of the numbers to be multiplied. For example,
when multiplying 100 times 200, N is 3. This means with n datapoints for input in Algorithm 2, the time
complexity is O(n-N?). The comparison of the complexities O(N?%), O(NI ogN) and O(N) is shown in Figure
6.3.

Because Algorithm 3 uses the Fourier transform, where the data is used in a summation, more memory
usase is required compared to Algorithm 1, which it is an extension of. Algorithm 1 does not need noteworthy
memory usage. Algorithm 2 does not need a lot of memory usage during computation, however, it does
require storage of the digits of a natural constant (e or 7 in our case). For the tests combinations of Table 5.2
this varies from 0.8 MB to 3.0 MB.
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Figure 6.3: The complexity of the algorithms, for increasing n (x-axis).
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6.3 TIME CONSUMPTION

Another important aspect of the algorithms is timing, i.e. how long the algorithm takes to generate a random
sequence. This is important as the user does not want to wait too long before, for example, an encrypted data
transmission can be established. Ideally we would want this to happen in real-time, so it becomes possible to
do real-time data gathering and monitoring with the Intelligent Products. The time consumption of the three
algorithms was determined based on calculating random sequences for all tested combinations (see Table
5.2) and for the largest combination (most sensor streams combined). The timing results are shown in Figure
6.4, where each time result in seconds is the average of ten measurements. The results are grouped; Figure
6.4b shows the time consumption for calculating random sequences for all tested combinations and Figure
6.4a shows the time consumption for only generating the largest sequence. For the timing of Algorithm 1,
Algorithm 2 and ‘Algorithm 3 - All’, 260k datapoints are used. For ‘Algorithm 3 - 100’ and ‘Algorithm 3 -
500’, respectively, 100 and 500 datapoints are used. The measurements were done on a laptop with an AMD
Ryzen 7 4700U processor running Windows 10, with a clockspeed of 2.0 GHz, 8 cores and 15.4 GB RAM.

Both subfigures in Figure 6.4 show that Algorithm 2 is significantly faster than Algorithm 1 and Algorithm

3, when using the same amount of datapoints as input. The difference in time consumption for using x or e
for Algorithm 2 is negligible, therefore these results are combined in one bar in the graph.
It is unexpected that Algorithm 2 is significantly faster, as the time complexity analysis of the previous section
shows that Algorithm 2 is significantly more complex than the other algorithms. A reason for this could be
the way in which Matlab implements multiplication and the functions bitxor() and fft(). The implementation
of bitxor() and fft() could be suboptimal, causing Algorithm 1 and Algorithm 3 to take significatly longer than
Algorithm 2.

Since Algorithm 1 and Algorithm 3 are related to each other, comparing their timings is more interesting.
For calculating all tested sequences as well as only the largest sequence ‘Algorithm 3 - All’ takes about twice
as long as Algorithm 1. This is in line with the complexity analysis of Section 6.2, where it was shown that
the FFT implementation does not only have a larger time complexity than bitwise XOR but Algorithm 3 also
takes more computational steps altogether.

With an average of 84 seconds for the longest combination and 256 seconds for all combinations, the
time consumption of ‘Algorithm 3 - All’ is too long for real time applications. Therefore, it was also tested to
generate a random sequence with Algorithm 3 with less datapoints, namely 100 and 500 datapoints. This
is respectively 1 second and 5 seconds of data gathering in the used dataset. The computation times of
‘Algorithm 3 - 100” and ‘Algorithm 3 - 500’ are much more promising for use in real time Intelligent Products
in the logistics sector. For both 500 and 100 datapoints and both calculating for all tested sequences or
only the largest tested sequence, the time consumption was only 3 seconds. This is acceptable for real time
applications.
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Figure 6.4: Time consumption of the algorithms for all tested sequences and only the largest tested sequence.
The computations of Algorithm 1, 2 and ‘3 - All’ were done on 260k datapoints. Time consumption of
‘Algorithm 3 - 100’ was calculated with 100 datapoints and that of ‘Algorithm 3 - 500° was calculated with
500 datapoints.

6.4 SECURITY ANALYSIS

The Intelligent Products in smart logistics are constantly in transportation and thus accessible to an adversary
who aims to tamper with the device and possibly access the data. Therefore, it is important that the device is
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protected from physical attacks [26,45]. Access to the data or randomization algorithms is a security concern,
as one could recreate the random sequence with this data. One way to read out any data is by a physical attack
called probing. In a probing attack the adversary aims to directly read out the data signal by probing onto the
data lines in the device [26]. As probing requires expensive, specialized tools and a laboratory setting, it is
unlikely that such an attack will take place.

Another possibility to access the sensor data, is by trying to recreate the same data by using the exact same
sensors and placing them in the same location. However, due to the manufacturing variations in the sensors,
the measured values will not be exactly the same, which will influence the outcome of the randomization
algorithms and thus the generated key. As encryption keys need to be a perfect match, recreating the sensor
data to obtain an encryption key is not a security concern.

If an attacker would be able to get access to the sensor data, without having knowledge of the randomization
algorithm, it may still be possible to successfully predict the random output sequence. The likelihood for this
to happen depends on the Hamming Distance, which is the number of bits that differ in two sequences of
equal length [9]. This means that with a sufficiently large Hamming Distance, the sequences are uniformly
distributed, meaning they have an equal probability of occurring. As the Hamming Distance has not been
calculated in this research, it is not possible to state how likely it is to be able to predict the output sequence
when obtaining the sensor data.

7 CONCLUSION

As securing data becomes more important with the rise of smart logistics, the need for generating random
sequences on [oT devices for authentication and cryptographic purposes increases. The limitations of these
constrained devices make it more challenging to develop a mechanism to generate random sequences. We
have shown that a Sensor PUF can generate random sequences by using combinations of sensors already
present on the Intelligent Product. As the raw sensor data itself is not random, an algorithm is needed to
randomize the data. Multiplication of unprocessed sensor data by a constant does not result in random
data. Applying an XOR operation on combinations of sensor streams does randomize the data. The most
random sequences, however, are created by applying the FFT before the XOR operation, as is done with
Algorithm 3. We have shown that this algorithm works well for short term data gathering on a non resource
constrained device, as it can randomize one second of sensor data, sampled at 100Hz. The computational
costs of Algorithm 3 are limited, making this algorithm suitable for use on constrained IoT devices in smart
logistics.

This research did not investigate the actual time consumption of the algorithms on a resource constrained
device. As the computational power is likely to be less than the processor used in this study for the timing
analysis, it is necessary to investigate further what the time consumption on a resource constrained device
will be. In case the randomization takes longer on a constrained device, it is worth examining if even less
datapoints can be used to generate a random sequence.
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A NIST RANDOMNESS RESULTS: RAW DATA

Table A.1: Results of randomness for raw data. The percentages depict percentage of sub tests passed. v/
represents the NIST test is passed, while X represents the NIST test is failed. A — means the NIST test suite
gives no result. On average, the number of bits input to NIST test suite are 800000. The combinations
Gyro+Mag and Mag+Quaternions are only tested for the 07082020 dataset.
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B NIST RANDOMNESS RESULTS: ALGORITHM 1

Table B.1: Results of randomness for Algorithm 1. The percentages depict percentage of sub tests passed. v/
represents the NIST test is passed, while X represents the NIST test is failed. A — means the NIST test suite
gives no result. On average, the number of bits input to NIST test suite are 2500000.
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gives no result. On average, the number of bits input to NIST test suite are 14000000. For Algorithm 2 only

represents the NIST test is passed, while X represents the NIST test is failed. A — means the NIST test suite
data from the 07082020 dataset was tested.

Table C.1: Results of randomness for Algorithm 2. The percentages depict percentage of sub tests passed. v/
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D NIST RANDOMNESS RESULTS: ALGORITHM 3

Table D.1: Results of randomness for Algorithm 3, all datapoints. The percentages depict percentage of sub
tests passed. v/ represents the NIST test is passed, while X represents the NIST test is failed. A — means the
NIST test suite gives no result. On average, the number of bits input to NIST test suite are 5000000.
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Table D.2: Results of randomness for Algorithm 3, 500 datapoints. The percentages depict percentage of sub
tests passed. v/ represents the NIST test is passed, while X represents the NIST test is failed. A — means the

NIST test suite gives no result. On average, the number of bits input to NIST test suite are 4000000.
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Table D.3: Results of randomness for Algorithm 3, 100 datapoints. The percentages depict percentage of sub
tests passed. v/ represents the NIST test is passed, while X represents the NIST test is failed. A — means the

NIST test suite gives no result. On average, the number of bits input to NIST test suite are 3700000.
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E DATASET DESCIPTION

Title of the dataset:

Data underlying the thesis: Towards Implicit Authentication in Smart
Logistics: A Random Number Generator for Sensor PUFs in Resource

Constrained IoT Devices

Author: Maaike Hillerstrom

Faculty of Electrical Engineering , Mathematics and Computer Science

University of Twente
Contact information:

m.a.m. hillerstrom@student.utwente . nl
The Netherlands

Description:

This dataset contains raw data gathered with the 9DoF Razor IMU (

Inertial Measurement Unit) MO from Sparkfun.

This IMU contains an Accelerometer, Gyroscope and Magnetometer .

With the onboard SAMD21 processor the Quaternions, Yaw, Pitch,
Heading are calculated.

The data was gathered while driving in a car, in two separate
One trip of 50 KM and one trip of 150 KM.

Roll and

trips .

Majority of the trips were driven on highways and the remaining in

urban areas. There was no off-roading.

The following settings are used for data gathering:

The data is gathered at 100Hz.

Accelerometer range of +- 2G.

Gyroscope range of +— 500 dps (degrees per second).
Magnetometer range of +— 4800 microTesla (default value).

The dataset contains the following sensor data:
Device up time,

Accelerometer X—, Y-, Z—axis

Gyrosope X—, Y-, Z-axis

Magnetometer X—, Y-, Z—axis

Quaternions W—, X-, Y-, Z—axis

Yaw,

Pitch ,

Roll ,

Heading .
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This dataset contains two folders both containing text files with the

sensor data as described above.

The data is stored in separate consecutive text files. This means that
the files in one folder together form a full subset of sensor data
gathered in one driving trip.

The folder 100Hz_2g_500dps_19072020 contains eight text files.

The folder 100Hz_2g_500dps_07082020 contains 17 text files.
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