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Detection of changes in movement patterns of runners

Marjolein Bolten ∗

June, 2021

Abstract

Introduction: Running is a popular sport, but has also a high injury risk. To prevent
injuries, analyzing movement patterns of runners is useful and in this article different
statistical methodologies to analyze movement patterns are discussed.
Method: Three statistical methodologies, confidence bands, two-sample t-test and
bootstrap based testing are tested on synthetic data and time series data of the knee
angle during running. Two groups are used, in a non-fatigued and fatigued state.
Results: The statistical methodology with confidence bands was not able to detect
differences in time series of the knee angle while the two-sample t-test and bootstrap
based test were.
Conclusion: Both the two-sample t-test and the bootstrap-based test are good tests
to measure for a difference in the movement patterns of the knee between a non-fatigue
and fatigued runner. The bootstrap-based test is the better one, because this test has
the highest power and considers the whole trajectory instead of single points.

Keywords: Bootstrap, Fatigue, Gait cycle, Movement patterns, Statistics

1 Introduction
Practicing a sport is beneficial for one’s health and physical fitness, and because running
is a low accessible sport, one can easily go outside and run a bit, it is one of the most
practiced sports [11]. But it is also a sport with high injury risk. The injury rate for the
average recreational runner, one who is steadily training, is between 37% and 56% per
year [12]. Of these injuries, the most common one is a knee injury [11].
Knee injuries often occur during the stance phase of a stride. At this part of a stride, the
knee absorbs a large portion of the impact forces during the first contact with the ground
[1]. The gait cycle of running consists of the stance phase and the swing phase. One cycle
is called a stride, which starts when the foot of one leg touches the ground and ends when
the same foot touches the ground again. The part where that foot is on the ground is
called the stance phase and the part where that foot is ‘swinging’ forward is the swing
phase. The swing phase starts at the moment of toe-off [6].

During running, the joints experience greater stress and more flexion than during walking
[5]. One of the differences between the gait cycle of walking and running is that for walking
the stance phase is longer than 50% of the stride, so at the beginning and end of the stance
phase both legs are on the ground. This is also called the double supported phase. For
running the stance phase is shorter than 50% of the stride, so at the beginning and end
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of the swing phase, both legs are not on the ground. This is called the double float phase
[6]. These differences can be seen in Figure 1.

Figure 1: The gait cycle of human during walking and running [5].

The angle of the knee (γ) is defined as the angle between the lower leg and the extended
upper leg, which varies between γ = 0◦ and γ = 180◦. The flexion of the knee is the move-
ment of the ankle towards the buttocks. Extension of the knee is the opposite movement,
that is, moving the ankle away from the buttocks. These terms can be seen in Figure 2.

Figure 2: Visualisation of the knee angle, flexion, and extension of the knee [3].

The most common cause of injuries is a training error, such as training too much and
taking too little rest to recover between trainings [10]. If one takes too little rest, one will
start a new training too soon and will reach a fatigued state earlier during this training.
The usage of monitoring systems during training has increased in recent years. Watches
can monitor your heart rate, pace, estimated time to recover before the next training, and
even more [2]. More recently, one started with monitoring movement patterns with the use
of sensors on the body. Now things like joint angles during every stride can be monitored
[9]. But these movement patterns are functions, while the parameters as for example heart
rate, are one dimensional, and can be analyzed easily, this is not the same for movement
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patterns. For example, looking at knee angles during a run, one gets a function of the
knee angle over time for every stride, so data will consist of sequences of curves.
This information of movement patterns, in this case knee angles, during a run can be
interesting to analyze, to prevent injuries in the future. The goal of this article is to
establish a statistical methodology that is suitable for testing whether there is a difference
in the movement patterns of the knee of a runner in a non-fatigued and fatigued state.
Therefore different statistical tests will be evaluated and performed. A look will be taken
at the whole trajectory of the knee angle during one stride, but also at specific points in
the stride. Finally, there will be a conclusion on the difference in knee angle between the
strides of a runner in a non-fatigued and fatigued state.

2 Method

2.1 Data collection

To collect data, there has been a data sprint. During the data sprint, the subject was asked
to perform a fatiguing run on 103% of their eight km competition pace for as long as they
could. When running on 103% of their competition pace one is certain they will reach a
fatigued state. The data sprint took place indoors on a treadmill, to reduce environmental
influences, in a controlled situation. During the run every three minutes the subject was
asked, on an RPE (Rate of Perceived Exertion) scale of one to ten, how hard the running
was. Next to the RPE, several parameters were monitored with sensors on the body and
with cameras tracking these sensors. Sensors were placed on the foot, tibia and thigh.
The movement of the ankle, knee and hip joints could therefore be measured in the three
dimensions (X,Y,Z). One can subtract a lot of information about these measurements, like
the time series of the angle of the joints, but also the velocity and acceleration of these
joints. For other research the ground reaction force, the force extended by the ground on
the body, was also measured via a force plate that was built in the treadmill.

2.2 The model

The following general model is used as a model for the data of the knee angle during a
run:

Yi(t) = µi(t) + εi(t), i = 1, . . . , N, (1)

where t ∈ [0%, 100%] denotes the time series of the knee within one stride and i is the
number of strides. For each i, the error process {εi(t) | t ∈ [0%, 100%]} is a Gaussian
process which simulates noise. This means in particular that for each fixed pair (i, t) the
random variable εi(t) is normally distributed.
It is assumed that for i 6= j {εi(t) | t ∈ [0%, 100%]} and {εj(t) | t ∈ [0%, 100%]} are
independent, i.e. any two strides do not influence each other.

In the rest of this article the following discretized version of model (1) is used where Yi is
observed at s time points on an equidistant grid:

Yi(tj) = µi(tj) + εi(tj), i = 1, . . . , N, j = 1, . . . , s. (2)
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2.3 Data processing

The data collection started and ended with three vertical jumps for calibration. The
subject was able to run for almost sixteen minutes, and this data can be seen in Figure 3,
where in subfigure 3a, all the strides are plotted and in subfigure 3b, the individual strides
are visible.

(a) All measurements in the z-axis of the
knee angle of the right knee during the
data sprint.

(b) A detailed version of the measurements in the
z-axis of the knee angle of the right knee
during the data sprint.

Figure 3: Measurements in the z-axis of the knee angle of the right knee during
the data sprint.

From the three dimensions, the data of the sagittal plane (Z-axis) was used for the knee
angle during the run. Only the sagittal plane was used, because sagittal motion is the
predominant direction of motion. This data of the knee angle per stride was divided into
two groups: the non-fatigued group and the fatigued group. For the data in the non-
fatigued group the first 60 strides, when running at a constant pace, of the data were
used, while for the fatigued group the last 60 strides of the data were used.
Every stride is distributed in s = 100 equal intervals between 0% and 100%. That is, for
every one % time step in the stride, the knee angle at that moment is known. In terms of
model (2), the data in the non-fatigued group can be described as:

Xi(tj) = µ1(tj) + εi(tj), i = 1, . . . , 60, j = 1, . . . , 100 (3)

and for the fatigued group, the data can be described as:

Yi(tj) = µ2(tj) + εi(tj), i = 1, . . . , 60, j = 1, . . . , 100 (4)

To make conclusive statements about whether there is a significance difference between
the two groups, statistical testing has been used. Three different tests were used, starting
with confidence bands, performing two-sample t-test, and last a bootstrap-based test.

2.4 A statistical test

In this article the definition of a general non-randomized statistical test is as follows:

φ : X → [0, 1],

so that φ is the map from the sampling space into the set [0, 1].
The test φ in this article will test on the difference of the means of two data sets:

H0 : µ1 = µ2 vs H1 : µ1 6= µ2, (5)
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where H0 is defined as the null hypothesis and H1 as the alternative hypothesis.
If the outcome of test φ is 1, the test rejects the null hypothesis and if the outcome is 0, φ
will accept the null hypothesis. Rejecting the null hypothesis means that with the level of
the test one can say that the null hypothesis, so the means of two data sets are equal, is
not true. When one is accepting the null hypothesis, this does not mean that the means
are the same, it just cannot be rejected.

2.5 Confidence bands

The first statistical methodology where a look has been taken at, is the use of confidence
intervals for testing on the difference of means of the two groups.
Therefore, for every integer j between 0 and s the sample mean:

X(tj) = 1
N

N∑
i=1

Xi(tj) and Y (tj) = 1
N

N∑
i=1

Yi(tj)

and sample variance:

σ̂2
X(tj) = 1

N − 1

N∑
i=1

(Xi(tj)−Xi(tj))2 and (6)

σ̂2
Y (tj) = 1

N − 1

N∑
i=1

(Yi(tj)− Yi(tj))2 (7)

are calculated. Then for every j time step, a confidence interval can be calculated, which
is, for the non-fatigued group:

[X(tj)− zα2 × σ̂X(tj) , X(tj) + zα
2
× σ̂X(tj)],

with σ̂X(tj) and σ̂Y (tj) the standard deviations of X and Y respectively. And where
zα

2
is the (1 − α

2 )− quantile of the standard normal distribution for a confidence level of
(1− α)× 100%. This means that (1− α)× 100% of the values lie within this confidence
interval, α

2 has been used because it is a two sided distribution so that on both sides a
maximum of α2 × 100% of the values do not lie in the interval.
For α = 0.05, the confidence level will be (1 − α) × 100% = 95% and the α

2− quantile is
given by 1.96 [8]. The confidence interval (IX(tj)) for every j ∈ [0, s], of the non-fatigued
group, will thus be:

IX(tj) := [X(tj)− 1.96× σX(tj) , X(tj) + 1.96× σX(tj)]

The same has been done for the fatigued group, but with Y (tj) and σ̂Y (tj) instead of
X(tj) and σ̂X(tj).

The statistical test for the hypotheses stated in (5) will be:

φ1 =
{

1 if IX(tj) ∩ IY (tj) = ∅
0 else ,

where tj ∈ [0%, 100%] is a fixed point. φ1 will thus reject if the two confidence intervals of
the different groups have no overlap at point tj . In this case the test φ1 will depend on the
choice of tj . That is, if µ1(tj) = µ2(tj), φ1 will not reject the test, although there could
be a point tj 6= tk such that µ1(tk) 6= µ2(tk). Thus there should be looked at confidence
intervals for the whole trajectory instead of focusing at one point.
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2.5.1 Multiplicity correction for the confidence intervals

To construct the confidence bands for the whole trajectory, one needs all the confidence
intervals for j between 0 and s. Now a test can be constructed where the whole trajectory
is taken into account.
As we test for all j ∈ [0, s] simultaneously it is now a multiple testing problem. There are
two different kinds of multiple testing, the normal multiple test and the combined test.
For the combined test, multiple tests are applied to draw one conclusion, reject or accept
the null hypothesis. While for the normal multiple test, multiple tests are applied to draw
multiple conclusions, for each test there is an individual conclusion [8].
The statistical methodology using confidence bands will be a combined test, one is looking
for one conclusion after performing the tests. For a single test, the level α = 0.05 means
that if the test is performed 100 times, a maximum of 5% of those tests will falsely
reject the null hypothesis. For the combined test one wants the level of the combined
test to be α = 0.05 so that the number of false rejections is controlled. Therefore a
simple Bonferroni correction is used to the single confidence intervals described above.
The following Bonferroni correction is used:

αi = α

s
, i = 1, 2, . . . , s. (8)

In this way the Bonferroni correction adjusts the probability values because, with multiple
statistical tests there is an increased risk of a type I error. And with this Bonferroni
correction the risk of a type I error is controlled again by α.
Taking the multiplicity correction into account the confidence band is constructed with
the following confidence intervals for each j ∈ [0, s]:

[X(tj)− 3.84× σX(tj) , X(tj) + 3.84× σX(tj)] and (9)
[Y (tj)− 3.84× σY (tj) , Y (tj) + 3.84× σY (tj)], (10)

where 3.84 is the zαi
2

quantile of the standard normal distribution [8].
When there is a part in the confidence bands where the two bands of (9) and (10) do not
overlap, one can say that the µ1(t) and µ2(t) are significantly different [4]. The statistical
test φ2 testing on the hypothesis stated in (5) will thus be:

φ2 =
{

1 if the confidence intervals (9) and (10) are disjoint for at least one tj
0 else ,

2.6 Two-sample t-test

The second methodology that has been looked at is the two-sample t-test, the two-sample
t-test can be used to test whether there is a difference in the means of two data sets from
a normal distribution. The following t-test is performed s times and a vector is created
which shows the rejected points.
For the knee angles as time series, the data is described as in equations (3) and (4). The
following hypotheses will be tested for every j ∈ [0, s]:

H0j : µ1(tj) = µ2(tj) vs H1j : µ1(tj) 6= µ2(tj). (11)

The test statistic of the test will be:

T (tj) = X(tj)− Y (tj)√
S2(tj)( 1

n + 1
m)

with

S2(tj) = n− 1
n+m− 2 × σ̂

2
X(tj) + m− 1

n+m− 2 × σ̂
2
Y (tj),
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with σ̂X , σ̂Y the standard deviations of X(t), Y (t) as described in equation (6) and (7),
and n,m the number of data points in X(t) and Y (t), respectively. X(tj) is the mean of
the jth time step of all the strides in the non-fatigued group and Y (tj) the mean of the
jth time step of all the strides in the fatigued group.
The test statistic has a tn+m−2 distribution under H0 and a test φ3 for the hypotheses in
(11) is given by:

φ3 =
{

1, if | T (tj) |> tα
2

0, else

2.6.1 Multiplicity correction for the two-sample t-test

To construct a combined test of these j tests, the same Bonferroni correction as in equation
(8) is used for those t-tests. The combined test will then test the following:

H0,global = ∩Nj=1H0j with
H0j : µ1(tj) = µ2(tj) ∀j vs H1j : µ1(tj) 6= µ2(tj) for at least one j,

where H0,global is the global null hypothesis.
The two-sample t-test thus rejects a point if the p-value of the t-test at time point j is
smaller than αi. If at least one point is rejected, this means that the global null hypothesis,
will not hold [8].
Formally, the statistical test φ4 can be defined as follows:

φ4 =
{

1, if | T (tj) |> tαi
2

for at least one tj
0, else

2.7 A bootstrap test for whole trajectories

The methods discussed in sections 2.5 and 2.6 are based on point-wise confidence intervals
and t-tests, respectively. In order to obtain simultaneous confidence bands and a com-
bined test, a Bonferroni correction was used. The true confidence level of the Bonferroni
confidence bands is typically much higher than the normal confidence level of 95% and
the true level of the combined test is typically much lower than the anticipated 5%. As
a consequence the Bonferroni corrected methods will not be able to detect small changes
between the mean trajectories of the different groups. A test which takes the mean tra-
jectories as a whole into account can do this.

For this third methodology it is assumed that there is a collection of random functions,
where one function is one stride, satisfying

Xi,j(t) = µi(t) + εi,j(t), i = 1, 2, ...,K, j = 1, 2, ..., ni, t ∈ I

with K = 2 the number of groups and ni the number of observations (strides) in group i.
The following hypotheses are tested

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (12)

The difference between the hypotheses for this test (12) and the one for the two-sample
t-test (11) is that in (12) the mean functions µ1 and µ2 are considered as a whole, while
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in (11), the points are considered individually.
It is assumed that µ1 and µ2 are square integrable, so:∫

I
|µi(t)|2dt <∞.

Because this assumption holds true, it is reasonable to base a test on the Euclidean distance
of the mean trajectories of the two groups. The test statistic SN for the hypotheses
described in (12) is given by:

SN = n1n2
N
||X1,n1 −X2,n2 ||2, (13)

where X1,n1 and X2,n2 are the mean trajectories of the two groups, and N = n1 + n2.

The statistical test φ5 is defined as:

φ5 =
{

1, if SN > Cα
0, else ,

where Cα is the (1- α)-quantile of the distribution of SN .

Unlike the two-sample t-test, the distribution of SN under the null hypothesis is unknown.
Therefore, the critical value is estimated by using a bootstrap resampling method.
Bootstrapping is the process where from a small data set one can infer the population of a
data set. One randomly selects a data point x times and adds this to a sample. From this
sample, all kinds of parameters can be estimated such as the mean and standard deviation.
If this process is repeated many times, say 1000 times, the estimated parameters will be
close to the real parameters. Bootstrap is a good method to test whether the sample of
data points is a good representation of the original data set.

The above description of the Bootstrap process works for data sets containing points and
not functions. The stride during running is a function, so the process should be adjusted a
little. The following bootstrap-based test for functions was proposed in [7] and is used to
test for a difference in the mean trajectories. The bootstrap test for functions is performed
as follows:

Step 1: Calculate the sample mean functions in each population

Xi,ni(t) = 1
ni

ni∑
j=1

Xi,j(t), t ∈ I, i ∈ 1, 2

Step 2: Calculate the residual functions in each population

εi,j(t) = Xi,j −Xi,ni(t), t ∈ I, j = 1, 2, ..., ni

Step 3: Generate bootstrap functional pseudo-observations X+
i,j(t), according to

X+
i,j(t) = XN (t) + ε+i,j(t), t ∈ I, (14)

with XN (t) the pooled mean function estimator, given as follows:

XN = 1
N

K∑
i=1

ni∑
j=1

Xi,j(t), t ∈ I
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and ε+i,j(t) = εi,J(t) where J is a random integer in the range of 1, 2, ..., ni.

Step 4: Calculate the test statistic S+
N .

This test statistic is the same as SN of (13) but calculated using the bootstrap functional
pseudo observations of (14). The test statistic S+

N can be found by applying the bootstrap
process to steps one, two, and three. Then for every bootstrap sample, the test statistic
S+
N is calculated, and one makes a list with all those values to eventually find the bootstrap

critical value (C+
a ). For a level α of 5%, one can find the critical value by taking the 95th

percentile of the list of sorted S+
N values.

With the Euclidean norm, the distance between the two sample mean functions X1,n1 and
X2,n2 has been used. By doing this, one makes sure to test over the whole trajectory and
not only at one point. Therefore the use of the Euclidean norm is useful for the bootstrap
test.

Step 5: Reject the null hypothesis H0 if and only if

SN > C+
α

This will mean that the test will reject if the test statistic is greater than 95% of the
bootstrapped test statistics. Formally, the test φ6, testing on the hypotheses stated in
(12) is defined as:

φ6 =
{

1, if SN > C+
α

0, else

In [7] it is shown that as the sample sizes n1 and n2 increase, the bootstrap critical value
C+
α converges to the 0.95 - quantile Cα of the distribution of SN and therefore, the use of

C+
α instead of Cα is justified.

2.8 Power of the tests

The power of a test is the probability that a test rejects the null hypothesis when the
alternative hypothesis is true. So the probability that the test correctly rejects the null
hypothesis. The power of a test ranges between 0 and 1, where a power of 1 means that
the test always rejects the null hypothesis, when it is indeed wrong.
The probability of making a type II error is defined as:

β = 1− EH1 [φ(X)],

where φ(X) is the test as defined in equation (5) and the power of the test is thus defined
as:

1− β.
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When increasing the power of the test, this also means that there will be more type I er-
rors, because it is easier to reject the null hypothesis. So it is important to find a balance
here, to find the most optimal test. A visualization of type I or II errors can be seen in
Table 1.

Table 1: Definition of type I and II errors.

Test rejects Test accepts
H0 true Type I error v
H0 false v Type II error

In order to determine which of the tests φ2, φ4 and φ6 has the highest power, a simulation
study is performed in section 3.2.

3 Results

3.1 Validity of the tests

Before performing the three statistical methodologies on the data from the data sprint,
first, the tests were run on simulated data. This is done to test the validity of the tests.
Therefore, simulated data from a known distribution is used. The stride of a human looks
like a cosine, so for the simulated data cosines with added noise (ε(tj)) are used. There
were tests performed in two general situations, the first one with both groups distributed
as a cosine with random normal noise added, so X1(tj) versus X2(tj). The second one
with group 1, cosine, and group 2 sine with both random normal noise added, so X1(tj)
versus Y2(tj). With Xi(tj) and Yi(tj) defined as follows:

Xi(tj) = cos(tj) + ε(tj),
Yi(tj) = sin(tj) + ε(tj),
ε(tj) ∼ N(0, 1) i.i.d. (independent and identically distributed)

This data can be seen in Figure 4.

(a) A cosine with random normal ∼ (0,1)
noise added

(b) A sine with random normal ∼ (0,1)
noise added

Figure 4: The synthetic data
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The tests are validated if the level of the test is controlled by α = 0.05 for both scenarios.
In the scenario of the two cosines, for which we know the mean trajectories are the same,
this means that there is a maximum of 5% of false rejections. For the cosine and sine, we
know the mean trajectories are not the same, so the tests should reject.

3.1.1 Confidence bands

The confidence bands are made of all the confidence intervals and are together with the
mean trajectory plotted in Figure 5. As can be seen in subfigure 5a there is not a part in
the confidence bands where the two confidence bands are not overlapping, for the data sets
((X1(tj) and X2(tj))), which means that the null hypothesis cannot be rejected. If the
confidence bands are constructed one hundred times, there will not be a single time that
there is no overlap between the bands, and thus the statistical methodology will reject the
null hypothesis. The level of the statistical methodology is thus controlled by α.
In subfigure 5a one can see that there are multiple places where there is no overlap between
the two confidence bands. Therefore, one can directly say that the mean trajectories of
the two data sets (X1(tj) and Y2(tj)) are not the same and so the null hypothesis can
be rejected. If the confidence bands are constructed 100 times there will always be a part
where the confidence bands are not overlapping, thus it is also controlled by α.

(a) Cosines with random normal ∼ (0,1)
noise added.

(b) Cosine and sine with random normal
∼ (0,1) noise added.

Figure 5: Confidence bands for the simulated data.

For both scenarios the outcome of the statistical methodology is as expected and the level
of the statistical methodology is controlled by α = 0.05 so the validity of the statistical
methodology with confidence bands is tested. This methodology can thus be used to test
the running data for differences in the time series of the knee angles.

3.1.2 Two-sample t-test

For the two-sample t-test with Bonferroni adjustment, the global null hypothesis can be
rejected if at least one of the individual tests rejects. If at one point the means of the two
groups are not the same, then the mean trajectory of the two groups is also not the same.
For the two cosines all the single tests do not reject, so the combined test also does not
reject the null hypothesis. When performing this combined test 100 times, there are some
false rejections, but those are always less than five. This means that the level of the two-
sample t-test is controlled by α = 0.05. For the cosine and the sine, there is always at
least one point that rejects, so the combined test always rejects, as expected.
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For both scenarios the outcome of the test is as expected and the level of the test is
controlled by α = 0.05 so the validity of the two-sample t-test is tested. This methodology
can thus be used to test the running data for differences in the time series of the knee
angles.

3.1.3 Bootstrap

The results of the Bootstrap-based test for both scenarios on the simulated data for one
example can be found in Table 2 in the first three columns. To test the validity of the
bootstrap based methodology the test is performed one hundred times and the percentage
of rejections in both scenarios is given in column 5 of Table 2. As can be seen for both
scenarios the bootstrap test rejected if this was expected and did not reject if this was
not expected. Also, the percentage of false rejections was controlled by the given level
α = 0.05.

Table 2: Results of the Bootstrap-based test on the simulated data.

Test statistic SN Critical value Rejected % of rejections if
performing it 100 times

X1(tj), X2(tj) 5.29 6.55 no 4 %
X1(tj), Y2(tj) 2994.25 6.53 yes 100 %

The bootstrap-based test is validated to be used as a statistical test to analyze the time
series of the knee angles during a run.

3.2 Power of the tests

The power of a test will be higher if this test has a higher probability of rejecting the
null hypothesis when it is actually wrong. So in the case of testing on the means of
trajectories, rejecting the null hypothesis when there is actually a difference in the means
of two trajectories. To estimate which statistical methodology has the highest power, a
lot of tests have been performed on the following two groups:

Xi(tj) = cos(tj) + ε(tj),
Xi(tj) = cos(tj − δ) + ε(tj),
ε(tj) ∼ N(0, 1) i.i.d.,

with δ ∈ [0, π2 ] such that for δ = 0 and δ = π
2 the test is the same as in the two scenarios

described above (cosine and cosine, and cosine and sine). The results of these tests can
be seen in Table 3.

As one can see in Table 3, the Bootstrap-based test has the most rejections in cases where
there is a small difference between the trajectories. Because it has the most rejections and
we know that the means are indeed different, it means that it rejects the null hypothesis
the most while it is indeed wrong, so this statistical methodology has the highest power.
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Table 3: The percentage of rejections of the statistical tests for different values
of δ.

δ % rejections confidence bands % rejections t-test % rejections SN
0 0 4 4
1π
200 0 7 8
2π
200 0 18 46
3π
200 0 34 96
4π
200 0 62 100
5π
200 0 86 100
6π
200 0 100 100
...

...
...

...
3π
10 0 100 100
4π
10 11 100 100
1π
2 96 100 100

3.3 The data

Once the data was preprocessed the knee angles were plotted as can be seen in figure 6.
At a first glance, one cannot see if there is a difference between the mean trajectories of
the first 60 and the last 60 strides. It can be seen that at around 15− 20% of a stride, the
knee angle during the last 60 strides has a more pronounced peak than during the first 60
strides. This is the moment in the human gait when the knee is flexed the most in the
stance phase.
Because of this difference that can be seen at first glance, next to the tests on the whole
trajectory, a look has also been taken at this specific interval during the human stride.

(a) The knee angle during the first 60 strides. (b) The knee angle during the last 60 strides.

Figure 6: Knee angles of the subject when performing the fatiguing run.

3.4 Confidence bands

The results of the statistical methodology with the confidence bands can be seen in Figure
7. One can see in subfigure 7a that there is no point during the stride that the confidence
bands of the first 60 and last 60 strides do not overlap. So for this statistical methodology,
the null hypothesis cannot be rejected, and one cannot say anything about a difference in
means of the first 60 and last 60 strides.
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(a) The confidence bands of the first 60 strides
(green) and the last 60 strides (blue) during a
fatiguing run.

(b) The confidence bands of the specific region
of the first 60 strides (green) and the last 60
strides (blue) during a fatiguing run.

Figure 7: Knee angles of the right knee of the subject when performing the
fatiguing run.

For the specific region as can be seen in subfigure 7b, between 15% and 17% of a stride,
there is overlap between the green and blue confidence bands, so the null hypothesis is
accepted, and one can not say anything about a difference in means in that region for the
first 60 and last 60 strides of a fatiguing run.

3.5 Two-sample t-test

The outcome of the multiple two-sample t-test is the following vector with 1 if the t-test
rejected at that point:
Rejected points = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

This vector is visualized in Figure 8, where a red dot indicate that the t-test rejects the
null hypothesis at that point and a black dot that the t-test accepts the null hypothesis.

Figure 8: In red the points that reject and in black the points that accept the
null hypothesis with the two-sample t-test.
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Because there is at least one point that is rejected, the combined test also rejects, and
thus the global null hypothesis, the mean trajectory of the first and last 60 strides during
a fatiguing run is the same, can be rejected with a confidence level of 95%.

At the interval, 15− 17%, of a stride, the two-sample t-test performed without Bonferroni
level adjustment gives as an outcome the following vector:
Rejected points = [1, 1, 1].

So, one can conclude with a level of 95% that at both, the whole trajectory as the specific
interval, there is indeed a difference in means of the first 60 strides and the last 60 strides
of a fatiguing run.

3.6 Bootstrap

The test statistic SN and the critical value of the bootstrap-based test can be found in
Table 4. The test statistic is greater than the critical value which means that the null
hypothesis can be rejected. For the specific region, around 15% − 17% of the stride, the
test statistic is also greater than the critical value.

Table 4: Results of the Bootstrap-based test on the data of the knee angle during
a run.

Test statistic SN Critical value Rejected
Time series of the knee (whole trajectory) 24843.21 586.11 yes
Time series of the knee at 15%− 17% 1082.69 111.62 yes

One can conclude with a confidence level of 95%, based on the bootstrap-based test, that
there is a difference in the means of the first 60 strides and last 60 strides of a fatiguing
run for the whole trajectory and for the specific region.

4 Discussion & Conclusion
In this section, the results are discussed and reflected upon and finally, recommenda-
tions will be given for future research. The aim of this study was to establish a statistical
methodology that is suitable for testing whether there is a difference in the movement pat-
terns of the knee between a runner in a non-fatigued and fatigued state. Therefore three
different statistical methodologies have been compared and each test was first checked by
running it with simulated data.

For the simulated data, the cosines and sines, all of the tests gave the expected results
and were controlled for a level of α = 0.05. With the test with confidence bands and the
two-sample t-test, a look has been taken at specific points and at least one rejection means
that the whole trajectory is not the same. On the other hand, for the bootstrap-based
test there is directly tested at the means of the whole trajectories.

For the cosine and sine, all of the three tests rejected the null hypothesis, which means
that the mean trajectories are the same. For the time series of the knee angles during
a run, only the two-sample t-test and the bootstrap-based test rejected the null hypothesis.
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Both the two-sample t-test and the bootstrap-based test are good tests to test for a dif-
ference in the movement patterns of the knee between a runner in a non-fatigued and
fatigued state. The advantage of the two-sample t-test is that one can more easily see
where the mean trajectories of the two groups differ the most, because the p-value of the
two-sample t-test will be the lowest there.
The disadvantage of the two-sample t-test is that it is a combined test, because of all the
testing on single points. And with the simple Bonferroni correction used, the power of the
combined test is a lot smaller than for the single tests.

The simulated data was created with adding i.i.d. noise, this noise is what could be happen
in the worst case scenario. The real data was a lot smoother than cosines with i.i.d. noise,
so it could be interesting to also test the statistical methodologies with simulated data
that is smoother. It can be expected that, when looking at the power of the statistical
methodologies with this simulated data with smooth noise, the overall conclusion will stay
the same, i.e. the bootstrap based test is best suitable. Still, it could be interesting to
look how the power will differ when the data is becoming smoother.

All these tests were performed on a data set obtained in a controlled situation: indoor
treadmill running. The variability of this data is therefore smaller than it would be while
outdoor running. The confidence bands of a data set with higher variability will be wider
than the confidence bands of a data set with a smaller variability, so the statistical method-
ology with confidence bands is also not suitable for uncontrolled situations like outdoor
running.
For the two-sample t-test and the bootstrap based test, nothing can be said about how
those statistical methodologies will behave when testing on data with more variability, so
this could be interesting for further research.

Due to time limitations the validity and power of the statistical methodologies is estimated
while performing a test 100 times. This is a good estimation, but for further research it
can be interesting to actually calculate the power instead of estimating it.

Next to this, the methodologies were only tested on one dataset of one runner instead
on a dataset of multiple runners. The dataset of the runner did not contain weird move-
ment patterns, so the methodologies probably also work for other runners, but that’s not
certain. So in future research the methodologies, and especially the bootstrap-based test
should be tested on samples of multiple different runners.

Overall, one can say that the bootstrap-based test is a good statistical methodology to test
whether there is a difference in the knee angle of a runner in a non-fatigued or fatigued
state. In this article, a look has only been taken at the movement patterns of the knee
during a run, but for further research, the bootstrap-based test should be checked for other
movement patterns of joints, and eventually of multiple joints together.
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A Table of symbols

Table 5: Table with symbols used in the article.

Symbol Description Page number
γ angle of the knee 2
tj time point t, j ∈ [0, s] 3
s amount of intervals between begin and end point, s = 100 3
N number of strides in the group 3
i stride i, i ∈ [0, N ] 3

Xi(tj) data in group non-fatigue 4
Yi(tj) data in group fatigue 4
X(tj) sample mean of Xi(tj) 5
Y (tj) sample mean of Yi(tj) 5
σ̂X(tj) standard deviation of Xi(tj) 5
σ̂Y (tj) standard deviation of Yi(tj) 5
α significance level 5
αi Bonferroni correction of α 6

T (tj) test statistic of two-sample t-test 6
S2(tj) pooled sample variance 6
K number of groups 7
SN test statistic of bootstrap-based test 8

Xi,ni(tj) sample mean functions 8
x amount of data points to bootstrap 8

εi,j(t) residual function 8
X+
i,j(t) bootstrap functional psuedo-observations 8
XN pooled mean function estimator 8
J random integer between 1 and N 9
S+
N test statistic of pseudo observations 9

C+
α bootstrap critical value 9
Cα critical value 9
β probability of making a type II error 9
δ variable running between 0 and π

2 12
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B Code

Listing 1: Code for running with simulated data.
1 import math
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 from s k l e a r n . u t i l s import resample
5 import csv
6 from sc ipy import s t a t s
7 import random
8 from math import s q r t
9

10 s = 100 #amount o f s t ep s between −2pi and 2 pi
11 b = 60 #amount o f f u n c t i o n s ( s t r i d e s ) in the o r i g i n a l ( input ) data #equal

f o r a l l groups
12 B = 1000 #amount o f Bootstrap i t e r a t i o n s f o r the s t a t i s t i c a l t e s t i n g (TEST

3)
13 ni = 60 #amount o f Xi j ' s in group 1 (TEST 3)
14 mi = 60 #amount o f Xi j ' s in group 2 (TEST 3)
15 k = 2 #amount o f groups
16 N = ni + mi
17 SnB = [ ] #l i s t o f t e s t s t a t i s t i c s f o r each boots t rap
18

19 Percentage_array = [ ]
20 f o r i in range (100) :
21 Percentage_array . append ( i )
22

23 #Creat ing the input data , in the example the c o s i n e / s i n e
24 in_array = np . l i n s p a c e (−(0 ∗ np . p i ) , 2 ∗ np . pi , s )
25

26 #Creat ing a data s e t with n i f u n c t i o n s ( Xi j ) per group
27 vectorX = [ ]
28 vectorY = [ ]
29 c = 20 #Bootstrap samples
30 f o r o in range ( n i ) :
31 # For each new sample we take c t r a j e c t o r i e s and c a l c u l a t e the mean

t r a j e c t o r y , that i s the new sample
32 X = [ ]
33 Y = [ ]
34 # make c o s i n e s with n o i s e added between −2pi and 2 pi
35 f o r i in range ( c ) :
36 out_array_i_X = [ ]
37 out_array_i_Y = [ ]
38 f o r j in range ( s ) :
39 out_array_i_X . append (math . cos ( in_array [ j ] ) + np . random . normal (0 ,

1) )
40 out_array_i_Y . append (math . cos ( in_array [ j ] ) + np . random . normal (0 ,

1) )
41 X. append ( out_array_i_X )
42 Y. append ( out_array_i_Y )
43

44 # Make v e c t o r s with a l l po in t s with the same input value in one vector ,
so s v e c t o r s

45 vectorX_k = [ ]
46 vectorY_k = [ ]
47 f o r k in range ( s ) :
48 point_X_k = [ ]
49 point_Y_k = [ ]
50 f o r l in range ( c ) :
51 point_X_k . append (X[ l ] [ k ] )

19



52 point_Y_k . append (Y[ l ] [ k ] )
53 vectorX_k . append ( point_X_k )
54 vectorY_k . append ( point_Y_k )
55

56 # Calcu la t ing mean o f every vec to r c rea ted above
57 meanX_o = [ ]
58 bootstrapX = [ ]
59 meanY_o = [ ]
60 bootstrapY = [ ]
61 f o r m in range ( s ) :
62 meanX_o . append (np . mean( vectorX_k [m] ) )
63 bootstrapX . append (meanX_o [m] )
64 meanY_o . append (np . mean( vectorY_k [m] ) )
65 bootstrapY . append (meanY_o [m] )
66 vectorX . append ( bootstrapX ) #make a l i s t with a l l the samples in the re
67 vectorY . append ( bootstrapY )
68

69 p l t . p l o t ( Percentage_array , out_array_i_X , c o l o r=' green ' )
70 p l t . p l o t ( Percentage_array , out_array_i_Y , c o l o r=' blue ' )
71 p l t . show ( )
72

73 #S t a t i s t i c a l t e s t with the use o f con f idence bands (TEST 1)
74

75 # Make v e c t o r s o f the new t r a j e c t o r i e s with a l l po in t s with the same input
value in one vector , so s v e c t o r s

76 database_p = [ ]
77 database_q = [ ]
78 f o r p in range ( s ) :
79 point_p = [ ]
80 point_q = [ ]
81 f o r q in range ( n i ) :
82 point_p . append ( vectorX [ q ] [ p ] )
83 point_q . append ( vectorY [ q ] [ p ] )
84 database_p . append ( point_p )
85 database_q . append ( point_q )
86

87 #Calcu la t ing mean and standard e r r o r o f the samples
88 meanX_test1 = [ ]
89 meanY_test1 = [ ]
90 stdX_test1 = [ ]
91 stdY_test1 = [ ]
92 f o r mm in range ( s ) :
93 meanX_test1 . append (np . mean( database_p [mm] ) )
94 meanY_test1 . append (np . mean( database_q [mm] ) )
95 stdX_test1 . append (np . std ( database_p [mm] ) )
96 stdY_test1 . append (np . std ( database_q [mm] ) )
97

98 #Calcu la t ing the con f idence i n t e r v a l s per po int
99 confidence_band_low_group1 = [ ]

100 confidence_band_high_group1 = [ ]
101 mean_trajectory_group1 = [ ]
102 confidence_band_low_group2 = [ ]
103 confidence_band_high_group2 = [ ]
104 mean_trajectory_group2 = [ ]
105 f o r nn in range ( s ) :
106 confidence_band_low_group1 . append ( meanX_test1 [ nn ] − 1.96∗ stdX_test1 [ nn ] )
107 mean_trajectory_group1 . append ( meanX_test1 [ nn ] )
108 confidence_band_high_group1 . append ( meanX_test1 [ nn ] + 1.96∗ stdX_test1 [ nn

] )
109 confidence_band_low_group2 . append ( meanY_test1 [ nn ] − 1.96∗ stdY_test1 [ nn ] )
110 mean_trajectory_group2 . append ( meanY_test1 [ nn ] )
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111 confidence_band_high_group2 . append ( meanY_test1 [ nn ] + 1.96∗ stdY_test1 [ nn
] )

112

113 #Pl o t t i ng the c o s i n e s and the con f idence bands
114 p l t . p l o t ( Percentage_array , confidence_band_low_group1 , c o l o r=' green ' , marker

=" . " )
115 p l t . p l o t ( Percentage_array , mean_trajectory_group1 , c o l o r=' green ' , marker=" . "

, l i n e s t y l e=' dotted ' )
116 p l t . p l o t ( Percentage_array , confidence_band_high_group1 , c o l o r=' green ' ,

marker=" . " )
117 p l t . p l o t ( Percentage_array , confidence_band_low_group2 , c o l o r=' blue ' , marker=

" . " )
118 p l t . p l o t ( Percentage_array , mean_trajectory_group2 , c o l o r=' blue ' , marker=" . " ,

l i n e s t y l e=' dotted ' )
119 p l t . p l o t ( Percentage_array , confidence_band_high_group2 , c o l o r=' blue ' , marker

=" . " )
120 p l t . x l a b e l ( " Percentage o f the s t r i d e " )
121

122 # S t a t i s t i c a l t e s t with two sample t . t e s t on each input po int o f the mean
f u n c t i o n s

123 o f the groups
124 X = database_p
125 Y = database_q
126

127 alpha = 0.05
128 a lpha_bonferroni = 0.05/ s
129

130 pvalues = [ ]
131 r e j e c t ed_pva lues = [ ]
132

133 f o r t in range ( s ) :
134 t t e s t = s t a t s . t t e s t_ind (X[ t ] ,Y[ t ] )
135 pvalues . append ( t t e s t [ 1 ] )
136

137 f o r p in range ( s ) :
138 i f pva lues [ p ] < alpha_bonferroni :
139 r e j e c t ed_pva lues . append (1 )
140 e l s e :
141 r e j e c t ed_pva lues . append (0 )
142

143 p r i n t ( r e j e c t ed_pva lues )
144

145 #Bootstrap based k sample t e s t i n g f o r f u n c t i o n a l data (TEST 3)
146

147 # Make v e c t o r s o f the new t r a j e c t o r i e s with a l l po in t s with the same input
value in one vector , so s v e c t o r s

148 database_p = [ ]
149 database_pp = [ ]
150 f o r p in range ( s ) :
151 point_p = [ ]
152 point_pp = [ ]
153 f o r q in range ( n i ) : #ni=mi
154 point_p . append ( vectorX [ q ] [ p ] )
155 point_pp . append ( vectorY [ q ] [ p ] )
156 database_p . append ( point_p )
157 database_pp . append ( point_pp )
158

159 #Calcu la t ing mean and mean t r a j e c t o r y (STEP 1)
160 meanX = [ ]
161 meanY = [ ]
162 f o r m in range ( s ) :
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163 meanX . append (np . mean( database_p [m] ) )
164 meanY . append (np . mean( database_pp [m] ) )
165

166 #Res idual f u n c t i o n s (STEP 2)
167 r e s idua lX = [ ]
168 r e s idua lY = [ ]
169 f o r r in range ( n i ) : #ni=mi
170 r e s i d u a l a = [ ]
171 r e s i d u a l b = [ ]
172 f o r bb in range ( s ) :
173 r e s i d u a l a . append ( vectorX [ r ] [ bb ] − meanX [ bb ] )
174 r e s i d u a l b . append ( vectorY [ r ] [ bb ] − meanY [ bb ] )
175 r e s idua lX . append ( r e s i d u a l a )
176 r e s idua lY . append ( r e s i d u a l b )
177

178 SnB = [ ] #empty l i s t to f i l l with the Sn^+
179 f o r bbb in range (B) : #apply s tep 3 and 4 f o r every B boots t rap sample ' s to

even tua l l y ana lyze the d i s t r i b u t i o n o f the i n d i v i d u a l Sn ' s
180 #Generating boots t rap f u n c t i o n a l pseudo−obse rva t i on s (STEP 3)
181 pseudo_observat ions = [ ]
182 X_bar = 0
183 f o r j in range ( n i ) :
184 f o r i in range ( s ) :
185 X_bar = X_bar + vectorX [ j ] [ i ] + vectorY [ j ] [ i ]
186

187 pooled_mean_function_estimator = 1/N ∗ X_bar
188

189 X_plus = [ ] #boots t rap pseudo obs e rva t i on s f o r group 1
190 Y_plus = [ ] #boots t rap pseudo obs e rva t i on s f o r group 2
191 f o r j in range ( n i ) :
192 J = random . randint (0 , ni −1)
193 X_plus . append ( pooled_mean_function_estimator + res idua lX [ J ] )
194 JJ = random . randint (0 , mi−1)
195 Y_plus . append ( pooled_mean_function_estimator + res idua lY [ JJ ] )
196

197 # Calcu la t ing the mean o f the new sample o f boots t rap f u n c t i o n a l pseudo
obs e rva t i on s

198 database_w = [ ]
199 database_ww = [ ]
200 f o r w in range ( s ) :
201 point_w = [ ]
202 point_ww = [ ]
203 f o r v in range ( n i ) : #ni=mi
204 point_w . append ( X_plus [ v ] [ w] )
205 point_ww . append ( Y_plus [ v ] [ w] )
206 database_w . append ( point_w )
207 database_ww . append ( point_ww )
208

209 #Calcu la t ing mean and mean t r a j e c t o r y o f boots t rap f u n c t i o n a l pseudo
obs e rva t i on s

210 meanXB = [ ]
211 meanYB = [ ]
212 f o r mm in range ( s ) :
213 meanXB. append (np . mean( database_w [mm] ) )
214 meanYB. append (np . mean( database_ww [mm] ) )
215

216 #Calcu la t ing Sn^+ f o r every boots t rap sample
217 d i f f e r e n c e = [ ]
218 f o r i in range ( l en (meanXB) ) :
219 d i f f e r e n c e . append (meanXB[ i ] − meanYB[ i ] )
220
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221 L2_norm = 0
222 Sn = 0
223 L2_norm = np . l i n a l g . norm( d i f f e r e n c e ) #euc l i d ean norm
224 Sn = ( ( n i ∗ mi ) /N) ∗ (L2_norm ∗ L2_norm)
225 SnB . append (Sn)
226

227 #Sort the SnB ' s
228 SnB_sorted = sor t ed (SnB)
229 #Estimate the c r i t i c a l va lue
230 C r i t i c a l _ v a l u e = ( SnB_sorted [ 9 4 9 ] + SnB_sorted [ 9 5 0 ] ) /2
231 p r i n t ( 'The c r i t i c a l va lue f o r t h i s t e s t i s : ' , C r i t i c a l _ v a l u e )
232

233 #Calcu la te the ' r e a l ' Sn , f o r the input data
234 d i f f e r e n c e _ r e a l = [ ]
235 f o r i in range ( l en ( mean_trajectory_group1 ) ) :
236 d i f f e r e n c e _ r e a l . append ( mean_trajectory_group1 [ i ] − mean_trajectory_group2 [

i ] )
237

238 L2_norm_real = np . l i n a l g . norm( d i f f e r e n c e _ r e a l ) #euc l i d ean norm
239 Sn_real = ( ( n i ∗ n i ) /(N) ) ∗ ( L2_norm_real ∗ L2_norm_real )
240 p r i n t ( 'The t e s t s t a t i s t i c f o r t h i s t e s t i s : ' , Sn_real )
241

242 i f Sn_real > C r i t i c a l _ v a l u e :
243 p r i n t ( " With a con f idence l e v e l o f 95% the n u l l hypothes i s ( the mean

t r a j e c t o r i e s are the same ) i s r e j e c t e d " )
244 e l s e :
245 p r i n t ( " With a con f idence l e v e l o f 95% we can not r e j e c t the n u l l

hypothes i s ( the mean t r a j e c t o r i e s are the same ) " )

Listing 2: Code for running with data of the data sprint.
1 import pandas as pd
2 import math
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 from s k l e a r n . u t i l s import resample
6 import csv
7 from sc ipy import s t a t s
8 import random
9 from math import s q r t

10 from sc ipy . s i g n a l import argre lmin
11 from sc ipy . s i g n a l import argre l ext rema
12 from goog le . co lab import d r i v e
13 dr ive . mount ( ' / content / gdr ive ' , force_remount=True )
14

15 s = 100 #amount o f s t ep s between −2pi and 2 pi
16 b = 60 #amount o f f u n c t i o n s ( s t r i d e s ) in the o r i g i n a l ( input ) data #equal

f o r a l l groups
17 B = 1000 #amount o f Bootstrap i t e r a t i o n s f o r the s t a t i s t i c a l t e s t i n g (TEST

3)
18 ni = 60 #amount o f Xi j ' s in group 1 (TEST 3)
19 mi = 60 #amount o f Xi j ' s in group 2 (TEST 3)
20 k = 2 #amount o f groups
21 N = ni + mi
22 SnB = [ ] #l i s t o f t e s t s t a t i s t i c s f o r each boots t rap
23

24 Percentage_array = np . l i n s p a c e (0 ,100 , s )
25

26 #import the data and proce s s i t
27 data = pd . read_csv ( ' . / gdr ive /My Drive / Bacheloropdracht /

Xsens_RP_0904_Meas_angle . csv ' )
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28 # adding header to the data
29

30 #header_names = [ " L5S1 " , " L4L3 " , " L1T12 " , "T9T8" , "T1C7" , " Head " , "
RightT4Shoulder " , " RightShoulder " , " RightElbow " , " RightWrist " , "
LeftT4Shoulder " , " Le f tShou lder " , " LeftElbow " , " LeftWrist " , " RightHip " , "
RightKneeX " , " RightAnkle " , " RightBal lFoot " , " LeftHip " , " LeftKnee " , "
LeftAnkle " , " Le f tBa l lFoot " ]

31

32 header_names = [ " L5S1 " , " L5S1 " , " L5S1 " , " L4L3 " , " L4L3 " , " L4L3 " , " L1T12 " , "
L1T12 " , " L1T12 " , "T9T8" , "T9T8" , "T9T8" , "T1C7" , "T1C7" , "T1C7" , " Head " ,
" Head " , " Head " , " RightT4Shoulder " , " RightT4Shoulder " , " RightT4Shoulder " ,
" RightShoulder " , " RightShoulder " , " RightShoulder " , " RightElbow " , "
RightElbow " , " RightElbow " , " RightWrist " , " RightWrist " , " RightWrist " , "
LeftT4Shoulder " , " LeftT4Shoulder " , " LeftT4Shoulder " , " Le f tShou lder " , "
Le f tShou lder " , " Le f tShou lder " , " LeftElbow " , " LeftElbow " , " LeftElbow " , "
LeftWrist " , " LeftWrist " , " LeftWrist " , " RightHip " , " RightHip " , " RightHip " ,

" RightKneeX " , " RightKneeY " , " RightKneeZ " , " RightAnkle " , " RightAnkle " , "
RightAnkle " , " RightBal lFoot " , " RightBal lFoot " , " RightBal lFoot " , " LeftHip "
, " LeftHip " , " LeftHip " , " LeftKnee " , " LeftKnee " , " LeftKnee " , " LeftAnkle " ,
" LeftAnkle " , " LeftAnkle " , " Le f tBa l lFoot " , " Le f tBa l lFoot " , " Le f tBa l lFoot " ]

33

34 b = [ ]
35

36 f o r i in header_names :
37 b . extend ( [ i ] )
38

39 data . columns = b
40

41 right_knee_data=data [ [ " RightKneeZ " ] ]
42

43

44 #f i r s t 60 s t e p s
45 f i r s t_60_steps = right_knee_data [ 3 3 9 8 6 : 4 5 0 0 0 0 ] . to_numpy ( ) . f l a t t e n ( )
46 minima = [179 , 358 , 538 , 719 , 898 , 1076 , 1254 , 1435 , 1614 , 1791 , 1970 , 2148 ,

2326 , 2506 , 2684 , 2864 , 3046 , 3225 , 3404 , 3584 , 3766 , 3947 , 4125 , 4303 ,
4479 , 4657 , 4834 , 5012 , 5190 , 5366 , 5541 , 5718 , 5896 , 6074 , 6252 , 6430 ,
6607 , 6784 , 6964 , 7143 , 7322 , 7500 , 7678 , 7856 , 8035 , 8212 , 8393 , 8573 ,
8752 , 8930 , 9109 , 9284 , 9463 , 9643 , 9823 , 10000 , 10180 , 10359 , 10538 ,
10717 , 10893 ] #L i s t with a l l the beg inpo in t s o f a s t r i d e

47 minima2 = [358 , 538 , 719 , 898 , 1076 , 1254 , 1435 , 1614 , 1791 , 1970 , 2148 ,
2326 , 2506 , 2684 , 2864 , 3046 , 3225 , 3404 , 3584 , 3766 , 3947 , 4125 , 4303 ,
4479 , 4657 , 4834 , 5012 , 5190 , 5366 , 5541 , 5718 , 5896 , 6074 , 6252 , 6430 ,
6607 , 6784 , 6964 , 7143 , 7322 , 7500 , 7678 , 7856 , 8035 , 8212 , 8393 , 8573 ,
8752 , 8930 , 9109 , 9284 , 9463 , 9643 , 9823 , 10000 , 10180 , 10359 , 10538 ,
10717 , 10893 ] #L i s t with a l l the endpoints o f a s t r i d e

48

49 counter = 0
50 X = [ ]
51 f o r i in range ( l en ( minima2 ) ) :
52 counter = counter + 1
53 a = minima [ i ]
54 b = minima2 [ i ]
55 x = b − a
56 p l t . x l a b e l ( " Percentage o f the s t r i d e s " )
57 p l t . y l a b e l ( " Knee ang le o f the r i g h t knee " )
58 s t eps1 = np . l i n s p a c e ( a , b , s )
59 stepk1 = [ ]
60 f o r j j in s t eps1 :
61 kk = round ( j j )
62 stepk1 . append ( f i r s t_60_steps [ kk ] )
63 X. append ( stepk1 )
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64 p l t . p l o t (np . l i n s p a c e (0 ,100 , s ) , stepk1 )
65

66 p l t . show ( ) #P lo t t i n g the f i r s t 60 s t r i d e s aga in s t the percentage o f the
s t r i d e

67

68 #l a s t 60 s t ep s
69 last_60_steps = right_knee_data [ 2 5 7 4 0 0 : 2 6 8 4 0 0 ] . to_numpy ( ) . f l a t t e n ( )
70 # p r i n t ( argre l ext rema ( last_60_steps , np . l e s s ) )
71 minima_last = [ 2 3 , 200 , 374 , 550 , 725 , 901 , 1077 , 1254 , 1431 , 1607 , 1781 ,

1957 , 2133 , 2310 , 2485 , 2661 , 2837 , 3011 , 3189 , 3362 , 3538 , 3717 , 3895 ,
4072 , 4251 , 4428 , 4607 , 4783 , 4960 , 5134 , 5312 , 5486 , 5661 , 5837 , 6012 ,
6189 , 6365 , 6544 , 6723 , 6901 , 7081 , 7259 , 7437 , 7613 , 7791 , 7967 , 8146 ,
8324 , 8500 , 8677 , 8853 , 9029 , 9206 , 9383 , 9561 , 9735 , 9912 , 10090 , 10267 ,

10443 , 10621 ] #L i s t with a l l the beg inpo in t s o f a s t r i d e
72 minima2_last = [ 200 , 374 , 550 , 725 , 901 , 1077 , 1254 , 1431 , 1607 , 1781 ,

1957 , 2133 , 2310 , 2485 , 2661 , 2837 , 3011 , 3189 , 3362 , 3538 , 3717 , 3895 ,
4072 , 4251 , 4428 , 4607 , 4783 , 4960 , 5134 , 5312 , 5486 , 5661 , 5837 , 6012 ,
6189 , 6365 , 6544 , 6723 , 6901 , 7081 , 7259 , 7437 , 7613 , 7791 , 7967 , 8146 ,
8324 , 8500 , 8677 , 8853 , 9029 , 9206 , 9383 , 9561 , 9735 , 9912 , 10090 , 10267 ,

10443 , 10621 ] L i s t with a l l the endpoints o f a s t r i d e
73

74 counter2 = 0
75 Y = [ ]
76 f o r i in range ( l en ( minima2_last ) ) :
77 counter2 = counter2 + 1
78 a2 = minima_last [ i ]
79 b2 = minima2_last [ i ]
80 x2 = b2 − a2
81 p l t . x l a b e l ( " Percentage o f the s t r i d e s " )
82 p l t . y l a b e l ( " Knee ang le o f the r i g h t knee " )
83 s t e p s = np . l i n s p a c e ( a2 , b2 , s )
84 stepk = [ ]
85 f o r j in s t e p s :
86 k = round ( j )
87 stepk . append ( last_60_steps [ k ] )
88 Y. append ( stepk )
89 p l t . p l o t (np . l i n s p a c e (0 ,100 , s ) , s tepk )
90

91 p l t . show ( ) #P lo t t i n g the l a s t 60 s t r i d e s aga in s t the percentage o f the
s t r i d e

92

93 #S t a t i s t i c a l t e s t with the use o f con f idence bands (TEST 1)
94

95 # Make v e c t o r s o f the new t r a j e c t o r i e s with a l l po in t s with the same input
value in one vector , so s v e c t o r s

96 database_p = [ ]
97 database_q = [ ]
98 f o r p in range ( s ) :
99 point_p = [ ]

100 point_q = [ ]
101 f o r q in range ( n i ) :
102 point_p . append (X[ q ] [ p ] )
103 point_q . append (Y[ q ] [ p ] )
104 database_p . append ( point_p )
105 database_q . append ( point_q )
106

107 #Calcu la t ing mean and standard e r r o r o f the samples
108 meanX = [ ]
109 meanY = [ ]
110 stdX = [ ]
111 stdY = [ ]
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112 f o r mm in range ( s ) :
113 meanX . append (np . mean( database_p [mm] ) )
114 meanY . append (np . mean( database_q [mm] ) )
115 stdX . append (np . std ( database_p [mm] ) )
116 stdY . append (np . std ( database_q [mm] ) )
117

118

119 #Calcu la t ing the con f idence i n t e r v a l s per po int
120 confidence_band_low_group1 = [ ]
121 confidence_band_high_group1 = [ ]
122 mean_trajectory_group1 = [ ]
123 confidence_band_low_group2 = [ ]
124 confidence_band_high_group2 = [ ]
125 mean_trajectory_group2 = [ ]
126 f o r nn in range ( s ) :
127 confidence_band_low_group1 . append (meanX [ nn ] − abs ( s t a t s . norm . ppf ( . 0 5 / s ) )

∗stdX [ nn ] )
128 mean_trajectory_group1 . append (meanX [ nn ] )
129 confidence_band_high_group1 . append (meanX [ nn ] + abs ( s t a t s . norm . ppf ( . 0 5 / s )

) ∗stdX [ nn ] )
130 confidence_band_low_group2 . append (meanY [ nn ] − abs ( s t a t s . norm . ppf ( . 0 5 / s ) )

∗stdY [ nn ] )
131 mean_trajectory_group2 . append (meanY [ nn ] )
132 confidence_band_high_group2 . append (meanY [ nn ] + abs ( s t a t s . norm . ppf ( . 0 5 / s )

) ∗stdY [ nn ] )
133

134 #Pl o t t i ng the c o s i n e s and the con f idence bands
135

136 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , confidence_band_low_group1 [ 1 5 : 1 8 ] , c o l o r='
green ' , marker=" . " )

137 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , mean_trajectory_group1 [ 1 5 : 1 8 ] , c o l o r='
green ' , marker="_" , l i n e s t y l e=' dotted ' )

138 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , confidence_band_high_group1 [ 1 5 : 1 8 ] , c o l o r=
' green ' , marker=" . " )

139 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , confidence_band_low_group2 [ 1 5 : 1 8 ] , c o l o r='
blue ' , marker=" . " )

140 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , mean_trajectory_group2 [ 1 5 : 1 8 ] , c o l o r=' blue
' , marker="_" , l i n e s t y l e=' dotted ' )

141 p l t . p l o t ( Percentage_array [ 1 5 : 1 8 ] , confidence_band_high_group2 [ 1 5 : 1 8 ] , c o l o r=
' blue ' , marker=" . " )

142 p l t . x l a b e l ( " Percentage o f the s t r i d e " )
143 p l t . y l a b e l ( " Knee ang le o f the r i g h t knee during a run " )
144 p l t . show ( )
145

146 # S t a t i s t i c a l t e s t with two sample t . t e s t on each input po int o f the mean
f u n c t i o n s o f the groups

147 x = database_p
148 y = database_q
149

150 alpha = 0.05
151 a lpha_bonferroni = 0.05/ s
152

153 pvalues = [ ]
154 r e j e c t ed_pva lues = [ ]
155

156 f o r t in range ( s ) :
157 t t e s t = s t a t s . t t e s t_ind ( x [ t ] , y [ t ] )
158 pvalues . append ( t t e s t [ 1 ] )
159

160 #p r i n t ( pva lues )
161

26



162 f o r p in range ( s ) :
163 i f pva lues [ p ] < alpha_bonferroni :
164 r e j e c t ed_pva lues . append (1 )
165 e l s e :
166 r e j e c t ed_pva lues . append (0 )
167

168 p r i n t ( r e j e c t ed_pva lues )
169

170 f o r i in range ( l en ( re j e c t ed_pva lues ) ) :
171 i f r e j e c t ed_pva lues [ i ] == 1 :
172 p l t . p l o t ( Percentage_array [ i ] , mean_trajectory_group1 [ i ] , c o l o r=' red ' ,

marker=" . " , l i n ew id th = " 0 " )
173 e l s e :
174 p l t . p l o t ( Percentage_array [ i ] , mean_trajectory_group1 [ i ] , c o l o r=' black '

, marker=" . " , l i n ew id th = " 0 " )
175 p l t . x l a b e l ( " Percentage o f the s t r i d e " )
176 p l t . y l a b e l ( " Knee ang le o f the r i g h t knee during a run " )
177

178 p l t . show ( ) #p lo t with r e j e c t e d pva lues
179

180 #Bootstrap based k sample t e s t i n g f o r f u n c t i o n a l data (TEST 3) f i r s t c e l l
181

182 # Make v e c t o r s o f the new t r a j e c t o r i e s with a l l po in t s with the same input
value in one vector , so s v e c t o r s

183 database_p = [ ]
184 database_pp = [ ]
185 f o r p in range ( s ) :
186 point_p = [ ]
187 point_pp = [ ]
188 f o r q in range ( n i ) : #ni=mi
189 point_p . append (X[ q ] [ p ] )
190 point_pp . append (Y[ q ] [ p ] )
191 database_p . append ( point_p )
192 database_pp . append ( point_pp )
193

194 #Calcu la t ing mean and mean t r a j e c t o r y (STEP 1)
195 meanX = [ ]
196 meanY = [ ]
197 f o r m in range ( s ) :
198 meanX . append (np . mean( database_p [m] ) )
199 meanY . append (np . mean( database_pp [m] ) )
200

201 #Res idual f u n c t i o n s (STEP 2)
202 r e s idua lX = [ ]
203 r e s idua lY = [ ]
204 f o r r in range ( n i ) : #ni=mi
205 r e s i d u a l a = [ ]
206 r e s i d u a l b = [ ]
207 f o r bb in range ( s ) :
208 r e s i d u a l a . append (X[ r ] [ bb ] − meanX [ bb ] )
209 r e s i d u a l b . append (Y[ r ] [ bb ] − meanY [ bb ] )
210 r e s idua lX . append ( r e s i d u a l a )
211 r e s idua lY . append ( r e s i d u a l b )
212

213 SnB = [ ] #empty l i s t to f i l l with the Sn^+
214 f o r bbb in range (B) : #apply s tep 3 and 4 f o r every B boots t rap sample ' s to

even tua l l y ana lyze the d i s t r i b u t i o n o f the i n d i v i d u a l Sn ' s
215 #Generating boots t rap f u n c t i o n a l pseudo−obse rva t i on s (STEP 3)
216 pseudo_observat ions = [ ]
217 X_bar = 0
218 f o r j in range ( n i ) :
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219 f o r i in range ( s ) :
220 X_bar = X_bar + X[ j ] [ i ] + Y[ j ] [ i ]
221

222 pooled_mean_function_estimator = 1/N ∗ X_bar
223

224 X_plus = [ ] #boots t rap pseudo obs e rva t i on s f o r group 1
225 Y_plus = [ ] #boots t rap pseudo obs e rva t i on s f o r group 2
226 f o r j in range ( n i ) :
227 J = random . randint (0 , ni −1)
228 X_plus . append ( pooled_mean_function_estimator + res idua lX [ J ] )
229 JJ = random . randint (0 , mi−1)
230 Y_plus . append ( pooled_mean_function_estimator + res idua lY [ JJ ] )
231

232 # Calcu la t ing the mean o f the new sample o f boots t rap f u n c t i o n a l pseudo
obs e rva t i on s

233 database_w = [ ]
234 database_ww = [ ]
235 f o r w in range ( s ) :
236 point_w = [ ]
237 point_ww = [ ]
238 f o r v in range ( n i ) : #ni=mi
239 point_w . append ( X_plus [ v ] [ w] )
240 point_ww . append ( Y_plus [ v ] [ w] )
241 database_w . append ( point_w )
242 database_ww . append ( point_ww )
243

244 #Calcu la t ing mean and mean t r a j e c t o r y o f boots t rap f u n c t i o n a l pseudo
obs e rva t i on s

245 meanXB = [ ]
246 meanYB = [ ]
247 f o r mm in range ( s ) :
248 meanXB. append (np . mean( database_w [mm] ) )
249 meanYB. append (np . mean( database_ww [mm] ) )
250

251 #Calcu la t ing Sn^+ f o r every boots t rap sample
252 d i f f e r e n c e = [ ]
253 f o r i in range ( l en (meanXB) ) :
254 d i f f e r e n c e . append (meanXB[ i ] − meanYB[ i ] )
255

256 L2_norm = 0
257 Sn = 0
258 L2_norm = np . l i n a l g . norm( d i f f e r e n c e ) #euc l i d ean norm
259 Sn = ( ( n i ∗ mi ) /N) ∗ (L2_norm ∗ L2_norm)
260 SnB . append (Sn)
261

262

263 #Sort the SnB ' s
264 SnB_sorted = sor t ed (SnB)
265 #Estimate the c r i t i c a l va lue
266 C r i t i c a l _ v a l u e = ( SnB_sorted [ 9 4 9 ] + SnB_sorted [ 9 5 0 ] ) /2
267 p r i n t ( 'The c r i t i c a l va lue f o r t h i s t e s t i s : ' , C r i t i c a l _ v a l u e )
268

269 #Calcu la te the ' r e a l ' Sn , f o r the input data
270 d i f f e r e n c e _ r e a l = [ ]
271 f o r i in range ( l en ( mean_trajectory_group1 ) ) :
272 d i f f e r e n c e _ r e a l . append ( mean_trajectory_group1 [ i ] − mean_trajectory_group2 [

i ] )
273

274 L2_norm_real = np . l i n a l g . norm( d i f f e r e n c e _ r e a l ) #euc l i d ean norm
275 Sn_real = ( ( n i ∗ mi ) /N) ∗ ( L2_norm_real ∗ L2_norm_real )
276 p r i n t ( 'The t e s t s t a t i s t i c f o r t h i s t e s t i s : ' , Sn_real )
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277

278 i f Sn_real > C r i t i c a l _ v a l u e :
279 p r i n t ( " With a con f idence l e v e l o f 95% the n u l l hypothes i s ( the mean

t r a j e c t o r i e s are the same ) i s r e j e c t e d " )
280 e l s e :
281 p r i n t ( " With a con f idence l e v e l o f 95% we can not r e j e c t the n u l l

hypothes i s ( the mean t r a j e c t o r i e s are the same ) " )
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